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Abstract 

In El Outaya plain (southeastern Algeria), the climate is arid, the rainfall is scarce, and the 

evapotranspiration is high. Consequently, the use of groundwater is mandatory to maintain the 

irrigation and drinking water supply. During the last few years, the expansion of irrigation using 

groundwater resources has had an important positive impact on agricultural production but it 

has also introduced the challenge of groundwater sustainability in the plain. The deterioration 

of groundwater quality used for irrigation decreases the agricultural yields and causes soil 

salinization.    

In order to evaluate the groundwater quality and its impact on soil salinization it was necessary 

to gather data from the field and the satellite images (Remote Sensing) over two seasons (dry 

and wet seasons). The field data consist in 136 groundwater and 272 soil samples (top soil and 

sub soil) collected from 68 farms spread over the plain's cultivated area. The remote sensing 

data consist of two satellite images used to calculate some environmental covariables, which 

help to predict soil salinity. Hydrogeochemical evaluation of groundwater and its suitability for 

irrigation and drinking purposes was carried out using different classical methods and water 

quality index approach. Artificial neural networks, machine learning and stochastic techniques 

performed the prediction and modeling of soil salinity using groundwater’s geochemical 

properties, physical soil properties and remote sensing covariates as inputs. 

Water quality index (WQI) depicts that the majority of groundwater samples fall within the 

“very poor” and “unsuitable” classes for drinking categories. Electrical conductivity (EC) and 

sodium adsorption ratio (SAR) are classified using Reverside diagram, which points out a high 

to very high risk of groundwater salinity and medium to high risk of alkalinity for soil 

salinization. The groundwater quality was accurately assessed using geographic information 

system (GIS) and ordinary kriging (OK) method, which can be helpful for groundwater 

managers and decision makers in arid areas. 

The different techniques used for modeling and predicting soil salinization show the superiority 

of multilayer perceptron neural network (MLP-NN) in the accuracy of estimating soil salinity. 

In addition, the combination of groundwater salinity (ECw) and sand percentage from the field 

covariates and topographic wetness index (TWI), land surface temperature (LST) and elevation 

as inputs to MLP-NN and auxiliary variables to cokriging (SCOK) can estimate and improve 

the prediction of soil salinity in the study area. 
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Key words: El Outaya plain, Groundwater quality, soil salinization, artificial neural network, 

geostatistic, remote sensing. 

Résumé 

Dans la plaine d'El Outaya (sud-est de l'Algérie), le climat est aride, les précipitations sont rares 

et l'évapotranspiration est forte. Par conséquent, l'utilisation des eaux souterraines pour 

maintenir l'irrigation et l'approvisionnement en eau potable est obligatoire. Au cours des 

dernières années, l'expansion de l'irrigation utilisant les ressources en eau souterraine a eu un 

impact positif important sur la production agricole, mais elle a également introduit le défi de la 

durabilité des eaux souterraines dans la plaine. La détérioration de la qualité des eaux 

souterraines utilisées pour l'irrigation diminue les rendements agricoles et provoque la 

salinisation des sols.    

Afin d'évaluer la qualité des eaux souterraines et son impact sur la salinisation des sols, il a été 

nécessaire de recueillir des données sur le terrain et des images satellites (télédétection) sur 

deux saisons (saison sèche et saison humide). Les données de terrain consistent en 136 

échantillons d'eaux souterraines et 272 échantillons de sol (0-20 cm et 40-60 cm) recueillis 

auprès de 68 exploitations agricoles réparties sur la zone cultivée de la plaine. Les données de 

télédétection consistent en deux images satellites utilisées pour calculer certaines covariables 

environnementales, qui aident à prédire la salinité du sol. L'évaluation hydrogéochimique des 

eaux souterraines et de leur aptitude à l'irrigation et à la consommation a été réalisée en utilisant 

différentes méthodes classiques et l'approche de l'indice de qualité de l'eau. Des réseaux 

neuronaux artificiels, l'apprentissage de la machine et des techniques stochastiques ont permis 

de prédire et de modéliser la salinité des sols en utilisant comme intrants les propriétés 

géochimiques des eaux souterraines, les propriétés physiques des sols et les covariables de 

télédétection. 

L'indice de qualité de l'eau (IQE) montre que la majorité des échantillons d'eaux souterraines 

appartiennent aux catégories "très mauvaise" et "mauvaise" à la consommation. La CE et le 

taux d'adsorption du sodium (SAR) classés à l'aide du diagramme de Reverside indiquent un 

risque élevé à très élevé de salinité des eaux souterraines et un risque moyen a élevé d'alcalinité 

pour la salinisation des sols. La qualité des eaux souterraines a été évaluée avec précision à 

l'aide du système d'information géographique (SIG) et de la méthode du krigeage ordinaire 

(OK), qui peut être utile aux gestionnaires des eaux souterraines et aux décideurs dans les zones 

arides. 
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Les différentes techniques utilisées pour la modélisation et la prévision de la salinisation des 

sols montrent la supériorité du réseau neuronal perceptron multicouche (MLP-NN) dans la 

précision de l'estimation de la salinité des sols. En outre, la combinaison de la salinité des eaux 

souterraines (ECw) et du pourcentage de sable des covariables de terrain et de l'indice 

d'humidité topographique (TWI), de la température de la surface des terres (LST) et de l'altitude 

en tant que entrées du MLP-NN et des variables auxiliaires du cokrigeage (SCOK) peut estimer 

et améliorer la prévision de la salinité des sols dans la zone d'étude. 

Mots clés : Plaine d’El Outaya, qualité des eaux souterraines, salinisation des sols, réseau 

neuronal artificiel, géostatistique, télédétection. 

 

 ملخص

. وبالتالي  فإن عاليبخر توال نادرة(جنوب شرق الجزائر) ، المناخ جاف ، والأمطار  لوطایةي سھل ف

وإمدادات میاه الشرب إلزامي. خلال السنوات القلیلة الماضیة، كان لري المزروعات  استخدام المیاه الجوفیة

لكنھ أدى  تاج الزراعي ،باستخدام موارد المیاه الجوفیة تأثیر إیجابي مھم على الإن المساحات المسقیةلتوسیع 

استدامة المیاه الجوفیة في السھل. تدھور جودة المیاه الجوفیة المستخدمة  آخر وھو أیضًا إلى ظھور تحدي

 .إلى انخفاض المحاصیل الزراعیة ویسبب تملح التربة یؤدي في الري

 لمیداناع البیانات من من أجل تقییم جودة المیاه الجوفیة وتأثیرھا على تملح التربة كان من الضروري جم

ومن صور الأقمار الصناعیة (الاستشعار عن بعد) على مدى موسمین (المواسم الجافة والرطبة). تتكون 

مزرعة  68عینة من التربة تم جمعھا من  272المیاه الجوفیة و  آبار عینة من 136البیانات المیدانیة من 

. تتكون بیانات الاستشعار عن بعد من صورتین المستخدمة من طرف الفلاحینموزعة على مساحة السھل 

قمر صناعي تستخدمان لحساب بعض المتغیرات البیئیة التي تساعد على التنبؤ بملوحة التربة. تم إجراء 

التقییم الھیدروجیوكیمیائي للمیاه الجوفیة ومدى ملاءمتھا لأغراض الري والشرب باستخدام طرق تقلیدیة 

الشبكات العصبیة الاصطناعیة والتعلم الآلي والتقنیات العشوائیة  استخدمنایاه. مختلفة ومنھج مؤشر جودة الم

نمذجة ملوحة التربة باستخدام الخصائص الجیوكیمیائیة للمیاه الجوفیة وخصائص التربة الفیزیائیة لبالتنبؤ 

 .والمتغیرات المشتركة للاستشعار عن بعد كمدخلات

" المناسبة رغی" و" للغایة سیئة" فئات ضمن تقع الجوفیة المیاه عینات غالبیة أن المیاه جودة مؤشر یوضح 

 الجوفیة المیاه ملوحة من جداً عالیة إلى عالیة مخاطر وجود إلى SAR ونسبة EC نسبة تشیر. للشرب

 باستخدام ةبدق الجوفیة المیاه جودة تقییم تم. التربة لتملیح الخاصیة القلویة  من عالیة إلى متوسطة ومخاطر

iii 
 



 

 الجوفیة المیاه سیريلم مفیدة تكون أن یمكن والتي العادیة، kriging وطریقة الجغرافیة المعلومات نظام

 .الجافة المناطق في القرار وصناع

 الطبقات تعددةم العصبیة الشبكة تفوق بھا والتنبؤ التربة تملح لنمذجة المستخدمة المختلفة التقنیات أظھرت

 من رملال ونسبة الجوفیة المیاه ملوحة بین الجمع فإن ، ذلك إلى بالإضافة. التربة ملوحة تقدیر دقة في

 والارتفاع الأرض سطح حرارة ودرجة الطبوغرافیة الرطوبة ومؤشر المیدان في المشتركة المتغیرات

 يف التربة لملوحة التنبؤ وتحسین تقدیر یمكن SCOK لـ المساعدة والمتغیرات MLP-NN في كمدخلات

 .الدراسة منطقة

 ، یةالاصطناع العصبیة الشبكة ، التربة تملح ، الجوفیة المیاه جودة لوطایة، سھل :المفتاحیة الكلمات

بعد. عن الاستشعار ، الجغرافي الإحصاء
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General Introduction 

General introduction 

Water use has grown worldwide at a rate more than twice the rate of population increase in the 

20th century due to demographic pressures, the rapid socio-economic development and 

urbanization, to the point where reliable water services can longer be delivered in many regions, 

especially in arid and semi-arid regions (FAO, 2008). Agriculture is the sector with greatest 

water scarcity, where it accounts for more than 70 % of global freshwater withdrawals, and 

more than 90 % of its consumption, while domestic water withdrawal represents globally about 

10 % of all water uses (FAO 2008). 

Globally, groundwater is an important source for irrigated agriculture; it provides about 50% 

of all drinking water and 43% of agricultural irrigation. 20 % of the total cultivated land is 

considered as irrigated agriculture and contributes to 40 % of the global food production (FAO 

2020). Food Agriculture Organization of the United Nations (FAO) estimates that the 

developing countries such as Algeria will increase their irrigated land by 34 %, but the quantity 

of water used for irrigation will increase only by 14 %, thanks to new irrigation technologies 

(precision agriculture) and improved irrigation practices (FAO 2020). 

The most arid and semi-arid regions where average annual rainfall does not exceed 200 mm 

depends solely on groundwater resources to satisfy the growing demands of water needs. The 

groundwater resources in these regions are limited in the shallow aquifers and the most of the 

stored groundwater in local and regional sedimentary aquifers are non-renewable or semi-

renewable. Under the exponential growth of population and the very limited recharge 

conditions in arid and semi-arid regions, any extensive use of groundwater will necessarily 

affect negatively the quantity and the quality of these resources. Furthermore, the concept of 

groundwater sustainability has been defined as the level of groundwater development that meets 

the needs of the present generation without compromising the ability of future generations to 

meet their needs (Abderrahman 2006). Practically, when speaking of aquifer over-exploitation, 

there is more concern about the consequences of intensive groundwater abstraction than in its 

potential level. Thus, a more appropriate definition is probably an economic one: that the overall 

cost of the negative impacts of groundwater exploitation exceeds the net benefits of 

groundwater use (Abderrahman 2006).  

The groundwater resources in arid and semi-arid regions require sensitive planning and 

management approaches to deal with the overexploitation consequences such as the decrease 

in groundwater levels and the deterioration of their quality. Sustainable groundwater resources 
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management is defined as the group of measures, which avoids an irreversible or quasi-

irreversible destruction of groundwater and any other natural resource depending on it such as 

soil and ecosystems (Amer 2008). 

The irrigated areas have expanded rapidly in recent years. It has reached more than 324 million 

hectares in 2014 (Bradai 2014) and the equipped land for irrigation is estimated of 338 million 

hectares in 2018 (FAO 2020). However, the projected growth in world population over the next 

30 years will require an increase of more than 20% in agricultural production in developed 

countries and 60% in developing countries to maintain current levels of food consumption 

(Bradai 2014), which will lead to the development of new irrigated land, particularly in arid 

and semi-arid regions. This development will put more pressure on groundwater where it is 

considered the main source of irrigation in these regions. 

In Algeria, the agricultural sector contributes over 13 % to the country’s GDP and employs at 

least 20 % of the population in rural areas (USDA 2018, Bizri 2018). The agricultural land is 

413,602 km2 (17.36 % of the total area) and the arable land is 75050 km2 roughly 3.15 % of the 

total area (FAOSTAT 2018). About 51 % of the total arable land is dedicated to field crops, 

mostly cereals and pulses, 6 % to arboriculture, and 3 % to industrial crops (USDA 2018). The 

agriculture is primarily rain-fed and suffers from drought, which have worsened due to climate 

change, in recent years. The water sector in Algeria has to date paid scant attention to the issue 

of climate change and is often unaware of its impact on future water resources where models 

for climate change indicate that rainfall could decrease by more than 20% by 2050, which would 

result in even greater worsening water shortages in different basins of Algeria (Hamiche et al. 

2015). The water resources in in the northern regions of Algeria are estimated at 7.4 billion m3 

of surface water and 2.6 billion m3 of groundwater. The Algeria Sahara is one the vulnerable 

region to climate change, which have negative impacts on several socioeconomic sectors of the 

region like water resources. The water reserves available in these regions are estimated at a total 

of 5.37 billion m3 where 0.37 billion m3 of surface water and 5 billion m3 of underground water 

(Hamiche et al. 2015). 

The agricultural water demand corresponds to the potential irrigation water requirements 

assessed based on recommended crop rotations and theoretical crop water requirements. These 

water needs are mainly provided by irrigation, especially in the southern part of the country 

where rainfall is scarce and groundwater is the main source of irrigation. Most of the aquifers 

in these regions are overexploited due to the high water demand of the different sectors and the 

low or non-renewable groundwater. The overexploitation of aquifers, the poor agricultural 
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practices and return flow from irrigated lands are the major causes of groundwater salinization 

and water quality deterioration, which affect the sustainable use of this valuable resource. 

Agricultural irrigation represents the main use of global water resources (Pulido-Bosch et al. 

2018). Irrigation contributes to food security, poverty reduction and improvement quality of 

life for a large part of the world's population, but if the irrigation water is not appropriate, the 

damages will be catastrophic. The risk of salinity is one the biggest challenges facing irrigated 

agriculture. Irrigation has an impact on the environment, and scientific evidence suggests that 

it inevitably leads to the salinization of soils and aquifers. These impacts are enhanced under 

the arid and semi-arid conditions (Pulido-Bosch et al. 2018). The impacts of irrigation practices 

on groundwater quality can be classified into direct such as the consequences of fertigation 

(Applying water and accompanying agrochemicals such as fertilizers, herbicides, and 

pesticides, to irrigated cropland), or indirect such as the effects of irrigation withdrawals on the 

water chemistry of aquifers, which are generally manifested by a continuous degradation of the 

quality of the groundwater being pumped (Bouzourra et al. 2014; Pulido-Bosch et al. 2018).  

 Low groundwater quality (e.g. saline) contributes significantly to soil salinization in irrigated 

areas. Arid and semi-arid regions are characterized by a negative water balance (Bradai 2014). 

Evaporation of water accumulated in low areas, either from shallow aquifers or from irrigation 

using saline water leads to soil salinization. The latter is one of the major threats of land 

degradation occurring around the world, posing risks to agricultural production, environmental 

health and economic prosperity. The combination of high evapotranspiration rates, low rainfall 

amounts results in salt accumulation in the top soil layers where it affects the physicochemical 

properties of the soil, leads to texture degradation and limits vegetation growth eventually 

rendering productive fields barren (Alexakis 2016). 

In Algeria, the extension of irrigation in agriculture has led to a significant increase in 

agricultural yields. In recent years, the development of irrigated crops in the south of the country 

has been mainly based on groundwater resources, which ensured higher income for farmers, 

but it is also responsible for soil salinization caused by poor water quality (Abdennour et al. 

2020; Kuper et al. 2016). In Biskra province (southeastern Algeria), farmers are currently using 

groundwater of poor quality, usually rich in salts, for irrigation, and no information is available 

about its geochemical pathway (Abdennour et al. 2020). 

El Outaya plain is located in the northern part of Biskra province, on the southern flank of the 

Aures Mountains, as part of the Saharan Atlas (Boudjema 2015). It is characterized by a very 
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severe arid climate with low rainfall amounts and very high evapotranspiration rates. In recent 

years, the plain has experienced a rapid expansion of agriculture, and consequently, the increase 

in water demand either for agriculture or for human consumption. Groundwater is the main 

source of irrigation and drinking purposes despite the existence of the Gazelles’ fountain dam 

in northern part of the plain, which is used to irrigate El Hzima perimeter in the southern part 

of the plain. However, the continuous increasing of water demand will make more pressure on 

groundwater and will affect negatively its quality. The deterioration of the groundwater quality 

in the plain will endanger the health of the population, degrade the soil quality (e.g. salinization) 

and reduce the agricultural production.  

The present work is intended to achieve the following objectives: 

- Characterization of the chemical facies of groundwater in El Outaya plain, the origin of 

the mineralization as well as the spatio-temporal evolution of its parameters and assess 

the suitability of this water for irrigation and drinking purposes. 

- Elucidate the impact of groundwater salinity on soil salinization, prediction and 

mapping of soil salinity by using of remote sensing, artificial neural networks (ANN), 

machine learning and geostatistical approaches. 

Consideration of the objectives mentioned above has led us to pursue the following strategy, 

which is structured in two parts comprising five chapters. 

The first part includes two chapters: 

- The first chapter presents a literature review on groundwater quality, soil salinization 

and the current methods and approaches used for predicting soil salinity. 

- The second chapter presents a brief description of the study area (localization, geology, 

hydrogeology, climatology and pedology). 

The second part includes three chapters: 

- In the third chapter, the study of the geochemical evolution of the groundwater is 

exposed with its suitability for irrigation and drinking purposes by means of water 

quality index and geostatistical approaches. 

- In the fourth chapter, the focus is on the nitrate-N pollution of groundwater by applying 

different interpolation techniques. 

- Finally, in the fifth chapter, use the groundwater geochemical parameters are considered 

in addition to the soil properties and remote sensing data as covariables for modeling 
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and improving the prediction of soil salinization by applying cokriging, multilayer 

perceptron neural networks and support vector machines.  
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 Chapter I Literature review / Groundwater quality and soil salinization 

1. Geochemistry characterization and assessment of groundwater quality  

1.1. Geochemistry 

Groundwater geochemistry is the science that explores the processes controlling the chemical 

composition of groundwater. This resource may contain hazardous substances that affect health 

when consumed or which deteriorate the environment when used for irrigation (soil 

salinization). The groundwater quality may change by natural processes or it may be affected 

by human activities of which the impact is not always immediately evident (Appelo and Postma 

2005).  

The geochemical evolution and the origin of groundwater can be determined by the construction 

of Piper (1944) trilinear diagram and Durov (1948) plot.   

1.1.1 Piper’s trilinear diagram 

The Piper’s diagram (Figure 1) is a multifaceted plot in which percentage concentrations in 

milliequivalents of the major cations and anions are plotted in two triangular fields, which were 

then projected further into the central diamond field (Ravikumar et al. 2015). In this diagram, 

the diamond-shaped field that decides the water type and the hydrochemical facies in 

groundwater samples. 

 

Figure 1: Piper’s diagram 

1.1.2. Durov’s plot 

The Durov’s diagram (Figure 2) is a composite plot consisting of two ternary diagrams, where 

the percentages of milliequivalents of the cations of interest have been plotted against those of 

the anions; the sides form a central rectangular and binary plot of total cation concentrations 
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against total anion concentrations (Ravikumar et al. 2015). The intersection of the lines 

extended from the points of the ternary diagrams and projected on the sub-divisions of the 

binary plot of the Durov’s diagram defines the hydrochemical processes involved as well as the 

type of water 

 

Figure 2: Durov’s diagram 

1.2. Aptitude for irrigation 

Many methods and indices are used by researchers to assess the suitability of groundwater for 

irrigation and the most used are based on Electrical conductivity (EC), Sodium absorption ratio 

(SAR), Sodium percentage (NA %) Residual sodium carbonate (RSC) and Permeability index 

(PI). 

1.2.1. Assessment criteria 

1.2.1.1. Electrical conductivity (EC) 

The total concentration of soluble salts in irrigation waters can be adequately expressed in terms 

of EC for diagnosis and classification aims. High values of EC means a large quantity of ions 

in solution, which makes it more difficult for plants to absorb water and mineral elements 

(USSLS 1954). The main chemical ions responsible of water salinity are Na+ (sodium), Cl- 

(Chloride), Ca2+ (calcium), SO4
2- (sulfate) and K+ (potassium). 

The water salinity in terms of EC (µS/cm) is divided into 5 categories (USDA 2011, Zaman et 

al. 2018; Bradaï 2016):   
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Low salinity water (EC < 250): This category of water can be used for irrigation of most crops 

on most soils with little likelihood that soil salinity will develop. Some leaching will be required 

for salinity Class C1 water, but this occurs under normal irrigation practices, except for soils 

with extremely low permeability. 

Medium salinity water (250 < EC < 750): This class can be used if a moderate amount of 

leaching can occur. Plants with moderate salt tolerance can be grown in most cases without 

special practices for salinity control. 

High salinity water (750 < EC < 2250): This category cannot be used on soils, which possess 

restricted drainage and, thus, poor leaching abilities. Even with adequate drainage, special 

management for salinity control may be required and plants with good salt tolerance should 

always be selected.  

Very high salinity water (2250 < EC < 5000): This kind of water is not suitable for irrigation 

under ordinary conditions; but may be used occasionally under very special circumstances. 

Here, the soils must be permeable, drainage must be adequate to good and irrigation water must 

be applied in excess in order to provide considerable leaching. Only very salt tolerant crops 

should be selected.  

Excessive salinity water (EC > 5000): This water is unsuitable for irrigation. 

1.2.1.2. Sodium absorption ratio (SAR) 

The alkali hazard involved in the use of irrigation water is determined by the relative 

concentrations of the cations. If the concentration of sodium is high, the alkali hazard is high; 

and conversely, if the calcium and magnesium are the dominant cations, the alkali hazard is low 

(USSLS 1954; USDA 2011).  

The sodium hazard of irrigation water is expressed as the sodium adsorption ratio (SAR in 

meq/l). Sodium contributes directly to the total salinity and may also be toxic to sensitive crops. 

The main problem with a high sodium concentration is its effect on the physical properties of 

soil (soil structure degradation) (Zaman et al. 2018). 

The classification of irrigation waters with respect to sodium adsorption ratio (SAR) is based 

primarily on the effects, where exchangeable sodium accumulation has on the physical 

conditions of the soil (USDA 2011; Zaman et al. 2018). 
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Low Sodium Water (SAR < 10): It  can  be  used  for  irrigation  on  almost  all  soils  with  little  

danger  of  the  soil developing harmful levels of exchangeable sodium. However, sodium 

sensitive crops such as stone fruit trees and avocados may accumulate injurious concentrations 

of sodium. 

Medium Sodium Water (10 < SAR < 18): It will present an appreciable sodium hazard in fine 

textured soils having high cation exchange capacity, especially under low leaching conditions, 

unless gypsum is present in the soil. This water may be used on coarse-textured soils or organic 

soils with good permeability.  

High Sodium Water (18 < SAR < 26): It may produce harmful levels of exchangeable sodium 

in most soils. Its use will require special soil management methods, good drainage, a high 

leaching ability and high organic matter conditions. Gypsiferous soils, however, may not 

develop harmful levels of exchangeable sodium from such waters. Management methods may 

require use of chemical amendments, which encourage the replacement of exchangeable 

sodium. That said, use of those amendments may not be feasible with waters of very high 

salinity. 

Very High Sodium Water (SAR > 26): It is generally unsatisfactory for irrigation purposes 

except at low and perhaps medium salinity. Specifically, where the soil water solution is rich in 

calcium or the use of gypsum or other soil amendments may make the use of this category of 

irrigation water feasible.  

1.2.1.3. Residual sodium carbonate (RSC) 

The excess sum of carbonate and bicarbonate in groundwater over the sum of calcium and 

magnesium also influences the suitability of groundwater for irrigation. This can be expressed 

as residual sodium carbonate (RSC), which has been widely used to predict the additional 

sodium hazard, which is associated with CaCO3 and MgCO3 precipitation (Raju et al. 2009; 

Zaman et al. 2018).  

According to the RSC (meq/l) values, the irrigation water is divided into three classes: Safe 

water (RSC < 1.5), marginal (1.5 < RSC < 2.5) and unsuitable (RSC > 2.5).  

1.2.2. Assessment methods 

1.2.2.1. Riverside diagram 

The Riverside diagram (Figure 3) is a combination between the 5 salinity classes (µS/cm) given 

by the letters C1 to C5 in the horizontal axis and the 4 classes of SAR (meq/l) given by the 
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letters S1 to S4 in the vertical axis. Thus, the class C1S1 represents excellent water because of 

the low values of EC and SAR, while the class C5S5 corresponds to the worst water with the 

highest values of EC and SAR.  

 

Figure 3: Riverside diagram 

The interpretation of the different classes is as follows (USSLS 1954; Bradaï 2016): 

C1S1 class: Represents the water of good quality for irrigation and must be used with precaution 

to sensitive plants. 

C1S2 and C2S1 Classes: Correspond to water of good to medium quality, which must be used, 

with precautions to poorly drained soils and sensitive crops. 

C1S3, C2S2 and C3S1 classes: They correspond to water of medium to mediocre quality, which 

requires drainage and leaching doses. 

C1S4, C2S3, C3S2 and C4S1 classes: These classes represent water of mediocre to poor quality, 

which is used with precaution in the heavy soil and sensitive crops. For the slight soil, drainage 

and leaching doses and/or supply of gypsum are required. 

C2S4, C3S3, C4S2 and C5S1 classes: They correspond to water of very poor quality used only 

for the slight and drained soils, and tolerant crops with leaching doses and/or gypsum 

contribution.  
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C3S4, C4S3 and C5S2 classes: Represent water of very poor quality used only in very 

exceptional conditions. 

C4S4, C5S3 and C5S4 classes: These classes are not recommended for irrigation.  

1.2.2.2. Wilcox diagram 

The sodium percentage (Na%) is one of the most used parameters to evaluate the suitability of 

all natural waters for agricultural purposes. The classification of Wilcox (1948) is based on 

plotting the water salinity in terms of EC (µS/cm) on the horizontal axis against the Na % on 

the vertical axis. 

From the Wilcox diagram (Figure 4), five classes can be assigned to irrigation water: Excellent, 

good, permissible, doubtful and unsuitable.  

 

Figure 4: Wilcox diagram 

  

1.3. Aptitude for human consumption 

Groundwater is the main source of drinking for many people worldwide, especially in arid and 

semi-arid regions, where rainfall is scarce and the access to surface water of good quality is 

difficult. It is estimated that approximately one third of the world’s population use groundwater 
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for drinking purpose (Srinivas et al. 2017). Therefore, the protection of this valuable resource 

from contamination and the determination of its suitability for human consumption is a priority.  

1.3.1. Water quality indices 

The aim of water quality indices (WQI) is to give a single value as the water quality of one or 

the other system that translates the list of constituents and their concentrations present in a 

sample into a single value (Abbasi and Abbasi, 2014). Then the quality of different samples can 

be compared based on the WQI of each sample. 

The development of WQIs to assess the water quality in a sample using a single value have 

gained more importance in the last three decades, but the concept was introduced in 1848 in 

Germany. Since then different European countries have developed and applied various water 

classification systems, which are usually of two types; those concerned with the amount of 

pollution present and those concerned with living communities of microscopic and macroscopic 

organisms (Abbasi and Abbasi, 2014). 

The WQIs can be formulated in two ways one in which the index numbers increase with the 

degree of pollution (increasing scale indices) and the other in which the index numbers decrease 

with the degree of pollution (decreasing scale indices). One may classify the former as ‘water 

pollution indices’ and the latter as ‘water quality indices’ (Abbasi and Abbasi, 2014). 

The most often associated steps for developing any WQI are as follows: 

- The selection of the parameter; 

- The transformation of the parameters of different units and dimensions to a common 

scale; 

-  Assignment of weightages to all the parameters; 

- Aggregation of sub-indices to produce a final index score. 

The development of sub-index of each parameter is based on the standards of drinking water.  

1.3.2. Water quality and World Health Organization (WHO) standards  

The deficiency or the excess of one chemical constituent in drinking water can cause health 

problems. The WHO and the contribution of many individuals from various countries have 

participated in the development of guidelines determining the safe interval of each water 

parameter for human consumption. 
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The main aim of the guidelines for drinking water quality is the protection of public health. The 

guidelines provide the recommendations of WHO for managing the risk from hazards that may 

compromise the safety of drinking water. The nature and form of drinking water standards may 

vary among countries and regions (WHO 2011).  

A guideline value normally represents the concentration of a constituent that does not result in 

any significant risk to health over a lifetime of consumption. The most constituents arising in 

drinking water are of health concern after long-term exposure and the exception is the nitrate 

(WHO 2011). The chemicals in drinking water can come from various sources: natural, 

industrial and human dwellings, and agricultural activities. 

  

Table 1: WHO standard of cations, anions, pH and TDS in drinking water 

Parameters WHO Standards 

TDS (mg/l) 1000 

pH 6.5 - 8.5 

EC (µS/cm) 2500 

NO3
- (mg/l) 50 

SO4
-2 (mg/l) 250 

Cl- (mg/l) 250 

HCO3
- (mg/l) - 

Ca2+ (mg/l) 100 

Mg2+ (mg/l) 50 

Na+ (mg/l) 200 

K+ (mg/l) 12 

 

2. Soil salinity 

Soil salinity is a measure of the concentration of all the soluble salts in soil solution, and is 

usually expressed as electrical conductivity (EC). Soil is said to be saline when the EC of a soil 

extracts from a saturated paste (ECe) equals, or exceeds 4 (dS/m) at 25 °C. The soluble salts 

that occur in soils consist of mostly various proportions of the cations sodium (Na+), calcium 

(Ca2+), and magnesium (Mg2+), and the anions chloride (Cl-) and sulfate (SO4
2-). Constituents 

that ordinarily occur only in minor amounts are the cation potassium (K+) and the anions 
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bicarbonate (HCO3
-), carbonate (CO3

-), and nitrate (NO3
-). Hyper-saline soil solution may also 

contain boron (B), selenium (Se), strontium (Sr), lithium (Li), silica (Si), rubidium (Rb), 

fluorine (F), molybdenum (Mo), manganese (Mn), barium (Ba), and aluminum (Al) (USSLS 

1954; Zaman et al. 2018).  

2.2.  Saline and Alkali soils 

Saline soils refers to soil that contains sufficient soluble salts to interfere with its productivity. 

Similarly, alkaline soils can be defined in terms of productivity under the influence of 

exchangeable sodium. For agricultural use, these soils are considered a class of problematic 

soils that require special remedial measures and management practices. Soluble salts produce 

harmful effects on plants by increasing the salt content of the soil solution and by increasing 

the degree of saturation of exchange materials in the soil with exchangeable sodium (USSLS 

1954).  

2.3. Sources of soluble salts in soils 

The most common sources (Zaman et al. 2018) are listed below: 

- Inherent soil salinity (weathering of rocks, parent material); 

- Brackish and saline irrigation water; 

- Sea water intrusion into coastal lands as well as into the aquifers due to over extraction; 

and overuse of fresh water; 

- Restricted drainage and a rising water-table; 

- Surface evaporation and plant transpiration; 

- Sea water sprays, condensed vapors which fall onto the soil as rainfall; 

- Wind borne salts yielding saline fields; 

- Overuse of fertilizers (chemical and farm manures); 

- Use of soil amendments (lime and gypsum); 

- Use of sewage sludge and/or treated sewage effluent; 

- Dumping of industrial brine onto the soil. 

 

2.4. Primary and secondary salinization 

Soil salinization is a global problem that affects almost every continent; it is not static but 

dynamic. Salinization can affect the ecosystem to such a degree that it cannot provide 

environmental services at their full potential. It is a global, regional and national problem that 

14 
 



 Chapter I Literature review / Groundwater quality and soil salinization 

concerns every society. Many factors contribute to the development of soil salinization 

conditions (Shahid et al. 2010).  

Large agricultural land are abandoned each year due primary and secondary salinization. 

Presence of parent materials and salt minerals in soil, weathering of rocks (chemical or 

physical) and rising water table and the subsequent evaporation of the soil water are among the 

main sources of primary salinization (Gorji et al. 2020; Shahid et al. 2010). In contrast to 

primary salinization, human activities such as irrigated agriculture and poor agricultural 

practices are the main cause of secondary salinization (Zaman et al. 2018).  

 

Figure 5: A hypothetical soil salinization cycle (Shahid et al. 2010; Zaman et al. 2018)   

 

2.5. Damages caused by soil salinity and solutions 

The scarcity of water in arid semi-arid regions requires the use of saline groundwater to meet 

part of the water needs of crops. Inappropriate use of this poor water quality, particularly in 

soils with limited drainage, leads to capillary upwelling and subsequent evaporation of water 

from the soil. This results in the development of surface and subsurface salinity, thus reducing 

the value of soil resources. Environmental researchers all around the world have developed 

many techniques to fight against the phenomenon of salinization in agricultural land. The most 

used methods (Zaman et al. 2018) are: 

-  Lowering of shallow water tables with safe use or disposal of pumped salt water; 
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- Reducing evaporation and salt build-up on surface soils through conservational 

agriculture practices such as mulching; 

- Leaching of excess salts from the surface soil into the subsoil; 

- Selection of salt tolerant crops. 

2.6. Visual assessment of soil salinization 

The development of soil salinization in agricultural fields affects considerably the soil 

properties and crops growth. The consequences can be observed visually and the most used 

visual indicators to assess soil salinization (Shahid and Rahman 2011) are: 

- The development of white salt crust on the soil surface; 

- Reducing the plant vigor; 

- The surface of the ground has a fluffy appearance; 

- The rate of germination is reduced; 

- Slat stains can be observed on the soil surface 

- Damage and burning of leaves; 

- Waterlogging; 

- The presence of naturally developing halophytes (indicator plants). 

2.7. Field and laboratory assessment of soil salinization 

The visual indicators cannot be used for the quantification of soil salinization. This is only 

possible through field measurement of EC. The EC determination can be done using two 

methods, the saturated paste extract or the soil: water suspension. The commonly used soil to 

water ratios (Zaman et al. 2018) are:  

- 1:1 ratio corresponds to 10 g of soil + 10 ml of distilled water; 

- 1:2.5 ratio corresponds to 10 g of soil + 25 ml of distilled water; 

- 1:5 ratio corresponds to 10 g of soil + 50 ml of distilled water.  

2.8. Socioeconomic and environmental impacts of soil salinization 

The soil salinization has considerable impacts on the socioeconomic and the environmental 

aspects of the affected regions (Shahid and Rahman 2011; Zaman et al. 2018). 

2.8.1. Socioeconomic impacts 

- Socioeconomic disturbances due to farm abandonment and reduction of farmers; 

- Economic losses due to low production; 

- High costs for soil reclamation;  
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- Increase in the rate of poverty as a result of income loss due to the reduction of crops 

productivity in saline land;  

- Degradation of soil quality requires more inputs (financial pressure on farmers). 

2.8.2. Environmental impacts    

- Fragmentation of the ecosystem; 

- Erosion and soil degradation due to poor vegetation; 

- Sand encroachment in productive areas   

- The contamination of groundwater (return flow); 

- Reduction of reservoir storage capacity. 

3. Current approaches and techniques of groundwater quality and soil salinity modeling 

and mapping 

Modeling and mapping of soil salinity levels are indispensable for the prevention and mitigation 

of land degradation in arid and semi-arid regions. The following section provides a brief review 

of the advanced techniques currently used for soil salinity modeling and mapping. 

3.2. Stochastic techniques 

Geostatistical (Stochastic) techniques are used for mapping surface characteristics from 

limited sample data and predicting values at unsampled locations. They are widely used in 

fields where spatial data are studied (Zaman et al. 2018).  

In the early 1950s, Daniel Krige (The father of geostatistics) developed empirically statistical 

method to predict ore grades from spatially correlated sample data in the South African gold 

mines. This technique was effectively the first use of kriging, which he called later simple 

elementary kriging (Oliver 2010; Oliver and Webster 2014). The first use of the term “kriging” 

was in 1963 by the French researcher Matheron, where he developed the empirical ideas of 

D.G. Krige, in particular the concept that neighboring samples could be used to improve the 

accuracy prediction, and placed them within the theoretical framework of the regionalized 

variable theory underlying geostatistics, which provides the basis for solving the most critical 

problem in environmental science of the need to predict the unsampled location from dispersed 

data (Oliver 2010). Now Geostatistical methods are applied in many environmental fields, such 

as pedology, hydrogeology, geology, agriculture, hydrology, meteorology, remote sensing, and, 

importantly here, groundwater and soil sciences. 

Many environmental scientists used different geostatistical techniques, such as ordinary 

kriging, simple kriging, universal kriging, indicator kriging and cokriging, for predicting and 

mapping groundwater and soil salinity.      
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3.3. Remote sensing (RS) and geographical information systems (GIS) 

Groundwater quality and soil salinity mapping and modeling can be performed by integrating 

remote sensing (RS) and geographical information systems (GIS).  

The ability of remote sensing to generate information on spatial and temporal domain is one the 

greatest advantages for hydrogeological investigations and monitoring (Khan and Jharya 2018). 

The quantification of land use and land cover (LULC) types, such as agricultural land and urban 

area associated with human activities, through remote sensing images is one of the useful 

applications to understand the driving factors influencing the groundwater quality of an area 

(Singh et al. 2014). 

Remote sensing (RS) technology has been widely used to assess soil salinity; while aerial 

photographs have been used to map salt-affected soils (Gorji 2020). RS techniques provide 

spatial and temporal data for varying spatial domains and conditions, which is a key element in 

assessing and detecting soil salinity. Soil salinity can be properly detected and quantified using 

numerical indices derived from different spectral bands of satellite images and relating them to 

ground measurements of soil electrical conductivity (EC) (Gorji 2015).  RS data and techniques 

offer more economic and efficient tools for monitoring and mapping soil salinity through salt 

features that are visible at the soil surface or from indicators such as the presence of halophytic 

plants (Allbed and Kumar 2013). 

Geographical information system (GIS) is a system that involves the storage, analysis, retrieval, 

and display of data, which are spatially referenced to the earth (Khan and Jharya 2018; Zaman 

et al. 2018). The most familiar type of spatial data is the map. GIS is actually a means of 

electronically storing map information. A GIS map has many advantages over older maps, one 

of the main ones being stored electronically and they can be easily analyzed by computer. 

3.4. Artificial neural networks (ANNs) and support vector machines (SVMs) 

In the recent years, machines learning techniques (ML) have gain popularity in modeling soil 

properties. Artificial neural networks (ANNs) and support vector machines (SVMs) are among 

the most widely used ML techniques for modeling soil salinity. 

The Artificial Neural Network (ANN) is a simplified model of a biological neural system that 

consists of a massive parallel-distributed information processing system that exhibits certain 

performance characteristics resembling the biological neural networks of the human brain 

(Gong 2016; Haykin 1999). However, the following characteristics are considered as common 

functions in real and artificial networks: (Shanmuganathan 2016):  

- Learning and adaptation;  
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-  Generalization; 

-  Massive parallelism; 

-  Robustness;  

- Associative storage of information; 

- Spatiotemporal information processing.   

The neurons are the backbone of any ANN because they establish relationship between the 

input and the desired output variables. This process of establishing relationship between inputs 

and outputs is called training. The ANN problem is solved according to the selected training 

algorithm (Levenberg-Marquardt, Scaled conjugate gradient, Gradient descent …etc.) (Gong 

2016; Achieng 2019). The construction of a neural network could be achieved according to the 

following steps (Shanmuganathan 2016): 

- Identification of the studied problem and the available knowledge; 

- Selecting the appropriate neural network to solve the problem; 

- Data preparation for training the network (statistical analysis, discretization, and 

normalization); 

- Training the network using training data; 

- Testing the trained network and validation of the results. 

 

Figure 6: (A) A biological neuron; (B) An artificial neuron (Świetlik et al. 2004) 
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Support vector machines are powerful class of tools that are becoming increasingly popular in 

the fields of classification, data mining, pattern recognition, artificial intelligence, and 

optimization (Yang 2019). Recently SVM has been used to solve non-linear regression 

estimation and time series prediction by introducing ԑ- insensitive loss function (Samui 2008). 

SVM regression is a supervised, non-parametric, statistical learning technique, generally has an 

adequate balance between predictive accuracy and the ability to generalize trained models to 

unseen data (Deiss et al. 2020). The advantages of SVM models are their ability to handle high-

dimensional multivariate spaces and to handle noisy models and multimodal class distributions 

of soil properties (Deiss et al. 2020). 

 

Figure 7: A theoretical representation of how SVM models deal with the ε-insensitive loss 

function (Deiss et al. 2020) 

Today ANNs and SVMs have been recognized as powerful tools in the modeling of various 

complex environmental problems of different domains. 

3.5. Previous studies 

The described techniques (geostatistics, RS, GIS, ANNs and SVMs) have been integrated and 

used, with success, in many studies for mapping, predicting and modeling groundwater and soil 

properties, among them are the followings: 

Zhou et al. (2020) integrated RS derivatives and machine learning algorithms to predict and 

map soil organic carbon (SOC) and soil total nitrogen (STN) in the southern part of Central 

Europe. The study used the derivatives of different RS sensors as inputs to four machine-

learning techniques including support vector machine (SVM), random forest (RF), boosted 
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regression trees (BRT) and bagged CART. The results of this study proved the usefulness and 

the accuracy of using RS derivatives to predict SOC and STN. Koulla et al. (2019) used 

geostatistics and ANNs for modeling soil salinity, where they mentioned the accuracy and the 

superiority of ANNs with digital elevation model (DEM) derivatives as inputs. Gorji et al. 

(2020) applied RS images for mapping soil salinity in western part of Urmia Lake in Iran, where 

they employed different indices coupled with EC measurements to assess the performance of 

Landsat-8 and sentinel-2 in soil salinity mapping. Wagh et al. (2016) developed ANN model to 

determine the suitability of groundwater for irrigation in India. They used the different 

physicochemical groundwater parameters as inputs to the model. Shahabi et al. (2016) predicted 

soil salinity by employing ordinary kriging (OK), multiple linear regression (MLR) and ANNs 

using terrain features and remote sensing indices. The results of the study showed the robustness 

of ANNs in predicting soil salinity.
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 Chapter II Description of the study area 

1. Geographical localization 

Biskra region is located in southeastern Algeria at 425 Km of the capital (Algiers) (Figure 8). 

It is bounded in the north by the Saharan Atlas, which represents a SW – NE directional relief. 

It extends to the Chott Melghir area in the southeast and to the Eastern erg in the southwest. 

Biskra region constitutes a transition zone between two different morpho-structural domains, 

the folded domains in the north and the flat and desert expanses of the Sahara in the south.  

 

Figure 8: Geographical location of the study area 
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Biskra province occupies a surface area of 21671.2 km2, with a population density of 43 

hab/Km2 and a demographic development of 2.3 %. 

El Outaya plain, which is the study area, is located at 25 km in the northwest of the capital city 

of Biskra. The studied zone (Figure 8) extends over 405 km2 of area in the basin of El Outaya. 

It lies between latitude 34°48’ N - 35°03’ N and longitude 5°09’ E - 5°45’ E. It is bounded at 

the north by Djebel Labraga, Djebel Meddiane and Djebel Elmaleh, at the south by Djebel 

Boughezal and Djebel Fouinissa, Bled Chicha and Djebel Elmohr at the east and Djebel Daba, 

Djebel Enaam at the west. 

2. Climatological context 

Climatic conditions play a determining role in the recharge of aquifers and precipitation is the 

essential factor. In arid areas, they intervene, especially, by the showers that generate floods 

and effective rainfall. The different aspects of precipitation are highly influenced by other 

climatic conditions and the most important are evapotranspiration and temperature. 

2.1.Precipitation 

Rainfall in Biskra region is characterized by irregularities both inter-annual and intra-annual. 

The annual rainfall recorded over a period of 18 years (2000-2018) gives an average rainfall of 

about 118.75 mm. In addition, there is a peak of about 297 mm during the year 2014 while the 

low values are registered in 2017 and 2018 with 42 mm and 42.33 mm, respectively (Figure 9). 

 

Figure 9: Inter-annual variation of precipitation in Biskra region (2000 – 2018)  
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Analysis of the average monthly rainfall shows that the autumn months are the most rainy with 

a cumulative of 41.9 mm (35.37 %), followed by the spring months (March, April, May) with 

a cumulative rainfall of 41.3 (34.87 % mm). The winter season contributes at about 24.4 % 

(28.9 mm). The three months of summer commonly defined (June, July and August) contribute 

only with 6.4 mm (5.4 %) of the annual rainfall (Table 2). 

Analysis of the monthly variations in precipitation shows that the values of the standard 

deviations and coefficients of variation vary considerably. Thus, the values of the standard 

deviations exceed the mean values, leading to coefficients of variation exceeding 100%, which 

explains the high inter-annual and intra-annual variability and irregularity of precipitation. 

Table 2: Monthly average (P), standard deviation (SD) values and variation coefficient of 

precipitation (CV) in Biskra region (Period of 2000 – 2018) 

Month Jan. Feb. Mar. Apr. Mai Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
P (mm) 14.6 5.5 13.9 15.7 11.7 3.3 0.7 2.4 15.2 14.9 11.8 8.8 

SD 22.7 8.4 21.2 21.0 16.2 6.7 1.2 3.5 13.4 20.0 13.8 10.7 
CV % 155.8 154.2 151.8 133.5 138.3 202.8 182.6 143.5 88.3 134.3 116.9 122.4 

 

2.2.Temperature 

The average monthly temperatures recorded in Biskra region over 18 years (2000 - 2018) 

showed that the thermal regime is characterized by high temperatures in summer and relatively 

low temperatures in winter. The highest temperatures are recorded during the months of July 

and August, where they reach a maximum of 35.1 °C on average. On the other hand, January 

is the coldest month with an average temperature of 8.7 °C. 

The analysis of monthly temperature over the same period (2000 - 2018) shows the low 

variation of temperatures. This is characterized by low values of the standard deviations (SD) 

of each month, as well as the value of the coefficient of variation (CV %) (Table 3). 

Table 3: Monthly average (P), standard deviation (SD) values and variation coefficient of 

temperature (CV) in Biskra region (period of 2000 – 2018) 

Month Jan. Feb. Mar. Apr. Mai Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
T (°C) 8.7 13.3 17.5 21.6 26.5 31.2 35.1 34.1 29.1 24.1 16.9 12.6 

SD 5.4 1.5 1.2 1.1 1.5 1.6 1.0 0.9 1.0 1.8 0.8 1.0 
CV % 61.7 11.5 6.9 5.3 5.6 5.2 3.0 2.5 3.5 7.3 4.7 7.7 
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The observation of relative to the ombrothermic diagram; shows that the climate of the region 

of Biskra is characterized by a single dry season extending throughout the year (Figure 10). 

This is one of the parameters for the climate of arid zones, in addition to the high evaporation 

and irregularity in the rainfall regime. 

 

Figure 10: Ombrothermic diagram of Biskra region (period of 2000 – 2018) 

2.3.Evapotranspiration 

Evapotranspiration is defined as the maximum possible value of evaporation under given 

climatic conditions. It is the result of two phenomena: one physical: evaporation, the other 

biological: transpiration. For the estimation of this parameter, the Thornthwaite formula is used. 

This method allows one to calculate the potential evapotranspiration from the data of 

precipitation (P in mm), temperature (T °C), the correction factor that depends on the latitude 

and longitude (F(m,ϕ)) and the monthly thermal index according to the following equations:  

𝐸𝐸𝐸𝐸𝐸𝐸 (𝑚𝑚𝑚𝑚) =  16 ∗ �
10 ∗ 𝐸𝐸
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𝐸𝐸
5
�
1.51412

1

 

𝑎𝑎 = 0.016 𝐼𝐼 + 0.5 

Dry period 
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The ETP (mm) values estimated from climate data using the Thornthwaite method over a 

period of 18 years are generally higher than the precipitation, only for the month of January. 

The average annual ETP value is very considerable (1200.41 mm). 

Table 4: ETP (mm) estimation results using Thornthwaite method (2000 – 2018) 

Month Jan. Feb. Mar. Apr. Mai Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
T °C 8.7 13.3 17.53 21.6 26.5 31.2 35 34 29.1 24.1 16.9 12.6 

i(moy) 2.4 4.41 6.7 9.2 12.5 16 19.1 18.3 14.4 10.8 6.3 4 
F(m,ϕ) 0.9 0.8 1 1 1.2 1.2 1.21 1.2 1 0.98 0.9 0.9 
P (mm) 14.6 5.5 14 15.7 11.7 3.3 0.7 2.4 15.2 14.86 11.8 8.8 

ETP 
(mm) 9 16.5 39 69.5 127 189.7 257.9 228 137.1 82.4 29.9 14.2 

 

 

Figure 11: Average monthly estimated evapotranspiration (ETP) compared to the average 

monthly precipitation (P) in Biskra region (period of 2000 – 2018) 

3. Hydrographic network 

The Biskra region is crossed by several wadis, which constitute a simple hydrographic network 

that works only in winter or during exceptional rains and they are a part the large Saharan 

watershed of Chott Melghir (Figure 12): 
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- Wadi Djeddi is the most important wadi in the region, presents the drainage area of 

9130 km2. It constitutes a runoff water collector of a significant area of the southern 

hillside of the Saharan Atlas. 

- Wadi El Arab is located in the eastern part of the region and it takes its source from the 

mountains that constitute the eastern part of the Aurès and flows into the depression 

zone of Chott Melghir. 

- Wadi El Abiod is located in the middle of the region on which Foum El Gherza dam is 

built. 

- Wadi Biskra which crosses El Outaya plain contains many streams that collet runoff 

water from the southwest Aurès Mountains.  

 

Figure 12: Hydrographic network of Biskra province 

4. Geological and hydrogeological context 

The geology and hydrogeology of the study area were described by several authors: Guiraud 

(1990); Chebbah (2007); Haouchine (2010); Sedrati (2011); Boudjema (2015) and Chebbah 

(2016); Chebbah et al. (2008). 

4.1. Geology 

El Outaya Plain is characterized by a very complex and highly tectonized geology.  It occupies 

a vast post-Miocene middle syncline, affected by minor anticlinal wrinkles. It appears as a stack 

in the form of sandy-clay lenses, filling a basin slightly elongated from the east to the west. The 
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Mio-Pliocene filling constitutes a regular topographic surface from north to south and the 

Quaternary deposits are is formed of detrital filling materials. 

4.1.1. Lithostratigraphy 

 The Biskra region is characterized by sedimentary terrains, from the Barremian at the base to 

the Quaternary layer at the top. The stratigraphic scale below show the main strata found in this 

region from the oldest to most recent. 

4.1.1.1. Mesozoic 

The Mesozoic forms the main dominant reliefs throughout the study area, as in the whole 

Saharan Atlas. It is largely composed of Cretaceous terrains, where clay-carbonate 

sedimentation dominates. 

4.1.1.1.1. Triassic 

The Triassic is the oldest geological formation in the study area. It outcrops in the north of El 

Outaya (Djebel El Maleh). It is characterized by the conservation of rock salt in outcrop, which 

forms the mass of this mountain. It is associated with shreds of purple marls abundant only at 

its eastern edge, in the middle of which are found the frequent crystals of this facies, such as: 

aragonite, anhydrite, dolomite, bi-pyramid quartz and hematite.  

- Lias 

The Lias is unknown in normal position and when it is encountered, it is packed in the Triassic 

in the form of shale flakes (Menaa, Aurès center) or dolomites (El Outaya). West of the Aurès 

(Eastern Saharan Atlas), it is represented by yellow and blue limestones with Belemnites and 

Foraminifera of the Lower Toarcian. On the other hand, on the northern margin of the Saharan 

platform, it is formed of oolitic limestones and dolomites and becomes anhydrite towards the 

south. 

4.1.1.1.2. Jurassic 

a- Kimmeridgian 

Corresponds to the oldest terrains recognized in normal position in the Aurès massif where it 

forms a buttonhole between the valleys of Oued Abdi and Oued Labiod (anticline of Djebel El 

Azereg). It splits into two quite distinct sets: 
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- A basal carbonate ensemble with 250 to 300 m thick, which relates to the Lower 

Kimmeridgian. 

- A marly ensemble at the top with 400 m thick, monotonous and admitting in its median 

part intercalations of marly limestones with lamellibranches. 

b- Portlandian and Berriasian 

This has about 250 to 300 m thickness that occurs under two distinct facies forming between 

them a progressive lateral passage with a calcaro-marly facies to the NW and a dolomitic facies 

to the SW of the Aurésian massif. 

4.1.1.1.3. Cretaceous 

Two series stand out in the Cretaceous formations: a basal sandstone series from the Lower 

Cretaceous (Berriasian - Albian) and a marl-limestone series from the Upper Cretaceous 

(Cenomanian - Maestrichtian). 

a- Lower Cretaceous 

- Valanginian: It outcrops only in the Gebel El Azreg anticline, in the shape of an aureole 

all around the Jurassic and is essentially composed of greenish and yellowish marls as 

well as small quartzite benches. 

- Hauterivian: It outcrops in the Aurès (Djebel El Azreg anticline), drawing a regular 

aureole where it forms around depressions occupied by Valanginian marls, limestone 

or sandstone escarpments with limestone pastures alternating with sandstone banks. 

The thickness of this stage is considerable and can reach 1000 m. 

- Barremian: In the Aurès, this stage is essentially quartz and presents a thickness of 850 

to 900m. It outcrops to the southeast of El Outaya where it is formed by red sandstones 

with clayey interlayers. To the south of the plain, at Koudiat El Leham (Debel 

Boughezal anticline) can be seen on 20 m thick slightly sandstone red clays without 

marine fossils but with fossilized wood, demonstrating the continental and subaerial 

origin of this formation. 

- Aptian: It outcrops in all the anticlines of the Aurès where it is characterized by a 

lagoonal sedimentation regime with some marine invasions. At Chaïba (south of El 

Outaya), it is represented by clays, versicolored marls, anhydrites, dolomitic limestones 

and dolomites over a thickness of about 60m. At Koudiat El Leham, it is represented 

by orbitoline limestones and annelid tubes, over a thickness of about 20 meters. 
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- Albian: It begins in the Aurès with alternating sandstone and marl often reaching 150 

to 200m thick, becoming variegated to reddish towards the south-west. Thereafter, 

limestones tend to replace sandstones, while pelagic fauna make their appearance. In 

the South of El Outaya, at Koudiat El Leham, and northeast of Chaïba, a lower Albian 

under a continental facies, formed by alternating sandy sandstones and marls, and an 

upper Albian under a sub-reefal facies, formed by alternating dolomitic limestones and 

lumachelles. 

b- Upper Cretaceous  

The Upper Cretaceous forms the main part of the Mesozoic outcrops in the region. It is 

represented by crystalline and dolomitic limestones in very thick layers, marly and gypsum 

lagoon intercalations very numerous in the West (Djebel Gouara and on the northern flank 

of Djebel Boughezal). 

- Cenomanian: It outcrops on the northern flank of Djebel Boughezal, its thickness is 

300 to 400 m of grey or white limestone regularly alternating with greyish marls, 

sometimes gypsum. It is characterized by an abundant fauna (echinoids, ostracians) 

especially in the upper part which is mostly marly-limestone while the lower part is 

generally marly. 

- Turonian: It outcrops northwest of El Outaya. It is uniformly represented throughout 

the mountainous area by a massive level of 200 to 300m thick composed of crystalline 

limestone, marly limestone and dolomitic limestone. 

- Senonian: It exists in all the synclines of the Aurès as well as around the anticlines. It 

is very thick (2000 m on average) and occupies considerable surface areas on outcrops. 

In Djebel El Maleh (NE of El Outaya), the core of Triassic drilling has brought to 

outcrop a small island of black marl and chalk limestone fossiliferous enough located 

at the bottom of this mountain. To the north and east of these marls, outcrops massive 

limestones, because of their position above the Campanian and their facies, attributed 

to the Maestrichtian. Figure 6 shows that the Senonian is formed of fissured dolomitic 

hard limestone.  

On the northern slope of the Boughezal Anticline, the Senonian is represented by 

important Maestrichtian limestone masses, about 400 to 500 m thick.  

4.1.1.2. Cenozoic 

a- Paleogene (Nummulitic) 
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- Lower Eocene: It outcrops to the east-southeast of Djebel El Maleh. It is represented 

by several dozen meters of yellowish greenish marls slightly gypsum and clayey 

limestones with lamellibranches. A bank of micro-conglomerate limestone with 

Pecten, marks the implantation of marine sedimentation. This formation also outcrops 

north of Tolga and east of El Outaya (Djebel Ahmar) where it is represented by 

limestones rich in black flint and often fissured. This is confirmed by Figure 13 and 

Figure 14 boreholes, which show that the Eocene was often formed of fissured white 

limestone. 

 

Figure 13: Sounding in the northeast of El Outaya (Djebel El Maleh) 
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- Middle Eocene: 

It outcrops to the east of El Outaya, on the northern flank of Djebel Ahmar. It is characterized 

by a lagoon sedimentation of different types: clays, gypsum, anhydrites and limestones; its 

thickness varies from 100 m to 400 m. The lithological section of the El Mazouchia borehole 

(Figure 14) shows that the Middle Eocene is composed of alternating limestones and marls at 

the top and limestones at the base, all over a thickness of about 270 m. 

 

Figure 14: Sounding in Labrach zone 

- Upper Eocene: The Upper Eocene does not outcrop in the plain of El Outaya but it is 

found in some places in the Aurès.  

b- Neogene: The Neogene is subdivided into two sub-stages: the Marine Neogene (Lower 

Miocene) and the Continental Neogene (Upper Miocene and Pliocene). 

- Lower Miocene: It outcrops to the north of El Outaya, on the northern flank of Djebel 

Mediane, DjebelMagraoua and to the east of the Branis region. It is represented by 

red limestones with gypsum and flint. In the basin of El Outaya, it is formed in the 

east by limestone layers on the first slopes of the Aurès massif, and in the west by 

molasses rich in fossils, covered by marls with little fossiliferous. Further north, at 
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Sebâa Mgataâ, the Miocene is formed by marly-limestone molasses rich in pectinids 

and molluscs. Above, come marls without fossils with diffuse gypsum. The total 

thickness is about 200 to 300 m. 

 

Figure 15: Sounding in Bled El Mazouchia 
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- Upper Miocene: it outcrops north of El Outaya in the form of reddish brown marly 

limestone layers. To the west, on the southern flank of Gebel Maghraoua and 

especially on Gebel Moddiane, the Upper Miocene consists of conglomerates and 

breccias up to several hundred meters thick. In the East of El Outaya, red layers have 

been observed overlying on the fossiliferous marine Miocene; these are red clays, 

coarse sandstones with rare gravel banks, poorly cemented puddings and coarse 

puddings that he attributes to the Upper Miocene. The thickness of this ensemble is 

about 500 m. 

- Pliocene: The Pliocene forms a series of very continuous outcrops to the north and 

east of the El Outaya plain. Good sections can be observed immediately to the 

northwest of the plain. East of El Outaya, the Pliocene only outcrops discontinuously 

in the strongly tectonized zone that separates Djebel El Maleh from Djebel El Mohr. 

c- Quaternary: Recent soils are as widespread on the periphery of the Aurès as they are rare 

in the center of the massif; there they are represented by scree slopes and terraces, while 

on the periphery they form large alluvial layers of considerable thickness. It is necessary 

to distinguish in the region of El Outaya, on the one hand the piedmont established on 

the Neogene, very dissected and drained by several wadis, and on the other hand, the 

plain; the passage from one area to another being generally abrupt. 

- Piedmonts:To the north and east of El Outaya, various small juxtaposed basins show 

an important stony overburden, between which the alluvial plains are limited to 

narrow strips along the main wadis. To the north Gazelles fountain dam, the plain 

formed of sandy-clay alluvium with conglomerates at the base and is covered in its 

eastern part by a glacis at the outlet of the wadi Hassi ben Tamtam.  To the northwest 

of El Outaya, at Bled Salaouine, two glacis with gypsum or gypso-calcareous cover 

appear. The origin of the gypsum, more than 1 m thick, which participates in these 

incrustations, seems to be sought both in the leaching of Miocene bedrock and in the 

wind contributions, given the proximity of the Lower Sahara. 

- El Outaya plain: This plain, established for the most part on neogenous terrains, is 

formed by alluvium in its major part.  The western part is invaded in its almost totality 

by dunes still mobile, while in the eastern part, the wadis are encased in small alluvial 

cones near the reliefs, then in alluvium which they do not submerge any more, except 

in rare zones. These alluvial deposits show in the neighborhoods of El Outaya, few 

meters from the surface, a horizon rich in calcareous tabular concretions. 
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4.1.2. Tectonic  

El Outaya plain is located in an area separating two geographically and geologically distinct 

domains: the Saharan Atlas to the north and the Sahara to the south. The passage between these 

two domains is done through a set of flexures, folds and faults oriented from west to east, called 

the "South Atlas Flexure". The South Atlasic Flexure developed during the Pliocene and post-

Pliocene paroxysmal phase of the Aurès surrection. This phase is also responsible for all the 

deformations of the neogenic continental (Mio-Pliocene). 

There are two systems of faults with different directions: the NW-SE oriented faults and the 

SW-NE faults; the first type is known throughout the Saharan Atlas. Locally, El Outaya Plain 

appears to be bounded to the north by an anomalous contact of general east-west direction; a 

major NW-SE fault crosses the entire region. Other faults of the same importance and 

practically the same direction affect all the carbonate terrains. This plain is located in a syncline 

affected by a set of folds and faults, as well as a succession of small synclines and anticlines 

(Figure 16). 

 

Figure 16: Tectonic sketch (Extracted from the hydrogeological map of Biskra, Salem et al. 

1979) 
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4.2. Hydrogeology 

The South of Algeria contains many aquifers with great extensions. Their depth differs from a 

region to another and can reach more than 500 m (Sedrati 2011). 

4.2.1. The main aquifers in Biskra region 

The hydrogeological studies carried out in Biskra region have shown the existence of several 

aquifers of different ages (Haouchine 2010; Sedrati 2011; Boudjema 2015). According to the 

hydrogeological cross sections (Figure 17) and the hydrogeological map (Figure 19), these 

aquifers occur in the Quaternary, Mio-Pliocene, Lower Eocene, Upper Senonian 

(Maestrichtian) and Albian formations (The direction of the hydrogeological sections are 

presented in Figure 16). Senonian and Turonian aquifers are also present in the region of 

Biskra, but they are rarely exploited because of their low extension. Boudjmaa (2015) attested 

that El Outaya plain presents a lack of knowledge concerning the hydrogeological aspect 

despite the important number of wells drilled in the last years. 

 
Figure 17: Hydrogeological cross sections (Extracted from the hydrogeological map of 

Biskra) 
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The different studies describing the hydrogeological aspect of Biskra region have mentioned 

the presence of three different hydrogeological sets: the Quaternary aquifer, the Terminal 

Complex (TC) aquifer and the Intercalary Continental (IC) aquifer.   

4.2.2. Quaternary 

This quaternary formation is essentially represented by the water table of the Biskra wadi and 

the Djeddi wadi, which represent the most important resource for the irrigation of the palm 

groves of Sidi Khaled and Ouled Djellal and a large part of the drinking water supply to the city 

of Biskra. 

The Quaternary formations cover a large part of the region and contain the Biskra water table, 

which is very common in Tolga palm groves and at the level of the wadis (Inféro-Flux water 

table). Its depth ranges between 10 m and 40 m and its reservoir is composed of pebbles, sand 

dunes and sandy and stony alluvium of the current beds of the wadis, which indicates 

heterogeneity of the reservoir. To the west of Wadi Djeddi, the aquifer is composed of sandy 

and clayey alluvium, while to the east the puddings are gradually relayed by a sandy or clayey 

deposit. The bedrock of this aquifer is formed by a thick clay layer, with intercalation of few 

layers of sand, gravel and marl, appearing as sand lenses in discordance with the clay layers. 

The aquifer recharge, particularly in El Outaya plain, is provided by runoff from the Aures 

massifs (Ain Touta). Concerning the Inféro-Flux aquifers, the recharge is ensured during the 

floods of the wadis. The runoff causes the recharging of the alluvium. Irrigation water and 

waste water are another source of aquifer recharge.  

4.2.3. Terminal Complex (TC) 

The Terminal Complex includes different formations ranging from the Upper Senonian to the 

Mio-Pliocene. This name (Terminal Complex) represents the fact that several aquifers are 

grouped together within the same reservoir. These aquifers are the carbonated Eocene (lower 

Eocene limestone water table) and the sandy Mio-Pliocene (sand water table). 

4.2.3.1. Mio-Pliocene water table 

The Mio-Pliocene aquifer occupies, generally, the depressions forming the plains bordered by 

the massifs of Djebel Guedare and Djebel Boughezal in the North West and Djebel Ammar 

Khadou in the North East. It consists of alternating clays, sands, gravels and conglomerates 

with gypsum. It lies on a substratum formed by the impermeable layers of the marine Miocene 

and the middle Eocene. 
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The aquifer outcrops to the northeast of the Biskra region, north of the Mkhedma Oasis, where 

it consists of red pudding sands. This same formation is found south of Wadi Djeddi and 

southwest of the Doucen towards Ouled Djellal. Note that near the borders of the Ziban 

Mountains the sandy clays are in contact with the limestones of the lower Eocene. This indicates 

exchanges between sand and fissured limestone aquifers, especially when the thickness of the 

clays is low. In the eastern part of the region, this water table is divided into two aquifers 

separated by a thick layer of clay and sandy clay, one deep called the Pontian and the other 

moderately deep which is the Mio-Pliocene water table known in this region. 

In the western part of El Outaya plain, the Mio-Pliocene aquifer is less important compared to 

the eastern part. It consists of a set of pebbles, scree, and sandy to sandy clay. In the central part 

of the plain, the aquifer is formed by sandy, sandy clay, sometimes marly and pebbled puddings. 

The thickness of this layer is also less important than that of the eastern part. The southern part 

of the plain is formed by saliferous sands, with clayey intercalations, which deteriorate water 

quality in this region. 

The substratum of this aquifer is constituted of limestones of the Lower Eocene in the western 

part, on the other hand, in the central and eastern parts, it is formed by marly Miocene. In 

proximity of the points, where the aquifer is in contact with the limestones of the Eocene, the 

latter sinking is under a thick formation of the Mio-Pliocene in the northern part and in the 

center towards the south of the plain. 

The general flow is in north-south direction. The recharge of the aquifer is ensured mainly in 

the northern part, by the infiltration of the waters of wadi Biskra during the flood period, or by 

the formations of the Mio-Pliocene (Aurès Region). The eastern part also contributes to the 

recharge of the water table by the Pliocene puddings, on the other hand, in the western part, the 

recharge is ensured by the limestones of the lower Eocene. 

4.2.3.2. Lower Eocene water table 

This aquifer is located in its entirety in the region of Biskra.  The western part is more exploited 

than the eastern part, because of its smaller depth. The latter reaches a maximum of 200 m in 

the West while it exceeds 400 m in the East.   

The roof of the aquifer is composed of Mio-Pliocene clayey-sandy formations to the north and 

Middle Eocene gypsum marls to the south, while its reservoir is essentially constituted of 
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fissured white limestone from the Lower Eocene and dolomitic marly limestones from the 

Upper Senonian. 

Its depth varies from 10 m to 60 m in the Tolga zone. Towards Oumeche and Mllili, the depth 

increases to 150 m. Around Doucen, the depth exceeds 200m. It exceeds 400 m at the level of 

the El Outaya plain. 

The flow is characterized by two directions:    

- The first one directed from North to South,    

- The second is in the direction South-West North-East.   

4.2.4. Intercalary Continental (IC) 

It is a very important aquifer composed essentially of sandstone and marl of Albian and 

Barremian age, with a depth that varies between 1,600 m and 2,500 m and an average flow of 

80 l/s gushing out (Figure 18 and 19). Its exploitation is very expensive, because of its depth, 

in addition the temperature of the water can exceed 60°C. 

 
Figure 18: Schematic representation of the extension of the main exploited aquifers in Biskra 

region (Sedrati 2011) 
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Figure 19: Hydrogeological map (Digitalized and adapted from the hydrogeological map of 

Biskra) 

5. Pedology 

5.1. Soils of Algeria 

Soil is an element of the natural environment linked to structure, vegetation, climate and human 

activities. The nature of the soil is also an essential factor in the agricultural development of a 

region. 

The Durand’s classification of soils in Algeria is based firstly on the climatic factor that 

played the essential role in the formation of the soil (wind, rain, temperature), secondly on the 

degree of soil evolution (number of differentiated horizons), and finally on the degree of 

leaching. Soils in Algeria can be grouped, according to the climatic factor dominating their 

formation, into three large groups of zonal soils, each with its own characteristics determined 

by the environmental conditions controlling the pedogenesis processes (Benchetrit 1956): 

- Saharan soils, where the dominant factor in soil formation is wind; 

- Soils of arid and semi-arid regions, where the zonal soil would be due to the wind-

rainfall climatic equilibrium; 

- Soils in humid tellian regions, where moisture and vegetation become the main factors 

in the formation of zonal soils. 
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In addition to these zonal soils, a whole series of azonal soils are classified separately. It 

would be more accurate to call them local soils, because these soils are not formed under the 

influence of zonal factors, but rather of local factors that create microclimates within a 

climatic zone that give the soil special conditions for its evolution. 

5.2. Soils of the arid and semi-arid regions 

The soils of arid and semi-arid region can be fixed by steppe vegetation, but their evolution is 

slowed down by the lack of percolating water. Rainfall is not strong enough to modify the 

absorbent complex, which remains in its original state, hence, the stability of the profile of these 

soils. The bedrocks are generally calcareous: eolian alluvium deposited on pulverulent 

limestone. However, they constitute a differentiating factor giving, according to their nature; 

soils containing limestone or gypsum (calcareous soils), and soils, which do not contain any 

soils in equilibrium, but the latter are rare (Benchetrit 1956). 

Calcareous soils: They have only one thinly differentiated horizon. They are more or less rich 

in limestone, their absorbent complex is saturated by the Ca+ ion and their pH is always between 

7 and 8. They contain low quantities of organic matter (between 0.3 and 1%), but no soluble 

salts. In these soils, the limestone is mainly presents in the sand fraction and has little influence 

on their dynamics. They are, therefore, typical calcareous soils. Beside the typical calcareous 

soils, two subtypes can be observed as gypsum soils and soils formed at the expense of scree 

slopes of the two previous ones, always presenting the same characteristics: light texture, good 

permeability but low water retention capacity due to their relative poverty in colloids. 

Soils in equilibrium: They have the same characteristics as calcareous soils, but formed on non-

calcareous bedrock. Their absorbent complex is saturated in Ca+ ion, there is no movement of 

substances and they have only one differentiated horizon. These soils are rare in Algeria, 

because calcareous or gypsum rocks cover about 90% of the surface of the arid and semi-arid 

zones. 

Finally, in in arid semi-arid regions, in intra-zonal position, ablation or accumulation wind soils 

are found as leached soils. In general, the soils in these regions are not normally rich in soluble 

salts. On the other hand, solontchak (saline soils) are often found in poorly drained areas or 

those supplied with water by a superficial water table. 

According to the soil map of Algeria, Biskra (Figure 20), produced by Durand and Barbut 

(1938) and explained by Benchetrit (1956), El Outaya plain is characterized by basic alluvium 
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surrounded by wind ablation soils. Saline soils (Slontchak type) are present in the synclinal 

depression of Selga Saadoun. The western part of the plain is characterized by wind 

accumulation soils (dunes) due to the wind erosion. 

 

Figure 20: Soil map of Algeria adapted to the study area (Durand and Barbut, 1938) 
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 Chapter III      Mapping and assessment of groundwater quality 

1. Introduction 

Groundwater is the major water resource for domestic, industrial and irrigation uses in arid and 

semi-arid regions as well as in El Outaya basin (Biskra, southeastern Algeria). However, 

growing population and fast expansion of agriculture are the main causes of the 

overexploitation of aquifers, which leads to the deterioration of groundwater quality, 

continuous salinization of the top soil and reducing crop productivity (Amichi et al., 2012; 

Bradaï et al., 2016). Agriculture irrigation consumes large quantities of groundwater, where 

date palm cultivation and cereals are the most common crops and surface irrigation is the main 

system of irrigation in the area (ABHS, 2016). Thus, evapotranspiration rates and low 

precipitation influence significantly groundwater resources and increase irrigation needs 

(Ahmadi and Sedghamiz, 2007; Shaji et al., 2018). The salinization of groundwater is one of 

the greatest problem affecting the sustainable use of groundwater (Ahmed et al., 2013). 

Application of irrigation with saline water and accompanying agrochemicals and the intense 

abstraction of groundwater are the main causes of the degradation of groundwater quality 

(Pulido-Bosch et al., 2018). Therefore, monitoring and assessment of groundwater quality 

seems necessary for optimum exploitation of this precious and scarce resource and for the social 

and agricultural sustainable development. 

Water Quality Index (WQI) is an easy and effective communication tool for the evaluation of 

the groundwater quality for human consumption and it aims at giving a unique value to the 

quality of a water sample, which signifies its overall quality category, in order to compare the 

quality of different samples based on the obtained values. (Abbasi and Abbasi, 2014; Ahamad 

et al., 2018). Several authors have used WQI to assess the suitability of groundwater for 

domestic usage (Sadat-Noori et al., 2013; Rawat et al., 2017; Singh et al., 2014; Deepa and 

Venkateswaran, 2018).  

Geostatistics (Journel, 1986) study of the regionalized variables spatial distribution is used for 

the application. Kriging is a geostatistical interpolation technique that deals with many 

variations such as, universal kriging (UK), simple kriging (SK), ordinary kriging (OK) and 

cokriging (CK). In this study, the adopted geostatistical variant for interpolation is OK, which 

is frequently the most used alternative (Arslan, 2012; Bradaï et al., 2016). Arslan (2012) and 

Bradaï et al. (2016) used OK and IK to interpolate groundwater salinity in Bafra plain (Turkey) 

and Lower Cheliff plain (Algeria), respectively. They used the cross validation method to check 

the accuracy of the results. Xie et al. (2011) applied OK to estimate the spatial distribution of 

soil heavy metal concentrations at unsampled points in Beijing (China).  Táany et al. (2009) 
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employed OK to assess the spatio-temporal variability of groundwater level fluctuations in the 

Amman–Zarqa basin. 

Hydrogeochimical methods and geostatistics are widely used to study the groundwater quality 

(Sajil Kumar et al., 2013). In the current chapter, 136 groundwater samples have been collected 

during two campaigns (dry and wet season). The aim of the chapter is to assess the quality of 

groundwater and its suitability for drinking and irrigation purposes in El Outaya basin based on 

hydrogeochemical analysis (WQI, Piper diagram, Saturation indices (SI), Sodium absorption 

ratio (SAR), Sodium percentage (Na+%), Riverside diagram and Wilcox diagram) and 

geostatistical analysis (analyze the spatial and temporal distribution of WQI and EC using OK 

method). 

2. Materials and methods  

2.1. Groundwater sampling, laboratory and data analysis 

Over two field campaigns, a total of 136 groundwater samples were collected using a global 

positioning system (GPS) device from 68 wells located in agricultural farms distributed along 

the study area. The first campaign was after the dry season (3rd to 24th September 2017) and the 

second campaign was after the wet season (20th April to 10th May, 2018). The samples were 

collected after a few minutes of pumping in 1L (one liter) polyethylene bottles are rinsed with 

distilled water and with the same groundwater before filling. The bottles after labelling are 

transported in coolers and conserved into the laboratory at a temperature of 4°C in order to 

avoid any chemical modification. As mentioned above, in climatic aspect of the study area, the 

dry season is spread out over the whole year so the terms “dry season” and “wet season” are 

used to make the difference between the first campaign and second campaign, respectively. 

Physicochemical parameters such as temperature, pH and electrical conductivity (EC) are 

measured in the field using a portable multi-parameter (WTW multi 3430). The total dissolved 

solids (TDS) is determined by the relation TDS = 0.64 EC (Kawo and Karuppannan, 2018; 

Brown et al., 1970).   The major cations (Ca2+, Mg2+, Na+ and K+) and the major anions (Cl-, 

NO3
-, HCO3

- and SO4
2-) are analyzed in the laboratory of the scientific and technical research 

center on arid regions (Biskra, Algeria) adopting standard procedures (Rodier et al., 2009). UV-

visible spectrophotometer is used to measure NO3
- and SO4

-2. In this chapter, the analyses of 

65 groundwater samples are employed due to the absence of certain parameter values in 3 

samples. 
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Titration method (Mohr method) is used to determine the concentration of Cl-. The total 

hardness, Ca2+ and Mg2+ are measured by EDTA titrimetric method. HCO3
- concentrations is 

determined by complexometric titration method. Flame photometer (JENWAY) is considered 

to measure Na+ and K+. The reliability of the chemical analysis is checked using ion balance 

errors (IBE), which were generally < ±10%, most of them (80%) were < ±5% (Sun et al., 2016; 

Kim et al., 2015; Soumya and Kamble, 2017). 

Descriptive statistics are determined using SPSS software v22.0. DIAGRAMMES software 

v6.51 is used for making Piper, Riverside and Wilox diagrams. Saturations indices are 

calculated using speciation code PHREEQC 2.8. VARIOWIN software v2.2 is taken into 

consideration for making and fitting omnidirectional semivariograms. ArcGIS 10.2 software 

with Geostatistical Analyst Extension is applied to prepare various maps. Multivariate 

statistical analysis is performed using statistica v13.  

2.2. Multivariate statistics 

Multivariate statistics refer to the methods that analyze the simultaneous effect and relationships 

of more than two variables (Marinković, 2008). Multivariate statistics involves principal 

component analysis (PCA) and factor analysis (FA).  

PCA is a multivariate statistical technique used to transform a set of variables into new 

uncorrelated variables or principal components (PCs) with minimum loss of the original 

information. In general, it is objective to reduce a large number of variables into few factors, 

which can be easily interpreted (Dhanasekarapandian et al., 2016). PCs are the orthogonal 

variables, generated by multiplying the original correlated variables with eigenvector, which 

gives the loadings. These loadings of PCs are strong if they are > 0.75, moderate if they are 

between 0.5 and 0.75, and weak if they are between 0.4 and 0.5 (Trikey et al., 2017). PCs are 

expressed as follows: 

𝑧𝑧𝑖𝑖𝑖𝑖 =  𝑎𝑎𝑖𝑖1𝑥𝑥1𝑖𝑖 +  𝑎𝑎𝑖𝑖2𝑥𝑥2𝑖𝑖 + 𝑎𝑎𝑖𝑖3𝑥𝑥3𝑖𝑖 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖  (1) 

 where z is the component loading, a is the component score, x is the measured value of a 

variable, i is the component number, j is the sample number and m is the total number of 

variables (Abbasi and Abbasi, 2014). 

Factor Analysis (FA) is conducted after PCA, where the aim was to reduce the contribution of 

less significant variables generated from PCA. The new group of variables (Varifactors) 
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obtained by FA are extracted through rotating the axis defined by PCA, where the concept is 

expressed as follows: 

𝑧𝑧𝑖𝑖𝑖𝑖 =  𝑎𝑎𝑓𝑓1𝑓𝑓1𝑖𝑖 +  𝑎𝑎𝑓𝑓2𝑓𝑓2𝑖𝑖 + 𝑎𝑎𝑓𝑓3𝑓𝑓3𝑖𝑖 + ⋯+ 𝑎𝑎𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑓𝑓𝑖𝑖 (2) 

Herein, z is the measured value of a variable, a is the factor loading, f is the factor score, e is 

the residual term accounting for errors or other sources of variation, i is the sample number, j 

is the variable number, and m the total number of factors (Singh et al., 2014). 

2.3. Water quality index  

Water quality index (WQI) is a very useful technique for the assessment of groundwater quality 

for drinking purposes. It reflects the combination influence of every water quality parameter on 

the overall quality of water (Vasanthavigar et al., 2010; Deepa and Venkateswaran, 2018). The 

method is adopted for the calculation of WQI used by several authors (Yidana and Yidana, 

2010; Ketata et al., 2012; Kumar and James, 2013; Shabir and Ahmad, 2015; 

Dhanasekarapandian et al., 2016; Deepa and Venkateswaran, 2018). The computing procedure 

of the WQI contains three steps. In the first step, each of the 10 parameters (TDS, pH, Cl-, NO3
-

, HCO3
-, SO4

2-, Ca2+, Mg2+, Na+ and K+) are assigned a weight (𝑤𝑤𝑖𝑖) from 1 to 5 depending on 

their importance in the overall quality of water and possible health effects. In the second step, 

the relative weight (𝑊𝑊𝑖𝑖) is calculated by using the following equation (Eq. 3): 

𝑊𝑊𝑖𝑖 =  𝑤𝑤𝑖𝑖 ∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

�  (3) 

where 𝑊𝑊𝑖𝑖 is the relative weight, 𝑤𝑤𝑖𝑖 is the assigned weight of each parameter, and n is the 

number of parameters.  

In the third step, a quality rating scale (𝑞𝑞𝑖𝑖) of each parameter is computed according to the 

following equation: 

𝑞𝑞𝑖𝑖 =  𝐶𝐶𝑖𝑖 𝑆𝑆𝑖𝑖� × 100 (4) 

Herein, 𝑞𝑞𝑖𝑖 is the quality rating scale, 𝐶𝐶𝑖𝑖, 𝑆𝑆𝑖𝑖 are respectively, the concentration and the World 

Health Organization (WHO) standards for drinking water (WHO, 2011) of each parameter in 

each groundwater sample (mg/l). 

For computing WQI, the sub index (𝑆𝑆𝐼𝐼𝑖𝑖) is determined first for each parameter (Eq. 5), which 

is then used to calculate the WQI for each sample (Eq. 6)  

𝑆𝑆𝐼𝐼𝑖𝑖  =  ∑𝑊𝑊𝑖𝑖 × 𝑞𝑞𝑖𝑖           (5) 

46 
 



 Chapter III      Mapping and assessment of groundwater quality 

𝑊𝑊𝑊𝑊𝐼𝐼 =  ∑𝑆𝑆𝐼𝐼𝑖𝑖            (6) 

The calculated relative weights, the assigned weights, and the WHO standards are given in 

Table 10 (for HCO3
-, WHO standards were not available, because of that, the US Public Health 

Service value is used). The computed WQI are classified into five categories as follows: 

Excellent water (WQI < 50); Good water (50 ≤ WQI < 100); Poor water (100 ≤ WQI < 200); 

Very poor water (200 ≤ WQI < 300); Water unsuitable for drinking (WQI ≥ 300). 

2.4. Ordinary Kriging (OK) 

Geostatistical methods are reliable techniques for mapping and interpolating groundwater 

qualitative parameters (Rawat et al., 2016; Maroufpoor et al., 2017). The key function in 

geostatistics is the variogram (γh), which expresses the spatial dependence between 

neighbouring observations (Eldeiry and Garcia, 2011; Arslan, 2012). It can be defined as half 

the average squared difference between the attribute values at all points separated by a distance 

h as follows:  

𝛾𝛾(ℎ) = 1
2𝑁𝑁(ℎ)

∑ [𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥𝑖𝑖 + ℎ)]2 𝑁𝑁(ℎ)
𝑖𝑖=1         (7) 

Herein, 𝛾𝛾(ℎ) is the experimental semivariance value for all pairs at a lag distance h; Z(𝑥𝑥𝑖𝑖) and 

Z(𝑥𝑥𝑖𝑖 + h) are the studied variable values at locations 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 + h, reserctively; 𝑁𝑁(ℎ) is the 

number of observation pairs separated by a distance h (Isaaks and Srivastava, 1989; Arslan, 

2012).  

Kriging methods are powerful interpolation stochastic techniques used to find the linear 

unbiased estimate (Ahmadi and Sedghamiz, 2007). Among the various methods of Kriging, in 

this study ordinary Kriging (OK) approach is used to interpolate WQI and EC values for 

unsampled locations. OK so called the best linear unbiased estimate (BLUE), where it aims at 

minimizing the error variance (Isaaks and Srivastava, 1989). The form of OK estimator is 

defined as follows: 

𝑍𝑍∗(𝑥𝑥0) = ∑ 𝜆𝜆𝑖𝑖 .𝑍𝑍(𝑥𝑥𝑖𝑖) 𝑛𝑛
𝑖𝑖=1        𝑤𝑤𝑖𝑖𝑤𝑤ℎ        ∑ 𝜆𝜆𝑖𝑖 = 1 𝑛𝑛

𝑖𝑖=1      (8) 

where 𝑍𝑍∗(𝑥𝑥0) is the estimated value at location 𝑥𝑥0,  𝑍𝑍(𝑥𝑥𝑖𝑖) is the measured value at location 𝑥𝑥𝑖𝑖, 

𝜆𝜆𝑖𝑖 is the weighting factor assigned to 𝑍𝑍(𝑥𝑥𝑖𝑖) and 𝑛𝑛 is the number of observations (Journel, 1986; 

Bradaï et al., 2016). The weights 𝜆𝜆𝑖𝑖  are determined in such a way as to satisfy the optimising 

conditions of unbiasedness (Eq. 7) and minimum variance (Eq. 8), (Delhomme 1978).   

 𝐸𝐸{𝑍𝑍∗(𝑥𝑥0) − 𝑍𝑍(𝑥𝑥0)} = 0           (9) 
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𝑉𝑉𝑎𝑎𝑉𝑉{𝑍𝑍∗(𝑥𝑥0) − 𝑍𝑍(𝑥𝑥0)} = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 (10) 

The fitting of theoretical semivariogram (spherical, experimental or Gaussian) is an important 

step in Kriging methods. The important characteristics of the semivariogram are range (a), sill 

(C0 + C), and nugget effect (C0). In this study, the indicative goodness of fit (IGF) of the 

software VARIOWIN is used to fit the theoretical semivariogram. It indicates a good fit when 

it is as close as possible to zero (Pannatier, 1996). 

Prediction performances are checked using cross validation method. To provide an accurate 

prediction models, the mean standardized error (MSE) should be near to zero, the root mean 

square error (RMSE) should be as small as possible (used when comparing models), and the 

root mean square standardized error (RMSSE) should be near to one (Johnston et al., 2003; 

Arslan, 2012). 

𝑀𝑀𝐸𝐸 =  1
𝑛𝑛
∑ [𝑍𝑍∗(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥𝑖𝑖)]𝑛𝑛
𝑖𝑖=1         (11) 

𝑀𝑀𝑆𝑆𝐸𝐸 =  1
𝑛𝑛
∑ [𝑍𝑍∗(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥𝑖𝑖)]/𝑛𝑛
𝑖𝑖=1 𝜎𝜎(𝑥𝑥𝑖𝑖)       (12) 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = � 1
𝑛𝑛
∑ [𝑍𝑍∗(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1        (13) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝐸𝐸 = � 1
𝑛𝑛
∑ [𝑍𝑍∗(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥𝑖𝑖)/𝜎𝜎(𝑥𝑥𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1       (14) 

where 𝑍𝑍∗(𝑥𝑥𝑖𝑖) is the estimated value, 𝑍𝑍(𝑥𝑥𝑖𝑖) is the measured value and 𝜎𝜎(𝑥𝑥𝑖𝑖) is the estimation 

variance. 

The normal distribution of WQI and EC is assessed using the Shapiro-Wilk (SW) test.  The 

nugget to sill ratio (𝐶𝐶0 (𝐶𝐶 + 𝐶𝐶0)⁄ ) was considered to define the different classes of spatial 

dependence for the data as follows: a ratio ≤ 25% referring to a strong spatial dependence, a 

ratio between 25% and 75% indicates a moderate spatial dependence, and a ratio > 75% for a 

weak spatial dependence (Cambardella et al., 1994). 

3. Results and discussion  

3.1. Hydrochemistry of groundwater 

3.1.1. Descriptive statistics 

A statistical summary of physicochemical groundwater parameters for the dry season as also 

wet season is given in Table 5. The pH of groundwater samples is found slightly alkaline (pH 

> 7). It ranges from 7.21 to 7.94 with a mean value of 7.64 for the dry season and from 7.19 to 
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7.84 with a mean of 7.65 for the wet season. The average value of EC is the same for both 

seasons (average of 4 dS m-1). During the dry season, EC varies from 1.14 dS m-1 to 7.61 dS m-

1, while during the wet season, EC varies from 1.13 dS m-1 to 7.07 dS m-1. The coefficient of 

variation of 39.89 % and 39.21 % for dry and wet season, respectively, explains the spatial 

heterogeneity of groundwater EC. The TDS values range from 729.6 mg/l to 4870.4 mg/l (mean 

of 2560.1 mg/l) and from 723.2 mg/l to 4524.8 mg/l (mean value of 2559.6 mg/l) for dry and 

wet seasons, respectively. However, more than 90 % of the groundwater samples are above the 

permissible limit (1000 mg/l) recommended by the WHO (2011).  

The relative abundance of major cations and major anions in groundwater samples for the two 

campaigns is in the sequence as Na+ > Ca2+ > Mg2+ >K+ and Cl- > SO4
-2 > HCO3

- > NO3
-. The 

Na+ and Ca2+ are the dominant cations, with sodium ranging from 108.79 mg/l to 1406.82 mg/l 

(average = 595.38 mg/l) and from 56.63 mg/l to 1365.09 mg/l (average = 565.21 mg/l) for the 

dry season and the wet season, respectively. The calcium is the second dominant cation, which 

varies between 88 – 508 mg/l with an average of 249.29 mg/l for the dry season and between 

80 – 612 mg/l with an average of 240.62 mg/l for the wet season. The Cl- and SO4
-2 are the 

dominant anions, with chloride ranging between 195.25 – 2236.50 mg/l (average = 908.25 mg/l) 

for the dry season and between 213 – 1704 mg/l (average = 859.65 mg/l) for the wet season. 

The sulphate varies from 202.11 to 2122.11 mg/l, with a mean of 858.17 mg/l for the dry season 

and from 180.45 to 1920 mg/l, with a mean 800.76 mg/l for the wet season. The concentrations 

of NO3
- ranges between 6.72 - 97.56 mg/l and 6.80 - 97.84 mg/l with mean values of 42.57 mg/l 

and 39.73 mg/l for the dry season and wet season, respectively. The high concentrations of 

nitrates (11% of groundwater samples exceeding the permissible limit (50 mg/l) recommended 

by the WHO (2011) for both seasons) may be due to the excessive use of agricultural fertilizers 

and the existence of septic tanks noticed near the sampled wells. 

3.1.2. Correlation coefficients  

Pearson’s correlation matrix is used to analyze the interrelationship between groundwater 

physicochemical variables and their diverse sources. Tables 6 and 7 represent correlation 

coefficient matrices at a significance level 0.05 of the dry season and wet season, respectively. 

The correlation coefficients among the studied parameters have shown approximately, a similar 

trend. According to these tables, EC parameter has highest correlation with Na+ (r = 0.861 and 

r = 0.878 for the dry and wet season, respectively) and Cl- (r = 0.883 and r = 0.943 for the dry 

and wet season, respectively). It also has high correlation with Mg2+ (dry season 0.833 and wet 

season 0.812), Ca2+ (in dry season r = 0.738 and in wet season r = 0.798) and SO4- (r = 0.714 
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and 0.703 for dry and wet season, respectively). This indicates that these five elements are the 

main contributors to the salinity of groundwater in the study area (Figure 21). 

Table 5: Statistical summary of physicochemical parameters 

 

There is no correlation between NO3
- ‒ EC in both seasons (r = 0.012 in dry season and r = -

0.017 in wet season). The poor correlation of NO3
- with the other constituents indicates its 

exogenous origin of the hydrogeological environment in the study area, which could be from 

agricultural activities. High positive correlation coefficients are observed between Na+ ‒ Cl- 

(0.866 and 0.886 in dry and wet season, respectively), Mg2+ ‒ Cl- (0.750 in dry season and 0.734 

in wet season), Mg2+ ‒ SO4
- with correlation values of 0.738 in the dry season and 0.745 in the 

Parameters Period Minimum Maximum Mean 
Standard 

deviation  

Coefficient of 

variation (%)        

CE (dS m-1) Dry season 1.14 7.61 4.00 1.60 39.89 

 Wet season 1.13 7.07 4.00 1.57 39.21 

TDS (mg/l) Dry season 729.60 4870.40 2560.1 1021.6 39.89 

 Wet season 723.20 4524.80 2559.6 1003.5 39.21 

pH Dry season 7.21 7.95 7.64 0.14 1.87 

 Wet season 7.19 7.84 7.56 0.15 2.04 

NO3
- (mg/l) Dry season 6.72 97.56 42.57 19.64 46.14 

 Wet season 6.80 97.84 39.73 19.76 49.73 

SO4
-2 (mg/l) Dry season 202.11 2122.11 858.17 416.79 48.57 

 Wet season 180.45 1920.00 800.76 423.46 52.88 

Cl- (mg/l) Dry season 195.25 2236.50 908.25 458.07 50.43 

 Wet season 213.00 1704.00 859.65 403.37 46.92 

HCO3
-(mg/l) Dry season 197.64 549.00 305.83 58.86 19.24 

 Wet season 139.08 387.96 235.03 34.23 14.56 

Ca2+ (mg/l) Dry season 88.00 508.00 249.29 116.25 46.63 

 Wet season 80.00 612.00 240.62 126.72 52.67 

Mg2+ (mg/l) Dry season 2.40 340.80 128.86 66.85 51.88 

 Wet season 60.00 309.60 138.75 59.14 42.62 

Na+ (mg/l) Dry season 108.79 1406.82 595.38 241.24 40.52 

 Wet season 56.63 1365.09 565.21 237.24 41.97 

K+ (mg/l) Dry season 2.73 19.98 8.60 2.98 34.70 

 Wet season 2.73 17.26 8.08 2.56 31.72 
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wet season, Ca2+ ‒ SO4
- with correlation values of 0.728 and 0.743 in dry and wet season, 

respectively. These associations are linked to the chloride minerals, mainly halite (NaCl), and 

the sulfate minerals such as gypsum (CaSO4  ‒ 2H2O), anhydrite (CaSO4) and epsomite (MgSO4 

‒ 7H2O), which are widespread in arid regions, where they are the principal cause of salinity in 

groundwater.  

Table 6: Correlation matrix between groundwater variables of the dry season  

Variables NO3
- SO4

- Cl- HCO3
- Ca2+ Mg2+ Na+ K+ pH EC 

NO3
-  1.000 0.281 -0.186 -0.275 0.011 0.209 -0.090 -0.139 0.086 0.012 

SO4
-   1.000 0.431 0.183 0.728 0.738 0.514 0.047 -0.436 0.714 

Cl-     1.000 0.556 0.642 0.750 0.866 0.431 -0.570 0.883 

HCO3
-     1.000 0.306 0.395 0.520 0.071 -0.391 0.522 

Ca2+     1.000 0.680 0.446 0.040 -0.629 0.738 

Mg2+       1.000 0.635 0.064 -0.620 0.833 

Na+        1.000 0.537 -0.354 0.861 

K+        1.000 -0.002 0.345 

pH         1.000 -0.526 

EC           1.000 

Underlined coefficients exhibit a significant correlation at the 0.05 level, n =65 
Underlined and bold coefficients exhibit a strong correlation coefficient r > 0.700 

Table 7: Correlation matrix between groundwater variables of the wet season  

Variables NO3
- SO4

- Cl- HCO3
- Ca2+ Mg2+ Na+ K+ pH EC 

NO3
- 1.000 0.265 -0.159 -0.366 0.133 0.295 -0.199 -0.124 -0.059 -0.017 

SO4
-  1.000 0.484 0.110 0.743 0.745 0.485 0.061 -0.477 0.703 

Cl-   1.000 0.400 0.687 0.734 0.886 0.248 -0.512 0.943 

HCO3
-    1.000 0.097 0.207 0.415 -0.048 -0.232 0.352 

Ca2+     1.000 0.804 0.484 0.008 -0.584 0.798 

Mg2+      1.000 0.545 -0.103 -0.659 0.812 

Na+       1.000 0.392 -0.325 0.878 

K+        1.000 0.167 0.239 

pH         1.000 -0.526 

EC          1.000 

Underlined coefficients exhibit a significant correlation at the 0.05 level, n =65 
Underlined and bold coefficients exhibit a high correlation coefficient r > 0.700 
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On the other hand, human activities, such as inappropriate cultural practices that we have 

observed in the fields and the excessive exploitation of groundwater can contribute to the 

salinity of this precious resource. 

    

   

Figure 21: Relationship between different chemical elements (cations and anions) and 

groundwater EC (a, b: dry season; c, d: wet season) 

3.1.3. Multivariate statistical analysis 

Factor analysis with principal component extraction (FA/PCA) is carried out on 10 

physicochemical parameters data of two periods (dry sand wet season) for a better 

understanding of groundwater hydrochemistry. To minimize the complexity of the factor 

loadings and to make the structure simpler for interpretation, Equamax rotation method is taken 

into consideration. The orthogonal Equamax rotation is a combination of Varimax method, 

which simplifies factors, and the Quartimax method, which simplifies variables (Reemtsma and 

Ittekkot, 1992). 

Eigenvalues describe the maximized variance associated with the different factors and provide 

measures of the significance of these factors, where all the factors with eigenvalues of one or 

greater are considered significant (the factor with the highest eigenvalue is the most significant) 

(El Alfy et al., 2017). Equamax rotation is used to extract the main significant factors. 

Eigenvalues variation plotted against different factors is given in Figure 22. 

(a) (b) 

(c) (d) 
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Three factors are retained from the FA/PCA with Equamax rotation (Table 9, Figure 23), which 

explain 80.832 % and 81.475 % of the total variance and a cumulative eigenvalue of 8.083 and 

8.148 for the dry and wet season, respectively (Table 8). In the dry season, the first factor, 

accounting for 52.939 % of the total variance and an eigenvalue of 5.294, is characterized by 

strong positive loadings with sulfate (0.793), chloride (0.833), calcium (0.851), magnesium 

(0.913), sodium (0.732), and EC (0.924). In the wet season (accounting for 51.347 % of the 

total variance and an eigenvalue of 5.135), it is characterized by very high positive loadings 

with sulfate (0.814), chloride (0.855), calcium (0.882), magnesium (0.930), sodium (0.731) and 

EC (0.942). This factor represents the natural hydrogeochemical evolution of groundwater, 

which can be linked to the dissolution of rocks and minerals by chemical weathering.  

The second factor explains 16.292 % of the total variance with an eigenvalue of 1.629 in the 

dry season and 17.983 % of the total variance with an eigenvalue of 1.798 in the wet season. 

This factor is characterized by strong positive loadings with nitrate (0.875 in the dry season and 

0.823 in the wet season). F2 may be related to the contamination of groundwater by agricultural 

fertilizers and domestic septic tanks. 

The third factor explains 11.601 % of the total variance with an eigenvalue of 1.160 in the dry 

season and 12.146 % of the total variance with an eigenvalue of 1.215 in the wet season. It had 

strong loading with potassium (0.908 in the dry season and 0.924 in the wet season. This result 

can be explained by the impact of the use of potassium fertilizers on groundwater quality.  

Table 8: Eigenvalues, percent of variance, and cumulative 

 
Dry season Wet season 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Eigenvalue 5.294 1.629 1.160 5.135 1.798 1.215 

% of variance 52.939 16.292 11.601 51.347 17.983 12.146 

Cumulative 5.294 6.923 8.083 5.135 6.933 8.148 

Cumulative % 52.939 69.232 80.832 51.347 69.330 81.475 
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Table 9: Loading for the equamax rotated factor matrix of the three factors model explaining 

80.832 % and 81.475 % of the total variance in the dry season and wet season, respectively  

 Dry season Wet season 

Variables Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

NO3
- 0.063 0.875 -0.078 0.157 0.823 -0.153 

SO4
 - 0.793 0.411 -0.047 0.814 0.255 0.001 

Cl- 0.833 -0.271 0.376 0.855 -0.337 0.254 

HCO3
- 0.536 -0.585 -0.023 0.285 -0.782 -0.162 

Ca2+ 0.851 0.048 -0.158 0.882 0.135 -0.052 

Mg2+ 0.913 0.162 -0.010 0.930 0.125 -0.174 

Na+ 0.732 -0.129 0.585 0.731 -0.377 0.453 

K+ 0.129 -0.065 0.908 0.067 -0.013 0.924 

pH -0.736 -0.223 -0.285 -0.697 0.078 0.394 

EC 0.924 -0.013 0.299 0.942 -0.171 0.236 

 

 

   

Figure 22. Scree plot of eigenvalues (a: dry season, b: wet season) 
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Figure 23: 3D representation of loadings of Factor 1, factor 2 and factor 3 after equmax 

rotation (a: dry season, b: wet season) 
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The coordinate analysis of cases after equamax rotation helps to determine the contribution of 

each water samples in each factorial axis. Score < -0.5 indicates high negative contribution, -

0.5 < score < 0 indicates low negative contribution, 0 < score < 0.5 yields low positive 

contribution and score > 0.5 shows high positive contribution (Figure 24). 

The mineralization characteristic of the F1 axis is identified by 19 samples and 17 samples as 

high positive contributions in the dry season, and wet season, respectively, and most of them 

are located in the middle of the study area. However, 27 samples for the dry season and 23 

samples for the wet season have high negative contribution, where the majority are located in 

the western part of the study area (Figures 25a and 25d). 

The contamination by nitrate is determined by factor 2 by 20 samples for the dry season and 16 

samples for the wet season with high positive contribution, while 18 samples and 22 samples 

display high negatives contribution for the dry and wet season, respectively (Figures 25b and 

25e).  

Groundwater samples with levels of potassium justifying factor 3 with high positive 

contribution are 16 samples for the dry season and 12 samples in the wet season. However, 22 

samples (dry season) and 18 samples (wet season) make high negative contribution (Figures 

25c and 25f).  
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Figure 24: Spatial distribution of scores of the different factors (a, b and c are scores of F1, 

F2 and F3, respectively in the dry season, d, e and f are scores of F1, F2 and F3, respectively 

in the wet season)  

3.1.4. Hydrochemical facies  

The hydrochemical facies of the groundwater samples is determined by plotting the 

concentrations of cations and anions (meq/l) in the trilinear Piper diagram, which includes two 

triangles and one diamond shaped field (Piper, 1944; Sreedhar and Nagaraju, 2017). The 

triangles of cations (Figure 25) indicates that water samples fall into two groups: the first is 

water with a dominance of sodium and the second group with non-dominant cation. The triangle 

of anions shows the dominance of chloride and sulphate. The water samples can be grouped 

into two main hydrochemical facies based on their position on the diamond field. The first 

hydrochemical facies is the (Na+ + K+) − (Cl- + SO4
-2) type, where the alkalis exceed the alkaline 
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earths and the strong acids exceed the weak acids. The second is the (Ca2+ + Mg2+) − (Cl- + 

SO4
-2) type, where the alkaline earths exceed the alkalis. 

 

Figure 25: Piper trilinear diagram showing the main hydrochemical facies 

3.1.5. Saturation index 

Chemical equilibrium for six mineral species (anhydrite, aragonite, calcite, dolomite, gypsum 

and halite) is examined by calculating the saturation index (SI), which is expressed as follows:  

𝑆𝑆𝐼𝐼 = log (𝐼𝐼𝐼𝐼𝐸𝐸/𝐾𝐾𝐾𝐾)          (15) 

where 𝐼𝐼𝐼𝐼𝐸𝐸 is the ion activity product and 𝐾𝐾𝐾𝐾 is the solubility constant of the mineral. If the 

groundwater is exactly saturated with a particular mineral species then SI = 0 (equilibrium 

state); while SI > 0 indicates oversaturation with respect to the mineral species (precipitation 

state) and SI < 0 indicates under saturation (dissolution state) (Zaidi et al., 2017; Kant et al., 

2018). 

According to the saturation indices, calculated for the two seasons and plotted on graphs (Figure 

26), all groundwater samples are oversaturated with respect to carbonate minerals (aragonite, 

calcite and dolomite), whereas, evaporate minerals (anhydrite, gypsum and halite) are under 

saturated. The precipitation of carbonate minerals could explain the limited enrichment of 

groundwater in bicarbonates, whereas the dissolution of gypsum and anhydrite (Eq. 16 and Eq. 

17) could explain the enrichment of sulphate. The increase of the concentration of calcium and 

magnesium due to reverse cation exchange as well as the dissolution of gypsum and anhydrite 

oversaturate the groundwater with respect to calcite and dolomite and causes its precipitation. 
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The dissolution of the halite (Eq. 18), which is considerably under saturation, is the primary 

source of high concentrations of sodium and chloride in the groundwater samples. 

CaSO4⋅2H2O → Ca2+ + SO4
2− + 2H2O       (16) 

CaSO4 → Ca2+ + SO4
2−         (17) 

NaCl → Na+ + Cl−           (18) 

        

Figure 26: Plots of saturation indices (SI) of some mineral species (dry and wet season) 

3.1.6. Base ion exchange 

The ion exchange reactions between the groundwater and aquifer environment during residence 

or movement can be inferred by using the chloro-alkaline indices (CAI 1 and CAI 2). They are 

proposed by Schoeller (1977 in Zaidi et al., 2017) and they are calculated using the following 

formulas: 

𝐶𝐶𝐼𝐼𝐼𝐼 1 =  𝐶𝐶𝐶𝐶
− −(𝑁𝑁𝑎𝑎++𝐾𝐾+)

𝐶𝐶𝐶𝐶−
         (19) 

𝐶𝐶𝐼𝐼𝐼𝐼 1 =  𝐶𝐶𝐶𝐶− −(𝑁𝑁𝑎𝑎++𝐾𝐾+)
(𝐶𝐶𝐶𝐶−+𝐻𝐻𝐶𝐶𝐻𝐻3−+𝑆𝑆𝐻𝐻42−+𝑁𝑁𝐻𝐻3−)

        (20) 

where all the ions are in meq/l 

A positive index (CAI) indicates an exchange between sodium and potassium in groundwater 

with calcium and magnesium in the aquifer environment (direct exchange). On the other hand, 

a negative index (CAI) indicates an exchange between calcium and magnesium in groundwater 

with sodium and potassium in the aquifer environment (reverse exchange). About 54 % of the 

samples in the dry season (Figure 27a) and 57 % f samples in the wet season (Figure 27b) show 

negative values for the both indices. The results indicate a slight dominance of the reverse ion 

exchange in the study area.  
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Figure 27: Chloro-alkaline indices (CAIs). a: dry season, b: wet season 

3.1.7. Ionic relationships 

Stoichiometric relations among dissolved species can explain the origin and the process of 

groundwater salinization (Sun et al., 2016). According to the ionic relationships (Figure 28), 

the ionic behavior of groundwater has been decided during the dry season and the wet season,  

which are almost the same. From Figures 29a and 29b, the increase of calcium and magnesium 

does not correlate with bicarbonate, which indicates the low contribution of calcite and dolomite 

dissolution to groundwater mineralization (Aouidane et al. 2017). The relationship between 

calcium and bicarbonate (Figures 29b) shows that the samples are positioned above the 1:1 line, 

indicates an excess of calcium over bicarbonate, which can be explained by the dissolution of 

gypsum with base exchange. Figures 29c shows the relationship between sodium and chloride. 

The samples have a stoichiometric distribution around the 1:1 line, which indicates the 

dominance of halite dissolution. According to the good correlation between calcium and sulfate 

(Figures 29d), the mineralization of groundwater is influenced by the gypsum and anhydrite 

dissolution. The majority of samples are distributed below the 1:1 line and show a relative 

deficit in calcium relative to sulfate, which could be to cation exchange where calcium ions are 

replaced sodium ions. Figures 29e shows a weak correlation between the alkalis (Na+ + K+) and 

and the alkaline earth elements (Ca2+ + Mg2+), (R2 = 0.34 in the dry season and 0.29 in the wet 

season) with samples falling on the both sides of the 1:1 line.       

(a) (b) 
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Figure 28: The bivariate diagrams: (a) HCO3- vs Mg relationship, (b) HCO3- vs Ca2+ 

relationship, (c) Na+ vs Cl- relationship, (d) Cl- vs Na+/Cl- relationship, (d) Na+ + K+ vs 

Ca2+ + Mg2+ relationship, (e) SO42- vs Ca2+ relationship. 

The relationship between (Ca + Mg) - (HCO3 +SO4) and (Na + K) – Cl gives a clear view of 

the cation exchange process in groundwater (Farid et al., 2015; Aouidane et al., 2017). As 

shown in Figure 29, the groundwater samples in the study area define a straight line with 

determination coefficients of 0.80 and 0.57 for the dry and wet season, respectively, which 

confirms the participation of sodium, potassium, calcium and magnesium in cation exchange 

reactions. This graph supports the hypothesis that groundwater in El-Outaya is the influenced 

by two primary processes: rock dissolution as well as base exchange. 

(a) (b) 

(c) (d) 

(e) 
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Figure 29: Correlation diagram between [(Ca2+ + Mg2+) - (HCO3- + SO42-) and (Na+ + 

K+) – Cl-] (meq/l) 

3.2. Spatial variability of hydro-chemical parameters 

The spatial variability maps of pH, Ca2+, Mg2+, Na+, K+, Cl-, HCO3
- and SO4

2- have been 

generated using inverse distance weighted interpolation method. Spatial distribution of nitrate 

will be studied separately in the next chapter. 

3.2.1. Potential Hydrogen (pH) 

Spatial variability of pH concentrations are shown in Figure 30, which indicates that pH values 

of groundwater in the study area vary from 7.21 to 7.95 in the dry season and from 7.19 to 7.84 

in the wet season. This shows that groundwater in El-Outaya plain is mainly neutral to lightly 

alkaline but falls in the safe limit in terms of drinking water.    

 

Figure 30: Spatial variability of pH (a: dry season, b: wet season) 
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3.2.2. Calcium (Ca2+ mg/l) 

Figure 31: shows the spatial distribution of Ca2+, where its concentrations vary between 88 mg/l 

and 508 mg/l in the dry season and between 80 mg/l – 612 mg/l in the wet season. The maps 

indicate almost the same spatial variation with a slight increase of concentrations in the western 

part of the study area and a slight decrease of concentrations in the middle of the study area.     

 

Figure 31: Spatial variability of Ca2+ (a: dry season, b: wet season) 

3.2.3. Magnesium (Mg2+ mg/l) 

Figure 32 is for the spatial variability maps of Mg2+. It is obvious from these maps that it has 

been observed mostly the middle part of the plain high concentrations, while low concentrations 

are noticed in the western part of the plain.    

 

Figure 32: Spatial variability of Mg2+ (a: dry season, b: wet season) 

3.2.4. Sodium (Na+ mg/l) 

The spatial distribution of sodium ion concentrations in groundwater of El-Outaya plain is 

shown in Figure 33. The maps indicate that the study area is characterized generally by high 
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concentrations of Na+. The highest values are observed in the northeastern part of the plain, near 

of Djebel El-Maleh, and in southeastern part of the plain (depression of Salga Saadoune).       

 

Figure 33: Spatial variability of Na+ (a: dry season, b: wet season) 

3.2.5. Potassium (K+ mg/l) 

The spatial distribution maps of potassium (Figure 34) indicate the almost the same spatial 

variation between the dry season (concentrations are varied from 2.73 mg/l to 19.98 mg/l) and 

the wet season (concentrations are varied from 2.73 mg/l to 17.26 mg/l).  

 

Figure 34: Spatial variability of K+ (a: dry season, b: wet season) 

3.2.6. Chloride (Cl- mg/l) 

The spatial variability maps of chloride in El-Outaya plain (Figure 35) indicate its variability 

from a region to another, where the high concentrations are observed near the depression of 

Selga Saadoune (southwestern region) and near the urban area of El-Outaya city. The low 

concentrations of Cl- are observed in the western region (Elmazouchia) and in the the extreme 

eastern part of the study area (Branis).  
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Figure 35: Spatial variability of Cl- (a: dry season, b: wet season) 

3.2.7. Sulfate (SO42- mg/l) 

According to the spatial distribution maps of sulfate concentrations in El-Outaya plain (Figure 

36), the groundwater in the area of investigation contains Cl- exceeding largely the permissible 

limit of WHO. The highest concentrations are in the middle of the study area and near to El-

Hzima region, and the lowest concentrations are in the western part of the plain (Elmazouchia 

region).  

 

Figure 36: Spatial variability of SO4
2- (a: dry season, b: wet season) 

3.2.8. Bicarbonate (HCO3- mg/l)  

Figure 37 indicates the spatial variation maps of bicarbonate concentrations in the dry and wet 

season. From these maps, it is possible to observe that mostly the eastern part of the study 

area has highest concentrations of HCO3
-. In the dry season, the concentrations range is from 

197.64 mg/l to 549 mg/l. However, a decrease in HCO3
- concentrations is observed during the 

wet season (139.08 mg/l to 387.96 mg/l). 
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Figure 37: Spatial variability of HCO3
- (a: dry season, b: wet season) 

3.3. Assessment of groundwater for drinking purpose 

3.3.1. Data distribution 

The water quality for drinking purposes is assessed based on WQI. The spatial distribution 

maps of WQI in the study area for both seasons are prepared using OK. The OK method works 

better with normally distributed data (Arslan, 2012). The statistic value of Shapiro-Wilk test is 

highly significant with 0.145 and 0.269 for dry season and wet season, respectively. The 

skewness and the kurtosis values are close to zero with 0.361 and -0.462 for the dry season, 

0.137 and -0.748 for the wet season, respectively (Table 11), which validate the normal 

distribution of the calculated WQI (Figure 38). 

Table 10: Relative weights and WHO standards of chemical parameters  

Parameters WHO Standards Weight (wi) Relative weight (Wi) 

TDS (mg/l) 1000 4 0.1290 

pH 8.5 3 0.0968 

NO3
- (mg/l) 50 5 0.1613 

SO4
-2 (mg/l) 250 4 0.1290 

Cl- (mg/l) 250 4 0.1290 

HCO3
- (mg/l) 120 1 0.0323 

Ca2+ (mg/l) 100 2 0.0645 

Mg2+ (mg/l) 50 2 0.0645 

Na+ (mg/l) 200 4 0.1290 

K+ (mg/l) 12 2 0.0645 

  ∑wi = 31 ∑Wi = 1 
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Table 11: Statistics and SW test of WQI 

WQI Min  Max Mean SW test Skewness  Kurtosis 

Dry season 86.39 406.09 230.6 0.145 0.361 -0.462 

Wet season 77 378.58 220.7 0.269 0.137 -0.748 

 
Figure 38: Scatter plot of the WQI normal distribution [(a) dry season, (b) wet season] 

3.3.2. Variography and cross validation 

The experimental omnidirectional variograms of the WQI (Figure 39) indicate that the 

exponential models suited better the WQI for both seasons. Table 12 shows the parameters of 

the variogram models. The nugget effect (C0) is at values 100 and 635.2; the partial sill (C) 

range is between 5720.7 and 4596.8; and the range is 11137 (m) and 14275 (m), for the dry 

season and wet season, respectively. The values of the nugget to sill ratio indicate a high spatial 

dependence of the calculated WQI. The cross validation (Table 13) yields an accuracy of the 

predictions for both seasons. ME and MES are close to zero. RMSES are close to one with a 

value of 1.027 for the dry season and 0.981 for the wet season. 

       

Figure 39: Omnidirectional variogram of the predicted WQI [(a) dry season, (b) wet season] 

(a) (b) 

(a) (b) 
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Table 12: Parameters of variogram models of WQI 

Period Model Nugget effect  Partial sill  
Range 

(m) 

Nugget 

ratio (%) 
IGF 

Dry season Exponential 100 5720.7 11137 1.72 3.53 * 10-2 

Wet season Exponential 635.2 4596.8 14275 12.14 1.46 * 10-2 

 

Table 13: Cross validation for WQI 

WQI ME MES RMSES 

Dry season -0.014 0.0038 1.027 

Wet season 0.104 0.004 0.981 

 

3.3.3. Spatial distribution of WQI 

It is obvious from the spatial distribution maps (Figure 40) that the groundwater in the study 

area is not of acceptable quality for human consumption. The prediction maps show almost the 

same overall spatial distribution of WQI for both seasons, only a slight difference is observed 

in the shape and the size of the area representing each class. In general, the groundwater quality 

decreases from the west (El Mazouchia and Oued Besbes) to the middle of the study area and 

from the east (Branis) to the north west of the study area. The very poor and unsuitable for 

drinking classes, represented by 58% of the groundwater samples for both seasons, are located 

in the middle of the study area and in the urban zone of El Outaya.  
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Figure 40: Prediction maps of the WQI [(a) Dry season, (b) Wet season] 
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3.4. Assessment of groundwater for irrigation purpose 

3.4.1. Alkali hazard (SAR) and salinity hazard (EC) 

Sodium adsorption ratio (SAR) is an important parameter in assessing the suitability of 

groundwater for irrigation purposes and it is defined by the following equation (USSLS 1954; 

Bouderbala, 2017): 

𝑆𝑆𝐼𝐼𝑅𝑅 = 𝑁𝑁𝑎𝑎+ �(𝐶𝐶𝑎𝑎2+ +  𝑀𝑀𝑀𝑀2+ 2)⁄⁄         (21) 

 where concentrations are expressed in meq/l.  

The calculated SAR values range between 2.14 and 17.51 with a mean of 7.70 for the dry season 

and from 1.15 to 16.92 with a mean of 7.25 for the wet season. The United States Salinity 

Laboratory Staff (USSLS 1954) constructed a diagram, called Riverside diagram, for 

classifying the irrigation water. The classification based on the integrated effect of SAR and 

EC. The Riverside diagram (Figure 41a) shows that the majority of the groundwater samples 

for both seasons fall in classes C4S2 and C4S3. The class C4S2 (21.54% for the dry season and 

26.15% for the wet season) indicates a high salinity hazard and medium alkalinity hazard, 

respectively. C4S3 (36.92% for the dry season and 27.69% for the wet season) indicates high 

salinity and high alkalinity hazard. Such categories can be used for irrigation on coarse textured 

or organic soils with good permeability and more tolerable crops should be selected. 7.69 % of 

the groundwater samples for the dry season and 9.23 % for the wet season fall in the C3S1 

category, indicating water of medium salinity hazard and low alkalinity hazard. The class C3S2 

(medium salinity and medium alkalinity) is represented by 6.15 % of the samples for the dry 

season and 4.62 % for the wet season. The classes of very high salinity and alkalinity (C5S3 

and C5S4) are represented by 27.69 % and 32.31 % for the dry and wet season, respectively. 

Such water is unsuitable for irrigation purpose (Raju and Ram 2011; Bouderbala 2017).  

3.4.2. Sodium percentage (Na%) 

High concentration of Na+ in irrigation water displaces the calcium and magnesium in the soil 

and affects the soil permeability (reduction of soil infiltration capacity) and the growth of plants. 

The combination of sodium with carbonate forms alkaline soils, while its combination with 

chloride forms saline soils. Sodium percentage is calculated using the following formula (Raju 

and Ram, 2011; Alharbi, 2018): 

𝑁𝑁𝑎𝑎+% =  𝑁𝑁𝑎𝑎++ 𝐾𝐾+

𝐶𝐶𝑎𝑎2++𝑀𝑀𝑀𝑀2++ 𝑁𝑁𝑎𝑎++𝐾𝐾+
 ∗ 100       (22) 
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where concentration are expressed in meq/l. 

The sodium percentage in the study area ranges from 33.46 % to 71.63 % and from 27.45 % to 

78.46 % with an average of 53.01 % and 58.67 % for the dry season and wet season, 

respectively. Wilcox’s diagram is widely used to assess the suitability of groundwater for 

irrigation by correlating Na+ % and EC. Wilcox diagram in Figure 41b illustrates that the 

majority of the groundwater samples are unsuitable for irrigation for the two seasons (69.23 % 

for the dry season and 72.31 % for the wet season). 16.92 % of the samples belongs to the 

doubtful category in the dry season and 13.85 % in the wet season. Only 13.85 % of the 

groundwater samples are good to permissible for irrigation in both the seasons, which indicates 

a high risk of deterioration of the soil structure in the study area using this groundwater for 

irrigation. 

        

Figure 41: (a) Riverside diagram, (b) Wilcox diagram 

3.5. Mapping of groundwater salinity (EC) 

3.5.1. Data distribution 

The prediction maps of EC are prepared using OK. Shapiro-Wilk test (with high significant 

values of 0.217 for the dry season and 0.080 for the wet season), kurtosis and skewness values 

(Table 14) validate the normal distribution of the groundwater EC for both seasons (Figure 42). 

(a) (b) 
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Figure 42: Scatter plot of the groundwater EC normal distribution [(a) dry season, (b) wet 

season] 

Table 14: Normal distribution test of groundwater EC 

EC SW test Skewness  Kurtosis 

Dry season 0,217 0,314 -0,439 

Wet season 0,080 0,059 -1,019 

 

3.5.2. Variography and cross validation 

Figure 43 shows that Gaussian model is the best fitted omnidirectional variogram of 

groundwater EC (for both seasons) obtained based on IGF. Table 15 summarizes the 

characteristics of the best fitted variograms. It is observed from Table 15 that the groundwater 

EC has a moderate spatial dependence in the dry season with a nugget to sill ratio of 27.68 and 

a high spatial dependence in the wet season with a nugget to sill ratio of 23.90. Low values of 

nugget effect indicate that groundwater EC is spatially correlated. However, nugget effect is 

the random error. The high values of the range shows a spatial continuity of the groundwater 

EC (Ahmadi and Sedghamiz, 2007; Bradaï et al., 2016). The results of cross validation (Table 

16) implies accurate predictions. The ME and MES were 0.009 and 0.004, 0.013 and 0.007 for 

the dry season and wet season; respectively. RMSES was 1,073 in the dry season and 1.021 in 

the wet season. 

(a) (b) 
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Figure 43: Omnidirectional variograms of the predicted EC [(a) dry season, (b) wet season] 

Table 15: Characteristics of variogram models for groundwater EC 

 

Table 16: Cross validation for groundwater EC 

EC ME MES RMSES 

Dry season (dS m-1) 0.009 0.004 1.073 

Wet season (dS m-1) 0.013 0.007 1.021 

 

3.5.3. Prediction maps of groundwater EC   

In general, the obtained maps of groundwater EC using OK (Figure 44) show the same overall 

spatial distribution of salinity for the two campaigns. The difference is in the shape and size of 

the area representing each irrigation class. The groundwater with salinity between 2.25 and 5 

dS m-1 (C4) is the dominant class in the west and east of the study area, which occupies 58.06 

% and 51.39 % of area in the dry and wet season respectively. The groundwater with very high 

salinity risk (C5) is localized in the middle of the study area, which is characterized by intense 

agriculture activities, and in the urban zone of El Outaya near Djebel Elmaleh. The area of this 

class has increased form 32.08 % in the dry season to 37.95 % in the wet season. The dominance 

of groundwater with high and very high salinity in the study area could be due to the intense 

exploitation of the aquifer, the effects of highly saline irrigation return flows on the groundwater 

Period Model 
Nugget effect  

(dS m-1)2 

Partial sill  

(dS m-1)2 

Range  

(m) 

Nugget 

ratio (%) 
IGF 

Dry season Gaussian 0.645 1.685 9960 27.68 8.85 * 10-3 

Wet season Gaussian 0.502 1.598 9737 23.90 4.78 * 10-3 

(a) (b) 
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and the dissolution of Triassic evaporitic materials in Djebel Elmaleh. The least salted water 

(class C3 with EC < 2.25 dS m-1) is located at the east (El Mazouchia and Oued Besbes) and at 

the ouest (Branis) of the study area. It occupies 9.87 % and 10.67 % of area in the dry and wet 

season, respectively. The low values of groundwater EC in the east and the west of the study 

area may be due the low thickness of the Neogene aquifer and the interaction between shallow 

and deep groundwater, enhanced by over pumping activities.  In the south east of the study area 

(Selga Saadoun), a depression (low elevation) with very high salinity is identified, which may 

be due to the result of the infiltration and recharge of groundwater with water accumulated from 

upstream farms.  The spatial distribution of groundwater EC shows generally increasing trends 

from the east to the center and from the west to the center of the study area.  
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Figure 44: Spatial distribution maps of groundwater EC [(a) Dry season, (b) Wet season] 

4. Conclusion 

Hydro-geochemical analyses and Ordinary Kriging are used to assess the suitability of 

groundwater for human consumption and agricultural uses in El Outaya basin. The results of 

hydro-geochemical analysis reveal that Na+ and Ca2+ are the dominant cations and Cl- and SO4
-

2 are the dominant anions in the groundwater. The trilinear Piper diagram shows the prevalence 

of (Na+ + K+) − (Cl- + SO4
-2) and (Ca2+ + Mg2+) − (Cl- + SO4

-2) hydrochemical facies. The 

saturation indices indicate that the dissolution of evaporitic rocks (halite, calcite and anhydrite) 

and reverse ion exchange are the main hydrochemical processes that control the groundwater 

chemistry as a result of rock-water interaction.  

WQI shows that the majority of groundwater samples are very poor or unsuitable for human 

consumption. The spatial distribution maps of WQI reveal that the groundwater quality 

decreases from the west (El Mazouchia and Oued Besbes) to the middle of the study area and 

from the east (Branis) to the north west of the study area. According to the Riverside diagram, 

the most of groundwater samples are falling under C4S2 and C4S3 classes, which can be used 

for irrigation on coarse textured or organic soils with good permeability provided that more 

tolerable crops should be selected. About 30 % of the groundwater are unsuitable for irrigation 
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purpose (C5S3 and C5S4 classes). Wilcox diagram illustrates that the majority of the 

groundwater samples are unsuitable for irrigation, with a high risk of deterioration of the soil 

structure in the study area using this groundwater for irrigation. 

According to the prediction maps of groundwater EC, the spatial distribution of salinity shows 

general increasing trends from the east to the center and from the west to the center of the study 

area.  The dominance of groundwater with high and very high salinity in the study area could 

be due to the intense exploitation of the aquifer, the effects of highly saline irrigation return 

flows on the groundwater, the low rate of precipitation and the dissolution of Triassic evaporitic 

materials in Djebel Elmaleh. It is concluded that the use of the groundwater for irrigation in El 

Outaya plain is bound to deteriorate the soil structure, increase soil salinization, damage the 

cultivated crops and reduce yields. It is suggested that appropriate leaching and drainage 

systems can be applied to minimize soil damage, and desalination of groundwater by reverse 

osmosis, which can decrease the EC and TDS of the groundwater more than 95% (Belkacem et 

al., 2007).  
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 Chapter IV       Spatial variability and risk assessment of nitrate groundwater pollution 

1. Introduction 

Groundwater is the main source of industrial, agricultural and drinking supply in many regions 

all above the world, especially in arid and semi-arid areas, including El-Outaya plain in 

southeastern Algeria. In general, groundwater in the study area is intended for agricultural use, 

because of its high salinity (Boudibi et al., 2019). Despite that, it is found that a lot of farmers 

use it as a source of drinking water. However, population growth, intensive agriculture and 

over-exploitation of groundwater might contaminate this scarce and valuable resource and 

render it unsuitable composition for human consumption, which is of great risk for human 

health (Babiker et al., 2003).  

Groundwater contamination by nitrate is an important and a globally growing environmental 

problem due to natural and anthropogenic factors (Fan and Ding, 2010; Chica-olmo et al., 

2014). World Health Organization (WHO) has fixed a value of 50 mg/l of NO3
- or 11.3 mg/l of 

NO3-N as a permissible limit of nitrate for potable water (WHO, 2011). The European Water 

Framework Directive (FDW) has established a categorization of good quality water in terms of 

nitrate concentration at a level of 37.5 mg/l of NO3
- or 8.9 mg/l of NO3-N (Chica-Olmo et al., 

2014). Some authors (Fang and Ding, 2010; Eckhardt and Stackelberg, 1995) have attested that 

groundwater nitrate concentration exceeding a threshold of 13 mg/l of NO3
- or 3 mg/l in terms 

of NO3-N contaminated due to human activities. 

Environment researchers have used many methods to assess and study the origins of 

contamination of groundwater by different pollutants. Geostatistical and deterministic 

interpolation methods are widely used for this purpose. Kriging is a common term given for a 

range of stochastic methods to provide an optimal spatial prediction (Oliver and Webster, 2014; 

Krivoruchko, 2012). Kriging methods are powerful sophisticated weighted-average techniques 

(Şen, 2016; Hsu et al., 2017). They are commonly used in geosciences, hydrogeology, and 

especially, in monitoring and managing groundwater resources. These methods involve two 

phases, namely, theoretical variogram, which requires fitting mathematical models to 

experimental calculated semi-variograms, and a process of Kriging (André, 2017; Abzalov, 

2016). Geostatistical Kriging interpolation techniques include two broad families as linear 

Kriging algorithms, including ordinary Kriging (OK), simple Kriging (SK), universal Kriging 

(UK) and Bayesian Kriging (BK); nonlinear kriging algorithms, also indicator kriging (IK), 

disjunctive kriging (DK), probability Kriging (PK), cokriging (COK), lognormal Kriging (LK) 

and multi-Gaissian Kriging (MGK) (Şen, 2016; Asa et al., 2012; Arslan, 2012; Oliver, 2010). 

On the other hand, deterministic interpolation techniques can be divided into two categories as 
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global interpolators (GI) and local interpolators (LI). For GI, the predictions are calculated 

using the entire dataset, such as global polynomial interpolator (GPI), and for LI the predictions 

are calculated from sample points within neighborhoods, as an example, inverse weighted 

distance (IDW), which generates surfaces from measured points using mathematical functions 

based on the extent of similarity, and radial basis functions (RBF), where the mathematical 

functions are based on the degree of smoothing (ESRI, 2019a; Adhikary, 2014). In this study, 

the results of three geostatistical techniques, two linear Kriging methods (OK and EBK) are 

investigated together one non-linear Kriging method, (IK), and a deterministic technique 

(RBFs). 

The investigated interpolation techniques are the object of many studies in several disciplines, 

for instance, Xie et al. (2011) used OK. RBFs are employed to study the spatial variability of 

soil heavy metal pollution in Beijing, China. Arslan (2012) has evaluated OK and IK techniques 

for the spatial and temporal mapping of groundwater salinity in Bafra plain, Turkey. Adhikary 

and Dash (2014) worked on the prediction of spatial variability of groundwater depth using 

RBFs, on the other hand, OK, IDW and UK in Delhi, India. Samsonova et al. (2017) conducted 

EBK and OK analyses for revealing heterogeneities in the distribution of organic carbon on 

agricultural lands in Bryansk Opole region, Russia. Hsu et al. (2017) used OK, EBK and other 

interpolation techniques to estimate street level air temperature (T °C), and to study the potential 

effect of some environmental characteristics on the spatial distribution of T °C. Li et al. (2019) 

has applied EBK for managing groundwater by quantifying its spatial and temporal evolution 

in Guanajuato, México. 

All these studies agreed that geostatistical techniques are the most accurate in predicting the 

spatial distribution of geospatial variables. During the fieldwork for this study, it is noticed that 

groundwater of the Mio-Pliocene aquifer is the main source of agricultural irrigation in El-

Outaya plain, which means that the subject of the study area depends on different farming 

activities (application of different chemical treatments. chemical and organic fertilization), but 

farmers neglect its high salinity and they are still using it for drinking purposes. The field 

observations led to the question about the contamination of this valuable resource and its 

suitability for human consumption in terms of NO3-N concentration.  

The aim of this chapter is on the one hand to predict the spatial variability of nitrate-N 

concentration using OK. EBK and RBFs, and on the other hand, IK is used to generate 

probability maps of groundwater pollution by [NO3-N] taking into consideration the 

abovementioned thresholds. A simple method is implemented to transform probability maps to 
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categorical maps. Using the [NO3-N] of the dry season, the accuracy of the different 

geostatistical and deterministic interpolation techniques is then assessed and the best one is 

determined. The best technique is used to predict the spatial distribution of nitrate-N 

concentrations of the wet season campaign.                   

2. Material and methods 

2.1. Groundwater samples collection and analyses 

Figure 45 shows the location of the 136 groundwater samples collected from 68 sites over two 

campaigns (dry season of 2017 and wet season of 2018) from boreholes distributed in different 

agricultural farms in the study area. The well locations are obtained using a global positioning 

system (GPS) device, and water samples are collected from each well.  

 

Figure 45: Location of the collected groundwater samples and analyzed for [NO3-N] 

The samples are collected in polyethylene bottles are rinsed using distilled water and washed 

three times by the groundwater of the same sample. The majority of the boreholes are found in 

operation. Otherwise, the well water is pumped for few minutes before sampling. The samples 

are transported in coolers and conserved in the laboratory at a temperature of 4°C. 
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UV-visible spectrophotometer is used to measure nitrate-N concentration (mg/l) in groundwater 

samples. SPSS software v22.0 is employed to calculate descriptive statistics, and VARIOWIN 

software v2.2 for making and fitting semi-variograms (OK method). ArcGIS 10.2 software with 

Geostatistical Analyst Extension is used to run different interpolation methods and to generate 

various prediction maps.   

  

Figure 46: Flowchart of the used methodology 

2.2. Kriging (EBK, OK and IK) 

Kriging is a powerful geostatistical interpolation technique based on the regionalized variable 

theory, which describes a variable that is spread out in space and/or in time and which shows a 

certain structure (Delhomme, 1978). Kriging methods (simple, ordinary, disjunctive, indicator, 

universal, etc.) depend on mathematical and statistical models. The addition of a statistical 

model that includes probability separates Kriging methods from the deterministic methods 

(global polynomial interpolation, inverse weighted interpolation, radial basis function, etc.) for 

spatial interpolation (ESRI, 2019a).  

The semi-variogram is the central tool in geostatistical methods and is very useful for 

visualization, interpretation and modeling of spatial continuity of the studied variables (Arslan, 

2012; Şen, 2020). It is defined as half the average squared difference between the attribute 

values at all points separated by a lag distance h as follows (Arslan, 2012): 
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γ(h) =
1

2N(h) �
[Z(xi) − Z(xi + h)]2 

N(h)

i=1

 (23) 

where γ(h) is the experimental semi-variance value for all pairs at a lag distance h; Z(xi) and 

Z(xi + h) are the studied variable values at locations xi and (xi + h), respectively; N(h) is the 

number of observation pairs separated by a distance h (Isaaks and Srivastava, 1989; Arslan, 

2012). 

As already mentioned in the previous sections, in this chapter, three Kriging methods, namely, 

[linear (OK), nonlinear (IK), and Bayesian (EBK)] are applied to the nitrate-N concentration. 

2.2.1. Ordinary Kriging 

Ordinary Kriging (OK) is the most used geostatistical technique for interpolation. The Kriging 

equations and the function of the semi-variogram are used to derive the weights of OK (Xie, 

2011). OK is given as follows: 

Z∗(x0) = �λi . Z(xi) 
n

i=1

       with        �λi = 1 
n

i=1

 (24) 

where Z*(x0) is the random variable at the location x0, Z(xi) is the measured value at a location 

xi, λi is the weighting factor assigned to Z(xi) and n is the number of observations (Journel, 

1986; Bradaï et al., 2016). 

OK is a linear unbiased estimate, because its estimates are weighted by linear combinations of 

the available data, and unbiased, because it tries to have the mean error equal to 0. It aims at 

minimizing the variance of the errors, and hence, distinguishes OK from other methods (Isaaks 

and Srivastava, 1989). Mathematically, these conditions are expressed as follows (Delhomme, 

1978): 

E{Z∗(x0) − Z(x0)} = 0    (25) 

Var{Z∗(x0) − Z(x0)} = minimum (26) 

2.2.2. Emperical Bayesian Kriking 

Emperical Bayesian Kriging (EBK) is an automatic based interpolator that differs from other 

Kriging methods by adjusting the parameters of the spatial process and accounting for the errors 

to estimate the semi-variogram model and by using the intrinsic random function as the Kriging 

model (Krivoruchko, 2012; Samsonova, 2017). The classical Kriging methods require the 

manual intervention to calculate the parameters of the semi-variogram and EBK calculates these 

81 
 



 Chapter IV       Spatial variability and risk assessment of nitrate groundwater pollution 

parameters automatically through a process of sub-setting and simulations, where power, linear 

and thin plate spline are the supported semi-variograms in ArcGis geostatistical analyst (without  

transformation) (ESRI. 2019b). In this chapter, the following semi-variogram power model is 

used: 

γ(h) = C0 + b|h|a (27) 

where, C0 is the nugget, b is the slope and a is the power.   

Krivoruchko (2012), Krivoruchko (2019) and ESRI (2019b) described the internal process of 

EBK modeling as follows:  

1) A semi-varigram and the parameters of the spatial process are estimated using the 

data.  

2) Using this semi-variogram and parameters, new values are simulated at each location 

of the input data.  

3) New semi-variogram and parameters are estimated from the simulated data. A weight 

for the simulated model is calculated using Bayes’ rule. It shows how likely the observed values 

can be generated from then estimated model.  

4) Repetition of the two previous steps, where in each repetition, the semi-variogram 

estimated in the first step is used to simulate a new set of values at the input locations. The 

simulated data is used to estimate a new semi-variogram model and its weight.  

5) Predictions and prediction standard errors are produced at the un-sampled locations 

using these weights. 

2.2.3. Indicator kriging 

Indicator kriging (IK) is the most commonly used non-linear geostatistical technique for the 

estimation of probability of exceeding a defined threshold, zc, in an un-sampled location xi (Liu. 

2004). IK differs from other geostatistical methods by estimating the conditional probability 

distribution directly, and it does not require any assumption regarding the distribution of the 

regionalized variable (Bierkens, 1993). IK approach requires the transformation of the spatial 

variable, Z(xi), into an indicator variable, I(xi ; zc), with a binary distribution as follows:  

I(xi; zc) = �1.     if Z(xi) >  zc
0.      if otherwise

         i = 1. … . n (28) 
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The expectation of I(xi ; zc), conditional to n surrounding data is given as: 

E�I�xi; zc|(n)�� = Prob{Z(xi) ≤ zc|(n)} = F�xi; zc|(n)�  (29) 

Prob{Z(xi) > zc|(n)} = 1 − F�xi; zc|(n)� (30) 

where, F(xi;zc|(n)) is the conditional cumulative distribution function (CCDF) of Z(xi) ≤ zc.  

For each threshold (zc) an experimental semi-variogram is calculated for the CCDF and fitted 

to a theoretical model to estimate the semi-variogram parameters, which are used to get an 

estimate, I*(x0 ; zc), at an unsampled location x0 using the following equation:  

I∗(x0; zc) = �λi(zk) I(xi; zc)
n

i=n

 (31) 

where I(xi ; zc) represents the values of the indicator at the sampled locations, xi, and λi is the 

weighting factor of I(xi ; zc) used in estimating I*(x0 ; zc) (Lee. 2007; Triantafilis. 2004). 

The application of this formula, which is an OK equation, generates values from 0 to 1 for un-

sampled locations. These values represent the conditional probability that the regionalized 

variable at un-sampled locations exceeds the defined threshold.   

2.3. Radial Basis Function (RBF) 

Radial basis functions (RBF’s) are series of exact interpolators used to produce smooth surfaces 

from a large number of data points and require the surface to pass through the measured points 

(ESRI, 2019a). The basic equations used in RBF’s are dependent on the distance between the 

predicted values and the measured ones (Xie, 2011). The interpolation equation, Z(x), can be 

expressed as the sum of two components as follows (Xie, 2011; Mitášová and Mitáš, 1993): 

Z(x) = T(x) + �λj

N

j=1

R(dj) (32) 

The trend function T(x) is given by:  

T(x) = � aifi(x)
M

i

 (33) 

where fi(x) is a set linearly independent functions, R(dj) is a radial basis function and dj is the 

distance between the measured and the prediction locations. Once R(dj) is known, coefficients 

ai and λi are calculated by solving the following system of linear equations (Xie, 2011; Mitášová 

and Mitáš, 1993): 

83 
 



 Chapter IV       Spatial variability and risk assessment of nitrate groundwater pollution 

  

Z(xk) = � aifi(xk)
M

i

+ �λj

N

j=1

R�djk�    for k = 1.2. … . N (34) 

�λkfi(xk)
N

i

= 0    for k = 1. 2. … . M (35) 

There are five different basis functions (BF), which are thin-plate spline (TPS), spline with 

tension (ST), completely regularized spline (CRS), multi-quadratic function (MQ) and inverse 

multi-quadratic function (IMQ). Each RBF has different results in a different interpolation 

surface (ESRI., 2019a). In this chapter, the RBFs are used with the choice of the best one (MQ) 

based on the cross-validation results. MQ ranks the best in accuracy (Chen, 2002). The MQ 

basis function is given by: 

R�dj� = �d2 + c2 (36) 

where d is the distance from the measured to the prediction location and c is a smoothing factor 

(Xie, 2011). 

2.4. Variography and cross validation 

The semi-variogram is a special geostatistical tool applied for modelling the spatial continuity 

of the regionalized variables (Abzalov, 2016). The experimental semi-variogram is calculated 

using Eq. 1 only for some lag distances but geostatistical modeling requires values at any lag 

distance, because of this reason an accurate theoretical model should be fitted to the 

experimental semi-variogram (Ma, 2019). Stable, circular, power, exponential, spherical and 

Gaussian are the most used theoretical models. The three important parameters of theoretical 

models are the sill (C), the range (a), and the nugget effect (C0).  In this chapter, spherical model 

is employed for OK method, power model for EBK and exponential models for IK method. The 

choice of the best fitted model is based on the indicator goodness of fit (IGF) value of 

VARIOWIN software (IGF indicates a good fit when it’s close to zero) for OK, and the cross 

validation results for EBK and IK. The spatial dependence is investigated using the nugget to 

sill ratio (r), where r > 75% indicates weak spatial dependence; 25% < r < 75% moderate spatial 

dependence and r < 25% indicates strong spatial dependence (Cambardella, 1994)        

Cross validation is the commonly used method for comparing and checking the accuracy of 

interpolation techniques. Where all the available data are used to predict the spatial distribution 

of the regionalized variable in the study area, once the prediction model is built, each of the 
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measured value at a location xi is removed from the data set, and then estimated using the 

prediction model. To provide accurate interpolation results, the mean error (ME) and the mean 

error standardized (MES) should be close to 0, the root mean square error (RMSE) should be 

as small as possible and near to the average standard error (ASE), the root mean square error 

standardized (RMSES) should be close to 1. The error measures are given by the following 

equations: 

ME =  
1
n
��𝑒𝑒(xi)�
n

i=1

 (37) 

RMSE = � 
1
n
�[𝑒𝑒(xi)]2
n

i=1

 (38) 

ASE = � 
1
n
�σ2(xi)

n

i=1

 (39) 

   where, e(xi) is the difference between the measured and the predicted value at a location xi, 

and σ2
(xi) is the variance (Asa, 2012). In MES and RMSES equations, e(xi) are divided by the 

standard deviation. 

3. Results and discussion 

3.1. Descriptive statistics and data distribution 

The statistical summary of nitrate-N concentration of the 136 GW samples is illustrated in Table 

17. [NO3-N] ranged from 1.52 to 22.03 mg/l and 1.54 to 22.09 mg/l, with an average value of 

9.88 mg/l and 9.08 mg/l for the dry and wet season, respectively. The results show a high degree 

of variability with a coefficient of variation of 46.35% in dry period and 48.78% in wet period. 

The descriptive statistics shows almost the same parameter values for both seasons. The 

frequency distribution of [NO3-N] is given in Figure 47a. The groundwater (GW) samples are 

grouped into four water quality categories based on Nitrate-N concentration (The same number 

of samples for each group is observed for both seasons). Excellent quality category is observed 

with 10.29% of GW samples, where. [NO3-N] is less than or equal to the so-called human 

affected value, ([NO3-N] ≤ 3 mg/l) (Babiker, 2004). Good quality category with 25% of the 

GW samples (3 mg/l < [NO3-N] ≤ 8.9 mg/l) occurs according to 8.9 mg/l, which is the threshold 

of good quality class established by the European Water Framework Directive (Chica-Olmo, 

2013). Medium quality category is the dominant class with 35.29% of the GW samples (8.9 
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mg/l < [NO3-N] ≤ 11.3 mg/l), where 11.3 mg/l is the permissible limit of WHO (WHO. 2011). 

Poor quality category with 29.41% of GW samples exceeding the permissible limit of WHO 

([NO3-N] > 11.3 mg/l). 

The statistic Kolmogorov-Smirnov (KS) test is used the check the normal distribution of the 

[NO3-N]. The KS value is significant with 0.064 for the dry season. The skewness and the 

kurtosis are 0.39 and 0.32, respectively. The skewness and the excess kurtosis are positive and 

close to 0 which confirm the normal distribution of nitrate-N concentration (Figure 47b). For 

the wet season, KS value is not significant. 

Table 17: Statistical analysis of groundwater [NO3-N] (mg/l) 

Statistical parameters [NO3-N] (mg/l) 
Dry season 

[NO3-N] (mg/l) 
Wet season 

Number of samples 68 68 
Mean 9.88 9.08 
Median 9.79 9.01 
Minimum 1.52 1.54 
Maximum 22.03 22.09 
Variance 20.96 19.59 
Standard deviation 4.58 4.43 
Coefficient of variation (%) 46.35 48.78 
Skewness 0.39 0.40 
Kurtosis 0.32 0.44 
Kolmogorov-Smirnov test 0.064 0.025 

 

 

Figure 47: (a) Frequency plot of [NO3-N] values; (b) scatter plot of [NO3-N] normal 

distribution 
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3.2. Spatial distribution of nitrate-N concentration 

Three interpolation methods are employed to estimate the un-sampled locations and to generate 

variability maps of [NO3-N] in the study area by means of two stochastic methods: linear (OK) 

and Bayesian (EBK), deterministic method (RBF).  

3.2.1. Variography and cross-validation 

Figure 48b presents the omnidirectional semi-variogram of the groundwater nitrate-N used for 

OK, which indicates that the spherical semi-variogram is the best fitted model with an IGF of 

2.21*10-2. The nugget effect is 3.95 (mg/l)2, the partial sill is 17.14 (mg/l)2 and the range is 

7223.81 m, and  this high value indicates the spatial continuity of groundwater nitrate-N 

concentrations (Bradaï, 2016). The nugget to sill ratio is 18.73 %, indicating a strong spatial 

dependence of [NO3-N]. 

Figure 48a shows the estimated spectrum semi-varioram models (blue lines) using the 

automated interpolator EBK, which are implemented in ArcGis geostatistical analyst to predict 

[NO3-N] at un-sampled locations. The blue crosses represent the empirical semi-variogram. 

The solid red line is the median of the distribution and the red dashed lines are the 25th and 75th 

percentiles. The models do not have a range and sill, because the power function does not have 

an upper bound. 

The cross validation, which represents the accuracy of the different interpolation methods, 

shows accurate prediction results. For stochastic methods (EBK and OK) the ME and MES 

values are close to 0, RMSES values are almost equal to 1 and the RMSE and ASE values are 

close to each other.  For the deterministic method (RBF), the ME and RMSE indicate either 

satisfactory prediction results. The numerical results of the different calculated error measures 

are presented in Table 18. 
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Figure 48: Semivariograms of the predicted [NO3-N]: (a) EBK , (b) OK 

Table 18: Cross validation of EBK, OK and RBF  

Prediction 
method Model ME RMSE ASE MES RMSES 

EBK Power -0.0021 3.245 3.50 0.0006 0.945 
OK Spherical 0.0423 3.28 3.57 0.0083 0.9406 

RBF Kernel function 
(Multiquadtratic) 0.0687 3.23 / / / 

 

3.2.2. Prediction maps 

The obtained prediction maps using OK (Figure 49a), EBK (Figure 49b) and RBF (Figure 49c) 

show the same overall spatial distribution of groundwater nitrate-N concentration in the study 

area. The only difference is in the shape and the size of the area of different categories. Table 

19 represents the surface areas of the four categories of [NO3-N] estimated using the three 

interpolation techniques. The groundwater with intermediate quality (8.9 < [NO3-N] ≥ 11.3) is 

the dominant class with surface areas of 39.49%, 39.22% and 36.20% for EBK, OK and RBF, 

respectively, which are  located in the middle and the west of the study area. The category with 

good quality (3 < [NO3-N] ≥ 8.9) represents 32.63% of the study area by using EBK, 32.18% 

by using OK and 33.25% by using RBF, this class is located in the east and a partially in the 

south and south-west of the study area. The category with excellent groundwater quality ([NO3-
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N] ≤ 3) occupies a small surface area in the west of the study area with 1.02% for EBK method, 

1.75% for OK and 3.6% for RBF. This class is overestimated by OK and RBF. The category 

that represents the contaminated groundwater, where nitrate-N concentration exceeding the 

permissible limit of WHO is located in the north, the south and the west part of the study area, 

with surface areas of 26.86%, 26.85% and 26.94% for EBK, OK and RBF, respectively. 

The comparison of the three predicted maps using EBK, OK and RBF shows that they have the 

same general structure despite of the difference in theoretical aspect of the used methods, which 

validate the obtained results and the spatial distribution of nitrate-N concentration in El-Outaya 

plain. 

Table 19: Surface areas of different nitrate-N categories estimated using EBK, OK and RBF  

Categories 
EBK OK RBF 

Area (ha) Area (%) Area (ha) Area 
(%) Area (ha) Area 

(%) 
≤ 3 411.5 1.02 710.7 1.75 1458.1 3.60 

3 < NO3-N ≥ 8.9 13215.9 32.63 13031.4 32.18 13467.8 33.25 
8.9 < NO3-N ≥ 11.3 15994.8 39.49 15884.9 39.22 14661.0 36.20 

NO3-N > 11.3 10876.9 26.86 10872.1 26.85 10912.3 26.94 
Total 40499.1 100 40499.1 100 40499.1 100 

 

         

Figure 49: Prediction maps of [NO3-N] classes: (a) OK, (b) EBK and (c) RBF 
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3.3. Nitrate-N probability mapping using IK 

IK is employed to generate groundwater nitrate-N concentration probability maps. For this 

purpose, three thresholds are selected as the first one (z1 = 3 mg/l) is the so-called human 

affected value; the second one (z2 = 8.9 mg/l) is the high limit of good quality established by 

the European Water Framework Directive (EWFD) and the third threshold (z3 = 11.3 mg/l) is 

the permissible limit of WHO. On the bases of these thresholds, one can retain four groundwater 

quality categories as excellent quality ([NO3-N] < Z1), good quality (z1 < [NO3-N] ≤ z2), 

medium quality (z2 < [NO3-N] ≤ z3) and poor quality ([NO3-N] > z3). 

3.3.1. Variography and coss validation 

Table 20 shows the characteristics of the best-fitting semi-varigram models (model, nugget, 

partial sill and the range) and the cross validation results (ME, RMSE and ASE) of the different 

thresholds using ArcGis Geostatistical Analyst. As the table indicates, the exponential model is 

selected as the best fit for the three thresholds, with ranges of 4793 m, 2935 m and 2798 m in 

ascending order. The nugget to sill ratios of the three models indicate a strong spatial 

dependence for the first ([NO3-N] > 3 mg/l) and the second ([NO3-N] > 8.9 mg/l) thresholds, 

and a moderate spatial dependence for the third ([NO3-N] > 11.3 mg/l) threshold. The error 

measures validate the chosen model for each threshold, where, ME are very close to 0 and the 

difference between RMSE and ASE is 0.2751, 0.4379 and 0.4652 for the three threshold in 

ascending order, respectively. 

 Table 20: Crossvalidation and parameters of the semivariogram models of [NO3-N] 

thresholds using IK  

Threshold Model 
Nugget 
effect 

(mg/l)2 

Partial 
sill 

(mg/l)2 

Range 
(m) ME RMSE ASE 

3 Exponential 0 0.0922 4793 -0.0026 0.2389 0.2751 
11.3 Exponential 0.0179 0.1708 2935 0.00014 0.4252 0.4379 
8.9 Exponential 0.086 0.1145 2798 0.0029 0.4264 0.4652 

 

3.3.2. Probability maps  

The probability maps are given in Figure 50. They represent the spatial probability that [NO3-

N] could exceed the quality thresholds (z1, z2 and z3) and enlighten about the nitrate-N 

groundwater pollution. Furthermore, to estimate the affected and the non-affected areas for each 

threshold, one can proceed with the transformation of probability maps to binary maps based 
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on two levels of significance as the fifty-fifty risk to exceed a given threshold (P(Z(xi ) > zc) > 

50%) and the high risk to exceed thresholds (P(Z(xi ) > zc) > 90%). Binary maps of a level over 

50% for surpassing z1, z2 and z3 are given in Figure 51a, 52b and 52c, respectively, and those 

of a level over 90% for surpassing z1, z2 and z3 are given in Figure 51d, 52e and 52f, 

respectively. Thus, at levels over 50%, the percentages of affected area for each threshold are 

92.85% for z1, 70.93% for z2 and 20.35 for z3, while at a level over 90% (high risk to exceed 

the defined referenced value), the percentage of affected area was 77.10% for z1, 21.80% for z2 

and 0.88% for z3. 

 

Figure 50: Probability maps of [NO3-N] obtained using IK: (a) probability map of [NO3-N] 

> 3 mg/l, (b) probability map of [NO3-N] > 8.9 mg/l, (c) probability map of [NO3-N] > 11.3 

mg/l 
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Figure 51: Binary maps: (a), (b) and (c) binary maps obtained using a probability over 50%; 

(d), (e) and (f) binary maps obtained using a probability over 90%. 

3.3.3. Categorical maps 

The conversion of binary maps into categorical maps is for aim to show the spatial distribution 

of the different groundwater quality categories in the study area according to two levels of 

contamination risk  as the categorical map with medium risk (Figure 53a) at a level of 50% and 

another one with high risk (Figure 53b) at a level of 90%. 

Figure 52 provides a general explanation of the methodology used to elaborate categorical maps 

from probability maps in two steps. As the first step, probability maps are transformed to binary 

maps taking into consideration the two levels of significance (50% and 90%), so at a given 

threshold, each cell of the affected area takes a value of 1, and a value of 0 is assigned to the 

cells of the non-affected area. In the second step, the generated binary maps are summed 

together to obtain categorical maps that contain four nitrate-N concentration at different levels 

of significance (Figure 53). 
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Figure 52: Scatter plots of measured [NO3-N] and probability values at each threshold, with 

explanation of the methodology used to transform indicator predictions to binary values and 

categorical values    

The final categorical maps show that 20.30% of the aquifer’s surface in the study area presents 

groundwater of poor quality for human consumption, which exceed the standard value of WHO 

(11.3 mg/l) at a level of significance of 50% (Figure 53a) and only 0.88% at a level of 

significance of 90% (Figure 53b).  The excellent water quality presents 7.15 % of the surface 

at a level of 50% significance, while at a level of 90% for exceeding the human affected value 

(3mg/l), the surface increased to 22.9%. The surface of good quality category increased from 

50.69% at a level of significance of 50% to 55.24% at a level of 90%, while the surface of 

intermediate quality dropped from 50.69% to 21.05% at levels of significance of 50% and 90%, 

respectively. The results are reported in Table 21. 
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Figure 53: Categorical [NO3-N] maps: (a) with a probability P ≥ 50% to exceed thresholds, 

(b) with a probability P ≥ 90% to exceed thresholds 

Table 21: Surface areas of different nitrate-N categories estimated using IK  

Categories 
IK (Probability    

over 50%) 
IK (Probability     

over 90%) 
Area (ha) Area (%) Area (ha) Area (%) 

≤ 3 2896.0 7.15 9274.6 22.90 
3 < NO3-N ≥ 8.9 8853.6 21.86 22371.0 55.24 

8.9 < NO3-N ≥ 11.3 20529.8 50.69 8523.6 21.05 
NO3-N > 11.3 8219.7 20.30 329.9 0.81 

Total 40499.1 100.00 40499.1 100.00 
 

The categorical map obtained at a level of fifty-fifty risk for surpassing thresholds (Figure 53a) 

using IK shows the same general structure of the spatial distribution of the four groundwater 

quality categories generated using (EBK. OK and RBF). The categorical map obtained at a level 

of 90% for surpassing thresholds is very important for decision makers, where it shows areas 

that need immediate intervention to reduce nitrate-N pollution. 

3.4. Comparison of methods 

In order to compare the results of the different interpolations techniques, the interpolation 

surfaces of nitrate-N concentration in the study zone are converted to raster maps (the size of 

each pixel is 108×108 m). From the continuous raster maps of EBK, OK, and RBF, ME, RMSE 

ASE, the determination coefficient (R2) and the area (%) occupied by each category are 

calculated. For IK, the obtained raster maps are discrete maps, thus the comparison is mainly 

based on the calculated surface area occupied by each class. 

Table 22 presents the errors measure of EBK, OK and RBF obtained using the pixel values of 

raster maps and Figure 54a depicts the scatterplot of the measured versus the predicted [NO3-

N] with determination coefficients (R2) of the same methods. Low ME and RMSE and high R2 

values for the three methods indicate their accuracy and applicability to predict the 

contamination by NO3-N. From Table 22, the ASE values are greater than the RMSE values 

for OK (The difference between ASE and RMSE, D = 0.72) and EBK (D = 0.268), which 

implies that the variability is overestimated, while it is underestimated by RBF (the ASE values 

are less than RMSE values, D = -0.3193). The R2 values are 0.984, 0.951 and 0.998 for EBK, 

OK and RBF, respectively. The RMSE and the R2 yields for the three interpolation techniques 
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give advantage to RBF, and therefore, RBF is considered as the best method to predict the 

spatial distribution NO3-N contamination. This result is in agreement with the outcomes of 

Arslan, (2014). 

Table 22: Errors measure of predictions (raster values)  

 

 

 

From Figure 54b, a good correspondence is observed between the percentages of surface areas 

obtained by the different interpolation techniques at each category. The category of 

intermediate groundwater quality occupies the highest surface area with 39.49%, 39.22%, and 

36.20% for EBK, OK and RBF, respectively. The surface area of this category is estimated by 

50.69% using IK at a level P ≥ 50%. The lowest surface area is occupied by the excellent quality 

1.2, 1.75, and 3.60% for EBK, OK and RBF. IK at a level P ≥ 50%, where estimates the surface 

area of this category appear by 7.15%. The surface areas occupied by the good and poor 

qualities are almost the same for EBK, OK and RBF, while IK underestimates these categories. 

    

 

Figure 54: (a) Scatterplot of observed versus the predicted NO3-N concentrations obtained by 

EBK. OK and RBF. (b) Bar chart showing area of different categories (%) obtained by EBK. 

OK. RBF and IK (P ≥ 50%). 

Figure 55 shows the spatial variability of wet season nitrate-N concentrations. This map is 

obtained using the best interpolation technique among those tested, namely the RBF method. 

The maps of NO3-N concentrations in the dry and wet season, generated using RBF method, 

Method Errors 
ME RMSE ASE D = RMSE - ASE 

OK -0.0081 1.1814 0.4614 0.7200 
EBK 0.0099 0.7546 0.4866 0.2680 
RBF -0.0166 0.2197 0.5390 -0.3193 
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indicate almost the same spatial distribution of the different classes. The difference is in the 

shape and the area occupied by each class, where a decrease of the area percentages are 

observed as of medium and poor quality classes against an increase of the area percentages 

excellent and good quality classes. The area of excellent groundwater class increased from 

3.60% to 5.21%, the good quality class increased from 33.25% to 41%, the medium quality 

class dropped form 36.20% to 30.07% and the poor quality class dropped from 26.94% to 

23.72%. These results are unexpected at the end of the first campaign, with expectation in the 

increase of nitrate-N contamination due agricultural activities. This can be due to the near 

absence of the rainfall in the study area and therefore the contaminant will not reach the studied 

aquifer.  

 

Figure 55: Prediction map of [NO3-N] classes of the wet season using the best method (RBF) 

4. Discussions 

The results of this study indicate that RBF is the best interpolation technique to predict the 

spatial variability of [NO3-N] in groundwater and to investigate the surface areas with high risk 

to human health in El-Outaya plain. These results and the finally adopted map is generated by 

using RBF, which have important involvement for the aquifer monitoring and public health as 

long as these water resources are used for human consumption.  

The final adopted map shows that the category of poor groundwater quality with 26.94% of the 

surface area is located in the middle of the study area, which is associated with intensive 

agriculture, excessive use of fertilizers and animal manure, especially chicken manure that has 

a higher amount of nitrogen. It is located also in the western part of the study area, where the 

agriculture is extensive, but it is noticed in this chapter that the presence of septic tanks near 
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the groundwater wells play major role. The category of excellent and good quality with 3.60% 

and 33.25% of the surface area, respectively, are located mainly in the eastern part of the study 

area, where the agriculture is extensive and the presence of Wadi Biskra, which participates in 

recharging the aquifer of Mio-Pliocene, and therefore, the dilution of nitrate-N concentration in 

the groundwater. The dominant category (intermediate quality) with 36% of surface, is located 

along the study area. RBF is an accurate interpolation technique to identify water pollution in 

El-Outaya plain.              

The presented transformation of probability maps to categorical maps based on IK are important 

for decision makers to identify regions with high nitrate-N contamination probability, and high 

risk to human health, and could be applied to other risk assessment studies. In this way, decision 

makers and local agricultural manager may establish good agricultural practical protocols for 

farmers to prevent and reduce groundwater pollution by nitrate-N. Establishment of action 

programs are advised to raise awareness among farmers about proper application of pesticides 

and fertilizers, and designation of pollution vulnerable zones.      

5. Conclusion  

The application of robust interpolation technique is crucial for the prediction of spatial 

variability of contaminants in groundwater. This chapter presents a comparison of the linear 

and nonlinear geostatistical techniques (EBK, OK and IK) results and deterministic method 

(RBF). The cross-validation measures are used to choose the best model for prediction. The 

measurement errors of the pixel values of raster maps are used to check the accuracy of 

predictions and comparison of the interpolation methods.  

All the interpolation methods have a high accuracy to predict groundwater nitrate-N 

contamination in the study area. The root mean square error (RMSE) and the determination 

coefficient (R2) gave advantage to RBF. IK has been used to map the probability of excessive 

groundwater nitrate-N in the study area. The transformation of these probability maps to 

categorical maps shows the tendency of the groundwater quality at two levels to exceed a given 

threshold. IK at a medium risk exceeds thresholds (P ≥ 50%) indicating that the groundwater in 

the study area tends to have intermediate quality with an estimated area of 50.69% and at a high 

risk to exceed a given threshold (P ≥ 90%), and the groundwater tends to be of good quality 

over an estimated area of 55.24%. After all what have been presented in this chapter modern 

agricultural practices should be implemented in El-Outaya plain and nitrate-N concentrations 

of groundwater should be monitored continuously. 
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1 Introduction 

Soil salinization is defined as the process of salt enrichment in the soil, which can be caused by 

two different factors, i.e. natural (primary salinization) such as salty groundwater table near the 

soil surface (upwelling) and/or human-induced (secondary salinization) such as the continuous 

irrigation with saline water that leads to the increase of salts’ accumulation in the irrigated lands 

(Pouladi et al. 2020; Koulla et al. 2019). Soil salinity is one the major environmental hazards 

that causes land degradation and affect agricultural productivity and the sustainability of land 

resources all over the world. The secondary salinization affects almost 45 million ha (20 %) of 

the total cultivated and 74 million ha (33 %) of irrigated agricultural areas in the world 

(Shrivastava and Kumar 2015). Furthermore, the salinized areas are still increasing at a rate of 

10 % each year due to different problems including high surface evaporation, low precipitation, 

chemical or physical weathering of native rocks, irrigation with high saline water and poor 

cultural practices (traditional irrigation techniques practiced with irrelevant drainage systems) 

(Gorji et al 2020). Some researchers estimated that 50 % of the world’s arable land will be 

affected by salinity (Machado and Serralheiro 2017). 

In the Mediterranean region, the salt-affected soil is estimated as 1 million ha and is the main 

cause of desertification (Machado and Serralheiro 2017). Algeria is one of the Mediterranean 

countries where agricultural land is largely affected by this phenomenon, especially in the 

southeastern part of the country such as Biskra province, which is characterized by an arid 

climate and groundwater is the main source of irrigation. The farmers of this region are using 

groundwater of poor quality, usually unsuitable for irrigation and characterized by high salinity 

(Boudibi et al. 2019, Abdennour et al. 2020). Such practice has enhanced the development of 

agricultural sector, but it is also a principle factor of soil salinization. Therefore, it is urgent and 

necessary to ascertain the best modeling technique to improve the prediction of soil salinity by 

using of auxiliary variables, which can enhance the ability of decision makers and land use 

planners to assess accurately the soil salinity and reducing the cost and time consuming of 

sampling campaigns. 

Consequently, many tools, modeling techniques and spatial interpolation methods have been 

developed and applied by researchers for the spatiotemporal monitoring and assessment of soil 

properties especially soil salinity in terms of electrical conductivity (ECs). Numerous 

geostatistical techniques have been applied for the spatiotemporal predictions of soil salinity 

and soil properties, including ordinary Kriging (Dai et al. 2014; Shahabi et al. 2016; Koulla et 

al. 2019), Indicator Kriging (Bradaï et al. 2016) and cokriging (Shen et al. 2019). Recently, 
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many researchers also applied new machine learning methods to predict soil characteristics. 

Were et al. (2015) used artificial neural networks (ANN), support vector machine (SVM) and 

random forest (RF) for predicting and mapping soil organic carbon stocks in Kenya. Achieng 

(2019) applied artificial and deep neural network for modeling of soil moisture and Pouladi et 

al. (2019) used multilayer perceptron neural network (MLP-NN) for predicting soil salinity in 

Iran. All the mentioned studies have shown the high accuracy of machine learning techniques 

in modeling soil properties. 

Therefore, in this chapter, it is aimed to improve the prediction of soil salinity by the integration 

of new field and environmental covariates and explore the most suitable auxiliary variables for 

soil salinity prediction using multiple linear stepwise regression (MLSR). Finally, the 

evaluation and comparing the performance of simple Kriging (SK), simple cokriging (SCOK), 

multilayer perceptron neural network (MLP-NN) and support vector machine (SVM) modeling 

techniques in predicting the variability of ECs in El Outaya plain, southeastern Algeria using 

mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (R), 

determination coefficient (R2) and Taylor diagram.    

2 Material and Methods 

2.1 Soil sampling and ECs analysis 

A total of 272 soil samples are collected from 68 irrigated farms in El Outaya plain over two 

campaigns, the dry season and wet season (The same period of groundwater sampling). At each 

location from each of the 68 farms, two soil depths (topsoil of 0-20 cm and subsoil of 40-60 

cm) are sampled using a hand auger and placed into polyethylene bags. In the laboratory, the 

samples are air dried, crushed and sieved through a 2 mm sieve. The soil particle fractions (clay, 

sand and silt) are determined using the pipette method. The soil electrical conductivity (ECs) is 

measured in a 1:5 soil water diluted extract method using the multi-parameter (WTW multi 

3430). The measured ECs was used to express the soil salinity. The flow diagram of modeling 

and mapping of soil salinity is presented in Figure 56.   
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Figure 56: Flowchart of the used methodology 

2.2 Covariates collection  

In this chapter, the covariates used for predicting and modeling soil salinity are all continuous 

variables and regrouped into two categories, the field measurement covariates and the 

environmental covariates. The field measurements covariates including irrigation water 

properties and irrigated soil properties, and the environmental covariates including DEM 

derivatives and remote sensing derivatives are considered for modeling soil salinity in El 

Outaya plain. The used methodology is summarized in Figure 56. Therefore, 80 % of the 

samples, distributed through 54 sampling locations, is used for training and 20 %, distributed 

over 14 sampling locations, for testing the different modeling techniques (Figure 57). 
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Figure 57: location of the training and testing samples in the study area 

2.2.1   Field measurement covariates 

The irrigation water properties are obtained from 136 groundwater samples over two seasons 

(See chapter 3). The used water properties are the electrical conductivity of groundwater (ECw), 

the potential Hydrogen (pH), cations plus anions of groundwater, the sodium percentage (Na 

%), the sodium adsorption ratio (SAR). The soil properties used as covariates are the soil 

particle fractions (clay %, sand % and silt %) of the topsoil and subsoil.     

2.2.2   Environmental covariates 

The digital elevation model (DEM) derivatives for modeling soil salinity included elevation, 

aspect, curvature, slope and topographic wetness index (TWI) (Figure 58). These DEM 

derivatives are calculated using ArcGis 10.2. The 30 m resolution Shuttle Radar Topography 

Mission (SRTM) DEM data covering the entire study area is obtained from the United States 

Geological Survey (USGS) website. 
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Figure 58: The raw covariates derived from DEM: (a) Elevation (b) Slope (c) TWI (d) Aspect 

(e) Curvature 

The remote sensing derivatives are generated using Landsat-8 OLI satellite images. Two 

Landsat-8 satellite images with 30 m of resolution dated the same period of sampling, one in 

the dry season (September 2017) and another one in the wet season (Mai - June 2018), are 

obtained by downloading from the USGS website. The Landsat-8 OLI images are 

atmospherically corrected and radiometrically calibrated using ENVI 5.3 software through the 

FLAASH atmospheric model. After mosaicing and clipping the satellite images, three 

derivatives are evaluated including the Land Surface Temperature (LST), the Normalized 
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Difference Vegetation Index (INDVI) and Soil Adjusted Vegetation Index (SAVI) using map 

algebra tool of ArcGis software (Figure 59).  

          

 

Figure 59: The raw covariates derived from satellite images: (a) and (b) NDVI, (c) and (d) 

SAVI, (e) and (f) LST of the dry season and wet season, respectively. 

The NDVI is a standardized index allows the generation of relative biomass map. The default 

equation of NDVI is as follows (Shen et al. 2019): 

𝑁𝑁𝑁𝑁𝑉𝑉𝐼𝐼 = (𝑁𝑁𝐼𝐼𝑅𝑅 − 𝑅𝑅)/(𝑁𝑁𝐼𝐼𝑅𝑅 + 𝑅𝑅) (40) 
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where NIR and R are the near infrared and Red bands of the Landsat-8 images, respectively.  

 The SAVI is a vegetation index used in regions with low vegetative cover (arid regions), where 

it attempts to minimize the influence of soil brightness (ESRI 2020). It is calculated as follows 

(Huete 1988): 

𝑆𝑆𝐼𝐼𝑉𝑉𝐼𝐼 = �
𝑁𝑁𝐼𝐼𝑅𝑅 − 𝑅𝑅

𝑁𝑁𝐼𝐼𝑅𝑅 − 𝑅𝑅 + 𝐿𝐿
� ∗ (1 + 𝐿𝐿) (41) 

Herein, L is the soil brightness correction factor, which depends on the amount of green 

vegetation cover (0.5 in this study). 

The LST is one of the most important aspects of the land surface calculated from remote 

sensing. It is defined as the skin temperature of the ground (Avdan and Jovanovska 2016). 

The LST is computed as follows (Avdan and Jovanovska 2016; Yin et al. 2020): 

𝐿𝐿𝑆𝑆𝐸𝐸 (°𝐶𝐶) =
𝐵𝐵𝐸𝐸

(1 + (�𝜆𝜆𝐵𝐵𝐸𝐸⍴ � ∗ ln(ԑ)))
 (42) 

where BT is at sensor brightness temperature calculated using equation 4 (°C), λ is the 

wavelength of emitted radiance (λ (band 10) = 10.8 µm), ԑ is the emissivity calculated using 

Equation (44) and ⍴ = 1.4388 *10-2 m k = h*c/δ (h = Plank’s constant = 6.626 * 10-34, c = 

Velocity of light = 2.998*108 m/s and δ = Boltzmann constant = 1.38*10-23). 

𝐵𝐵𝐸𝐸 =
𝐾𝐾2

ln ��𝐾𝐾1𝐿𝐿𝜆𝜆
� + 1�

− 273.15 (43) 

where Lλ represents the top of atmosphere spectral radiance (Equation 45), K1 and K2 are the 

band specific thermal conversion constants from the metadata file. 

ԑ = 0.004 ∗ ��
NDVI − 𝑁𝑁𝑁𝑁𝑉𝑉𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛

𝑁𝑁𝑁𝑁𝑉𝑉𝐼𝐼𝑖𝑖𝑎𝑎𝑚𝑚 − 𝑁𝑁𝑁𝑁𝑉𝑉𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛
�
2

� + 0.986 (44) 

𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿 ∗ 𝑊𝑊𝑐𝑐𝑎𝑎𝐶𝐶 + 𝐼𝐼𝐿𝐿 (45) 

where ML is the band-specific multiplicative rescaling factor, Qcal represents the band 10 of the 

satellite image and AL is the band-specific additive rescaling factor.  

2.3 Covariates preprocessing 

Regression techniques such as multiple linear stepwise regressions (MLSR) are often used to 

predict a dependent variable (response) by using of one or more independent variables 

(predictors). In case where there is high number of covariates, it is essential to select the most 
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important covariates for modeling (Zounemat-kermani and Scholz 2014). MLSR is a 

combination of forward selection and backward elimination of input variables to generate the 

best combinations to the model (Zounemat-kermani et al. 2020). The probability of F statistic 

(pF) for inclusion is set at 0.05 (if pF is less than 0.05, the auxiliary variable is included in the 

linear equation) and the pF statistic for exclusion is set at 0.1 (if pF is greater than 0.1, the 

auxiliary variable is excluded (Gu et al. 2017). Some covariates are found correlated between 

themselves, which are referred to as multicollinearity and the covariates should be independent 

variables (Jalal et al. 2020). MLSR is an available method for eliminating multicollinearity 

problem between the covariates (Shen et al. 2019). In this study, MLSR is used for determining 

the optimal input combinations for SCOK, MLP-NN and SVM modeling techniques.  

2.4 Modeling techniques 

2.4.1 Simple kriging (SK) 

Simple kriging (SK) estimator is considered as the weighted linear combination in which, the 

areal mean of the regionalized variables is known and must be second-order stationary (mean 

and variance constancy) (Maroufpoor et al. 2017;  Şen 2016). Simple Kriging equation can be 

written as: 

𝑍𝑍𝑆𝑆𝐾𝐾∗ (𝑥𝑥) = �𝑤𝑤𝑖𝑖(𝑥𝑥)
𝑛𝑛

𝑖𝑖=0

𝑍𝑍(𝑥𝑥𝑖𝑖) + �1 −�𝑤𝑤𝑖𝑖(𝑥𝑥)
𝑛𝑛

𝑚𝑚=1

�µ (46) 

Herein, Z*
SK(x) is the linear regression estimator, Z(x) is the regionalized variable at the location 

x, µ is the location-dependent expected value of Z(x), wi are the weights and µ is the mean of 

the SK process.    

2.4.2 Simple Cokriging (SCOK) 

Cokriging (COK) estimator is a developed multivariate extension of Kriging, where the aim is 

to predict one variable (target variable) from data plus those of one or more variables (axillary 

variables) taking into account the additional correlated information in these variables (Webster 

and Oliver 2007). Simple cokriging (SCOK) is a multivariate extension of simple Kriging. The 

SCOK estimator is made up of the mean of the target variable of interest plus a linear 

combination of weights λi with the residuals of the auxiliary variables (Wackernagel 2003). 

SCOK is expressed as: 
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𝑍𝑍𝑖𝑖0∗ (𝑥𝑥0) = 𝑚𝑚𝑖𝑖0 + ��𝑤𝑤𝛼𝛼𝑖𝑖
𝑛𝑛𝑖𝑖

𝛼𝛼

(𝑍𝑍𝑖𝑖(𝑥𝑥𝛼𝛼

𝑁𝑁

𝑖𝑖=1

) −𝑚𝑚𝑖𝑖) (47) 

 where Z*
i0 is the estimated target variable i0 at an unsampled location x0, N is the number of 

auxiliary variables, ni is the number of samples of ith auxiliary variable, mi0 is the global mean 

of a target variable, and mi is the global mean of ith auxiliary variable. 

2.4.3 Multilayer perceptron neural network (MLP-NN) 

The multilayer perceptron neural network (MLP-NN) is one type of a general class of Artificial 

Neural Networks (ANNs) called feed-forward neural network, which are the most common and 

widely applied to solve environmental problems (Pouladi et al. 2019; Sakaa et al. 2020). In this 

study, MLP-NN is used for the prediction of soil salinity (ECs). The MLP-NN is structured 

with one input layer, one or more hidden layers (one layer in this study) and an output layer 

(Figure 60). The neurons of each layer are connected to the neurons of the subsequent layer 

through synaptic weights but not in the same layer (Erdik et al. 2009). The number of neurons 

in the hidden layer is determined after training and testing of a series of networks having from 

1 to 20 neurons in order to obtain the best structure with minimum error (e.g. square of errors, 

SOS) and maximum correlation coefficient.  

In MLP-NN, the input variables (xn) are fed into the input layer neurons (xi) which sends them 

to the hidden layer (yj). The neurons of the hidden layer sum up the received value of the input 

layer after the multiplication of each input value by its weight (wij) and adding a bias (bj). The 

weighted sum (Sj) becomes the input to activation function in the hidden layer, the latter 

generates the output of each neuron in the hidden layer, which in turn, becomes the input of 

activation function in the output layer, where the output variable (Z1) is further generated (Erdik 

et al. 2009; Kisi et al. 2017; Sakaa et al 2020). 

𝑆𝑆𝑖𝑖 = 𝑏𝑏𝑖𝑖 + �𝑋𝑋𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (48) 

Sj is the weighted sum, bj is the bias, xi stands for the input standardized value, n is the number 

of input variables in the input vector and wij are the synaptic weights. 

The overall equation that describes the input/output relationship of three-layered MLP-NN is 

given as follows (Bishop 1995):  
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𝑍𝑍𝑘𝑘 = 𝑓𝑓𝑘𝑘 �𝑏𝑏𝑘𝑘 + �𝑤𝑤𝑖𝑖𝑘𝑘 ∗ 𝑓𝑓𝑖𝑖 ��𝑋𝑋𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑏𝑏𝑖𝑖�
𝑝𝑝

𝑖𝑖=1

� (49) 

where Zk is one of the output variables, bk and bj are the bias (they can be absorbed into the 

weights), wij and wjk denote successively the weights between the input layer and the output 

layer neurons and between the hidden layer and the output layer neurons, p is the number of 

neurons in hidden layer, n is the number of neurons in the input layer, fk and fj are the activation 

functions of the neurons of the hidden layer and the neurons of output layer, successively.  

In this study, MLP-NNs are trained with three different back-propagation algorithms, which 

are the Broyden–Fletcher– Goldfarb–Shanno (BFGS Quasi-Newton), conjugate gradient (CG) 

and gradient descent (GD). The BFGS Quasi-Newton yielded the best results for all the trained 

models. Several activation functions are used in MLP-NNs, such as logistic (sigmoid), 

hyperbolic tangent (Tangh), linear and exponential.  

 

Figure 60: Schematic representation of three-layered feed-forward MLP-NN 
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2.4.4 Support vector machine (SVM) 

Support vector machine (SVM) is a supervised learning technique proposed by Cortes and 

Vapnik (1995) for classification problems by introducing the soft margin classifier, and then 

the algorithm expanded to regression cases by Vapnik in 1995 (Vapnik 1995). Since it maps 

the original space into a high dimensional feature space, it is considered as two layers learning 

machine (input layer and high dimensional feature space layer) (Wu et al. 2006). The detailed 

description of SVM can be found in many publications (Vapnik 1995; Vapnik 1998; 

Cherkassky and Ma 2004; Jalal et al. 2020). 

The SVM for regression model is defined by y = f(x) + δ where δ is the independent random 

error, x is a multivariate input and y is the output function (Jalal et al. 2020).        

For a given training dataset [(x1, y1), …, (xN, yN)], xN and yN are the input and output values and 

N is the size of the training dataset. The optimum SVM regression estimator (f) can be assumed 

as follows: 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤 ∗ 𝛷𝛷(𝑥𝑥) + 𝑏𝑏 (50) 

where Φ is a non-linear mapping function, w is a weight vector and b is the bias term. 

Regression estimates by minimization of the empirical risk function (Remp) given bellow: 

𝑅𝑅𝑒𝑒𝑖𝑖𝑝𝑝 =
1
𝑁𝑁
�𝐿𝐿Ԑ(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥))
𝑁𝑁

𝑖𝑖=1

 (51) 

where LԐ is the loss function used for minimization of Remp called ԑ-sensitive loss proposed by 

Vapnik (1998): 

𝐿𝐿Ԑ(𝑦𝑦 − 𝑓𝑓(𝑥𝑥)) = �
0                𝑓𝑓𝑓𝑓𝑉𝑉 |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| < ԑ

|𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − ԑ       𝑂𝑂𝑤𝑤ℎ𝑒𝑒𝑉𝑉𝑤𝑤𝑖𝑖𝐾𝐾𝑒𝑒                           (52) 

Using the ԑ-sensitive loss objective function and introducing the regularization parameter (C), 

and the slack variables (ξ and ξ*), the SVM regression is formulated as minimization of the 

following functional (Cherkassky and Ma 2004; Herceg et al. 2019): 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝐾𝐾𝑒𝑒 
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�(𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)

𝑁𝑁

𝑖𝑖=1

 (53) 

Subjected to the constraints �
𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥) − 𝑏𝑏 ≤ ԑ + 𝜉𝜉𝑖𝑖∗

𝑓𝑓(𝑥𝑥) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ ԑ + 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖∗, 𝜉𝜉𝑖𝑖 ≥ 0                         

 (54) 
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The solution of this optimization problem is given by: 

𝑓𝑓(𝑥𝑥) = �(𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏
𝑁𝑁

𝑖𝑖=1

 (55) 

where a and a* are Lagrange multipliers and K (xi, x) is the kernel function (Herceg et al. 

2019). 

The performance of the SVM regression model is highly influenced by the type of the kernel 

function and setting the parameters C (capacity factor), ԑ (the error-insensitive zone) (Samui 

2008). The commonly used kernel functions are linear, sigmoid, radial basis function and 

polynomial. In the current study, the kernel function and the different parameters are chosen by 

a trial and error method, where the kernel with high correlation coefficient and least mean 

square error (MSE) results is used.     

 

Figure 61: schematic representation of SVM model 

2.5 Data normalization 

Normalization of data is common in artificial intelligence modeling to prevent the models from 

domination by the large values (Ceryan 2014). Before running the modeling techniques, the 

inputs and outputs are normalized in the range 0 – 1 using the following equation: 
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𝑋𝑋𝑛𝑛 =
𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛

𝑋𝑋𝑖𝑖𝑎𝑎𝑚𝑚 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛
 (56) 

where, Xn is the normalized value, Xi is the original value, Xmin and Xmax are the minimum and 

maximum of the original data, respectively. 

After modeling, the results are converted from the standard mode to the real values using the 

following equation: 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛 + (𝑋𝑋𝑖𝑖𝑎𝑎𝑚𝑚 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛) ∗ 𝑋𝑋𝑛𝑛 (57) 

  

2.6 Evaluation and comparing models performance 

The accuracy of the different modeling techniques (SK, SCOK, MLP-NN and SVM) can be 

evaluated using different statistical measures of goodness of fit that describe the errors 

associated with the different models (Zounemat-kermani et al. 2014). In this study, three 

common statistical parameters are used to evaluate the performance of the prediction models. 

These are the correlation coefficient (R), which is defined as the degree of the relationship 

between the observed and the predicted values, the root mean square error (RMSE) and the 

Mean absolute error (MAE) are expressed as follows:  

𝑅𝑅 =  
∑ (𝐸𝐸𝐶𝐶𝑖𝑖𝐻𝐻 − 𝐸𝐸𝐶𝐶𝚤𝚤𝐻𝐻������)(𝐸𝐸𝐶𝐶𝑖𝑖𝑃𝑃 − 𝐸𝐸𝐶𝐶𝚤𝚤𝑃𝑃�����)𝑛𝑛
𝑖𝑖=1

�∑ (𝐸𝐸𝐶𝐶𝑖𝑖𝐻𝐻 − 𝐸𝐸𝐶𝐶𝚤𝚤𝐻𝐻������)𝑛𝑛
𝑖𝑖=1 �∑ (𝐸𝐸𝐶𝐶𝑖𝑖𝑃𝑃 − 𝐸𝐸𝐶𝐶𝚤𝚤𝑃𝑃�����)𝑛𝑛

𝑖𝑖=1

 (58) 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ (𝐸𝐸𝐶𝐶𝑖𝑖𝐻𝐻 − 𝐸𝐸𝐶𝐶𝑖𝑖𝑃𝑃)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (59) 

𝑀𝑀𝐼𝐼𝐸𝐸 =
1
𝑛𝑛
��𝐸𝐸𝐶𝐶𝑖𝑖𝑃𝑃 − 𝐸𝐸𝐶𝐶𝑖𝑖𝐻𝐻�
𝑛𝑛

𝑖𝑖=1

 (60) 

Where ECi
O is the observed EC values, ECi

P is the predicted EC 

 values, 𝐸𝐸𝐶𝐶���� is the average of EC values and n is the total number of samples. 

3 Results and Discussions 

3.1 Input selection 

The raw covariates are chosen using a prior knowledge about the entire modeling problem but 

the key covariates are selected using MLSR, which helps to exclude the covariates that do not 

have a significant effect on the modeling techniques. In this study, eight field measurement 

covariates (ECw, pH, Na%, SAR, cations + anions, clay%, sand% and silt%) and eight 
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environmental covariates (Elevation, aspect, curvature, slope, TWI, LST, NDVI and SAVI) are 

candidates for inclusion in MLSR and predictors of ECs in the dry season (ECs1) and ECs in 

the wet season (ECs2) of the top soil (TS) and the sub soil (SS). 

Table 23 and Table 24 show the results of applying MLSR procedure for the field measurement 

covariates and the environmental covariates, respectively, including p values, variance inflation 

factors (VIF), tolerance, unstandardized coefficients (B), standardized coefficients (Ƀ) and the 

determination coefficient (R2). 

 If a P value is less than the threshold (α = 0.05), the null hypothesis (i.e., the covariates have 

no significant effect on the output variable, ECs) is rejected and the difference is statistically 

significant. On the other hand, if P value is greater than α, the null hypothesis is confirmed and 

there is no statistically significant difference. The tolerance and the variance inflation factor 

(VIF) indices of the multi-collinearity test are used to ensure the accuracy of MLSR results. 

The tolerance index indicates the percentage of variations in each covariate, which is not 

identified by other covariates. VIF = 1 indicates that the covariate of interest has no correlation 

with the other covariates; 1 < VIF < 5 shows moderate correlation and VIF > 5 indicates high 

correlation (Zounemat-kermani et al. 2020). 

From the MLSR outputs of the dry season covariates, one can conclude that sand % and ECw1 

are the optimal field predictors of ECs1 (TS) and ECs1 (SS) with R2 of 0.528 and 0.695, 

respectively. Additionally, the LST1, TWI and Elevation are the optimal environmental 

predictors of ECs1 (TS) with R2 of 0.482 and LST1 with TWI the appropriate predictors of 

ECs1 (SS) with R2 of 0.349. The regression equations of ECs for the dry season are as follows:  

ECs1 (TS) = -0.052 * Sand + 0.398 ECw1 + 2.932     

ECs1 (SS) = -0.049 * Sand + 0.316 ECw1 + 3.069     

ECs1 (TS) = 0.552 * LST1 + 0.712 * TWI + 0.054 * Elevation – 36.361 

ECs1 (SS) = 0.696 * LST1 + 0.381 * TWI – 28.125 

From the MLSR outputs of the wet season covariates, one can see that the silt% with ECw2 and 

pHw2 is the optimal combination of field covariates to predict ECs2 (TS) with a coefficient R2 

= 0.599, while the optimal combination to predict ECs2 (SS) is sand percentage plus ECw2 with 

R2 = 0.706. For the environmental covariates, LST2, TWI and elevation are the optimal 

predictors of the ECs of both depths, with R2 = 0.620 and 0.530 for ECs2 (TS) and ECs2 (SS), 

respectively. The regression equations of ECs for the wet season are as follows: 
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ECs2 (TS) = 0.056 * Silt + 0.406 * ECw2 + 2.445 * pHw2 – 20.395     

ECs2 (SS) = -0.046 * Sand + 0.238 ECw2 + 3.115      

ECs2 (TS) = 0.699 * LST2 + 0.345 * TWI + 0.035 * Elevation – 35.950 

ECs2 (SS) = 0.590* LST2 + 0.329 * TWI + 0.035 * Elevation – 31.351 

These optimal predictors of ECs (field measurement and environmental covariates) issued 

from MLSR are used as inputs for SCOK, MLP-NN and SVM modeling techniques.  

Table 23: Results of the MLSR for the field measurement covariates 

Independent 
variable Covariates P value Tolerance VIF B Ƀ R2 

ECs1 (TS) ECw1 0.002 0.955 1.048 0.398 0.283 0.528  Sand 0.000 0.955 1.048 -0.052 -0.611 
ECs1 (SS) ECw1 0.000 0.921 1.085 0.316 -0.706 0.695  Sand 0.000 0.921 1.085 -0.049 0.287 
ECs2 (TS) ECw2 0.000 0.683 1.464 0.406 0.394 

0.599  pHw2 0.049 0.912 1.490 2.445 0.194 
 Silt 0.000 0.671 1.097 0.056 0.659 

ECs2 (SS) ECw2 0.001 0.905 0.105 0.238 0.239 0.706  Sand 0 0.905 0.105 -0.046 -0.735 
          

 Table 24: Results of the MLSR for the environmental covariates 

Independent 
variable covariates P value Tolerance VIF B Ƀ R2 

ECs1 (TS) LST1 0.004 0.636 1.572 0.552 0.339 
0.482  TWI 0.001 0.988 1.012 0.712 0.302 

 Elevation 0.002 0.634 1.577 0.054 0.366 
ECs1 (SS) LST1 0.000 0.999 1.001 0.696 0.547 0.349  TWI 0.043 0.999 1.001 0.381 0.206 
ECs2 (TS) LST2 0.000 0.884 1.131 0.699 0.593 0.620 

 TWI 0.012 0.996 1.004 0.345 0.199  
 Elevation 0.000 0.881 1.135 0.035 0.328  

ECs2 (SS) LST2 0.000 0.884 1.131 0.590 0.518 0.530 
 TWI 0.026 0.996 1.004 0.329 0.196  
 Elevation 0.000 0.881 1.135 0.035 0.338 

 

3.2 Descriptive statistics of the input and output data 

3.2.1 Output data 

The descriptive statistics of soil salinity of 272 samples from 68 sites (54 for training and 14 

for testing) over two periods are summarized in Table 25. The soil salinity of training dataset 
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varied from 0.12 to 12.37, 0.12 to 10.23, 0.15 to 7.93 and 0.14 to 7.42 mS/cm for ECs1 (TS), 

ECs1 (SS), ECs2 (TS) and ECs2 (SS), respectively. The ECs of testing dataset varied from 0.12 

to 8.72, 0.13 to 7.10, 0.16 to 5.43 and 0.13 to 6.5 mS/cm for ECs1 (TS), ECs1 (SS), ECs2 (TS) 

and ECs2 (SS), respectively. The mean value of ECs varied between the dry and wet season 

and between the different depths, where the dry season had higher values than the wet season 

and the top soil had the highest mean values. The mean of ECs1 (TS), with a value of 2.06 

mS/cm, is higher than ECs1 (SS) and ECs2 (TS) with 1.87 and 1.54 mS/cm, respectively. 

Furthermore, the mean value of ECs2 (TS) is higher than ECs2 (SS), with a mean value of 1.73 

mS/cm. These results maybe due to the accumulation of salt in the top soil as a function of 

evaporation especially in the dry season. The coefficient of variation (CV) of ECs varied from 

104.34 to 130.55 indicates a strong variation of salinity in the study area. This strong spatial 

variation of soil salinity maybe due to the high variation of soil texture (slight textures in the 

eastern and heavy in the western part of the study area), land use and irrigation schedules.                 

Table 25: descriptive statistics of ECs dataset used for training and testing 

Output Data set Number Mean Min Max CV SD Variance 
ECs1 (TS) Training 54 2.06 0.12 12.37 131.55 2.71 7.36 

Testing 14 2.08 0.12 8.72 130.76 2.72 7.41 
Total 68 2.06 0.12 12.37 130.58 2.69 2.27 

ECs1 (SS) Training 54 1.77 0.12 10.23 115.81 2.05 4.2 
Testing 14 2.3 0.13 7.10 104.34 2.4 5.79 
Total 68 1.87 0.12 10.37 112.83 2.11 4.46 

ECs2 (TS) Training 54 1.54 0.15 7.93 132.46 2.04 4.18 
Testing 14 1.52 0.16 5.43 117.76 1.79 3.2 
Total 68 1.54 0.15 7.93 128.57 1.98 3.93 

ECs2 (SS) Training 54 1.6 0.14 7.42 111.25 1.78 3.16 
Testing 14 2.21 0.13 6.5 107.69 2.38 5.68 
Total 68 1.73 0.13 7.42 110.4 1.91 3.67 

 

3.2.2 Input data 

Table 26 summarizes the descriptive statistics of the field and the environmental covariates 

resulting from MLSR as the optimal predictors of ECs in the study area.  
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Table 26 descriptive statistics of the input covariates   

Inputs Mean Min Max CV SD Variance 
ECw1 (mS/cm) 4.23 1.14 10.68 45.39 1.92 3.67 
ECw2 (mS/cm) 4.23 1.13 12.01 45.39 1.92 3.69 

pHw2  7.550 7.19 7.84 2.12 0.16 0.025 
Sand % (TS) 49.34 1.55 92.5 64.45 31.80 1011.48 
Sand % (SS) 51.61 1.35 89.48 58.88 30.39 923.88 
Silt % (TS) 31.46 2.23 89.79 74.79 23.530 553.92 
LST1 (°C) 38.18 34.6 41.35 4.35 1.660 2.75 
LST2 (°C) 38.89 33.66 42.08 4.31 1.680 2.83 

TWI 8.95 7.32 12.73 12.73 1.14 1.31 
Elevation(m) 200.57 173 254 9.19 18.43 339.76 

 

3.3 Geostatistical models 

3.3.1 Simple kriging (SK) 

In this study, SK is applied for mapping the spatial distribution of soil salinity based only on 

the field measurements of ECs. The Kolmogorov and Smirnov test (KS test) revealed that the 

data of ECs for 54 training sites of both seasons are not normally distributed; therefore, data are 

subjected to the normal score transformation. Fitting a theoretical semivariogram model to the 

empirical semivariogram is the main processing step in the Kriging techniques. Different 

models are tried (Spherical, Gaussian, exponential …etc.) and the best fit is found as determined 

based on the cross validation results (Lowest RMSE). 

Figures 63a, b, c and d show the best semivariogram models selected for ECs1 (TS), ECs1 (SS), 

ECs2 (TS) and ECs2 (SS), respectively, and their different parameters. A spherical model with 

nugget effect value of 0.051, partial sill of 1.587 and a range of 32309 m is suitable for ECs2 

(TS), while a Gaussian model with a nugget effect of 0.212, partial sill of 1.2 and a range of 

26216 m is considered for ECs2 (SS). The best fit models for ECs1 (TS) and ECs1 (SS) are 

Gaussians with nugget effects of 0.238, 0.265, partial sills of 1.23, 1.571 and ranges of 29944 

m and 29961 m, respectively. The nugget to sill ratio, which is used for the determination of 

the level of spatial dependence (Cambardella et al. 1994), indicates a strong spatial dependence 

of soil salinity in the four models.            
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Figure 62: Semivariograms and fitted models of (a) ECs1 (TS), (b) ECs1 (SS), (c) ECs2 (TS) 

and (d) ECs2 (SS) 

The results of the performance criterions for training and testing stages are provided in Table 

27. SK technique showed results that are more accurate in the testing stage. The MAE, RMSE, 

R are calculated as 0.61, 0.85, 0.874 for ECs2 (TS), 0.81, 1.2, 0.927 for ECs2 (SS), 1.15, 1.72, 

0.761 for ECS1 (TS) and 0.75, 1.17, 0.934 for ECs1 (SS), respectively. 

Table 27: Prediction performance measures of SK for training and testing datasets  

Training Testing 
Period Variable MAE RMSE R MAE RMSE R 

Dry season ECs1 (TS) 1.2 2.08 0.631 1.15 1.72 0.761 
ECs1 (SS) 0.95 1.56 0.641 0.75 1.17 0.934 

Wet season ECs2 (TS) 0.87 1.43 0.710 0.61 0.85 0.874 
ECs2 (SS) 0.86 1.27 0.700 0.81 1.2 0.927 

 

The resultant maps of soil salinity from SK (Figure 63) show the spatial distribution of different 

classes of soil salinity in the top and sub soil of El Outaya plain over the dry and wet season. 

The maps indicate approximately the same overall distribution of ECs classes in the study area. 

For the interpretation of the results of the salinity levels, the soil salinity classification of Soil 

Test Handbook for Georgia has adopted (Abuelgasim and Ammad 2018), which is compatible 

with our analysis method for the measuring ECs (Table 28).  

From Figure 63 and Table 28, it is apparent the dominance of two main salinity classes, the 

slightly saline to low salinity class and excessively high salinity class. The slightly saline / Low 

salinity is located generally in the western part of the study area with area percentages of 41.14 
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%, 40.57 %, 39.76 % and 38.31 % for ECs2 (TS), ECs2 (SS), ECs1 (TS) and ECs1 (SS), 

respectively. The excessively high salinity class is located in the eastern part of the plain, where 

the agriculture is more intensive, with area percentages of 36.78 %, 37.70 %, 44.60 % and 42.13 

% for ECs2 (TS), ECs2 (SS), ECs1 (TS) and ECs1 (SS), respectively. 

 

Figure 63: Prediction maps of soil salinity using SK: (a) ECs2 (TS), (b) ECs2 (SS), (c) ECs1 

(TS), (d) ECs1 (SS)  

Table 28 The area percentages of different soil salinity classes of SK maps 

 Area (%) 
Classes of ECs 

(mS/cm) Salinity level ECs2 
(TS) 

ECs2 
(SS) 

ECs1 
(TS) 

ECs1 
(SS) 

0 < ECs ≤ 0.15 Non saline 0 0 0 0 

0.15 < ECs ≤  0.50 Slightly Saline/Low 
Salinity 

41.14 40.57 39.76 38.31 

0.5 < ECs ≤  1.25 Moderately Saline/Medium 11.02 12.19 7.30 10.04 

1.25 < ECs ≤  1.75 Strongly Saline/High 
Salinity 

7.00 6.25 5.15 6.47 

1.75 < ECs ≤  2 Very High Salinity 4.05 3.29 3.19 3.04 

ECs > 2 Excessively High Salinity 36.78 37.70 44.60 42.13 

 Total 100.00 100.00 100.00 100.00 
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The scatter plot of the measured soil EC and the estimated mean errors (Figure 64) using SK 

reveals an overestimation of the high ECs values and an underestimation of the low ECs 

value.  

 

 

Figure 64: Scatter plots of measured soil EC and the estimated mean errors using SK: (a) 

ECs1 (TS), (b) ECs1 (SS), (c) ECs2 (TS), (d) ECs2 (SS) 

3.3.2 Simple Cokriging (SCOK) 

3.3.2.1 SCOK with field covariates 

Figure 65 shows the experimental auto semivariograms of ECs1 (TS), ECs1 (SS), ECs2 (TS), 

ECs2 (SS) and their fitted models. Their different cross semivariograms with the field 

covariates are shown in Figure 66. All the experimental semivariograms and cross 

semivariograms are fitted with spherical models. The semivariogram model presents 

information about the auto-correlation of a spatial variable while the cross covariogram 

provides information of cross correlation of two related spatial variables (Wang et al. 2013).   

(a) (b) 

(c) (d) 
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Figure 65: Auto semivariograms of ECs using field covariates: (a) ECs1 (TS), (b) ECs1 (SS), 
(c) ECs2 (TS), (d) ECs2 (SS). All using spherical models.  

 

 

ECs1 (TS) ECs1 (SS) 

ECs2 (TS) ECs2 (SS) 

(a) (b) 

(c) (d) 

ECs1 (TS)  ×  ECw1 ECs1 (TS)  ×  Sand (TS) 

ECs1 (SS)  ×  Sand (SS) ECs2 (TS)  ×  ECw2 ECs2 (TS)  ×  Silt (TS) 

(a) (b) (c) 

(d) (e) (f) 

ECs1 (SS)  ×  ECw1 
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Figure 66: Cross covariograms between ECs and field covariates using SCOK: (a) ECs1 (TS) 

– ECw1, (b) ECs1 (TS) – Sand (TS), (c) ECs1 (SS) – ECw1, (d) ECs1 (SS) – Sand (SS), (e) 

ECs2 (TS) – ECw2, (f) ECs2 (TS) – Silt (TS), (g) ECs2 (TS) – pHw2, (h) ECs2 (SS) – ECw2, 

(i) ECs2 (SS) – Sand (SS). All using spherical models. 

The parameters of the different semivariograms and cross covariograms are tabulated in Table 

29. The models are fitted using different parameters (Nugget effect (C0), Sill (C) and range 

(a)). The nugget to sill ratios (C0/(C+C0)) for all the auto semivarigram models of ECs indicate 

strong spatial dependences. The intrinsic factors are the main cause of strong dependence, while 

weak dependence is caused by extrinsic factors (Wang et al. 2013).  

Table 29: Parameters of the auto semivariogram models for ECs and their cross covariogram 

models (using field covariates). 

Period 

Variable Model C0 
(mS/cm)2 

C 
(mS/cm)2 a (m) 

(C+C0)/C0 
(%) 

D
ry season 

ECs1 (TS) Spherical 0.146 0.719 19747.51 16.87 

Cov ECs1 (TS) - ECw1 Spherical - 0.517 - - 
Cov ECs1 (TS) - Sand (TS) Spherical - -0.786 - - 

ECs1 (SS) Spherical 0.143 0.875 19897.06 14.04 

Cov ECs1 (SS) - ECw1 Spherical - 0.555 - - 
Cov ECs1 (SS) - Sand (SS) Spherical - -0.837 - - 

W
et season 

ECs2 (TS) Spherical 0.059 0.979 19769.94 5.68 

Cov ECs2 (TS) - ECw2 Spherical - 0.633 - - 
Cov ECs2 (TS) - Sand (TS) Spherical - 0.871 - - 

Cov ECs2 (TS) - pHw2 Spherical - -0.571 - - 
ECs2 (SS) Spherical 0.143 0.875 19897.06 14.04 

Cov ECs2 (SS) - ECw2 Spherical - 0.593 - - 
Cov ECs2 (SS) - Sand (SS) Spherical - -0.837 - - 

 

ECs2 (TS)  ×  pHw2 ECs2 (SS)  ×  ECw2 ECs2 (SS)  ×  Sand (SS) 
(g) (h) 

(i) 
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3.3.2.2 SCOK with environmental covariates 

Figure 67 and Figure 68 show respectively the fitted auto semivariograms and cross 

covariograms models of ECs prediction using SCOK with the environmental covariates. ECs1 

(TS) and ECs2 (SS) experimental variograms are fitted using Gaussian models. ECs1 (SS) and 

ECs2 (TS) are matched using a spherical model (the best model was chosen based on cross 

validation results). Their different parameters are listed in Table 30. The nugget to sill ratio 

indicates strong spatial dependence for ECs1 (SS) and ECs2 (TS), and a moderate spatial 

dependence for ECs1 (TS) and ECs2 (SS).       

 

   

Figure 67: Auto semivariograms of ECs using environmental covariates: (a) ECs1 (TS), (b) 

ECs1 (SS), (c) ECs2 (TS), (d) ECs2 (SS)  

ECs1 (TS) ECs1 (SS) 

ECs2 (SS) ECs2 (TS) 

(a) (b) 

(c) 

(d) 
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Figure 68: Cross covariograms between ECs and environmental covariates using SCOK: (a) 

ECs1 (TS) – LST1, (b) ECs1 (TS) – TWI, (c) ECs1 (TS) – Elevation, (d) ECs1 (SS) – LST1, 

(e) ECs1 (SS) – TWI, (f) ECs2 (TS) – LST2, (g) ECs2 (TS) – TWI, (h) ECs2 (TS) – 

Elevation, (i) ECs2 (SS) – LST2, (j) ECs2 (SS) – TWI, (k) ECs2 (SS) – Elevation. 

 

 

ECs1 (TS)  ×  LST1 ECs1 (TS)  ×  TWI ECs1 (TS)  ×  Elevation 

ECs1 (SS)  ×  LST1 ECs1 (SS)  ×  TWI ECs2 (TS)  ×  LST2 

ECs2 (TS)  ×  TWI 
ECs2 (TS)  ×  Elevation 

ECs2 (SS)  ×  LST2 

ECs2 (SS)  ×  TWI ECs2 (SS)  ×  Elevation 

(a) (b) (c) 

(d) (e) 
(f) 

(g) (h) (i) 

(j) 
(k) 
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Table 30: Parameters of the auto semivariogram models for ECs and their cross covariogram 

models (using environmental covariates). 

Period Variable model C0 
(mS/cm)2 

C 
(mS/cm)2 a (m) 

C0/ (C+C0) 
(%) 

Dry 
season 

ECs1 (TS) Gaussian 0.277 0.487 1479
9.79 

31.79 

Cov ECs1 (TS) - LST1 Gaussian - 0.609 - - 
Cov ECs1 (TS) - TWI Gaussian - 0.1 - - 

Cov ECs1 (TS) - Elevation Gaussian - 0.526 - - 

ECs1 (SS) Spherical 0.157 0.65 1764
4.21 

17.50 

Cov ECs1 (SS) - LST1 Spherical - 0.662 - - 
Cov ECs1 (SS) - TWI Spherical - 0.11 - - 

Wet 
season 

ECs2 (TS) Spherical 0.067 0.916 1856
5.18 

6.81 

Cov ECs2 (TS) - LST2 Spherical - 0.77 - - 
Cov ECs2 (TS) - TWI Spherical - 0.09 - - 

Cov ECs2 (TS) - Elevation Spherical - 0.696 - - 

ECs2 (SS) Gaussian 0.244 0.724 1554
9.37 

25.20 

Cov ECs2 (SS) - LST2 Gaussian - 0.64 - - 
Cov ECs2 (SS) - TWI Gaussian - 0.1 - - 

Cov ECs2 (SS) - Elevation Gaussian - 0.493 - - 
The MAE, RMSE and R performance statistics of training and testing periods for SCOK with 

field covariates and SCOK with environmental covariates are given in Tables 31 and 32. All 

models reflect accurate results in the testing period in both seasons. For ECs1 (SS), SCOK with 

ECw1 and sand (SS) covariates gave more accurate results than SCOK with LST1 and TWI 

covariates, with the smallest MAE of 0.44, RMSE of 0.59 and the highest R of 0.972, 

respectively. With MAE of 0.86, 0.48 and 0.57; RMSE of 1.38, 0.56 and 0.77; and R of 0.867, 

0.917 and 0.981, SCOK of ECs1 (TS), ECs2 (TS) and ECs2 (SS) using LST2, TWI and 

elevation as covariates showed more accurate results than SCOK using field covariates.                

Table 31: Prediction performance measures of SCOK for training and testing datasets using 

field covariates 

  Training   Testing   
Period Variable MAE RMSE R MAE RMSE R 

Dry season ECs1 (TS) 1.01 1.71 0.77 0.99 1.53 0.827 
 ECs1 (SS) 0.82 1.27 0.783 0.44 0.59 0.972 

Wet season ECs2 (TS) 0.72 1.28 0.775 0.65 0.87 0.863 
 ECs2 (SS) 0.71 1.13 0.787 0.55 0.78 0.961 
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Table 32: Prediction performance measures of SCOK for training and testing datasets using 

environmental covariates 

  Training   Testing   
Period Variable MAE RMSE R MAE RMSE R 

Dry season ECs1 (TS) 1.24 1.99 0.672 0.86 1.38 0.867 
 ECs1 (SS) 0.91 1.45 0.716 0.65 0.92 0.961 

Wet season ECs2 (TS) 0.76 1.26 0.786 0.48 0.56 0.917 
 ECs2 (SS) 0.91 1.45 0.716 0.57 0.77 0.981 

 

From the spatial distribution maps of soil salinity generated using SCOK with field covariates 

(Figure 69) and SCOK with environmental covariates (Figure 70), one can distinguish the 

dominance of two salinity classes, the first one is slightly to low salinity class and the second 

one is the excessively high salinity class. As mentioned on the maps the first class occupies 

generally the eastern part of El Outaya plain and the second class occupies the western part of 

the study area. The produced maps of ECs1 (TS) using SCOK with field covariates and SCOK 

with environmental covariates show from slightly to low salinity class occupation areas as 38.62 

% and 39.69 %, and the excessively high salinity occupies areas of 43.13 % and 35.9 %, 

respectively; whereas the generated maps of ECs1 (SS) indicate the decreasing of slightly to 

low salinity class with surface areas 36.27 % and 35.28 % and the increasing of the excessively 

high salinity to 44.74 % and 43.95 %, respectively. For ECs2 (TS) and ECs2 (SS) maps with 

field covariates and environmental covariates, the surface areas occupied slightly to low salinity 

class are 41.86 %, 43.10 % and 38.45 %, 43.10 %, respectively, while the surface areas occupied 

by the excessively high salinity class are 38.42 %, 35.00 % and 41.96 % and 34.52 %, 

respectively. 
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Figure 69: Prediction maps of SCOK using field covariates: (a) ECs1 (TS), (b) ECs1 (SS), (c) 

ECs2 (TS), (d) ECs2 (SS) 

 

Figure 70: Prediction maps of SCOK using environmental covariates: (a) ECs1 (TS), (b) 

ECs1 (SS), (c) ECs2 (TS), (d) ECs2 (SS) 
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3.4 Artificial neural network and machine learning models 

3.4.1 Multilayer perceptron neural network (MLP-NN) 

Different MLP-NN models with Broyden–Fletcher– Goldfarb–Shanno (BFGS Quasi-Newton) 

back propagation algorithm are constructed for predicting soil salinity (ECs) in El Outaya plain 

using field covariates and environmental covariates as inputs. Table 33 and Table 34 show the 

properties of the MLP-NN models used for predicting ECs with field covariates and 

environmental covariates, respectively. The optimal MLP-NN structure, the number of hidden 

neurons and the activation functions are identified using a trial and error procedure by varying 

the number of hidden neurons from 1 to 20 and checking the performance criteria generated 

automatically by the software (the least SOS and highest R).    

As shown in Table 33, MLP (2-10-1) with logistic activation function in the hidden layer and 

exponential (Expo) activation function in the output layer, MLP (2-6-1) with identity and 

exponential activation functions, MLP (3-8-1) with logistic activation function in the hidden 

and output units, and MLP (2-10-1) with Tanh hidden activation function and exponential 

output activation function are the best structures for predicting ECs1 (TS), ECs1 (SS), ECs2 

(TS) and ECs2 (SS) using field covariates, respectively.          

Table 33: Properties of the MLP-NN used for modeling ECs with field covariates 

Inputs Output ANN 
structure 

Training 
error 

(SOS) 

Testing 
error 

(SOS) 

Hidden 
activation 

Output 
activatio-

n 

ECsw1, sand (TS) ECs1 (TS) MLP 2-10-1 0.008 0.007 Logistic Expo 

ECsw1, sand (SS) ECs1 (SS) MLP 2-6-1 0.007 0.001 Identity Expo 
ECw2, silt (SS),   

pHw2 ECs2 (TS) MLP 3-8-1 0.005 0.008 Logistic Logistic 

ECw2, sand (SS) ECs2 (SS) MLP 2-10-1 0.005 0.003 Tanh Expo 
 

The properties of MLP-NN models for predicting ECs using environmental covariates as inputs 

are listed in Table 12. The optimal structures of MLP-NN for predicting ECs1 (TS), ECs1 (SS), 

ECs2 (TS) and ECs2 (SS) are MLP (3-5-1) with identity activation function in the hidden layer 

and logistic output activation function, MLP (2-8-1) with Tanh activation function in the hidden 

unit and exponential activation function in the output unit, MLP (3-5-1) with logistic function 

in the hidden layer and exponential activation function in the output layer, and MLP (3-5-1) 

with logistic activation function in both layers.   
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Table 34: Properties of the MLP-NN used for modeling ECs with environmental covariates 

Inputs Output ANN 
structure 

Training 
error 

(SOS) 

Testing 
error 

(SOS) 

Hidden 
activation 

Output 
activation 

LST1, TWI, 
elevation ECs1 (TS) MLP 3-5-1 0.012 0.008 Identity Logistic 

LST1, TWI ECs1 (SS) MLP 2-8-1 0.008 0.013 Tanh Exponential 
LST2, TWI, 

elevation ECs2 (TS) MLP 3-5-1 0.012 0.003 Logistic Exponential 

LST2, TWI, 
elevation ECs2 (SS) MLP 3-5-1 0.012 0.014 Logistic Logistic 

 

Table 35 and Table 36 show the calculated performance criteria for the evaluation of MLP-NN 

models field and environmental covariates, respectively. The performance criteria showed 

accurate results for training and testing periods with more accuracy in the testing stage.  

From Table 35, MLP-NN modeling using field covariates as inputs are more accurate in 

predicting ECs1 (SS) and ECs2 (SS) with MAE of 0.34 and 0.38, RMSE of 0.49 and 0.6, and 

R of 0.977 and 0.968 in the testing period, respectively. For MLP-NN modeling using 

environmental covariates as inputs, the performance criteria of the testing stage (Table 36) 

indicate more accurate results in predicting ECs2 (TS) and ECs2 (SS), with MAE of 0.43 and 

0.95, RMSE of 0.6 and 1.22 and R of 0.946 and 0.961, respectively. 

Table 35: Performance measures of MLP-NN models using field covariates 

 Training performance Testing performance 
Output MAE RMSE R MAE RMSE R 

ECs1 (TS) 0.86 1.53 0.837 0.87 1.42 0.889 
ECs1 (SS) 0.7 1.21 0.824 0.34 0.49 0.977 
ECs2 (TS) 0.41 0.79 0.922 0.75 1.01 0.813 
ECs2 (SS) 0.5 0.76 0.903 0.38 0.6 0.968 

 

Table 36: Performance measures of MLP-NN models using environmental covariates 

 Training performance Testing performance 
Output MAE RMSE R MAE RMSE R 

ECs1 (TS) 1.26 1.87 0.749 0.9 1.52 0.845 
ECs1 (SS) 1.02 1.29 0.773 1.24 1.63 0.702 
ECs2 (TS) 0.82 1.22 0.798 0.43 0.6 0.946 
ECs2 (SS) 0.84 1.13 0.768 0.95 1.22 0.961 
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3.4.2 Support vector machine (SVM) 

The parameters of the kernel functions of the SVM models (C, ԑ and ᴕ) and the stopping errors 

generated automatically by the software (MSE) during the training and testing periods are 

shown in Table 37 and Table 38. The optimal kernel functions are determined by varying the 

kernel parameters in order to obtain the lowest MSE and highest R. As noted in Table 37, the 

radial basis functions (RBF) are the kernels applied to train SVMs and predicting ECs using 

field covariates. The values of the error margin (ԑ), the kernel scale (C) and the regularization 

parameter (ᴕ) have high influence on the results of the SVM models (Jalal et al. 2020). The 

values of C, ԑ and ᴕ that gave the best SVM models are 0.15, 0.1 and 1 for ECs1 (TS) and ECs1 

(SS), 0.3, 0.1 and 0.2 for ECs2 (TS), and 14, 1 and 1 for ECs2 (SS), respectively. The properties 

of the kernels used to train SVMs with environmental covariates are shown in Table 38. RBFs 

showed the lowest stopping errors for ECs1, while polynomial kernels showed the best results 

for ECs2.        

Table 37: Characteristics of the kernels and SVM models using field covariates   

Output Kernel 
function C ԑ ᴕ training errors  

(MSE) 
Testing Errors 

 (MSE) 

ECs1 (TS) RBF 15 0.1 1.0 0.02 0.021 
ECs1 (SS) RBF 15 0.1 1.0 0.011 0.01 
ECs2 (TS) RBF 0.3 0.1 0.2 0.046 0.043 
ECs2 (SS) RBF 14 1.0 1.0 0.019 0.015 

 

Table 38: Characteristics of the kernels and SVM models using environmental covariates   

Output Kernel 
function C ԑ ᴽ training errors  

(MSE) 
Testing Errors 

 (MSE) 

ECs1 (TS) RBF 7.0 0.15 0.33 0.02 0.021 
ECs1 (SS) RBF 1.0 0.20 0.60 0.027 0.034 
ECs2 (TS) Polynomial 3.0 1.0 0.30 0.029 0.014 
ECs2 (SS) Polynomial 4.0 0.10 0.33 0.031 0.041 

 

The results of SVM models’ performance in terms of MAE, RMSE and R during the training 

and testing periods are presented in Table 39 and Table 40. From Table 39, SVM models for 

predicting ECs1 (SS) and ECs2 (SS) by using of ECw and sand % as inputs show clearly 
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superior performance in the testing stage with MAE of 0.61 and 0.58, RMSE of 0.77 and 0.88, 

and R of 0.966 and 0.939, respectively.     

Table 39: The calculated performance criteria for SVM models with field covariates  

  Training Testing 
Input combination Output MAE RMSE R MAE RMSE R 
ECw1, Sand (TS) ECs1 (TS) 0.93 1.72 0.785 1.25 2.01 0.645 
ECw1, Sand (SS) ECs1 (SS) 0.7 1.05 0.854 0.61 0.77 0.966 

ECw2, pHw2. Silt (TS) ECs2 (TS) 0.94 1.68 0.768 0.83 1.36 0.698 
ECw2, Sand (SS) ECs2 (SS) 0.61 1.01 0.824 0.58 0.88 0.939 

 

The calculated performance criteria in terms of MAE, RMSE and R for SVM modeling with 

environmental covariates (Table 40) indicate a superior performance for the prediction of ECs2 

(TS) and ECs2 (SS) with the lowest MAE ( 0.69 and 1.2) and RMSE (0.93 and 1.54), and the 

highest R (0.903 and 0.922). 

Table 40: The calculated performance criteria for SVM models with environmental 

covariates 

  Training performance Testing performance 
Input combination Output MAE RMSE R MAE RMSE R 

Elevation, LST1, TWI ECs1 (TS) 1.38 1.74 0.777 1.35 1.76 0.77 
LST1, TWI ECs1 (SS) 1.25 1.66 0.615 1.56 1.86 0.631 

Elevation, LST2, TWI ECs2 (TS) 0.86 1.33 0.818 0.69 0.93 0.903 
Elevation, LST2, TWI ECs2 (SS) 0.96 1.27 0.716 1.2 1.54 0.922 

 

4 Discussion and comparison of the different models 

For the purpose of more clarity and a better comparison between the different modeling 

techniques, the Taylor diagram during the testing period was utilized (Figure 71). The Taylor 

diagram is a graphical framework that allows the comparison of different models in the same 

time and provides concise statistical summary of how well patterns match each other in terms 

of their correlation, the ratio of their standard deviations, and their root-mean-square difference 

(Santos et al. 2019; Koulla et al. 2019). The overall comparisons between the different modeling 

techniques applied to predict the soil salinity in terms of ECs in El Outaya plain illustrated the 

superiority of MLP-NN over the other modeling methods, either by using the field covariates 

(ECS1 (TS), ECs1 (SS) and ECs2 (SS)) or the environmental covariates (ECs2 (TS)).  
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As illustrated in Figure 71a, b and d, for the prediction of ECs1 (TS), ECs1 (SS) and ECs2 (SS), 

the MLP-NN models. ECw and sand % as inputs provided better performance results than the 

other models and could explain 79.1 % and 95.5 % of the top soil and the sub soil ECs variability 

in dry season, respectively, whereas could explain 94 % of the sub soil ECs variability in the 

wet season.  However, SCOK with the same covariates could explain 75.2 % of the ECs1 (TS) 

variability, 92.5 % ECs1 (SS) variability and 92.5 % ECs2 (SS) variability in the study area. 

SVM using ECw1 and sand % as inputs to predict ECs1 (TS) and SVM using LST, TWI and 

elevation as inputs to predict ECs1 (SS) were the worst models with determination coefficients 

of 0.41 and 0.40, respectively. 

Taylor diagram (Figure 71c) showed that MLP-NN using LST2, TWI and elevation is the best 

model to predict the top soil salinity in the wet season, where it could explain 90 % of ECs2 

(TS) variability. SVM using ECw2, silt % and pHw was the worst model with R2 = 0.49.    

 

Figure 71: Taylor diagram for the testing results of the modeling techniques: (a) ECs1 (TS), 

(b) ECs1 (SS), (c) ECs2 (TS), (d) ECs2 (SS) 
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5 Conclusion 

The present chapter aimed to improve the prediction of top soil and sub soil salinity over two 

seasons in El Outaya plain by using of two categories of covariates, the field covariates that 

affect directly the soil salinization (soil and water properties) and the environmental covariates 

(remote sensing and topographic covariates). Multiple linear stepwise regression, simple 

Kriging (SK), simple cokriking (SCOK), multilayer perceptron neural network (MLP-NN) and 

support vector machine (SMV) are used in this thesis. The results showed that the spatial 

prediction of soil salinity could be improved using cokriging with field and environmental 

auxiliary variables. Compared to SK, SCOK provides the lowest mean absolute errors (MAE) 

and root mean square errors (RMSE), and the highest correlations (R) between the measured 

and the predicted soil salinity. The spatial prediction maps of ECs indicated low concentrations 

in the western part of El Outaya plain, whereas the high concentrations are located in the eastern 

part where the agriculture is more intensive, the irrigation water is more saline and the soil are 

characterized by heavy textures. 

The comparison of the performance of the different modeling techniques depicted the 

superiority of MLP-NN in the accuracy of estimating soil salinity with lower MAE and RMSE, 

and higher Pearson’s correlation coefficients. Thus, the results of SCOK are close to those of 

MLP-NN. In addition, the combination of ECw and sand % from the field covariates and TWI, 

LST and elevation as inputs to MLP-NN and auxiliary variables to SCOK can estimate and 

improve the predictions of soil salinity in the study area. 
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General conclusion and recommendations  

General conclusion 

The literature has demonstrated that agricultural irrigation is the main use of global water 

resources and groundwater provides about 43 % of agricultural irrigation. In arid and semi-arid 

regions, the water demand is increasing due to the scarcity of rainfall and drought, which lead 

to the overexploitation of groundwater. The bad use of this valuable resource for irrigation 

accompanied with poor agricultural practices cause the deterioration of its quality. The 

irrigation with low groundwater quality (e.g. saline) contributes significantly to soil salinization 

in irrigated areas, which is the major threats of land degradation occurring around the world, 

posing risks to agricultural production, environmental health and economic prosperity. 

 The situation of El Outaya plain in the southwest of Algeria gives it the characteristic of aridity, 

where rainfall is scarce, evapotranspiration rates are higher than precipitations and the dry 

season is spread out over the whole year. In addition, the rapid extension of agriculture and 

urbanization put more pressure on the limited groundwater resources of the plain, particularly 

the Mio-Pliocene, which is the main exploited aquifer in the study area. The apparition of white 

crust on the top soil of irrigated areas in the plain is a visual indication of the impact of 

groundwater salinity on soil salinization.        

The main issue addressed in this thesis, namely the hydrogeochemical analyses and assessment 

of groundwater quality for human consumption and irrigation and the impact of the salinity on 

soil salinization in El Outaya plain is complex and needs to be addressed at different distinct 

levels. In order to answer this question, this research study conducted several aspects. 

The hydrochemical analyses based on major cations and anions, and the salinity based on 

electrical conductivity (EC) are the most used criteria for assessing the impact of irrigation 

water on the soil and the irrigated crops. The results of hydro-geochemical analysis reveal that 

sodium and calcium are the dominant cations, while chloride and sulfate are the dominant 

anions in the groundwater. The trilinear Piper diagram shows the prevalence of (Na+ + K+) − 

(Cl- + SO4
-2) and (Ca2+ + Mg2+) − (Cl- + SO4

-2) hydrochemical facies. The dissolution of 

evaporate rocks (halite, calcite and anhydrite) and reverse ion exchange are the main 

hydrochemical processes that control the groundwater chemistry as a result of rock-water 

interaction. The most of groundwater samples are falling under C4S2 and C4S3 classes, which 

can be used for irrigation on coarse textured or organic soils with good permeability and more 

tolerable crops should be selected. About 30 % of the groundwater are unsuitable for irrigation 
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purpose (C5S3 and C5S4 classes), which indicates a high risk of deterioration of the soil 

structure in the study area using this groundwater for irrigation. 

The spatial distribution of groundwater salinity in terms of EC shows general increasing trends 

from the east to the center and from the west to the center of the study area.  The dominance of 

groundwater with high and very high salinity in the study area could be due to the intense 

exploitation of the aquifer, the effects of highly saline irrigation return flows on the 

groundwater, the low rate of precipitation and the dissolution of Triassic evaporitic materials in 

Djebel Elmaleh. It is concluded that the use of the groundwater for irrigation in El Outaya plain 

will deteriorate the soil structure, increase soil salinization, damage the cultivated crops and 

reduce yields. 

The groundwater of the Mio-Pliocene aquifer is the main source of agricultural irrigation in El-

Outaya plain, which means that the subject of the study area depends on different farming 

activities (application of different chemical treatments. chemical and organic fertilization), but 

farmers neglect its high salinity and they are still using it for drinking purposes. The field 

observations led to the question about the contamination of this valuable resource and its 

suitability for human consumption in terms of NO3-N concentration. The application of robust 

interpolation technique is crucial for the prediction of spatial variability of contaminants in 

groundwater. All the interpolation techniques used for this purpose, including the linear and 

nonlinear geostatistical techniques (empirical Bayesian kriging (EBK)), oridinary kriging (OK) 

and indicator kriging (IK)) results and deterministic method (radial basis function (RBF)) have 

a high accuracy to predict groundwater nitrate-N contamination in the study area, with relative 

superiority of RBF. IK technique has been used to map the probability of excessive groundwater 

nitrate-N in the study area. The transformation of these probability maps to categorical maps 

using the developed method shows the tendency of the groundwater quality at two levels to 

exceed a given threshold. IK at a medium risk exceeds thresholds (P ≥ 50%) indicating that the 

groundwater in the study area tends to have intermediate quality with an estimated area of 

50.69% and at a high risk to exceed a given threshold (P ≥ 90%), and the groundwater tends to 

be of good quality over an estimated area of 55.24%. The presented transformation of 

probability maps to categorical maps based on IK is important for decision makers to identify 

regions with high nitrate-N contamination probability, and high risk to human health, and could 

be applied to other risk assessment studies. 

The farmers of El Outaya plain are using groundwater of poor quality, usually unsuitable for 

irrigation and characterized by high salinity, which has enhanced the development of 
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agricultural sector but it is also a principle factor of soil salinization. In the aim of modeling, 

spatiotemporal monitoring and assessment of top soil and sub soil salinity (in terms of soil 

electrical conductivity (ECs)) over two seasons in El Outaya plain by using of two categories 

of covariates, the field covariates that affect directly the soil salinization (soil and water 

properties) and the environmental covariates (remote sensing and topographic covariates), 

Multiple linear stepwise regression, simple kriging (SK), simple cokriking (SCOK), multilayer 

perceptron neural network (MLP-NN) and support vector machine (SMV) were used. The 

spatial prediction of soil salinity was improved using cokriging with field and environmental 

auxiliary variables, where low concentrations are located in the western part of El Outaya plain 

whereas the high concentrations located in the eastern part, which is characterized by an 

intensive agriculture, the irrigation water is more saline and the soil are characterized by heavy 

textures. The comparison of the performance of the different modeling techniques depicted the 

superiority of MLP-NN in the accuracy of estimating soil salinization and the combination of 

groundwater salinity in terms of  ECw and sand percentage from the field covariates and 

Topographic Wetness Index (TWI), Land Surface Temperature (LST) and elevation as inputs 

to MLP-NN and auxiliary variables to SCOK used accurately to estimate and improve the 

predictions of soil salinity in the study area. 

Recommendations 

The following recommendations made based on the results obtained from this study must be 

taken into consideration for future application by decision makers: 

- The construction of new wells without hydrogeological study by the responsible institutions 

should be stopped totally and the new wells should be constructed in appropriate areas 

respecting the distance between wells and the capacity of the captured aquifer; 

- The number of old and traditional wells should be inventoried and studying the possibility 

of replacing them with new ones respecting the international standards; 

- Raising awareness among farmers about the dangers of saline water for irrigation and 

encourage them to apply appropriate leaching and drainage systems to minimize soil 

damages due to secondary salinization, and desalination of groundwater by reverse osmosis, 

which can decrease the EC the groundwater more than 95%; 

- Assist and encourage farmers to use modern technologies for irrigation, fertilization and 

harvesting such as smart irrigation and precision agricultural systems; 
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General conclusion and recommendations  

- Establishment of good agricultural practical protocols for farmers to prevent and reduce 

groundwater pollution by nitrate-N and other contaminants related to poor agricultural 

practices; 

- Establishment of action programs are advised to raise awareness among farmers about 

proper application of pesticides and fertilizers, and designation of pollution vulnerable 

zones; 

- Although, Remote sensing combined to machine learning techniques performed well, 

further studies about using hyperspectral satellite images and Artificial Neural Networks 

(ANNs) in soil salinity and groundwater quality management are recommended.     
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