الجمهورية الجزائرية الديمقر اطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mohamed Khider- Biskra Faculté des sciences et de la technologie Département : Génie mécanique Réf :.....

جامعة محمد خيضر بسكرة

جامعة محمد خيضر بسكرة

كلية العلوم و التكنولوجيا

قسم الهندسة الميكانيكية

المرجع:

Mémoire présenté en vue de l'obtention Du diplôme de

Magistère

Spécialité : Génie Mécanique Option : Construction mécanique

Modélisation de la dynamique d'un manipulateur à deux bras flexibles

Présenté par :

Bensahal Djamel

Soutenu publiquement le : 11 janvier 2011

Devant le jury composé de :

Pr. Zakaria Boumerzoug DR. Mekki assas Dr. Mabrouk Hécini Dr. Mohamed Nadir Amrane Professeur M.C. (A) M.C. (A) M.C. (A) Président Examinateur Examinateur Rapporteur Université de Biskra Université de Batna Université de Biskra Université de Biskra

<u>Remerciements</u>

Je tiens à remercier sincèrement mon professeur : **Dr. Amrane Mohamed Nadir** Pour son encadrement, ses conseils judicieux,sa disponibilité totale à tout problème rencontré ou des suggestions pour le bon déroulement du travail proposé, sa sincérité dans le travail et son encouragement continuel du début jusqu'à la préparation de mémoire.

Mes plus vifs remerciements vont également à mes professeurs : Dr. Mekki Assas et Dr. Mabrouk Hécini qui ont pris le temps d'examiner avec attention bienveillante mon travail.

Je tiens à remercier avec fierté ma gratitude au **Pr. Zakaria Boumerzoug** qui a accepté de présider mon jury et a bien voulu juger mon travail.

Finalement, je remercie très chaleureusement tous les responsables du département de mécanique et surtout à tous nos enseignants qui ont contribué à notre formation.

Introduction générale	08
Objectif du travail	09
Chapitre 1- Généralités sur la robotique- introduction aux structures	
rigides et flexibles	10
1. Introduction.	10
1.1. Notions générales sur la robotique	11
1.1.1. Le robot et la robotique	11
1.1.2. Relation Homme- Tâche	11
1.1.3. Architecture mécanique	12
1.1.3.1.Liaisons mécaniques	12
1.1.4.Types d'architecture de SMA en robotique	13
1.1.5.Robot à architecture série	14
1.1.6. Actionneurs	15
1.1.6.1.Robots électriques	15
1.1.6.2.Robots hydrauliques	15
1.1.6.3.Robots pneumatiques	15
1.1.7. Principe de fonctionnement	15
1.1.8. Caractéristique d'un robot	15
1.2. Matrices de transformations homogènes	16
1.2.1. Représentation d'un point	16
1.2.2. Transformations homogènes des repères	16
1.2.3. Matrice de transformation de translation pure	17
1.2.4. Matrices de transformations de rotation autour des axes principaux	18
1.2.4.1.Rotation autour de l'axe X	18
1.2.4.2.Rotation autour de l'axe Y	18
1.2.4.3.Rotation autour de l'axe Z	19
1.2.5. Propriétés des matrices de transformation homogène	19
1.3. Modèle géométrique direct des robots à chaîne ouverte simple (MGD)	19
1.3.1. Description de la géométrie des robots à structure ouverte simple	19
1.3.2. Exemple 1	21
1.3.3. Modèle géométrique des robots à structure ouverte simple (MGD)	23
1.3.4. Exemple 2	23
1.4. Modèle géométrique inverse des robots à structure ouverte simple (MGI).	25
1.4.1. La méthode de Paul	26
1.5. Modèle cinématique direct des robots à structure ouverte simple	27
1.5.1 Calcul de la matrice jacobiènne par dérivation du MGD	$\frac{2}{28}$
1.5.2. Exemple 3	28
1.6. Modèle cinématique inverse des robots à structure ouverte simple.	29
1.7. Robots manipulateurs rigides.	29
1.7.1. Contrôle de la dynamique des robots manipulateurs.	29
1.7.2. Analyse de rigidité.	32
1.8. Robots manipulateurs flexibles	33
1 8 1 Identification et modélisation des manipulateurs flexibles	33
1.8.2. Contrôle de la dynamique des robots manipulateurs	22
1.9 Conclusion	35
Chapitre 2-Formulation dynamique du système à deux bras	36
2.1 Introduction	36
2.2 Formulation de Lagrange- Euler	36
2.3 Vitesses d'articulations pour le robot manipulateur	36
here a more and the four to foot humphine and the foot humph	50

Sommaire

2.4. Energie cinétique du robot manipulateur	40
2.5. Energie potentielle du robot manipulateur	40
2.6. Equation du mouvement du robot manipulateur	40
2.7. Equations de mouvement d'un robot manipulateur avec des articulations	40
	42
2.8. Application a un robot manipulateur a deux bras	43
2.9. Conclusion	47
Chapitre 3-Modelisation du système à deux bras flexibles par éléments finis	10
2 1 Introduction	48
2.2. Formulation des équations du mouvement des systèmes à un soul destré	48
de liberté	18
3.3 Formulation des équations du mouvement des systèmes à plusieurs degrés	40
de libertés	49
3.4 Modèle élément fini (cas hidimensionnel)	51
3.5 Résolution du problème aux valeurs propres	53
3.6 Exemple d'application	55
3 7 Résultats	56
3.7.1 Modèle 1 (9 nœuds)	56
3.7.2. Modèle 2 (21 nœuds).	57
3.8 Conclusion	58
3.9. Représentation graphique de la structure en fonction des modes	00
Propres calculés (cas bidimensionnel)	58
3.10. Représentation graphique de la structure en fonction des modes	
Propres obtenus par le logiciel Abagus	64
3.11. Analyse des résultats pour le cas bidimensionnel (9 nœuds)	66
3.12. Modèle élément fini(cas tridimensionnel)	67
3.12.1. Poutre à 12 degrés de libertés (axes locaux)	67
3.12.2. Axes globaux (X, Y, Z)	68
3.13. Exemple d'application	69
3.14. Résultats	69
3.14.1. Modèle 1 (9 nœuds)	69
3.14.2. Modèle 2 (21 nœuds)	71
3.15. Conclusion	73
3.16. Représentation graphique de la structure en fonction des modes	
Propres calculés (cas tridimensionnel)	74
3.17. Représentation graphique de la structure en fonction des modes	
Propres obtenus par le logiciel Abaqus	79
3.18. Analyse des résultats pour le cas tridimensionnel	81
3.19. Conclusion.	81
Chapitre 4-Comparaison du comportement de la structure rigide et flexible	82
4.1. Introduction.	82
4.2. Sensibilité aux rigidités locales situées entre les deux bras du manipulateur	~ ~
(cas bidimensionnel)	83
4.3. Pulsations propres pour structure rigide	95
4.4. Determination de position de l'extremite du 2^{1000} bras en fonction de	07
L'angle tetal et teta2.	95
4.5. Adaque pour determiner la position de l'extremite du bras B	05
En ionction de tetal et teta2	93
4.0. Comparaison entre la structure rigide et la structure flexible	98

4.7. Conclusion générale et perspective	112
Références bibliographiques	113
Annexe	114

Liste des principales notations

ⁱ T _j	matrice de passage du repère R _i au repère R _i .		
S_x, n_x, a_x	vecteurs unitaires suivant l'axe X.		
S_y, n_y, a_y	vecteurs unitaires suivant l'axe Y.		
S_z, n_z, a_z	vecteurs unitaires suivant l'axe Z.		
¹ P _j	vecteur exprimant l'origine du repère R _j dans le repère R _i .		
¹ r _i	position d'un point se trouvant sue le bras par rapport à l'articulation i.		
Trans	translation.		
Rot	rotation.		
$\mathbf{q}_{\mathbf{i}}$	ième variable articulaire.		
Sθ, Cθ	abréviation pour sin θ et cos θ .		
S _{ij} , C _{ij}	abréviation pour sin (q_i+q_j) et cos (q_i+q_j) .		
S _{ijk} , C _{ijk}	abréviation pour sin $(q_i+q_j+q_k)$ et cos $(q_i+q_j+q_k)$.		
Rot $(\mathbf{x}, \boldsymbol{\theta})$	matrice de rotation d'angle θ autour de l'axe X.		
Trans (a, b, c)	translation ou a, b, c désignent les composantes de la translation le long des		
	axes X, Y, Z.		
SMA	système mécanique articulé.		
MGD	modèle géométrique direct.		
MGI	modèle géométrique inverse.		
MCD	modèle cinématique direct.		
MCI	modèle cinématique inverse.		
J	matrice jacobiènne.		
V _i	vitesse d'un point i.		
K	énergie cinétique.		
P	énergie potentielle.		
L	Lagrangien.		
ddl	degrés de libertés.		
W	pulsation propre.		
[K]	matrice de rigidité.		
[M]	matrice masse.		

Introduction générale

Dans les entreprises manufacturières, des tâches pénibles, répétitives réalisées par des opérateurs humains peuvent être avantageusement confiées à des systèmes mécaniques articulés(SMA) pour exécuter des mouvements complexes à l'image de ceux d'un bras humain.

L'emploi de ces dispositifs s'avère d'ailleurs nécessaire pour des tâches d'intervention inaccessibles à l'homme en milieu hostile, par exemple sous-marin, nucléaire ou spatial. Ils sont dotés d'un dispositif de locomotion et peuvent être autonomes ou contrôlés à distance par un opérateur humain.

-Dans le premier chapitre, nous débuterons par donner des notions générales sur la robotique qui nous permettent de montrer l'architecture mécanique des robots manipulateurs, ainsi les types de tâches et les secteurs d'application. La compréhension des mouvements complexes dans l'espace, de l'outil porté par un bras manipulateur conduit à définir la géométrie des déplacements. Pour commander un robot ou simuler son comportement, on doit disposer de modèles, plusieurs niveaux de modélisation sont possibles selon les objectifs, les contraintes de la tâche et les performances recherchées : modèles géométriques, cinématiques et dynamiques.

Ces modèles, qu'ils soient utilisés en simulation ou en commande, doivent représenter le comportement géométrique, cinématique ou dynamique du robot d'une façon réaliste.

L'analyse des publications trouvées dans la littérature montre que les principaux axes de recherche dans le domaine des bras manipulateurs sont :

-Problèmes liés aux bras manipulateurs rigides : dans ce cas deux axes généralement sont traités :

- •Contrôle de la dynamique des robots manipulateurs.
- •Analyse de rigidité.

-Problèmes liés aux robots manipulateurs flexibles : les axes de recherches sont :

- Identification, modélisation des robots manipulateurs flexibles.
- Contrôle de la dynamique des robots manipulateurs flexibles.

-Dans le deuxième chapitre, on établit la formulation dynamique du système à deux bras, qui permet la description du comportement dynamique du robot en utilisant la formulation de Lagrange- Euler.

-Dans le troisième chapitre, on traitera le cas bidimensionnel en se basant sur la théorie des poutres et la modélisation par la méthode des éléments finis qui donnera les matrices de masse et de rigidité, par la suite les pulsations propres de la structure où deux modèles (l'un neuf nœuds et l'autre à vingt-et-un nœuds) sont évoqués.

-On étendra notre étude au cas tridimensionnel, nous allons exposer les différentes représentations graphiques de la structure en chaque mode de vibration et une analyse des résultats obtenus pour le cas bidimensionnel et tridimensionnel des deux modèles étudiés précédemment.

-Dans le dernier chapitre, « Comparaison du comportement de la structure rigide et flexible » Nous allons étudié la sensibilité de la structure aux rigidités locales placées entre les deux bras du robot manipulateur pour les deux cas cité ci –dessus en appliquant les même modèles, en plus la schématisation d'une abaque définissant la valeur de teta1 et teta2 pour n'importe quelle position de l'extrémité du 2^{ième} bras toute en faisant une comparaison entre la structure rigide et la structure flexible.

Objectif du travail

La robotique traite de la construction et de la mise en œuvre de systèmes mécaniques articulés destinés à réaliser des tâches pénibles, répétitives ou des tâches d'intervention inaccessibles à l'homme en milieu hostile, en exécutant des mouvements complexes à l'image de ceux d'un bras humain.

Dans le cadre d'étude de notre projet, nous avons fixé comme objectif principal la modélisation d'un robot manipulateur à deux bras flexibles par la méthode des éléments finis, en se basant sur la théorie des poutres.

Pour trouver les matrices globales de rigidité et de masse de la structure, la méthode des éléments finis est appliquée sur un modèle élément poutre en flexion. L'analyse modale du manipulateur est basée sur l'application d'une méthode analytique de résolution de l'équation des vibrations libres non dissipatives :

$$[M] \left\{ \begin{matrix} \bullet \\ q \end{matrix} \right\} + [K] \left\{ q \right\} = 0$$

Le calcul des matrices de masse et de rigidité de chaque élément se fait tout d'abord dans son repère local dans le but de déterminer les pulsations propres de la structure (robot manipulateur), dans cette étude menée deux cas sont traités :

- •Cas bidimensionnel.
- •Cas tridimensionnel.

L'élaboration des programmes sous le logiciel de Matlab, a permis de déterminer les matrices de rigidité et de masse globales de la structure, toute en tenant compte des cas cités ci-dessus. Ces programmes ont permis encore de déterminer les modes propres ainsi leurs représentations graphiques en chaque mode. Pour valider l'efficacité de nos programmes, deux modèles sont traités :

- •8 éléments (9 nœuds).
- •20 éléments (21 nœuds).

Et comme objectif secondaire, la formulation de Lagrange-Euler qui permet la description du comportement dynamique du robot manipulateur à deux bras, plus une analyse des effets de variation des raideurs entre les deux bras du manipulateur pour le cas bidimensionnel et une schématisation d'une abaque qui définit la valeur de tetal et teta2 pour une position donnée de l'extrémité du $2^{ième}$ bras (structure rigide) et faire la comparaison entre la structure rigide et la structure flexible pour différents longueurs (L =1m et L = 4m), toute en complétant cette étude par une analyse de publications trouvées dans la littérature permettant de montrer les axes principaux de recherche dans le domaine des robots manipulateurs.

Une analyse modale similaire est entreprise par un logiciel d'analyse et de calcul : Abaqus pour valoriser les résultats obtenus par nos programmes.

1. Introduction :

D'après l'association Française de Normalisation (AFNOR)[2] :

« Un robot est un manipulateur commandé en position, reprogrammable, polyvalent, à plusieurs degrés de libertés, capable de manipuler des matériaux, des pièces, des outils et des dispositifs spécialisés, au cours du mouvements variables et programmés pour l'exécution d'une variété de tâches. Il a souvent l'apparence d'un ou plusieurs bras se terminant par un poignet. Son unité de commande utilise, notamment un dispositif de mémoire et éventuellement de perception et d'adaptation à l'environnement et aux circonstances. Ces machines polyvalentes sont généralement étudiées pour effectuer la même fonction de façon cyclique et peuvent être adaptées à d'autres fonctions sans modification permanente du matériel ».

Dans cette définition, on retrouve les différentes composantes d'une cellule robotisée :

-Le mécanisme : ayant une structure plus ou moins proche de celle du bras humain, il permet de remplacer ou de prolonger son action. Sa motorisation est réalisée par des actionneurs électriques, pneumatiques ou hydrauliques qui transmettent leurs mouvements aux articulations par des systèmes appropriés.

-La perception : qui permet de gérer les relations entre le robot et son environnement. Les organes de perception sont des capteurs dits *proprioceptifs* lorsqu'ils mesurent l'état interne du robot (positions et vitesses des articulations) et *extéroceptifs* lorsqu'ils recueillent des informations sur l'environnement (détection de présence, mesure de distance, vision artificielle).

-La commande : qui synthétise les consignes des asservissements pilotant les actionneurs. A partir de la fonction de perception et des ordres de l'utilisateur, elle permet d'engendrer les actions de robot.

-L'interface homme-machine à travers laquelle l'utilisateur programme les tâches que le robot doit exécuter.

-Le poste de travail et les dispositifs qui constituent l'environnement dans lequel évolue le robot.

Dans ce chapitre, on parle des matrices de transformations et leurs nécessitées d'exprimer les situations des différents corps du robot les uns par rapport aux autres.

La conception et la commande des robots nécessitent le calcul de certains modèles mathématiques tels que :

- Les modèles géométriques direct et inverse qui expriment la situation de l'organe terminal en fonction des variables articulaires du robot et inversement.
- Les modèles cinématiques direct et inverse qui expriment la vitesse de l'organe terminal en fonction des vitesses articulaires et inversement.

Et encore, on parle des robots manipulateurs rigides et l'analyse de publications trouvées dans la littérature, ainsi les principaux axes de recherches concernant :

- Contrôle de la dynamique des robots manipulateurs.
- analyse de rigidité.

Puis, sur les robots manipulateurs flexibles et l'analyse de publications trouvées dans la littérature, avec les principaux axes de recherches concernant :

- Identification, modélisation des robots manipulateurs flexibles.
- Contrôle de la dynamique des robots manipulateurs flexibles.

1.1. Notions générales sur la robotique :

1.1.1. Le robot et la robotique [3]:

Un robot est un dispositif mécanique articulé capable d'imiter certaines fonctions humaines telles que la manipulation d'objets ou la locomotion, dans le but de se substituer à l'homme pour la réalisation de certaines tâches matérielles, cette réalisation est plus ou moins autonome selon les facultés de perception de l'environnement dont est doté le robot.

La robotique est l'ensemble des activités de construction et de mise en œuvre des robots,on peut dire aussi que tout dispositif comporte une partie [opérationnelle]qui réalise la tâche et une partie [décisionnelle ou commande]qui contrôle la partie opérationnelle.

1.1.2. Relation Homme-Tâche [3] :

La figure 1.1 représente schématiquement quatre modes de relations entre l'homme et la tâche qu'il doit effectuer à l'aide d'un outil (outil à prendre dans un sens très général), on va se préoccuper de la façon dont l'homme agit sur l'outil et de la façon de contrôler la bonne exécution de la tâche.

1.1.2.1.Types de tâche [3] :

Selon le type de tâche et le secteur d'application, le robot aura une architecture mécanique et un système de contrôle-commande différents parmi ces tâches peuvent être en milieu normale ou hostile:

Manutention de pièces

Soudage (assurer une bonne précision de la trajectoire de soudure).

Peinture (il doit être animé d'une grande vitesse)

Assemblage (l'exigence d'une très grande précision de positionnement)

Aider le chirurgien dans une opération (robotique médicale).

Robot mobile évoluant dans un environnement inconnu et sur sol accidentée (la robotique militaire).

1.1.3. Architecture mécanique :

1.1.3.1.Liaisons mécaniques [3]:

-Définition des liaisons usuelles : Un système mécanique articulé (SMA) est un ensemble de solides reliés entre eux par des liaisons schématisées figure1.2(a) par des points ,pour définir une liaison ,par exemple entre S_1 et S_2 ,il faut isoler S_1 et S_2 de l'ensemble selon la figure1.2(b).On définit alors le d.d.l(degré de liberté) de la liaison comme étant le nombre de mouvements indépendants possibles de S_2 par rapport à S_1 .Les liaisons les plus usuelles sont représentées dans le tableau de la figure1.3.

Figure 1.2 (a),(b) : Schématisation d'un SMA.[3]

Figure 1.3-Liaisons usuelles [3]

1.1.4. Types d'architecture de SMA en robotique [3] :

Le nombre d'actionneurs (qui sera définit par la suite) représente ce qui d'usage d'appeler le d.d.l du robot .Sur la figure 1.4 les liaisons motorisées sont celles auxquelles sont associées les variables articulaires q_i de commande. C'est un moyen de distinguer les liaisons actives des liaisons passives.

•Architecture série (ou chaîne cinématique ouverte), figure1.4 (a)

Il n'y a qu'un chemin possible pour aller du bâti à la pince, les segments du robot ainsi que les liaisons sont bien mises en série.

•Architecture parallèle (ou chaîne cinématique multi boucle), figure1.4 (c)

Pour aller de la pince au bâti, il y a six chemins différents et sur chaque chemin, une seule liaison active prismatique.

•Architecture mixte, figure1.4 (b), (d), (e) et (f)

On dit aussi série-parallèle ou parallèle-série selon la prédominance de liaisons en série ou en parallèle.

-Pour le robot manipulateur (b) présentant une boucle cinématique, si on part de la pince, on rencontre trois liaisons pivot actives en série de paramètres q_3 et q_2 , enfin en série la liaison pivot active q_1 .Les liaisons pivot en B, C, D sont passives. Les liaisons en série dominent, c'est donc un robot manipulateur série-parallèle, on dit aussi à une boucle.

-Pour le robot marcheur (d),la plate forme est reliée au bâti par quatre chaînes cinématique identiques en parallèle (les pattes),chacune d'elles,telle que $A_iB_iC_i$ comporte trois liaisons pivot motorisées et une liaison de contacte. Le robot marcheur est donc parallèle-série à 12 d.d.l.

-Le robot mobile (e) qui compte 8 d.d.l, les 6 d.d.l du bras manipulateur d'architecture série et les 2 d.d.l q_1 et q_2 du chariot en parallèle.

Figure1.4-Exemples d'architectures de SMA en robotique [3]

1.1.5. Robot à architecture série :

Il est d'usage de distinguer dans un robot manipulateur série le porteur et la poignet : figure 1.4b:

Figure 1.4b : structure générale d'un Robot manipulateur[2]

•Porteur, figure1.5 :

Les liaisons utilisées sont en général des articulations de rotation (liaison pivot) notée R et des articulations prismatiques (liaison prismatique) notée P

Figure1.5 : Principales architectures de porteurs [3]

•Poignet, figure1.6 :

Le poignet est distiné à l'orientation de la pince ou de l'outil porté par le robot, la structure la plus courante est représentée par la figure1.6 :

1.1.6. Actionneurs [3]:

Pour être animé, le SMA comporte des moteurs le plus souvent avec des transmissions (l'ensemble constitue les actionneurs), des capteurs délivrant des informations sur l'état du SMA et à son extrémité un outil ou un préhenseur, ce que l'on qualifie plus généralement d'éffecteur car c'est lui qui aura un effet direct sur l'environnement. On distingue :

1.1.6.1.Robots électriques :

Les actionneurs les plus fréquents utilisent des moteurs électriques .Les mœurs classiques ont une vitesse de régime élevée par rapport au niveau d'une articulation pivot,le moteur sera suivi d'un réducteur ,ce qui permet d'avoir une amplification du couple moteur.

1.1.6.2. Robots hydrauliques :

Pour les robots devant manipuler de très lourdes charges, les actionneurs sont le plus souvent hydrauliques, agissant en translation (vérins hydrauliques) ou en rotation.

1.1.6.3.Robots pneumatiques (manipulateurs à cycles):

Les actionneurs pneumatiques sont d'un usage général pour les manipulateurs à cycles. Un manipulateur à cycle (automate ou bras transfert), est un SMA, permettant une succession de mouvements contrôlés uniquement par des capteurs de fin de course réglables manuellement à la course désirée.

1.1.7. Principe de fonctionnement [3]:

Pour bien comprendre le principe de réalisation d'une tache complexe par un robot, il est utile de commencer par la description d'un système robotique un peu plus particulier qui est le télémanipulateur.

-Système maître-esclave : Un ensemble de télémanipulation est constitué, comme indiqué sur la figure1.7(a) de deux ensembles mécaniques :

*Un bras articulé à motorisation asservie, ayant de grandes possibilités de mouvement, c'est le bras esclave.

*Un bras, qui est une réplique légère non motorisée du bras esclave mais doté de capteurs internes de position sur les articulations, c'est le bras maître.

Le fonctionnement est le suivant, le bras esclave est en permanence sous le contrôle de l'opérateur qui manipule le bras maître. L'information du capteur de position de l'articulation (i) du bras maître sert d'entrée de consigne q_{ci} de l'asservissement du moteur de l'articulation (i) du bras esclave.

Figure 1.7 (a) : Principe de télémanipulateur maître- esclave [3]

1.1.8. Caractéristiques d'un robot [2]:

On peut mentionner quelques-unes qui permettent de choisir un robot en fonction de l'application envisagée :

-L'espace de travail.

-La charge utile ou charge maximale transportable par le robot.

-Les vitesses et accélérations maximales, qui conditionnent les temps de cycle.

-Les performances (exactitude, répétitivité).

-La résolution : c'est la plus petite modification de la configuration du robot à la fois observable et contrôlable par le système.

1.2. Matrices de transformation homogènes [2]:

La notion de transformation de repère est donc fondamentale, elle permet :

-D'exprimer les situations des différents corps du robot les uns par rapport aux autres.

-De spécifier les situations que doit prendre le repère associé à l'organe terminal du robot pour réaliser une tâche donnée.

-De décrire et de contrôler les efforts mis en jeu lorsque le robot interagit avec son environnement.

-D'intégrer à la commande les informations sensorielles issus de capteurs ayant chacun son système de référence propre.

1.2.1. Représentation d'un point :

Soit P un point de coordonnées cartésiennes p_x , p_y,p_z (figure 1.7(b)).On appelle coordonnées homogènes du point P les termes w. p_x , w. $p_y,w. p_z$ et w où w est un facteur d'échelle égale à 1 en robotique. On représente alors les coordonnées homogènes d'un point par le vecteur :

Figure 1.7(b)Représentation d'un point [2]

1.2.2. Transformations homogènes des repères :

Faisons subir une transformation quelconque, de translation et ou de rotation au repère R_i , une transformation qui l'amène sur le repère R_j (figure 1.8). Cette transformation est définit par la matrice ⁱT_i appelée matrice de transformation homogène, de dimension(4*4), telle que :

$${}^{i}T_{j} = \begin{bmatrix} {}^{i}s_{j} & {}^{i}n_{j} & {}^{i}a_{j} & {}^{i}p_{j} \end{bmatrix} = \begin{bmatrix} s_{x} & n_{x} & a_{x} & p_{x} \\ s_{y} & n_{y} & a_{y} & p_{y} \\ s_{z} & n_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1-1)

Oŭ, ⁱs_j, ⁱn_j et ⁱa_j désignent respectivement les vecteurs unitaires suivant les axes x_j, y_j et z_j du repère R_j exprimés dans le repère R_i et ou ⁱP_j est le vecteur exprimant l'origine du repère R_j dans le repère R_i .

On dit également que la matrice ${}^{i}T_{j}$ définit le repère R_{j} dans le repère R_{i} , comme on peut noter la matrice de transformation sous forme partitionnée :

Figure 1.8 Transformation des repères [2] **1.2.3. Matrice de transformation de translation pure :**

Soit Trans (a, b, c) cette transformation, oŭ a, b, et c désignent les composantes de la translation le long des axes x, y et z respectivement. L'orientation étant conservée dans cette transformation, Trans (a, b, c) a pour expression (figure 1.9):

$${}^{i}T_{j} = Trans(a,b,c) = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ainsi, la matrice Trans (a, b, c) peut être décomposée en un produit de trois matrices : Trans (a, b, c)=Trans(x, a). Trans(x, b). Trans(x, c)

Figure 1.9 Transformation de translation pure [2]

1.2.4. Matrices de transformation de rotation autour des axes principaux [2] : 1.2.4.1.Une rotation θ autour de l'axe x :

Soit Rot(x, θ) cette rotation. On déduit de la figure (1.10) les composantes des vecteurs unitaires, ⁱs_j, ⁱn_j et ⁱa_j portés respectivement par les axes x_j, y_j et z_j du repère R_j et exprimés dans le repère R_i. Si l'on S θ et C θ les sinus et cosinus de θ respectivement, elles s'écrivent :

$$\begin{cases} {}^{i}s_{j} = \begin{bmatrix} I & 0 & 0 & 0 \end{bmatrix}^{T} \\ {}^{i}n_{j} = \begin{bmatrix} 0 & c\theta & s\theta & 0 \end{bmatrix}^{T} \\ {}^{i}a_{j} = \begin{bmatrix} 0 & -s\theta & c\theta & 0 \end{bmatrix}^{T} \end{cases}$$
(1-2)

L'exposant T désignent la transposition, on obtient :

$${}^{i}T_{j} = Rot(x,\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\theta & -s\theta & 0 \\ 0 & s\theta & c\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ Rot(x,\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1-3)

1.2.4.2.Une rotation θ autour de l'axe y :

$${}^{i}T_{j} = Rot(y,\theta) = \begin{bmatrix} c\theta & 0 & s\theta & 0\\ 0 & 1 & 0 & 0\\ -s\theta & 0 & c\theta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta & 0 & 0\\ rot(y,\theta) & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(1-4)

1.2.4.3.Une rotation θ autour de l'axe z :

$${}^{i}T_{j} = Rot(z,\theta) = \begin{bmatrix} c\theta & -s\theta & 0 & 0\\ s\theta & c\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta & -s\theta & 0 & 0\\ rot(z,\theta) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1-5)

1.2.5. Propriétés des matrices de transformation homogène [2]:

$$T = \begin{bmatrix} s_x & n_x & a_x & P_x \\ s_y & n_y & a_y & P_y \\ s_z & n_z & a_z & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & P \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1-6)

-La matrice A est orthogonale, c'est à dire que la matrice inverse est égale à la matrice transposée.

-L'inverse de la matrice ${}^{i}T_{j}$ définit la matrice ${}^{j}T_{i}$.

-u : une direction donnée.

$$Rot^{-1}(u,\theta) = Rot(u,-\theta) = Rot(-u,\theta)$$

$$Trans^{-1}(u,d) = Trans(-u,d) = Trans(u,-d)$$
(1-7)
(1-8)

-Si un repère R_0 a subit k transformations consécutives et si chaque transformation i (i=1,.., k) est définie par rapport au repère courant R_{i-1} , alors la transformation 0T_k peut etre déduite de la composition des multiplications à droite de ces transformations :

$${}^{0}T_{k} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3} \dots {}^{k-1}T_{k}$$
(1-9)

1.3. Modèle géométrique direct des robots à chaîne ouverte simple (MGD) [2]: La conception et commande des robots nécessitent le calcul de certains modèles mathématiques, tels que :

-Les modèles de transformation entre l'espace opérationnel (dans lequel est définit la situation de l'organe terminal) et l'espace articulaire (dans lequel est définie la configuration du robot), on distingue :

* Les modèles géométriques direct et inverse qui expriment la situation de l'organe terminal en fonction des variables articulaires du mécanisme et inversement.

* Les modèles cinématiques direct et inverse qui expriment la vitesse de l'organe terminal en fonction des vitesses articulaires et inversement.

-Les modèles dynamiques définissant les équations du mouvement du robot, qui permettent d'établir les relations entre les couples ou forces exercés par les actionneurs et les positions, vitesses et accélérations des articulations.

1.3.1. Description de la géométrie des robots à structure ouverte simple :

Une structure ouverte simple est composée de (n+1) corps notés C_0, \ldots, C_n et de n articulations. Le corps C_0 désigne la base du robot et le corps C_n le corps qui porte l'organe terminal. L'articulation j connecte le corps C_j au corps C_{j-1} (figure 1.11).

La méthode de description est fondée sur les règles suivant et conventions suivantes :

-Les corps sont supposés parfaitement rigides, ils sont connectés par des articulations considérées comme idéales (pas de jeu mécanique), soit rotoïdes, soit prismatiques.

-Le repère R_i est lié au corps C_i.

-La variable de l'articulation j est notée qi.

Figure 1.11-Robot à structure ouverte simple [2]

Le repère R_j, fixé au corps C_j, est défini de sorte que :

•L'axe z_j est porté par l'axe de l'articulation j.

•L'axe x_i est porté par la perpendiculaire commune aux axes z_i et z_{i+1} .

Le passage du repère R_{j-1} au repère R_j s'exprime en fonction des quatre paramètres géométriques suivants (figure 1.12) :

- α_J : angle entre les axes z_{j-1} et z_j correspondant à une rotation autour de x_{j-1} .
- d_j : distance entre z_{j-1} et z_j le long de x_{j-1} .
- θ_i : angle entre les axes x_{i-1} et x_i correspondant à une rotation autour de z_i .
- r_j : distance entre x_{j-1} et x_j le long de z_j .

Figure 1.12-Paramètres géométriques d'une structure ouverte simple [2]

La variable articulaire q_j associé à la j^{ième} articulation est soit θ_j , soit r_j , selon que cette articulation est de type rotoïdes ou prismatique, ce qui se traduit par la relation :

$$q_{j} = \sigma_{j}\theta_{j} + \sigma_{j}r_{j}$$
(1-10)

Avec :

 $\bullet \sigma_i = 0$ si l'articulation j est rotoïdes.

 $\bullet \sigma_i = 1$ si l'articulation j est prismatique.

 $\bullet \overline{\sigma}_{j} = l - \sigma_{j}.$

La matrice de transformation définissant le repère R_i dans le repère R_{i-1} est donnée par la (figure 1.12) :

$$= \begin{bmatrix} c\theta_{j} & -s\theta_{j} & 0 & d_{j} \\ c\alpha_{j}s\theta_{j} & c\alpha_{j}c\theta_{j} & -s\alpha_{j} & -r_{j}s\alpha_{j} \\ s\alpha_{j}s\theta_{j} & s\alpha_{j}c\theta_{j} & c\alpha_{j} & r_{j}c\alpha_{j} \\ 0 & 0 & 0 & I \end{bmatrix}$$
(1-11)

Lorsqu'une cinématique comporte deux ou plusieurs axes parallèles consécutifs, on peut se ramener à une seule matrice de transformation équivalente faisant intervenir la somme des variables articulaires.

Par exemple, si $\alpha_{i+1} = 0$, c'est-à-dire si z_i et z_{i+1} sont parallèles, la transformation directe s'écrit :

$$\begin{aligned} & \stackrel{j-l}{T}_{j+l} = \stackrel{j-l}{T}_{j} \stackrel{j}{T}_{j+l} \\ &= Rot(x,\alpha_{j}) Trans(x,d_{j}) Rot(z,\theta_{j}) Trans(z,r_{j}) \\ Trans(x,d_{j+l}) Rot(z,\theta_{j+l}) Trans(z,r_{j+l}) \\ &= \begin{bmatrix} c(\theta_{j} + \theta_{j+l}) & -s(\theta_{j} + \theta_{j+l}) & 0 & d_{j} + d_{j+l}c\theta_{j} \\ c\alpha_{j}s(\theta_{j} + \theta_{j+l}) & c\alpha_{j}c(\theta_{j} + \theta_{j+l}) & -s\alpha_{j} & d_{j+l}c\alpha_{j}s\theta_{j} - (r_{j} + r_{j-l})s\alpha_{j} \\ s\alpha_{j}s(\theta_{j} + \theta_{j+l}) & s\alpha_{j}c(\theta_{j} + \theta_{j+l}) & c\alpha_{j} & d_{j+l}s\alpha_{j}s\theta_{j} + (r_{j} + r_{j-l})c\alpha_{j} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1-12)

1.3.2. Exemple 1 [2]:

0

Description de la géométrie du robot Stäubli RX-90 (figure 1.13), la cinématique du porteur est de type RRR et le poignet comporte trois rotations d'axes concourants, équivalentes à une rotule.

D'un point de vue méthodologique, on place d'abord les axes z_i sur les axes articulaires, puis les axes x_i selon les règles énoncées précédemment.

On détermine ensuite les paramètres géométriques du robot. Le placement est indiqué sur la figure 1.13 et les paramètres géométriques sont donnés dans le tableau 1

Figure 1.13-Placement des repères pour le robot Stäubli [2]

J	σ _j	α_{j}	dj	θ	r _j
1	0	0	0	θ_1	0
2	0	90	0	θ_2	0
3	0	0	D3	θ_3	0
4	0	-90	0	θ_4	RL4
5	0	90	0	θ_5	0
6	0	-90	0	θ_6	0

Tableau 1-1 : Paramètres géométriques du robot Stäubli [2]

1.3.3. Modèle géométrique direct des robots à structure ouverte simple (MGD)[: Le modèle géométrique direct (MGD) est l'ensemble des relations qui permettent d'exprimer la situation de l'organe terminal, c'est-à-dire les coordonnées opérationnelles du robot, en fonction de ses coordonnées articulaires. Dans le cas d'une chaîne ouverte simple, il peut être représenté par la matrice de passage ${}^{0}T_{n}$:

$${}^{0}T_{n} = {}^{0}T_{1}(q_{1}){}^{1}T_{2}(q_{2})...{}^{n-1}T_{n}(q_{n})$$
(1-13)

Le modèle géométrique direct du robot peut aussi être représenté par la relation : X=f(q) (1-14) q: étant le vecteur des variables articulaires tel que : $q = [q_1 q_2 ... q_n]^T$ (1-15) Les coordonnées opérationnelles sont définies par :

$$X = \begin{bmatrix} x_1 x_2 \dots x_m \end{bmatrix}^T \tag{1-16}$$

Par exemple, avec les éléments de la matrice ${}^{0}T_{n}$:

$$X = \left[P_x P_y P_z s_x s_y s_z n_x n_y n_z a_x a_y a_z\right]^T$$
(1-17)

1.3.4. Exemple 2 [2]:

Modèle géométrique direct du robot Stäubli RX-90, à partir du tableau 1-1 et compte tenu de la relation (1.11), on écrit les matrices de transformation élémentaires ${}^{j-1}T_j$:

$${}^{0}T_{1} = \begin{bmatrix} c1 & -s1 & 0 & 0\\ s1 & c1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{1}T_{2} = \begin{bmatrix} c2 & -s2 & 0 & 0\\ 0 & 0 & -1 & 0\\ s2 & c2 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{2}T_{3} = \begin{bmatrix} c3 & -s3 & 0 & D3\\ s3 & c3 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Comme les axes 2 et 3 sont parallèles, on peut trouver directement la transformation ${}^{1}T_{3}$ par la relation (1-12) :

$${}^{I}T_{3} = \begin{bmatrix} c23 & -s23 & 0 & c2D3 \\ 0 & 0 & -1 & 0 \\ s23 & c23 & 0 & s2D3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

avec :
$$c23 = cos(\theta_{2} + \theta_{3})$$

$$s23 = sin(\theta_{2} + \theta_{3})$$

$${}^{3}T_{4} = \begin{bmatrix} c4 & -s4 & 0 & 0 \\ 0 & 0 & 1 & RL4 \\ -s4 & -c4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{4}T_{5} = \begin{bmatrix} c5 & -s5 & 0 & 0 \\ 0 & 0 & -10 \\ s5 & c5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{5}T_{6} = \begin{bmatrix} c6 & -s6 & 0 & 0 \\ 0 & 0 & 10 \\ -s6 & -c6 & 00 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Afin de calculer ${}^{0}T_{6}$, il est préférable de calculer le produit des matrices ${}^{j-1}T_{j}$ en partant de la dernière matrice de transformation, ceci pour deux raisons :

-Les résultats intermédiaires ${}^{j}T_{6}$, notés U_{j} , seront utilisés pour l'obtention du modèle géométrique inverse(qui sera décrit par la suite).

-On minimise ainsi le nombre d'opérations du modèle. On écrit donc successivement les U_j pour j = 5,...,0:

$$U_{5} = {}^{5}T_{6}$$

$$U_{4} = {}^{4}T_{6} = {}^{4}T_{5}U_{5} = \begin{bmatrix} c5c6 & -c5s6 & -s5 & 0 \\ s6 & c6 & 0 & 0 \\ s5c6 & -s5s6 & c5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U_{3} = {}^{3}T_{6} = {}^{3}T_{4}U_{4} = \begin{bmatrix} c4c5c6 - s4s6 & -c4c5s6 - s4c6 & -c4s5 & 0 \\ s5c6 & -s5s6 & c5 & RL4 \\ -s4c5c6 - c4s6 & s4c5s6 - c4c6 & s4s5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U_{2} = {}^{2}T_{6} = {}^{2}T_{3}U_{3}$$

Les vecteurs s, n, a, P de U₂ ont pour composantes :

$$s_{x} = c3(c4c5c6 - s4s6) - s3s5c6$$

$$s_{y} = s3(c4c5c6 - s4s6) + c3s5c6$$

$$s_{z} = -s4c5c6 - c4s6$$

$$n_{x} = -c3(c4c5s6 + s4c6) + s3s5s6$$

$$n_{y} = -s3(c4c5c6 + s4c6) - c3s5s6$$

$$n_{z} = s4c5s6 - c4c6$$

$$a_{x} = -c3c4s5 - s3c5$$

$$a_{y} = -s3c4s5 + c3c5$$

$$a_{z} = s4s5$$

$$P_{x} = -s3RL4 + D3$$

$$P_{y} = c3RL4$$

$$P_{z} = 0$$

$$U_{1} = {}^{t}T_{6} = {}^{t}T_{2}U_{2} = {}^{t}T_{3}U_{3}$$

Les vecteurs s, n, a, P correspondants sont :
 $s_{x} = c23(c4c5c6 + s4s6) - s23s5c6.$
 $s_{y} = s4c5c6 + c4s6$
 $s_{z} = s23(c4c5c6 - s4s6) + c23s5c6$
 $n_{x} = -c23(c4c5s6 + s4c6) + s23s5s6$
 $n_{y} = -s4c5s6 + c4c6$
 $n_{z} = -s23(c4c5s6 + s4c6) - c23s5s6$

$$a_{x} = -c23c4s5 - s23c5$$

$$a_{y} = -s4s5$$

$$a_{z} = -s23c4s5 + c23c5$$

$$P_{x} = -s23RL4 + c2D3$$

$$P_{y} = 0$$

$$P_{z} = c23RL4 + s2D3$$
finalement :
$$U_{0} = {}^{0}T_{6} = {}^{0}T_{1}U_{1}$$

τī

Les vecteurs s, n, a, P correspondants sont :

$$\begin{split} s_x &= cl(c23(c4c5c6 - s4s6) - s23s5c6) - sl(s4c5c6 + c4s6) \\ s_y &= sl(c23(c4c5c6 - s4s6) - s23s5c6) + cl(s4c5c6 + c4s6) \\ s_z &= s23(c4c5c6 - s4s6) + c23s5c6 \\ n_x &= cl(-c23(c4c5s6 + s4c6) + s23s5s6) + sl(s4c5s6 - c4c6) \\ n_y &= sl(-c23(c4c5s6 + s4c6) + s23s5s6) - cl(s4c5s6 - c4c6) \\ n_z &= -s23(c4c5s6 + s4c6) - c23s5s6 \\ a_x &= -cl(c23c4s5 + s23c5) + sls4s5 \\ a_y &= -sl(c23c4s5 + s23c5) - cls4s5 \\ a_z &= -s23c4s5 + c23c5 \\ P_x &= -cl(s23RL4 - c2D3) \\ P_y &= -sl(s23RL4 - c2D3) \\ P_z &= c23RL4 + s2D3 \end{split}$$

1.4. Modèle géométrique inverse des robots à structure ouverte simple (MGI): Le modèle géométrique inverse consiste à calculer les coordonnées articulaires correspondant à une situation donnée de l'organe terminal. Il y a plusieurs méthodes de calcul du MGI : -La méthode de Paul qui traite séparément chaque cas particulier.

-La méthode de Pieper qui permet de résoudre le problème pour les robots à six degrés de liberté possédant trois articulations rotoïdes ou prismatiques.

-La méthode générale de Raghavan et Roth qui donne la solution générale des robots à six articulations.

Dans cette partie d'étude, on présente seulement la méthode de Paul.

1.4.1. La méthode de Paul [2]:

Considérons un robot manipulateur dont la matrice de transformation homogène a pour expression :

$${}^{0}T_{n} = {}^{0}T_{1}(q_{1}){}^{1}T_{2}(q_{2})...{}^{n-1}T_{n}(q_{n})$$
(1-18)

Soit U_0 la situation désirée telle que :

$$U_{0} = \begin{bmatrix} s_{x} & n_{x} & a_{x} & P_{x} \\ s_{y} & n_{y} & a_{y} & P_{y} \\ s_{z} & n_{z} & a_{z} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1-19)

On cherche à résoudre le système d'équations suivant :

$$U_0 = {}^0 T_1(q_1)^{l} T_2(q_2) \dots {}^{n-l} T_n(q_n)$$
(1-20)

Pour trouver les solutions de l'équation (1-20), Paul a proposé une méthode qui consiste à prémultiplier successivement les deux membres de l'équation (1-20) par les matrices ${}^{j}T_{j-1}$ pour j variant de 1 à n-1.Des opérations qui permettent d'isoler et d'identifier l'une après l'autre les variables articulaires que l'on recherche.

Pour un robot à six degrés de liberté, on procède comme suit :

-Multiplication à gauche de l'expression (1-20) par ${}^{1}T_{0}$:

$${}^{I}T_{0}U_{0} = {}^{I}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$
(1-21)

Le terme de droite est en fonction des variables $q_2,..., q_6.II$ a été déjà calculé avec le modèle géométrique direct (MGD), le terme de gauche n'est fonction que des éléments de U_0 et de la variable q_1 .

- Identification terme à terme des deux membres de l'équation (1-21).

-Multiplication à gauche de l'expression (1-21) par ${}^{2}T_{1}$ et calcul de q₂.

La succession des équations permettent le calcul de tous les q_j est la suivante :

$$U_{0} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

$${}^{1}T_{0}U_{0} = {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

$${}^{2}T_{1}U_{1} = {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

$${}^{3}T_{2}U_{2} = {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

$${}^{4}T_{3}U_{3} = {}^{4}T_{5} {}^{5}T_{6}$$

$${}^{5}T_{4}U_{4} = {}^{5}T_{6}$$
avec,

$$U_{j+1} = {}^{j+1}T_{j}U_{j} \rightarrow j = 0, ..., 4$$

L'utilisation de la méthode sur un grand nombre de robots industriels a permis de constater que les principaux types rencontrés sont présentés dans le tableau 1-2, certains types ont une solution évidente, d'autres nécessitent quelques développements.

Type 1	$Xr_i = y$
Type 2	$Xs\theta_i + Yc\theta_i = Z$
Туре 3	$X Is \theta_i + Y Ic \theta_i = Z I$ $X 2s \theta_i + Y 2c \theta_i = Z 2$
Type 4	$X I r_j s \theta_j = Y I$ $X 2 r_j c \theta_j = Y 2$
Type 5	$X ls \theta_i = Y l + Z lr_j$ $X 2c \theta_i = Y 2 + Z 2r_j$
Туре б	$Ws \theta_{j} = Xc \theta_{i} + Ys \theta_{i} + Z1$ $Wc \theta_{j} = Xs \theta_{i} - Yc \theta_{i} + Z2$
Туре 7	$W Ic\theta_{j} + W 2s\theta_{j} = Xc\theta_{i} + Ys\theta_{i} + ZI$ $W Is\theta_{j} - W 2c\theta_{j} = Xs\theta_{i} - Yc\theta_{i} + Z2$
Туре 8	$Xc\theta_{i} + Yc(\theta_{i} + \theta_{j}) = Z1$ $Xs\theta_{i} + Ys(\theta_{i} + \theta_{j}) = Z2$

Tableau 1-2-Types d'équations rencontrées avec la méthode de Paul [2]

1.5. Le modèle cinématique direct des robots à structure ouverte simple :

Le modèle cinématique direct d'un robot manipulateur décrit les vitesses des coordonnées opérationnelles en fonction des vitesses articulaires, il est noté :

$$\dot{X} = J(q)\dot{q}$$
(1-22)
ou,

$$J(q) = \frac{\partial X}{\partial q} \tag{1-23}$$

Ou J (q) : désigne la matrice jacobiènne de dimension (m*n) du mécanisme et fonction de la configuration q.

La même matrice jacobiènne intervient dans le calcul du modèle différentiel direct qui donne les variations élémentaires dX des coordonnées opérationnelles en fonction des variations élémentaires des coordonnées articulaires dq :

 $dX = J(q) dq \qquad (1-24)$

1.5.1. Calcul de la matrice jacobiènne par dérivation du MGD[2]:

Le calcul de la matrice jacobiènne peut se faire en dérivant le MGD, X = f(q), à partir de la relation suivante :

$$J_{ij} = \frac{\partial f_i(q)}{\partial q_j} \qquad \qquad i = 1,...,m \quad ;j = 1,...,n \qquad (1-25)$$

ou J_{ii} est l'élément (i,j) de la matrice jacobiènne J.

1.5.2. Exemple 03 :

Soit le robot plan à trois degrés de liberté d'axes rotoïdes parallèles représenté sur la figure 1-14.On note L1, L2, L3 les longueurs des segments. La matrice de transformation homogène de l'outil dans le repère Ro est donnée par :

$${}^{0}T_{E} = \begin{bmatrix} c123 & -s123 & 0 & c1L1 + c12L2 + c123L3 \\ s123 & c123 & 0 & s1L1 + s12L2 + s123L3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

avec,

$$c123 = cos(\theta_1 + \theta_2 + \theta_3)$$

$$s123 = sin(\theta_1 + \theta_2 + \theta_3)$$

$$c12 = cos(\theta_1 + \theta_2)$$

$$s12 = sin(\theta_1 + \theta_2)$$

$$c1 = cos \theta_1$$

$$s1 = sin \theta 1$$

On choisit comme coordonnées opérationnelles les coordonnées (P_x, P_y) du point E dans le plan (x_0, y_0) et l'angle α du dernier segment avec l'axe x_0 :

$$P_x = c1L1 + c12L2 + c123L3$$
$$P_y = s1L1 + s12L2 + s123L3$$
$$\alpha = \theta_1 + \theta_2 + \theta_3$$

a matrice jacobiènne est calculée en dérivant ces trois relations par rapport à θ_1 , θ_2 et θ_3 :

Figure.1-14-Exemple d'un robot plan à trois degrés de liberté [2]

1.6. Le modèle cinématique inverse des robots à structures ouvertes simples [2]: L'objectif du modèle cinématique inverse est de calculer, à partir d'une configuration q donnée, les vitesses articulaires q qui assurent au repère terminal une vitesse opérationnelle imposée : X

 $\dot{q} = J^{-1} \dot{X}$ (1-26)

1.7. Robots manipulateurs rigides :

Les robots manipulateurs sont largement utilisés pour aider l'être humain dans les travaux dangereuses, monotones et fatigants. La plupart des robots qui existent sont dessinés et construits de manière à maximiser leur rigidité, pourvue de minimiser la vibration de poignet afin d'avoir une bonne précision de position pour ce dernier. Alors, la grande rigidité implique leur poids est grand, cela fait que les robots manipulateurs ont une grande consommation d'énergie avec limitation des vitesses de mouvement lors d'une manipulation d'une charge utile.

1.7.1. Contrôle de la dynamique des robots manipulateurs :

Le positionnement réel d'un bras manipulateur, s'écarte inévitablement et pour des différentes causes, de sa position désirée. De même, un bras manipulateur ne se positionne jamais au même endroit lorsque la même trajectoire est répétée plusieurs fois.

Ces erreurs de positionnement sont classées grossièrement en deux classes :

-Certaines sont de nature purement aléatoires et ne peuvent être réduites que par une technologie appropriée.

-Les autres, de nature systématique, peuvent être corrigées, en utilisant un modèle de compensation.

Les erreurs de positionnement d'un bras manipulateur sont de deux natures :

- a- Les erreurs géométriques : Elles regroupent les imprécisions de fabrication dans les corps et les liaisons et les erreurs d'initialisation des offsets codeurs (les valeurs des offsets codeurs correspondants à la configuration initiale géométrique dans laquelle les variables articulaires sont nulles.
- b- Les erreurs non géométriques : Elles regroupent les déformations, les jeux dans les chaînes cinématiques, les erreurs liées à la résolution des capteurs et aux performances des asservissements. Elles ne sont pas accessibles à la calibration géométrique.

La procédure d'identification géométrique distingue trois niveaux de complexité :

1-Niveau 1 : ou <<calibration des articulations>>, l'objectif est d'établir la relation la plus exacte entre le signal produit par les capteurs de position et les déplacements articulaires. Ceci, implique généralement la calibration de la cinématique des organes d'entraînement (réducteurs, ..., etc.), les mécanismes des codeurs et les valeurs de offsets codeurs.

2-Niveau 2 : ou<<calibration géométrique globale >>dans ce niveau, on doit identifier tous les paramètres géométriques de description du bras manipulateur. L'objectif de ce niveau est de déterminer le modèle géométrique de base, qui lie les coordonnées opérationnelles aux coordonnées articulaires (ou valeurs de commande des actionneurs).

3-Niveau 3 : ou<<calibration non géométrique>>, elle porte sur les possibilités de compenser les erreurs d'ordre non géométriques à savoir les déformations des articulations et des segments et les frottements.

Pour utiliser le modèle dynamique, il faut connaître les valeurs numériques des paramètres de masse (masse, centre de masse, matrice d'inertie) relatifs aux différents corps et qui interviennent dans le modèle dynamique.

Afin d'effectuer la simulation dynamique d'un robot manipulateur ou concevoir le système de commande avancé pour lui, il est nécessaire de donner les équations dynamiques du

mouvement décrivant le comportement dynamique du manipulateur. Actuellement, plusieurs méthodes ont été employées dans ce but, parmi eux on a la méthode de Lagrange-Euler qui est la plus utilisée et sera décrite en détail dans le deuxième chapitre. La méthode peut être appliquée à la conception des systèmes de commande, à la simulation dynamique, et au calcul des forces ou des couples généralisés du manipulateur.

Dans ce domaine, plusieurs articles ont été publiés :

•Le système de contrôle de position à deux degrés de libertés pour un robot manipulateur avec articulation passive [Hirohiko Arai et Susumu Tachi][4]:

Les auteurs proposent une méthode permettant de contrôler la position d'un manipulateur avec des articulations passifs(non-motorisées) qui ont des freins au lieu d'actionneurs,ils utilisent la formulation de Lagrange-Euler pour l'obtention des équations de mouvement du robot manipulateur. Le système de contrôle qui traite trois manières :

- 1. Le contrôle Feed back qui commande l'angle et la vitesse angulaire de l'articulation passif à suivre les valeurs désirées quand le freinage est engagé.
- 2. La trajectoire désirée et le contrôle de la trajectoire pour l'articulation passive quand le freinage est engagé.
- 3. Le contrôle point par point du robot manipulateur en se basant sur l'arrêt du frein et le contrôle de l'articulation active.

•Le contrôle de position du robot manipulateur avec des articulations passives en utilisant le couplage dynamique [Hirohiko Arai][5] :

Cet article décrit une méthode qui permet de contrôler la position du manipulateur par deux manières :

- 1. On cherche la contrôlabilité du robot manipulateur avec les articulations passives.
- 2. On cherche la contrôlabilité de sortie du système.

Les articulations passives ont des freins au lieu des actionneurs, quand les freins sont desserrés, les articulations passives sont indirectement contrôlées par le mouvement des articulations actives en utilisant les caractéristiques de couplage dynamique du manipulateur. Si les freins sont engagés, les articulations passives sont fixes et les articulations actives sont contrôlées. La position du manipulateur est contrôlée par la combinaison de ces deux modes.

•Modélisation dynamique d'un robot parallèle. Application à un simulateur chirurgical

[N.Leroy, A.M.Kokosy et W. Perruquetti][6]:

Les auteurs proposent une méthode de calcul simplifier pour calculer les équations dynamiques qui sont obtenues en utilisant la formulation de Lagrange-Euler appliquée au robot parallèle. Les robots chirurgicaux sont économiques, ils ont besoin d'être contrôlé par ne bonne précision toute en ayant un rapport de vitesse élevé donnant une bonne performance. Les robots parallèles sont une excellente solution pour avoir un système rigide mais ces modèles sont un peu compliqués et demande beaucoup de calcul.

•Dynamique et contrôle de mouvement d'un robot manipulateur à deux bras avec articulation passive [Kee Ho Yu, Takahashi et Hikaru Inooka][7] :

Les auteurs utilisent la formulation de Lagrange-Euler pour l'obtention des équations de mouvement du robot manipulateur. Ils établissent un algorithme de contrôle simple, théoriquement basé sur les caractéristiques dynamiques du robot analysé.

•La modélisation dynamique d'un robot manipulateur multi-bras [Wen Chen][8] :

Dans cet article, l'auteur a établit le modèle dynamique généralisé pour un manipulateur à n bras flexibles en tenant en compte de la rigidité des bras. La méthode des modes propres est adoptée pour le calcul de déformation élastique de chaque bras. La formulation de Lagrange-Euler est établie pour la détermination des équations de mouvements.

•L'atténuation dynamique (amortissement dynamique) des bras manipulateurs est aussi dans la littérature, tel que des algorithmes pour le calcul de couple sont employés pour compenser la dynamique changeante des bras manipulateurs afin d'assurer qu'un niveau d'atténuation est maintenue pour toutes les configurations.

En raison des rapports élevés de vitesse de la plupart des manipulateurs industriels, ils sont commandés efficacement par des contrôleurs proportionnel-dérivative (PD).Pour s'assurer qu'un robot manipulateur ne dépasse jamais sa cible (avec des conséquences propablement catastrophiques), amorti par des contrôleurs PD doit être placé suffisamment pour des configurations de manipulateur avec de grands inerties.

•La commande de trajectoire des manipulateurs rigides par réseau de neurones est aussi trouvés dans la littérature :

La commande d'état d'un système pour suivre une trajectoire désirée est un problème important, dans la plupart des stratégies de commande proposées pour ce problème, une commande dépendante fortement du modèle feedforward est en général nécessaire. Avec la propriété bien connue d'un réseau de neurones pour rapprocher ce feedforward, la plupart des recherches peuvent être classifiées dans les catégories suivantes :

-Etude directe de la dynamique inverse : La dynamique inverse du système non linéaire est étudié par un réseau de neurones avec entraînement supervisée (neural network through supervised training). Après que l'entraînement soit fini, le réseau qualifié est utilisé comme contrôleur pour conduire le système à suivre la trajectoire désirée.

-Etude basée sur l'erreur de poursuite en sortie : cette approche essaye de mettre à jour les poids du contrôleurs neural en réduisant au minimum une fonction objective qui mesure l'erreur de poursuite. Le maître d'entraînement de réseau de neurones pour la dynamique inverse est le control des commandes désirées. Cependant, ces commandes désirées ne sont pas disponibles. Certaines des approches impliquent l'excitation du manipulateur en employant l'entrée aléatoire et puis la sortie correspondante.

•La dynamique d'impact et le contrôle des forces de contact entre le manipulateur et l'environnement :

Beaucoup d'applications avancées des bras manipulateurs telles que faire des tâches de service aussi bien l'automatisation industrielle, beaucoup de tâches de manipulation exigent souvent une série d'opérations de contact. Un mouvement de contact est typiquement obtenu par transition de phase d'un mouvement sans contrainte à un mouvement contraint. Dans la plupart des applications pratiques l'environnement étant entré en contact rigide. La capacité de commander la force de contact le long des directions arbitraires est essentielle d'accomplir de telles tâches de mouvement contraint, particulièrement quand la forme des objets étant entrée en contact. En outre, le contrôle de grandeur exacte de la force d'interaction est important pour l'exécution réussie de ces tâches. Beaucoup de stratégies pour le contrôle de mouvement :

-Le contrôle d'impédance : Il fournit un contrôle stable pour une structure ou le contrôle de mouvement est contraint, mais la sortie de la force ne peut pas être réglée à moins que le modèle exact de l'environnement ait été connu et intégré dans le plan de mouvement.

-Le contrôle hybride de force/position : Cette méthode découple structurellement les contrôleurs de forces et de position selon les contraintes géométriques à satisfaire pendant l'exécution de tâche. Cependant, cette stratégie de commande exige la connaissance détaillée de la géométrie de l'environnement.

•Le contrôleur neuronale –flou (fuzzy-neural) pour la commande de force de contacte du robot manipulateur à un environnement inconnu : Un contrôleur pour un robot manipulateur, qui approche entre un contact et application de force avec l'environnement, est conçu en utilisant la logique flou. L'erreur entre la force désirée et la force mesurée ainsi que la vitesse du manipulateur sont employées comme signaux d'entrée du contrôleur comme nouvelle méthode. La vitesse d'approche à l'environnement doit être commandée pour être lente en réduisant la force initiale appliquée. Les résultats de simulation prouvent que la force de contact est commandée efficacement par le contrôleur proposé même avec la force d'impact dans la mesure ou la vitesse d'approche du manipulateur est lente figure 1.15.

Environnement

Figure 1.15-Les trois degrés de libertés d'un robot manipulateur plane.

•Le problème de la dynamique d'impact de l'espace des systèmes robotiques :Qui se compose d'un manipulateur rigide soutenu par une structure flexible,en raison de l'accouplement dynamique entre le manipulateur et sa structure porteuse,le mouvement inconnu du système se produit après qu'il fasse le contact impulsif avec l'environnement. On emploie le modèle dynamique du système pour estimer le mouvement du système après l'impact. Cette méthode qui peut être employée pour trouver des moyens pour réduire au minimum l'effet de l'impact et les vibrations de la structure porteuse due à l'impact.

Les résultats expérimentaux prouvent que la force d'impact et le mouvement de système après l'impact puisse être réduit si la configuration du manipulateur avant l'impact et les gains de contrôleurs sont correctement choisis.

1.7.2. Analyse de rigidité :

Connaître la rigidité d'un robot manipulateur est de l'importance primordiale pour conduire avec succès le contact et les tâches de non contact. En fait, la rigidité des robots manipulateurs représente généralement la précision exigée pour satisfaire les commandes de position et de force. De plus, il y a accouplement entre ces mouvements de translation et de rotation, cet accouplement se montre également dans la matrice de rigidité non diagonal vue au point final du robot manipulateur. En conséquence, la structure d'outil de manipulateur (the manipulator tool frame) tourne quand une force au point final est appliquée le long d'un des degrés de liberté. Si la rigidité vue au point final de manipulateur est modelée et identifiée exactement, il serait possible de compenser l'accouplement et les erreurs de positions provoquées par les forces externes.

Les valeurs de rigidité minimum ou maximum, qui sont les valeurs propres maximum et minimum de la matrice de rigidité et leurs directions, qui sont les vecteurs propres correspondants, peuvent être connues à l'avance. Par conséquent, les configurations les plus appropriées pour certaines tâches peuvent être choisies. La formulation conventionnelle de rigidité est valide seulement quand le manipulateur est dans une configuration quasi statique sans chargement, ou quand il a une matrice jacobiènne constante dans toute la zone de travail.

Chapitre 1 Généralités sur la robotique- introduction aux structures rigides et flexibles

-D' autres ont également présenté une méthodologie pour modeler la rigidité de terminal due aux flexibilités du bras manipulateurs avec des liens reliés en série.

Ils ont démontré que la méthodologie pourrait être appliquée à toutes les topologies des manipulateurs séries possibles pour décrire la rigidité de terminal et le choix de configuration de manipulateur la plus appropriée compatible avec les conditions de conformité de la tâche actuelle.

•La modélisation de la rigidité augmentée et analyse des bras manipulateurs, et une méthode pour leur identification et caractérisation de la rigidité :

En supposant que les liaisons des manipulateurs sont infinement rigides, le modèle augmenté de rigidité contient la rigidité passive et active des joints avec la rigidité active crée par le changement de la configuration de manipulateur, et par le vecteur externe de force agissant sur le point final de manipulateur.

La comptabilité de formulation de rigidité pas pour le dernier n'est connue entant que formulation conventionnelle de rigidité,qui n'est évidement pas complète et elle est valide seulement quand le manipulateur est dans une configuration quasi statique déchargée ou la matrice jacobiènne du manipulateur est constante dans toute la zone de travail.

•La matière des manipulateurs cinématiquement redondant a été intensivement discutée dans la communauté de recherche en matière de robotique.

1.8. Robots manipulateurs flexibles :

1.8.1. Identification, modélisation des robots manipulateurs flexibles :

Pendant les décennies passées, les robots industriels sont devenus un facteur très important dans l'industrie.

Des robots sont appliqués à de nouveaux secteurs chaque jour. Pour pouvoir entrer dans les marchés les robots exigent souvent une meilleure exécution et d'un prix inférieur. Afin de satisfaire ces demandes, des structures physiques de robot sont construites plus légers pour des nouvelles applications technologiques industrielles.

La réduction de poids induit nécessairement la flexibilité du bras, ainsi la commande de la déformation élastique et de la vibration sont nécessaire.

Par conséquent, un nombre considérable d'études ont été consacrés aux manipulateurs flexibles. Certaines méthodes ont été appliquées à la modélisation des manipulateurs flexibles pour l'analyse de vibration des systèmes flexibles.

1.8.2. Contrôle de la dynamique des robots manipulateurs :

Les structures légères et de hautes-mobilitées dans les robots manipulateurs causent l'élasticité aux liaisons et aux articulations. Pour commander le point final (terminal du bras) de tels genres de manipulateurs, la déformation doit être compensée. La plupart des manipulateurs courants ont un effecteur terminal ou une pince au bout. Cependant, dans la

Chapitre 1 Généralités sur la robotique- introduction aux structures rigides et flexibles

commande de point final des manipulateurs flexibles, le problème de la stabilité surgit. Pour contrôler le point final rapidement et avec précision, la dynamique du manipulateur devrait être prise en compte.

- •Hassan Zohoor et Sayyid Mahdi Khorsandijou [9] ont étudié le modèle dynamique d'un manipulateur volant avec haute flexibilité des bras : lorsqu'on veut concevoir un manipulateur volant avec un poids léger, charge utile grande, faible consommation d'énergie, plus de degrés de maneuvrabilité, actionneurs de taille réduit et un espace de travail grand, la flexibilité des bras ne peut pas être ignoré. En retournant à ces avantages citées ci-dessus, la modélisation dynamique du manipulateur volant devient très compliquée.
- •Mehrdad Farid et Stanislaw A. Lukasiewicz [10] ont étudié la modélisation dynamique des manipulateurs spatial avec flexibilité des bras et des articulations : En se basant sur l'efficacité de la méthode des éléments finis et la formulation de Lagrange –Euler pour l'obtention des équations de mouvement ou ils ont montré l'interaction entre de nombreuses flexibilités et leurs rôle important dans le comportement dynamique du système.
- •Amer S. Al-Yahmadi, jamil Abdo et T.C.Hsia [11]ont étudié la modélisation et le contrôle de deux robots manipulateurs portant un objet flexible : Cette étude expose le problème de manipulation du modèle mathématique qui décrit le système, ainsi les lois de contrôle pour manier une poutre flexible suivant une trajectoire en supprimant toute vibration qui excite le système durant son mouvement.
- •M.Vakil, R.Fotouhi et P.N.Nikiforuk [12]ont étudié le contrôle des manœuvres des robots manipulateurs flexibles multi-bras : L'énorme consommation de l'énergie et le poids élevé des bras manipulateurs réduisent leurs mobilités et leurs efficacités. Pour remédier à ce problème on utilise de léger bras qui diminue leurs masses et augmente leurs mobilités. Cependant, ces bras légers vibrent et se plient pendant, ou après ou à la fin du manœuvre, pour cela on a conçu un nouveau contrôleur.
- •G.Piras, W.L.Cleghorn et J.K.Mills [13]ont étudié l'analyse dynamique en utilisant la méthode des éléments finis pour un robot manipulateur avec des bras flexibles, planaire avec une vitesse élevée et une grande précision : l'étude montre, pour avoir un mouvement rapide, la configuration du mécanisme a une influence ségnifiante sur la nature des résultats concernant la vibration.
- •B.Subudhi et A.S.Morris [14]ont étudié la modélisation dynamique, la simulation et le contrôle pour robot manipulateur avec des bras et articulations flexibles : Ils utilisent la formulation de Lagrange-Euler et la méthode des modes propres pour leur étude.
- •Z.Mohamed, J.M.Martins, M.O.Tokhi, J.Sa da Costa et M.A.Botto [15]ont étudié le contrôle de vibration d'un robot manipulateur possédant une grande flexibilité : Cette étude présente les recherches expérimentales pour le développement des schémas de contrôle (feedback et feedforward) pour le contrôle de vibration.
- •H.Karagulle et L.Malgaca [16]ont étudié l'analyse de vibration pour le point terminal pour un robot manipulateur à deux bras en utilisant CAD/CAE : L'analyse de vibration est fait

Chapitre 1 Généralités sur la robotique- introduction aux structures rigides et flexibles

par un logiciel (I-DEAS), en supposant que la trajectoire est circulaire dans leur exemple et en prenant plusieurs valeurs d'accélération, on détermine la trajectoire de la structure ainsi le point terminal.

1.9. Conclusion :

Nous avons donné dans ce chapitre quelques définitions de termes concernant la robotique, les types de tâches, différents types d'architectures, les actionneurs et le principe de fonctionnement, ainsi les caractéristiques d'un robot manipulateur.

La nécessité d'étudier les matrices de transformations homogènes et leur application dans l'étude des différents modèles géométriques (directs, inverses), et les modèles cinématiques (directs, inverses).

Une analyse de publications concernant les axes principaux de recherches liées aux robots manipulateurs rigides et robots manipulateurs flexibles.

Nous aborderons dans le chapitre suivant, la formulation dynamique du système à deux barres.

2.1. Introduction :

Le but de ce paragraphe est d'étudier la forme générale du modèle dynamique, de mettre en évidence les différents termes qui interviennent et de déduire les propriétés caractéristiques de ces termes.

La connaissance des équations dynamiques du mouvement des bras du manipulateur permet la description du comportement dynamique du robot. Ces équations sont utilisées pour la simulation par ordinateur afin de décrire le mouvement du robot et d'assurer son contrôle par le maintien de la réponse dynamique en accord avec les performances du système et les objectifs désirés.

Le modèle dynamique actuel pour les robots manipulateurs est obtenu par la formulation de Lagrange- Euler qui est simple et systématique.

2.2. La formulation de Lagrange- Euler [1] :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial q_i} \right) - \frac{\partial L}{\partial q_i} = \tau_i \qquad , i = 1, 2, \dots, n \qquad (2-1)$$

Avec :

L : lagrangien du système = K - P

K : énergie cinétique totale du système.

P : énergie potentielle totale du système.

qi: coordonnés généralisés.

 τ_i : Force (ou couple) généralisée appliquée au système à l'articulation (i) pour commander le bras.

2.3. Les vitesses d'articulations pour le robot manipulateur [1] :

L'application de la formulation de Lagrange-Euler nécessite la connaissance de la vitesse en chaque articulation. Posons ${}^{i}r_{i}$ la position d'un point se trouvant sur le bras du manipulateur par rapport au repère local qui est liée à l'articulation.

$${}^{i}r_{i} = \begin{bmatrix} x_{i} \\ y_{i} \\ z_{i} \\ 1 \end{bmatrix} = (x_{i}, y_{i}, z_{i}, 1)^{T}$$
(2-2)

Soit ${}^{0}r_{i}$ la position d'un point appartenant au bras manipulateur (i) par rapport à la base de coordonnée (x_{0} , y_{0} , z_{0})

$${}^{0}r_{i} = {}^{0}T_{i} {}^{i}r_{i}$$
(2-3)

Avec

ec ${}^{0}T_{i} = {}^{0}T_{1} {}^{1}T_{2} {}^{1}... {}^{i-1}T_{i}$ (2-4) ${}^{0}T_{i}$: La matrice de transformation homogène du i^{ème} bras par rapport à la base de

 ${}^{0}T_{i}$: La matrice de transformation homogène du i^{ème} bras par rapport à la base de coordonnée.
$^{i\text{-}1}T_i~$: La matrice de transformation homogène du i-1 $^{\acute{e}me}$ bras par rapport à la base de coordonnée de $i^{\acute{e}me}$ bras

Figure 2-1 :Position d'un point sur le bras[1]

-Si l'articulation est rotoïde, on a :

$$^{i-1}T_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2-5)

-Si l'articulation est prismatique, on a :

$$^{i-1}T_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & 0\\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & 0\\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2-6)

 θ_i , α_i , a_i , d_i : ce sont les paramètres géométriques du robot manipulateur. L'expression de la vitesse est :

$${}^{0}v_{i} \equiv v_{i} = \frac{d}{dt} ({}^{0}r_{i}) = \frac{d}{dt} ({}^{0}T_{i}{}^{i}r_{i})$$

$$= {}^{0} \stackrel{\bullet}{T}_{1}{}^{1}T_{2}...{}^{i-1}T_{i}{}^{i}r_{i} + {}^{0}T_{1}{}^{1} \stackrel{\bullet}{T}_{2}...{}^{i-1}T_{i}{}^{i}r_{i} + ...$$

$$+ {}^{0}T_{1}...{}^{i-1} \stackrel{\bullet}{T}_{i}{}^{i}r_{i} + {}^{0}T_{i}{}^{i}r_{i} = \left[\sum_{j=1}^{i} \frac{\partial {}^{0}T_{i}}{\partial q_{j}} \stackrel{\bullet}{q}_{j}\right]^{i}r_{i}$$
(2-7)

Avec $r_i = 0$, la dérivée partielle de ${}^{0}T_i$ par rapport à q_j peut être facilement calculée par l'aide de matrice Q_i qui est définit par : Pour une articulation, rotoïde [1], on a :

-Pour une articulation rotoïde [1], on a :

-Pour une articulation prismatique [1], on a :

Et cela donne :

$$\frac{\partial^{i-1}T_{i}}{\partial q_{i}} = Q_{i}^{i-1}T_{i}$$
(2-9)

Par exemple, pour un robot manipulateur avec tous les articulations sont rotoïde, on a : $q_i = \theta_i$, et en utilisant l'équation (2-5),

$$\frac{\partial^{i-1}T_i}{\partial \theta_i} = \begin{bmatrix} -\sin\theta_i - \cos\alpha_i \cos\theta_i \sin\alpha_i \cos\theta_i - a_i \sin\theta_i \\ \cos\theta_i - \cos\alpha_i \sin\theta_i \sin\alpha_i \sin\theta_i & a_i \cos\theta_i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} 0 - 100 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos\theta_i - \cos\alpha_i \sin\theta_i & \sin\alpha_i \sin\theta_i & a_i \sin\theta_i \\ \sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i \cos\theta_i & a_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ = Q_i^{i-1}T_i$$

Alors, pour i = 1, 2,...,n

$$\frac{\partial^0 T_i}{\partial q_j} = \begin{cases} {}^0 T_1 {}^1 T_2 \dots {}^{j-2} T_{j-1} Q_j {}^{j-1} T_j \dots {}^{i-1} T_i \rightarrow j \le i \\ 0 \rightarrow j > i \end{cases}$$
(2-10)

Cette équation (2-10) peut être interpréter par l'effet de mouvement de l'articulation (j) dans tous le bras (i).

Dans le but de simplifier la notation, posons :

$$U_{ij} = \begin{cases} {}^{0}T_{j-1}Q_{j} {}^{j-1}T_{i} \rightarrow j \leq i \\ 0 \rightarrow j > i \end{cases}$$
(2-11)

Utilisant cette notation, vi s'écrit :

$$\boldsymbol{v}_{i} = \left(\sum_{j=1}^{i} U_{ij} \boldsymbol{q}_{j}\right)^{i} \boldsymbol{r}_{i}$$
(2-12)

2.4. L'énergie cinétique du robot manipulateur [1] :

Posons K_i l'énergie cinétique du bras manipulateur (i), avec i = 1, 2, ..., n; exprimée dans la base de coordonnée du système, soit dK_i énergie cinétique d'une particule de masse dm appartenant au bras (i) on a :

$$dK_{i} = \frac{1}{2} \left(x^{2} + y^{2} + z^{2} \right) dm$$

= $\frac{1}{2} trace \left(v_{i}v_{i}^{T} \right) dm = \frac{1}{2} Tr \left(v_{i}v_{i}^{T} \right) dm$ (2-13)

En utilisant l'eq.(2-12) on obtient :

$$dK_{i} = \frac{1}{2} Tr \left[\sum_{p=1}^{i} U_{ip} \dot{q}^{i} r_{i} \left(\sum_{r=1}^{i} U_{ir} \dot{q}^{i} r_{i} \right)^{T} \right] dm$$

$$= \frac{1}{2} Tr \left[\sum_{p=1}^{i} \sum_{r=1}^{i} U_{ip} \dot{r}_{i}^{i} r_{i}^{T} U_{ir}^{T} \dot{q}_{p} \dot{q}_{r} \right] dm \qquad (2-14)$$

$$= \frac{1}{2} Tr \left[\sum_{p=1}^{i} \sum_{r=1}^{i} U_{ip} (\dot{r}_{i} dm^{-i} r_{i}^{T}) U_{ir}^{T} \dot{q}_{p} \dot{q}_{r} \right]$$

$$K_{i} = \int dK_{i} = \frac{1}{2} Tr \left[\sum_{p=1}^{i} \sum_{r=1}^{i} U_{ip} (\int \dot{r}_{i} r_{i}^{T} dm) U_{ir}^{T} \dot{q}_{p} \dot{q}_{r} \right] \qquad (2-15)$$

Soit

$$J_{i} = \int^{i} r_{i}^{i} r_{i}^{T} dm = \begin{bmatrix} \int^{i} x_{i}^{2} dm & \int^{i} x_{i} y_{i} dm & \int^{i} x_{i} z_{i} dm & \int^{i} x_{i} dm \\ \int^{i} x_{i} y_{i} dm & \int^{i} y_{i}^{2} dm & \int^{i} y_{i} z_{i} dm & \int^{i} y_{i} dm \\ \int^{i} x_{i} z_{i} dm & \int^{i} y_{i} dm & \int^{i} z_{i}^{2} dm & \int^{i} z_{i} dm \\ \int^{i} x_{i} dm & \int^{i} y_{i} dm & \int^{i} z_{i} dm & \int^{i} dm \end{bmatrix}$$
(2-16)
avec ${}^{i}r_{i} = (x_{i}, y_{i}, z_{i}, l)^{T}$,

Si on utilise le tenseur d'inertie I_{ii} qui est définie :

$$I_{ij} = \int \left[\delta_{ij} \left(\sum_{k} x_{k}^{2} \right) - x_{i} x_{j} \right] dm$$
(2-17)

 δ_{ij} dit symbole de Kronecker, J_i s'exprime en tenseur d'inertie par :

$$J_{i} = \begin{bmatrix} \frac{-I_{xx} + I_{yy} + I_{zz}}{2} & -I_{xy} & -I_{xz} & m_{i}\overline{x_{i}} \\ -I_{xy} & \frac{I_{xx} - I_{yy} + I_{zz}}{2} & -I_{yz} & m_{i}\overline{y_{i}} \\ -I_{xz} & -I_{yz} & \frac{I_{xx} + I_{yy} - I_{zz}}{2} & m_{i}\overline{z_{i}} \\ m_{i}\overline{x_{i}} & m_{i}\overline{y_{i}} & m_{i}\overline{y_{i}} & m_{i}\overline{z_{i}} & m_{i} \end{bmatrix}$$
(2-18)

 $\overline{r_i} = (\overline{x_i}, \overline{y_i}, \overline{z_i}, l)$, Les coordonnées du centre de gravité du bras manipulateur (i) L'énergie cinétique totale du robot manipulateur est :

$$K = \sum_{i=1}^{n} K_{i} = \frac{1}{2} \sum_{i=1}^{n} Tr \left(\sum_{p=1}^{i} \sum_{r=1}^{i} U_{ip} J_{i} U_{ir}^{T} \mathbf{q}_{p} \mathbf{q}_{r} \right)$$

$$K = \frac{1}{2} \sum_{i=1}^{n} \sum_{p=1}^{i} \sum_{r=1}^{i} \left[Tr \left(U_{ip} J_{i} U_{ir}^{T} \right) \mathbf{q}_{p} \mathbf{q}_{r} \right]$$
(2-19)

2.5. L'énergie potentielle du robot manipulateur [1] :

Soit P énergie potentielle totale, P_i énergie potentielle du bras manipulateur (i)

$$P_{i} = -m_{i}g^{0}\overline{r_{i}} = -m_{i}g({}^{0}T_{i}{}^{i}\overline{r_{i}})$$
(2-20)

$$P = \sum_{i=1}^{n} P_{i} = \sum_{i=1}^{n} - m_{i}g({}^{0}T_{i}{}^{i}\overline{r_{i}})$$
(2-21)

Avec $g = (g_x, g_y, g_z, 0)$ g = (0, 0, -|g|, 0)

 $(g=9.8062 \text{m/s}^2)$

2.6. L'équation du mouvement du robot manipulateur [1]: De l'éq.(2-19) et l'éq.(2-21), le lagrangien est égal : L = K - P

$$L = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} \left[Tr(U_{ij}J_{i}U_{ik}^{T})\dot{q}_{j}\dot{q}_{k} \right] + \sum_{i=1}^{n} m_{i}g({}^{0}T_{i}^{i}r_{i}) \quad (2-22)$$

$$\tau_{i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}}$$

$$= \sum_{j=i}^{n} \sum_{k=1}^{j} Tr(U_{jk}J_{j}U_{ji}^{T})\dot{q}_{k} + \sum_{j=i}^{n} \sum_{k=1}^{j} \sum_{m=1}^{j} Tr(U_{jkm}J_{i}U_{ji}^{T})\dot{q}_{k}\dot{q}_{m} - \sum_{j=i}^{n} m_{j}gU_{ji}^{j}r_{j} \quad (2-23)$$

$$\tau_{i} = \sum_{k=1}^{n} D_{ik} \dot{q}_{k} + \sum_{k=1}^{n} \sum_{m=1}^{n} h_{ikm} \dot{q}_{k} \dot{q}_{m} + c_{i} \rightarrow i = 1, 2, ..., n \quad (2-24)$$

Sous forme matricielle, on a :

$$\tau_{i} = D(q(t)) \dot{q}(t) + h(q(t), q(t)) + c(q(t))$$
(2-25)

Avec,

 $-\tau(t) : \text{de dimension (n*1), qui représente le vecteur du couple généralisé,}$ $\tau(t) = (\tau_1(t), \tau_2(t), ..., \tau_n(t))^T$ (2-26)

-q(t) : de dimension(n*1),qui représente le vecteur des variables des articulations du robot manipulateur ,

$$q(t) = (q_1(t), q_2(t), ..., q_n(t))^T$$
(2-27)

-q(t): de dimension (n*1), qui représente le vecteur vitesse des articulations du robot manipulateur,

$$\dot{q}(t) = (\dot{q}_1(t), \dot{q}_2(t), ..., \dot{q}_n(t))^T$$
(2-28)

-q(t): de dimension (n*1), qui représente le vecteur accélération des variables des articulations du robot manipulateur,

$$q(t) = (q_1(t), q_2(t), ..., q_n(t))^T$$
(2-29)

-D (q) : de dimension (n*n), qui représente la matrice accélération symétrique dont les éléments sont,

$$D_{ik} = \sum_{j=max(i,k)}^{n} Tr(U_{jk}J_{j}U_{ji}^{T}) \rightarrow i, k = 1, 2, ..., n$$
(2-30)

-h(q,q): de dimension (n*1), qui représente le vecteur des forces de Coriolis et des forces centrifuges, ces éléments sont définit par,

$$h(q,q) = (h_{1}, h_{2}, ..., h_{n})^{T}$$

$$h_{i} = \sum_{k=1}^{n} \sum_{m=1}^{n} h_{ikm} \dot{q}_{k} \dot{q}_{m} \rightarrow i = 1, 2, ..., n \qquad (2-31)$$

$$h_{ikm} = \sum_{j=max(-i,k,m)}^{n} Tr (U_{jkm} J_{j} U_{ji}^{T}) \rightarrow i, k, m = 1, 2, ..., n \qquad (2-32)$$

-c(q): de dimension (n*1), qui représente le vecteur des forces de pesanteur, ces éléments sont définit par,

$$c(q) = (c_1, c_2, ..., c_n)^T$$

$$c_i = \sum_{j=i}^n (-m_j g U_{ji}^{\ j} \overline{r_j}) \rightarrow i = 1, 2, ..., n$$
(2-33)

2.7. Les équations de mouvement d'un robot manipulateur avec des articulations rotoïdes [1]:

Si les équations de (2-25) à (2-33) sont étendues à l'étude d'un robot manipulateur doté de six articulations rotoïdes, les termes de l'équation dynamique de mouvement sont obtenus : -La matrice d'accélération symétrique, D (θ) donnée par l'équation (2-30), on a :

$$D(\theta) = \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} \\ D_{12} & D_{22} & D_{23} & D_{24} & D_{25} & D_{26} \\ D_{13} & D_{24} & D_{24} & D_{24} & D_{25} & D_{36} \\ D_{14} & D_{24} & D_{34} & D_{44} & D_{45} & D_{46} \\ D_{15} & D_{25} & D_{35} & D_{45} & D_{56} & D_{66} \end{bmatrix}$$

$$D_{11} = Tr(U_{11}J_{1}U_{11}^{T}) + Tr(U_{21}J_{2}U_{21}^{T}) + Tr(U_{31}J_{3}U_{31}^{T}) + Tr(U_{41}J_{4}U_{41}^{T}) + Tr(U_{51}J_{5}U_{51}^{T}) + Tr(U_{51}J_{5}U_{51}^{T}) + Tr(U_{51}J_{5}U_{51}^{T}) + Tr(U_{51}J_{5}U_{51}^{T}) + Tr(U_{52}J_{2}U_{21}^{T}) + Tr(U_{43}J_{4}U_{41}^{T}) + Tr(U_{52}J_{5}U_{51}^{T}) + Tr(U_{52}J_{5}U_{$$

 $-h(\theta, \dot{\theta})$:

$$H_{i,v} = \begin{bmatrix} h_{i11} & h_{i12} & h_{i13} & h_{i14} & h_{i15} & h_{i16} \\ h_{i12} & h_{i22} & h_{i23} & h_{i24} & h_{i25} & h_{i26} \\ h_{i13} & h_{i23} & h_{i33} & h_{i34} & h_{i35} & h_{i36} \\ h_{i14} & h_{i24} & h_{i34} & h_{i44} & h_{i45} & h_{i46} \\ h_{i15} & h_{i25} & h_{i35} & h_{i45} & h_{i56} & h_{i66} \end{bmatrix}$$

$$\dot{\theta}(t) = \begin{bmatrix} \dot{\theta}_{1}(t), \dot{\theta}_{2}(t), \dot{\theta}_{3}(t), \dot{\theta}_{4}(t), \dot{\theta}_{5}(t), \dot{\theta}_{6}(t) \end{bmatrix}^{T}$$
$$h_{i} = \dot{\theta}^{T} H_{i,v} \dot{\theta}$$
$$\begin{pmatrix} \dot{\theta}^{T} H_{1,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{2,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{2,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{2,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{3,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{5,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{5,v} & \dot{\theta} \\ \dot{\theta}^{T} H_{5,v} & \dot{\theta} \end{bmatrix}$$

 $-c(\theta)$: de l'équation (2-33), on a :

$$c(\theta) = (c_1, c_2, c_3, c_4, c_5, c_6)^T$$

aveç

$$c_{1} = -(m_{1}gU_{11}^{1}r_{1}^{-} + m_{2}gU_{21}^{2}r_{2}^{-} + m_{3}gU_{31}^{3}r_{3}^{-} + m_{4}gU_{41}^{4}r_{4}^{-} + m_{5}gU_{51}^{5}r_{5}^{-} + m_{6}gU_{61}^{6}r_{6}^{-})$$

$$c_{2} = -(m_{2}gU_{22}^{2}r_{2}^{-} + m_{3}gU_{32}^{3}r_{3}^{-} + m_{4}gU_{42}^{4}r_{4}^{-} + m_{5}gU_{52}^{5}r_{5}^{-} + m_{6}gU_{62}^{6}r_{6}^{-})$$

$$c_{3} = -(m_{3}gU_{33}^{3}r_{3}^{-} + m_{4}gU_{43}^{4}r_{4}^{-} + m_{5}gU_{53}^{5}r_{5}^{-} + m_{6}gU_{63}^{6}r_{6}^{-})$$

$$c_{4} = -(m_{4}gU_{44}^{4}r_{4}^{-} + m_{5}gU_{54}^{5}r_{5}^{-} + m_{6}gU_{64}^{6}r_{6}^{-})$$

$$c_{5} = -(m_{5}gU_{55}^{5}r_{5}^{-} + m_{6}gU_{65}^{6}r_{6}^{-})$$

$$c_{6} = -m_{6}gU_{66}^{6}r_{6}^{-}$$

2.8. Application à un robot manipulateur à deux bras : -Données :

- Les variables des articulations = θ_1 , θ_2 .

★ Masses des bras = m₁, m₂.
★ Paramètres des bras = α₁ = α₂ = 0 ; d₁ = d₂ = 0 ; a₁ = a₂ = 1 La matrice de transformation homogène ⁱ⁻¹A_i → i = 1,2

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & lc_{1} \\ s_{1} & c_{1} & 0 & ls_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{I}T_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & lc_{2} \\ s_{2} & c_{2} & 0 & ls_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{0}T_{2} = {}^{0}T_{1}{}^{I}T_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & l(c_{12} + c_{1}) \\ s_{12} & c_{12} & 0 & l(c_{12} + c_{1}) \\ s_{12} & c_{12} & 0 & l(s_{12} + s_{1}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Avec :

 $c_{1} = \cos(\theta_{1}); s_{1} = \sin(\theta_{1}); c_{2} = \cos(\theta_{2}); s_{2} = \sin(\theta_{2}); c_{12} = \cos(\theta_{1} + \theta_{2}); s_{12} = \sin(\theta_{1} + \theta_{2}).$

On a des articulations rotoïdes, alors :

En utilisant l'équation (2-11) :

En utilisant l'équation (2-30), on a :

$$D_{11} = Tr (U_{11}J_{1}U_{11}^{T}) + Tr (U_{21}J_{2}U_{21}^{T}) = \frac{1}{3}m_{1}l^{2} + \frac{4}{3}m_{2} + m_{2}c_{2}l^{2}$$

$$D_{12} = D_{21} = Tr (U_{22}J_{2}U_{21}^{T}) = \frac{1}{3}m_{2}l^{2} + \frac{1}{2}m_{2}l^{2}c_{2}$$

$$D_{22} = Tr (U_{22}J_{2}U_{22}^{T}) = \frac{1}{3}m_{2}l^{2}$$

A partir de l'équation (2-31) : -Pour i = 1, on a :

$$h_{1} = \sum_{k=1}^{2} \sum_{m=1}^{2} h_{1km} \dot{\theta}_{k} \dot{\theta}_{m} = h_{111} \dot{\theta}_{1}^{2} + h_{112} \dot{\theta}_{1} \dot{\theta}_{2} + h_{121} \dot{\theta}_{1} \dot{\theta}_{2} + h_{122} \dot{\theta}_{2}^{2}$$

En utilisant l'équation (2-32), on peut calculer $h_{ikm}\!.$

$$h_1 = -\frac{l_2}{m_2 s_2 l^2} \theta_2^{\bullet} - m_2 s_2 l^2 \theta_1 \theta_2$$

-Pour i = 2,on a :

$$h_{2} = \sum_{k=1}^{2} \sum_{m=1}^{2} h_{2km} \dot{\theta}_{k} \dot{\theta}_{m} = h_{2ll} \dot{\theta}_{l}^{2} + h_{2l2} \dot{\theta}_{l} \dot{\theta}_{2} + h_{22l} \dot{\theta}_{l} \dot{\theta}_{2} + h_{222} \dot{\theta}_{2}^{2}$$

$$= \frac{1}{2} m_{2} s_{2} l^{2} \dot{\theta}_{l}^{2}$$

$$d'ou,$$

$$h(\theta, \dot{\theta}) = \begin{bmatrix} -\frac{1}{2} m_{2} s_{2} l^{2} \dot{\theta}_{2}^{2} - m_{2} s_{2} l^{2} \dot{\theta}_{l} \dot{\theta}_{2} \\ \frac{1}{2} m_{2} s_{2} l^{2} \dot{\theta}_{l}^{2} \end{bmatrix}$$

Puis on utilise l'équation (2-33) pour le calcul des termes de $c = (c_1,c_2)^T$

$$\begin{aligned} c_{1} &= -\left(m_{1}gU_{11}^{-1}\overrightarrow{r_{1}} + m_{2}gU_{21}^{-2}\overrightarrow{r_{2}}\right) \\ &= -m_{1}\left(0, -g, 0, 0\right) \begin{bmatrix} -s_{1}^{-} - c_{1}^{-} & 0 & -ls_{1}^{-} \\ c_{1}^{-} - s_{1}^{-} & 0 & lc_{1}^{-} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &- m_{2}\left(0, -g, 0, 0\right) \begin{bmatrix} -s_{12}^{-} - c_{12}^{-} & 0 & -l(s_{12} + s_{1}) \\ c_{12}^{-} - s_{12}^{-} & 0 & l(c_{12} + c_{1}) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= \frac{1}{2}m_{1}glc_{1} + \frac{1}{2}m_{2}glc_{12} + m_{2}glc_{1} \\ c_{12}^{-} - s_{12}^{-} & 0 & -ls_{12} \\ c_{12}^{-} - s_{12}^{-} & 0 & lc_{12} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= -m_{2}\left(0, -g, 0, 0\right) \begin{bmatrix} -s_{12}^{-} - c_{12}^{-} & 0 & -ls_{12} \\ c_{12}^{-} - s_{12}^{-} & 0 & lc_{12} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= -m_{2}\left(\frac{1}{2}glc_{12} - glc_{12}\right) = \frac{1}{2}m_{2}glc_{12} + m_{2}glc_{1} \\ \frac{1}{2}m_{2}glc_{12} + m_{2}glc_{1} \end{bmatrix} \\ &= \left[\frac{1}{2}m_{1}glc_{1} + \frac{1}{2}m_{2}glc_{12} + m_{2}glc_{1} \\ \frac{1}{2}m_{2}glc_{12} \end{bmatrix} \end{aligned}$$

Finalement, les équations de mouvement de Lagrange-Euler pour un robot manipulateur à deux bras sont [1]:

$$\begin{aligned} \tau(t) &= D(\theta) \overset{\bullet}{\theta}(t) + h(\theta, \dot{\theta}) + c(\theta) \\ \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} &= \begin{bmatrix} \frac{1}{3}m_1 + \frac{4}{3}m_2l^2 + m_2c_2l^2 & \frac{1}{3}m_2l^2 + \frac{1}{2}m_2l^2c_2 \\ \frac{1}{3}m_2l^2 + \frac{1}{2}m_2l^2c_2 & \frac{1}{3}m_2l^2 \end{bmatrix} \\ &+ \begin{bmatrix} -\frac{1}{2}m_2s_2l^2 & \theta_2^2 - m_2s_2l^2 & \theta_1 & \theta_2 \\ \frac{1}{2}m_2s_2l^2 & \theta_2^2 \end{bmatrix} \\ &+ \begin{bmatrix} \frac{1}{2}m_1glc_1 + \frac{1}{2}m_2glc_{12} + m_2glc_1 \\ \frac{1}{2}m_2glc_{12} \end{bmatrix} \end{aligned}$$

2.9. Conclusion :

Nous avons présenté dans ce chapitre le formalisme le plus utilisé pour le calcul du modèle dynamique des robots : le formalisme de Lagrange- Euler. Nous avons montré comment établir l'équation et la détermination des paramètres de l'équation D, h, c et finalement l'obtention de l'équation dynamique de Lagrange- Euler pour un robot manipulateur à deux bras.

Dans le chapitre suivant, nous allons utiliser la modélisation par éléments finis par la prise en compte du caractère bidimensionnel et tridimensionnel.

3.1. Introduction :

L'analyse modale d'une structure permet d'en améliorer la connaissance physique et, dans certains cas, le comportement. Le calcul de la base modale d'une structure est aujourd'hui une étape importante de son dimensionnement. Pour s'assurer qu'une analyse numérique simulera au mieux un problème réel donné, il faut effectuer deux opérations essentielles, la modélisation et la discrétisation. Ces opérations se font en deux temps,

-Modélisation d'abord,

-Discrétisation ensuite,

Ils portent sur les deux aspects principaux du problème pratique :

-Représentation de la géométrie, des charges, des conditions aux limites et du milieu.

-Choix des éléments finis et du maillage.

3.2. Formulation des équations du mouvement des systèmes à un seul degré de liberté :

Soit le système suivant :

Figure3-1 : Système a un seul degré de liberté.

m : Masse.

k : Rigidité.

 $c: \ Amortissement.$

Les forces agissant sur le système suivant la direction du direction du degré de liberté de déplacement sont :

•La force d'amortissement : $F_D(t) = c q(t)$

- •La force de rappel : $F_S(t) = kq(t)$
- •La force d'inertie : $F_I(t) = mq(t)$
- •La force appliquée : P (t)

L'équation du mouvement exprime tout simplement l'équilibre de ces forces :

$$F_{I}(t) + F_{D}(t) + F_{S}(t) = P(t)$$
(3-1)

L'équation du mouvement s'écrit :

$$mq(t) + cq(t) + kq(t) = P(t)$$
 (3-2)

Quatre cas peuvent se produire :

- P(t) = 0 et c = 0 \longrightarrow Oscillations libres non amorties.

-P(t) = 0 et $c \neq 0$ \rightarrow Oscillations libres amorties. $-P(t) \neq 0$ et c = 0 \rightarrow Oscillations forcées non amorties. $-p(t) \neq 0$ et $c \neq 0$ \rightarrow Oscillations forcées amorties.

Si,

•c = 0 \longrightarrow Système non amorti.

Pour notre cas, ce sont les oscillations libres non amorties, dans ce cas les forces agissant sont :

 $F_{I}(t) = m q(t)$ $F_{S}(t) = kq(t)$ L'équation du mouvement s'écri

L'équation du mouvement s'écrit :

 $mq(t) + kq(t) = 0 \tag{3-3}$

Si on pose $\omega^2 = \frac{k}{m}$ avec ω la pulsation du système, l'équation du mouvement devient :

 $\mathbf{q}(t) + \omega^2 q(t) = 0 \tag{3-4}$

(3-5)

La solution de l'équation (3-4) s'écrit :

 $q = q_0 e^{i\omega t}$

3.3. Formulation des équations du mouvement des systèmes à plusieurs degrés de libertés :

-Choix des degrés de liberté :

En générale, la réponse dynamique d'une structure ne pourra pas être exprimée de manière précise par un modèle à un seul degré de liberté. L'expression de la réponse faisant intervenir aussi l'historique du déplacement que son amplitude, le comportement résultant ne peut être représenté qu'à l'aide de plusieurs coordonnées de déplacement, c'est-à-dire le système doit comporter plusieurs degrés de liberté.

Nous utiliserons comme exemple représentatif de système à plusieurs degrés de liberté la poutre sur deux appuis simples représentée en figure 3-2 :

Figure 3-2 : Discrétisation d'une structure de type poutre.

Représentant la déformée de cette structure par des déplacements d'un ensemble de points placés de manière discrète le long de la poutre, Soit $q_1(t), q_2(t), ..., q_i(t), ..., q_N(t)$. On peut choisir ces points de manière arbitraire, ils seront en pratique choisis de manière à définir avec précision toute particularité de la structure et de sa déformée.

-Expression de l'équilibre dynamique :

L'équation du mouvement du système s'exprime en écrivant l'équilibre des forces effectivement associées à chacun degré de liberté. En général, on aura quatre types de forces à chaque nœud i :

- •La force appliquée P_i(t).
- •La force d'inertie F_{Ii}.
- •La force d'amortissement F_{Di}.
- •La force élastique F_{Si}

Le système des équations de l'équilibre s'écrit donc :

$$F_{I1} + F_{D1} + F_{S1} = P_1(t)$$

$$F_{I2} + F_{D2} + F_{S2} = P_2(t)$$

$$F_{I3} + F_{D3} + F_{S3} = P_3(t)$$

.....

Soit sous forme matricielle :

 $F_{I} + F_{D} + F_{S} = P(t)$ (3-6)

 F_D : égale à zéro à notre cas non amorti.

Chaque force s'exprime au moyen de coefficients d'influences. Par exemple, la composante élastique de la force au point 1 dépend en général des composantes des déplacements de tous les autres points de la structure, ainsi, au point 1 :

$$F_{SI} = k_{II}q_I + k_{I2}q_2 + k_{I3}q_3 + \dots + k_{IN}q_N$$
(3-7)

De la même la force correspondant au degré de liberté q₂ est :

$$F_{s2} = k_{21}q_1 + k_{22}q_2 + k_{23}q_3 + \dots + k_{2N}q_N$$
(3-8)

Et en générale :

$$F_{Si} = k_{i1}q_1 + k_{i2}q_2 + k_{i3}q_3 + \dots + k_{iN}q_N$$
(3-9)

Ces expressions supposent évidement que la structure a un comportement linéaire et que le principe de superposition s'applique. Les coefficients k_{ij} sont appelés coefficients d'influences de rigidités.

L'expression des forces F_{Si} peut s'écrire :

$$\begin{bmatrix} F_{S1} \\ F_{S2} \\ ... \\ F_{Si} \\ ... \\ F_{SN} \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} & k_{13} & ... & k_{1i} & ... & k_{1N} \\ k_{21} & k_{22} & k_{23} & ... & k_{2i} & ... & k_{2N} \\ ... & ... & ... & ... & ... & ... \\ k_{S1} & k_{S2} & k_{S3} & ... & k_{Si} & ... & k_{SN} \\ ... & ... & ... & ... & ... & ... \\ k_{N1} & k_{N2} & k_{N3} & ... & k_{Ni} & ... & k_{NN} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ ... \\ q_i \\ ... \\ q_N \end{bmatrix}$$
(3-10)

Soit : $\{F_s\} = [k]\{q\}$ (3-11)

Avec « k » la matrice de rigidité de la structure et « q » est le vecteur déplacement représentant la déformé de la structure.

De même les forces d'inertie peuvent s'exprimer au moyen de coefficients d'influences appelés coefficients d'influences de masses m_{ij} , liant les accélérations de chaque degré de liberté à la résultante correspondante des forces d'inertie. On a :

$$\begin{bmatrix} F_{11} \\ F_{12} \\ \dots \\ F_{1i} \\ \dots \\ F_{Ii} \\ \dots \\ F_{IN} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & \dots & m_{1i} & \dots & m_{1N} \\ m_{21} & m_{22} & m_{23} & \dots & m_{2i} & \dots & m_{2N} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ m_{i1} & m_{i2} & m_{i3} & \dots & m_{ii} & \dots & m_{iN} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ m_{N1} & m_{N2} & m_{N3} & \dots & m_{Ni} & \dots & m_{NN} \end{bmatrix} \begin{bmatrix} \bullet \bullet \\ q_1 \\ \bullet \\ q_2 \\ \dots \\ q_i \\ \vdots \\ q_i \\ \vdots \\ q_N \end{bmatrix}$$
(3-12)

Soit: $\{F_I\} = [m] \begin{Bmatrix} \bullet \\ q \end{Bmatrix}$ (3-13)

La matrice des coefficients d'influences de masse « m » s'appelle la matrice de masse de la structure et « q » est le vecteur accélération.

3.4. Modèle élément fini (cas bidimensionnel) :

Pour résoudre les problèmes aux modes propres d'une structure, il faut calculer ces matrices de masse et de rigidité globale. Pour se faire, il faut avoir recours à des techniques numériques basées sur des méthodes de calcul adéquates pour discrétiser ces milieux continus. La méthode des éléments finis (MEF) est l'une des techniques la plus utilisée.

Le calcul des matrices de masse et de rigidité de chaque élément poutre se fait tout d'abord dans son repère local (figure3-3). Dans ce chapitre, on limite notre étude à trois degrés de libertés par nœuds (deux déplacements : l'une axial (U) suivant l'axe X et l'autre vertical (V) suivant l'axe Y, et une rotation (θ) suivant l'axe Z).

Figure 3-3 : Elément poutre en flexion à six degrés de libertés

Si on pose : $a = \frac{EI}{L^3}$ (3-14) $b = \frac{ES}{L}$ (3-15) Où -E : module d'élasticité (ou de Young). -I : moment d'inertie de la poutre. -L : longueur de la poutre. -S : section de la poutre.

-ρ : masse volumique.

$$K_{e} = \begin{bmatrix} b & 0 & 0 & -b & 0 & 0 \\ 0 & 12a & 6aL & 0 & -12a & 6aL \\ 0 & 6La & 4aL^{2} & 0 & -6aL & 2aL^{2} \\ -b & 0 & 0 & b & 0 & 0 \\ 0 & -12a & -6aL & 0 & 12a & -6aL \\ 0 & 6L & 2aL^{2} & 0 & -6aL & 4aL^{2} \end{bmatrix}$$
(3-16)
$$M_{e} = \frac{\rho SL}{420} \begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0 \\ 0 & 156 & 22L & 0 & 54 & -13L \\ 0 & 22L & 4L^{2} & 0 & 13L & -3L^{2} \\ 70 & 0 & 0 & 140 & 0 & 0 \\ 0 & 54 & 13L & 0 & 156 & -22L \\ 0 & -13L & -3L^{2} & 0 & -22L & 4L^{2} \end{bmatrix}$$
(3-17)

Les matrices de masse et de rigidité globales sont obtenues en utilisant une technique qui s'appelle assemblage par méthode de matrice de passage :

$K_G = B^T K_{des} B$	(3-18)
$M_G = B^T M_{des} B$	(3-19)

Où

- •B est la matrice de passage, cette matrice ne contient que des coefficients nuls ou des coefficients unités.
- •K_{des} est la matrice désassemblée, elle contient uniquement les matrices élémentaires :

$$K_{des} = \begin{bmatrix} \begin{bmatrix} K_e^{\ I} \end{bmatrix} & 0 \\ & \ddots & \\ 0 & \begin{bmatrix} K_e^{\ N} \end{bmatrix} \end{bmatrix}$$
(3-20)

$$M_{des} = \begin{bmatrix} M_e^{\ I} \end{bmatrix} & 0 \\ & \ddots & \\ 0 & [M_e^{\ N}] \end{bmatrix}$$
(3-21)

La figure (3-4) montre un système à deux bras flexibles dans son état de configuration initiale et déformée. La modélisation de chaque bras est basée sur la théorie des poutres de Timoshenko. Dans ce cas, OXY indique le système fixe des coordonnées originales. L'angle relatif à chaque bras est dénoté par θ_i . La déflection et l'angle de rotation de la normale avec l'axe neutre, représentés dans les coordonnées locales, sont donnés par w_i et Ψ_i respectivement.

Le vecteur r_{oi} indique la position de n'importe quel point sur le bras i par rapport à l'origine du système fixe.

$$\mathbf{r}_{\rm oi} = \mathbf{r}_{\rm i} + \mathbf{T}_{\rm i} \mathbf{R}_{\rm i} \tag{3-22}$$

Où le vecteur r_i représente la position par rapport à l'origine des coordonnées du bras i et R représente la déformation élastique du bras i dans les coordonnées locales du système. En outre, T_i est la matrice de transformation qui relie les coordonnées locales du système au système fixe :

$$R_{i} = \begin{cases} x_{i} + u_{i} \\ y_{i} + w_{i} \end{cases}$$
(3-23)
$$T_{i} = \begin{bmatrix} \cos(\beta_{i}) & \sin(\beta_{i}) & 0 \\ -\sin(\beta_{i}) & \cos(\beta_{i}) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(3-24)

Dans ces équations, u_i est le déplacement dans la direction local x_i , w_i est le déplacement dans la direction y_i et β_i est la rotation du joint i par rapport à l'origine des coordonnées du système fixe :

$$\beta_{i} = \begin{cases} \theta_{i} \rightarrow i = l \\ \sum_{j=l}^{i} \theta_{j} + \sum_{j=l}^{i-l} (\psi_{j})_{lj} \rightarrow i = 2,3,\dots \end{cases}$$
(3-25)

3.5. **Résolution du problème aux valeurs propres :** Soit l'équation (3-3) écrite sous forme matricielle :

$$[M] \left\{ \begin{array}{c} \bullet \\ q \end{array} \right\} + [K] \left\{ q \right\} = 0 \tag{3-26}$$

Avec q : le vecteur des degrés de liberté.

La solution générale de l'équation (3-26) est : $\{q\} = \{q_0\}e^{i\omega t}$ (3-27)

En injectant l'équation (3-27) dans l'équation (3-26), on montre que ω est solution du problème de valeurs propres suivant : $[K]{q_{\theta}} = \omega^{2}[M]{q_{\theta}}$ (3-28)

Le déterminant de l'équation (3-28) doit être nul :

 $det([K] - \omega^{2}[M]) = 0$ (3-29)

On obtient ainsi les N valeurs propres ω^2 (ω_i , i = 1,2,...,N) pour une dimension N des matrices [K]et[M].

Des méthodes permettant de trouver les premiers zéros d'un polynôme de degré N ont donc été mises au point. Du point de vue numérique, il existe un grand nombre de programmes disponibles permettant d'évaluer ces valeurs.

La plupart de ces méthodes consistent à écrire la relation (3-28) sous la forme suivante :

 $[H]{X} = \lambda{X}$ (3-30) Où [H] est une matrice symétrique définie positive, il est clair que si on écrit directement l'équation (3-28) sous la forme :

$$[K]^{-1}[M]\{q_0\} = \frac{1}{\omega^2}\{q_0\}$$
(3-31)

Où $[K]^{-1}$ est l'inverse de la matrice [K], la propriété de symétrie n'est pas toujours conservée. Par conséquent, il est nécessaire d'écrire la matrice [K] en utilisant la décomposition de Cholesky :

 $[K] = [L]^{T} [L]$ (3-32) Où l'exposant T désigne la transposée de la ma

Où l'exposant T désigne la transposée de la matrice [L]qui est une matrice triangulaire inférieure. Grâce à cette décomposition, l'équation (3-28) s'écrit :

$$[L]^{-T}[M][L]^{-1}[L]\{q_{\theta}\} = \frac{1}{\omega^{2}}[L]\{q_{\theta}\}$$
(3-33)
En posant :
$$[H] = [L]^{-T}[M][L]^{-1}$$
(3-34)
$$\{X\} = [L]\{q_{\theta}\}$$
(3-35)
$$\lambda = \frac{1}{\omega^{2}}$$
(3-36)

On se ramène à un problème de la forme de l'équation (3-30), où [H] est symétrique. Après avoir déterminer les λ , on déduit le vecteur q₀ par la relation suivante :

$$\{q_0\} = [L]^{-1} \{X\}$$
 (3-37)

Remarques :

-[M]et[K] sont définies positives.

-Si la matrice [K] est singulière, elle ne possède pas d'inverse. Afin de pouvoir utiliser les méthodes générales précédentes, on utilise un artifice qui consiste à introduire un paramètre $\alpha \in R^*$ du même ordre de grandeur que ω^2 . On a ainsi le problème suivant à résoudre : $([K] + \alpha[M])\{q_0\} = (\omega^2 + \alpha)[M]\{q_0\}$ (3-38)

La nouvelle matrice $[K] + \alpha[M]$ est alors inversible et la solution cherchée est $\omega^2 + \alpha$.

3.6. Exemple d'application :

Le tableau (3-1) montre les propriétés physiques et mécaniques d'un manipulateur à deux bras flexibles.

Propriété	Valeur
Module d'élasticité	E = 71.0 GPa
Densité du matériau	$\rho = 2710.0 \text{ kg/m}^3$
Section	$S = 0.0012 m^2$
Longueur	L = 1 m
Moment d'inertie	$I = 9 \times 10^{-8} m^4$

Tableau3-1 : Les propriétés physiques et mécaniques d'un manipulateur à deux bras flexibles.

Figure 3-5 : Robot manipulateur à deux bras flexibles

3.7. Résultats :

Pour valider l'efficacité de notre programme établit, deux modèles sont calculés, le premier contient neuf nœuds et le second contient vingt-et-un nœuds.

<u>.№</u>	Pulsations propres (rd/s)
01	15.4919333848082
02	15.4919333848476
03	15.4919333848842
04	20.3616383031726
05	46.3367192630133
06	72.7221272585298
07	140.91348313645
08	184.567833790886
09	295.042778099028
10	351.878287235319
11	547.340196718258
12	643.18837008413
13	868.885932292711
14	1025.57695304118
15	1354.48872047733
16	1613.94962740429
17	2017.31071156487
18	2639.24293218279
19	2662.86580947699
20	3418.59169622823
21	4103.6523414503
22	7344.89874965718
23	8790.28387463891
24	12194.3028087344
25	14216.4204698416
26	16882.6833228019
27	17592.4130870569

3.7.1. Modèle 1 (9 nœuds) :

Tableau 3-2 : Les fréquences propres du modèle 01

N⁰	Pulsations propres (rd/s)	N⁰	Pulsations propres (rd/s)
01	7.0710678116068	33	1165.22743498808
02	7.07106781180142	34	1272.28605333747
03	7.07106781185366	35	1387.06968070167
04	7.49315712845523	36	1509.17121069284
05	9.83424591476717	37	1614.66709283786
06	15.1505759526607	38	1637.36686780405
07	23.2531792858465	39	1769.13139962659
08	33.8448306741949	40	1899.9948470739
09	46.7809707809229	41	2022.795447542
10	62.0039569984144	42	2127.04484712365
11	79.4973270682875	43	2199.11320007181
12	99.2674108170857	44	2434.43229948305
13	121.336287777932	45	2654.25340165978
14	145.738976806883	46	2654.24599222522
15	172.521848996999	47	3269.19893359593
16	201.740480609651	48	4124.03894197464
17	233.454790750636	49	5004.01074583559
18	267.716679937293	50	5914.03820305608
19	304.535725636694	51	6858.67940902986
20	343.767947643445	52	7841.72507870993
21	384.649099135734	53	8865.5420577852
22	423.024373642844	54	9930.05118694039
23	505.517436819923	55	11031.2128446096
24	551.755377975211	56	12158.9180910066
25	607.669566668871	57	13294.307693629
26	669.527601160884	58	14406.8562012903
27	736.821456302397	59	15452.1437866495
28	804.873381297692	60	16372.0179690902
29	809.699901636234	61	17099.3291193604
30	888.521670501344	62	17731.0798858701
31	973.735608027376	63	17568.6024266377
32	1065.8210474854		

3.7.2. Modèle 2 (21 nœuds) :

Tableau 3-3 : Les fréquences propres du modèle 02

3.8. Conclusion :

La méthode établie a permit de déterminer les fréquences propres et les modes propres d'un manipulateur flexible à deux bras dans le cas de vibration libre non amorti. La modélisation est faite par la méthode des éléments finis en se basant sur la théorie des poutres.

L'outil de calcul technique (Matlab) nous a aidé à déterminer les matrices de masse et de rigidité de la structure, ainsi les valeurs propres, les vecteurs propres de la structure et la représentation graphique de la structure en chaque mode.

Pour valider l'efficacité de notre programme, deux modèles sont calculés, le premier à neuf nœuds et le second à vingt-et-un nœuds avec trois degrés de libertés pour chaque nœud. Dans ce qui suit, nous allons étendre notre étude à six degrés de libertés pour chaque nœud.

3.9. Représentation graphique de la structure en fonction des modes propres calculés (cas bidimensionnel) :

Pour déterminer les fréquences propres de la structure, nous avons été amenés à élaborer des programmes traitant en premier lieu le cas bidimensionnel, puis le cas tridimensionnel par l'aide du logiciel MATLAB 6.5, qui nous a permis la représentation graphique de la structure pour chaque mode.

Notre étude est faite pour deux cas :

-La structure contient 8 éléments en total ou neuf noeuds (4 éléments sur chaque bras).

-La structure contient 20 éléments en total ou vingt-et-un nœuds (10 éléments sur chaque bras).

Chaque nœud comporte trois degrés de libertés pour le cas bidimensionnel (deux déplacements, l'une axial suivant l'axe X, l'autre vertical suivant l'axe Y et une rotation suivant l'axe Z) et six degrés de libertés pour le cas tridimensionnel (trois déplacements et trois rotations suivant les axes X, Y et Z).

Pour valider les résultats obtenus pour les deux cas bidimensionnel et tridimensionnel par les programmes décrits ci dessus, on est amené à les confronter aux résultats obtenus par le logiciel ABAQUS version 6.7 en se basant sur les mêmes propriétés mécaniques du robot manipulateur.

Mode propre	Pulsations propres (rd/s)
01	15.4919333848082
02	15.4919333848476
03	15.4919333848842
04	20.36163
05	46.33671

-Pour neuf nœuds avec trois degrés de libertés :

Tableau 3-4 : Les premiers modes calculés par le programme (Neuf nœuds)

-Pour vingt-et-un nœuds avec trois degrés de libertés :

Mode propre	Pulsation propre
01	7.0710678116068
02	7.0710678118014
03	7.0710678118536
04	7.49315
05	9.83424

Tableau 3-5 : Les premiers modes calculés par le programme (Vingt-et-un nœuds)

3.10. Représentation graphique de la structure en fonction des modes calculés obtenus par logiciel ABAQUS : -<u>Résultats</u> :

N⁰	Modes propres	pulsations propres (rd/s)
01	5.08049E-3	14.03
02	1.66810E-02	7.74
03	1.98359E-02	7.10
04	6.73761E-02	3.85
05	0.15096	2.57
06	0.19573	2.26
07	0.53188	1.37
08	0.55766	1.33
09	1.5774	0.79

Tableau3-6 : Les neuf premiers pulsations propres obtenus par le logiciel ABAQUS

Figure3-15 : Représentation de la structure en mode 07 (w= 14.029 rd/s)

Figure3-16 : Représentation de structure en mode 08 (w= 7.74 rd/s)

Figure3-17 : Représentation de la structure en mode 09 (w=7.10 rd/s)

3.11. Analyse des résultats pour le cas bidimensionnel :

8 éléments	20 éléments	Abaqus (8 éléments)
W = 15.49 rd/s	W = 15.15 rd/s	W= 14.03 rd/s
	W= 7.49 rd/s	W= 7.74 rd/s
	W= 7.07 rd/s	W= 7.10 rd/s

Tableau 3-7 : Comparaison des différentes résultats obtenues

En comparant les différents résultats obtenus par le programme pour les deux modèles et ceux de Abaqus, on remarque plus le nombre d'éléments augmente plus on se rapproche des pulsations propres de la structure. Ici, le nombre de degré de liberté entre en jeux par nœud, qui fait de sorte que cette légère différence apparaisse entre les valeurs.

3.12. Modèle élément fini (cas tridimensionnel):

Pour s'approcher de plus en plus des fréquences propres réels de la structure, on doit tenir en compte des effets hors plan. Pour se faire, il faut augmenter le nombre de degrés de libertés par nœud.

Le calcul des matrices de masse et de rigidité de chaque élément poutre se fait tout d'abord dans son repère local (figure 3-18).

Dans ce chapitre, on va étendre notre étude à six degrés de libertés par nœud (trois déplacements U, V, W et trois rotations θ , Φ , Ψ suivant les axes X, Y et Z).

3.12.1. Poutre à 12 degrés de libertés (axes locaux):

Figure 3-18 : Structure spatiale –Poutre à 12 degrés de libertés Axes locaux (x, y, z)

	[140	0	0	0	0	0	70	0	0	0	0	0
	0	156	0	0	0	22L	0	54	0	0	0	-13L
	0	0	156	0	-22L	0	0	0	54	0	13L	0
	0	0	0	140	0	0	0	0	0	70	0	0
	0	0	- 22L	0	$4L^2$	0	0	0	-13L	0	$-3L^2$	0
ρSL	0	22L	0	0	0	$4L^2$	0	13L	0	0	0	$-3L^2$
$M_e = \frac{1}{420}$	70	0	0	0	0	0	140	0	0	0	0	0
	0	54	0	0	0	13L	0	156	0	0	0	-22L
	0	0	54	0	-13L	0	0	0	156	0	22L	0
	0	0	0	70	0	0	0	0	0	140	0	0
	0	0	13L	0	$-3L^2$	0	0	0	22L	0	$4L^2$	0
(3-40)	0	-13L	0	0	0	$-3L^{2}$	0	- 22L	0	0	0	$4L^2$

3.12.2. Axes globaux (X, Y, Z) : •Cosinus directeurs : Y Voir figure (4-2). В $n_x = \cos \alpha_1 = \frac{X_B - X_A}{L},$ $n_y = \cos \alpha_2 = \frac{Y_B - Y_A}{L}, \quad (3-41)$ α3 $n_z = \cos \alpha_3 = \frac{Z_B - Z_A}{L}$ y α_2 Figure 3-19 : A Les cosinus directeurs Z 0 Ζ

Pour notre cas, on prend les deux bras du manipulateur se trouvant dans le même plan X0Y, on obtient :

 $\begin{array}{l} \alpha_1 = \theta_1 \mbox{ (l'angle formé entre le bras et l'axe X).} \\ \alpha_2 = 90^{\circ}. \\ \alpha_3 = 90^{\circ} \text{-} \alpha_1. \\ \mbox{ L'équation (3-41) devient :} \\ n_x = \cos \alpha_1 \\ n_y = \sin \alpha_1 \\ n_z = 0 \end{array}$

Х

•La matrice de transformation sera :

	n_x	n_y	n_z	0	0	0	
	$-n_y$	n_x	n_z	0	0	0	
T -	$-n_y$	$-n_z$	n_x	0	0	0	(3-42)
1 –	0	0	0	1	0	0	
	0	0	0	0	1	0	
	0	0	0	0	0	1	

3.13. **Exemple d'application :**

On garde les mêmes propriétés physiques et mécaniques du manipulateur décrit au chapitre précédent seulement augmenté par les valeurs Iy, G et J.

Propriété	Valeur
Module d'élasticité	E = 71.0 GPa
Densité du matériau	$\rho = 2710.0 \text{ kg/m}^3$
Section	$S = 0.0012 m^2$
Longueur	L = 1 m
Moment d'inertie axiale de l'aire d'une surface par rapport à l'axe z	$I_z = 9 \times 10^{-8} m^4$
Module d'élasticité transversale	G = 24.4 GPa
Caractéristique géométrique de rigidité De la section en torsion	$J = 48 \times 10^{-8} m^4$
Moment d'inertie axiale de l'aire d'une surface par rapport à l'axe y	$Iy = 4 \times 10^{-8} m^4$

Tableau 3-8 : Les propriétés physiques et mécaniques d'un manipulateur à deux bras flexibles.

3.14. **Résultats :**

On garde les mêmes modèles, le premier contient neuf nœuds et le second contient vingt-et-un nœuds pour tester l'efficacité de notre programme. On élabore un autre programme qui tient compte de la nouvelle matrice de rigidité élémentaire pour six degrés de libertés, ainsi que la matrice masse élémentaire et la matrice de transformation.

3.14.1. Modèle 1 (9 nœuds) :

Les résultats sont donnés par le tableau 3-9 :

N⁰	Pulsations propres (rd/s)	N⁰	Pulsations propres (rd/s)
01	15.4919333847624	28	902.437997658297
02	15.4919333849214	29	1086.79768842447
03	15.4919333848297	30	1114.86348256601
04	15.4919333848297	31	1344.91016093334
05	15.4919333848379	32	1353.54618101476
06	15.4930622692731	33	1672.20552436227
07	18.6210234709416	34	1763.33257919621
08	21.9127966947933	35	1775.39050034715
09	32.4329992010093	36	2023.03722498212
10	45.4617832210663	37	2017.29088562098
11	58.0499631529034	38	2644.94215738668
12	85.3349049312253	39	2663.02942428759
13	94.0613409291312	40	4124.06197758184
14	140.024839507568	41	6381.78586308636
15	140.188611543259	42	8865.55277342184
16	196.475591446239	43	11592.6948356338
17	209.568378612954	44	14406.8627952582
18	260.295332351238	45	16764.045500928
19	294.203977839929	46	17731.0852434194
20	364.34263647844	47	6319985.47809412
21	390.058630334777	48	12883949.6361403
22	459.142482131743	49	19937426.8686869
23	546.239418845924	50	27696202.9752588
24	578.682416233813	51	36215218.2579073
25	688.495891433444	52	45005646.0139423
26	724.623799886611	53	55394357.1321142
27	867.850800789549	54	52368555.2732194

Tableau 3-9 : Les pulsations propres du modèle 1.

N⁰	Pulsations propres (rd/s)	N⁰	Pulsations propres (rd/s)
01	7.07106781181691	28	115.933392543807
02	7.07106781186534	29	133.994011018568
03	7.07106781186635	30	139.46236941588
04	7.07106781186538	31	154.979503326309
05	7.07106781216299	32	171.42968385235
06	7.0754152257173	33	179.285345044586
07	7.26768166478981	34	198.851513398426
08	7.50839914831153	35	204.102647846531
09	8.3700852225975	36	220.141223940471
10	9.29881028601664	37	228.354766797421
11	11.5306360978363	38	255.637628844153
12	14.2450569941112	39	258.395398861776
13	16.6708652414042	40	282.83878915506
14	22.9500545114655	41	302.906182988267
15	23.2408949686429	42	338.807895711351
16	31.3137392625163	43	338.307435120497
17	33.0297172712832	44	365.652563573769
18	42.0018635028317	45	367.128853188914
19	42.349729927195	46	403.811196744277
20	53.8176536847424	47	412.82791691058
21	58.4651496654719	48	447.532014012047
22	66.0085880028292	49	492.995598056427
23	78.9434211470779	50	503.983619103182
24	80.5363847162228	51	538.454145946623
25	97.549337451421	52	549.435774973466
26	97.8254991290042	53	589.09726004675
27	112.789569183363	54	590.763755644591

3.14.2. Modèle 2 (21 nœuds) :

N⁰	Pulsations propres (rd/s)	N⁰	Pulsations propres (rd/s)
55	650.739858380992	82	1884.3514387821
56	654.599829587507	83	2019.52473844485
57	712.543963887845	84	2090.06452754799
58	734.071579742031	85	2136.38058435815
59	774.890434374499	86	2201.60897844647
60	803.490344091908	87	2653.14991563336
61	846.232076854333	88	2654.24971701179
62	860.347123793132	89	2956.72780975267
63	926.577708372981	90	3257.86827207616
64	953.204405093944	91	4297.2347949026
65	1006.14024435263	92	5395.78482918942
66	1043.03623519245	93	6221.76258137714
67	1062.96848116416	94	6818.89043799547
68	1092.40561970984	95	7959.10556735312
69	1163.81588135826	96	9171.1738142889
70	1177.58742404803	97	10094.5306646244
71	1250.24965759668	98	10941.7780772257
72	1268.37175811049	99	12204.3061313527
73	1351.76511832639	100	13481.1619410581
74	1368.3993366513	101	14419.2597534277
75	1418.71251718552	102	15281.8915870373
76	1465.5892417924	103	16317.3109238766
77	1505.98992098064	104	17131.6104059845
78	1633.38435895017	105	17448.2906255674
79	1748.41596535992	106	17680.2181078597
80	1769.66604086681	107	2514407.85825915
81	1769.50760805619	108	5044334.62145071
N⁰	Pulsations propres (rd/s)		
-----	---------------------------		
109	7605385.13034241		
110	10213287.7274858		
111	12883859.6687619		
112	15632909.8186591		
113	18475970.5792134		
114	21427431.5343227		
115	24498848.7082679		
116	27697035.1252018		
117	31021891.6384063		
118	34461736.7465135		
119	37984996.8429242		
120	41531280.0378376		
121	45004285.7860815		
122	48266292.4450587		
123	51138036.685352		
124	53411907.6081042		
125	54882590.1642139		
126	55393253.4561014		

Tableau 3-10 : Les pulsations propres du modèle 2.

3.15. Conclusion (cas bidimensionnel) :

En se basant toujours sur la théorie des poutres, On continue à utiliser la modélisation par éléments finis. L'élaboration du nouveau programme réalisé sous le logiciel de Matlab, a permis de déterminer les matrices de rigidité et de masse de la structure étudié en tenant compte de six degrés de libertés par noeud. Il a permis encore de déterminer les modes propres par la suite les fréquences propres ainsi leurs représentations graphiques en chaque mode qui est donnée au chapitre suivant.

La prise en compte de deux modèles (l'un neuf nœuds et l'autre vingt-et-un nœuds) a permis l'efficacité de notre programme. Le constat des résultats obtenus, nous a permis d'avoir la conclusion suivante : plus on augmente le nombre d'éléments lors du maillage de la structure, plus on se rapproche des valeurs réels des pulsations propres de la structure.

3.16. Représentation graphique de la structure en fonction des modes propres calculés (cas tridimensionnel) :

-Pour neuf nœuds avec six degrés de libertés par nœud :

Figure 3-20 (a),(b),(c),(d),(e) : Les cinq premiers pulsations propres (Pour neuf nœuds avec six degrés de libertés par nœud)

-Pour vingt-et-un nœuds avec six degrés de libertés par noeud:

Figure3-21 (a),(b),(c),(d),(e) : les cinq premiers pulsations propres (Pour vingt-et-un nœuds avec six degrés de libertés par nœud)

3.17. Représentation graphique de la structure en fonction des modes obtenus par logiciel ABAQUS : -Résultats :

N⁰	Modes propres	Pulsations propres (rd/s)
01	1.20162E-3	28.84
02	4.01286E-3	15.78
03	4.81709E-3	14.41
04	1.58388E-2	7.94
05	3.64739E-2	5.23
06	4.20325E-2	4.87
07	9.45239E-2	3.25
08	0.13261	2.74
09	0.18659	2.31

Tableau3-11 : Les neuf premiers pulsations propres obtenues par le logiciel ABAQUS

Figure3-22 : Représentation de structure en mode 10 (w= 7.94 rd/s)

Module:	Visualization 🔽 ODB	C:/Abaqus/Temp/modesprp.odb 🗹	H4 41	D D 🗄 🔞 🚺
	U, Magnitude +1.001e+00 +9.203e-01 +8.398e-01 +6.788e-01 +5.179e-01 +3.569e-01 +2.764e-01 +1.154e-01 +3.494e-02			
	ODB: 1 Mode ZX Primar Deform	modesprp.odb Abaqus/Standard Version 6.7-1 Tue valeurspropres 8: Value = 4.01286E-03 Freq = 1.00820E-02 (cyc y Var: U, Magnitude ned Var: U Deformation Scale Factor: +1.604e+02	e Apr 27 16:06:22 Paris, les/time)	Madrid 2010
				35

Figure3-23 : Représentation de structure en mode 8 (w= 15.78 rd/s)

Figure3-24 : Représentation de structure en mode 7 (w= 28.84 rd/s)

Module:	Visualization 💌 ODB:	C:/Abaqus/Temp/modesprp.odb 🔽	H4 41 IF	▶ 🗄 🔞 🔞
	U, Magnitude +1.075e+00 +9.923e-01 +9.100e-01 +8.277e-01 +7.4544-01 +6.630e-01 +4.984e-01 +4.160e-01 +3.337e-01 +1.691e-01 +1.691e-01 +8.674e-02			*
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
1				
XY 📰				
₩ ~	000			10010
2 🖓	V V Step:v Mode	aleurspropres	le Apr 27 16:06:22 Paris, Maorie	12010
💺 🧰	Primary Deform	y Vari U, Magnitude ed Var: U Deformation Scale Factor: +1.604e+02	cles/diffe)	
)rag the mouse in a view	port to pan the view		

Figure3-25 : Représentation de structure en mode 9 (w= 14.41 rd/s)

3.18.	Analyse	des r	ésultats	pour le	cas	tridimensionnel	:
							-

8 éléments W(rd/s)	20 éléments W(rd/s)	Abaqus (20 éléments) W(rd/s)	Abaqus (200 éléments) W(rd/s)
15.4930622692731	7.50839914831153	7.94	5.68
18.6210234709416	14.2450569941112	14.41	9.12
21.9127966947933	16.6708652414042	15.78	18.45
32.4329992010093	31.3137392625163	28.84	27.05

Tableau 3-12 : Comparaison des différents résultats obtenus

3.19. Conclusion :

Faisant le même travail que précédemment, c'est-à-dire faire comparaître les différents résultats obtenus par le programme pour les deux modèles, on confirme avec certitude la même remarque faite au dessus : plus le nombre d'éléments augmente, plus on se rapproche des pulsations propres de la structure.

4.1.Introduction:

Dans ce chapitre, nous allons essayés d'étudier la sensibilité suivant l'axe x, l'axe y et l'axe z de la structure, pour ce faire nous avons choisit une gamme de valeurs pour les raideurs de façon à avoir une nette variance lors du calcul des pulsations propres par des programmes utilisés précédemment. Nous avons utilisé deux cas :

- L= 1m
- L= 4m

Figure 4-1 : Sensibilité de la structure aux rigidités locales

4.2.Sensibilité aux rigidités locales situées entre les deux bras du manipulateur (cas bidimensionnel):

	Fréquences propres (rd/s)							
raideur No	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12		
01	2380.1	2720.5	2725.9	2726.4	2726.5	2726.5		
02	4396.9	4428.6	4428.9	4428.9	4428.9	4428.9		
03	18157	38442	1.1981E+5	3.7834E+5	1.1963E+6	1.1962E+7		
04	17737	17995	18024	18026	18026	18026		
05	14495	17737	17737	17737	17737	17737		
06	13268	14168	14204	14207	14207	14207		
07	9601.3	13268	13268	13268	13268	13268		
08	8889.1	9487.3	9491.9	9492.4	9492.4	9492.4		
09	6142.9	8888.7	8888.7	8888.7	8888.7	8888.7		
10	6089.2	6134.8	6134.8	6134.8	6134.8	6134.8		
11	6080.8	5983.8	5983.8	5983.8	5983.8	5983.8		
12	5984.1	6080.9	6080.9	6080.9	6080.9	6080.9		
13	5822.2	6080	6080	6080	6080	6080		
14	5709.3	5708.7	5708.8	5708.8	5708.8	5708.8		
15	5635.4	5709.3	5709.3	5709.3	5709.3	5709.3		
16	5570.8	5570.8	5570.8	5570.8	5570.8	5570.8		
17	5542.4	5570.5	5570.5	5570.5	5570.5	5570.5		
18	5513.7	5513.7	5513.7	5513.6	5513.6	5513.6		
19	5502.6	5513.6	5513.6	5513.7	5513.7	5513.7		
20	5487.8	5487.8	5487.8	5487.8	5487.8	5487.8		
21	5484.5	5487.8	5487.8	5487.8	5487.8	5487.8		
22	5479.9	5479.9	5479.9	5479.9	5479.9	5479.9		
23	5478.7	5479.9	5479.9	5479.9	5479.9	5479.9		
24	5478.6	5477.6	5477.6	5477.6	5477.6	5477.6		
25	5478.3	5477.6	5477.6	5477.6	5477.6	5477.6		
26	5478.2	5477.2	5477.2	5477.2	5477.2	5477.2		
27	5478.2	5477.2	5477.2	5477.2	5477.2	5477.2		

•Modèle 1 (8 éléments) : (L= 1 m) [raideur le long de l'axe Z]

Tableau 4-1 : L'effet de variation de raideurs sur les pulsations propres (l'axe Z) (9 nœuds, L = 1m)

Figure 4-2 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Z) (9 nœuds, L = 1m)

	Fréquences propres (rd/s)							
<u>N</u> ⁰ raide	^{ur} 4E+4	4E+7	4E+8	4E+9	4E+10	4E+12		
01	2361	2552.6	2679.7	2701.1	2703.4	2703.7		
02	4395.2	18163	18505	46801	1.4634E+5	1.4616E+6		
03	18157	17745	17910	18092	18098	18098		
04	17737	14519	16303	17621	17635	17636		
05	14493	13332	14168	14339	14348	14349		
06	13268	9659.8	12192	12788	12818	12821		
07	9599.1	9034.4	9468.7	9495.4	9497.5	9497.7		
08	8889.2	6409.3	8220.5	8394.8	8408.4	8409.9		
09	6141.1	6041.6	6073.7	6076.4	6076.7	6076.7		
10	6087.4	6080.8	6081	6081.1	6081.1	6081.1		
11	6080.8	6087.6	6087.8	6087.9	6080	6080		
12	5984.1	5781.6	5816.9	5836.9	5838.7	5838.9		
13	5781.6	5709.8	5781.6	5781.6	5781.6	5781.6		
14	5709.3	5378.2	5708.6	5708.7	5708.7	5708.7		
15	5611.6	5611.6	5611.6	5611.6	5611.6	5611.6		
16	5570.8	5571.4	5570.4	5570.5	5570.5	5570.5		
17	5529.6	5529.6	5529.6	5529.6	5529.6	5529.6		
18	5513.7	5513.9	5513.6	5513.6	5513.6	5513.6		
19	5494	5494	5494	5494	5494	5494		
20	5466.9	5466.9	5466.9	5466.9	5466.9	5466.9		
21	5487.8	5487.8	5487.8	5487.8	5487.8	5487.8		
22	5481.4	5481.4	5481.4	5481.4	5481.4	5481.4		
23	5479.9	5479.9	5479.9	5479.9	5479.9	5479.9		
24	5477.7	5477.7	5477.7	5477.7	5477.7	5477.7		
25	5477.6	5477.6	5477.6	5477.6	5477.6	5477.6		
26	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2		
27	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2		

|--|

Tableau 4-2 : L'effet de variation de raideurs sur les pulsations propres (l'axe Y) (9 nœuds, L = 1m)

Figure 4-3 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Y) (9 nœuds, L = 1m)

	Fréquences propres (rd/s)								
raideu No	^r 4E+4	4E+7	4E+8	4E+9	4E+10	4E+12			
01	2363.2	3907	4287.3	4298.1	4299	4299.1			
02	4393.9	18222	20336	51790	1.6113E+5	1.6085E+6			
03	18157	17738	17742	17752	17756	17756			
04	17737	14696	16847	17599	17633	17636			
05	14493	13273	13302	13344	13353	13355			
06	13268	9801.2	11763	12739	12814	12821			
07	9599.2	8902.5	8953.1	8983.4	8987.6	8988.1			
08	8889.1	4609.7	7930.8	8371.4	8406.2	8409.9			
09	6141.1	6252.9	6032.3	6038.4	6039	6039			
10	6087.4	6001.7	6087.5	6087.5	6087.5	6087.5			
11	6080.8	6087.4	6082.1	6082.3	6082.3	6082.3			
12	5984	6081.4	5774.9	5833.8	5838.4	5838.9			
13	5781.6	5781.6	5781.7	5781.5	5781.5	5781.5			
14	5709.3	5709.3	5709.2	5709.3	5709.3	5709.3			
15	5611.6	5611.6	5611.6	5611.6	5611.6	5611.6			
16	5570.8	5570.8	5570.8	5570.8	5570.8	5570.8			
17	5529.6	5529.6	5529.6	5529.6	5529.6	5529.6			
18	5513.7	5513.7	5513.6	5513.6	5513.6	5513.6			
19	5494	5494	5494	5494	5494	5494			
20	5466.9	5466.9	5466.9	5466.9	5466.9	5466.9			
21	5487.8	5487.8	5487.8	5487.8	5487.8	5487.8			
22	5481.4	5481.4	5481.4	5481.4	5481.4	5481.4			
23	5479.9	5479.9	5479.9	5479.9	5479.9	5479.9			
24	5477.7	5477.7	5477.7	5477.7	5477.7	5477.7			
25	5477.6	5477.6	5477.6	5477.6	5477.6	5477.6			
26	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2			
27	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2			

•((L= 1	m)	[raideur	le	long	de	l'axe	X
----	-------	----	----------	----	------	----	-------	---

Tableau 4-3 : L'effet de variation de raideurs sur les pulsations propres (l'axe X) (9 nœuds, L = 1m)

Figure 4-4 : Courbes représentant les pulsations propres pour différents raideurs (l'axe X) (9 nœuds, L = 1m)

	Fréquences propres (rd/s)							
Nº raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12		
01	2384.9	2725.3	2730.7	2731.2	2731.3	2731.3		
02	4413.2	4445.5	4445.8	4445.9	4445.9	4445.9		
03	18457	38436	1.198E+5	3.783E+5	1.1961E+6	1.1961E+7		
04	18410	18434	18438	18438	18438	18438		
05	17618	18410	18410	18410	18410	18410		
06	17322	17497	17516	17518	17518	17518		
07	16015	17322	17322	17322	17322	17322		
08	15537	15859	15881	15883	15883	15883		
09	14013	15537	15537	15537	15537	15537		
10	13511	13885	13899	13900	13900	13900		
11	11973	13511	13511	13511	13511	13511		
12	11542	11886	11893	11893	11893	11893		
13	10096	11542	11542	11542	11542	11542		
14	9769.2	10043	10046	10046	10046	10046		
15	8466.2	9769.1	9769.1	9769.1	9769.1	9769.1		
16	8243.6	8437.9	8438.7	8438.8	8438.8	8438.8		
17	7124.4	8243.4	8243.4	8243.4	8243.4	8243.4		
18	6992.6	7112.7	7112.8	7112.8	7112.8	7112.8		
19	6122.1	6992.4	6992.4	6992.4	6992.4	6992.4		
20	6062.6	6119.4	6119.4	6119.4	6119.4	6119.4		
21	6086.5	6062.5	6062.5	6062.5	6062.5	6062.5		
22	6086.5	6086.5	6086.5	6086.5	6086.5	6086.5		
23	5896.5	6086.5	6086.5	6086.5	6086.5	6086.5		
24	5873.6	5873.6	5873.6	5873.6	5873.6	5873.6		
25	5833.5	5873.5	5873.5	5873.5	5873.5	5873.5		
26	5792.3	5792	5792	5792	5792	5792		
27	5751.7	5792.3	5792.3	5792.3	5792.3	5792.3		
28	5710.3	5710.3	5710.3	5710.3	5710.3	5710.3		
29	5678.2	5709.9	5709.9	5709.9	5709.9	5709.9		
30	5643.7	5643.4	5643.4	5643.4	5643.4	5643.4		

•Modèle 2 (20 éléments) : (L= 1 m) [raideur le long de l'axe Z]

Tableau 4-4 : L'effet de variation de raideurs sur les pulsations propres (l'axe Z) (21 nœuds, L = 1m)

Figure 4-5 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Z) (21 nœuds, L = 1m)

			Fréquence	es propres (rd/s)		
No	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	2365.8	2558.3	2686	2707.5	2709.8	2710
02	4411.4	18457	18536	46798	1.4633E+5	1.4616E+6
03	18457	18411	18424	18401	18448	18448
04	18410	17623	17988	18447	18402	18403
05	17618	17327	17445	17567	17571	17572
06	17322	16023	16672	17256	17263	17264
07	16015	15550	15828	15948	15953	15953
08	15537	14024	14944	15400	15412	15413
09	14012	13535	13888	13951	13955	13955
10	13511	11987	13030	13322	13334	13336
11	11972	11581	11893	11922	11923	11924
12	11542	10116	11149	11329	11339	11340
13	10095	9882.4	10040	10053	10054	10054
14	9769.2	8500.9	9448	9556.9	9564.4	9565.2
15	8465.3	8306.2	8422.9	8429.2	8429.7	8429.8
16	8243.7	7192.3	7992.6	8055.4	8060.2	8060.8
17	7123.7	7045.2	7089.5	7092.4	7092.7	7092.7
18	6992.7	6225.9	6821.4	6853.3	6855.9	6856.2
19	6121.5	6086.1	6098.3	6099.4	6099.5	6099.5
20	6062.6	6086.5	6086.5	6086.5	6086.5	6086.5
21	6086.5	6086.5	6086.5	6086.5	6086.5	6086.5
22	6086.5	5885.6	5981	5992.7	5993.8	5993.9
23	5885.6	5873.8	5885.6	5885.6	5885.6	5885.6
24	5873.6	5817.6	5873.5	5873.5	5873.5	5873.5
25	5817.6	5792.9	5817.6	5817.6	5817.6	5817.6
26	5792.3	5737.4	5791.9	5792	5792	5792
27	6737.4	5711.6	5737.4	5737.4	5737.4	5737.4
28	5710.3	5666.6	5709.8	5709.9	5709.9	5709.9
29	5666.6	5647	5666.6	5666.6	5666.6	5666.6
30	5643.7	5618	5643.3	5643.3	5643.3	5643.3

	•(L= 1 m)	[raideur 1	e long de	l'axe	Y]:
--	-----------	------------	-----------	-------	-----

Tableau 4-5 : L'effet de variation de raideurs sur les pulsations propres (l'axe Y) (21 nœuds, L = 1m)

Figure 4-6 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Y) (21 nœuds, L = 1m)

			Fréquence	es propres (rd/s)		
<u>N</u> ⁰ raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	2368.1	3915.5	4298.9	4310	4311	4311.1
02	4410.1	18467	20240	51787	1.6113E+5	1.6085E+6
03	18457	18410	18410	18411	18412	18412
04	18410	17673	18340	18400	18402	18403
05	17618	17322	17325	17331	17333	17334
06	17322	16093	16938	17245	17262	17264
07	16015	15538	15544	15558	15561	15562
08	15537	14096	14949	15381	15410	15413
09	14012	13512	13524	13541	13545	13546
10	13511	12056	12878	13302	13332	13336
11	11972	11545	11561	11578	11582	11582
12	11542	10175	10962	11312	11338	11340
13	10095	9773.7	9793.2	9807.8	9810	9810.2
14	9769.2	8538.6	9286	9544.1	9563	9565.2
15	8465.4	8249.9	8270.8	8281.1	8282.4	8282.5
16	8243.6	4638.8	7877.2	8047	8059.4	8060.7
17	7123.7	7184.4	7019.5	7025.4	7026.1	7026.2
18	6992.6	7000.5	6754.6	6848.6	6855.5	6856.2
19	6121.5	6158.6	6082.1	6084.5	6084.8	6084.8
20	6062.6	6069.7	6086.5	6086.5	6086.5	6086.5
21	6086.5	6086.5	6086.5	6086.5	6086.5	6086.5
22	6086.5	6086.5	5954.5	5990.9	5993.6	5993.9
23	5885.6	5885.6	5885.6	5885.6	5885.6	5885.6
24	5873.6	5873.6	5873.6	5873.6	5873.6	5873.6
25	5817.6	5817.6	5817.6	5817.5	5817.5	5817.5
26	5792.3	5792.3	5792.3	5792.3	5792.3	5792.3
27	5737.4	5737.4	5737.3	5737.3	5737.3	5737.3
28	5710.3	5710.3	5710.2	5710.2	5710.2	5710.2
29	5666.6	5666.6	5666.6	5666.6	5666.6	5666.6
30	5643.7	5643.7	5643.7	5643.7	5643.7	5643.7

•(L= 1 m) [raideur le long de l'axe X]:
---------------------------------------	----

Tableau 4-6 : L'effet de variation de raideurs sur les pulsations propres (l'axe X) (21 nœuds, L = 1m)

Figure 4-7 : Courbes représentant les pulsations propres pour différents raideurs (l'axe X) (21 nœuds, L = 1m)

			Fréquenc	es propres (rd/s)		
No raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	6980.7	7380.4	15952	47610	1.4963E+5	1.4953E+6
02	6912.8	6912.8	6957.6	6959.2	6959.4	6959.4
03	6423	6902.2	6912.8	6912.8	6912.8	6912.8
04	6255.1	6346.7	6380.7	6382.6	6382.7	6382.7
05	5821.1	6255.1	6255.1	6255.1	6255.1	6255.1
06	5749.9	5807.4	5809.7	5809.9	5809.9	5809.9
07	5336	5749.8	5749.9	5749.9	5749.9	5749.9
08	5415.3	5345.6	5346.2	5346.2	5346.2	5346.2
09	5521	5416.9	5417	5417	5417	5417
10	5510.2	5520.5	5520.5	5520.5	5520.5	5520.5
11	5479.9	5510.2	5510.2	5510.2	5510.2	5510.2
12	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
13	5479.4	5479.7	5479.7	5479.7	5479.7	5479.7
14	5478.1	5478.1	5478.1	5478.1	5478.1	5478.1
15	5478	5478.1	5478.1	5478.1	5478.1	5478.1
16	5477.6	5477.6	5477.6	5477.6	5477.6	5477.6
17	5477.6	5477.6	5477.6	5477.6	5477.6	5477.6
18	5477.4	5477.4	5477.4	5477.4	5477.4	5477.4
19	5477.4	5477.4	5477.4	5477.4	5477.4	5477.4
20	5477.3	5477.3	5477.3	5477.3	5477.3	5477.3
21	5477.3	5477.3	5477.3	5477.3	5477.3	5477.3
22	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
23	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
24	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
25	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
26	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
27	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2

•Modèle 1 (8 éléments) : (L= 4 m) [raideur le long de l'axe Z] :

Tableau 4-7 : L'effet de variation de raideurs sur les pulsations propres (l'axe Z) (9 nœuds, L = 4m)

Figure 4-8 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Z) (9 nœuds, L = 4m)

			Fréquences	s propres (rd/s)		
No raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	6980.7	6986.7	9227.4	23779	73295	7.3083E+5
02	6912.8	6919.3	6968.2	6971	6971	6971.2
03	6422.9	6450.4	6889.1	6896.2	6896.7	6896.7
04	6255.1	6302.8	6399	6402.3	6402.6	6402.6
05	5821.1	5922.1	6185	6195.7	6196.6	6196.7
06	5749.9	5799.8	5810	5810	5810.6	5810.6
07	5335.9	5647.2	5701.2	5704.5	5704.8	5704.9
08	5415.5	5344.7	5346.2	5346.4	5346.4	5346.4
09	5521	5516.1	5516.6	5516.7	5516.7	5516.7
10	5510.2	5496.2	5500.2	5500.5	5500.5	5500.5
11	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
12	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
13	5479.4	5479.4	5479.4	5479.4	5479.4	5479.4
14	5478.1	5478.1	5478.1	5478.1	5478.1	5478.1
15	5478.8	5478.8	5478.8	5478.8	5478.8	5478.8
16	5477.6	5477.6	5477.6	5477.6	5477.6	5477.6
17	5477.4	5477.4	5477.4	5477.4	5477.4	5477.4
18	5477.4	5477.4	5477.4	5477.4	5477.4	5477.4
19	5477.3	5477.3	5477.3	5477.3	5477.3	5477.3
20	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
21	5477.3	5477.3	5477.3	5477.3	5477.3	5477.3
22	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
23	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
24	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
25	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
26	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
27	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2

•(L = 4 m) [rai	ideur le	e long	de l'	'axe Y	7	:
•		/						٠

Tableau 4-8 : L'effet de variation de raideurs sur les pulsations propres (l'axe Y) (9 nœuds, L = 4m)

Figure 4-9 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Y) (9 nœuds, L = 4m)

			Fréquences	propres (rd/s)		
No raide	^{ur} 4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	6980.7	7043.7	9961.2	26089	80634	8.0427E+5
02	6912.8	6913.2	6914.6	6915.7	6915.9	6915.9
03	6423	6565.4	6879.8	6895.3	6896.6	6896.7
04	6255.1	6257.4	6263.5	6266.2	6266.5	6266.6
05	5821.1	5929	6168.3	6194.2	6196.5	6196.7
06	5749.9	5753.7	5758.4	5759.4	5759.5	5759.5
07	5336.1	5594.3	5695.6	5704	5704.8	5704.9
08	5415.3	5408.4	5410.1	5410.2	5410.2	5410.2
09	5521	5512.8	5513.8	5513.9	5513.9	5513.9
10	5510.2	5485.4	5499.6	5500.4	5500.4	5500.5
11	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
12	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
13	547.4	547.4	547.4	547.4	547.4	547.4
14	5478.1	5478.1	5478.1	5478.1	5478.1	5478.1
15	5478.8	5478.8	5478.8	5478.8	5478.8	5478.8
16	5477.6	5477.6	5477.6	5477.6	5477.6	5477.6
17	5477.4	5477.4	5477.4	5477.4	5477.4	5477.4
18	5477.4	5477.4	5477.4	5477.4	5477.4	5477.4
19	5477.3	5477.3	5477.3	5477.3	5477.3	5477.3
20	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
21	5477.3	5477.3	5477.3	5477.3	5477.3	5477.3
22	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
23	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
24	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
25	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
26	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2
27	5477.2	5477.2	5477.2	5477.2	5477.2	5477.2

Tableau 4-9 : L'effet de variation de raideurs sur les pulsations propres (l'axe X) (9 nœuds, L = 4m)

Figure 4-10 : Courbes représentant les pulsations propres pour différents raideurs (l'axe X) (9 nœuds, L = 4m)

			Fréquence	es propres (rd/s)		
No raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	7029.6	7373.9	15950	47605	1.4961E+5	1.4951E+6
02	7022	7022	7026.4	7026.6	7026.6	7026.6
03	6893.8	7019.5	7022	7022	7022	7022
04	6846.8	6846.8	6876.6	6877	6877.8	6877.8
05	6644.9	6845.3	6846.8	6846.8	6846.8	6846.8
06	6573.6	6596	6623.8	6624.9	6625.1	6625.1
07	6355.9	6573.5	6573.6	6573.6	6573.6	6573.6
08	6287.5	6326.4	6339.6	6340.3	6340.4	6340.4
09	6089.7	6287.5	6287.5	6287.5	6287.5	6287.5
10	6037.4	6074.8	6079.5	6079.7	6079.9	6079.9
11	5873.3	6037.4	6037.4	6037.4	6037.4	6037.4
12	5838.6	5866.3	5867.8	5867.9	5867.9	5867.9
13	5336.1	5838.6	5838.6	5838.6	5838.6	5838.6
14	5710	5707.1	5707.5	5707.5	5707.5	5707.5
15	5689.6	5689.6	5689.6	5689.6	5689.6	5689.6
16	5594.4	5345.7	5346.3	5346.4	5346.4	5346.4
17	5583.9	5593.4	5593.4	5593.4	5593.4	5593.4
18	5416.1	5583.9	5583.9	5583.9	5583.9	5583.9
19	5519.7	5417.8	5417.8	5417.8	5417.8	5417.8
20	5515.6	5519.5	5519.5	5519.5	5519.5	5519.5
21	5482.1	5515.6	5515.6	5515.6	5515.6	5515.6
22	5481.5	5482	5482	5482	5482	5482
23	5479.6	5481.5	5481.5	5481.5	5481.5	5481.5
24	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
25	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
26	5478.8	5478.8	5478.8	5478.8	5478.8	5478.8
27	5478.8	5478.8	5478.8	5478.8	5478.8	5478.8
28	5478.5	5478.5	5478.5	5478.5	5478.5	5478.5
29	5478.4	5478.4	5478.4	5478.4	5478.4	5478.4
30	5478.2	5478.2	5478.2	5478.2	5478.2	5478.2

•Modèle 2 (20 éléments) : (L= 4 m) [raideur le long de l'axe Z] :

Tableau 4-10 : L'effet de variation de raideurs sur les pulsations propres (l'axe Z) (21 nœuds, L = 4m)

Figure 4-11 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Z) (21 nœuds, L = 4m)

			Fréquences	s propres (rd/s)		
Nº raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	7029.6	7030.5	9226.8	23778	73292	7.308E+5
02	7022	7022.5	7027.8	7028.2	7028.2	7028.2
03	6893.8	6899.5	7020.1	7020.7	7020.7	7020.8
04	6846.8	6850.9	6884.3	6886.3	6886.4	6886.4
05	6644.9	6653.6	6833.8	6837.3	6837.6	6837.6
06	6573.6	6584.5	6633.5	6635.5	6635.6	6635.6
07	6355.9	6368.6	6549.7	6554.9	6555.4	6555.3
08	6287.5	6307.2	6346.6	6347.8	6347.8	6348
09	6089.7	6111.8	6259.1	6263.8	6264.1	6264.2
10	6037.4	6064.2	6083	6083.6	6083.7	6083.
11	5873.3	5915.2	6009.9	6013.2	6013.5	6013.6
12	5838.6	5862.5	5868.5	5868.8	5868.8	5868.8
13	5336	5767.1	5815.3	5817.3	5817.5	5817.5
14	5710	5344.8	5346.4	5346.6	5706.7	5346.6
15	5689.6	5704.6	5706.6	5706.7	5673.3	5706.7
16	5594.4	5650.7	5672	5673.2	5346.6	5673.3
17	5583.9	5591.2	5591.8	5591.9	5591.9	5591.9
18	5416.4	5564.4	5572.8	5573.4	5573.4	5573.4
19	5519.7	5518	5518.2	5518.2	5518.2	5518.2
20	5515.6	5508.1	5510.7	5510.9	5510.9	5510.9
21	5482.1	5481.8	5481.8	5481.8	5481.8	5481.8
22	5482.5	5480.6	5480.9	5480.9	5480.9	5480.9
23	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
24	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
25	5478.9	5478.9	5478.9	5478.9	5478.9	5478.9
26	5478.8	5478.8	5478.8	5478.8	5478.8	5478.8
27	5478.6	5478.6	5478.6	5478.6	5478.6	5478.6
28	5478.5	5478.5	5478.5	5478.5	5478.5	5478.5
29	5478.3	5478.3	5478.3	5478.3	5478.3	5478.3
30	5478.2	5478.2	5478.2	5478.2	5478.2	5478.2

•(L= 4 m) [raideur le long de l'axe Y] :

Tableau 4-11 : L'effet de variation de raideurs sur les pulsations propres (l'axe Y) (21 nœuds, L = 4m)

Figure 4-12 : Courbes représentant les pulsations propres pour différents raideurs (l'axe Y) (21 nœuds, L = 4m)

			Fréquence	s propres (rd/s)		
<u>N</u> ⁰ raideur	4E+4	4E+7	4E+8	4E+9	4E+10	4E+12
01	7029.6	7045.2	9960.1	26088	80632	8.0424E+5
02	7022	7022	7022.1	7022.2	7022.2	7022.2
03	6893.8	6947.3	7019.4	7020.6	7020.7	7020.8
04	6846.8	6847	6847.9	6848.5	6848.6	6848.6
05	6644.9	6705	6829.2	6836.9	6837.5	6837.6
06	6573.6	6574.1	6576	6577.1	6577.2	6577.2
07	6355.9	6412.2	6542.4	6554.2	6555.2	6555.3
08	6287.5	6288.4	6290.9	6292	6292.2	6292.2
09	6089.7	6139.6	6252	6263.1	6264.1	6264.2
10	6037.4	6038.6	6041.2	6042.1	6042.2	6042.2
11	5873.3	5916.9	6004.6	6012.7	6013.5	6013.6
12	5838.6	5840	5842.3	5842.8	5842.9	5842.9
13	5336.3	5748	5811.8	5817	5817.4	5817.5
14	5710	5691.2	5692.8	5693.1	5693.1	5693.1
15	5689.6	5627	5670.1	5673	5673.2	5673.3
16	5594.4	5585.5	5410.6	5410.8	5586.5	5586.5
17	5583.9	5408.9	5586.4	5586.5	5573.4	5573.4
18	5416.1	5546.3	5571.9	5573.3	5410.8	5410.8
19	5519.7	5516.6	5517	5517.1	5517.1	5517.1
20	5515.6	5499.3	5499.4	5510.9	5510.9	5510.9
21	5482	5481.7	5481.8	5481.8	5481.8	5481.8
22	5481.5	5479.7	5479.9	5479.9	5479.9	5479.9
23	5479.7	5479.7	5479.7	5479.7	5479.7	5479.7
24	5479.7	5479.4	5479.7	5479.7	5479.7	5479.7
25	5478.9	5478.9	5478.9	5478.9	5478.9	5478.9
26	5478.8	5478.8	5478.8	5478.8	5478.8	5478.8
27	5478.6	5478.6	5478.6	5478.6	5478.6	5478.6
28	5478.5	5478.5	5478.5	5478.5	5478.5	5478.5
29	5478.3	5478.3	5478.3	5478.3	5478.3	5478.3
30	5478.2	5478.2	5478.2	5478.2	5478.2	5478.2

•(L= 4 m) [raideur le long de l'axe X] :

Tableau 4-12 : L'effet de variation de raideurs sur les pulsations propres (l'axe X) (21 nœuds, L = 4m)

-Interprétation des courbes :

On remarque après l'analyse des résultats que la direction Z est sensible à la variation pour une plage de raideurs. Le seuil de premières pulsations propres diminue avec l'augmentation de longueur.

4.3. Pulsations propres pour structure rigide (manipulateur rigide à deux bras) :

N⁰	Pulsations propres (rd/s)
01	1.6186E+6
02	4.2825E+6
03	7.4174E+6

Tableau 4-13 : Pulsations propres pour robot manipulateur rigide à deux bras

4.4. Détermination de position de l'extrémité du 2^{ième} bras en fonction de l'angle teta1 et teta2 :

Figure 4-14 : Position de l'extrémité B en fonction de teta1 et teta2

Avec $XB = L1 \cos (teta1) + L2 \cos (teta2)$ (4-1) $YB = L1 \sin (teta1) + L2 \sin (teta2)$

4.5.Une abaque pour déterminer la position de l'extrémité du bras B en fonction de teta1 et teta2 :

Figure 4-15 : La détermination de position de B en fonction de teta1, teta2 et de l'espace travaillant dedans

(b)

Figure 4-16 (a),(b),(c),(d) : La position de l'extrémité du bras B en fonction de teta1 et teta2

N⁰	Teta1 (°)	Teta2 (°)	Structure rigide		Structure flexible		
			XB(m)	YB(m)	XB(m)	YB(m)	
01	0	0	2.0000	0.0000	1.8861	-6.051E-19	
02	10		1.9848	0.1736	1.9843	0.2695	
03	20		1.9396	0.3420	1.8263	0.3535	
04	30		1.8660	0.5000	1.8733	0.6138	
05	40		1.7660	0.6427	1.7953	0.7414	
06	50		1.6427	0.7660	1.5347	0.7463	
07	60		1.4999	0.8660	1.6089	0.8260	
08	70		1.3420	0.9396	1.3407	1.0547	
09	80		1.1736	0.9848	1.0612	0.9762	
10	90		0.9999	1.0000	1	0.8861	
11	100		0.8263	0.9848	0.9397	0.9790	
12	110		0.6579	0.9396	0.6385	1.001	
13	120		0.4999	0.8660	0.6089	0.8911	
14	130		0.3572	0.7660	0.4651	0.7283	
15	140		0.2339	0.6427	0.3173	0.6124	
16	150		0.1339	0.4999	0.1412	0.3864	
17	160		0.0603	0.3420	-0.0529	0.3395	
18	170		0.0151	0.1736	0.0136	0.0846	
19	180		1.11E-15	-4.64E-8	-0.1139	1.196E-16	
20	190		0.0151	-0.1736	0.0180	-0.1930	
21	200		0.0603	-0.3420	-0.0528	-0.3305	
22	210		0.1339	-0.5000	0.1412	-0.3864	
23	220		0.2339	-0.6427	0.3377	-0.6046	
24	230		0.3572	-0.7660	0.3535	-0.8490	
25	240		0.50000	-0.86660	0.6089	-0.8911	
26	250		0.6579	-0.9396	0.6634	-0.8256	
27	260		0.8263	-0.9848	0.9401	-0.9821	
28	270		1.0000	-1.0000	1	-0.8861	
29	280		1.1736	-0.9848	1.0601	-0.9822	
30	290		1.3420	-0.9396	1.3398	-0.9334	
31	300		1.5000	-0.8660	1.6089	-0.8260	
32	310		1.6427	-0.7660	1.7225	-0.8420	
33	320		1.7660	-0.6427	1.8797	-0.6364	
34	330		1.8660	-0.49999	1.8733	-0.6138	
35	340		1.9396	-0.3420	1.8263	-0.3506	
36	350		1.9848	-0.1736	1.9821	-0.2497	

4.6.Comparaison entre la structure rigide et la structure flexible (Cas teta2 = 0 ° et teta1 = 0° : 350 °) :

Tableau 4-14 : Position de l'extrémité du bras pour le cas rigide et flexible

Figure 4-17 : Comparaison modale de l'extrémité du bras entre la structure rigide et la structure flexible

<u>-Po</u>	sition de l'	<u>extrémité I</u> dèle 9noeu	<u>3 pour puls: ds (3ddl/nœ</u>	ations w2 e eud) :	<u>t w3 [L= 1</u>	<u>m]:</u>
N C-	T_{-4} 1(0)	T_{-4}	$\mathbf{W}(\mathbf{u},\mathbf{l},\mathbf{u})$	\mathbf{VD} ()	\mathbf{VD} ()	XX/2/

N⁰	Teta1(°)	Teta2(°)	W2(rd/s)	$XB_2(m)$	$YB_2(m)$	W3(rd/s)	XB ₃ (m)	YB ₃ (m)
01	0	0	21.913	1.9994	-0.02698	45.462	1.9998	-0.02573
02	10		21.677	1.9802	0.20017	45.547	1.9843	0.19898
03	20		21.083	1.9316	0.36738	45.820	1.9388	0.36619
04	30		20.362	1.8550	0.52379	46.337	1.8648	0.52222
05	40		19.693	1.7529	0.66491	47.218	1.7646	0.66221
06	50		19.156	1.6569	0.74517	48.695	1.6412	0.78172
07	60		18.763	1.5153	0.84649	51.189	1.5015	0.85496
08	70		18.499	1.3581	0.92124	55.291	1.3435	0.93417
09	80		18.349	1.1902	0.96719	60.811	1.1751	0.98451
10	90		18.3	1.0167	0.98296	63.05	1.0114	0.98847
11	100		18.349	0.80947	1.0012	60.811	0.82783	0.98814
12	110		18.499	0.64154	0.95598	55.291	0.65648	0.9372
13	120		18.763	0.51548	0.84927	51.189	0.49848	0.86434
14	130		19.156	0.37157	0.74893	48.695	0.35871	0.7675
15	140		19.693	0.22111	0.66017	47.218	0.23529	0.64469
16	150		20.362	0.12341	0.51809	46.337	0.13506	0.50257
17	160		21.083	0.05270	0.36084	45.82	0.06107	0.34522
18	170		21.677	0.01119	0.19303	45.547	0.01561	0.17729
19	180		21.913	3.13e-17	-0.01963	45.462	4.8e-5	-0.00380
20	190		21.677	0.01119	-0.19303	45.547	0.01486	-0.16997
21	200		21.083	0.05270	-0.36084	45.820	0.059626	-0.33875
22	210		20.362	0.12341	-0.51809	46.337	0.13297	-0.49732
23	220		19.693	0.22111	-0.66017	47.218	0.23270	-0.64075
24	230		19.156	0.37157	-0.74893	48.695	0.35577	-0.76444
25	240		18.763	0.51548	-0.84927	51.184	0.50157	-0.86756
26	250		18.499	0.64154	-0.95598	55.291	0.65952	-0.94205
27	260		18.349	0.80947	-1.0012	60.811	0.82783	-0.98814
28	270		18.3	1.0167	-0.98296	63.050	1.0114	-0.98847
29	280		18.349	1.1902	-0.96719	60.811	1.1722	-0.98499
30	290		18.499	1.3255	-0.95782	55.291	1.3405	-0.94508
31	300		18.763	1.5153	-0.84649	51.189	1.4984	-0.87695
32	310		19.156	1.6569	-0.74517	48.695	1.6442	-0.75022
33	320		19.693	1.7529	-0.66491	47.218	1.7672	-0.62323
34	330		20.362	1.855	52379	46.337	1.86669	-0.47767
35	340		21.083	1.9316	-0.36738	45.820	1.9402	-0.31777
36	350		21.677	1.9802	-0.20017	45.547	1.9850	-0.14827

Tableau 4-15 : Position de l'extrémité B pour pulsations propres w2 et w3

N⁰	Teta1(°)	Teta2(°)	W4(rd/s)	$XB_4(m)$	YB ₄ (m)
01	0	0	4124.1	2.0001	-1.61e-15
02	10		1353.6	1.9849	0.17213
03	20		1353.9	1.9396	0.3435
04	30		1354.5	1.8662	0.49857
05	40		1355.5	1.7658	0.64414
06	50		1357.5	1.6425	0.76729
07	60		1361.6	1.4997	0.86714
08	70		1372.4	1.3423	0.93877
09	80		1410.5	1.1734	0.98528
10	90		1502.3	1.0002	1.0006
11	100		1410.5	0.82607	0.98508
12	110		1372.4	0.65827	0.93921
13	120		1361.6	0.49973	0.86647
14	130		1357.5	0.35697	0.76642
15	140		1355.5	0.23375	0.6431
16	150		1354.5	0.13413	0.49975
17	160		1353.9	0.06019	0.34222
18	170		1353.6	0.01524	0.17348
19	180		4124.1	-7.07e-5	-3.10e-16
20	190		1353.6	0.015137	-0.17382
21	200		1353.9	0.060416	-0.34182
22	210		1354.5	0.13382	-0.50025
23	220		1355.5	0.23416	-0.64248
24	230		1357.5	0.35746	-0.75566
25	240		1361.6	0.50027	-0.86557
26	250		1372.4	0.65769	-0.94017
27	260		1410.5	0.82663	-0.98454
28	270		1502.3	1.0002	-1.0006
29	280		1410.5	1.1739	-0.98433
30	290		1372.4	1.3423	-0.93877
31	300		1361.6	1.5003	-0.86491
32	310		1357.5	1.643	-0.7648
33	320		1355.5	1.7662	-0.64144
34	330		1354.5	1.8659	-0.50142
35	340		1353.5	1.9398	-0.34054
36	350		1353.6	1.9848	-0.17516

Tableau 4-16 : Position de l'extrémité B pour pulsation propre w4

NG.	Teta1(°)	T-4-2(0)	(w1+w2+w3)/3			
JN⊇		1 eta2(°)	XB ₅ (m)	YB ₅ (m)		
01	0	0	1.9617	-0.0175		
02	10		1.9829	0.2228		
03	20		1.8989	0.3623		
04	30		1.8643	0.5532		
05	40		1.7709	0.6895		
06	50		1.6109	0.7577		
07	60		1.5419	0.8425		
08	70		1.3474	0.9700		
09	80		1.1421	0.9759		
10	90		1.0093	0.9525		
11	100		0.8590	0.9894		
12	110		0.6455	0.9647		
13	120		0.5409	0.8682		
14	130		0.3984	0.7482		
15	140		0.2579	0.6391		
16	150		0.1232	0.4690		
17	160		0.0202	0.3485		
18	170		0.0134	0.1516		
19	180		-0.0379	-0.0078		
20	190		0.0146	-0.1853		
21	200		0.0198	-0.3433		
22	210		0.1325	-0.4672		
23	220		0.2638	-0.6351		
24	230		0.3602	-0.7874		
25	240		0.5419	-0.8693		
26	250		0.6548	-0.9077		
27	260		0.8591	-0.9905		
28	270		1.0093	-0.9525		
29	280		1.1408	-0.9781		
30	290		1.3352	-0.9454		
31	300		1.5408	-0.8498		
32	310		1.6745	-0.7791		
33	320		1.7999	-0.6415		
34	330		1.8650	-0.5384		
35	340		1.8993	-0.3452		
36	350		1.9824	-0.1994		

Tableau 4-17 : Position moyenne de l'extrémité B [(w1+w2+w3)/3]

NG.	T_{-4} - 1(0)		0.6w1+0.2w2+0.2w3			
JN⊻	l etal(°)	1 eta2(°)	$XB_6(m)$	$YB_6(m)$		
01	0	0	1.9315	-0.0105		
02	10		1.9834	0.2415		
03	20		1.8698	0.3588		
04	30		1.8679	0.5775		
05	40		1.7806	0.7102		
06	50		1.5804	0.7531		
07	60		1.5687	0.8359		
08	70		1.3447	1.0039		
09	80		1.1097	0.9760		
10	90		1.0056	0.9259		
11	100		0.8912	0.9853		
12	110		0.6427	0.9792		
13	120		0.5681	0.8774		
14	130		0.4251	0.7402		
15	140		0.2817	0.6284		
16	150		0.1364	0.4359		
17	160		-0.0090	0.3449		
18	170		0.0135	0.1248		
19	180		-0.0683	-0.0046		
20	190		0.0160	-0.1884		
21	200		-0.0092	-0.3382		
22	210		0.1359	-0.4349		
23	220		0.2933	-0.6229		
24	230		0.3575	-0.8120		
25	240		0.5687	-0.8780		
26	250		0.6582	-0.8749		
27	260		0.8915	-0.9871		
28	270		1.0056	-0.9259		
29	280		1.1085	-0.9797		
30	290		1.3370	-0.9406		
31	300		1.5680	-0.8403		
32	310		1.6937	-0.8043		
33	320		1.8318	-0.6395		
34	330		1.8683	-0.5686		
35	340		1.8701	-0.3474		
36	350		1.9823	-0.2195		

Tableau 4-18 : Position de l'extrémité B [(w1*0.6+w2*0.2+w3*0.2)]

Figure 4-18 (a),(b),(c),(d),(e) : Position de l'extrémité B du robot manipulateur (L = 1m)

N⁰	Teta1(°)	Teta2(°)	W1(rd/s)	$XB_1(m)$	$YB_1(m)$	W2(rd/s)	$XB_2(m)$	$YB_2(m)$
01	0	0	7.0711	8.1841	-3.2e-17	7.6389	7.9998	-0.0490
02	10		7.0728	7.9407	0.6736	7.6389	7.9438	0.6459
03	20		7.0728	7.7556	1.3890	7.6389	7.7680	1.3206
04	30		7.0728	7.4595	2.0208	7.6389	7.4776	1.9544
05	40		7.0728	7.0583	2.5918	7.6389	7.0816	2.5281
06	50		7.0728	6.5642	3.0846	7.6389	6.5920	3.0243
07	60		7.0728	5.9922	3.4843	7.6389	6.0236	3.4279
08	70		7.0728	5.3596	3.7788	7.6389	5.3937	3.7267
09	80		7.0728	4.7033	3.9193	7.6389	4.7215	3.9115
10	90		7.0728	4.0089	3.9803	7.6389	4.0273	3.9767
11	100		7.0728	3.3142	3.9198	7.6389	3.3323	3.9205
12	110		7.0728	2.6403	3.7396	7.6389	2.6576	3.7444
13	120		7.0728	1.9922	3.4830	7.6389	2.0237	3.4538
14	130		7.0728	1.4220	3.0828	7.6389	1.4498	3.0576
15	140		7.0728	0.9415	2.5526	7.6389	0.9534	2.5678
16	150		7.0728	0.5314	2.0184	7.6389	0.5496	1.9992
17	160		7.0728	0.2442	1.3498	7.6389	0.2506	1.3692
18	170		7.0728	0.0623	0.6763	7.6389	0.0655	0.6969
19	180		7.0728	7.01e-16	0.0182	7.6389	1.67e-5	0.0490
20	190		7.0728	0.0623	-0.6763	7.6389	0.0655	-0.6969
21	200		7.0728	0.2381	-1.3864	7.6389	0.2318	-1.3669
22	210		7.0728	0.5314	-2.0184	7.6389	0.5222	-2.0007
23	220		7.0728	0.9415	-2.5526	7.6389	0.9534	-2.5678
24	230		7.0728	1.4357	-3.0454	7.6389	1.4498	-3.0576
25	240		7.0728	2.0077	-3.4451	7.6389	2.0237	-3.4538
26	250		7.0728	2.6235	-3.7778	7.6389	2.6061	-3.7730
27	260		7.0728	3.2965	-3.9585	7.6389	3.2784	-3.9578
28	270		7.0728	3.9910	-4.0195	7.6389	3.9725	-4.0231
29	280		7.0728	4.6857	-3.9590	7.6389	4.6675	-3.9668
30	290		7.0728	5.3596	-3.7788	7.6389	5.3422	-3.7907
31	300		7.0728	6.0077	-3.4438	7.6389	6.0236	-3.4279
32	310		7.0728	6.5779	-3.0436	7.6389	6.5920	-3.0243
33	320		7.0728	7.0698	-2.5504	7.6389	7.0816	-2.5281
34	330		7.0728	7.4685	-1.9792	7.6389	7.4776	-1.9544
35	340		7.0728	7.7556	-1.3890	7.6389	7.7492	-1.4155
36	350		7.0728	7.9376	-0.7155	7.6389	7.9343	-0.7432

-Position de l'extrémité B pour pulsation w1, w2,w3 et w4 [L= 4 m]: Modèle 21 noeuds (3ddl/nœud):

Tableau 4-19 : Position de l'extrémité B pour pulsations propres w1 et w2 (L = 4m)

N⁰	Teta1(°)	Teta2(°)	W3(rd/s)	$XB_3(m)$	$YB_3(m)$	W4(rd/s)	$XB_4(m)$	$YB_4(m)$
01	0	0	8.0512	7.9998	-0.0308	403.72	8.0002	-2.3e-15
02	10		8.0512	7.9329	0.7253	403.72	7.9390	0.6945
03	20		8.0512	7.7708	1.3376	403.72	7.7586	1.3680
04	30		8.0512	7.4817	1.9700	403.72	7.4643	2.0001
05	40		8.0512	7.0869	2.5417	403.72	7.0640	2.5710
06	50		8.0512	6.5983	3.0355	403.72	6.5710	3.0640
07	60		8.0512	6.0307	3.4363	403.72	6.0001	3.4643
08	70		8.0512	5.4014	3.7319	403.72	5.3680	3.7586
09	80		8.0512	4.6595	3.9649	403.72	4.6946	3.9390
10	90		8.0512	4.0355	3.9753	403.72	4.0000	4.0002
11	100		8.0512	3.2703	3.9627	403.72	3.3054	3.9394
12	110		8.0512	2.5984	3.7812	403.72	2.6318	3.7590
13	120		8.0512	2.0308	3.4425	403.72	1.9999	3.4643
14	130		8.0512	1.4561	3.0705	403.72	1.4287	3.0643
15	140		8.0512	0.9129	2.5910	403.72	0.9359	2.5710
16	150		8.0512	0.5536	1.9807	403.72	0.5360	1.9999
17	160		8.0512	0.2290	1.3869	403.72	0.2410	1.3682
18	170		8.0512	0.0545	0.7131	403.72	0.0605	0.6946
19	180		8.0512	3.3e-16	0.0184	403.72	-0.0002	8.6e-16
20	190		8.0512	0.0669	-0.6760	403.72	0.0609	-0.6945
21	200		8.0512	0.2290	-1.3869	403.72	0.2410	-1.3682
22	210		8.0512	0.5181	-2.0193	403.72	0.5360	-1.9999
23	220		8.0512	0.9586	-2.5512	403.72	0.9359	-2.5710
24	230		8.0512	1.4561	-3.0434	403.72	1.4290	-3.0640
25	240		8.0512	2.0308	-3.4425	403.72	2.0001	-3.4639
26	250		8.0512	2.5984	-3.7812	403.72	2.6320	-3.7586
27	260		8.0512	3.2703	-3.9627	403.72	3.3054	-3.9394
28	270		8.0512	4.0355	-3.9753	403.72	4.0000	-3.9998
29	280		8.0512	4.6595	-3.9649	403.72	4.6946	-3.9390
30	290		8.0512	5.3346	-3.7854	403.72	5.3680	-3.7586
31	300		8.0512	6.0307	-3.4363	403.72	5.9999	-3.4639
32	310		8.0512	6.5983	-3.0355	403.72	6.5710	-3.0640
33	320		8.0512	7.0869	-2.5417	403.72	7.0643	-2.5713
34	330		8.0512	7.4817	-1.9700	403.72	7.4639	-1.9999
35	340		8.0512	7.7464	-1.3985	403.72	7.7590	-1.3682
36	350		8.0512	7.9329	-0.7253	403.72	7.9390	-0.6945

Tableau 4-20 : Position de l'extrémité B pour pulsations propres w3 et w4 (L = 4m)

NG.	T-4-1(0)	$\mathbf{T}_{2} \mathbf{A}_{2} \mathbf{I}(0)$	(w1+w)	2+w3)/3
JN⊇	l etal(°)	Teta2(°)	XB ₅ (m)	YB ₅ (m)
01	0	0	8.0612	-0.0266
02	10		7.9391	0.6816
03	20		7.7648	1.3490
04	30		7.4729	1.9817
05	40		7.0756	2.5538
06	50		6.5848	3.0481
07	60		6.0155	3.4495
08	70		5.0515	3.7458
09	80		4.6947	3.9319
10	90		4.0239	3.9774
11	100		3.3056	3.9343
12	110		2.6321	3.7550
13	120		2.0155	3.4597
14	130		1.4426	3.0703
15	140		0.9359	2.5704
16	150		0.5448	1.9994
17	160		0.2413	1.3686
18	170		0.0608	0.6954
19	180		5.5e-6	0.0285
20	190		0.0649	-0.5830
21	200		0.2330	-1.3800
22	210		0.5239	-2.0128
23	220		0.9512	-2.5572
24	230		1.4472	-3.0488
25	240		2.0207	-3.4471
26	250		2.6093	-3.7773
27	260		3.2817	-3.9596
28	270		3.9996	-4.0059
29	280		4.6709	-3.9635
30	290		5.3454	-3.7849
31	300		6.0206	-3.4360
32	310		6.5894	-3.0344
33	320		7.0794	-2.5400
34	330		7.4759	-1.9678
35	340		7.7504	-1.4010
36	350		7.9349	-0.7280

Tableau 4-21 : Position moyenne de l'extrémité B [(w1+w2+w3)/3] (L = 4m)
NG.	T-4-1(0)	T-4-3(0)	0.6w1+0.2w2+0.2w3							
JNΩ	l etal(°)	Teta2(°)	$XB_6(m)$	$YB_6(m)$						
01	0	0	8.1103	-0.0159						
02	10		7.9397	0.6784						
03	20		7.7611	1.3650						
04	30		7.4675	1.9973						
05	40		7.0686	2.5690						
06	50		6.5765	3.0627						
07	60		6.0061	3.4634						
08	70		5.1747	3.7590						
09	80		4.6981	3.9268						
10	90		4.0179	3.9785						
11	100		3.3090	3.9285						
12	110		2.6353	3.7488						
13	120		2.0062	3.4690						
14	130		1.4343	3.0753						
15	140		0.9382	2.5633						
16	150		0.5395	2.0070						
17	160		0.2425	1.3611						
18	170		0.0614	0.6878						
19	180		0.0000	0.0244						
20	190		0.0638	-0.6803						
21	200		0.2350	-1.3826						
22	210		0.5269	-2.0150						
23	220		0.9473	-2.5553						
24	230		1.4426	-3.0474						
25	240		2.0155	-3.4463						
26	250		2.6150	-3.7775						
27	260		3.2876	-3.9592						
28	270		3.9962	-4.0113						
29	280		4.6768	-3.9617						
30	290		5.3511	-3.7825						
31	300		6.0154	-3.4391						
32	310		6.5848	-3.0381						
33	320		7.0755	-2.5442						
34	330		7.4729	-1.9724						
35	340		7.7524	-1.3962						
36	350		7.9360	-0.7230						

Tableau 4-22 : Position de l'extrémité B [(w1*0.6+w2*0.2+w3*0.2)] (L = 4m)

Figure 4-19 (a),(b),(c),(d),(e),(f) : Position de l'extrémité B du robot manipulateur (L= 4m)

4.7. Conclusion générale et perspective:

La méthode de résolution présentée, permet de trouver facilement les fréquences propres de la structure et la représentation graphique de la structure en chaque mode, dans le cas des vibrations libres non dissipative.

On a débuté par la connaissance des équations dynamiques du mouvement : formulation de Lagrange- Euler, qui permet la description du comportement dynamique du robot. Ces équations sont utilisées pour la simulation par ordinateur afin de décrire le mouvement du robot et d'assurer son contrôle par le maintien de la réponse dynamique en accord avec les performances du système et les objectifs désirés.

Pour trouver les matrices de rigidité et de masse et par la suite les fréquences propres, un exemple d'un manipulateur à deux bras flexibles, est analysé et modélisé par la méthode des éléments finis toute en se basant sur la théorie des poutres.

L'élaboration des programmes qui assure toutes ces calculs, est réalisée sous le logiciel Matlab d'où l'importance de l'outil informatique.

Tenant compte de l'étude faite pour le cas bidimensionnel et tridimensionnel pour les deux modèles (l'un à neuf nœuds et l'autre à vingt-et-un nœuds), a permis de tester l'efficacité de nos programmes et par la suite retirer la fameuse conclusion suivante : plus on augmente le nombre d'éléments de la structure et en élargissant le nombre de degrés de libertés, plus on se rapproche des valeurs réels des fréquences propres de la structure étudiée.

Une étude est élaborée dont le but de faire une comparaison entre la structure rigide et la structure flexible, pour ce faire deux cas sont étudiés :

 $\bigstar L = 1m$

 $\clubsuit \quad L = 4m$

Cette étude a montré que la position de l'extrémité du bras du robot dans le cas flexible est sensible à la première pulsation propre et ce, pour les deux cas étudiés, d'ou la nécessité du contrôle dans cette gamme des basses pulsations propres.

Références bibliographiques:

[1] K.S.Fu, R.C.Gonzalez & C.S.G.Lee (1987) "Robotics : control, sensing, vision, and intelligence", pp82-103

[2] Wisama Khalil & Etienne Dombre, (édition janvier 1999) "Modélisation, identification et commande des robots", pp 21-117.

[3] J.P.Lallemand & S.Zeghloul, (édition 1994) "Robotique, Aspects fondamentaux, Modélisation mécanique, CAO robotique, Commande", pp 1-15.

[4] Hirohiko Arai& Susumu Tachi (1991) "Position control system of a two degree of freedom manipulator with a passive joint", pp15-20, IEEE transactions on industrial electronics.

[5] Hirohiko Arai (1991), "Position control of a manipulator with passive joints using dynamic coupling", pp 528-534, Transactions on robots and automation vol.7 n° 4 .

[6] N.Leroy, A.M.Kokosy&W.Perruquetti (1999) "Dynamic modelling of a parallel robot-Application to a surgical simulator",pp1-5.

[7] Kee Ho Yu, Takayuki Takahashi&Hikaru Inooka (1995) " Dynamics and motion control of a two link robot manipulator with a passive joint",pp311-316

[8] Wen Chen (2000) "Dynamics modelling of multi link flexible robotic manipulators", pp183-195, Pergamon, computers and structures .

[9] Hassan Zohoor&Sayyid Mahdi khorsandijou (2007) "Dynamic model of a flying manipulator with two highly flexible links",pp2117-2132, Elsevier,applied mathematical modelling.

[10] Mehrdad Farid&Stanislaw A.Lukasiewicz (1999) "Dynamic modelling of spatial manipulator with flexible links and joints", pp419-437, Pergamon, computers and structures.

[11] Amer S.Al-Yahmadi, Jamil Abdo&T.C.Hsia (2006) "Modelling and control of two manipulators handling a flexible object", pp349-361, Elsevier, journal of the Franklin institute.

[12] M.Vakil, R.Fotouhi&P.N.Nikiforuk (2009) "Maneuver control of the multilink manipulators", pp831-844, Elsevier, international journal of non-linear mechanics.

[13] G.Piras, W.L.Cleghorn&J.K.Mills (2005) "Dynamic finite element analysis of a planar high precision parallel manipulator with flexible links", pp849-862, Elsevier, mechanism and machine theory.

[14] B.Subudhi&A.S.Morris (2002) "Dynamic modelling, simulation and control of a manipulator with flexible links and joints", pp257-270, Elsevier, robotics and autonomous systems.

[15] Z.Mohamed, J.m.Martins, M.O. Tokhi, J.Sa da Costa&M.A.Botto (2003) "Vibration control of a very flexible manipulator system", pp267-277, Elsevier, control engineering practice.

[16] H.Karagulle&L.Malgaca (2004) "Analysis of end point vibrations of a two link manipulator by integrated CAD/CAE procedures", pp2049-2061, Elsevier, finite elements in analysis and design.

[17] Allaoua brahmia&Mohamed Nadhir Amrane (2008) "Analyse modale d'un manipulateur à deux bras flexibles", Acte des 6^{ième} journée de l'Ecole Militaire Polytechnique 15-16 Avril Bordj El Bahri, Alger.

[18] Jean Charles Craveur, (2001) "Modélisation des structures, calcul par éléments finis" 2^{ième} édition, Dunod.

[19] François Frey&Jaroslav Jirousek, (2001) "analyse des structures et milieux continus Méthode des éléments finis" volume 6, Presses polytechniques et universitaires Romandes.

[20] O. Rahmani & S. Kebdani (1994) OPU Introduction à la méthode des éléments finis pour les ingénieurs.

[21] G. Pissarenko, A. Yakovlev & V. Matvéev (1985) Edition Mir Moscou Aide- mémoire de résistance des matériaux.

Annexe Présentation des déférentes étapes pour l'obtention Des fréquences propres

Etape 01 :

Etape 03 :

	4. 13/2	-41								(
- Adaqus/CAE version 6.7-	-1 [viewpo	ort: 1]								E	لاعال	
Eile Model Viewport View Ed	lit <u>A</u> dd <u>T</u> ool	s Plug-ins	Help N ?									
🗋 🏞 🖩 🖶 🕂 🍼 🔍 🗠 🕻	3 1L 🗄 着	All 🖓 🕹	~	- b C		ٹر بٹا 🛈	L L L	화 한 3초 :	123	4 ×		
Model Results	Module: Part	~	Model: Mod	iel-1 🔽	Part:	~						
🚝 Model Database 🔽 🌲 🗞 🏺	+ 🛷									Ť.		
🖙 🍰 Models (1) 🔼	0° 🗖 🗖											
<u>Model-1</u>											×	
- L Parts												
- 🖉 Materials												
Sections	(* et											
	101											
Assembly	* .											
Ba Field Output Requests	► +··+											
- History Output Requests												
Time Points												
🛄 ALE Adaptive Mesh Cons												
Interactions	L 🖄											
- 🔁 Interaction Properties												
📲 Contact Controls												
Constraints	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ f(x) \end{array}$											
Connector Sections	A 🛷											
- C- Amplitudes												
Loads	: III											
BCS Prodofined Fields	B [111]	Ŷ										
		z ×										
×		h the section	for the solid (extrusion D	ne						3	
											SIM	ULIA
A new model database has The model "Model-1" has 1	been create	ed. 1.										
												:
🏄 démarrer 🔰 🧔 🥥	» 🔰 abaqus:	? - Paint	🔶 Abaqu	s CAE	🔶 Ab	aqus/CAE Vers	si			FR 🔇	9 17:	29

Etape 04 :

Etape 05 :

🗢 Abaqus/C/	AE Version 6.7-	1 [Viewport: 1]			_ _ - - ×
🖻 <u>E</u> ile <u>M</u> odel	Vie <u>w</u> port <u>V</u> iew <u>P</u> a	rt <u>S</u> hape Feat <u>u</u> re <u>T</u> ools	Plug-ins Help k ?		_ 8 ×
i 🗋 🍅 🔜 🖶	i 🕂 🅐 🔍 🔩 💈	🕽 🄃 🗄 菖 🛔 🗄 🖓 📶		🗍 🗊 🚺 🚺 🚺 🚺	្រុំដំរឹ្ស 1 2 3 4 🔩
				: 🎨 Part	defaults 👻
_	Edit Base Ext	rusion 🔰 🚺		+	
Model Result	End Condition				×
Se Model Datab	Type: Blind				
🗏 🏭 Models (1	Depth: 20				
	Ontions				
- 🖹 🖉 Mar	Note: Twist and draft	cannot be specified together		1.E+U3	
- 😰 Sec	Include twist nitch:	(Dist/Rev)			
= #Pro ≣ #Lå Ass	🗌 Include draft, angle				
:∎ ⊶ ^C a Ste	Include drart, angle	(Degrees)			
- 📴 Fie	OK	Cancel			
- 📆 Hist or - 🖦 Time	Points				
	daptive Mesh Cons [.]	(XYZ)			
- 🛄 Intera	actions	21 I	1.E+U3	×45.°	
- 🔁 Intera	action Properties		Н		
Conta Const	raints			984.47	
- 🔂 Conn	ector Sections	<u>∎≁⊨</u>			
⊕ <i>F</i> Fields	5 	y v v			
🔄 Ampli	itudes	<u>2</u> ×			
- 🖵 BCs					
<		Fill out the Edit Base	e Extrusion dialog		35
A new mo	del database has	been created.			SIMULIA
Varning:	I "Model-1" has l Same was line s	been created. elected.			
>>>					
🐉 démarr	er 🛛 🕫 😂 😒 🤅	» 🦉 abaqus4 - Paint	🜩 Abaqus CAE	🔶 Abaqus/CAE Versi	FR 🔇 😌 17:46

<u>Etape 06 :</u>

+ Abagus/CAE Version 6.7	1 [Viewport: 1]				X
File Model Viewnort View Pa	art Shane Feature I	iools Plua-ins Help k?			×
				t ² , t ² , s ² t ∔ 1 0 2 1 Å	
: 🗌 🖂 📾 🔤 🖓 🕻 🔍 🗹 🖉			·□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
			: 🥶	Part defaults 🛛 📉	
				000 🔿 🖥	Ħ
Model Results	Module: Part	Model: Model-1	Part: brasmanipulateur 💌		
🧧 Model Database 🔽 🌲 🗞 🌾	💪 🚍				
🖓 🎎 Models (1) 🔼	10.14			$\mathbf{\star}$	
<u>Model-1</u>					
🗈 🕒 Parts (1)				z takat katala katal	
- 🖉 Materials					
Sections	D: 0+				
Profiles					
Assembly	<u> </u>				
Hota Steps (1)	-+				
Pet History Output Requests	~, <u></u>				
History Output Requests					
- Brial E Adaptive Mesh Const	(XYZ)				
		\checkmark			
Contact Controls	🚃 🕂				
Constraints					
Connector Sections	8*0,				
- 🔄 Amplitudes	Ι ľ				
- 🕒 Loads	z 🔨 x				
BCs 🗸				7	
				DS SIMU	ULIA
A new model database has	been created.				٦
Warning: Same was line s	elected.				
>>>					.:
A dámarrar 🛛 🛱 🛱 🖗	» 🚺 abaque5 - Paint	Abagus CAE	Abaque/CAE Vorei	ER 🔇 🔞 17:4	40

Etape 07 :

⇔ Ab	aqus/CAE Version 6.7-1 [Viewport: 1]				_ 2 ×
🖻 Ei	Edit Material	X	Feature <u>T</u> ools Plug-ins	s <u>H</u> elp K ?	_ 8 ×
i 🗋 (Name: aluminiume		ויקן בֿיָ וָבֿי וַבּין 🚺 🗊	입 입 같 않 1 2	3 4 🕹
	Description:		1	Property defaults 🛛 🔽	
	Material Behaviors				🕐 🖤 🗢 🚡, 🧮
	Density		brasmanipulateur 💌		
alur	Elastic				v
					$\dot{\mathbf{A}}$
	<u>G</u> eneral <u>M</u> echanical <u>T</u> hermal <u>O</u> ther	Delete			
	C Density				
	Use temperature-dependent data				
	Number of field variables: 0 🝧				
	Data				
	Mass				
	1 2710				
<					35
					SIMULIA
1 de la	OK	Cancel	<u></u>		
>>>			J		
2	lémarrer 🛛 🤨 🌣 🤌 👋 abaqus6 - Paint	💠 Abaqus CAE	🔶 Abaqus/CAE Versi		FR 🔇 😵 17:53

Etape 08 :

÷ A	baqus/C/	E Vers	ion 6.7	7-1 [V	iewpor	t: 1]											B ×
Ē	ile <u>M</u> odel	Vie <u>w</u> port	⊻iew N	Mat <u>e</u> rial	<u>S</u> ection	<u>P</u> rofile	<u>C</u> omposite	<u>A</u> ssign	Special	Feat <u>u</u> re	<u>T</u> ools	Plug-ins	Help	h ?			- 8 ×
:	놀 🗟 🖶	$\oplus $		🔀 1L	E I A	ii 🖙 🗛		e de la cela	806	1 🗊 🛙 🚺) <u>L</u> ,	ٹا ہ ی لئے	L L :	ាំ 📩 1	2 3	4 🔧	
												: 🎨 P	roperty c	lefaults	~		
1	Edit S	ection	Assign	ment	X												L. 🖿
	Section —			inc.inc				Model-1	V Pa	rt: brasm	anipulate	eur 🔽			_		
Se	Section: S	ection-1		~	Create						·						
Sectio	Note: List	contains or	nly section:	s		gion										¥	
	app	licable to th	ie selecteo	d regions													
	Type: S	iolid, Homo	geneous													\bigcirc	
	Material: a	iluminiume															5
Cr	Region					Dismi	ss										
	Region: (P	іскеа)					_										
	C Shell Offse	t	_														
	Offset:																
		к		Cance													
	🛄 Intera	ictions		1		•											
	H Conta	iction Prope ct Controls	erties														
	Const	raints		2	<u>-</u>												
		ector Sectio	ns		_												
	Ampli	tudes		(XYZ)	* .												
	Loads			之.	🐛 - a	z – x											
	BCs	o ie ji	~		Eill out	the Edit (Postion Acci	nmont di	log	_		_				_	3
<			>			ule cult :	Dection ASSI	grinnerit ula	nog								SIMULIA
Jan Barris	A new mo The mode	dei data 1 "Model	base ha: -1" has	s been (created.	ι.											
>>>	warning:	same va	s linë :	serecte	зц.												
-	démarr	er 🧉) 😂 😒	» ¥	abaqus7 -	Paint	🖨 Ab	aqus CAE		🔶 Abaq	us/CAE '	versi				FR 🔇 😻	17:57

Etape 09 :

Abaqus/CAE Version 6.7-1 [Viewport: 1]	_ ē 🔀
Eile Model Viewport View Instance Constraint Feature Tools Plug-ins Help ★?	_ _ ×
: 🗋 🚵 🖩 🖶 🅐 🔍 🔍 🔀 輝 : 🗄 🛔 ! 💿 📶 🛒 😥 : 🗳 : 🖉 🗇 🎒 🗊 : 🖏 :	ப் ⊑் டீ டீ ஜ் ஆ் 1 2 3 4 ஆ்
	🐯 Assembly defaults 🛛 👻
Model Results Module: Assembly V Model: Model-1 V Step: Initial V	
	*
Create Instance	z tota
Parts	
brasmanipulateur	
C Dependent (mesh on part)	
Note: To change a Dependent instance's mesh, you must edit its nart's mesh.	
E BCs	
Select the parts to instance from the dialog	
A new model database has been created.	
Warning: Same was line selected.	
🛃 démarrer 🛛 🥙 🌣 🦻 😵 👌 abaqus8 - Paint 🛛 🚓 Abaqus CAE 🛛 🔶 Abaqus/CAE V	ersi FR 🔇 😻 17:59

Etape 10 :

⇔Abaqus/CAE Version 6.7-1 [Viewport: 1]	
🖻 Eile Model Viewport View Seed Mesh Adaptivity Feature Iools Plug-ins Help ᡟ?	_ 8 ×
🗅 🗁 🖩 🖶 🕐 🔍 🖸 🔃 昔 畠 🗈 📶 🚽 😥 🗇 🗇 🗐 🗐 🌒 🚺 亡 肖 다 는 한 🎎 1 2 3	4 Å
Statute Sta	
	n n n 5. 🗖
Model Results Model: Model: Model: Model: Object: O Assertiony Part:	
	¥
	\wedge
	z
Anoroximate global size: 250	\smile
(Approximate number of elements per circle: 8)	
Minimum size factor (as a fraction of global size):	
OK Apply Defaults Cancel	
- @ Connector Sections 2	
⊕ <i>F</i> Fields	
Set the data using the Global Seeds dialog	DSIMULIA
A new model database has been created.	
Interning: Same vas line selected.	
🕂 démarrer 🛛 🥙 🗢 🤉 😵 abaqus9 - Paint 🛛 🚓 Abaqus CAE 🛛 😓 Abaqus/CAE Versl	FR 🔇 😻 18:01

Etape 11 :

Abseud CAE Varias 6.7.4 Nieumorti 41	
Adaqus/CAE Version 6.7-1 [Viewport: 1]	
E File Model Viewport View Seed Mesh Adaptivity Feature Loois Plug-ins Heip Kr	之 4 5
	3 2 5
Model Results Module: Mesh Y Model: Model-1 Y Ubject: Assembly Vart:	
	Ť
	\triangle
	2 X
B 🕹 Assembly	
Botha Steps (1) Eve Field Output Requests	
🕌 History Output Requests	
型 Interactions	
뮬 Interaction Properties - <u> · · · · · ·</u>	
A Constraints	
- E Connector Sections	
BCs	2
	DS
A new model database has been created. The model "Model-1" has been created.	
Warning: Same was line selected. Global seeds have been assigned.	
8 elements have been generated on instance: brasmanipulateur-1	
🛃 d'émarrer 🖉 🥙 🧐 abaqus10 - Paint 🔤 Abaqus CAE 🤤 Abaqus/CAE Versi	FR V 18:03
<u>Etape 12 :</u>	
⇔Abaqus/CAE Version 6./-1 [Viewport: 1]	
E File Model Viewport View Load BC Predefined Field Load Case Feature Tools Plug-ins Help K?	
	3 4 🗛
Assembly defaults	
Assembly defaults	: 👁 👁 🖕 📰
Model Results Module: Load Model-1 Step: Initial	: 🕐 🜑 🗢 🖁 📰
Model Results Module: Load Model: Model-1 Step: Initial	
Model Results Model: Load Model: Model-1 Step: Initial	i @ © ● ≧, ⊑
Model Results Model Database Control Control Model Database Control Control Model Database Control Control Model Database Control Control Model Control Mo	
Model Results Model Load Model: Model-1 Model Step: Initial	
Model Results Model Load Model: Model-1 Model Step: Initial	

🖻 E	ile <u>M</u> odel	Vie <u>w</u> port	⊻iew	Load	<u>B</u> C Pr	edefined Fiel <u>d</u>	L <u>o</u> ad Case	Feat <u>u</u> re	Tools	Plug-ins	Help	h ?		_ 8 ×
i 🗋 i	놀 🖩 👼	$\oplus \mathcal{C}$	Q 🔩	🔀 1	↓∶≣	🛔 i 🗟 All			67 🜈	ff : 🕡	t, j	ព្រៃប៉ុរ៉េះ ដាំភ្នំ1 2	34 🙏	
												i 🎨 Assembly defaults 🛛 🚽		_
Mode	al Poculte			Mo	odule: L	oad 🗸	Model: M	odel-1	V Step	: Initial	~			
	odel Database		n 8. 4	i Li										
	Models (1)	· · · ·											*	
	Model-1													1
	🖻 🖺 Parts (1)		R -									² 🍊	×
	Creat	e Bour	ndary	Cond	lition									
	Name: BC-	-1										_		
	Step: Init	ial	~						Ĺ I	_				
	Procedure:								2	X				
	Category	ر ا ا (/pes for S	Selected	d Step									
	• Mechar	nical Sy	/mmetry//	Antisyn	nmetry/E	ncastre		<						
	Other	Ve	elocity/An	gular v	elocity									
		Ac	celeration	- n/Angu	ılar accel	eration								
		Co	onnector o	displace	ement									
			nnector v	relocity acceler:	ation									
<	Co	ntinue		(Cance	el 🛛	e Boundary C	ondition dia	alog					35
	The model	_"Model	-1" has	s beer	n creat	ed.								
	Warning: Global se	Same wa eds hav	s line e been	assig	sted. gned.									
>>>	8 element 8 element	s have s have	been ge been ge	enerat	ted on ted on	instance: instance:	brasmanip brasmanip	ulateur- ulateur-	-1					~
-	démarre	r C	ł 🛎 📀	»	🗑 abaqı	us11 - Paint	🔶 Abad	qus CAE		🔶 Abagu	s/CAE Ve	rsi	FR 🔇	3 18:06

Etape 13 :

	10						43										
⇒ Ab	aqus/C	AE Versi	on 6.	.Z-1 [V	'iewp	ort:	1]									_	
🖻 Eile	e <u>M</u> odel	Vie <u>w</u> port	⊻iew	Load B	C Pre	definec	l Fiel <u>d</u>	L <u>o</u> ad Case	Feat <u>u</u> re	e <u>T</u> ools	Plug-ins	Help 🕅	?				' ×
<u> </u>	<u>> 🗏 🖷</u>	• 🕂 🔿	<u> </u>	. 🖸 11			All					ٹے بٹا	<u>ר</u> י ב	ᆉᅸᆥᅸᆧᇾᅸᆧᇾᅕᆈ	1 2	34 🔨	
													🎨 As	sembly defaults	: 🖌		
												-					. =
		-		Mod			~	Model: M	odol-1	Ctr	n: Initial	~					
Model	🗖 Edi	t Bounda	rv Co	onditio	n	X		Moder.	ouer-i	0 30	sp. Indan						
	Name:	BC-1														¥	
	Type:	Displacemer	nt/Rotati	on													
	Step:	Initial														z	×
	Region:	(Picked)														$\mathbf{}$	·
6		(Clobal)	-40+														
		(Grobar) E	uit														
										\							
										2	\x//						
	Note: 1	The displacen	nent vali	ue will be													
		naintained in	subseq	uent step:	s.												
		ОК		Car	ncel												7
<			>			Jui ine	Edit Bo	undary Con	dition dialo	og							
	The mod	el "Model-	-1" ha	s been	creat	ed.											^
	Global	seeds have	e been	assign	ied.	inata				. 1							
>>>	8 eleme	nts have h nts have h	been g	enerate	ed on	insta	nce: h	prasmanip	ulateur	-1							_
🐉 d	lémar	rer 📧	e 🔊) * 🐧	abaqu	s12 - P	aint	🔶 Aba	qus CAE		🔶 Abaqus	/CAE Ver:	si			FR 🔇	18:08

Etape 14 :

⇔Abaqus/CAE Version 6.7-1 [Viewport: 1]	💶 🗗 🔀
Eile Model Viewport View Step Qutput Other Tools Plug-ins Help №?	_ 8 ×
🗋 🗁 🖬 🖶 🛧 🔍 🔍 🚺 🚦 井 🛯 🗛 🔛 🔤 🗹 🗇 🍘 🕖 🖺 🖞 🎵	ြို့ ြို့ ဦ ာင္ဆီ ျ 2 3 4 🔧
	Assembly defaults 👻
Create Sten	
Model Results Name: Step-1	
Set Model Database 🕑 🌩 🗈 🗞 資 🖕 Insert new step after	¥
Initial	$\overline{\mathbf{A}}$
Step Manager	
Name Procedure	2 ` *
Initial (Initial)	
Create Edit Replace, Ren Buckle	
History Output Requests	
time Points State, unlear per du location State, du lear per du location State, du lear per du location	
The ALE Adaptive Mesh Const	
# <i>F</i> Fields	
Amplitudes	
	20
The model "Model-1" has been created.	
Global seeds have been assigned.	
8 elements have been generated on instance: brasmanipulateur-1 8 elements have been generated on instance: brasmanipulateur-1	
🛃 démarrer 🖉 🧔 🧿 🤌 🦉 abaqus13 - Paint 🛛 🔶 Abaqus CAE 🛛 🌩 Abaqus/CAE Versi	FR 🔇 🥴 18:10

Etape 15 :

😇 Eile Model Viewport View Step Qutput Other Iools Plug-ins Help ᡟ?	_ 8 ×
🗋 🗁 🖩 🖶 🕈 🇨 🔍 🖳 🄃 🛔 🖡 📭 🔤 🕑 🗇 🗇 🗇 🗊 🎝 다 다 다 다 다 가 3 4 🍕	
Edit Step	
Name: Step-1) 🛅 📰
Model Type: Frequency	
Sasic Parallel Lanczos Other	
Description: modepropre	
Nigeom: Off	
Nam Eigensolver: Lanczos Subspace AMS	×
Initia Number of eigenvalues requested: O All in frequency range	
Value: 40	
Frequency shift (cycles/time)**2:	
Crea Minimum frequency of interest (cycles/time):	
Maximum frequency of interest (cycles/time):	
Include acoustic-structural coupling where applicable	
Block size: Default Value:	
Maximum number of block Lanczos steps: O Default	
Use SIM-based linear dynamics procedures	
c 🔲 Include residual modes	
	35
	SIMULIA
Carrel	
8 elements have been generated on instance: brasmanipulateur-1	× .:
🕂 démarrer 🖉 🗵 🔌 » 🍟 abaqus14 - Paint 🔶 Abaqus CAE 🔶 Abaqus/CAE Versi 🛛 🕫 📢	18:12

<u>Etape 16 :</u>

🖶 Abaqus/CAE Ve	ersion 6.7-1	l [Viewpor	t: 1]						_ 7 🗙
🗐 Eile <u>M</u> odel Vie <u>w</u> p	oort ⊻iew <u>l</u> ob	Adaptivity <u>T</u>	ools Plug-	ins <u>H</u> elp ∖ ?					_ 8 ×
! 🗋 🍅 🔜 👼 ! 🕂	🅐 🔍 🔍 🔀	ti≣∄	l≽ All	💌 i 🗗	0 🗇 🌐	ا لئے بٹا ا	್ ೬ ೬ ೭ ಮಿ	12	3 4 🔧
Model Results		Module: Job	~	Model: Model-1	Step: Initial	~			
					1				v
- JOD Manager									$\dot{\mathbf{A}}$
Name	Model	Туре	Status	Write Input					z
				Data Check					
				Submit					
	Create Jo	ob 🔀		Continue					
	Name: <mark>]ob-1</mark>			Monitor	Y			7	
	Source: Model	~		Results					
	Model-1			Kill	X				
Create Edi		e	Delete.	Dismiss					
- 🛄 Interaction									
·뀰 Interaction									
- Constraints									
- 擾 Connector									
⊕ <i>F</i> Fields	Continue	Cancel							
- 🕒 Loads									
🗷 🛄 BCs (1)									
🕒 Predefined F	ields	_	\downarrow						
L Sketches	kules								
	>								SIMULIA
The model "Mo	del-1" has be	en created.							
Global seeds	have been as	signed.	towney by		1				
8 elements ha	ve been gener ve been gener	rated on ins rated on ins	tance: bi	rasmanipulateur- rasmanipulateur-	-1				► 1.::
🐉 démarrer	🞯 😂 🕑 👋	🦉 abagus15	- Paint	Abagus CAE	🔶 Abaqı	us/CAE Versi.			FR 🔇 🦁 18:14

Etape 17 :

Adaqus/CAE version 6.7-1 [viewport: 1]	
lej Elle Model Vewport View job Adaptivity Loois Plug-ins Heip Kr	
	34 %
Edit Job	
Name: nat-freg	¥
Model: Model-1	\wedge
Pescription:	z
Submission General Memory Parallelization Precision mit	
Sob Type	
💿 Full analysis 🛛 🗤 😽	
Recover (Explicit)	
© Restart	
Run Mode	
Background O Queue: Host name: Type:	
Submit Time	
⊙ Immediately	
Owait hrs. min.	
O At: Tip	
Remeshing Rules z x	
	3
	SIMULIA
Ile model 'Model-1' has been created. Warning: Same vas line selected.	<u>^</u>
SIDDAI seeds nave been assigned. 8 elements have been generated on instance: brasmanipulateur-1	
Image: Second	FR 🔇 😵 18:16

Etape 18 :

🖶 Aba	qus/CAE V	ersion 6.7-	1 [Viewport:]	1]				_ 2 🛛
🗐 Eile	Model Vie <u>w</u> p	oort <u>∨</u> iew <u>J</u> ob	<u>A</u> daptivity <u>T</u> ools	Plug-ins <u>H</u> elp	K ?			_ 8 ×
i 🗋 🖄	ケ 🔜 🖶 🗄 🕂	r 🔍 🔍 🔀	11 🗄 昌 🛛 🗟	All	🖌 12 🗗 🖉 🖌	🌐 🛛 L, L	រ 🖵 🗳 🗳 🖧 ្	1234 🔩
Model	Results		Module: Job	Model: Mo	odel-1 🔽 Step	: Initial 🛛 🖌		
	h Manadan							v
	D Manager							$\mathbf{\dot{\Lambda}}$
Name nat-fr	en	Model Model-1	Eull Analysis C	tatus Wr	ite Input			z
	-4		, an manjoio - c	Da	ta Check			
					Submit			
					ontinue			
				M	onitor			
				F	tesults			7
					Kill	x		
Crea	ate Edit.	Сору	Rename	Delete Di	smiss			
-	11 Interactions							
	- 🔠 Interaction F - 🛍 Contact Con	roperties trols						
	Constraints							
	Connector S	ections						
	Amplitudes							
-	Loads							
•	BCs (1)		Y					
	- 📴 Preaennea P	Rules	z					
	🗓 Sketches 🗍	~						2
<	Ш	>						DS
T	he job "nat- he job input	freq" has be	en created. reg inp" has be	en submitted	for analysis			~
J J	ob nat-freq:	Analysis Ir Abagus/Star	put File Proces	sor completed	successfully.			
J J	ob nat-freq	completed su	ccessfully.					
🦺 de	émarrer	🕑 😂 🕑 🎽	🎽 谢 abaqus17 - Pa	int 🛛 🖨 Abaq	us CAE	🔶 Abaqus/CAE Ve	rsi	FR 🔇 🗐 18:17

<u>Etape 19 :</u>

	7.4 Mieuwestu 41			
- Abaqus/CAE version o	5.7-1 [Viewport: 1]			
Eile Model Viewport ⊻iew	<u>R</u> esult <u>P</u> lot <u>A</u> nimate R <u>e</u>	port Options Tools Plug-in	ns <u>H</u> elp ∧ ?	_ D X
j 🗋 🌁 🖩 👼 i 🕂 🍼 🔍 🖓	Step/Frame	¥0′) 🗇 🚺 🗓 🎝 💭 🗘 🗳 ۷	1 ₃ ×1234×
	Active Stepsymattes Section Points		🏽 🎨 Visualizatio	n defaults 🔽
	Field Output			
	History Output			
Model Results	Options	ODB: C:/Abaqus/Temp/nat-	freq.odb 🞽	
Session Data 💽 🌲 🎭				v
🗉 🧧 Output Databases (1)	544			\mathbf{L}
🖶 🚦 Spectrums (7)				
XYPlots				
B Display Groups (1)				
Movies				
Images	⊒ ₽			
	🎽 🔚			
	t ===			
	H→ 1/2			
	And AN			aris, Madrid 2010
		Step: Step-1, modepropre Mode 1: Value = -8.32845E-12	Frea = 0.0000 (cvcles/time)	
	🛂 🧰 🛛 z 🔨 x			
				25
				SIMULIA
The job "nat-freq" ha The job input file "n	s been created. at-freq.inp" has been :	submitted for analysis.		
Job nat-freq: Analysi	s Input File Processor Standard completed suc	completed successfully cessfully.		
Job nat-freq complete	d successfully.			
🤳 démarrer 🔰 🧉 😂	📀 🐣 🦉 abaqus18 - Paint 🛛	🜩 Abaqus CAE	🔶 Abaqus/CAE Versi	FR 🔇 🧐 18:19

Etape 20 :

Abaqus/CAE Version 6.7-1 [Viewport: 1]	_ 7 🗙
Ē Eile Model Viewport View Result Plot Animate Report Options Tools Plug-ins Help K?	_ 8 ×
🗅 🖄 🖩 🖶 🕐 🦿 🤍 🔯 🄃 🛔 🗛 🛛 🔛 🕑 🗇 🗇 🗇 🗘 Ц,	t 1 2 3 4 🔩
🔝 Visualization de	efaults 🔽
Model Results Module: Visualization VOB: C:/Abaqus/Temp/nat-treq.odb V	
Session Data 🔮 🗘 🖏 🍟 🏭 🔤 U, Magnitude	¥
Gutput Databases (1) Here 4.005e+00 +9.300e+01	$\dot{\Lambda}$
Spectrums (7) F8.551e-01 +7.802e-01 +7.802e-01 +7.802e-01	
L Paths	
House House <th< th=""><th></th></th<>	
Step/Frame 🔀	
Step Name Description	
Step-1 modepropre	
	_
Frame	
Index Description	
7 Mode 7: Value = 5.08049E-03 Freq = 1.13442E-02 (cycles/til	
8 Midde 8: Value = 1.00810E-02 Freq = 2.00530E-02 (cycles/ti = q.odb Abaqus/Standard Version 6.7-1 Sat Jul 10 18:17:22 Paris, 0 Mode 9: Value = 1.09350E-02 Freq = 2.24154E-02 (cycles/ti = 1.00000000000000000000000000000000000	Madrid 2010
10 Mode 10: Value 6.73761F-07 Freq 4.13117F-07 (rw/pac/t modepropre 10 Mode 10: Value 6.73761F-07 Freq 4.13117F-07 (rw/pac/t	
11 Mode 11: Value = 0.15096 Freq = 6.18376E-02 (cycles/tim U) Deformation Scale Factor: +1.604e+02	
12 Mode 12: Value = 0.19573 Freq = 7.04131E-02 (cycles/tin	25
13 Mode 13: Value = 0.53188 Freq = 0.11607 (cycles/time	SIMULIA
14 Mode 14: Value = 0.55766 Freq = 0.11885 (cycles/time	
uta worde ta: value = 1.5//4 Freq = 11.19989 (rvcles/time = successfully.	
OK Apply Field Output Cancel	
	<u> </u>

<u>Etape 21 :</u>			
Abaqus/CAE Version 6.7	7-1 [Viewport: 1]		
Eile <u>M</u> odel ∨ie <u>w</u> port <u>∨</u> iew E	Result Plot Animate Repor	rt Options Tools Plug-ins Help \?	
: 🗅 🍅 🖩 🚔 : 🕂 🅐 🔍 🖓			$(\Box^{\dagger})^{2}$ $(1^{2})^{2}$ $(1^{2})^{2}$ $(1^{2})^{2}$
		-	
Mo History Output	in 🖌	ODB: C:/Abaqus/Temp/nat-freq.odb	₩ 4 1 1> >>> 🗄 🔞
Ses Variables Steps/Frames			· · · · · · A
Output Variables			
🗉 🚦 Name filter:	Tip		/ _
Effective mass, y-component: EM5	for Whole Mode		
Effective mass, z-component: E	M3 for Whole M		
Effective mass, z-rotation: EM6	for Whole Mode		
Eigenfrequency: EIGFREQ for V	/hole Model		
Generalized mass: GM for Who	le Model		/
Participation factor. x-compone	nt: PF1 for Whol		
Save As Plot	Dismiss		
]
	A 💥 0	5 10 15 20 Mode numb	25 30 35 40 her
		modenam	EIGVAL Whole Model
			2
A temporary XY data has	been created from the	History variable "Effective mass, y-	-rotation: EM5 for Whole Model".
A temporary XY data has A temporary XY data has	been created from the	History variable "Eigenvalue: EIGVAI	Component: End for whole Model"
A temporary XY data has	been created from the	History variable "Eigenvalue: EIGVAI	for Whole Model".
🐉 démarrer 🛛 🧔 😂 🧿	» 🍞 abaqus20 - Paint	💠 Abaqus CAE 🛛 🔶 Abaqus/CAE Ver	si FR 🔇 18:30