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Abstract  

Benzodiazepine drugs are widely prescribed to treat many psychiatric and neurologic 

disorders. As its pharmacological action is exerted in a sensitive area of the brain; ''the 

central nervous system'', it is crucial to provide detailed reports on the chemistry of 

benzodiazepines, model the mechanism of action that occurs with GABAA receptors, 

identify the overlap with other modulators, as well as explore the structural requirements 

that better potentiate the receptor response to benzodiazepines. This dissertation consists 

of two original studies that consider the new lines of research related to benzodiazepines, 

particularly the identification of three new TMD binding sites. The first study provides, 

on the one hand, an overview of the chemistry of six Benzodiazepine basic rings starting 

from structural characteristics, electronic properties, Global/local reactivities, up to 

intermolecular interactions with long-range nucleophilic/electrophilic reactants. This was 

achieved by combining a DFT investigation with a quantitative MEP analysis on the vdW 

surface. On the other hand, the performed molecular docking simulations allowed 

identifying the best binding modes, binding interactions, and binding affinities with 

residues, which helped to validate the quantitative MEP analysis predictions. The second 

study was conducted on a dataset of [
3
H]diazepam derivatives. First, molecular docking 

simulation was used to initially screen the dataset and select the best ligand/target 

complexes. Afterwise, the best-docked complexes were refined by performing molecular 

dynamics simulation for 1000 picoseconds. For both simulations, the binding modes, 

binding interactions, and binding affinities were thoroughly discussed and compared with 

each other and with outcomes collected from the literature. Additionally, the good 

pharmacokinetic properties (ADME prediction) as well as compliance with all drug-

likeness rules were checked via in silico tools for all the dataset compounds. Finally, a 

QSAR analysis was carried out using an improved version of PLS regression. Briefly, the 

dataset is randomly split into 10 000 training and test sets that involve, respectively, 80% 

and 20% of chemicals. Subsequently, 10 000 statistical simulations were conducted that; 

after excluding outlying observations, yielded 10 000 best training models following the 

Bayesian Information Criterion. Among these 10 000 best models, the best predictors 

with the highest probability of occurrence were selected. As a consequence, the derived 

PLS regression equation explains 63.2% of the variability in BDZ activity around its 

mean. Furthermore, Internal and external validation metrics assure the robustness and 

predictability of the developed model. The developed model was interpreted based on 

literature investigations and a combination of implemented approaches.  



Keywords: Benzodiazepine, GABAA receptor, allosteric modulation, DFT, molecular 

docking, molecular dynamic, MEP, QSAR, PLS, ADME.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 الملــــــخص

على نطاق واسع لعلاج العديد من الاضطرابات النفسية والعصبية. نظرا لأن تأثيرها  توصف أدوية البنزوديازيبين

الدوائي يمارس في منطقة حساسة من الدماغ "الجهاز العصبي المركزي"، فمن الأساسي توفير تقارير مفصلة عن 

ِّلات الأخرى، ، تحديد تداخلاتها مGABAAكيمياء البنزوديازيبينات، نمذجة آلية تأثيرها على مستقبلات  ع المُعد 

وكذلك تحديد المتطلبات الهيكلية الازمة لتعزيز استجابة المستقبل لها بشكل أفضل. تتكون هذه الرسالة من دراستين 

أصليتين تأخذان في الإعتبار خطوط البحث الجديدة المتعلقة بالبنزوديازيبينات، بالأخص مواقع الربط الثلاث التي تم 

(. تقدم الدراسة الأولى، من ناحية، نظرة عامة على كيمياء ست TMDالغشائي )-ة المجال عبرتحديدها مؤخرا في بني

حلقات أساسية للبنزوديازيبين بدءًا من الخصائص الهيكلية، الخصائص الإلكترونية، التفاعلات العالمية/المحلية، 

لمحبة للكهرباء. تم تحقيق ذلك عبر جمع وصولا الى التفاعلات الجزيئية مع المتفاعلات البعيدة الكارهة للكهرباء/ا

. من vdW( على سطح MEP( مع التحليل الكمي للجهد الكهروستاتيكي الجزيئي )DFTنظرية الكثافة الوظيفية )

ناحية أخرى ، سمحت عمليات محاكاة الالتحام الجزيئي المجراة بتحديد أفضل أوضاع الربط، تفاعلات الربط، وألفة 

الأمينية، مما ساعد على التحقق من صحة تنبؤات التحليل الكمي للجهد الكهروستاتيكي الجزيئي الارتباط مع الأحماض 

(MEP[ أجريت الدراسة الثانية على مجموعة بيانات من مشتقات .)H
3

[ ديازيبام. أولاً، تم استخدام محاكاة الالتحام 

ستقبل. بعد ذلك ، تم تنقيح هذه الأخيرة عن الجزيئي لفحص مجموعة البيانات مبدئيا واختيار أفضل المعقدات جزيء/م

بيكو ثانية. لكلتا المحاكاتان، تمت مناقشة أوضاع الربط،  0111طريق إجراء محاكاة الديناميكيات الجزيئية لمدة 

تفاعلات الربط، وألفة الارتباط مع الأحماض الأمينية بشكل شامل ومقارنتها فيما بينها و بالنتائج التي تم جمعها من 

. أيضا، تم التحقق من ملائمة جميع مركبات مجموعة البيانات للخصائص الحركية الدوائية بحاث العلمية السابقةالأ

-وكذلك مدى امتثالها لقواعد تشابه الأدوية عبر استعمال الأدوات الحسابية. أخيرًا، تم إجراء التحليل الكمي للعلاقة بنية

. باختصار، تم تقسيم مجموعة البيانات بشكل عشوائي إلى PLSر ( باستخدام نسخة محسنة من انحداQSARنشاط )

٪ من العناصر الكيميائية. بعد ذلك ، تم 01٪ و 01مجموعة تدريب واختبار تضم كل منها، على التوالي،  01111

أفضل نموذج تدريب وفقًا  01111محاكاة إحصائية، و بعد استبعاد القيم المتطرفة تم الحصول على  01111إجراء 

نموذج، تم اختيار أفضل المتنبئات طبقا لأعلى  01111(. من بين هذه الأفضل BICلمعيار المعلومات البايزي )

من التباين في نشاط البنزوديازيبينات حول  PLS%33احتمال لحدوثها. كنتائج، تشرح المعادلة المشتقة من انحدار 

لخارجية متانة النموذج المطور وإمكانية التنبؤ به. تم متوسطه. علاوة على ذلك ، تضمن مقاييس التحقق الداخلية وا

 ومجموعة الأساليب المنفذة. بحاث العلمية السابقةتفسير النموذج المطور بناءً على تحقيقات الأ

الغشاء, المجال خارج الخلية, -, مجال عبرالأنواع الفرعية ,مستقبلات الجابا )أ( ,البنزوديازيبين الكلمات المفتاحية: 

 الإرساء ,الوظيفية الكثافة نظرية النقل العصبي, , القناة الأيونية, التعديل الخيفي,0اللولب عبر الغشائي م, بطانة المسا

, نشاط-بنية للعلاقة الكمي التحليل الجزيئي، الكهروستاتيكي للجهد الكمي التحليل الجزيئية، الديناميكية محاكاة ,الجزيئي

  .طراحإ-معالجة-توزيع-الإنحدار, إمتصاص
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GENERAL INTRODUCTION 

Discovering, developing, and bringing new drugs to market is a long-term process that 

costs billions of dollars and involves many risks. Typically, the drug discovery and 

development cycle, from designing the initial concept to bringing it to market, takes about 14 

years [1]. The entire process of discovering new therapeutic agents can summarize into three 

main phases:  

 The discovery phase: involves the selection of targets as well as the manufacture of 

effective compounds. 

 The development phase: includes all the preclinical and clinical research (in vitro and 

in vivo assays). 

 The registry phase: consists of the Food and Drug Administration (FDA) approval, 

clinical application of drug, and post-market drug safety monitoring [2]. 

In 2014, published statistics reported that the cost associated with this course had risen 

in the past decade by over 150% [3]. In this context, the mean cost of developing a single 

new therapeutic substance indicates a sharp increase from $1.1 billion in 2003 to $2.8 billion 

in 2013 [4,5]. Other estimates suggest values between $0.314 billion and $2.1 billion over the 

same period [6–11]. Among a data set of 63 FDA-authorized drugs between 2009 and 2018, 

the median capitalized research and development (R&D) cost per product was estimated to 

be over $0.985 billion, including unsuccessful trials. The median estimates for each 

therapeutic area (for sectors with at least five drugs) varied from $0.7659 billion for nervous 

system agents to $2.7716 billion for antineoplastic and immune-modulating agents [12]. 

Similarly, the investigation performed by Prasad and Mailankody on the real costs of R&D 

of new cancer drugs conducted on a sample of 10 FDA-approved drugs between 2006 and 

2015, estimated the median cost of bringing one cancer drug to market to be at approximately 

$0.648 billion. While, compared to a total R&D investment of $7.2 billion, the total income 

from sales of these 10 drugs over a median of 4 years since approval is estimated at $67.0 

billion. This figure reflects the large profit margins of drug manufacturers and has 

implications for the current debate over drug pricing [13]. Unfortunately, failures that occur 

throughout the drug discovery and design pipeline consume approximately 75% of R&D 

expenditures, with 90% of therapeutic agents entering clinical trials failing to obtain FDA 

clearance and reach the consumer market [3]. According to recent statistics, the FDA 



2 

 

approval rate for candidate drugs entering Phase 1, Phase 2, and Phase 3 is 13.8%, 35.1%, 

and 59.0%, respectively [14]. 

To handle challenges in the drug discovery research cycle, bioinformaticians have 

sought to seize the rapid evolution in the field of computer hardware, software, and 

algorithms by integrating drug screening and design processes into various computational 

methods that dramatically minimize drug R&D time and expense. Overall, bioinformatics 

may assist provide potential target proteins for drug screening and design by identifying 

essential genes from a vast amount of genomic data. Besides, biomolecular simulations, 

when combined with experiments, may yield reasonably accurate protein configurations and 

thermodynamic features that are useful for identifying drug binding locus and elucidating 

drug action mechanisms [15]. 

October 5
th

, 1981, was considered by some researchers to be the beginning of the real 

breakthrough for Computer-Aided Drug Design (CADD), following the release of a cover 

article by Fortune magazine headlined “Next Industrial Revolution: Designing Drugs by 

Computer at Merck” [16,17]. CADD serves as a “virtual shortcut” in the drug discovery 

pipeline. It is primarily applied in the discovery phase where the main objective is to ensure 

that the lead-candidate drug enters preclinical assays, hence minimizing the time and 

expenses associated with drug development. Moreover, CADD may be used as part of the 

''drug repurposing'' strategy that seeks to identify side effects and find alternative applications 

for drugs that have received FDA approval or have reached the market [2]. CADD 

incorporates two main tools that are used based on the availability of target structure 

information; structure-based (SBDD) and ligand-based (LBDD) drug discovery. LBDD is 

developed as an alternative to SBDD when the experimental target structure information is 

missing or unable to be determined through computational methods [1]. Applications of SB-

techniques, in particular molecular docking/dynamics simulations, allow direct ligands 

docking to targets, which in turn, permits conceptualization of the binding mechanism 

involved in ligand-target recognition, as well as, the estimation of the binding affinity by 

monitoring the dynamic behavior [18]. Otherwise, LB-techniques, such as QSAR modeling 

and pharmacophore mapping, exploit the structural information of a dataset of ligands with 

known biological responses to either select the most active ligands or to determine structural 

improvements required to enhance the considered biological response [19]. Importantly, 

when both target and ligand structures are available, it's practical to perform a hybrid 

approach based on combining SBDD and LBDD tools or methods based on End-Points [2]. 



3 

 

To better accomplish its objectives, CADD uses a mechanical method that expresses 

the structure of drug molecules as a function of energy. By minimizing the energy function, 

the optimal geometric configuration for different conformations of molecules can be 

detected. The mechanical methods most used in CADD are quantum mechanics (QM) and 

molecular mechanics (MM) [20]. Thanks to its success in describing the quantum mechanical 

ground state of electrons in systems of interest, density functional theory (DFT) has 

established itself as a sufficiently rigorous and efficient QM method for solving 

pharmaceutical issues. Nowadays, DFT is a well-liked method for precisely and 

inexpensively describing physiologically relevant molecular systems [21]. Overall, 

discussions on its effectiveness in studying specific molecular features for drug design versus 

experimental outcomes have been extensively reported in the literature [20,22].  

Since lead-drugs must traverse many complex biological barriers to reach their target 

in an organism, pharmacokinetics and drug-likeness screening are nowadays routinely 

performed along with CADD tools to improve the success rate of drug candidates, as well as 

avoid toxicity, low efficacy, off-target interactions, and damaging effects by entering 

significant metabolic pathways. Pharmacokinetic studies involve the assessment of 

absorption, distribution, metabolism, and excretion (ADME) [23,24]. Poor ADME profile 

and low bioavailability have been estimated to account for approximately 40% of all clinical 

trial drug failures. Therefore, ADME screening through in silico tools assists in excluding 

inadequate candidates at the early steps of the drug discovery pipeline [23]. 

Fast inhibitory neurotransmission in the brain is mainly mediated by the 

neurotransmitter γ-aminobutyric acid (GABA) and its synaptic target, the GABA receptor 

type A (GABAA). In the mammalian brain, the pentameric isoforms of GABAA are 

assembled from eight distinct families of subunits with a total of twenty subtypes. This rich 

physiological structure has enabled GABAA to be the target for a wide range of therapeutic, 

illicit, and recreational drugs, including benzodiazepines, barbiturates, anesthetics, and 

ethanol. These agents act via distinct binding sites and, possibly, via overlapping pathways 

[25].  

The various benzodiazepine derivatives are positive/negative allosteric modulators or 

antagonists of GABAA that function cooperatively with the orthosteric GABA-recognition 

site. Benzodiazepine drugs exert sedative/hypnotic, anxiolytic, muscle relaxant, and 

anticonvulsant effects, which explain their effectiveness in treating epilepsy, insomnia, 

anxiety, and panic disorder [26,27]. Later, the anesthetic behavior of some high-dose 

benzodiazepines, such as diazepam, was also reported. The researchers' efforts attributed this 
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variation in pharmacological effects to the presence of two distinct classes of binding sites on 

the structure of GABAA. The first class includes a high-affinity binding site inserted at the 

ECD   
 /  

  interface. This class has been known since the discovery of the first 

benzodiazepine and is responsible for the positive modulation that is essential in treating 

anxiety and seizure disorders by inhibiting neuronal excitability in the brain. The second 

class consists of three low-affinity binding sites located at TMD interfaces and partially 

overlapping the binding sites of intravenous anesthetics, which explains why high doses of 

certain benzodiazepines induce a direct anesthetic effect. However, the structural mechanisms 

underlying this variation are still largely unknown to date due to the lack of reliable structural 

data for GABAA [28,29]. 

This work belongs to research devoted to the study of the chemical reactivity and 

physiological effects of benzodiazepines through computational tools. This is accomplished 

by implementing a hybrid approach that merges DFT investigation, quantitative MEP 

analysis, CADD methods, and pharmacokinetic/drug-likeness prediction. This dissertation is 

broken up into two parts with a total of four chapters to discuss our outcomes and impart our 

knowledge. 

Part I defines the study context and outlines the critical basic concepts required to 

understand the findings obtained in part II:  

The first chapter provides a detailed review of the theoretical foundations of brain 

neurotransmission and neurotransmitter receptors, particularly those modulated by the 

neurotransmitter GABA, as well as it includes an in-depth description of the 

chemical/pharmacological properties and physiological effects of benzodiazepines under 

examination. Likewise, the second chapter provides an overview of the theoretical 

background of implemented computational methods. Initially, descriptions of global and 

local reactivity descriptors derived from conceptual-DFT and the quantitative MEP analysis 

are briefly mentioned. Next, CADD methods involving QSAR analysis, molecular docking, 

and molecular dynamics simulation were highlighted. Furthermore, the value of combining 

molecular docking/dynamic simulation is discussed. 

Part II collects results and discussions:  

The third chapter focused on investigating the chemical reactivity of six 

benzodiazepine basic rings by adopting a combinatorial approach based on conceptual-DFT, 

quantitative MEP analysis, and molecular docking simulation. First, statistical analysis was 

used to test the robustness of atomic charges to the basis sets, and then elucidate the 
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differences in geometry and electronic properties. Afterwise, by computing global and local 

DFT-derived reactivity descriptors, the global and local reactivity of the considered rings 

have been determined and discussed. Quantitative MEP analysis on the van der Waals 

surface has also been defined and mapped to examine long-range intermolecular interactions. 

Finally, to confirm the outcomes of MEP, molecular docking simulations were carried out to 

predict the binding affinities of the issued molecules and estimate the binding poses into four 

GABAA receptor binding sites.  

The fourth chapter explores how classical benzodiazepines modulate GABAA receptor 

       subtypes and focuses on structural characteristics that enhance the receptor response 

better to benzodiazepine drugs. A dataset of [
3
H]diazepam derivatives is the optimal choice 

for this purpose. Our investigation centered on four binding loci, three of them were recently 

identified, their pharmacological effect varies from causing neuronal inhibition at low doses 

to anesthetic effects at higher doses. A molecular docking simulation was used to initially 

screen the dataset, and determine the best complexes. With the use of molecular dynamics 

simulations and pharmacokinetics/drug-likeness predictions, the best-docked complexes were 

further refined. Accordingly, the topic of binding modes, binding interactions, and binding 

affinities has been extensively discussed. Finally, a QSAR analysis was implemented based 

on an improved version of PLS regression, leading to the development of a robust model. 

The model developed was interpreted based on the results of the literature review and the 

combination of the cited approaches. 

Overall, this dissertation concludes with a general conclusion that summarizes the 

general workflow of the study, outlines the key findings, and specifies the hypotheses that 

will stimulate future experimental investigations and theoretical studies in the topic of 

benzodiazepines. 
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1 Introduction 

Anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum 

disorder, and attention-deficit/hyperactivity disorder are among the growing psychiatric 

disorders worldwide. Throughout the years, several psychiatric disorders' symptoms, 

characteristics, and categories have been extensively documented in the literature. The 

pathophysiology of psychiatric disorders is influenced by many factors, including genetics, 

environment (such as infections, early traumas, and drugs), aging, and sociodemographics 

(e.g., ethnicity and socioeconomic status). Although the pathophysiology of psychiatric 

diseases is still poorly understood, disruptions in monoaminergic, disruptions in 

neurotransmitter systems (e.g., glutamatergic, purinergic, and GABAergic), and alterations 

in extremely complex and interconnected metabolic pathways have been reported as 

etiologies of many psychiatric diseases [1]. 

GABA, an inhibitory neurotransmitter, is estimated to be 1000 times more abundant 

in the brain than monoamine neurotransmitters. GABAergic inhibition deficiency underlies 

a large number of human disease states, including anxiety and stress disorders, 

musculoskeletal and pain disorders, insomnia and sleep disorders, addiction and drug-

withdrawal syndromes, epilepsy and seizures, anesthesia, liver diseases and hepatic 

encephalopathy, cognition, learning and memory disorders, and hormonal disorders [2]. By 

strengthening synaptic activity, GABA regulates the functioning of different interconnected 

neuronal cells in the adult brain. Hence, the strength and polarity of GABAergic 

transmission are always modulated in both physiological and pathological states. The 

strength regulation of GABAergic transmission via GABAA receptors is accomplished by a 

variety of processes, including direct modulation of the GABAA receptors, adjustment of 

intracellular chloride concentration, and alteration of GABA metabolism [3]. 

Benzodiazepines are considered safe drugs for modulating GABAergic transmission during 

physiological and pathological conditions [4]. 

This chapter begins by collecting basic background information that will help readers 

better understand neurotransmission in the brain. Following that, it focuses on 

neurotransmitter receptors, starting with a brief description of their two main super-families: 

G-protein-coupled receptors and ligand-gated ion channel receptors, to a detailed description 

of the γ-aminobutyric acid receptors, in particular the type ‘’A’’ γ-aminobutyric acid 

receptor (GABAA). Also, the GABA shunt (or GABA metabolism) and the orthosteric 

GABA binding sites in α1β2γ2 subtypes are well documented. Finally, the chemistry, 

pharmacological properties, and physiological effects of benzodiazepines were reviewed. 
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2 Neuronal transmission in the brain 

The rapid transmissions of information inside the brain are ensured through 

communication between networks of nerve cells, known as neurons. Neurons have distinct 

features that set them apart from other cells in the body. Their morphology is tree-like, 

consisting of a cell body (soma) and specialized thin branches called dendrites and axons that 

allow them to perform their specific function in the central nervous system. Indeed, neurons 

receive signal inputs through dendrites and share them, with each other, via axons. This 

strategy is known as ‘’the interneuronal communication’’ (Figure I.1). The pre-synaptic 

neurons send electrical stimulations known as the ''action potential'' through their axons until 

it achieves the axon terminal where they enhance the concentration of calcium ions, which in 

turn, stimulates the vesicles to release chemical inputs called ''neurotransmitters'' into the 

synaptic gap. Meanwhile, the post-synaptic neurons receive the neurotransmitters via their 

dendrites where they bind to specific receptors and mediate the conduction of signals to the 

rest members of the neural network (Figure I.2). Chemical transmission is more common in 

the mammalian central nervous system than electrical transmission. The latter is produced by 

proteins known as ‘’connexins” that form ion-conducting pores that connect the intracellular 

compartments of neighboring neurons and enable direct ion passage from one cell to another 

[5,6].  

 

Figure I.1. Structure of a typical neuron [7]. 

The neuron must be excitable to perform its function, and this is achieved by the 

presence of an electrical voltage flow across the cell membrane. The electrical voltage results 

from the difference in concentration gradients of ions between the inner and outer medium of 

the neuron's membrane. In the resting state of the neuron, there is the so-called ''resting 

membrane potential'', which represents the ground on which the action potential of the nerve 

https://kids.frontiersin.org/articles/10.3389/frym.2017.00039#KC1


12 
 

originates. The typical voltage value of the resting membrane potential is approximately -70 

millivolts (mV) (numbered 1 in Figure I.3). This value maintains constant through the 

voltage-gated sodium/potassium pumps distributed, principally, across the soma and axon 

membranes. Potassium is the predominant intracellular ion and sodium is the predominant 

extracellular ion. Logically, both ions tend to flow through the pumps from the more 

concentrated to the less concentrated medium. The influx of positive ions out of the neuron 

generates negative membrane potential or hyperpolarization, and vice versa, the influx of 

positive ions into the neuron leads to depolarization [5].  

 

Figure I.2. Schematic representing a synapse between two neurons [5]. 

Upon stimulation, neurons receive signal inputs through dendrites and spread them via 

the soma. Excitatory signals activate the ligand-gated sodium channels and allow sodium to 

enter the cell. Thus, depolarizing the cell membrane. The influx of sodium within the neuron 

produces a current that travels to a trigger zone within the cell known as the "hillock". In 

hillock, if the input signal is excitatory and sufficiently strong, an action potential is 

generated by the voltage-gated ion channels and transmitted down the axon to the axon 

terminal. The voltage-gated ion channels are controlled by the membrane voltage. They 

activate at specific values of the membrane potential and deactivate at others. The threshold 

required to open the voltage-gated ion channels is about -55 mV (numbered 2 in Figure I.3).  

At this value, sodium-gated channels open at a faster rate than the potassium-gated channels. 

When sodium ions enter the cell, the inside becomes more positive than the outside, further 

depolarizing the cell membrane. Increasing the membrane voltage gradually activates all 

sodium channels and increases the rate of diffusion of ions into the cell. This phase 

corresponds to the rising state of the action potential. As the action potential reaches its peak 

(numbered 3 in Figure I.3), the falling phase begins with the progressive closing of sodium 

channels and the gradual opening of all potassium channels dispersed over the membrane. As 
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a result, potassium ions exit the cell, and the voltage quickly returns to its resting value. Due 

to the slow closing of potassium channels, potassium remains in the cell for a bit longer, 

resulting in a negative overshoot known as hyper-polarization (numbered 4 in Figure I.3). 

The latter is gradually restored to the resting value via sodium/potassium pumps which return 

both ions to their respective positions through the membrane while awaiting a new 

stimulation [8,9]. 

 

Figure I.3. Neuronal action potential diagram [5]. 

3 Neurotransmitter receptors 

Neuroreceptors include two main super-families: the G-protein-coupled receptors 

(GPCRs) and the ligand-gated ion channel receptors (LGICRs) [5]. 

3.1 G-protein-coupled receptors 

GPCRs are metabotropic receptors that are responsible for slow synaptic transmission. 

They are a unique superfamily of membrane proteins that mediate the majority of cellular 

events involving neurotransmitters, hormones, ions, small organic molecules, peptides, and 

photons, as well as having an impact on a wide range of biological processes including 

homeostasis, cell proliferation and migration, olfaction, taste, vision, growth, and mood [10–

12]. Its overall architecture is defined by an extracellular N-terminus followed by seven 

transmembrane α-helices spanning the cell membrane seven times (Figure I.4). Each α-helix 

is linked to the next via an intracellular or extracellular loop. In the end, the intracellular C-

terminus was connected to a heterotrimeric structure of three subunits arranged as follows: α, 

β, and then γ. Both α and γ subunits are attached to the cell membrane by lipidic anchors. 

This arrangement refers to the G-protein [10]. Upon activation through the ligand, the GPCR 

undergoes transmembrane and intracellular conformational changes. Thus it stimulates the 
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exchange of GDP to GTP. Next, most commonly, α subunit completely detaches from the βγ 

dimer and heads to regulate the function of the target membrane protein (enzymes, ion 

channels…). As long as the ligand is bound to the extracellular interface, the   subunit 

remains searching for a target and repeatedly initiates a series of processes. At the end of the 

process, the body resorts to using a G-protein signaling regulator (RGS) that promotes 

hydrolysis of GTP to GDP, re-associates the α subunit to the βγ dimer, dissociates the ligand, 

and returns the GPCR to the inactive state [11]. 

 

Figure I.4. Schematic diagram of GPCR signaling mediated by the activation of the G-

protein α subunit [11]. 

In vertebrates, GPCRs include five families classified based on their sequence, 

structural, and functional similarities: rhodopsin, secretin, glutamate, adhesion, and 

Frizzled/Taste2 [10,11]. Despite GPCRs being required for many key cellular physiological 

activities, many of the structures and functions of the members of these families remain 

unknown due to the delaying of the GPCRs crystallization after isolation from the native 

membrane. Indeed, the significant advances in studies started in the year 2000 with the 

reporting of the first crystal structure of bovine rhodopsin [13]. 

3.2 Ligand-gated ion channel receptors  

LGICs are ionotropic receptors that are responsible for the fast transmission of 

intercellular signaling. They are transmembrane integral proteins that open and close in 

response to the binding of an endogenous agonist like a neurotransmitter. Its morphology 

consists of multimeric subunits surrounding a selective ion channel that extends across the 
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post-synaptic membrane (Figure I.5 (a)) [14]. When a neurotransmitter binds at the 

orthosteric binding site in the extracellular domain interface, a conformational change occurs, 

enabling the ion channel to open and therefore recording the inflow of Na
+
, K

+
, Ca

2+
, or Cl

-
 

ions into the post-synaptic cell on a rapid response (millisecond time scale). Furthermore, 

modulation of LGICRs can occur through endogenous/exogenous modulators. The latter 

stimulates the excitatory/inhibitory balance in the central nervous system by binding at 

allosteric binding sites that differ from the orthosteric binding sites of neurotransmitters 

[5,14]. LGICs are thus attractive candidates for new treatments. In vertebrates, genome and 

cDNA sequence analyses have divided the LGICs superfamily into three unrelated sub-

families. Each sub-family is characterized by a specific architecture as follows (Figure I.5 

(b)): 

 The Cys-Loop receptors: assemble into pentameric isoform arranged around an ion 

channel gated by acetylcholine (ACh),  -aminobutyric acid (GABA), glycine (Gly), 

and serotonin or 5-hydroxytryptamine (5-HT). 

 The ionotropic glutamate receptors (iGluRs): assemble into tetrameric isoform 

arranged around nonselective cation channel (Na
+
, K

+
, Ca

2+
) gated by glutamate. 

 The P2X receptors (P2XRs): assemble into trimeric isoform arranged around ion 

channel gated by ATP [14]. 

 

Figure I.5. a: structure of ligand-gated ion channel [5], b: subunit assembly of the three 

families of LGICs: (A) Cys-loop receptors, (B) iGluRs, and (C) P2X receptors [14]. 
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3.2.1 Cys-Loop family 

All members of the Cys-Loop family share homologous structures, with a pentameric 

isoform generated by five identical or related subunits arranged around a central ion channel 

(see ‘’A’’ in Figure I.5 (b)). Each subunit is divided into three parts: the large extracellular 

domain (ECD) composed of long hydrophilic N-terminal α-helix followed by β-strands 

folded into a β-sandwich containing the Cys-Loops that is enclosed by a disulfide bridge. The 

transmembrane domain (TMD) is formed by four membrane α-helices (M1, M2, M3, and M4) 

connected by three loops (short intracellular loop links M1-M2, short extracellular loop links 

M2-M3, and long cytoplasmic loop links M3-M4) and terminating with one small extracellular 

C-terminal. The five M2 α-helices were assembled in the center to form the ion-channel liner. 

The intracellular domain (ICD) is mainly formed by the long M3-M4 loop (100–270 residues) 

[15]. The Cys-Loop family contains, in addition to the neurotransmitters orthosteric binding 

sites, the allosteric binding sites of many therapeutic agents such as benzodiazepines, 

anesthetics, alcohols, steroids, muscle relaxants, and a range of drugs that treat neurological 

disorders such as Alzheimer’s, epilepsy, anxiety, learning, attention deficit, and drug 

addiction [14]. The Cys-Loop family is the most abundant type of LGICs. This family 

contains the nicotinic acetylcholine receptors (nAChRs), serotonine receptors (5-HT3Rs), 

zinc-activated channel (ZAC), γ-aminobutyric acid (GABAA/GABAC), glycine receptors 

(GlyRs), glutamate-gated chloride channels (GluCl), and the prokaryotes proteins (e.g. ELIC 

and GLIC). Nicotinic acetylcholine receptors (nAChRs), 5-HT3 receptors, and zinc-activated 

channel (ZAC) mediate in fast excitatory neurotransmission while the gamma-aminobutyric 

acid (GABAA/GABAC) glycine receptors (GlyRs), and glutamate-gated chloride channels 

(GluCl) are mediated in fast inhibitory [14,16]. In this dissertation, we focused primarily to 

describe the  -aminobutyric acid type ‘’A’’ receptor (GABAAR). 

4 γ-aminobutyric acid receptors  

γ-aminobutyric acid receptors (GABARs) are types of membrane-bound receptors that 

respond to the inhibitory effect of GABA. This latter inhibits neuronal excitability by acting 

on the three known classes of GABARs: GABAA, GABAB, and GABAC [17]. As reported 

earlier, GABAA and GABAC are ionotropic receptors belonging to the LGICRs superfamily 

and they share the same overall architecture as all the members of the Cys-Loop sub-family. 

They are selective receptors for chlorine ions. When activated through GABA, they allow 

negative chloride ions to flow through the ion channel into the cell, thereby inhibiting 

neuronal excitability for a short time (phasic inhibition) or for a long time (tonic inhibition). 

Some studies consider the GABACR to be one of the several isoforms of the GABAAR 
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[18,19]. However, due to the several fundamental differences that were discovered between 

their function, structure, and pharmacology, starting in 2008, further use of this terminology 

is discouraged by the International Union of Basic and Clinical Pharmacology [20]. The main 

properties that differentiate GABACRs from GABAARs are shown in Table I.1. GABAB, on 

the other hand, is a metabotropic receptor belonging to the glutamate family of the GPCRs 

superfamily which makes it significantly different from GABAA and GABAC receptors in 

structure, sequence, and function [17,19]. Its structure consists of two heterosubunits R1 and 

R2 conjugated to the pertussis toxin–sensitive G-protein Gαi/o class.  It exerts its inhibitory 

role by stimulating Gαi/o dissociation into Gα and Gβγ. Gαi/o activates and inhibits adenylyl 

cyclase, while Gβγ dimer modulates Potassium/Calcium ions flow by activating and 

deactivating, respectively, the voltage-gated potassium ion channels and the voltage-gated 

calcium ion channels [21,22]. 

Table I.1. Differences between GABAA and GABAC receptors [23]. 

 GABAA receptors GABAC receptors 

Channel type Cl
-
 channel 

Conductance 27-30 pS 7-8 pS 

Mean channel open time 25-30 ms 150-200 ms 

GABA concentrations 10-100 μM 1 μM 

Channel composition Heterooligomeric Homooligomeric 

Subunit composition      ,     ,     ,  ,  ,  ,  ,        

Chromosomal location of 

coding genes 

Chromosomes 1, 4, 5, 15, and 

X 

Chromosomes 3 and 6 

Selective agonist Not known (+)-CAMP 

Selective antagonist Bicuculline TPMPA 

Potency order of 

common agonists 

Muscimol > GABA > TACA TACA > GABA > Muscimol 

Modulators benzodiazepines, barbiturates, 

and steroids 

Not known 

Anchoring protein GABARAP MAP-1B 

TACA: trans-4-aminocrotonic acid, GABARAP: GABA Type A Receptor-Associated Protein, (+)-CAMP: 

1S,2R-2-(aminomethyl)cyclopropanecarboxylic acid, TPMPA: 1,2,5,6-tetrahydropyridin-4-ylphosphinic acid, 

MAP-1B: micro-tubule-associated protein 1B. 

4.1 Neurotransmitter γ-aminobutyric acid  

Neurotransmitter γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter 

in the brain of vertebrates and invertebrates. Its inhibitory role exerts through the binding to 

GABA receptors located in the cellular membrane of pre-synaptic and post-synaptic neurons. 

GABA neurotransmission disruption leads to a variety of neurodegenerative diseases, notably 

epilepsy, anxiety disorder, Parkinson's disease, and Huntington's chorea [23]. 
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4.1.1 GABA metabolism or GABA shunt 

The GABA shunt refers to a closed-loop mechanism that produces GABA while also 

preserving its supply. GABA biosynthesis occurs only in Gabaergic neurons, using glutamate 

as a precursor [24]. Thus, we will first briefly explain the biosynthesis of glutamate, and then 

we will discuss the biosynthesis of GABA from the latter. Figure I.6 depicted the metabolic 

cooperation between glutamatergic/Gabaergic neurons and glial cells ‘’astrocytes’’. The 

detailed mechanism is illustrated in Figure I.7.  

 

Figure I.6. The metabolic cooperation between glutamatergic neurons, Gabaergic neurons, 

and glial cells ‘’astrocytes’’. Abbreviations: LAC: lactate, LDH: lactate dehydrogenase, Pyr: 

pyruvate, Glc: glucose, PDH: pyruvate dehydrogenase, α-KG: α-ketoglutarate, AT: 

aminotransferases, GLU: glutamate, PAG: phosphate-activated glutaminase, GLN: 

glutamine, PC: pyruvate carboxylase, OAA: oxaloacetate, GS: glutamine synthetase, 

GDH:glutamate dehydrogenase, AAT: aspartate aminotransferase, GABA-T: GABA-

transaminase, SSADH: succinic semialdehyde dehydrogenase, GAD: glutamate 

decarboxylase [25]. 

Glutamate biosynthesis is directly linked to glucose metabolism. The blood-brain 

barrier (BBB) isolates the brain from the vascular system, and while glucose and essential 

amino acids can penetrate the BBB via specialized transporters, the non-essential amino acids 

glutamate and its metabolite glutamine cannot. As a result, glutamate is formed in the brain 

from glucose. This process occurs through cytoplasmic glycolysis which is succeeded by the 

mitochondrial tricarboxylic acid (TCA) cycle. In this pathway, the key precursor to 

glutamate, α-ketoglutarate, is manufactured. Then, through transamination, α-ketoglutarate is 

transformed into L-glutamate. Subsequently, GABA biosynthesis occurs in the presynaptic 
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cytoplasm by enhancing the decarboxylation of glutamate through the rate-limiting enzyme, 

L-glutamic acid decarboxylase (GAD), in association with the pyridoxine (vitamin B6) as a 

co-factor [24,25].  

 
Figure I.7. General pathway of GABA and glutamate biosynthesis and degradation to 

succinate. GAD: L-glutamic acid decarboxylase, GABA-T: GABA transaminase, SSADH: 

succinic semialdehyde dehydrogenase [24]. 

The synthesized GABA is transported by the vesicular inhibitory amino acid 

transporter (vGAT) to the synaptic vesicles where it's stored until neurostimulation occurs. 

When the action potential attends the axon terminal, the voltage-gated calcium ion channels 

are activated and the calcium binds to synaptobrevin which promotes synaptic vesicles to 

fuse with the cell membrane and release their content into the synaptic gap (Figure I.8). Here, 

GABA mainly tends to diffuse into the post-synaptic cell to perform its inhibitory action by 

activating its target receptors [26].  

When the neuronal transmission is completed, GABA is removed from the synaptic 

space by the GABA transporters (GAT) and transported into the presynaptic neurons and 

neighboring glial cells, where it's either uptake by the presynaptic cells and returned to the 

vesicles or catabolized to glutamine in astrocytes [26]. GABA catabolism occurs through a 

sequential process that begins with the conversion of GABA to succinic semialdehyde (SSA) 

in the presence of GABA transaminase (GABA-T). Then, the succinic semialdehyde 

dehydrogenase (SSADH) quickly oxidizes SSA to succinate, which enters the TCA cycle and 

is involved in the production of glutamine. GABA can eventually be regenerated from this 

latter [24,25]. 
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Figure I.8. A, Fusion of synaptic vesicles. B, SNARE structure: assembled from four 

coiledcoil domains provided by three different proteins situated on the vesicular and the 

cellular membranes: synaptobrevin, synataxin, and two SNAP-25 [27]. 

4.2 Type A γ-aminobutyric acid receptor  

This type of GABA receptors mediates the majority of GABA's physiological 

functions. It is found in 20–50% of brain synapses [28]. It was distributed mainly on the 

dendrites and the soma of Gabaergic neurons. Also, it localized with lower proportions at the 

presynaptic, perisynaptic, and extrasynaptic sites [29]. Its structure displays a high level of 

molecular diversity, owing to the heterogeneity of its subunits and the numerous ways in 

which they can be joined together to form heteropentameric isoforms [18]. Therefore, 

GABAAR contains large numbers of allosteric binding loci that make it among the most 

important drug targets in the central nervous system (CNS).  

4.2.1 Overall architecture 

As can be seen from Figure I.9 (a) and (b), GABAA receptors are characterized by a 

pentameric isoform generated by five identical or related subunits assembled around a central 

chlorine-ion channel. The general architecture of each mature subunit is constructed by the 

sequence of 450 amino acid residues in length [19]. 200–250 amino acids contribute to the 

ECD to form the hydrophilic N-terminal α-helix, the ten β-strands, and the Cys-loops. 85–

255 amino acids contribute to TMD to form four membrane α-helices (named from M1 to 

M4), three loops, and the extracellular C-terminal [30]. The chloride-channel liner was 

constricted by the five M2 α-helices, with a possible contribution from M1 [20]. The 

components of each matter subunit have been modeled and given separately in part c of 

Figure I.9. 
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Figure I.9. Overall structure of GABAA receptor. a, b, side and top views representing the 

receptor configurations: the possible subunit arrangements, the extracellular domain (ECD), 

the transmembrane domain (TMD), the intracellular domain (ICD), the ion channel, and the 

direction of chlorine flow into the cell, adapted from PDB ID: 6x3x, using Moe 2014.0901. c. 

a single subunit structure, taken from [31]. 

4.2.2 Subunits 

In the mammalian brain, GABAARs are assembled from 8 different families of 

subunits containing a total of twenty subtypes:     ,     ,     ,  ,  ,  ,  , and      [29]. 

The existing GABAA receptor subunits and their sequence homologies are shown in Figure 

I.10 (a), and the genomic location of each subunit in human chromosomes is given in Table 

I.2.  

Between subunit classes, there is roughly 30% sequence identity, and between subunit 

subtypes, there is approximately 70% sequence identity [23]. Furthermore, the alternative 

splicing of some genes has resulted in additional diversity in the sequence of subunits. For 

the subunits β2, β4, and γ2, two types of splicing are observed, which are distinct from one 

another by the existence or lack of a short peptide in the long M3-M4 intracellular loop. For 

the β3 subunit, it observed two distinct alternative forms as a result of the exon 1 splicing. 

Another example was found in the rat brain of the α6 subunit, which cleaved around 20% of 

its transcripts, resulting in a loss of 10 amino acid residues at the N-terminus of unknown 

functional significance [29]. 
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Figure I.10. a, Dendrogram representing the existing GABAA receptor subunits and their 

sequence homologies [32]. b, The estimated abundance of GABAAR isoforms in the rat brain 

[18]. 

 

Table I.2. the genomic location of each subunit in human chromosomes [20]. 

Subunit Gene Human chromosome 

α1 GABRA1 5q34 

α2 GABRA2 4p12 

α3 GABRA3 Xq28 

α4 GABRA4 4p12 

α5 GABRA5 15q13.2 

α6 GABRA6 5q34 

β1 GABRB1 4p12 

β2 GABRB2 5q34 

β3 GABRB3 15q13.2 

γ1 GABRG1 4p12 

γ2 GABRG2 5q34 

γ3 GABRG3 15q13.2 

δ GARBD 1p36.3 

ε GABRE Xq28 

θ GABRQ Xq28 

π GABRP 5q35.1 

ρ1 GABRR1 6q15 

ρ2 GABRR2 6q15 

ρ3 GABRR3 3q12.1 
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The predominant GABAAR isoforms consist of two α-subunits, two β-subunits, and 

one γ-subunit, or one δ-subunit (Figure I.10 (b)) assembled in the alternating order: one α, 

one β, one α, one β, interconnected by one γ or δ subunit [18]. The three subunits δ, ε, and π 

can substitute the γ subunit in the given order. Meanwhile, the θ subunit can substitute the β 

subunit. In contrast, the ρ subunit is incompatible with the other subunits classes. It 

preferentially aggregates only with subunits of the same class to form homo- or hetero-

oligomeric channels that define the structures and characteristics of GABACR [33]. γ-

containing receptors distribute mainly in the synaptic sites and account for approximately 

90% of GABAARs in the adult brain. In contrast, δ-containing are abundant in the 

extrasynaptic sites located in specific brain areas such as the hippocampus, amygdala, 

neocortex, thalamus, hypothalamus, and cerebellum. The α1β2γ2 combination constitutes 

approximately 43–60% of GABAARs in the adult brain [18], which makes it the subject of 

many previous types of research attempting to provide high-resolution structural data that 

illuminate atomic mechanisms of drug recognition. The most important among them are the 

cryo-electron microscopy structures complemented with Mutagenesis, Electrophysiology, 

and molecular dynamics simulations proposed by J.J. Kim and co-workers (PDB ID: 6x3x) 

[28,34].  

4.2.2.1 Regional distribution in CNS 

The use of in situ hybridization and immunohistochemical experiments allowed 

researchers to precisely determine the density of distribution and abundance of GABAA 

subunits in the brain. Table I.3 summarizes the acquired results in brief. The individual 

subunits are distributed in diverse but overlapping regional and cellular patterns. The   ,   , 

  ,   , and   subunits are dispersed across the brain with minimal variances, however, the 

  ,   ,   ,   ,   ,   , and   subunits are more limited to specific brain regions. The most 

common and extensively distributed subunits in the brain are the    and   . Most 

hypothalamic regions show colocalization of   and    with    and    subunits, indicating 

the possibility of preferential generation of          receptors. Regarding the   and   

subunits,    and    are the most abundant across all the CNS, whilst,   ,   ,   , and    are 

relatively limited. The    is the least prevalent of the   subunits and is exclusively found in 

the nervous system, whereas the    is expressed in the majority of brain areas [29,32,33]. 
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Table I.3. Regional distribution of GABAA receptor subunits in the brain [33]. 

 

Region                                           

Olfactory bulb glomerular 

Glomerular layer xx x xx o x - - xx xx - xx o x -  

Ext. plexiform layer xxx x xx o x - xx xxx xxx - xxx o o -  

Granular layer xx xx o x xx - - x xx - xx - o -  

Mitral cell layer xx - o - xx - x xx - - xx o x -  

Olfactory tubercle x x - xx x - x x xx - x x x -  

Cerebral cortex 

All layers xx x x xx x - xx xx xx - xx o x   

Outer layers xx x x x x - xx xx xx - xx o x -  

Inner layers xx x xx x x - xx xx xx - xx o x -  

Hippocampus 

Molecular layer x xx - xx x - xx x xx - xx - x -  

Hilar neurons xx - x - - - o xx - - xx - x -  

Strat. oriens/radiatum xx xx - x xx - xx x xx - xx o - -  

Septum 

Medial xx x x - o - o xx x - xx o - x x 

Lateral xx xx x x o - xx x x x xx o -   

Basal ganglia 

Striatum/n.accumbens x xxx x xx xx - x x xxx x x o x x x 

Globus pallidus xx o o x o - o xx o xx xx o o   

Subst. nigra x x x o x - x x - x x x o xx x 

Thalamus 

Reticular nucleus x - xx x x - xx - xx - xx o o   

Ventr. lat. geniculate xxx x x x o - x xx x - x o o xx x 

Do             Dors. lat.   geniculate xxx - - xxx o - x xxx x - x x xxx   

Medial and central x xx x o o - xx xx xx xx x x x xx x 
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Table I.3. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypothalamus 

Ventromedial x xx x o xx - xx x xx x xx x x xx xx 

Supraopticus xxx xxx x x o - xxx xx x - x x x   

Paraventricular xx xxx - - x - xx x xx - x x x xx x 

Arcuate x x x x x - x x x - - x x xx x 

Med. preoptic area xx xx x - x - x x x - xx x x xx x 

Amygdala 

Lateral xx xx xx x o - xx xx xx - xx x o x x 

Basolateral xx xx xx x o - xx xx xx - xx x o   

Medial and central x xx x o o - xx xx xx xx xx x x x x 

Cerebellum 

Granule cell layer xxx x o o x xxx x xxx xxx x xx - xxx   

Molecular layer xx xx - - xx - x x - - x o -   

Midbrain/Pons 

Ventral tegmental area xx x o - o - xx x xx x xx xx o - - 

Raphe nuclei xx xx x - o - xx xx x - xx xx xx x x 

Inferior colliculus xx - - - o - x xx o - o o o   

Olive superior o - x - o - xx - x - x o x   

Medulla 

Trigeminal sensory complex xx - xx o o - x x x x xx x x   

Dorsal cochlear nucleus xx x xx o x xx o x o o x x xx   

Solitary tract nucleus xx o xx - xx - x o x - xx x xx   

 xxx: extremely high, xx: high, x: Low, o: very low. 
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4.2.3 Structural classification 

4.2.3.1 Homo-Oligomeric GABAA receptors  

The widely distributed Homo-Oligomeric GABAARs are formed mostly from five ρ-

type subunits while those formed from murine β1 or β3 and human     subunits are distributed 

less abundantly. Even in the absence of GABA, the gated-chlorine channels generated from 

murine or rat β1 or β3 subunits are self-opening. Picrotoxin, interestingly, inhibits these 

receptors by blocking the channel pore. This impact is species-dependent, as it is not seen 

with human or bovine β1 subunits. In contrast, the feasibility of creating Homo-Oligomeric 

channels from α1, β2, γ2, or δ subunits has yet to be determined [29,33]. Whereas some 

electrophysiological examinations [35–38] supported the existence of these channels, others 

[39,40] demonstrated their absence. Likewise, subunits ε and π appear to be unable to form 

Homo-Oligomeric channels. 

4.2.3.2 Composed of two different subunits 

GABAA receptors resulting from the assembly of two Hetero-subunits are formed 

more efficiently in the brain than Homo-Oligomeric receptors. Their channels are more 

sensitive to GABA impact and can be triggered even at low concentrations. Moreover, they 

provide a high chloride ion permeability into the cell compared to the Homo-Oligomeric 

channels [33]. 

In all analyzed systems, the assembly efficiency of GABA-activated channels that are 

constructed from αβ-subunit combinations seems to be extremely high. In contrast, 

investigations performed on the human embryonic kidney (HEK-293) cells yield conflicting 

results for the αγ or βγ subunit combinations. In this context, the aggregate efficiency of these 

produced from the      or      combinations appears to be low. The assembly consisting of 

the      ,      , and       subunits is created with efficiency corresponding to that of the 

homo-oligomeric      receptors, nevertheless with unique pharmacological aspects. 

Configurations of the      or       are maintained in the endoplasmatic reticulum (ER) and 

are unlikely to constitute functional receptors. On the other hand, it was agreed that the ρ-

subunits can form active receptors by associating with   -subunits and, in some cases, with 

subunits of glycine receptors. This co-assembling was detected mostly in the retinal cells. 

Furthermore, The co-assembling of    ,    ,    , or     offers inactive chlorine-channels, 

while it is unclear whether or not the αδ, βδ, or γδ subunits can generate pentameric GABAA 

receptors [29,33]. 
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4.2.3.3 Composed of three or more different subunit subtypes 

GABAA receptors arranged from one sub-type of α, β, and γ subunit are the most 

prevalent in the brain and hence the most investigated. Theoretically, the possible existing 

stoichiometries are: 1α:1β:3γ, 2α:1β:2γ, 3α:1β:1γ, 1α:2β:2γ, 1α:3β:1γ, and 2α:2β:1γ. Among 

them, the predominant isoform in the adult mammalian brain is the 2α:2β:1γ. Else, 

arrangements with two different α, or β sub-types demonstrate different features than 

receptors with only a single sub-type of these subunits. A similar finding was also noted for 

the arrangements containing (        ) and (                  , which display features 

different from those of (                 ) and (                , respectively. 

Moreover, the immunoprecipitation, electrophysiological, and fluorescence energy transfer 

studies do not support the arrangement of three identical subunit-types in the same GABAA 

receptor, whereas the possibility of combining five distinct subunits in a single receptor is 

still being debated [29,33]. 

4.2.4 Modulation  

In addition to the neurotransmitter GABA, the GABAAR can be modulated by two 

endogenous neuromodulators (neurosteroids and the endocannabinoid 2-

arachidonoylglycerol) [19] and a wide range of exogenous allosteric modulators that have 

significant roles in stimulating cognition, learning, and memory, as well as in the treatment of 

currently more prevalent psychiatric diseases such as anxiety, epilepsy, schizophrenia, 

depression, and insomnia [17,41]. GABA/muscimol, benzodiazepines, and t-butyl-

bicyclophosphorothionate (TBPS)/picrotoxinin were the first binding sites revealed in the 

structure of the GABAA receptor. They were identified by Sieghart through radio-ligand 

binding studies [42]. Other allosteric binding sites were later added by Johnston, emphasizing 

the structural diversity of GABAA receptor-acting chemical patterns [43]. Indeed, subsequent 

researches have indicated that some of the following proposed sites, such as the 

benzodiazepine and neurosteroid sites, could be further split; which assumed the possibility 

of overlap between certain sites, which explains, in turn, why some drugs have more than one 

biological activity that depends on increasing or decreasing their concentration. Table I.4 

presents some of the GABAAR ligand binding sites at the subunit interfaces. 

1- Agonist binding sites that also interact with competitive agonists. 

2- Picrotoxinin binding site that also recognizes γ-butyrolactones, caprolactams, and 

some insecticides 

3- Sedative- hypnotic barbiturate binding sites 
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4- Neuroactive steroid binding sites 

5- Benzodiazepine binding sites 

6- Ethanol binding sites 

7- Stereoselective binding sites for volatile anesthetics 

8- Furosemide binding site 

9- Zn
2+

 ion binding site 

10-  Divalent cation binding sites 

11-  La
3+

 ion binding site 

12-  Phospholipid binding sites 

13-  Phosphorylation sites involving specific protein kinase binding sites  

14-  Interacting sites of GABAA receptors and microtubules that may anchor receptor 

clusters at postsynaptic membranes. 

Table I.4. Some GABAAR ligand binding sites at the subunit interfaces [44]. 

Interface Extracellular domain  Trans-membrane domain 

      GABA Etomidate 

(2 copies/pentamer)  Propofol 

  Volatiles anesthetics 

      EtOH (on δ) Barbiturates 

 Imidazo-BZ (on δ) Propofol 

 Pyrazoloquinolines Octanol 

      ? Barbiturates 

  Propofol 

  Octanol 

      BZ ? 

      ? ? 

      ? Barbiturates 

  Propofol 

  Octanol 

?  Neuroactive steroids 

4.2.5 Orthosteric GABA binding sites in        isoform 

GABA neurotransmitters bind to two binding sites in the GABAA structure; both are 

located at the ECD   /   interfaces (Figure I.11). The two GABA sites show nearly equal 

chemical selectivity for ligands, however, they differ significantly in the 3D organization and 

binding kinetics. In addition, the binding site inserted at the      /      interface was 

estimated to have a threefold higher affinity for GABA than the binding site at the 

     /      interface. Thus, the concept of collaboration between their functions is 

currently being debated. Indeed, it should be noted that different subunit combinations may 
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alter sensitivity to GABA agonists and antagonists. The δ subunit, for example, demonstrated 

a higher affinity for several GABA agonists, notably muscimol and gaboxadol, whereas the γ 

subunit seemed to have a lower affinity [28,44,45]. 

 

Figure I.11. Binding sites of the two endogenous agonists (GABA) and benzodiazepine. a, 

ECD interface for the binding of benzodiazepine (a) and GABA (a’ and a’’). b, the three 

TMD interfaces identified for the binding of benzodiazepine [34]. 

The GABA-binding modes observed in GABAA/       and GABAA/        are 

compatible with each other. However, there are some differences in the proposed interactions 

(Figure I.12). In the GABAA/       subtypes, GABA has been found to participate in 

important hydrophobic interactions with   Phe65. The amino-nitrogen group contributes to 

favorable cation–π interactions with β2phe200 and β2Tyr205. Whereas, its carboxylate group 

forms a hydrogen bond with β2Thr202 and β2Thr130 and electrostatic interactions with the 

basic guanidinium group of   Arg67 [28]. Substitutions of β2Tyr157 and β2Tyr205 

significantly reduced GABA sensitivity, confirming the relevance of these residues in GABA 

recognition [46]. Furthermore, β2Glu155 and   Arg67 mutations reduce GABA potency 

[47]. In the GABAA/        subtypes, the amino-nitrogen group maintained the cation-π 

interaction with β3Tyr205 in addition to creating a network of hydrogen bonds with 

β3Glu155, β3Ser156, β3Tyr157 and β3Tyr97. The carboxylate group maintained hydrogen 

bonds with   Thr130 and β3Thr202 while forming salt bridges with   Arg67 bonds instead 

of electrostatic interactions [45].  
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Figure I.12. a, GABA-binding mode at   

    /  
     GABAA/       subtypes [28]. b, 

GABA-binding mode at   
    /  

     GABAA/        subtypes [45]. 

5 Benzodiazepines 

5.1 Chemistry  

The term benzodiazepines (BDZ) refer to bicyclic heterocyclic compounds based on a 

benzene nucleus fused to a diazepine ring. The delocalization of nitrogen atoms in the 

diazepine ring divided the benzodiazepines into six basic rings: 5H-1,2-bdz, 1H-1,3-bdz, 3H-

1,4-bdz, 3H-1,5-bdz, 5H-2,3-bdz, and 1H-2,4-bdz (Figure I.13) [48].  
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Figure I.13. Benzodiazepine basic rings [48,49]. 

5.2 Pharmacology 

Clinically, benzodiazepines have widespread uses as anxiolytics, hypnotics, muscle 

relaxants, and anticonvulsants in epilepsy. Also, they are used as pre-anesthetic agents and as 
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a withdrawal aid from alcohol and other drugs [50,51]. Their pharmacological effects are 

exerted by binding at the ECD and TMD binding interfaces in the presence of two GABA in 

their binding sites at the ECD (Figure I.11). The GABA neurotransmitter is responsible for 

opening the transmembrane channel that is permeable to chloride, and the presence of 

benzodiazepine potentiate its activity, thus increasing the conduction of the chloride channel 

and inhibiting the excitability of neurons [28].
 
 As agreed, BDZs are agonists, inverse 

agonists, or antagonists of GABAA receptors. BDZ receptor agonists are positive modulators 

that enhance the effect of GABA, inverse agonists are negative modulators that reduce the 

effect of GABA, while antagonists do not affect GABA function, but they limit the effect of 

benzodiazepines by blocking the binding locus (Figure I.14 (a)) [44]. Flumazenil is a common 

antagonist with a high affinity for the classical BDZ-binding site (Figure I.14 (b)). Its clinical 

applications include the treatment of BDZ overdoses and the reversal of diazepam-induced 

anesthesia [28]. 

 

Figure I.14. a, An illustration of the spectrum of ligands and their allosteric effects on the 

GABA site, as well as their varying efficacies, positive or negative, at the BDZ binding site 

[52]. b, Electrophysiology of the Cryo-EM construct, showing the GABAA receptor 

potentiation by the agonist diazepam (DZ), also showing that flumazenil (FLM) (3 µM) 

blocks GABAA receptor potentiation by the agonist diazepam (DZ) (1 µM). n = 3 

independent experiments [28]. 

Also, BDZ has wide pharmacological applications outside the CNS such as anticancer 

[53,54],
 
antitrypanosomal [55,56], non-nucleoside inhibitors of HIV-1 reverse transcriptase 

[57], antimicrobial agent [58,59], antimalarial [60], antitumor agent [61], inhibitors of 

cholesterol absorption [62], inhibitors of the respiratory syncytial virus [63], and inhibitors of 

HCV NS5B polymerase [64]. 
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5.3 1,4-dinitrogenetad BDZ 

Among the six given basic rings, The 5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one, 

also known as 5-Aryl-1,4-BDZ, serves as the skeleton of the most common psychotropic 

drugs currently on the marketed [65]. Otherwise, it can fuse with a triazole or imidazole ring 

to form, respectively, triazolobenodiazepines or imidazolobenzodiazepine 

(diazolobenzodiazepines) (Figure I.15). Importantly, the different drugs are distinguished by a 

variety of side groups that determine the degree of their binding to the GABAA receptor and 

thus may influence their efficacy, as well as their pharmacological and pharmacokinetic 

aspects [66].  

 

Figure I.15. Structures of various 5-Aryl-1,4-BDZs. a, classical-BDZ structure, b, 

Imidazolo-benzodiazepines: X = CH, Triazolo-benzodiazepines: X = N [67]. 

5.3.1 Stereochemistry 

Most 5-Aryl-1,4-based BDZs are devoid of chiral centers. Ring (B) might, however, 

adopt one of the two enantiomeric conformations (I) and (II) (Figure I.16). Importantly, 

conformation (I) is the most preferred for BDZ/target binding [67]. 

 

Figure I.16. Enantiomeric forms of 5-Aryl-1,4-based BDZs [67]. 
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5.3.2 Structure-Activity relationship 

 Substitution at position 1: alkylation by H, CH3, or relatively small alkyl groups 

enhances the activity and produces prodrugs, ex: diazepam. The optimal functional 

groups for placing at position 1, in order from best to worst: OH > F > NH2 > H > 

NHOH > Me > C1> CF3 > Br > Et. 

 Substitution at position 2: Although it can also be non-substitutable, ex: medazepam, 

the carboxylate-derived electronegative atom, preferably O or N, at this position 

enhances the activity. 

 Substitution at position 3: If it is not substituted or has a hydroxyl group, the drug 

polarity will increase: glucuronoconjugation: faster elimination. Ex: lorazepam 

 Benzene ring at position 5: optimal for activity. Contributes to BDZ-receptor binding 

through hydrophobic and steric interactions. 

- Substituted in ortho (2') by an electron-withdrawing group, preferably Cl or 

F, increases activity. Ex: flurazepam (F), clonazepam (Cl). The optimal 

functional groups for placing at position 2’, in order from best to worst: NO2 

> F > CN > C1 > CF3. 

- Substitution in para (4') may decrease activity. 

- It may also replace by another cycle. Ex: Cyclohexenyl (tetrazepam). 

 Substitution at position 7: important in determining potency. A favorable 

position to increase activity, especially, when substituted by an electron-

withdrawing group. 

- NO2: causes a hypnotic action, Ex: Clonazepam, nitrazepam. 

- X: causes an anxiolytic action, Ex: lorazepam, alprazolam. 

- The optimal 10 functional groups for placing at position 7, in order from best 

to worst: CH2CF3> I > Br > CF3 > C1> C(CH3)3> NO2 > F > N3 > CHCH2. 

 Substitution at positions 6, 8, and 9: Here, any type of substitution 

decreases activity [68,69]. 

5.4 BDZ allosteric binding sites 

5.4.1 ECD binding site   

This binding locus is known as “the classical binding site” and is located exactly at the 

ECD   
 /  

  interface. It has been recognized since the first BDZ was discovered in 1957. 

Therefore, it has been the subject of various researches targeted at identifying the mechanism 

of BDZ functioning. In this regard, the mutagenesis and cysteine crosslinking studies agreed 

on the importance of His102 in the recognition of classical benzodiazepines. Except for the 
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His102Cys mutant in the α5 subunit, GABAARs that contain αHis102 mutation to any other 

residue suffer from total insensitivity to the DZP and its analogs [28]. The topological 

organization of the α4βγ2 and α6βγ2 receptors reveals the presence of a natural substitution of 

His102 by the Arg residue, which leads to steric problems affecting the binding of classical 

BDZ at their correspondent binding locus. This could explain the selectivity of classical BDZ 

towards αβγ2Rs containing the α1, α2, α3, and α5 subunits rather than those containing the α4 

and α6 subunits [45,70]. Else, the γ2Phe77Tyr mutant affects less the binding affinity of DZP 

but more strongly reduces that of its analogs containing the chlorine substitutes at the pendant 

phenyl (C). This finding was explained by the difference in flexibility between the two 

pendant phenyls since the presence of the chlorine atoms possibly caused unfavorable steric 

clashes with the side chain of the tyrosine residue. Furthermore, several other mutation 

findings were surveyed in detail in the previous researches [71–73]. 

5.4.2 TMD binding sites  

J.J. Kim and co-workers [34] demonstrated the presence of three additional BDZ 

binding sites in the TMD: two at   
 /  

  interfaces and a third at the   
 /  

  interface (Figure 

I.11 (b)).   
 /  

  binding sites were also previously observed by S. Masiulis and co-workers 

[45] through their study on         . The BDZ binding loci at both TMD   
    

  interfaces 

were identified to be also the binding sites for etomidate and propofol. As well as, the TMD 

binding locus located at the   
 /  

  interface was estimated to overlap in part with that of the 

phenobarbital. Etomidate, propofol, and barbiturate are general intravenous anesthetics that 

differ from benzodiazepines in their ability -at higher doses- to directly activate GABAARs 

without the need for GABA. In a mechanism similar to that of barbiturates, occupation of the 

  
 /  

  interface by diazepam (DZP)  leads to closing the gap presented at the interface 

between the two   -   subunits, which according to J. J. Kim and co-workers [34], may 

explain the anesthetic properties observed during the administration of a high dose of DZP. 

Currently, the [
3
H]diazepam derivatives are the most common psychoactive drugs used to 

treat epilepsy, insomnia, muscle spasms, anxiety, alcohol withdrawal, and panic disorder 

[70].  

5.5 Pharmacokinetics  

The pharmacokinetic properties determine the onset of action and the duration of the 

drug effect. Pharmacokinetics specifically describes absorption, distribution, metabolism, and 

excretion. The side groups of BDZs influence their pharmacokinetic properties, particularly 

their solubility and metabolism [74].  
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5.5.1 Absorption 

Due to their good absorption, BDZs are administered intramuscularly, intravenously, 

orally, sublingually, intranasally, or rectally. After oral administration, they are generally 

well absorbed from the gastrointestinal tract. After intravenous administration, they spread 

rapidly to the brain and CNS, making them effective in emergencies such as acute seizures 

[74–76]. 

5.5.2 Distribution 

BDZs and their metabolites are highly protein-bound structures (70-99%). They are 

widely distributed in the organism and preferentially accumulated in lipid-rich areas such as 

the CNS and adipose tissue. They cross the BBB by passive diffusion. Generally, the more 

lipophilic the BDZ, the more it exhibits the highest absorption rates and the fastest onset of 

clinical effects [74–76]. 

5.5.3 Metabolism 

Most BDZs are metabolized by cytochrome P450 enzymes. In phase (I), they undergo 

oxidation, hydroxylation, or dealkylation, while in phase (II); they conjugate with 

glucuronide or sulfate. Accordingly, the majority of BDZ drugs are excreted entirely in the 

urine. Besides, certain BDZs produce active metabolites that exert additional effects, increase 

drug action duration, and alter the elimination half-life. Ex: Diazepam: is a long-acting BDZ 

that produces three active metabolites: oxazepam, desmethyldiazepam, and temazepam. 

When prescribing BDZ drugs, especially for patients with extensive hepatic disease, these 

metabolites should be considered [74–76].  

5.5.4 Elimination  

BDZs are classified into the following categories based on their elimination half-life: 

 Short-acting drugs: Elimination half-life <5 h. Mostly utilized as 

hypnotics due to their quick sleep onset. They have few residual effects 

and can cause rebound insomnia when disrupted, as well as amnesia and 

dependence problems. Ex: Midazolam and triazolam. 

 Intermediate-acting drugs. Elimination half-life 5-24 h. Typically they 

are used for anxiety purposes. Might have next-day residual effects if used 

as a hypnotic. Ex: Alprazolam, lorazepam, lormetazepam. 

 Long-acting drugs. Elimination half-life >24 h. They present risk of 

accumulation, especially in the elderly or patients with metabolic disease. 

Ex: Diazepam, clorazepate [77]. 
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1 Introduction 

Describing the chemical reactivity of a particular molecular system involves 

investigating how it responds to the approach of different types of chemical reagents. To 

establish this response, the inherent chemical reactivity of the entities is described by 

adopting their electronic structure in the isolated state as a reference point, and then the 

effects of attacking the reagents on this state are investigated [1]. Recently, chemical 

reactivity theory has emerged as an essential technique for determining chemical processes. 

Therefore, theoretical chemists set out to develop several theories to describe the stability, 

selectivity, and reactivity of molecular entities. Accordingly, the density-based theory, DFT, 

provided a sound basis for the development of computational strategies for obtaining 

information on the energetics, structure, and properties of atoms and molecules at much 

lower costs, excellent level of accuracy, and with lesser computational time than other 

existing methods [2].  

Drug designing is an essential phase in the investigation of new medications that 

require multiscale simulations. As per published works [3], DFT is a well-accepted method 

for the precise study of molecular properties and description of physiologically important 

systems. Hence, DFT-hybrid functions, in particular B3LYP, are more appropriate for this 

purpose than LDA and GGA functions [3,4]. Figure II.1 (a) shows that between 1975 and 

2014, the number of publications in the disciplines of "Density Functional" and "Density 

Functional Theory (DFT)" increased dramatically [5], and part (b) exhibits an increase in the 

number of publications implementing DFT for drug design between 1995 and 2005 [3]. 

QSAR modeling exploits DFT-derived descriptors to encode the molecular properties 

accountable for the relevant activity of the target chemicals and then establishes the 

quantitative correlation. Using reliable models, it is feasible to create hypothetical structures 

that either do not exist or have never been synthesized. Selecting the pertinent molecular 

descriptors from the many available is still until now the most challenging task in QSAR 

implementation [4].  

Furthermore, understanding the mechanism of interaction between a potential 

therapeutic agent and its target is essential for drug design. This can be accomplished via 

molecular docking and dynamic simulations. The latter are powerful approaches to 

identifying all potential drug/target interactions: covalent bonds, ionic contacts, ion-dipole 

interactions, dipole-dipole interactions, hydrogen bonding, charge transfer, and hydrophobic 

interactions. When assessing the effectiveness of DFT in computer-aided drug design, its 

robustness in estimating the strengths of these interactions has drawn attention. Specifically, 
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DFT succeeded in predicting covalent, ionic, and hydrogen bonds, while it suffered from 

hurdles in predicting weaker bonds: ion-dipole, dipole-dipole, charge transfer, and 

hydrophobic interactions [4,6].  

Figure II.1. a, Number of publications per year (1975–2014) on the terms ‘’Density 

Functional’’ and ‘’Density Functional Theory (DFT) [5]. b, Number of publications per year 

(1995– 2005) that used DFT for drug design [3]. 

Accordingly, the integration of DFT with MEP analysis and CADD methods 

incorporating QSAR analysis, molecular docking, and molecular dynamics simulations is 

not a randomized protocol in computational drug discovery and development research. The 

background knowledge in this chapter gives readers a better understanding of these 

approaches which, in next chapters, have yielded trustworthy outcomes in the investigation 

of the biological process of benzodiazepines. 

2 Conceptual-DFT 

Conceptual DFT, as a branch of DFT, is intended to develop chemical reactivity 

theory based on the concepts of DFT. Thus, DFT-derived physical and mathematical notions 

are reused and merged to generate descriptors for interpreting and predicting chemical 

phenomena. Conceptual DFT-based descriptors have proven to be effective tools for 

describing and analyzing the chemical reactivity and selectivity of molecular systems [7]. At 

present, several global and local reactivity descriptors have been offered, as well as physical 

definitions, based on the hierarchy of the electronic energy derivatives developed in the 

canonical ensemble  [   ( )] [8]. In the following sections, we will outline the 

fundamental descriptors we used in this dissertation. 
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2.1 Global reactivity descriptors 

The proposed global descriptors provide information on the global behavior of 

chemical species as a whole. They consider the reference point of the DFT of chemical 

reactivity by defining the notion of chemical potential ( ) and the negative of 

electronegativity ( ) as the first partial derivative of the total energy concerning the number 

of electrons (  ), when the external potential  ( ) remains constant [9]: 

        (      ) ( )                                                (1) 

The chemical potential estimates the propensity of electrons to escape from the 

molecular system [10]. More extensively, electrons tend to redistribute between regions of 

higher and lower chemical potentials until space equilibrium is reached [11]. Thus, the DFT-

chemical potential specifies the inverse of the ability of chemical systems to attract 

electrons, which in turn is known by the concept of electronegativity [12]. 

Similarly, the second partial derivative of the total energy was defined by Parr and 

Pearson  [13] as the concept of chemical hardness ( ): 

  (       
 ) ( )                                                      (2) 

In a molecular system, chemical hardness refers to the degree of compaction of the 

electron cloud surrounding the nucleus. So, it is an estimation of its resistance to electrons 

shift toward other systems [14]. Except in the case of bulk metals, where it yields zero 

values, chemical hardness is always positive [15]. The reciprocal of the chemical hardness is 

defined as its chemical softness ( ). This latter determines the relative diffusion of electron 

density between two interacting entities [14]. 

                                                                    (3) 

On another side, the combination of global hardness ( ) with the chemical potential 

( ) is given by Parr et al [16] as the electrophilic index ( ). Indeed, a system with a high ω 

value will naturally be more prone to acquire electronic density from the environment and 

thus be highly reactive [17].  

                                                                   (4) 

Since there is no electronic molecular stabilization along the subtraction of the 

electron density of a molecular system, the notions of electrophilicity and nucleophilicity 

cannot be related together by a single definition. In fact, when electrons are detached from a 

molecule, the molecular electronic energy constantly increases. Therefore, a variational 

approach like electrophilicity cannot be used to determine the nucleophilic index [14]. 
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Accordingly, researchers held that nucleophilicity is defined as the negative value of gas 

ionization potentials (IP), N = -IP, and expressed as follows: 

       (  )        (   )                                            (5) 

TCE: tetracyanoethylene. TCE was chosen as a reference since it exhibits the lowest HOMO 

energy among a large number of compounds [18].  

According to the electrophilicity and nucleophilicity classification scales proposed by 

L.R. Domingo et al [18–20], electrophiles can be classed as strong (ω ≥ 1.50 eV), moderate 

(1.50 < ω < 0.80 eV), and marginal (ω ≤ 0.80 eV). Likewise, nucleophiles can be classified 

as strong (N ≥ 3.00 eV), moderate (3.00 < N < 2.00 eV), and marginal (N < 2.00 eV). 

By using the finite difference approximation (FD), Eqs. (1) and (2) becomes as 

follows: 

          (   )                                                 (6) 

       (   )                                                       (7) 

A is the vertical electronic affinity, defined as the quantity of energy released as a 

result of the capture of an electron by a neutral atom (or molecule) to form a negative ion. 

The property I is the vertical ionization potential, defined as the quantity of energy that must 

be supplied to a neutral atom (or molecule) to remove the most loosely bound electron and 

form a positive ion [21].
 
Eqs below give the arithmetic forms of A and I: 

                                                                 (8) 

                                                                  (9) 

Where, EN, EN+1, and EN–1 are the total ground-state energies of neutral, anionic, and cationic 

states, determined at the neutral geometry. 

2.2 Local reactivity descriptors 

The local descriptors give a profound understanding of the reactivity of a specific 

atomic site in a molecular system during chemical interactions or excitations [14]. The 

variation of the total energy as a function of  ( ) is quantified by the electronic density  ( ) 

at first order and by the Fukui function  ( ) at second order [22]: 

 ( )  (
  

  ( )
)
  

                                                     (10) 

 ( )  (
  ( )

   
)
 ( )

 (
  

  ( )
)
  

                                          (11) 

, refers to the chemical potential.  
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Electronic density is best suited for application when examining the atomic reactivity 

of charged species. While Fukui functions (FFs) are more convenient when dealing with 

neutrals [22]. Due to the discontinuity of the derivative of Eq. (11), three alternative forms 

of FFs have been proposed based on the use of its right and left derivatives with respect to 

  . Through the use of FD approximation, they are determined by the formulas [9]: 

  ( )  (
  ( )

   
)
 ( )

 

     ( )    ( )                     for nucleophilic attack                   (12) 

  ( )  (
  ( )

   
)
 ( )

 

   ( )      ( )                     for electrophilic attack                   (13) 

  ( )  
 

 
 [  ( )    ( )]                                          for radical attack                              (14) 

Where,   ( ),     ( ), and     ( ) are the total electronic densities at point r for neutral 

(N), cationic (N-1), and anionic (N+1) systems, respectively. 

Generally, high FFs values imply large variations in electron density and therefore, 

the most reactive molecular sites when the number of electrons is changed. In terms of the 

frontier molecular orbitals approximation (FMO), FFs are evaluated through the formulas 

[23]: 

  ( )       ( )  |      ( ⃗)|
                                     (15) 

  ( )       ( )  |      ( ⃗)|
                                     (16) 

  ( )  
 

 
[|      ( ⃗)|

  |      ( ⃗)|
 ]                               (17) 

This approximation provides a fast way to calculate the FFs, but neglects the orbital 

relaxation effect [8]. Moreover, the condensed-to-atoms FFs forms can be calculated using 

the procedure proposed by Yang and Mortier [24] in the term of electronic population as: 

  ( )      
    

                                                   (18) 

  ( )    
      

                                                   (19) 

  ( )  
 

 
(    
      

 )                                             (20) 

Where   
 ,     

 , and     
  are the electronic populations of the     atom in the neutral, 

cationic, and anionic systems, respectively. The electronic population is the difference 

between the atomic number    and the atomic charge   . The atomic charges can be 

calculated according to various population analysis schemes (Mullikan, natural, electrostatic 

…etc) [25].  
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Unfortunately, literature is replete with numerous published investigations with 

incorrect FF plots probably due to the unfamiliarity of researchers with the problem of 

degeneracy in the frontier orbitals or, in rare cases, in the ground state. The degeneracy of 

HOMO and LUMO arises due to the symmetric behavior of molecular systems. For example, 

if electrons are removed or added to only one of the frontier orbitals, symmetry breaking will 

occur in the corresponding FF. As a consequence, the local reactivity is affected. Hence, FF 

must maintain molecular symmetry. Once this challenge is overcome, mapping FFs rather 

than computing the condensed values becomes the ideal process for regioselectivity 

evaluation [26]. 

The dual descriptor ( ( )( ) or   ( )) is another useful function used to reveal 

reactive sites. This descriptor has the advantage to locate simultaneously the electrophilic 

and nucleophilic sites in a volume element centred at r. Regions with the most positive 

values ( ( )( )   ) are the preferred sites for nucleophilic attacks, and regions with the 

most negative values ( ( )( )   ) are the preferred sites for electrophilic attacks, while a 

value close to zero suggests that the molecular site is neither electrophilic nor nucleophilic 

[22,27]. As for the Fukui functions, through the FD and FMO approximations, this 

descriptor is calculated using the formulas: 

 ( )( )    ( )    ( )      ( )     ( )      ( )                  (21) 

 ( )( )       ( )       ( )                                       (22) 

 ( )( ) has been demonstrated to be more robust than FF to correctly predict the 

preferable regions for nucleophilic and electrophilic attacks. As a consequence, in latest 

years, researchers have focused their attention on the degeneracy and quasi-degradation 

states of HOMO-LUMO orbitals, yielding in the development of a more precise operational 

formula to calculate and visualize  ( )( ) within the framework of FMO theory [28–33]. 

3 Quantitative molecular electrostatic potential analysis  

The electrostatic potential (ESP) is an assessment of the electrostatic interaction 

between a unit point charge deposited at r and the system in question. ESP is formulated 

directly from Coulomb’s law and expressed as: 

      ( )      ( )       ( )  ∑
  

|    |
 ∫

 (  )

|    |
                       (23) 

Where, Z and  (  ) denote, respectively, the charge on nucleus A located at RA and the total 

electronic density. 
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As the equation shows, a positive       ( ) value reflects the dominance of nuclear 

charges in the considerable site. Otherwise, the negative value indicates the dominance of 

electronic charges [34,35]. 

Since molecules always tend to approach each other in a complementary manner of 

ESP, this latter is commonly used to predict electron-rich/deficient regions and the mode of 

recognition of molecular species, as between drugs and receptors [36]. Hence, the repulsive 

and attractive electrostatic interactions also must be considered to provide a comprehensive 

knowledge of the reactive behavior. When  ( )( ) and ESP of a particular chemical 

reactivity yield conflicting predictions, a quantitative analysis is required to determine the 

dominant effect. In this context, electrostatics is always dominant when the reagents are 

separated by a large distance, while electron-transfer effects (effectively captured by 

 ( )( )) are usually dominant when the reagents are close together [37].  

Quantitative ESP analyses are frequently carried out on the molecular van der Waals 

(vdW) surface by setting the iso-surface density to                 [38], since this value 

reflects the specific properties of molecular species, such as lone pairs and π-electrons, 

strained bonds, etc. MEP positive (negative) regions are electron-deficient (electron-rich) 

sites, susceptible to react with nucleophilic (electrophilic) reactants. A set of statistically-

based quantities have been proposed to define the whole surface potentials of molecular 

entities, two of these are site-specific: the minima and maxima of ESP on the vdW surface 

abbreviated by (      ) and (      ), respectively [39]. The magnitude and distributions of 

       and        enabled the prediction and explanation of the strength and orientation of 

several intermolecular non-covalent interactions including hydrogen bonding, halogen 

bonding, and π-hole bonding [36]. As well, four quantities are global in nature: the local 

polarity ( ), the total ESP variance (    
 ), the degree of charge balance ( ), and the average 

local ionization energy ( )̅ [34,35,39]. Mathematical formulas are outlined in eqs. (24-27). 

  
 

 
∑ |  (  )    ̅|
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            (25) 

  
  
   

 

(    
 ) 

                                                            (26) 

 (̅ )  
∑    ( )|  |

 ( )
                                                       (27) 

  (  ) and   ̅denote, respectively, the value of MEP at point i on the surface and its overall 

average value. Similarly,   
 (  ),   

 (  ),  ̅ 
 , and  ̅ 

 are correspond to the positive and 
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negative values of MEP at points j and k on the surface and their averages (see eqs. (28)-

(30)). While,   ( ) and    are the electron density and orbital energy of the i
th

 molecular 

orbital, respectively. 

 ̅  (  ̅ 
    ̅ 

 ) (   )                                           (28) 
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∑   
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                                                     (30) 

4 Quantitative structure–activity relationship 

Quantitative structure-activity relationship (QSAR) modeling is a ligand-based drug 

design method proposed initially by Hammett in 1930s and developed later in the mid-1960s 

by Hansch and Fujita [40]. Its mathematical framework is based on the implementation of 

chemometric techniques to generate statistically-derived models correlating the independent 

variables (or descriptors) of systems to their dependent variables. The independent variables 

in drug design refer to all structural attributes of chemical entities (the physicochemical and 

biological properties) and the dependent variables refer to their functions (including 

experimental biological/biochemical responses such as binding affinity, activity, toxicity, 

rate constants, etc.) [41]. The generic QSAR model formula is expressed as follows: 

                          Predicted Biological Activity = Function (Chemical Structure) 

QSAR has been incorporated as a key analytical tool in several fields of chemistry, 

including medicinal chemistry, agricultural chemistry, environmental chemistry, and 

toxicology. In pharmaceutical chemistry, QSAR analysis has proven to be a model means 

for drug invention and is currently a standard component of all industrial drug design 

software packages [4]. Its recent trends in the drug discovery and development pipeline can 

be summarized in two points: the first is the development of reliable models that accurately 

predict and classify the biological responses of potential leads. The second is the application 

of these models in the design of new chemical entities (NCEs) and the screening of large 

libraries or datasets of compounds to select new hits with desired attributes. However, in 

both cases, the predictions should be validated experimentally [42,43]. By selecting 

promising hits, QSAR analysis reduces the number of costly experiments and thus reduces 

costly failures of candidate drugs [44]. 

4.1 Recent QSAR approaches  

Since its inception, QSAR has evolved rapidly, leading to the development of several 

methodologies including 2D-QSAR, 3D-QSAR, 4D-QSAR, and Hologram-QSAR 
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(HQSAR). Classical 2D-QSAR approaches are based on correlating the physicochemical 

features of 2D molecular substituents (or fragments) with biological responses. Afterwise, 

QSAR has improved significantly, with Cramer et al [45] proposing comparative molecular 

field analysis (CoMFA), the first innovative 3D-QSAR approach, in 1988. The CoMFA 

paved the way for the development of alternative 3D-QSAR methods, such as CoMSIA, 

SOMFA, and CoMMA, as well as multidimensional (nD)-QSAR methods, such as 4D-

QSAR, 5D-QSAR, etc., to address well-known 3D-QSAR challenges like subjective 

molecular alignment and bioactive conformation problems [44]. Nowadays, three modern 

QSAR methods have been developed by reformulating the conventional methods cited above 

with refined mathematical tools to yield well-designed theoretical models [4]:  

4.1.1 Fragment-Based 2D-QSAR (FB-QSAR) 

This method divides prospective drug structures into various fragments depending on 

the substitute under consideration. By generating two sets of coefficients identifying the 

structural fragments and the physicochemical properties, the physicochemical properties of 

the fragments are then correlated to the biological activities of the prospective drugs [4]. 

4.1.2 Multiple Field 3D-QSAR (MF-3D-QSAR) 

In this method, an additional thermodynamic and non-thermodynamic field of 

molecular potential has been inserted into the CoMFA approach using two sets of 

coefficients representing the Cartesian 3D-space position and the potential field  [4]. 

4.1.3 Amino Acid-Based Peptide or Protein Prediction (AABPP)  

This method is concerned with the evaluation of peptide/protein activity. Analogously 

to prior methods, the relationship correlating the biological activities of targets to the 

physicochemical properties of concerned amino acid residues is given by using two sets of 

coefficients, one representing the physicochemical properties of concerned amino acids and 

the other representing the residues in the target chain  [4]. 

4.2 General workflow of QSAR Studies 

QSAR process can be generally conducted through three steps: data preparation, data 

analysis/model development, and model validation [46]. Figure II.2 illustrates the General 

workflow of QSAR model development. For model development, the chemicals acquired 

from literary sources could be split into training and test set. The training set is used to build 

the model, whereas the test set is required for external validation [47]. The success of any 

QSAR model depends on many factors, including the accuracy of the input data, the 
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selection of relevant descriptors and practical statistical techniques for model building, and 

the validation strategies. The validity of models is assessed by an internal validation process 

usually based on the use of the cross-validation method (CV). Whereas, the predictive power 

can be estimated using independent test data that was not included in the model generation 

[42].  

 

Figure II.2. General workflow of QSAR model development [44]. 

4.2.1 Data preparation 

The first preliminary step in the development of a QSAR model includes the curation 

of the relevant dataset for study and the computation/selection of molecular descriptors [46].  

4.2.1.1 Datasets curation 

A wide variety of chemical and biological data collections are available in research 

papers and publicly or commercially accessible electronic databases, e.g., PubChem, 
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BindingDB, ChEMBL, ChemSpider, NIMH, etc. Hence, the appropriate dataset is not 

selected randomly; indeed, it is guided by a set of rules, including: 

 The dataset should come from the same bioassay protocol to prevent data 

inconsistencies and inter-laboratory variability, and it is encouraged to use data 

obtained from uniform source (organism/tissue/cell/protein) or a single lab; since 

irrelevant data points will damage the proper structure/activity correlation.  

 The dataset should be large enough to assure statistical stability of models.  

 All compounds of the dataset should have the same mechanism of action and 

same/comparable binding mode. 

 The unit of measurement for activity data should be standardized for all compounds. 

 Activities of chemicals should be dispersed uniformly over the range of activity. 

 Training sets should include structurally diverse entities to expand the area of study of 

the required biological response. 

 The relationship dose/response should be smooth. 

 The potency (or affinity) should be reproducible [46].  

Dataset curation implies checking the accuracy, consistency, and reproducibility of the 

reported experimental data. This step is essential for the reliability of cheminformatics 

studies, notably QSAR modeling. It can be accomplished using a variety of database curation 

tools included in commercial and open-source software. The overall process for chemical and 

biological data curation is depicted in Figure II.3. The main steps for chemical structures 

curation consists of: 

 Correcting structural errors, e.g., ring aromatization, detection of valence violations 

or extreme bond lengths and angles, while maintaining their proper representations in 

the data set. 

 Eliminate structures consisting of atoms for which there are no coefficients for 

descriptor computation, structures with multiple fragmentations, salts, confusing 

structures (inorganics, organometallics, counterions, biologics, mixtures), and 

duplicate structures. 

 Addressing the problem of isomerism. 

 Structures exhibiting unreliable target properties, such as high variability in 

experimental activity value, are removed from the training set [48–50]. 
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Figure II.3. An integrated workflow for chemogenomics datasets curation [49]. 

4.2.1.2 Molecular descriptors: selection and generation 

Descriptors, variables, or predictors are the numerical forms of the chemical 

characteristics encoded within a molecular structure. Some of these include topological, 

geometrical, and constitutional indices, as well as physicochemical parameters (Figure II.4). 

The information encoded by the descriptors is influenced by two factors: The dimensions of 

the molecule and the calculation algorithm [47,51].  

 

Figure II.4. Representation of molecular descriptors used in QSAR analysis [51]. 
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4.2.1.2.1 Types of molecular descriptors 

Molecular descriptors are classified as follows: 

 0D-descriptors: are also known as constitutional descriptors. The most prevalent 

among them are: the number of atoms, bond count, atom type, ring count, and 

molecular weight (MW). 

 1D-descriptors: This class contains the physicochemical features of substances as 

well as their constitutional parameters. These descriptors are independent of 

molecular topology and are often used in combination with other descriptors, since 

their values, for example, the number of distinct molecular groups, are vulnerable to 

being identical between different chemicals. 

 2D-descriptors: These are frequently used to describe chemical spaces. They are also 

independent of molecular topology and invariant of molecular graphs, e.g., 

connectivity indices, information indices, counts of paths and walks, etc. 

 3D-descriptors: these refer to the geometrical spatial information of chemicals and, 

thus, provide an accurate description of molecular structures, e.g., CoMFA 

descriptors and various CoMFA-like descriptors. Despite being computationally 

costly, these descriptors are useful in classifying isomers. 

 4D descriptors: these provide all the features of 3D descriptors with the advantage of 

analyzing multiple structural conformations, simultaneously. 

 Fingerprints or structural keys: These terms refer to descriptors that take values of 

zero or one depending on the presence or absence of pre-defined molecular properties 

(or fragments) such as atoms (oxygen, nitrogen, etc.), rings (aromatic, etc.), bonds 

(double, triple, etc.), halogens, etc. [4,46]. 

4.2.1.2.2 Selection of relevant descriptors 

Out of numerous available types of descriptors supplied by commercial and open-

source software, the selection of related types that reflect structural variation is critical and 

constitutes a necessary step for deriving a robust QSAR model that satisfies the purpose of 

the analysis [44]. Descriptor processing entails excluding irrelevant variables (uninterpretable 

variables, duplicated pairs, correlated pairs, and variables having the same value for all 

compounds in the dataset) [46]. A statistically significant subset of descriptors should contain 

a minimum number of descriptors, since most learning algorithms, as in the training 

algorithm and production steps, become computationally intractable when the number of 

variables is large. Also, the use of high-throughput data in statistical modeling poses a 

challenge to accurate prediction. Moreover, due to a large amount of inherent noise and 
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variation in samples and their high dimensionality, the risk of overfitting is always posed 

[4,48,52]. Thus, descriptor selection assures the interpretability of the final model, increases 

model performance, and minimizes overfitting. It can be performed through statistical tools 

involved in molecular modeling programs. The working principle of these tools is based on 

different algorithms, such as the Genetic Algorithm (GA), which uses the evolutionary rules 

of natural selection to choose the most suitable subset of descriptors for the studied case [48]. 

Methods used for descriptors selection are illustrated in the sub-section ‘’Variable selection 

methods’’. 

4.2.2 Data analysis/model development  

4.2.2.1 Statistical methods  

Model development entails finding the relationship between molecular descriptors 

and the biological response, through the application of statistical or chemometric techniques. 

For this purpose, linear and non-linear approaches have been developed and incorporated 

into various modeling programs to build robust QSAR models. Table II.1  gives an 

illustration of some of these approaches [41,48]. 

Table II.1. Statistical methods used in QSAR analysis [41]. 

 

 

 

 

 

 

 

 

 

 

If the inputs (compound dataset and descriptors) are of a small number, SLR or MLR 

are recommended. In contrast, if the number of inputs is enormous, PLS or PCR are the 

optimal choices. In addition, alternative approaches can be obtained by combining the best 

features of the approaches mentioned in Table II.1 with various variable selection methods, 

For example: 

Linear Regression Analysis (RA) 

Simple linear regression (SLR) 

Multiple linear regression (MLR) 

Stepwise multiple linear regression Multivariate 

Multivariate data analysis 

Principal component analysis (PCA) 

Principal components regression (PCR) 

Partial least square analysis (PLS) 

Genetic function approximation (GFA) 

Genetic/partial least squares (G/PLS) 

Pattern recognition 

Cluster analysis 

Artificial neural networks (ANNs) 

k-nearest neighbor (kNN) 
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 A combination of genetic algorithm (GA) with multiple linear regression (MLR), 

PLS, and Artificial Neural Networks (ANNs).  

 A combination of Artificial Neural Networks (ANNs) and MLR/PLS under the name 

of Polynomial Neural Network (PNN) [48]. 

4.2.2.1.1 Partial least square analysis  

PLS regression is a useful method for multivariate data containing correlated 

molecular descriptors. This method based on dimension reduction technique, builds 

orthogonal components, often called factors or latent variables, as linear combinations of the 

original predictor variables [53]. PLS constructs these components while considering the 

observed response values, leading to a parsimonious model with reliable predictive power 

[54]. 

4.2.2.2 Variable selection methods 

Variable selection methods have been developed to specify the reliable subset of 

independent variables that must be entered into the analysis to ensure the best prediction of 

the outcomes. Typically, calculating all possible regression models that include all possible 

combinations of variables, then among these models, selecting the best model according to 

statistical criteria is considered the most efficient method.  

 

 

 

 

 

 

 

 

 

 

 

Figure II.5. Variable selection steps [55]. 
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Unfortunately, even with modern ultra-fast computers, this method still suffers from 

computational drawbacks that consume time, effort, and money whenever the number of 

input variables is large. To deal with these shortcomings, efforts have been devoted to 

developing computing algorithms that take advantage of previously performed computations 

of subsets, for example, the leaps-and-bounds algorithm of Furnival and Wilson [56]. 

Currently, Variable selection methods involve two approaches: The best subset selection and 

stepwise regression selection [55]. Variable selection steps are illustrated in Figure II.5. 

4.2.2.2.1 Best subset selection  

This method is based on generating all 2
p
 possible models from different combinations 

of P independent variables (fit all models with one variable, all models with two variables,..., 

all models with P variables). Afterwise, the potential models are reduced from 2
p
 to (P+1) by 

selecting the best model for each subset size depending on the percentage of variance (R
2
) or 

the residual sum of squares (RSS) values, with the best-fit model being the one with the 

highest R
2
 or the lowest RSS value. Finally, the overall best model among these (P+1) 

selections was identified using statistical criteria such as cross-validated prediction error, 

Mallow’s Cp (AIC), BIC, or adjusted R
2 

[57]. 

Despite its simplicity, best subset selection suffers from computational and statistical 

limits when the number of models under consideration is large. The large search space 

enhances the probability of finding better models on the training dataset, but it can also lead 

to overfitting and high variance of the predicted coefficients. Later, stepwise approaches have 

been proposed as viable solutions to circumvent these limitations [58]. 

4.2.2.2.2 Stepwise methods 

Stepwise methods construct the best-fitting model in several iterative steps, each step 

requiring either adding or excluding one variable at a time according to its statistical 

significance [59]. Stepwise methods involve three variable selection methods used in 

regression: forward selection, backward elimination, and stepwise selection [58]. 

4.2.2.2.2.1 Forward selection  

Among the 2
P
 possible models, forward selection requires generating only   

∑ (   )     (   )     
    models, where K denotes the degree of iteration [57]. The 

selection procedure proceeds by sequentially adding variables to the null model based on 

their statistical significance. The first step focuses on determining the first relevant variable 

to enter the model. Hence, it is necessary to generate all the simple linear regressions that 

correlate each of the P independent variables and the outcome variable, and from which 
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calculate the bivariate r
2
 values. Next, select the variable that displays the highest value of r

2
 

to be the first element to enter the null model. In the following steps, the remaining variables 

are added, successively, to the obtained model according to their impact on its R
2 

or RSS, 

where, the most significant variable is the one that produces the largest increase in R
2
 or the 

largest decrease in RSS. By default, adding variables continues until all variables have been 

included in the model or a stopping role is reached [57,58]. 

Forward selection is an effective alternative to best subset selection. Nevertheless, it 

does not ensure the selection of the best subset of variables out of all the 2
p
 possibilities. For 

instance, assume a sample of three variables, X1, X2, and X3, where the best size-one subset 

contains X1 and the best size-two subset contains (X2 and X3). As per the forward selection 

process, if the best subset of size-one involves X1, the best subset of size two should also 

involve X1 along with one other variable. Here, forward selection fails to recognize the true 

best subset of size-two. Since it starts from the null model, the forward selection is the most 

appropriate choice in the case where the number of variables exceeds the sample size [57]. 

4.2.2.2.2.2 Backward elimination  

Similar to the forward selection, backward selection is an effective alternative to best 

subset selection. It allows building    (   )   models. Nevertheless, it does not ensure 

the selection of the best subset of variables out of all the 2
p
 possibilities. Since it starts from 

the full model, the backward selection is the optimal choice in the case where the sample size 

exceeds the number of variables. Overall, its selection procedure begins with the full model 

and then performs successive removal of the independent variables as a function of their 

statistical significance. The variable suitable for deletion at each step, its deletion should 

cause the slightest decrease in R
2
 or the slightest increase in RSS of the model under 

investigation. This process terminates when all variables are removed or a stopping role is 

attained [57]. 

4.2.2.2.2.3 Stepwise selection  

Nowadays, statistical software allows users to merge forward selection and backward 

elimination into a single hybrid strategy that retains both of its computational features; the 

stepwise selection. While this alternative is more computationally intensive than forward and 

backward selections, it offers the advantage of checking more candidate subset models before 

settling on a model for each subset size. In this context, it considers the impact of adding or 

deleting a variable on the contributions of other variables to the model. The selection 

procedure begins by sequentially adding variables to the null model, and whenever a new 

variable is incorporated, the relevance of all previously included variables is re-checked. If 
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any of the included variables no longer have any contribution to improving model fit, then 

backward elimination is launched. Accordingly, the variables are excluded, by one at each 

step, until all the remaining variables meet the minimum statistical requirements to keep in 

the model. Following that, the forward selection is restarted in a new iteration. This hybrid 

process ends when it reaches a stopping role or when no more variables can be added or 

removed [55,60].  

4.2.2.2.2.4 Stopping rules 

Stopping roles are used during the implementation of stepwise methods to specify 

when the selection process should end. Out of the numerous stopping rules available in the 

literature [61], Rules based on Student test (t-test) are the most applied in stepwise methods 

to test the hypothesis that input variables should be added to, or removed from, the model. 

Since the Fisher-test (F-test) follows the t-distribution, it can be used as an alternative to t-test 

when comparing two models. [62]. Its arithmetic form is given by: 

  

         
       
    
   

                                                             (  ) 

    is the sum of squared errors, defines as: 

    ∑(  
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Accordingly,      and      are the sum of squared errors of the reduced and full 

models, respectively. During forward selection the reduced model contains all of the input 

variables currently in the model and the full model contains these variables and the input 

variable under consideration. During backward elimination the reduced model contains all of 

the variables currently in the model except the variable under consideration and the full 

model contains all of the variables currently in the model. Similarly,     and     are the 

degrees of freedom of the reduced and full models, respectively. The degrees of freedom of a 

model are equal to the difference of the number of observations    and the number of 

variables in the model   . The difference         is called the numerator degrees of 

freedom and     is called the denominator degrees of freedom. In eq (32),    is the 

    observation and  ̂  is the     model output [63]. 

F-statistic requires two user-specified thresholds to enter, or exclude, variables from 

the model. The model-entry criterion is expressed by the term "F-to-enter'' or ''significance 
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level to enter (SLE)". Similarly, the model-retention criterion is expressed by the term "F-to-

stay'' or ''significance level to stay (SLS)" [55,62] .Thresholds can be a fixed value or 

determined through statistical criteria such as AIC or BIC [60]. At each step of forward 

selection, the F-statistic values of all the out-of-model variables are calculated, and then the 

largest F-statistic value among them is selected and compared with the F-to-entry value. If 

the largest F-statistic is greater than or equal to F-to-enter (or if the lowest p-value is less than 

the F-to-enter value), then the corresponding variable is added to the model. This process 

continues until no remaining variable satisfies the input criterion. In parallel, in backward 

elimination, if the smallest F-statistic value of the variables within the model is less than the 

F-to-stay value, then the corresponding variable is eliminated from the model. This process 

terminates when all variables remaining in the model satisfy the criterion to stay. On the 

other side, to achieve a stopping rule in the stepwise selection, both the F-to-enter and F-to-

stay criteria must be met. In this context, variables continue to be added and dropped until 

none of the out-of-model variables have an F-value greater than F-to-enter and none of the 

incorporated variables have an F-value smaller than F-to-stay. Typically, F-to-enter and F-to-

stay criteria are not required to be identical, however, to prevent an infinite loop in the 

stepwise selection, F-to-enter should be lower than F-to-stay [55,57,59]. 

4.2.2.2.3 Choosing the optimal model 

While implementing best subset selection and stepwise methods, the RSS and R
2
 

statistics, given in equations (33) and (34) respectively, are reliable criteria for determining 

the best model among a subset of models of the same size (containing the same number of 

variables). However, they become computationally impractical when selecting the best 

overall model among a set of models of different sizes [57].  
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Where,    is the i
th

 observed response value, and  ̂  is the i
th

 response value predicted by the 

linear model. 
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Where, RSS is the residual sum of squares defined in eq (33), and TSS is the total sum of 

squares;      ∑(    ̅)
 ,  ̅ is the sample mean  ̅  
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Since these statistics are associated with training error, RSS decreases and R
2
 

increases as even more variables are added to the models. In light of this, it stands to reason 

that the model with all the variables will logically show the lowest RSS value and the highest 
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R
2
 value. A poor training error, on the other hand, does not ensure a poor test error. So, when 

needs to define the model with the low test error, other goodness-of-fit criteria are used 

[55,57]:  Mallow’s Cp, Akaike information criterion (AIC), Bayesian information criterion 

(BIC), and Adjusted R
2
. 

4.2.2.2.3.1 Cp, AIC, BIC, and     
  

In the following, the arithmetic formulas for Cp, AIC, BIC, and     
  are presented in 

the case of fitted least squares model with ‘’d’’ variables and ‘’n’’ observations: 
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Where,  ̂  is an estimate of the variance of the error   associated with each response 

measurement in the standard linear model, RSS is the residual sum of squares, TSS is the 

total sum of squares, and (n − d – 1) is the degree of freedom [57].  

For least squares models, Cp and AIC are proportional to each other. Although BIC is 

derived from a Bayesian perspective, it is also similar to CP and AIC. Cp, AIC, and BIC 

statistics exhibit a small value for a model with a low test error. Hence, when identifying any 

set of models is the best, it must choose the model that contains the lowest CP, AIC, or BIC 

value [60]. Unlike Cp, AIC, and BIC, a high value of     
  implies a model with a low test 

error [57]. 

4.2.2.3 Check for Outliers 

The occurrence of outliers is a common issue while developing a QSAR model. The 

term ''outlier'' refers to chemicals that do not adhere to the fundamental principle 

underpinning all QSAR studies: compounds with analogous structures have similar 

bioactivities or properties [64]. In other words, outliers are compounds having unexpected 

biological activity, acting on the target via distinct mechanisms or modes, and are unable to 

fit into a QSAR model [65]. Thus, Outliers in the dataset, if not eliminated during model 

construction, might affect predictions and damage reliability.  

Outliers result from several reasons, including the use of inappropriate parameter 

values, experimental and typographical errors, the implementation of an inadequate 
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mathematical model, the presence of activity cliffs, the flexibility of the binding site, the 

errors that can arise during QSAR development, such as over-fitting or inappropriately 

fitting data [66], In addition to other reasons mentioned in the research of Dearden et al 

[67]. 

4.2.2.3.1 Types of outliers 

Outliers observed in QSAR studies involve three types: 

 Activity (or the dependent variable Y-direction) outliers: are the points that 

deviate from the normal distribution of dependent variable-y, for example, point 1 in 

Figure II.6. This type results in a large sum of squares error. If there are few outliers 

and no masking effect, strong regression algorithms should easily deal with this 

problem [64]. 

 Leverage (or structural) outliers: These are points that deviate from the main 

distribution of the samples in the independent variable X-direction. Since their x-

value is outlying, points 2 and 3 Figure II.6 are examples of leverage points. Point 2 

is a good leverage point with no significant sum of squares error, but point 3 is a bad 

leverage point. When the datasets are used to build the model without deleting the 

leverage values, a negligible variation can result in large fluctuation for this model 

[64]. 

 Model outliers: are special sorts of outliers that arise in large-scale datasets as a 

result of the diverse molecular structures used in the study. They reflect a unique 

relationship between X and Y. Points marked with 4 in Figure II.6 are outliers 

toward the model that are outliers in both Y and X at the same time [64]. 

 

Figure II.6. Different types of outliers in simple regression: (1) Y-outlier, (2) good leverage 

point, (3) bad leverage point, (4) model outlier [64]. 
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Mostly, the three types of outliers coexist in models. Hence, a robust method for 

detecting outliers must be able to recognize them exhaustively and concurrently within a 

multivariate point cloud. Classical identification methods are not always effective since they 

depend on the sample mean and the covariance matrix. Nowadays, new methods based on 

new strategies have been developed and proposed to prevent the impotence of classical 

procedures [64]. 

4.2.2.3.2 Studentized deleted residual and leverage value 

Outlier diagnostics in multiple regression models can be carried out by computing 

leverage values (   ) for identifying outlying  -variables and studentized deleted 

residuals (  
 ), also known as the externally studentized residual, for identifying outlying  -

variables.  

For a simple linear regression,     defined as: 
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Where,    is the i
th

 variable,  ̅ is the sample mean;  ̅  
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The values provided by     vary from 1/n to 1. An observation is considered an outlier 

if its     value exceeds the value of the average leverage of all the observations (p+1)/n [57].  

  
 of the i

th
 observation is determined as follows [68]:   

  
  

    ̂ 

 ( )√     
                                                            (  ) 

Where,    is the i
th

 observed response value, and  ̂  is the i
th

 response value predicted by the 

model,  ( ) is the estimated variance, and     is the leverage value. 

For   
 , two critical levels are suggested: ±2 (5% risk) and ±3 (0.27% risk, typical in 

process control charts) [68]. 

4.2.3 Model validation 

Given the essential role that QSAR analysis has occupied over the past decades in 

medicinal chemistry and computer-aided molecular design, any QSAR modeling should 

eventually lead to statistically robust models capable of estimating the potential effects of 

chemical entities, materials, and nano-materials on human health and ecological systems, as 

well as, yielding accurate and reliable predictions of biological response. Thereby, the 

validation step is critical before any prospective applications of the generated model. In this 
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sense, the scientific community has set up two validation strategies to check the statistical fit 

and predictability of the selected models: internal validation and external validation [69]. 

4.2.3.1 Internal validation 

Internal validation is carried out by utilizing the data points used in model generation. 

The most common internal methods are Randomization tests, Cross-Validation (CV), and 

Bootstrapping [42]. Among them, the leave-one-out (LOO) technique from the CV procedure 

is the most applied in QSAR modeling [70]. This technique is based on randomly removing 

one data point from the data set in each cycle and using the remaining data points of the 

training set to create the model. The latter is used to predict the activity of the removed data 

point. This procedure is continued until all data points have been deleted [71]. The CV 

outcomes allow suggesting several correlation-based metrics to assess the internal validity of 

QSARs such as the coefficient of determination (  ) and similar measures, the adjusted 

coefficient of determination (    
 ) [72], considered in this work.  

4.2.3.1.1    and     
  

The arithmetic formula for    and     
  were previously reported in eqs (34) and (38). 

The term    is often used in instead of    when referring to techniques based on sample 

reuse, such as       and      .    is an estimation of the percentage of the variance 

between the observed response and independent variables explained by the regression 

equation. Due to its being independent of the number of variables in the data set,     
  was 

developed as an adjustment of   . As previously stated, it is useful when comparing a set of 

models of different sizes; the model with the highest     
  is ranked the better [72–74]. 

Statistically, both    and     
  yield values between 0 and 1, with     

  always being less 

than or equal to   . For a significant QSAR model, the value of     must be greater than, or 

equal to, the minimum recommended value of 0.6 (The closer the value of    to 1, the better 

the model).  Moreover, the number of variables included in a QSAR model is considered 

appropriate if it achieves the relationship: (       
 )      [71]. 

4.2.3.1.2 F-statistics 

Fisher-statistics (F) is optimal to judge the overall significance level of the regression 

model. The F-statistic can be easily obtained from equation (41). it is crucial to highlight that 

the assumption that "the higher the F-value, the better the model" is only valid when 

comparing F-values with the same degrees of freedom [71,75,76]. 
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Where, n is the number of molecules in the Training Set (TS), p is the number of descriptors 

in the model.        and         are the i
th

 observed and predicted values of biological activity, 

 ̅   is the average value of biological activity for the training set. 

Moreover, the F-statistic can be used in hypothesis testing. In this context, the null 

hypothesis (H0) states that the developed model does not outperform the average activity 

value in prediction. The H1 hypothesis, on the other hand, imposes the opposite. The 

acceptance or rejection of H1 at a specific significance level α (typically 0.95 or 0.99) is 

determined by the F-distribution function. In Brief, H1 is accepted if the F-ratio value seems 

to be higher than the corresponding value of the F-distribution function for the considering 

degrees of freedom. Otherwise, it is rejected [70].  

Determining the boundary significance level α between H1 and H0 is another 

alternative to test the predictive power of the QSAR model where, the higher the α value, the 

better the model. This is obtained by solving the following equation: 

                                                                            (  ) 

Where,           denotes the F-distribution function with the considered degrees of freedom 

(dfs). For good models, the value of α is close to 1, so most of the time P-values were used 

instead [70]. 

4.2.3.2 External validation 

External evaluation is carried out by an independent dataset of test structures not used 

in model generation. Predictions using an independent external dataset ensure the robustness 

of the developed QSAR model for the prediction of unidentified chemicals. Its process is 

based on the comparison between observed and predicted responses [71]. Recently, three 

effective   -like formulas have been proposed to evaluate the external prediction of 

developed models:    
 ,    

 , and    
 . 

4.2.3.2.1    
 ,    

 , and    
  

   
  and    

  metrics are estimated by dividing the predictive sum of squares (     ) 

by the sum of squares of the external data set (     ) approximated by the training set 

response mean ( ̅  ) and the test set response mean ( ̅   ), respectively [77]. Equations 

below provide the basic expressions: 
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The characteristics, drawbacks, and limitations of these functions in external 

evaluation are currently well documented in the literature [72,78–81]. As a result, another 

alternative function,    
 , has been proposed that is based on the ratio of the mean square 

error of the external evaluation set over the mean squared deviation of the training set [77]:  
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Where,       denotes the predictive error sum of squares,     is the total sum of squares, 

     is the mean square error in prediction and    a biased estimate of the training set 

response variance. 

These three metrics yield simple and easily interpretable estimates, where the closer 

the value to 1, the better [72]. 

5 Molecular docking 

In organism, two chemical elements can interact in many ways, the most common 

being the protein-protein or protein-small molecule interaction. Overall, molecular docking 

makes it possible to estimate the intermolecular framework generated between a 

macromolecule and a small molecule or between two macromolecules, as well as identify the 

binding modes required for the target regulation. Classically, the notion of molecular 

recognition of ligand/target complex was analogous to a ''lock and key''. Now, this 

terminology has been refined to include the target-flexibility and the mutual adaptation with 

the ligand to become analogous to a "hand and a glove" (Figure II.7).  
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Figure II.7. The classical analogy of ligand/target complex as "lock and key" and the current 

analogy as ''hand and glove'' [82]. 

For reliable docking experiments, a high-resolution X-ray, NMR, or homology-

modeled structure with a known or expected binding locus in the target is required. Docking 

approaches fit a ligand into a binding site by integrating and optimizing factors such as steric, 

hydrophobic, and electrostatic complementarity, as well as evaluating binding free energy 

(scoring) [83–85]. 

5.1 General protocol 

Molecular docking is accomplished through two pathways: first, the sampling of all 

possible ligand poses within the target binding site, then associates each pose with a score 

value that approximates its free energy landscape. At the ends of simulations, the best 

binding modes are ranked based on the values of the latter, and thus the most appropriate 

complexes are selected. Ideally, sampling algorithms should be able to duplicate the 

experimental binding mode and the scoring function (SF) should also rank it as the best of all 

generated conformations [86]. Figure II.8 summarizes the general workflow of molecular 

docking simulation. 
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Figure II.8. General workflow of molecular docking simulation [87]. 

5.1.1 Ligand preparation 

Include generating, optimizing, and analyzing its 3D structure. Several accessible 

drawing software including ChemSketch, ChemDraw, Avogadro, and others, may be used to 

manually build 3D structures of ligands, either from their 2D structures or from simpler 

representation schemes, such as SMILES. Besides, they can be directly retrieved from virtual 

databases like the Cambridge Structural Database (CSD), Available Chemical Directory 

(ACD), MDL Drug Data Report (MDDR), PubChem, etc. These databases provide a large 

number of conformations for virtual screening [85,87]. 

5.1.2 Target preparation 

Include minimizing, correcting, and protonating its 3D structure. The structures of 

targets can be retrieved as PDB files format from several Protein Databases such as the 

RCSB-Protein Data Bank (https://www.rcsb.org/). Protein databases provide access to 3D 
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atomic coordinates of target conformations characterized by experimental and/or 

computational prediction methods (such as X-ray crystallography, nuclear magnetic 

resonance (NMR), infrared spectroscopy, homology modeling, electron density, etc) [85,87]. 

5.1.3 Binding site detection 

Typically, the binding site concerned by the docking simulation is already known and 

just assigned by the docking software. Nevertheless, when the binding location information is 

unavailable, the most likely locus can be predicted algorithmically or by implementing a so-

called "blind docking". Because the latter covers the whole target surface, it has a high 

computational cost [85,87]. 

5.1.4 Docking validation 

 If the docking procedure regenerated the same binding mode that was created and 

defined using experimental and/or computational methodologies, it is considered valid. 

Measuring Root-Mean-Square Deviation (RMSD) is useful for comparing the structural 

similarity between two superimposed configurations. Its formula is given in eq (46)[88]. 

Also, RMSD and scoring function values (Sscore) are used to assess and rank the stability and 

affinity of ligand/target complexes [85,87]. 
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5.2 Types of molecular docking 

5.2.1 Rigid docking  

In this type, both the ligand and the protein are treated as rigid objects which limiting 

the search space by taken into account only three translational and three rotational degrees of 

freedom. The flexibility of ligand might be handled by employing a pre-adjusted list of 

ligand conformations, or by enabling for atom-atom interaction between both the target and 

the ligand [86]. This approximation can simulate the "lock-key" binding mechanism and it is 

used in cases where the number of conformational degrees of freedom is too high to sample, 

often for protein-protein docking. In general, the target site and ligand are modeled by "hot" 

points, and the superposition of matching points is assessed [89]. 

5.2.2 Semi-flexible docking  

Since molecular systems are flexible in nature and may alter each other's structure 

upon interaction, the flexible behavior must be considered in the docking process to enable 
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both ligands and receptors to adapt their conformations and produce the appropriate complex 

that achieves the lowest energy perfect-fit.  However, to avoid the extremely high cost and 

reduce the computational time, most docking software incorporate semi-flexible docking by 

assuming that the fixed protein conformation may correspond to the one able to recognize the 

ligands to be anchored [86]. However, this assumption is not always supported. This docking 

technique treats ligands as flexible entities while the receptor remains rigid during docking. 

Also, the search space took into account six translational and six rotational degrees of 

freedom, as well as sampling all the conformational degrees of freedom of the ligand [90]. 

5.2.3 Flexible-flexible docking  

This docking technique freely anchors the flexible ligand into a flexible receptor 

considering that the intrinsic kinetics of the protein is strongly correlated to the orientation of 

the ligand in the binding locus. Implementing receptor flexibility is a significant step forward 

in the field of molecular docking. Indeed, MD simulation may ensure the modeling of all 

degrees of freedom in the ligand-receptor combination. Nevertheless, this process suffers 

from several drawbacks that limit its applications in examining a large chemical library, such 

as the problem of insufficient sampling and high computing costs [86]. The large size and the 

complexity of the protein structure limit the possibility to fully include its mobility during the 

docking process. Thus, studies performed on molecular docking are usually limited to 

specific residues. Recently, programs that include receptor flexibility, at least in part, have 

begun to emerge [91]. Accordingly, several strategies for implementing receptor flexibility 

are available, and they may be categorised based on target conformation as in Figure II.9. 

 

Figure II.9. The described strategies for including receptor flexibility in docking simulation 

[91]. 
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5.2.3.1 Single target conformation  

5.2.3.1.1 Soft docking 

Jiang and Kim first described this approach [92], which is based on an implicit and 

rough evaluation of protein flexibility. Although the receptor is considered a rigid entity, 

creating a soft interaction may diminish the van der Waals repulsion factor used in force field 

SFs. As a consequence, allowing the ligand to permeate the surface of the target to some 

extent and considering for small and localized modifications that may occur in a flexible 

environment. The advantages of adopting soft docking include that it is easier to execute, 

inexpensive, and considerably faster than an explicit sampling of multiple receptor 

conformations. As a disadvantage, this method can only tackle small conformational 

alterations and may involve unreal poses [86,90]. 

5.2.3.1.2 Side-chain flexibility  

This technique enables the explicit manipulation of the movement of certain residues, 

particularly those within the target binding site. It offers alternative conformations for protein 

side chains by using databases of rotamer libraries. The latter contains a set of pre-

determined side-chain conformations that are typically collected from the statistical analysis 

of structural experimental data. Allowing flexibility in the side chains of the residues under-

study has the advantage of enabling unrestricted mobility of this protein region, which 

improves ligand fit. However, because only the side chains of chosen residues are permitted 

to move, substantial changes in the protein backbone, such as those involved in loop motions, 

are overlooked [86,90]. 

5.2.3.2 Multiple protein conformations 

The basic idea behind multiple receptor conformations docking is to dock the ligand, 

sequentially, into an ensemble of rigid receptor conformations rather than one, and then 

merging the outcomes depending on the approach adopted. For this purpose, experimental or 

computational techniques can be employed to provide the requisite multiple target 

conformations [86]. 

5.2.3.2.1 Combined target grid (average grid) 

The docking procedure utilized grids, or pre-calculated two-body potentials, that were 

often concentrated around the binding site, to quickly and cost-effectively quantify the 

interaction energy of multiple ligands and binding site conformations. The multiple grids 

provided by various receptor conformations can be merged into a single global grid using a 
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combination procedure; the simple average-weighted scheme or the differential-weighted 

scheme. Following that, a single average docking grid representing the target macromolecule 

was derived. The differential-weighting scheme promotes the participation of particular 

conformations over others, resulting in better outcomes than a simple average combination of 

structures [91]. 

5.2.3.2.2 United description of the target 

This technique extracts the rigid conserved parts from the alternative conformations 

and used them to generate an average rigid structure that fuses with the alternative flexible 

parts of the ensemble to create a pool of “chimeras” that are used for docking. During the 

simulation process, ligand structure is constructed progressively within the binding site, and 

after each new fragment is incorporated, all potential interactions between the partially 

formed ligand and the alternative target conformations are assessed. Then, the target 

conformations that best fit the partially grown ligand are saved for further cycles of growth 

and optimization [90,91]. 

5.2.3.2.3 Individual conformations  

This technique considers the structures of the ensemble as adequate conformations for 

ligand binding. Thus, multiple docking runs are carried out to assess the interest ligands on 

all of the target conformations. Additionally, the ensemble of structures can be filtered using 

a preliminary benchmark that evaluates the performance of different target structures in a 

cross-docking experiment [90]. 

5.3 Search algorithms 

Search algorithms are crucial tools to docking programs. They are used to explore the 

free energy landscape that accompanies the best ligand poses at the target-binding site, 

keeping in view the roto-translational and internal degrees of freedom of the ligand. 

Theoretically, if the energy function accurately models the thermodynamic compartment of 

the studied system (the enthalpic and entropic impacts), then the global minimum of the 

energy landscape corresponds to the native ligand-target binding mode, while the local 

minima indicate the alternative binding modes. Unfortunately, accounting for the entropic 

impacts poses some challenges leading current docking approaches to rely only on rough 

approximations. As a consequence, the global minimum associated with the energy landscape 

explored by a docking approach does not ensure that it matches the native binding mode 

[87,93].  
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5.3.1 Ligand sampling 

When discussing sampling algorithms used to adapt ligand flexibility in molecular 

docking programs, three broad categories can be distinguished: systematic, stochastic, and 

deterministic search strategies. Moreover, it is worth mentioning that some algorithms use a 

hybrid technique that incorporates two or all of these three strategies [94,95]. 

5.3.1.1 Systematic algorithms 

During computations, this category investigates all ligand degrees of freedom. It may 

also be divided into three sub-categories: exhaustive, incremental construction, and 

conformational ensemble. For example, both FlexX and eHits combine fragment-based 

techniques with systematic algorithms (incremental construction and graph matching, 

respectively) [87]. 

 In exhaustive searches, the values of each degree of freedom are systematically 

explored in a combinatorial way. In addition, all dihedral angles rotate according to a 

predefined interval of values and a set of preliminary limitations such as geometrical 

and chemical constraints. Obviously, the more flexible ligands will exhibit a higher 

number of rotatable bonds, which significantly complicates the optimization process 

[93]. 

 In incremental construction, the ligand is split from rotatable bonds into smaller 

fragments. From among these, a base fragment is selected and docked into the target 

binding site. At the end of the docking process, the ligand is progressively rebuilt by 

covalently attaching the other fragments to the basic group. This technique is 

commonly used in de novo ligand design, which attempts to discover new entities by 

connecting the best fragments docked inside the receptor binding site. In addition to 

the FlexX program, also DOCK 4.0, SLIDE, eHiTS, SKELGEN, ProPose, 

PatchDock, MacDock, FLOG, Surflex, etc implement the fragmentation approach 

[83,86,94,96]. 

 In conformational ensemble strategy, a pre-generated set of ligand conformations 

rigidly docks into the target binding site. This technique is improved to solve the 

combinatorial explosion problem observed in exhaustive and incremental construction 

approaches. Examples of docking programs that execute this strategy are FLOG and 

DOCK 4.0 [93]. 
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5.3.1.2 Stochastic algorithms 

At each phase of the docking process, this category randomly adapts all ligand degrees 

of freedom (translational, rotational, and conformational), resulting in a diverse set of 

solutions. Subsequently, probabilistic criteria are applied to sort the acceptable and rejected 

ligand poses. Among the most frequent stochastic algorithms, we mention: Monte Carlo 

(MC), Evolutionary Algorithms (EAs), Tabu Search (TS) and Swarm Optimisation (SO) 

[93,97]. 

 In MC-based methods, all ligand degrees of freedom are subjected to random 

modifications at the binding site, accompanied by an energy minimization for each 

generated pose. Afterwise, the Boltzmann constant was used as a criterion for pose 

acceptance or rejection. The Boltzmann constant takes into account the difference in 

energy before and after the random modifications, as well as the absolute temperature, 

as factors. The key strength of this method, termed Simulated Annealing, is that it 

incorporates temperature changes to enhance the probability of attaining the global 

minimum since heating may allow certain energy barriers to be crossed. DockVision 

1.0.3, FDS, GlamDock, ICM, MCDOCK, PRODOCK, QXP, ROSETTALIGAND, 

RiboDock, Yucca, AutoDock, ICM, QXP, etc are examples of programs based on 

MC algorithms [83,86,93,96]. 

 In EAs-based methods, the theory of the evolution of biological samples through 

natural selection is applied to find optimal solutions to specific problems. This is 

accomplished by selecting the best individuals and then passing them on to the next 

generation, in addition, by performing random or biased mutations to boost genetic 

variety and avoid early convergence. These methods fall into three main classes: 

genetic algorithms, evolutionary programming, and evolution strategies. The main 

commonalities between these categories are the ability to cross local minima simply 

and the ability to offer a variety of low-energy solutions [93,94]. 

 In TS-based method, the similarity of newly formed non-lowest energy pose is 

investigated using the ''Tabu-List''. The latter function as memory, storing previously 

discovered low-energy solutions and encouraging the search for new solutions. TS 

research is an iterative procedure focused on solving optimization challenges. 

Typically, the pose is only kept if it differs from all of the previously mentioned 

solutions [93,96]. 

 In SO-based method, the updates made in a current solution are intended to follow 

the best pose of the population. The SO approach is also called swarm intelligence 
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(SI), and its basic concept is inspired by the collective behavior of animals such as 

insects, herds, birds, and fishes, allowing it to explore a vast part in the solution space 

of the optimized objective function at the same time. This method includes: Genetic 

Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization 

(PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), Glowworm Swarm 

Optimization (GSO), and Cuckoo Search Algorithm (CSA) [98,99]. 

5.3.1.3 Deterministic algorithms 

In each iteration, deterministic methods use the actual state of the ligand as the basis 

for generating the next state, such that the new state exhibit an energy value equal to or less 

than the base state. Thus, the final output is extremely dependent on the initial input structure, 

since when the starting system settings and parameters are standardized, the final state will 

always be the same. Examples of this type of algorithm include energy minimization methods 

and molecular dynamics (MD) simulations [93]. 

 In EM method, the direction associated with the potential energy gradient is applied 

to explore the energy landscape, guiding the system to approach the local minimum. 

Often, EM is used in integration with other docking methods, such as with the 

fragment-based method, to obtain the energy minimization of docking solutions [93]. 

 In MD method, the motions of a system over time are simulated as a function of 

thermodynamic factors such as temperature and pressure. MD strategies, like EM 

methods, are performed in integration with other docking strategies, such as with the 

simulated annealing, to enhance the prediction of CDOCKER algorithm [93]. 

5.4 Scoring Functions (SFs) 

SFs serve as pose selectors, discriminating between the most effective biological 

binding modes and binders from inactive ligands in the set of poses obtained by the sampling 

algorithm (Figure II.10). SFs, on the other hand, employ a variety of approximations and 

simplifications to estimate, rather than calculate, the binding affinity of the target and the 

ligand [90,100]. Accordingly, a reliable SF should have three essential skills: 

- The competence to select the optimal binding mode of a ligand from a set of 

computationally simulated poses. 

- The competence to accurately rank a given set of ligands with known binding 

modes when attached to the same target. 

- The competence to generate binding scores linearly linked to experimentally-

measured binding affinities of target-ligand complexes with known 3D 

structures[101]. 
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Figure II.10. The SF role as pose selector [102]. 

Recently, five classes have been developed in the field of SFs: Physics-based, 

empirical, knowledge-based, Consensus, and Machine-learning-based SFs [102].  

5.4.1 Physics-based SFs 

Physics-based SFs including the SFs based on force field, solvation models, and 

quantum mechanics methods (Figure II.11) [102]. Force-field is a classic concept of 

molecular mechanics that uses a combination of the bonded (intramolecular) and non-bonded 

(intermolecular) constituents of a system to approximate its potential energy. The docking 

approach often considers non-bonded elements with the possibility of including ligand-

bonded terms, notably the torsional elements [90].  

Figure II.11. The description for physics-based SF [102]. 

The entire sum of the non-bonded interactions indicated by electrostatic and van der 

Waals energy terms is frequently used to estimate the binding energy in classical force-field-

based SFs. Extensions such as hydrogen bonds, solvations, and entropy contributions also 

can be considered in the force-field-based SFs. The coulomb formula is used to calculate the 

electrostatic forces. Because such point charge computations have trouble describing the real 

surroundings of target, a distance-dependent dielectric function is typically applied to tune 

the effect of charge-charge interactions. Besides, the Lennard-Jones potential function 

defines the van der Waals terms. The hardness of the potential, which controls the permitted 

cut-off distances between target and ligand atoms, may be adjusted by using different 

parameter settings for the Lennard-Jones potential [86]. 

Physics-based SFs 

Force-field 

 𝑏     𝑣 𝑊        
Solvent models 
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Software programs differ in their handling of hydrogen bonding, the form of the 

energy function, and other aspects. Furthermore, to increase the accuracy of the prediction of 

binding energies, the findings of docking utilizing force-field-based functions may be 

adjusted by other approaches such as linear interaction energy [103] and free-energy 

perturbation methods (FEP) [104].  

The following are some examples of SFs based on force fields: D-Score, G-Score, 

GOLD, AutoDock, DOCK, HADDOCK Score, ICM SF, QXP SF, GBVI/WSA, etc 

[83,90,105]. 

5.4.2 Empirical SFs 

When compared to force-field-based SFs, empirical SFs take into account simpler 

energy factors, resulting in substantially quicker binding score calculations and reasonable 

predicted binding energy. To estimate the binding energy of a system, they incorporate many 

energy components such as van der Waals, electrostatic, hydrogen bond, ionic interaction, 

desolvation, hydrophobic effect, binding entropy, etc. To achieve the final score, each energy 

term is multiplied by a coefficient and then added together. These coefficients are derived by 

regression analysis on an experimental training set fitted with a test set of ligand-target 

complexes with known binding affinities [83,100]. Accordingly, these SFs have the 

drawback of being reliant on the molecular data sets utilized to perform regression analysis 

and fitting. This frequently results in different weighting factors for the individual terms. As a 

result, the difficulties of merging terms from separate SFs into a new SF have been recorded 

[105].  

The following are some examples of SFs that belong to this category: LUDI, 

GlideScore, ChemScore, PlantsChemplp, SCORE, RankScore, LigScore, HINT, F-Score, 

Fresno, X-Score [83,86,90,105].  

5.4.3 Knowledge-based SFs 

Knowledge-based SFs are intended to replicate experimental structures instead of 

binding energies. In essence, they are founded on the hypothesis that the more favorable the 

interaction, the more it will occur. To attain this purpose, they apply statistical analysis at 

crystal 3D-structures of ligand-target complexes dataset to determine the frequencies of 

interatomic interaction, and, or distances between the ligand and target. These frequency 

distributions are then used to derive paired atom-type potentials. After that, the score is 

computed by prioritizing favorable connections and eliminating repulsive interactions 
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between ligand-target atoms within a pre-defined cutoff [83,105] . Figure II.12 illustrates the 

general pathway of knowledge-based SFs. 

Knowledge-based functions allow for easy scanning of large molecular databases. 

They can also model certain unusual interactions that are frequently overlooked in empirical 

SFs, such as sulphur-aromatic or π-cation. Another advantage is that the training sets focus 

only on structural details and are independent of experimental binding affinity, which 

removes any uncertainty in the binding affinity induced by the experimental environment. 

Therefore, knowledge-based SFs are better suited for predicting binding poses than binding 

affinities [102,105]. Nevertheless, the key challenges are the accuracy of estimating the 

reference state and the under-representation of interactions with halogens and metals in the 

restricted training sets [100]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.12. The general pathway of knowledge-based SFs.    ( ): number density of the 

target-ligand atom pair i_j at distance r .    
  : pair density in a reference state. g(r): relative 

number density of atom pairwise i_j at distance r.   : Boltzmann constant. T: absolute 

temperature [102]. 

Here are some examples of SFs that fall within this category: DrugScore, GOLD/ASP, 

PMF, SMoG, Bleep, MScore, ITScore/SE [86,90,105]. 
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5.4.4 Consensus scoring 

To minimize the inherent constraints of the above-mentioned classes of SFs, the 

combination of more than one SF is a recent trend in this field. "Consensus scoring" is the 

term given to this combinatorial approach [106]. The consensus scoring concept is based on 

integrating information from multiple scores to balance errors in single score and enhance the 

chance of detecting the exact ligand conformation. Generally, a suggested ligand pose may 

be approved if it scores well in a variety of scoring schemes [107]. 

 X-CSCORE, which combines GOLD-like, DOCK-like, ChemScore, PMF, and FlexX 

SFs, is an example of consensus scoring implementation [86,105]. 

5.4.5 Machine-learning-based SFs 

Machine-learning-based SFs were carried out using several machine-learning 

algorithms, including support vector machine, random forest, neural network, deep-learning, 

and others (Figure II.13). Because machine-learning-based SFs are dependent on the 

information in the training dataset, they are often used for rescoring and rarely integrated 

directly into docking software, despite outperforming classical SFs. When the ligand and 

target are docked using classical docking techniques, and then the anchored structure is 

rescored using machine learning SFs, the accuracy improves [102]. 

 

 

 

 

 

 

 

 

 

 

 

Figure II.13. Workflow of training machine-learning-based SFs [102]. 

6 Molecular dynamics (MDs) 

MD is a computational tool that follows the dynamic behavior of molecular systems at 

different time scales. It explicitly treats structural flexibility and entropic effects of all objects 

under simulation (ligand, protein, waters, etc). To help in the selection of a successful 
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candidate, MDs simulations are used in drug development to explore the extrinsic surface and 

bulk properties of different forms of pharmacologically active compounds. It also featured a 

precise assessment of numerous ligand characteristics in different solvents, such as the 

binding modes, kinetics, stabilities, densities, conductivities, dipole moments, and 

thermodynamic factors including interactions energies and entropies [108].  

MD is useful not only for investigating the molecular properties measured 

experimentally but also in refining most conformations identified by X-ray or NMR methods. 

Thus, in the field of MD simulations, the collaboration between computational and 

experimental approaches has a long history. Theoretical methods are contributing to the 

interpretation and analysis of experimental data, whereas, experimental methods are critical 

for validating and developing computational approaches and processes [91]. 

6.1 MD simulation before/during the docking process 

Before performing molecular docking, MD simulations can be generated to 

accomplish a variety of goals, including: 

 Optimizing the target structure while taking flexibility into consideration. 

 Refine the docked complexes.  

 Incorporate solvent influences and account for induced fit.   

 Determine the binding free energies. 

 Offer a precise classification of the potential ligands. 

Also, in recent improvements, during the docking process it-self to accurately select 

the binding site and appropriately attach the ligand [91].  

7 Combined molecular docking/ MD simulations  

The strategy of combining molecular docking and MDs simulation in a single protocol 

is a logical approach to improve the drug-design process. The cost of computations can be 

balanced by integrating fast and low-cost docking simulations with more accurate and 

expensive MD operations to predict the most trustworthy target/ligand complexes. The power 

of this combination derives from their complementing skills and deficiencies [91].  

Docking techniques can rapidly examine the extensive conformational space of 

ligands, allowing large libraries of compounds to be analyzed at a relatively low cost. 

However, it suffers from poor receptor flexibility that hinders its conformation adjustment 

during complexation. As well as, the lack of a unique and broadly applicable SF, this is 

essential for establishing a credible classification of the resulting complexes. Besides, the 
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main drawbacks of applying MD simulation are that it is large time-consuming and the 

system can get trapped in local minima. However, the opportunity it offers to approach both 

ligands and receptors as flexible entities, allowing for an induced-fit between the anchored 

ligand and its target-binding site, cannot be overlooked. Also, through MD simulation, the 

effect of explicit water molecules can be studied directly, and very accurate binding free 

energies can be obtained [90,91]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

Bibliography 

[1] P.K. Chattaraj, Chemical reactivity theory: a density functional view, 2009. 

https://doi.org/10.1201/9781420065442. 

[2] P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory, 

Chem. Rev. 103 (2003) 1793–1873. https://doi.org/10.1021/cr990029p. 

[3] S. LaPointe, D. Weaver, A Review of Density Functional Theory Quantum Mechanics 

as Applied to Pharmaceutically Relevant Systems, Curr. Comput. Aided-Drug Des. 3 

(2007) 290–296. https://doi.org/10.2174/157340907782799390. 

[4] H. Tandon, T. Chakraborty, V. Suhag, A Concise Review on the Significance of 

QSAR in Drug Design, Chem. Biomol. Eng. 4 (2019) 45–51. 

https://doi.org/10.11648/j.cbe.20190404.11. 

[5] R.O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. 

Mod. Phys. 87 (2015) 897–923. https://doi.org/10.1103/RevModPhys.87.897. 

[6] G.-F. Yang, X. Huang, Development of Quantitative Structure-Activity Relationships 

and Its Application in Rational Drug Design, Curr. Pharm. Des. 12 (2006) 4601–4611. 

https://doi.org/10.2174/138161206779010431. 

[7] P. Geerlings, E. Chamorro, P.K. Chattaraj, F. De Proft, J.L. Gázquez, S. Liu, C. 

Morell, A. Toro-Labbé, A. Vela, P. Ayers, Conceptual density functional theory: 

status, prospects, issues, Theor. Chem. Acc. 139 (2020) 1–18. 

https://doi.org/10.1007/s00214-020-2546-7. 

[8] S. Kenouche, A. Belkadi, R. Djebaili, N. Melkemi, High regioselectivity in the 

amination reaction of isoquinolinequinone derivatives using conceptual DFT and NCI 

analysis, J. Mol. Graph. Model. 104 (2021) 107828. 

https://doi.org/10.1016/j.jmgm.2020.107828. 

[9] P.K. Chattaraj, ed., Chemical Reactivity Theory, A Density Functional View, 1st 

Editio, 2009. https://doi.org/https://doi.org/10.1201/9781420065442. 

[10] W.Y. R.G. Parr, Density-Functional Theory of Atoms and Molecules, Oxford 

University press, New York, 1989. 

[11] R.T. Sanderson, Partial charges on atoms in organic compounds, Science (80-. ). 121 

(1955) 207–208. https://doi.org/https://doi.org/10.1126/science.121.3137.207. 

[12] R.P. Iczkowski, J.L. Margrave, Electronegativity, J. Am. Chem. Soc. 83 (1961) 3547–

3551. https://doi.org/10.1021/ja01478a001. 

[13] R.G. Parr, R.G. Pearson, Absolute Hardness: Companion Parameter to Absolute 

Electronegativity, J. Am. Chem. Soc. 105 (1983) 7512–7516. 

https://doi.org/10.1021/ja00364a005. 

[14] N. Sukumar, A Matter of Density: Exploring the Electron Density Concept in the 

Chemical, Biological, and Materials Sciences, John Wiley & Sons, 2012. 



85 

 

https://doi.org/10.1002/9781118431740. 

[15] M. V. Putz, D.M.P. Mingos, eds., applications of Density Functional Theory to 

Chemical Reactivity, 1st ed., Springer, Berlin, Heidelberg, 2013. 

https://doi.org/https://doi.org/10.1007/978-3-642-32753-7. 

[16] R.G. Parr, L. V. Szentpály, S. Liu, Electrophilicity index, J. Am. Chem. Soc. 121 

(1999) 1922–1924. https://doi.org/10.1021/ja983494x. 

[17] E. Chamorro, P.K. Chattaraj, P. Fuentealba, Variation of the Electrophilicity Index 

along the Reaction Path, J. Phys. Chem. A. 107 (2003) 7068–7072. 

https://doi.org/10.1021/jp035435y. 

[18] P. Jaramillo, L.R. Domingo, E. Chamorro, P. Pérez, A further exploration of a 

nucleophilicity index based on the gas-phase ionization potentials, J. Mol. Struct. 

THEOCHEM. 865 (2008) 68–72. https://doi.org/10.1016/j.theochem.2008.06.022. 

[19] L.R. Domingo, P. Pérez, Global and local reactivity indices for 

electrophilic/nucleophilic free radicals, Org. Biomol. Chem. 11 (2013) 4350–4358. 

https://doi.org/10.1039/c3ob40337h. 

[20] L.R. Domingo, M.J. Aurell, P. Pérez, R. Contreras, Quantitative characterization of the 

global electrophilicity power of common diene/dienophile pairs in Diels-Alder 

reactions, Tetrahedron. 58 (2002) 4417–4423. https://doi.org/10.1016/S0040-

4020(02)00410-6. 

[21] J. Leszczynski, ed., Handbook of Computational Chemistry, 1st ed., Springer, 

Dordrecht, 2012. https://doi.org/https://doi.org/10.1007/978-94-007-0711-5. 

[22] C. Morell, A. Grand, A. Toro-Labbé, Theoretical support for using the Δf(r) 

descriptor, Chem. Phys. Lett. 425 (2006) 342–346. 

https://doi.org/10.1016/j.cplett.2006.05.003. 

[23] C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo, P. Fuentealba, Chemical 

reactivity descriptors for ambiphilic reagents: Dual descriptor, local hypersoftness, and 

electrostatic potential, J. Phys. Chem. A. 113 (2009) 8660–8667. 

https://doi.org/10.1021/jp902792n. 

[24] W. Yang, W.J. Mortier, The Use of Global and Local Molecular Parameters for the 

Analysis of the Gas-Phase Basicity of Amines, J. Am. Chem. Soc. 108 (1986) 5708–

5711. https://doi.org/10.1021/ja00279a008. 

[25] L.H. Mendoza-Huizar, G. Salgado-Morán, R. Ramirez-Tagle, D. Glossman-Mitnik, A 

theoretical quantum study of the intramolecular interactions and chemical reactivity of 

polymorphs A and B of famotidine in the gas, DMSO, and aqueous phases, Comput. 

Theor. Chem. 1075 (2016) 54–62. https://doi.org/10.1016/j.comptc.2015.11.007. 

[26] R. Flores-Moreno, Symmetry conservation in fukui functions, J. Chem. Theory 

Comput. 6 (2010) 48–54. https://doi.org/10.1021/ct9002527. 

[27] C. Morell, A. Grand, A. Toro-Labbé, New dual descriptor for chemical reactivity, J. 

Phys. Chem. A. 109 (2005) 205–212. https://doi.org/10.1021/jp046577a. 



86 

 

[28] R. Pino-Rios, D. Inostroza, G. Cárdenas-Jirón, W. Tiznado, Orbital-Weighted Dual 

Descriptor for the Study of Local Reactivity of Systems with (Quasi-) Degenerate 

States, J. Phys. Chem. A. 123 (2019) 10556–10562. 

https://doi.org/10.1021/acs.jpca.9b07516. 

[29] Jorge Ignacio Martínez-Araya, An intermediate level of approximation for computing 

the dual descriptor, J. Mol. Model. 19 (2013) 2811–2820. 

https://doi.org/10.1007/s00894-012-1599-5. 

[30] J. Martínez, Local reactivity descriptors from degenerate frontier molecular orbitals, 

Chem. Phys. Lett. 478 (2009) 310–322. https://doi.org/10.1016/j.cplett.2009.07.086. 

[31] J.I. Martínez-Araya, A generalized operational formula based on total electronic 

densities to obtain 3D pictures of the dual descriptor to reveal nucleophilic and 

electrophilic sites accurately on closed-shell molecules, J. Comput. Chem. 37 (2016) 

2279–2303. https://doi.org/10.1002/jcc.24453. 

[32] J.I. Martínez, J.L. Moncada, J.M. Larenas, The dual descriptor to measure local 

reactivity on Buckminster fullerenes: An analysis within the framework of conceptual 

DFT, J. Mol. Model. 16 (2010) 1825–1832. https://doi.org/10.1007/s00894-009-0638-

3. 

[33] C. Crdenas, P.W. Ayers, A. Cedillo, Reactivity indicators for degenerate states in the 

density-functional theoretic chemical reactivity theory, J. Chem. Phys. 134 (2011). 

https://doi.org/10.1063/1.3585610. 

[34] J.S. Murray, T. Brinck, P. Lane, K. Paulsen, P. Politzer, Statistically-based interaction 

indices derived from molecular surface electrostatic potentials: a general interaction 

properties function (GIPF), J. Mol. Struct. THEOCHEM. 307 (1994) 55–64. 

https://doi.org/10.1016/0166-1280(94)80117-7. 

[35] J.S. Murray, P. Politzer, The electrostatic potential: An overview, Wiley Interdiscip. 

Rev. Comput. Mol. Sci. 1 (2011) 153–163. https://doi.org/10.1002/wcms.19. 

[36] T. Lu, F. Chen, Quantitative analysis of molecular surface based on improved 

Marching Tetrahedra algorithm, J. Mol. Graph. Model. 38 (2012) 314–323. 

https://doi.org/10.1016/j.jmgm.2012.07.004. 

[37] C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo, P. Fuentealba, Chemical 

reactivity descriptors for ambiphilic reagents: Dual descriptor, local hypersoftness, and 

electrostatic potential, J. Phys. Chem. A. 113 (2009) 8660–8667. 

https://doi.org/10.1021/jp902792n. 

[38] R.F.W. Bader, M.T. Carroll, J.R. Cheeseman, C. Chang, Properties of Atoms in 

Molecules: Atomic Volumes, J. Am. Chem. Soc. 109 (1987) 7968–7979. 

https://doi.org/10.1021/ja00260a006. 

[39] P. Politzer, J.S. Murray, The fundamental nature and role of the electrostatic potential 

in atoms and molecules, Theor. Chem. Acc. 108 (2002) 134–142. 

https://doi.org/10.1007/s00214-002-0363-9. 



87 

 

[40] C. Hansch, T. Fujita, ρ-σ-π Analysis. A Method for the Correlation of Biological 

Activity and Chemical Structure, J. Am. Chem. Soc. 86 (1964) 1616–1626. 

https://doi.org/10.1021/ja01062a035. 

[41] J. Verma, V. Khedkar, E. Coutinho, 3D-QSAR in Drug Design - A Review, Curr. Top. 

Med. Chem. 10 (2010) 95–115. https://doi.org/10.2174/156802610790232260. 

[42] K. Roy, On some aspects of validation of predictive quantitative structure-activity 

relationship models, Expert Opin. Drug Discov. 2 (2007) 1567–1577. 

https://doi.org/10.1517/17460441.2.12.1567. 

[43] B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov, C.H. 

Andrade, QSAR-based virtual screening: Advances and applications in drug 

discovery, Front. Pharmacol. 9 (2018) 1–7. https://doi.org/10.3389/fphar.2018.01275. 

[44] K.Z. Myint, X.Q. Xie, Recent advances in fragment-based QSAR and multi-

dimensional QSAR methods, Int. J. Mol. Sci. 11 (2010) 3846–3866. 

https://doi.org/10.3390/ijms11103846. 

[45] R.D. Cramer, D.E. Patterson, J.D. Bunce, Comparative Molecular Field Analysis 

(CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins, J. Am. Chem. 

Soc. 110 (1988) 5959–5967. https://doi.org/10.1021/ja00226a005. 

[46] A. Golbraikh, X.S. Wang, H. Zhu, A. Tropsha, Predictive QSAR Modeling: Methods 

and Applications in Drug Discovery and Chemical Risk Assessment, in: Leszczynski 

J. (Ed.), Handb. Comput. Chem., Springer, Dordrecht, 2016: pp. 1–48. 

https://doi.org/10.1007/978-94-007-6169-8_37-3. 

[47] U. Muhammad, A. Uzairu, D. Ebuka Arthur, Review on: quantitative structure activity 

relationship (QSAR) modeling, J. Anal. Pharm. Res. 7 (2018) 1–9. 

https://doi.org/10.15406/japlr.2018.07.00232. 

[48] R. Perkins, H. Fang, W. Tong, W.J. Welsh, Quantitative structure-activity relationship 

methods: Perspectives on drug discovery and toxicology, Environ. Toxicol. Chem. 22 

(2003) 1666–1679. https://doi.org/10.1897/01-171. 

[49] D. Fourches, E. Muratov, A. Tropsha, Trust, but Verify II: A Practical Guide to 

Chemogenomics Data Curation, J. Chem. Inf. Model. 56 (2016) 1243–1252. 

https://doi.org/10.1021/acs.jcim.6b00129. 

[50] D. Fourches, E. Muratov, A. Tropsha, Trust, but verify: On the importance of chemical 

structure curation in cheminformatics and QSAR modeling research, J. Chem. Inf. 

Model. 50 (2010) 1189–1204. https://doi.org/10.1021/ci100176x. 

[51] Danishuddin, A.U. Khan, Descriptors and their selection methods in QSAR analysis: 

paradigm for drug design, Drug Discov. Today. 21 (2016) 1291–1302. 

https://doi.org/10.1016/j.drudis.2016.06.013. 

[52] N.S. Sethi, A Review on Computational Methods in Developing Quantitative 

Structure-Activity Relationship ( QSAR ) ABSTRACT : Introducton, (2012). 

[53] J.O. Rawlings, S.G. Pantula, D.A. Dickey, Applied Regression Analysis : A Research 



88 

 

Tool, Second Edi, NY: Springer New York., New York, 1998. 

[54] S. De Jong, SIMPLS: an alternative approach to partial least squares regression, 

Chemom. Intell. Lab. Syst. 18 (1993) 251–263. https://doi.org/10.1016/0169-

7439(93)85002-X. 

[55] J.O. Rawlings, S.G. Pantula, D.A. Dickey, Applied Regression Analysis : A Research 

Tool, second edi, NY : Springer New York, New York, 1998. 

https://doi.org/https://doi.org/10.1007/b98890. 

[56] G.M. Furnival, R.W. Wilson, Regressions by leaps and bounds, Technometrics. 42 

(2000) 69–79. https://doi.org/10.1080/00401706.2000.10485982. 

[57] G. James, D. Witten, T. Hastie, Robert Tibshirani, An Introduction to Statistical 

Learning - with Applications in R, springer, New York, 2013. 

[58] P. Ruengvirayudh, G.P. Brooks, Comparing Stepwise Regression Models to the Best-

Subsets Models, or, the Art of Stepwise, Gen. Linear Model J. 42 (2016) 1–14. 

[59] K. Wang, Z. Chen, Stepwise Regression and All Possible Subsets Regression in 

Education, Electron. Int. J. Educ. Arts, Sci. 2 (2016) 60–81. 

[60] M.Z.I. Chowdhury, T.C. Turin, Variable selection strategies and its importance in 

clinical prediction modelling, Fam. Med. Community Heal. 8 (2020) 1–7. 

https://doi.org/10.1136/fmch-2019-000262. 

[61] R.B. BENDEL, A.A. AFIFI, Comparison of Stopping Rules in Forward “Stepwise” 

Regression, J. Am. Stat. Assoc. 72 (1977) 46–53. https://doi.org/DOI: 

10.1080/01621459.1977.10479905. 

[62] G. R. Pasha, SELECTION OF VARIABLES IN MULTIPLE REGRESSION USING 

STEPWISE REGRESSION, J. Res. 13 (2002) 119–127. 

[63] A.T. McCray, J. McNames, D. Abercrombie, Locating disturbances in semiconductor 

manufacturing with stepwise regression, IEEE Trans. Semicond. Manuf. 18 (2005) 

458–468. https://doi.org/10.1109/TSM.2005.852118. 

[64] D.-S. CAO, Y.-Z. LIANG, Q.-S. XU, H.-D. LI, X. CHEN, A New Strategy of Outlier 

Detection for QSAR/QSPR, J. Comput. Chem. 31 (2010) 529–602. https://doi.org/doi: 

10.1002/jcc.21351. 

[65] R.P. Verma, C. Hansch, An approach toward the problem of outliers in QSAR, 

Bioorganic Med. Chem. 13 (2005) 4597–4621. 

https://doi.org/10.1016/j.bmc.2005.05.002. 

[66] K.H. Kim, Outliers in SAR and QSAR: 3. Importance of considering the role of water 

molecules in protein–ligand interactions and quantitative structure–activity 

relationship studies, J. Comput. Aided. Mol. Des. 35 (2021) 371–396. 

https://doi.org/10.1007/s10822-021-00377-7. 

[67] J.C. Dearden, M.T.D. Cronin, K.L.E. Kaiser, How not to develop a quantitative 

structure-activity or structure-property relationship (QSAR/QSPR), SAR QSAR 



89 

 

Environ. Res. 20 (2009) 241–266. https://doi.org/10.1080/10629360902949567. 

[68] G. Coenders, M. Saez, Collinearity, Heteroscedasticity and Outlier Diagnostics in 

Regression. Do They Always Offer What They Claim?, in: Anuška Ferligoj and 

Andrej Mrvar (Ed.), New Approaches Appl. Stat., 2000: pp. 79–94. 

[69] A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. 

Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’Min, R. 

Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, A. 

Tropsha, QSAR modeling: Where have you been? Where are you going to?, J. Med. 

Chem. 57 (2014) 4977–5010. https://doi.org/10.1021/jm4004285. 

[70] A. Golbraikh, A. Tropsha, Beware of q2!, in: J. Mol. Graph. Model., 2002: pp. 269–

276. https://doi.org/10.1016/S1093-3263(01)00123-1. 

[71] R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C.P. Varghese, R.K. Agrawal, 

Validation of QSAR Models - Strategies and Importance, Int. J. Drug Des. 

Disocovery. 2 (2011) 511–519. 

[72] V. Consonni, R. Todeschini, D. Ballabio, F. Grisoni, On the Misleading Use of QF32 

for QSAR Model Comparison, Mol. Inform. 38 (2019) 2–6. 

https://doi.org/10.1002/minf.201800029. 

[73] O. Renaud, M.P. Victoria-Feser, A robust coefficient of determination for regression, 

J. Stat. Plan. Inference. 140 (2010) 1852–1862. 

https://doi.org/10.1016/j.jspi.2010.01.008. 

[74] O. Harel, The estimation of R2 and adjusted R2 in incomplete data sets using multiple 

imputation, J. Appl. Stat. 36 (2009) 1109–1118. 

https://doi.org/10.1080/02664760802553000. 

[75] M. Abdullahi, S.E. Adeniji, D.E. Arthur, S. Musa, Quantitative structure-activity 

relationship (QSAR) modelling study of some novel carboxamide series as new anti-

tubercular agents, Bull. Natl. Res. Cent. 44 (2020) 1–13. 

https://doi.org/10.1186/s42269-020-00389-7. 

[76] Y. Traoré, M.G.-R. Koné, O. Ouattara, N. Ziao, QSAR APPROACH TO 

ESTIMATING THE ANALGESIC ACTIVITY OF A SERIES OF TRI-

SUBSTITUTED PYRIMIDINE DERIVATIVES, SDRP J. Comput. Chem. Mol. 

Model. 2 (2018) 221–234. 

[77] V. Consonni, D. Ballabio, R. Todeschini, Comments on the definition of the Q2 

parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009) 1669–1678. 

https://doi.org/10.1021/ci900115y. 

[78] V. Consonni, D. Ballabio, R. Todeschini, Evaluation of model predictive ability by 

external validation techniques, J. Chemom. 24 (2010) 194–201. 

https://doi.org/10.1002/cem.1290. 

[79] G. Schüürmann, R.U. Ebert, J. Chen, B. Wang, R. Kühne, External Validation and 

Prediction Employing the Predictive Squared Correlation Coefficient-Test Set Activity 



90 

 

Mean vs Training Set Activity Mean, J. Chem. Inf. Model. 48 (2008) 2140–2145. 

https://doi.org/10.1021/ci800253u. 

[80] L.M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, 

C.L. Moland, D.M. Sheehan, QSAR Models Using a Large Diverse Set of Estrogens, 

J. Chem. Inf. Comput. Sci. 41 (2001) 186–195. https://doi.org/10.1021/ci000066d. 

[81] D.M. Hawkins, The Problem of Overfitting, J. Chem. Inf. Comput. Sci. 44 (2004) 1–

12. https://doi.org/10.1021/ci0342472. 

[82] M. Mukhopadhyay, a Brief Survey on Bio Inspired Optimization Algorithms for 

Molecular Docking, Int. J. Adv. Eng. Technol. 7 (2014) 868–878. 

https://doi.org/10.7323/ijaet/v7_iss3. 

[83] A. Sethi, K. Joshi, K. Sasikala, M. Alvala, Molecular Docking in Modern Drug 

Discovery: Principles and Recent Applications, in: Drug Discov. Dev. - New Adv., 

2020: pp. 1–21. https://doi.org/10.5772/intechopen.85991. 

[84] D.J. Diller, K.M. Merz, High throughput docking for library design and library 

prioritization, Proteins Struct. Funct. Genet. 43 (2001) 113–124. 

https://doi.org/10.1002/1097-0134(20010501)43:2<113::AID-PROT1023>3.0.CO;2-

T. 

[85] A. Stefaniu, Introductory Chapter: Molecular Docking and Molecular Dynamics 

Techniques to Achieve Rational Drug Design, in: Mol. Docking Mol. Dyn., 2019: pp. 

1–5. https://doi.org/10.5772/intechopen.84200. 

[86] X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, Molecular Docking: A Powerful 

Approach for Structure-Based Drug Discovery., Curr. Comput. Aid. Dru. Des. 7 

(2011) 146–157. https://doi.org/10.2174/157340911795677602. 

[87] P.H.M. Torres, A.C.R. Sodero, P. Jofily, F.P. Silva-Jr, Key topics in molecular 

docking for drug design, Int. J. Mol. Sci. 20 (2019) 1–29. 

https://doi.org/10.3390/ijms20184574. 

[88] S.P. Leelananda, S. Lindert, Computational methods in drug discovery, Beilstein J. 

Org. Chem. 12 (2016) 2694–2718. https://doi.org/10.3762/bjoc.12.267. 

[89] R.D. Taylor, P.J.Jewsbury, J.W. Essex1, A review of protein-small molecule docking 

methods, J. OfComputer-Aided Mol. Des. 16 (2002) 151–166. https://doi.org/doi: 

10.1023/A:1020155510718. 

[90] V. Salmaso, S. Moro, Bridging molecular docking to molecular dynamics in exploring 

ligand-protein recognition process: An overview, Front. Pharmacol. 9 (2018) 1–16. 

https://doi.org/10.3389/fphar.2018.00923. 

[91] H. Alonso, A.A. Bliznyuk, J.E. Gready, Combining docking and molecular dynamic 

simulations in drug design, Med. Res. Rev. 26 (2006) 531–568. 

https://doi.org/10.1002/med.20067. 

[92] F. Jiang, S.H. Kim, “Soft docking”: Matching of molecular surface cubes, J. Mol. Biol. 

219 (1991) 79–102. https://doi.org/10.1016/0022-2836(91)90859-5. 



91 

 

[93] I.A. Guedes, C.S. de Magalhães, L.E. Dardenne, Receptor–ligand molecular docking, 

Biophys. Rev. 6 (2014) 75–87. https://doi.org/DOI 10.1007/s12551-013-0130-2. 

[94] N. Brooijmans, I.D. Kuntz, Molecular recognition and docking algorithms, Annu. Rev. 

Biophys. Biomol. Struct. 32 (2003) 335–373. 

https://doi.org/10.1146/annurev.biophys.32.110601.142532. 

[95] N.S. Pagadala, K. Syed, J. Tuszynski, Software for molecular docking : a review, 

Biophys. Rev. (2017). https://doi.org/10.1007/s12551-016-0247-1. 

[96] R. Dias, W.F. de A. Jr, Molecular Docking Algorithms, Curr. Drug Targets. 9 (2008) 

1040–1047. https://doi.org/10.2174/138945008786949432. 

[97] S.Y. Huang, S.Z. Grinter, X. Zou, Scoring functions and their evaluation methods for 

protein-ligand docking: Recent advances and future directions, Phys. Chem. Chem. 

Phys. 12 (2010) 12899–12908. https://doi.org/10.1039/c0cp00151a. 

[98] M.N. Ab Wahab, S. Nefti-Meziani, A. Atyabi, A comprehensive review of swarm 

optimization algorithms, PLoS One. 10 (2015) 1–36. 

https://doi.org/10.1371/journal.pone.0122827. 

[99] D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft 

Comput. 22 (2018) 387–408. https://doi.org/10.1007/s00500-016-2474-6. 

[100] F.D. Prieto-Martínez, M. Arciniega, J.L. Medina-Franco, Molecular docking: current 

advances and challenges, TIP Rev. Espec. En Ciencias Químico-Biológicas. 21 (2018) 

1–23. https://doi.org/10.22201/fesz.23958723e.2018.0.143. 

[101] H.M. Ashtawy, N.R. Mahapatra, Machine-learning scoring functions for identifying 

native poses of ligands docked to known and novel proteins, BMC Bioinformatics. 16 

(2015) 1–17. https://doi.org/10.1186/1471-2105-16-S6-S3. 

[102] J. Li, A. Fu, L. Zhang, An Overview of Scoring Functions Used for Protein–Ligand 

Interactions in Molecular Docking, Interdiscip. Sci. Comput. Life Sci. 11 (2019) 320–

328. https://doi.org/10.1007/s12539-019-00327-w. 

[103] J. Michel, M.L. Verdonk, J.W. Essex, Protein-ligand binding affinity predictions by 

implicit solvent simulations: A tool for lead optimization?, J. Med. Chem. 49 (2006) 

7427–7439. https://doi.org/10.1021/jm061021s. 

[104] J.M. Briggs, T.J. Marrone, J.A. Mccammon, ComputationalScience New Horizons and 

Relevance to pharmaceutical Design, 6 (1996) 198–204. 

[105] D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual 

screening for drug discovery: Methods and applications, Nat. Rev. Drug Discov. 3 

(2004) 935–949. https://doi.org/10.1038/nrd1549. 

[106] P.S. Charifson, J.J. Corkery, M.A. Murcko, W.P. Walters, Consensus scoring: A 

method for obtaining improved hit rates from docking databases of three-dimensional 

structures into proteins, J. Med. Chem. 42 (1999) 5100–5109. 

https://doi.org/10.1021/jm990352k. 



92 

 

[107] R.D. Clark, A. Strizhev, J.M. Leonard, J.F. Blake, J.B. Matthew, Consensus scoring 

for ligand/protein interactions, J. Mol. Graph. Model. 20 (2002) 281–295. 

https://doi.org/10.1016/S1093-3263(01)00125-5. 

[108] M. De Vivo, M. Masetti, G. Bottegoni, A. Cavalli, Role of Molecular Dynamics and 

Related Methods in Drug Discovery, J. Med. Chem. 59 (2016) 4035–4061. 

https://doi.org/10.1021/acs.jmedchem.5b01684. 

 

 



Chapter III 

Combined Conceptual-DFT, 

Quantitative MEP Analysis, 

and Molecular Docking 

Study of Benzodiazepine 

Analogs.  

 

Graphical Abstract 



94 
 

1 Introduction 

Due to the broad biological applications of the benzodiazepine class, knowledge of 

structural parameters, electronic proprieties, and chemical reactivity of their basic rings is 

certainly of great interest and can help in understanding the affinity of those drugs for the 

specific receptors, thus the contribution in the systematization of their main therapeutic 

activities by modifying the old molecules or generating new substances [1,2]. Literature has 

revealed that there are many previous studies [3–6] discussing the synthesis of different 

benzodiazepine derivatives with various biological activities based on modifications and 

substitutions of their six basic rings represented in Figure 13 of chapter I. However, to our 

knowledge, these chemical structures have not been the subject of a theoretical study. 

Conceptual DFT-based descriptors and quantitative MEP analysis have emerged as 

powerful tools for describing and analyzing the chemical reactivity of molecular systems. 

The proposed global descriptors provide information on the global behavior of chemical 

species as a whole, and the local descriptors give a profound understanding of the reactivity 

of a specific atomic site in a molecule during chemical interactions or excitations [7]. 

Whereas, the analyses of ESP on van der Waals surfaces are usually quantified to provide a 

good description of how the molecular electrostatic potential distribution interacts with long-

extend molecules. More precisely, it gives a prediction of intermolecular non-covalent 

interactions such as hydrogen bonding, halogen bonding, and π-hole bonding by dissecting 

the magnitude and positions of minima and maxima ESP on van der Waals surface [8]. 

Nevertheless, the results obtained from the conceptual-DFT and the quantitative MEP 

analysis remain in need of experimentation in a biological medium. So, the molecular 

docking simulation provides a direct opportunity to place the studied molecular systems in a 

biological environment and follow the interactions that arise between them and the residues 

of the target binding sites, as well as, estimate theirs best binding modes and binding 

affinities [9]. 

In this chapter, a combination method based on conceptual-DFT formalism, 

quantitative MEP analysis, and molecular docking simulation was applied to investigate the 

chemical reactivity of six benzodiazepine basic rings. First, a statistical analysis was 

performed to assess the robustness of atomic charges to the basis sets. Global and local 

DFT-derived reactivity descriptors were determined and discussed to explain the global and 

local reactivity of the six studied analogs. Moreover, the quantitative MEP analysis on van 

der Waals surface was carried out to examine the long-range intermolecular interactions. 

Finally, a molecular docking procedure was conducted to predict the binding affinities of the 
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issued molecules and estimate the binding poses into four binding sites, three of which were 

recently discovered, located in the GABAA receptor. 

2 Material and methods  

2.1 Statistical analysis 

Before computing the condensed-to-atom reactivity descriptors; we should 

preliminarily determine the condensation method through the population analysis scheme. 

There are several schemes to achieve this objective. However, there is no consensus on 

which scheme is the most ideal one to study the reactive sites, through the condensed 

version of reactivity descriptors.  

Indeed, it is difficult to choose the best electronic population analysis by referring 

exclusively to strictly theoretical arguments. In this study, we used a test statistic to select 

the most efficient method to assess the net atomic charges. The statistical quantity to be 

calculated for this purpose is defined according to Lebart et al [10].
 

   
 ̅     ̅ 

√
  
 

  
 
    

   
 

                                                            (1) 

Where,  ̅    is the mean calculated for the     
atom using the electronic population ‘’p’’, 

 ̅  is the mean calculated for the     
atom using all electronic population schemes,    and    

are the number of atomic charges in the electronic population ‘’p’’, and the standard 

deviation of    estimated for the     
atom using all the electronic population schemes, 

respectively. The p-value or critical probability is computed as follows: 

            | |  |  |      |  |             

Where,   |  |) is the cumulative distribution function of the standard normal distribution. 

The p-value is computed under the null hypothesis      ̅     ̅    . Indeed, if the p-

value is less than or equal to significance level 0.05       |  |       . Then,  ̅    is 

significantly different compared to the overall mean  ̅ . In such a case, the corresponding 

charge characterizes the     
atom. On the other hand, the alternative hypothesis is verified if 

     ̅     ̅      

2.2 Computational details 

In order to determine the electronic properties of the benzodiazepines under study, 

the atomic charges were assessed using four electronic population schemes including 

Mulliken population analysis (MPA) [11], natural population analysis (NPA) [12], 
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electrostatic method (ChelpG) [13], and Hirshfeld population analysis (HPA) [14]. For this 

purpose, the starting geometry of 3H-1,4-bdz was optimized in water using six different 

basis sets, 6-31G, 6-311G, 6-31
+
G (d), 6-311

+
G (d), 6-31

++
G (d,p), and 6-311

++
G (d,p) in 

combination with the four electron population schemes. Latter, the six benzodiazepine 

analogs (Figure 13, chapter I) were optimized in water as neutral structures at the 

DFT/Ub3lyp/6-311
++

G(d,p) level of theory using the PCM solvation model. The molecular 

optimizations were performed using the Gaussian 09W software [15].
 
For all stationary 

points, there is no imaginary frequency at the optimized molecular geometries ensuring that 

the optimized structures are in the minimum on the potential energy surface. The atomic 

charges have been assessed using the Hirshfeld electronic population scheme. The singly 

charged anionic (N+1) and cationic (N-1) states were computed by single-point calculations 

at the same equilibrium geometry as the original molecule (neutral system).   

The Fukui functions and the dual descriptor density mapped surfaces were visualized 

according to the FMO approximation. The condensed Fukui functions and the dual 

descriptor are calculated according to the formulas cited in chapter II. The quantitative 

analysis of MEP on van der Waals surface was conducted using the multifunctional wave 

function analyzer program Multiwfn 3.7 [16], combined with the Cubegen utility of 

Gaussian 09W software [15]. ESP-mapped molecular van der Waals surfaces were rendered 

by VMD 1.9.1 program [17] based on the outputs of Multiwfn. 

2.3 Molecular docking protocol 

Molecular docking simulation was performed into four benzodiazepine binding sites 

in the GABAA receptor using Moe 2014 software package [18]. The electron microscopy 

structures of Human GABAA receptor alpha1-beta2-gamma2 subtypes in complex with 

GABA plus the diazepam (DZP) structures (PDB ID:6X3X, Resolution= 2.92 Å) were 

downloaded from RCSB Database (http://www.rcsb.org).  

Firstly, molecular docking was carried out into the classical benzodiazepine site 

located between the subunits D and E. In the protein preparation step, all co-crystallized 

ligands and non-essential subunits (A, B, and C) have been removed from the GABAA 

structure to provide sterically free cavities for ligand docking. Then, after structure 

correction, protonation, and cavity detection, the native co-crystallized DZP structure was 

re-docked in the selected binding site pocket and the best pose was chosen based on the 

given root-mean-square deviation (RMSD) values. Finally, the six neutral benzodiazepine 

structures previously optimized using the DFT method were converted into database files 

and docked into the DZP binding site pocket.  



97 
 

Likewise, molecular docking was also carried out in the binding sites of the trans-

membrane domain located between the subunits (A and B), (C and D), and (A and E). 

3 Results and discussion 

3.1 Atomic charges 

The change in atomic charges optimized using all the basis sets are shown in 

Appendix A. The performance of each electron population has been quantified by 

computing the ratio of critical probabilities. This performance indicator measures the 

robustness of each method to the basis set. The statistical results obtained are collected in 

Tables III.1 and III.2. 

Table III.1. The statistical test results for Mulliken and NBO populations. 

Atom 
Mulliken NPA 

    ̅     ̅     p-value     ̅     ̅     p-value 

1 N 1.529 -0.201 -0.372 0.221 0.063 -1.561 -0.463 -0.372 0.221 0.059 

2 C -2.870 0.035 0.121 0.087 0.002 1.567 0.144 0.121 0.087 0.059 

3 C -2.510 -0.379 -0.059 0.368 0.006 -2.178 -0.337 -0.059 0.368 0.015 

4 N 2.431 -0.191 -0.391 0.237 0.008 -0.733 -0.451 -0.391 0.237 0.232 

5 C -3.692 -0.348 0.062 0.320 0.000 0.329 0.099 0.062 0.320 0.371 

6 C -2.868 -0.340 -0.183 0.157 0.002 -0.013 -0.184 -0.183 0.157 0.495 

7 C -1.177 -0.164 -0.130 0.083 0.119 -3.329 -0.225 -0.130 0.083 0.000 

8 C -2.659 -0.225 -0.129 0.104 0.004 -2.012 -0.202 -0.129 0.104 0.022 

9 C -2.470 -0.328 -0.211 0.136 0.007 -0.074 -0.215 -0.211 0.136 0.470 

10 C -3.408 -0.364 0.072 0.368 0.000 0.494 0.135 0.072 0.368 0.311 

11 C 3.982 0.922 0.155 0.555 0.000 -1.570 -0.148 0.155 0.555 0.058 

12 H 2.551 0.202 0.130 0.080 0.005 2.939 0.213 0.130 0.080 0.002 

13 H 2.479 0.218 0.107 0.128 0.007 2.797 0.232 0.107 0.128 0.003 

14 H 2.270 0.205 0.109 0.122 0.012 3.003 0.236 0.109 0.122 0.001 

15 H 2.456 0.197 0.113 0.099 0.007 2.947 0.214 0.113 0.099 0.002 

16 H 1.371 0.190 0.156 0.072 0.085 3.242 0.237 0.156 0.072 0.001 

17 H 1.544 0.187 0.147 0.075 0.061 3.497 0.238 0.147 0.075 0.000 

18 H 1.536 0.188 0.149 0.073 0.062 3.474 0.238 0.149 0.073 0.000 

19 H 1.483 0.194 0.155 0.076 0.069 3.258 0.241 0.155 0.076 0.001 

     ̅   : Mean calculated for the k
th 

atom using the electronic population p. 

     ̅ : Mean calculated for the k
th

 atom using all electronic population schemes. 

      : The standard deviation of    estimated for the k
th 

atom using all the electronic population schemes 

Out of 19 critical probabilities P-value, the alternative hypothesis       |  |  

      was verified by the following ratios: 79% (HPA), 74% (NPA and ChelpG), and 68% 

(MPA). 

MPA seems to be the lowest-performing method, and this is not surprising as several 

objections to its results have been discussed in literature [18,19]. The drawback of MPA is 

that it is based on the one-particle density matrix defined through non-orthogonal atomic 
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orbital basis sets [11]. Therefore, its sensitivity toward the basis sets is very high. This latter 

is evident from the data provided in Table III.1, where we note that despite correlated 

Gaussian basis sets were used, the charges estimated using MPA are cover a wide range of 

values. Therefore, the MPA method is strongly affected by the used basis set. 

Table III.2. The statistical test results for ChelpG and Hirshfeld populations. 

Atom 
ChelpG Hirshfeld 

    ̅     ̅     p-value     ̅     ̅     p-value 

1 N -3.758 -0.660 -0.372 0.221 0.000 2.698 -0.166 -0.372 0.221 0.003 

2 C 4.130 0.246 0.121 0.087 0.000 -2.006 0.061 0.121 0.087 0.022 

3 C 4.376 0.499 -0.059 0.368 0.000 0.312 -0.019 -0.059 0.368 0.377 

4 N -4.168 -0.734 -0.391 0.237 0.000 2.470 -0.188 -0.391 0.237 0.007 

5 C 3.593 0.461 0.062 0.320 0.000 -0.230 0.037 0.062 0.320 0.409 

6 C 0.128 -0.177 -0.183 0.157 0.449 2.753 -0.033 -0.183 0.157 0.003 

7 C 1.558 -0.089 -0.130 0.083 0.057 3.079 -0.042 -0.130 0.083 0.001 

8 C 1.973 -0.058 -0.129 0.104 0.024 2.698 -0.032 -0.129 0.104 0.003 

9 C -0.875 -0.253 -0.211 0.136 0.191 3.419 -0.050 -0.211 0.136 0.000 

10 C 3.185 0.479 0.072 0.368 0.001 -0.270 0.037 0.072 0.368 0.393 

11 C -1.554 -0.134 0.155 0.555 0.057 -0.913 -0.021 0.155 0.555 0.181 

12 H -2.859 0.051 0.130 0.080 0.002 -2.632 0.057 0.130 0.080 0.004 

13 H -3.876 -0.066 0.107 0.128 0.000 -1.577 0.045 0.107 0.128 0.059 

14 H -3.813 -0.053 0.109 0.122 0.000 -1.590 0.047 0.109 0.122 0.057 

15 H -3.559 -0.009 0.113 0.099 0.000 -1.844 0.050 0.113 0.099 0.033 

16 H -0.620 0.140 0.156 0.072 0.268 -3.994 0.056 0.156 0.072 0.000 

17 H -1.504 0.107 0.147 0.075 0.051 -3.497 0.056 0.147 0.075 0.000 

18 H -1.418 0.113 0.149 0.073 0.078 -3.592 0.058 0.149 0.073 0.000 

19 H -0.704 0.136 0.155 0.076 0.241 -4.038 0.049 0.155 0.076 0.000 

 ̅   : Mean calculated for the k
th 

atom using the electronic population p. 

 ̅ : Mean calculated for the k
th

 atom using all electronic population schemes. 

  : The standard deviation of    estimated for the k
th 

atom using all the electronic population schemes 

NPA and ChelpG analysis provide the same performance. Here, the charges resist 

better than the charges estimated using MPA, since they seem to be independent of the used 

basis sets. NPA was developed to improve the problems related to the MPA method. Thus, 

the working base of NPA is the construction of an orthonormal set of natural atomic orbitals 

(NAOs) covering the non-orthogonal basis orbitals space. The occupancy weighted 

symmetric orthogonalization (OWSO) procedure was applied to convert the non-orthogonal 

atomic orbitals into the orthonormal set, where the highest occupancy orbitals are strongly 

preserved in form, while orbitals with negligible occupancy can be freely deformed to 

achieve orthogonality [12]. This feature makes NPA insensitive to the basis set quality. 

ChelpG is one of the grid-based methods derived from electrostatic potentials. In 

which, atomic charges are adapted to reproduce the MEP at a certain number of points 

around the molecular species. The methods based on ESP are limited for small molecular 
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systems with low flexibility [20].
 
On larger systems, it is difficult to assign charges when the 

atoms are far from the points where the MEP is computed. This means that the extra-

molecular MEP did not accurately determine the values of the internal atomic charges. And 

therefore, the predicted charges become unrealistic. 

The best performance is obtained by using the HPA method. The HPA values given 

in Table III.2 are the lowest among the considered charges and cover a small range of values 

sometimes equal to zero. Because the HPA scheme completely neglects the effect of atomic 

dipole moments. 

It's good for us that Hirshfeld is the best charge population to detect the electronic 

properties for the studied structures since our studies are heavily based on the results of 

Fukui indices and the dual descriptor. Hence, HPA is the ideal solution to produces a non-

negative condensed Fukui function (FF) compared to MPA, NPA, and ChelpG schemes 

which in some cases generate negative values. The case of negative condensed FF is 

systematically unacceptable, except in the case where the effects of orbital relaxation are so 

important that redox-induced electron rearrangement occurs [21–24]. 

3.2 Geometry and electronic properties 

To illustrate the differences between the structural parameters and the electronic 

properties of BDZ structures, the bond lengths, bond angles, and dihedral angles were 

collected in appendix B and revealed in Figure III.1. Table III.3 gives the HPA charges 

assigned to each atom.  

Figure III.1. Structural deformations of studied BDZ. 
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Phenyl rings present a hexagonal geometry with C-C bond length and bond angles 

vary from (1.383 A° to 1.423 A°) and from (117.961° to 121.965°), respectively. 

Accordingly, the binding of the diazepine ring in C10 and C11 resulted in a slight distortion in 

the bond lengths and bond angles from the normal values 1.40 A° and 120°. Consequently, 

the planarity was also affected as indicated by the torsion angles. 

The diazepine rings present non-planar structures, the significant deviations out of 

the phenyl plan are started from the atoms numbered 1 and 5, with dihedral angles 1-10-11-6 

and 9-10-11-5 vary from (-179.465° to 178.861°) and from (-48.360° to 65.764°), 

respectively. These distortions differ from one structure to another depending on the 

molecular flexibility. The bonds that have the lowest values of lengths are considered the 

strongest bonds in the structures and a large amount of energy is required to break them, 

while the weakest bonds need less energy. Here, the lowest values of bond lengths are 

similar between all the structures (1.27 A°). Unlike, slight differences are appeared between 

the lengths of weak bonds. 

Table III.3. Hirshfeld charges assigned to each atom, expressed in atomic unit (a.u). 

Atom 5H-1,2-bdz 1H-1,3-bdz 3H-1,4-bdz 3H-1,5-bdz 5H-2,3-bdz 1H-2,4-bdz 

1 -0.095 -0.095 -0.163 -0.170 0.030 -0.019 

2 -0.104 0.094 0.064 0.066 -0.156 -0.200 

3 -0.026 -0.220 -0.020 -0.052 -0.153 0.069 

4 -0.013 -0.020 -0.185 0.066 0.049 -0.179 

5 -0.045 -0.067 0.039 -0.170 -0.049 0.071 

6 -0.042 -0.041 -0.032 -0.055 -0.041 -0.027 

7 -0.032 -0.054 -0.041 -0.045 -0.031 -0.038 

8 -0.041 -0.042 -0.031 -0.045 -0.041 -0.026 

9 -0.043 -0.058 -0.049 -0.055 -0.032 -0.039 

10 0.011 0.042 0.038 0.022 -0.018 0.006 

11 0.007 -0.023 -0.019 0.022 0.012 -0.016 

12 0.052 0.141 0.055 0.056 0.051 0.038 

13 0.061 0.056 0.044 0.061 0.057 0.040 

14 0.047 0.038 0.045 0.054 0.057 0.044 

15 0.055 0.046 0.048 0.056 0.049 0.055 

16 0.053 0.050 0.054 0.043 0.054 0.057 

17 0.055 0.049 0.054 0.051 0.055 0.055 

18 0.054 0.052 0.056 0.051 0.053 0.056 

19 0.046 0.053 0.046 0.043 0.055 0.054 

According to Table III.3, if we exclude the results of 1H-1,3-bdz we note that, in all 

the remaining structures, the least positive charges appear over the junction atoms C10 or C11 

and the high negative charges appear over the two nitrogen atoms. In another hand, 
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hydrogens also provide important positive charges especially H12 in 1H-1,3-bdz which has 

the highest positive charge between all studied systems, and this due to its direct attachment 

to the high-electron withdrawing atom N1. 

3.3 Global reactivity 

The global reactivity indices derived from the conceptual-DFT (χ, η, S, ω, N) are 

calculated and discussed to explain the global changes between the six benzodiazepine 

analogs. Table III.4 summarizes the results. 

Table III.4. Values of HOMO-LUMO gap (Δ), global reactivity indices (χ, η, S, ω, N), and 

dipole moment (DM). 

basic rings 
EHOMO 

(eV) 

ELUMO 

(eV) 

Δ 

(eV) 

A 

(eV) 

I 

(eV) 

χ 

(eV) 

η 

(eV) 

S    

(eV
-1

) 

ω 

(eV) 

N 

(eV) 

DM 

(Debye) 

5H-1,2-bdz -6.460 -2.503 3.957 2.645 6.402 4.524 1.878 0.266 5.447 2.615 5.388 

1H-1,3-bdz -5.751 -1.858 3.893 2.031 5.644 3.837 1.807 0.277 4.076 3.323 3.742 

3H-1,4-bdz -6.726 -1.832 4.895 1.992 6.620 4.306 2.314 0.216 4.006 2.348 2.570 

3H-1,5-bdz -6.668 -1.519 5.148 1.702 6.563 4.133 2.430 0.206 3.514 2.407 3.313 

5H-2,3-bdz -7.004 -1.851 5.154 2.004 6.898 4.451 2.447 0.204 4.048 2.070 5.907 

1H-2,4-bdz -6.902 -2.229 4.673 2.371 6.793 4.582 2.211 0.226 4.749 2.172 4.688 

A= EN - EN+1; I= EN-1-EN; Δ= | EHOMO - ELUMO |; χ= - µ= 1/2(A+I); η= 1/2(I-A); S = 1/2η; ω = µ²/2η 

N = EHOMO –EHOMO (TCE) with EHOMO (TCE) = -9.074535 eV, calculated with DFT (Ub3lyp) /6-311
++

G (d, p)/ 

Hirshfeld/PCM model. 

The overall hardness classifies the studied systems from the most reactive to the 

least, as follows: 1H-1,3-bdz, 5H-1,2-bdz, 1H-2,4-bdz, 3H-1,4-bdz, 3H-1,5-bdz, and 5H-2,3-

bdz. The HOMO-LUMO energy gap (Δ) confirmed the results of global hardness, where, 

the high kinetic stability (high Δ) is generally associated with the low chemical reactivity 

(high η).  

The high reactivity of 1H-1,3-bdz is accompanied by the highest nucleophilicity (N= 

3.323 eV) and the lowest electronegativity (χ =3.837 eV). Whereas, the low reactivity of 

5H-2,3-bdz is accompanied by the lowest nucleophilicity (N=2.070 eV) and the highest 

polarization (DM=5.907 Debye). Thus, the intermolecular interactions between 5H-2,3-bdz 

and the neighboring water molecules are of great importance compared to the rest of the 

studied systems. Using the nucleophilicity and electrophilicity scales [25,26], the 1H-1,3-

bdz is classified as a strong nucleophile with strong electrophilicity, while the other systems 

are classified as moderate nucleophiles with strong electrophilicity. 

3.4 Local reactivity and quantitative MEP analysis 

In this section, the selectivity of atomic sites towards the approach of nucleophilic 

and electrophilic reactants is investigated using the dual descriptor        . The numerical 
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values are depicted in Tables III.5 and III.6. The numerical values of Table III.6 are mapped 

in Figure III.2 (for       and        mapped surfaces see Appendix C) through the use of 

the FMO approximation. The structures are arranged and numbered in the order given in 

Figure 13 of chapter I. Regions of positive signs are depicted by purple color, and regions of 

negative signs are in white (Isovalue MO = 0.0015 a.u, density = 0.00040 a.u). 

Table III.5. Values of condensed Fukui Functions        and       evaluated in the terms 

of anionic and cationic spin-densities, respectively. 

atom 
5H-1,2-bdz 1H-1,3-bdz 3H-1,4-bdz 3H-1,5-bdz 5H-2,3-bdz 1H-2,4-bdz 

f 
+
(r) f

‾
(r) f 

+
(r) f

‾
(r) f 

+
(r) f

‾
(r) f 

+
(r) f

‾
(r) f 

+
(r) f

‾
(r) f 

+
(r) f

‾
(r) 

1 0.278 0.346 0.028 0.206 0.038 0.237 0.114 0.118 0.185 0.044 0.010 0.040 

2 0.274 0.335 0.235 0.025 0.199 0.058 0.133 0.073 0.188 0.253 0.123 0.382 

3 0.007 0.079 0.048 0.115 0.023 0.033 0.032 0.016 0.032 0.260 0.051 0.013 

4 0.170 0.022 0.157 0.125 0.214 0.123 0.133 0.073 0.110 0.009 0.159 0.214 

5 0.014 0.005 0.118 0.138 0.070 0.015 0.114 0.118 0.011 0.009 0.257 -0.003 

6 0.000 0.006 0.046 0.004 0.022 0.072 0.119 -0.012 0.027 0.067 0.092 -0.007 

7 0.076 0.030 0.023 0.065 0.055 0.167 0.053 0.123 0.144 0.137 -0.008 0.093 

8 -0.009 0.016 0.104 0.070 0.098 -0.023 0.053 0.123 -0.007 -0.009 0.124 0.019 

9 0.065 -0.001 -0.006 0.005 -0.007 0.142 0.119 -0.012 0.114 0.106 0.000 0.024 

10 0.018 0.102 0.098 0.110 0.120 0.095 0.004 0.176 0.061 0.104 0.085 0.089 

11 0.061 0.044 0.077 0.106 0.106 0.039 0.004 0.176 0.071 0.002 0.047 0.078 

12 0.008 0.001 0.004 0.007 0.020 0.011 0.026 0.004 0.018 0.005 0.004 0.016 

13 0.016 0.011 0.023 0.005 0.006 0.006 0.010 0.001 0.010 -0.002 0.001 0.010 

14 0.005 -0.001 0.017 0.007 0.004 0.005 0.026 0.007 0.002 0.001 0.012 0.006 

15 0.002 0.000 0.010 0.008 0.011 0.003 0.026 0.004 0.003 -0.001 0.022 0.020 

16 0.001 0.001 0.005 -0.001 0.004 0.003 0.011 -0.001 0.003 0.003 0.009 -0.001 

17 0.008 0.002 0.003 0.004 0.006 0.009 0.006 0.006 0.016 0.007 0.000 0.006 

18 -0.001 0.001 0.012 0.004 0.011 -0.002 0.006 0.006 0.000 -0.001 0.012 0.001 

19 0.006 0.002 0.000 -0.001 0.002 0.007 0.011 -0.001 0.013 0.004 0.001 0.001 

 

Our results show that the delocalization of nitrogen along the diazepine cycle leads to 

significant differences in local reactivity. As a result, the ability of each atom to receive 

nucleophilic or electrophilic attack varies from structure to another and this may explain the 

wide biodiversity of the benzodiazepine family. 

Table III.6. Values of dual descriptor         evaluated in the term of spin-density, 

expressed in atomic units (a.u). 

atoms 5H-1,2-bdz 1H-1,3-bdz 3H-1,4-bdz 3H-1,5-bdz 5H-2,3-bdz 1H-2,4-bdz 

1 -0.068 -0.177 -0.199 -0.004 0.141 -0.030 

2 -0.061 0.209 0.141 0.060 -0.064 -0.259 

3 -0.071 -0.067 -0.010 0.016 -0.228 0.038 

4 0.148 0.032 0.091 0.060 0.100 -0.055 

5 0.009 -0.020 0.055 -0.004 0.002 0.260 

6 -0.006 0.043 -0.050 0.131 -0.040 0.099 

7 0.047 -0.042 -0.112 -0.070 0.007 -0.101 
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Table III.6. Continued 

8 -0.026 0.034 0.121 -0.070 0.002 0.104 

9 0.066 -0.012 -0.150 0.131 0.008 -0.024 

10 -0.084 -0.011 0.025 -0.173 -0.043 -0.004 

11 0.017 -0.029 0.066 -0.173 0.069 -0.031 

12 0.007 -0.003 0.008 0.022 0.013 -0.012 

13 0.005 0.018 0.000 0.009 0.012 -0.008 

14 0.007 0.010 -0.001 0.019 0.000 0.006 

15 0.002 0.001 0.008 0.022 0.004 0.003 

16 0.000 0.006 0.001 0.012 0.000 0.010 

17 0.006 -0.001 -0.003 0.000 0.009 -0.006 

18 -0.002 0.008 0.013 0.000 0.001 0.011 

19 0.004 0.001 -0.005 0.012 0.008 0.000 

The preferred sites for nucleophilic (electrophilic) reagents are easily determined by 

the highest positive (negative) value of        . The symmetrical behavior of 3H-1,5-bdz 

caused it to have two identical preferred electrophilic sites are C6 and C9, and two identical 

preferred nucleophilic sites C10 and C11. In contrast, the         values around the nitrogen 

atoms N1 and N5 are close to zero (0.004), signifying that they are neither nucleophiles nor 

electrophiles. Thus, the possibility of attacks on these sites is relatively negligible. The same 

notes for hydrogens, since most of them apparent inactive towards both attacks, and this is 

the only observation that can be generalized to the six studied structures.  

Figure III.2. Dual descriptor 3D-mapped surfaces, mapped through (FMO) approximation, 

Isovalue MO = 0.0015 a.u, purple color: regions of nucleophilic attacks, white color: regions 

of electrophilic attacks. 
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Recently, drugs based on 3H-1,4-bdz structure are the wide prescribed among all the 

benzodiazepines. The QSAR researches [27,28] suggested that the presence of an electron-

donating group in position 1, carbonyl oxygen (C=O) in position 2, phenyl group in position 

5, and an electron-withdrawing group in position 7 are necessary for increasing their affinity 

toward the GABAA receptor. Here, we will attempt to discuss the possibility of attaching 

these substituents in the required positions based on the results obtained from the dual 

descriptor. 

The values of dual descriptors suggest that N1 and C2 are the first privileged sites for 

electrophilic and nucleophilic attacks, respectively. This makes it easy to fix an electron-

donating group in position 1 and a carbonyl oxygen group in position 2, using the 

electrophilic and nucleophilic attacks. On the other hand, the positive          value in C5 is 

relatively small. Therefore, the attachment of a phenyl group in this position is possible but 

not much preferred since the nucleophilic attack will be directed mainly towards position 2. 

Finally, our results suggest that C7 is the third preferred nucleophilic site. Accordingly, the 

direct attachment of an electron-withdrawing group in this position is not recommended. 

To predict the intermolecular interaction between the studied structures and the 

distant reagents; the quantitative MEP analysis was performed and discussed. The repulsive 

and attractive electrostatic interactions are long-range in comparison to the charge-transfer 

effects characterized by the Fukui functions and the derived reactivity indices [29].
 
MEP in 

the vicinity of a molecule is defined as the energy required bringing a unit test positive 

charge from infinity to the point r.  Statistically-based molecular descriptors derived from 

molecular surface electrostatic potentials studied here have been defined by Politzer et al 

[30]. 

ESP-mapped van der Waals surfaces are depicted in Figure III.3. The different colors 

in plots representing the different values of ESP at the surface, the color code is in the range 

between -39.51 kcal/mol (deepest red), and 35.23 kcal/mol (deepest blue). Areas with 

positive ESP are electron-deficient sites and therefore subject to nucleophilic attacks, and 

the negative areas are electron-rich sites reacting with electrophilic reagents. The positive 

and negative values with a star are the global maximum and minimum ESP vdW-surface. 

These values indicate the most privileged sites for distant nucleophiles and electrophiles. 
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Figure III.3. ESP-mapped van der Waals surfaces (kcal/mol) using a color scale ranging 

fromred (negative ESP), through white (neutral ESP) to blue (positive ESP). All the iso-

surface maps were rendered by VMD software based on the surface analysis result of 

Multiwfn program. The grid spacings were set to 0.2 Bohr and the van der Waals surface 

denotes the iso-surface of              Values with a star indicate global extremums. The 

bold numbers in the bottom right-hand corner are the overall ESP variance (OV), positive 

surface area (PS) and negative surface area (NS) whose unit are [Kcal/mol]
2
, (A°)

2
, 

respectively. 

For more accuracy, the ESP vdW-surfaces for each atom (Vk) are given in Table 

III.7. The atoms not mentioned in the table are having ESP values close to zero and are 

therefore not susceptible to any attack. The overall variance (OV) reflects the tendency of 

molecules to interact electrostatically with long-rang reagents. The highest OV value is 

141.760 (kcal\mol)
2
. This implies that the strong tendency for long-rang interactions is 

attributed to 5H-2,3-bdz, followed by 1H-1,3- bdz, 5H-1,2- bdz, 1H-2,4- bdz, 3H-1,4- bdz, 

and 3H-1,5- bdz. 

Table III.7. Atomic ESP van der Waals surfaces (Vk), expressed in (kcal/mol). 

atoms 5H-1,2-bdz 1H-1,3-bdz 3H-1,4-bdz 3H-1,5-bdz 5H-2,3-bdz 1H-2,4-bdz 

1 -24.521 -5.471 -15.684 -15.797 -10.523 / 

2 -21.236 -5.983 0.500 1.197 -24.795 -20.295 

3 -4.861 -23.371 / / -24.869 -10.395 

4 -1.742 -12.025 -18.542 1.106 -5.574 -14.107 
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Table III.7. Continued 

5 / -11.252 -1.598 -13.036 / -1.452 

6 -1.478 -7.462 -2.717 -9.884 0.146 0.083 

7 -2.676 -5.653 -2.704 -9.454 -0.434 0.773 

8 -4.810 -4.966 -4.173 -10.085 -1.254 -0.839 

9 -7.166 -3.255 -6.106 -11.339 -2.449 -2.801 

10 -6.868 -1.122 -8.442 / -2.575 -2.929 

11 -3.751 -10.793 -6.505 / -0.099 -1.615 

12 -2.064 17.254 -0.376 3.137 -2.639 -3.858 

13 9.534 2.958 2.197 14.755 1.724 -3.097 

14 0.044 -7.989 0.332 3.965 10.771 -8.757 

15 10.592 -2.952 -3.859 3.207 2.196 1.157 

16 10.494 1.219 6.267 -5.388 10.895 9.614 

17 8.452 3.004 6.725 1.187 9.257 10.365 

18 5.367 6.752 6.838 1.744 8.338 9.972 

19 -6.724 13.767 -1.697 -5.765 5.252 4.796 

 

If we compare this reactivity order with that given by the global hardness discussed 

in the global reactivity section, it is clear that both are completely identical except in the 

case of 5H-2,3-bdz where the global hardness orders it as the least reactive structure. The 

distribution of negative surfaces area (NS) on 5H-2,3-bdz and 1H-1,3-bdz occupy 34.3% 

and 49.2% of the total surfaces, respectively. This makes 5H-2,3-bdz have the least 

nucleophilic surface and 1H-1,3-bdz have the most nucleophilic surface among the studied 

systems. This result confirming the results of the global nucleophilicity indices (N) given in 

Table III.4. Simultaneously, the positive and negative surfaces area in 1H-1,3-bdz have 

rather close values, especially when compared to the other studied systems where the 

negative surfaces area (NS) are significantly lower than the positive surfaces area (PS). This 

confirmed the classification of 1H-1,3-bdz as strong nucleophiles with strong 

electrophilicity, and the remains as moderate nucleophiles with strong electrophilicity. 

According to Figure III.3, each structure is surrounded by positive and negative ESP 

surfaces that appeared over the hydrogen atoms and the two nitrogen atoms, respectively. 

The highest local positive ESP values on the surfaces are appearing around: (H12 in 1H-1,3-

bdz), (H13 in 3H-1,5-bdz), (H15 in 5H-1,2-bdz), (H16 in 5H-2,3-bdz), and (H17 in 3H-1,4-bdz 

and 1H-2,4-bdz), Indicating the primary favorable sites for distant nucleophiles. 

simultaneously, the highest local negative ESP values on the surfaces are distributed around 

the lone pairs of (N1 in 5H-1,2-bdz and 3H-1,5-bdz), (N2 in 1H-2,4-bdz), (N3 in 1H-1,3-bdz 

and 5H-2,3-bdz), and (N4 in 3H-1,4-bdz), Thus are the primary preferred sites for distant 

electrophiles. Also, most carbons are having negative ESP regions but less than that of the 
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nitrogen, this negativity due to the π-electron cloud delocalization over the benzene and 

diazepine rings. Therefore, the possibility of electrophilic attacks in these areas is also 

acceptable. 

3.5 Molecular docking simulation 

The molecular docking simulation provides a direct opportunity to place the six 

studied structures in a biological environment and follow the interactions that arise between 

them and the residues of the binding sites. Moe docking was performed in four distinct 

benzodiazepine binding sites: the classical site at the ECD α-γ interface, the two TMD sites 

at the α-β interfaces, and the TMD site at the β-γ interface (see Figure 11, chapter I). Firstly, 

the co-crystallized ligand diazepam (DZP) has been re-docked into the four binding sites and 

the best poses were chosen according to the RMSD values and visualized in Figure III.4. 

Then, the six studied ligands have been docked into each binding site, and the best poses 

were selected according to the lowest energy score values.  

Results such as the energy score, types, and distances of interactions between the 

studied ligands and the residues of the binding sites were collected in Tables III.8 to III.11. 

The docking scoring is required to quantitatively estimate the binding affinity between the 

target macromolecule and ligands; the best poses are those that have an energy score closer 

to that of the co-crystallized ligand. In the four docking results, Diazepam (DZP) gives 

lower energy scores than the docked ligands, the Cl substitution in position 7 forms an 

average bond type H-Donor with His D102 and Asp E297 in sites (a) and (d), respectively. 

The π-electron cloud delocalization over the phenyl ring attached in position 5 forms a 

withdrawing group electrostatically attracting the hydrogen of Pro D233 in the site (b). 

While the interactions between the basic structure and the binding site residues are 

appearing only in sites (a) and (c), between the N4 and the π-electron cloud of the phenyl 

ring in Phe E77 and Phe A289, respectively. 
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Figure III.4. The best binding poses for the re-docked co-crystallized ligand (Diazepam) in 

the classical site at the ECD α-γ interface (a), the two TMD sites at the α-β interfaces (b) and 

(c), and the TMD site at β-γ interface (d). RMSD = 0.279 A°, 0.357 A°, 0.487 A°, and 0.314 

A°, respectively. 

The score of binding free energy of the six docked ligands is between (-5.021 and -

5.235) Kcal/mol, (-4.889 and -5.054) Kcal/mol, (-4.624 and -4.951) Kcal/mol, and (-4.479 

and -4.644) Kcal/mol for the sites (a), (b), (c), and (d), respectively. As it clear, the six 

ligands rather have affinities close to each other and simultaneously far from that of DZP. 

Despite this convergence in affinities, each ligand has a different mode of interaction with 

the target binding sites, and this due to the difference in ESP generated by each structure 

(see Figure III.3). This latter considered being the primary responsibility in the orientation of 

intermolecular interactions. 
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Table III.8. S-score, bond interactions, bond distances, and bond energy for the co-

crystallized Ligand (Diazepam) and the six ligands docked in the classical BDZ site at the 

extracellular domain (ECD) α-γ interface (site (a)). 

 
S-score 

(Kcal/mol) 

Atom of 

Ligand 

Involved 

receptor 

atoms 

Involved 

receptor 

residues 

Type of 

interactions 

Distances 

(A°) 

Bond 

Energy 

(kcal/mol) 

Co-crystallized Ligand 

rmsd = 

0.279895216 
-7.00339508 

CL   36 O HIS  102  (D) H-donor 3.38 -1.7 

N15  23 6-ring PHE  77   (E) cation-pi 3.97 -2.2 

Complexe GABAA-ligand 

5H-1,2-bdz -5.23495197 / / / / / / 

1H-1,3-bdz -5.0283432 N    3 N ALA  161  (D) H-acceptor 3.52 -2.1 

3H-1,4-bdz -5.0801158 / / / / / / 

3H-1,5-bdz -5.18940687 / / / / / / 

5H-2,3-bdz -5.02146149 N    3 OG1 THR  207  (D) H-acceptor 3.06 -1.0 

1H-2,4-bdz -5.04629469 / / / / / / 

 

Table III.9. S-score, bond interactions, bond distances, and bond energy for the co-

crystallized ligand (Diazepam) and the six ligands docked in the transmembrane domain 

(TMD) site at the α-β interface (site (b)). 

 
S-score 

(Kcal/mol) 

Atom of 

Ligand 

Involved 

receptor 

atoms 

Involved 

receptor 

residues 

Type of 

interactions 

Distances 

(A°) 

Bond 

Energy 

(kcal/mol) 

Co-crystallized Ligand 

rmsd = 

0.357037723 
-6.26063156 6-ring CB 

PRO  233  

(D) 
pi-H 3.67 -0.9 

Complexe GABAA-ligand 

5H-1,2-bdz -5.05429792 / / / / / / 

1H-1,3-bdz -4.9483633 C    9 6-ring PHE  289  (C) H-pi 3.80 -0.6 

3H-1,4-bdz -4.88927412 6-ring 6-ring PHE  289  (C) pi-pi 3.98 -0.0 

3H-1,5-bdz -4.91819811 / / / / / / 

5H-2,3-bdz -4.90998173 6-ring 6-ring PHE  289  (C) pi-pi 3.97 -0.0 

1H-2,4-bdz -4.89463186 6-ring 6-ring PHE  289  (C) pi-pi 3.94 -0.0 

Table III.10. S-score, bond interactions, bond distances, and bond energy for the co-

crystallized ligand (Diazepam) and the six ligands docked in the transmembrane domain 

(TMD) site at the α-β interface (site (c)). 

 
S-score 

(Kcal/mol) 

Atom of 

Ligand 

Involved 

receptor 

atoms 

Involved 

receptor 

residues 

Type of 

interactions 

Distances 

(A°) 

Bond 

Energy 

(kcal/mol) 

Co-crystallized Ligand 

rmsd = 

0.487408489 
-6.15904188 N15  23 6-ring 

PHE  289  

(A) 
cation-pi 4.22 -0.7 

Complexe GABAA-ligand 

5H-1,2-bdz -4.95116711 / / / / / / 

1H-1,3-bdz -4.92590475 7-ring CD ARG  269  (A) pi-H 4.73 -0.9 

3H-1,4-bdz -4.69323301 / / / / / / 

3H-1,5-bdz -4.62413931 / / / / / / 

5H-2,3-bdz -4.64065981 / / / / / / 

1H-2,4-bdz -4.79273367 / / / / / / 
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Table III.11. S-score, bond interactions, bond distances, and bond energy for the co-

crystallized ligand (Diazepam) and the six ligands docked in the transmembrane domain 

(TMD) site at the β-γ interface (site (d)). 

 
S-score 

(Kcal/mol) 

Atom of 

Ligand 

Involved 

receptor 

atoms 

Involved 

receptor 

residues 

Type of 

interactions 

Distances 

(A°) 

Bond 

Energy 

(kcal/mol) 

Co-crystallized Ligand 

rmsd = 

0.314423084 
-6.44459772 CL   35 OD1 ASP  297  (E) H-donor 3.48 -0.7 

Complexe GABAA-ligand 

5H-1,2-bdz -4.54392052 / / / / / / 

1H-1,3-bdz -4.54438877 7-ring CB SER  280  (E) pi-H 3.86 -1.0 

3H-1,4-bdz -4.64406681 / / / / / / 

3H-1,5-bdz -4.63208199 / / / / / / 

5H-2,3-bdz -4.47868633 N    3 NE2 GLN  224  (A) H-acceptor 2.92 -1.3 

1H-2,4-bdz -4.5871954 / / / /  / 

Based on the atomic ESP over the whole molecular surfaces of 1H-1,3-bdz given in 

Table III.7, N3 and H1 would be expected to be the most acceptable sites for positive and 

negative distant entities, respectively. The binding poses of 1H-1,3-bdz mapped in Figure 

III.5 indicate the formation of an average interaction type H-acceptor between N3 and one of 

the two hydrogens of the amine group in Ala D161 of the site (a). While site (b) shows the 

existence of weak interaction type H-pi between H19 and the π-electron cloud of the phenyl 

ring of Phe C289. This latter can be explained by observing the orientation of ligand in the 

binding site, where Phe C289 seems to be further from the diazepine ring and closer to the 

phenyl, so, logically, Phe C289 would be interacting with the most electron-deficient site in 

the Phenyl ring, which is H19. Sites (c) and (d) also indicate the existence of weak 

interactions type H-pi between the π-electron cloud of the diazepine ring and hydrogen of 

Arg A269 and Ser E280. This interaction does not observe in the rest studied ligands. This 

may be due to the strong nucleophilicity of this structure (NS occupies 49.2% of the total 

surface, N=3.323 eV). 

Similarly, the 5H-2,3-bdz binding poses mapped in Figure III.6 indicate the 

formation of two strong interactions type H-acceptor between the most electron rich-site 

(N3) and the two residues: Thr D207 of the site (a) and Gln A224 of the site (d). Whereas in 

the site (b) (see also Figure III.7), the phenyl rings of 5H-2,3-bdz, 3H-1,4-bdz, and 1H-2,4-

bdz established an arene-arene interaction with the phenyl ring of Phe C289. 
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Figure III.5. The best binding poses for 1H-1,3-bdz ligand in the classical site at the ECD α-

γ interface (a), the two TMD sites at the α-βinterfaces (b) and (c), and the TMD site at β-γ 

interface (d). 
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Figure III.6. The best binding poses for 5H-2,3-bdz ligand in the classical site at the ECD α-

γ interface (a), the TMD site at the α-β interfaces (b), and the TMD site at β-γ interface (d). 

Figure III.7. The best binding poses for 3H-1.4-bdz and 1H-2,4-bdz ligands in the TMD 

site at the α-β interfaces (b). 
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4 Conclusion  

In this chapter, a combined approach based on conceptual-DFT theory and molecular 

docking simulations were performed to investigate the chemical reactivity of six 

Benzodiazepine analogs. Chemical reactivity descriptors derived from the conceptual-DFT 

were determined and discussed to explain the global and local reactivity of the six studied 

analogs. Also, long-range interactions were studied using the quantitative analyses of the 

molecular electrostatic potential on van der Waals surface to identify the nucleophilic and 

electrophilic sites. A statistical analysis determined the robustness of each population 

method toward the used basis sets, the density-based method Hirshfeld presents the best 

performance and therefore exhibits high robustness against the basis set quality. Both global 

and local conceptual DFT-based descriptors were performed to provide information about 

global and local reactivity. The dual descriptor led to a fairly good prediction of favorable 

electrophilic and nucleophilic sites, making it possible to easily direct the reagents to the 

desired positions during the creation of new derivatives as mentioned for the 3H-1,4-bdz 

structure. The quantitative ESP analysis exhibited that the ability of each atomic site to 

interact electrostatically with the long-distance nucleophilic and electrophilic entities 

differed from structure to another. As well, the molecular docking results indicated that the 

six studied structures have converging binding affinities and despite this, each ligand has a 

different binding mode with the target sites. The interpretation of the results was given based 

on the quantitative analyses of ESP on van der Waals surface. 

Finally, this work is an expansion to theoretical researches related to the study of 

heterocyclic compounds of pharmaceutical interest using DFT theory in combination with 

molecular docking simulation. The results obtained in this study allow deepening the 

understanding, from a theoretical point of view, of the chemical reactivity of six 

benzodiazepine basic structures. This work will certainly stimulate similar studies on a 

larger range of organic reactions. 
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1 Introduction  

The strategy of combining molecular docking, molecular dynamics simulation, and 

QSAR analysis has emerged as a practical tool in the process of drug development through 

computational techniques. Its main advantage lies in improving the success rate of drug 

screening in less time and at a lower cost [1].  

Molecular docking simulations are designed to determine the best ligand/target 

binding mode that generates the biological response. In practice, it allows the screening of 

large libraries of compounds by implementing fast and inexpensive docking algorithms. 

Mostly, after molecular docking simulations, the best-docked complexes are subject to 

stability investigation through molecular dynamics simulation. Monitoring the dynamic 

profile of complexes over a certain time range provides the advantage of detecting various 

internal motions and conformational changes that occur in the binding site. Hence, validate 

the docking protocols. Otherwise, MD simulations can be generated before performing 

molecular docking for several objectives such as optimizing the target structure and ensuring 

its flexibility, quantifying the ligands/target free binding energies,…etc. As well as, during 

the docking process, to accurately detect the binding locus and properly dock ligands [2]. 

Quantitative structure-activity relationships (QSARs) are mainly devoted to predict 

the activities of new chemical entities from knowledge of their chemical structures. QSAR 

models quantitatively correlate the physicochemical and biological properties of compounds 

with their biological responses [3]. The success of any QSAR model depends on many 

factors, including the selection of practical statistical techniques for model development and 

validation strategies. The quality of models is evaluated through an internal validation 

process usually based on the use of the cross-validation method (CV). Whereas, the 

predictive power can be estimated using independent test data that was not involved in model 

generation [4]. In the literature, considerable researchers have sought to study the BDZ by 

performing QSAR analysis. Against this background, fifty-seven compounds from the dataset 

of interest in our study were examined by D.J. Maddalena et al [5] using the back-

propagation artificial neural network method (ANN) and multilinear regression analysis 

(MLR). The two-layer ANN model gave an excellent correlation between the binding 

affinities of the 38 compounds of the training set (Rt= 0.941) and the 10 selected input 

variables: (π7, F7, MR1, MR2', R1, F2, MR6, μ1, δp8, and δm3). Where, F, R, μ, δp, and δm 

denote polar constant, resonance constant, dipole moment, hammett-para constant, and 

hammett-meta constant, respectively. The predictive power was tested with an external set of 

19 compounds and an optimal cross-validation coefficient (Rcv=0.910) was found. Later, S. S. 
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So et al [6] re-examined the data provided by D.J. Maddalena et al with an improved version 

of the genetic neural network (GNN). The top-ranking variables selected by GNN shared 

only four variables with the ANN selection (π7, F7, MR1, and MR2'). Therefore, an accurate 

comparison and a further discussion were made between the results of the two statistical 

methods, as well as, the three highly predictive models (T6-2 # 1-3) were combined with the 

optimal functional groups proposed by D.J. Maddalena to be placed in positions 1, 7, and 2' 

and used to design 20 new BDZ derivatives with their predicted activities. 

This chapter aims to highlight the binding mechanism by which a data set of classical 

benzodiazepines allosterically modulates GABAA receptor α1β2γ2 subtypes, from inducing 

neuronal inhibition at lower doses to the anesthetic effect at higher doses. In addition to the 

well-known ECD binding interface, our study was further expanded to include the three 

TMD interfaces that were recently identified by J.J. Kim et al [7]. In the first step, a data set 

of [
3
H]diazepam derivatives was subjected to fast screening through the molecular docking 

approach. Subsequently, molecular dynamics simulation and pharmacokinetics/drug-likeness 

evaluations were performed to refine the best-docked complexes. Finally, an improved 

version of PLS regression was implemented to quantify structural features that contribute to 

improving the response of GABAA/α1β2γ2 receptor to benzodiazepine drugs. Throughout this 

paper, the results have been interpreted in light of the combination of the cited approaches. 

2 Material and methods  

2.1 Biological data  

The results in vitro for the 50% inhibition of the binding of [
3
H]diazepam to 

homogenates of rat brain cell membranes by BDZs expressed as log (1/C) reported earlier in 

the review of D.H. Litinat et al [8] (Table IV.1) were investigated to perform a molecular 

docking simulation and to predict QSAR model using PLS analysis. According to A. Micheli 

et al [9], the good structural diversity allows this dataset to be optimal for undergoing QSAR 

analysis. 
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Table IV.1. The classical BDZ data set under study [8]. 

 

N° Nam R1 R3/ R5/R6 R7 R8/ R9 R2’ R6’ Log (1/C)obs 

1 Ro05-4318/ Ro05-3418 CH3 R3,R5,R6=H NH2 R8,R9=H H H 6.34 

2 Ro05-3072 H R3,R5,R6=H NH2 R8,R9=H H H 6.41 

3 Ro05-4528 CH3 R3,R5,R6=H CN R8,R9=H H H 6.42 

4 Ro05-2921 H R3,R5,R6=H H R8,R9=H H H 6.45 

5 Ro20-7736 CH3 R3,R5,R6=H NHOH R8,R9=H F H 7.02 

6 Ro05-4619 H R3,R5,R6=H NH2 R8,R9=H Cl H 7.12 

7 Ro20-5397 H R3,R5,R6=H CHO R8,R9=H H H 7.37 

8 Ro05-3061 H R3,R5,R6=H F R8,R9=H H H 7.40 

9 Ro20-2533 H R3,R5,R6=H C2H5 R8,R9=H H H 7.44 

10 Ro20-2541 CH3 R3,R5,R6=H CN R8,R9=H F H 7.52 

11 Ro20-5747 H R3,R5,R6=H CHCH2 R8,R9=H H H 7.62 

12 Ro05-4336 H R3,R5,R6=H H R8,R9=H F H 7.68 

13 Ro20-3053 H R3,R5,R6=H COCH3 R8,R9=H F H 7.74 

14 Triflunordazepam H R3,R5,R6=H CF3 R8,R9=H H H 7.89 

15 Diazepam CH3 R3,R5,R6=H Cl R8,R9=H H H 8.09 

16 Ro07-5220 CH3 R3,R5,R6=H Cl R8,R9=H Cl Cl 8.26 

17 Ro14-3074 H R3,R5,R6=H N3 R8,R9=H F H 8.27 

18 Flunitrazepam CH3 R3,R5,R6=H NO2 R8,R9=H F H 8.42 

19 Ro05-3590 H R3,R5,R6=H NO2 R8,R9=H CF3 H 8.45 

20 Norflurazepam H R3,R5,R6=H Cl R8,R9=H F H 8.7 

21 Delorazepam H R3,R5,R6=H Cl R8,R9=H Cl H 8.74 

22 Clonazepam H R3,R5,R6=H NO2 R8,R9=H Cl H 8.74 

23 Fonazepam H R3,R5,R6=H NO2 R8,R9=H F H 8.82 

24 Ro05-6822 CH3 R3,R5,R6=H F R8,R9=H F H 8.29 

25 Ro05-4865 CH3 R3,R5,R6=H F R8,R9=H H H 7.77 

26 Ro05-6820 H R3,R5,R6=H F R8,R9=H F H 8.13 

27 Nordazepam H R3,R5,R6=H Cl R8,R9=H H H 8.03 

28 Ro07-3953 H R3,R5,R6=H Cl R8,R9=H F F 8.79 

29 Difludiazepam CH3 R3,R5,R6=H Cl R8,R9=H F F 8.39 

30 Ro07-5193 H R3,R5,R6=H Cl R8,R9=H Cl F 8.52 

31 Ro22-3294 H R3,R5,R6=H Cl R8,R9=H Cl Cl 8.15 

32 Nitrazepam H R3,R5,R6=H NO2 R8,R9=H H H 7.99 

33 Methylclonazepam CH3 R3,R5,R6=H NO2 R8,R9=H Cl H 8.66 

34 7-Aminoflunitrazepam CH3 R3,R5,R6=H NH2 R8,R9=H F H 7.19 

35 Ro12-6377 CH3 R3,R5,R6=H NHCONHCH3 R8,R9=H F H 6.34 

36 Halazepam CH2CF3 R3,R5,R6=H Cl R8,R9=H H H 7.04 

N

N

R1

O

R3

R7

R8

R9

AB

R6

R6'
R2'

C
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Table IV.1. Continued 

37 Pinazepam CH2CCH R3,R5,R6=H Cl R8,R9=H H H 7.03 

38 Prazepam CH2C3H5 R3,R5,R6=H Cl R8,R9=H H H 6.96 

39 Motrazepam CH2OCH3 R3,R5,R6=H NO2 R8,R9=H H H 6.37 

40 Ro20-1310 C(CH3)3 R3,R5,R6=H Cl R8,R9=H H H 6.21 

41 Ro07-2750 CH2CH2OH R3,R5,R6=H Cl R8,R9=H F H 7.61 

42 Ro08-9013 (CH2)2OCH2CONH2 R3,R5,R6=H Cl R8,R9=H F H 7.37 

43 Proflazepam CH2CHOHCH2OH R3,R5,R6=H Cl R8,R9=H F H 6.85 

44 Ro22-4683 C(CH3)3 R3,R5,R6=H NO2 R8,R9=H Cl H 6.52 

45 Ro11-4878 H R3=(s)CH3 

R5,R6=H 

Cl R8,R9=H F H 8.46 

46 Meclonazepam H R3=(s)CH3 

R5,R6=H 

NO2 R8,R9=H Cl H 8.92 

47 Ro11-6896 CH3 R3=(s)CH3 

R5,R6=H 

NO2 R8,R9=H F H 8.15 

48 L48 CH3 R3=(rac)CH3 

R5,R6=H 

Cl R8,R9=H H H 7.31 

49 Temazepam CH3 R3=(rac)OH 

R5,R6=H 

Cl R8,R9=H H H 7.79 

50 L50 CH3 R3=(rac)Cl 

R5,R6=H 

Cl R8,R9=H F H 8.27 

51 L51 H R3,R5=H 

R6=CH3 

CH3 R8,R9=H H H 6.77 

52 Ro07-4419 H R3,R5,R6=H H R8,R9=H F F 7.72 

53 Ro05-4520 CH3 R3,R5,R6=H H R8,R9=H F H 7.85 

54 Ro05-4608 CH3 R3,R5,R6=H H R8,R9=H Cl H 8.42 

55 Ro05-3546 H R3,R5=H 

R6=Cl 

H R8,R9=H H H 6.49 

56 Ro13-0699 CH3 R3,R5=H 

R6=Cl 

H R8,R9=H F H 6.82 

57 Ro07-6198 H R3,R5,R6=H H R8=Cl 

R9=H 

F F 7.55 

58 Ro20-8895 H R3,R5,R6=H H R8=CH3 

R9=H 

F H 7.72 

59 Ro13-0593 CH3 R3,R5,R6=H H R8=H 

R9=Cl 

F H 7.14 

60 L60 CH3 R3,R5=H 

R6=Cl 

H R8=Cl 

R9=H 

F H 6.52 

61 Ro22-6762 CH3 R3,R5,R6=H Cl R8=Cl 

R9=H 

H H 7.40 

62 Ro20-8065 H R3,R5,R6=H Cl R8=Cl 

R9=H 

F H 8.44 

63 Ro20-8552 H R3,R5,R6=H CH3 R8=Cl 

R9=H 

F H 7.85 

64 L64 H R3,R5,R6=H Cl R8=H 

R9=Cl 

H H 7.43 

65 L65 H R3,R5,R6=H Cl R8=H 

R9=CH3 

H H 7.28 
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2.2 Molecular descriptors generation  

First, a gradient norm limit of 0.1 kcal/(Å mol) was chosen for the pre-optimization of 

sixty-five BDZ derivatives, using the molecular mechanics force field (MM
+
) method 

included in HyperChem package version 8.08 [10]. Then, the molecular geometries were 

optimized at the DFT/Ub3lyp/6-311
++

G(d,p) level of theory using the Gaussian 09W 

software [11]. For all stationary points, there is no imaginary frequency at the optimized 

molecular geometries ensuring that the optimized structures are at the minimum on the 

potential energy surface. The atomic charges qN1, qC3, qN4, qC6, qC7, qC8, qC9, qC2', qC6' and the 

dipole moment (DM) have been assessed using the ChelpG electronic population scheme 

[12]. The number of hydrogen-donors (HD), number of hydrogen-acceptors (HA), Molecular 

lipophilicity Log (P), and molar refractivity (MR) have been computed using MarvinSketch 

version 20.21 [13]. The flexible torsions FT have been computed using Molegro Virtual 

Docker version 5.5 [14]. Finally, the hydrophobic constants in positions 7 (πC7) and 2’ (πC2') 

have been extracted from the literature [13]. 

2.3 QSAR analysis 

2.3.1 PLS regression  

The chemical, physical, topological and quantum properties are necessarily correlated 

for a given molecule. This is a reflection of the innate properties of the system and additional 

data collected in the same way will show the same collinearity [14]. Indeed, PLS regression 

is a useful method for multivariate data containing correlated molecular descriptors. This 

method based on dimension reduction technique, builds orthogonal components, often called 

factors or latent variables, as linear combinations of the original predictor variables [15]. PLS 

constructs these components while considering the observed response values, leading to a 

parsimonious model with reliable predictive power [16].  

In this work, the number of components used in PLS is chosen by 5-fold cross-

validation method [17]. The dataset is randomly divided into training dataset (80%) and 

testing dataset (20%). Training sets were used for model development and test sets for model 

external validation. Before conducting PLS analysis, each response variable is scaled to unit 

variance by dividing it by its standard deviation, and the molecular descriptors are centered 

by subtracting the average value and scaled to unit variance. First, variable selection by 

Stepwise regression method is used to identify the best subset of molecular descriptors. This 

is a combination of backward and forward selection [15]. The objective is to use the 

minimum number of descriptors to develop a good predictive model. Thus, we must select 
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the good subsets of descriptors. However, it should be noted that the subset of molecular 

predictors that do the best at meeting well-defined objective criteria can be highly variables 

depending on precisely which observations are included in the training set. In addition, the 

best training model does not necessarily guarantee a better quality of prediction. This 

depends on the training and test sets obtained from the original dataset. For this reason, we 

conducted a statistical simulation for which 10 000 splits were performed resulting in 10 000 

training and test sets. For each simulation, regression diagnostics for detecting possible 

outliers was carried out by computing leverage values (hii) for identifying outlying x-

variables and studentized deleted residuals    
   for identifying outlying  -variables. Note 

that once outliers have been detected the model is regenerated excluding the outlying 

observations from the dataset. Afterwise, the best model is selected on each training set 

resulting in 10 000 best training models following the Bayesian Information Criterion (BIC) 

[18]. This criterion is chosen because it penalizes larger models more heavily and will tend to 

select a smaller subset of descriptors in comparison to other criteria [19]. The best choice of 

descriptors will balance fit with model size. Subsequently, among these 10 000 best models, 

we sought to select the best molecular descriptors according to the highest probability of their 

occurrence.  

To verify a model’s predictive ability, the developed QSAR model is quantified using 

the coefficient of determination (R2
) [20], the adjusted coefficient of determination      

   

[21], and the fisher-statistics (F) [22]. This latter is computed to judge the overall significance 

of the regression model. The external predictive ability of the developed QSAR model is 

determined by computing the leave-one-out cross-validation coefficient      
   [22] and the 

predictive squared correlation coefficient     
   [23–25]. The external validation ensures the 

predictability of the developed QSAR model for the prediction of untested molecules [4]. 

2.4 Molecular docking protocol  

The electron microscopy structure of the human GABAA receptor α1β2γ2 subtypes in 

complex with GABA plus the DZP structures (PDB ID:6X3X, Resolution= 2.92 Å) was 

downloaded from RCSB Database (http://www.rcsb.org). The downloaded PDB file contains 

nine chains: five chains denote the subunits α1 (B and D), β2 (A and C), and γ2 (E), and four 

chains denote the Fab-chains (named from I to K). 

 MOE 2014.0901 software package (Molecular Operating Environment (MOE), 2014) 

was used to prepare the four benzodiazepine binding sites: the classical site at the ECD D
+
/E

-
 

chains interface and the three TMD sites at the A
+
/B

-
, C

+
/D

-
, and E

+
/A

-
 chains interfaces. For 

each binding site, all co-crystallized ligands and non-essential subunits were removed from 

http://www.rcsb.org/
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the α1β2γ2-DZP complex. Then, after structure correction, protonation at neutral medium 

(PH=7), and cavity detection, the native co-crystallized DZP structure was re-docked into the 

selected binding site pocket. The method was validated by giving the best binding pose 

which has a low RMSD value (root-mean-square deviation). 

The BDZ structures previously optimized using the DFT method were converted into 

database input files and docked one by one into the four DZP binding pockets using the semi-

flexible docking process of MOE 2014.0901 package [28]. During the process, the 

conformation of the receptor was fixed, while ligands remained flexible. Here, the best 

binding poses were selected according to the lowest energy score values, registered in the 

PDB file, and visualized using BIOVIA Discovery Studio visualizer v20.1.0.19295 package 

[27]. 

2.5 Molecular dynamics protocol 

The best-docked ligand/α1β2γ2 complexes were subjected to stability tests using 

molecular dynamics simulation (MD). MD simulation was implemented using the "compute" 

option included in the MOE 2014.0901 software [26]. First, the selected complexes were 

prepared by deleting the DZP co-crystallized structure, fixing hydrogens, and fixing charges. 

Afterwise, the parameters of the ''dynamics'' tool were adjusted to execute the combination 

Nosé-Poincaré-Andersen (NPA) algorithm/Merck molecular force field (MMFF94x) [28,29], 

with enabling bonding, van der Waals, electrostatics, and restraints. The protocols were 

settled for an equilibrium period of 100 ps followed by a production period of 900 ps, at a 

constant temperature of 310 K. Finally, the variations in potential energies U (Kcal/mol) as a 

function of time t (ps) are retained and plotted using Origin 6.0 software [32]. 

2.6 Pharmacokinetics/drug-likeness prediction 

In silico estimation of pharmacokinetic properties and prediction of drug-likeness 

were carried out by using the free web tool SwissADME [33]. Our study is based on the 

prediction of the following pharmacokinetic parameters: gastrointestinal absorption (GI), P-

glycoprotein (P-gp) substrate, blood brain barrier (BBB) penetration, and cytochrome enzyme 

(CYP) inhibition. Indeed, out of 57 human CYP450 enzymes the CYP1A2, CYP2C9, 

CYP2C19, CYP2D6, CYP3A4, and CYP2E1 metabolize 90 % of drugs [30]. In addition, the 

drug-likeness prediction is based on several rules such as:  Lipinski, Ghose, Veber, Egan, and 

Muegge. 
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3 Results and discussion 

3.1 Molecular docking simulation 

Orientations, interactions, and binding affinities of 65 positive allosteric modulators of 

GABAARs (BDZ dataset, Table IV.1) were investigated in four distinct BDZ binding sites: 

the classical site at the ECD   
 /  

  interface, the TMD sites at the two   
    /  

     and 

  
    /  

     interfaces and the TMD site at the   
 /  

  interface (Figure 11, chapter I). 

Residues involved in each active pocket were detected using the site finder wizard 

implemented in the MOE 2014.0901 [26] (Table IV.2).  

Table IV.2. Residues involved in each active pocket. 

Binding site Residues involved in active pockets 

ECD 

  
 /  

  interface 

(Classical Binding 

Site) 

1: (PHE100 PHE101 HIS102 ASN103 GLU138 PRO140 PRO154 

LYS156 SER159 TYR160 ALA161 VAL203 GLN204 SER205 SER206 

THR207 TYR210) 

2: (ASP56 MET57 TYR58 ASN60 SER61 ASP75 PHE77 ALA79 

MET130 THR142 ARG144 SER186 GLU189 ASP192 SER195) 

TMD 

  
    /  

     

interface 

1: (ILE255 VAL258 LEU259 MET261 THR262 ASN265 THR266 

ARG269 GLU270 ASP282 LEU285 MET286 PHE289 VAL290) 

2: (ILE228 GLN229 LEU232 PRO233 MET236 THR237 LEU240 

PHE258 THR261 THR262 THR265 LEU269 SER272) 

  
    /  

     

interface 

1: (MET261 THR262 ASN265 THR266 ARG269 ASP282 LEU285 

MET286 PHE289 VAL290) 

2: (VAL227 ILE228 LEU232 PRO233 MET236 THR237 THR265 

LEU269) 

  
 /  

  interface 

1: (TYR220 PHE221 LEU223 GLN224 THR225 MET227 PRO228 

LEU231 ILE232 THR263 ILE264 HIS267 LEU268 THR271 LEU272) 

2: (MET276 THR277 SER280 THR281 ALA283 ARG284 LYS285 

LYS289 MET296 ASP297 VAL300 SER301 PHE304 ILE305) 

During the docking process, the conformation of residues remains unchanged, while 

ligands are altered. The best binding modes of re-docked DZPs were selected based on the 

given root-mean-square deviation values (RMSD). Generally, docking protocols that are able 

to generate the same co-crystallized binding modes with an RMSD value of less than 1.5 or 2 

A° (depending on ligand size) or even better, less than 1 A° are considered validated [31,32]. 

Whereas, the best binding modes of docked ligands were selected according to the given 

Sscore values. The binding free energy score (Sscore) is a quantitative estimate of the most 

stable binding pose between the target macromolecule and ligand. Among the generated 

poses, the best ones are those with the most negative energy score values.     

The energy score values of the 65 ligands docked in the   
 /  

 ,   
    /  

    , 

  
    /  

    , and   
 /  

  interfaces are between (-8.013 and -6.046) Kcal/mol, (-7.409 and -
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5.566) Kcal/mol, (-7.455 and -5.463) Kcal/mol, and (-7.546 and -5.425) Kcal/mol, 

respectively (Appendix D). As it evident, the studied ligands have rather scattered affinities 

around the reference values: -7.003 Kcal/mol, -6.159 Kcal/mol, -6.261 Kcal/mol, and -6.347 

Kcal/mol, respectively.  

Surveying the first five ligands having the lowest energy scores (Table IV.3), the 

lowest Sscore value in the three   
 /  

 ,   
    /  

    , and   
 /  

  sites was assigned to Ro12-

6377. Also, Ro12-6377 exhibits the second-lowest Sscore value in the       
    /  

     

interface. Therefore, out of the 65 studied ligands, Ro12-6377 being the ligand that exhibited 

the highest predicted affinity towards the four sites, simultaneously. By similar reasoning, the 

second highest predicted affinity was rated to proflazepam. 

Table IV.3. The first five ligands having the highest binding affinity for the four binding 

interfaces. 

ECD   
 /  

  interface 
TMD   

    /  
     

interface 

TMD   
    /  

     

interface 

TMD   
 /  

  

interface 

Ligand Sscore Ligand Sscore Ligand Sscore Ligand Sscore 

Ro12-6377 -8,013 Ro12-6377 -7,409 Ro08-9013 -7,455 Ro12-6377 -7,546 

Meclonazepam -7,856 Proflazepam -7,170 Ro12-6377 -7,265 Ro08-9013 -7,070 

Methylclonazepam -7,831 Ro07-2750 -7,152 Proflazepam -7,077 Pinazepam -6,990 

Proflazepam -7,807 Pinazepam -7,146 Pinazepam -6,848 Proflazepam -6,972 

Ro11-6896 -7,785 Motrazepam -7,087 Meclonazepam -6,774 Ro07-2750 -6,918 

By comparing the affinities of Ro12-6377  toward the four sites, the   
 /  

  site was 

defined to be the principal target for Ro12-6377. So, when a high dose of Ro12-6377 is 

administered, it mainly acts to bind at the ECD   
 /  

  interface as it is the high-affinity 

binding site. Then, acts to bind at the TMD   
 /  

  and the two   
 /  

  interfaces as they are 

the second and third high-affinity binding sites, respectively. On the other hand, proflazepam 

tends to fill the two   
 /  

  interfaces before moving to occupy the   
 /  

  site. Recently, from 

a database of 7922 compounds, Proflazepam was selected among the top-100 docked ligands 

at the binding pocket of SARS-CoV-2 Main Protease crystallized in Holo-form [33]. 

Likewise, the affinities of the remaining 63 ligands (Appendix D) towards the four 

binding sites were compared. Unexpectedly, our results are inconsistent with previous 

findings indicating that the classical site is always the main target of all classical 

benzodiazepines. As we can see,   
    /  

     and   
 /  

  are expected to be, respectively, 

the main binding sites for (Ro05-4336, Ro07-2750, Ro05-3546) and (L51, Ro13-0699). 

Moreover, in some cases, both ECD and TMD sites share the same binding affinity towards 

the bound ligand, as is evident for Ro05-2921, Ro20-5397, Pinazepam, Ro07-4419, Ro05-
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3546, and Ro20-8552, which makes it difficult to distinguish, accurately, the main target for 

the binding. Consequently, after the discovery of the three TMD sites, it became necessary to 

expand previous findings indicating that the main target of classical benzodiazepines is 

always located at the ECD   
 /  

  interface.  

The binding modes of both ligands in each of the four binding interfaces are located at 

the same level as the co-crystallized DZP (Appendices E and F). However, their docking 

orientations are markedly not equivalents, with the exception of the binding orientation of 

proflazepam in the   
 /  

  interface where it shares an almost perfect superimposition to the 

DZP-bound structure (Appendix F (d)). The favorable drug binding pose is determined by the 

distribution of polar and non-polar regions along the surface of the ligand and its 

complementary target binding site. Thus, while the non-polar regions create hydrophobic 

interactions mainly contributing to the binding affinity of the drug toward the biological 

target, polar Regions create electrostatic points contributing to modulating the drug binding 

kinetics (specificity and orientation) [34]. In order to estimate all possible interactions, the 

docking-outputs generated by MOE software were converted into (.pdb) files and visualized 

with the default parameters of BIOVIA DS visualizer v20.1.0.19295 package [27]. As can be 

seen, the binding interactions for both ligands with the four target-sites residues exhibit the 

formation of four types of interactions, most of which are of type hydrogen bonds and 

hydrophobic interactions. The standard values of distances and energy cutoffs for considering 

the formation of hydrogen bonds with specific target residues are categorized into three sub-

types: strong bonds (2.2-2.5 Å, E: 14-40 kcal/mol), moderate bonds (2.5-3.2 Å, E: 4-15 

kcal/mol), and weak bonds (3.2-4.0 Å, E >4 kcal/mol) [35]. Generally, strong bonds in 

targeted-ligand interactions are undesirables as they mostly tend to have a covalent character. 

This latter, hinders the process of drug-liberation from its receptor, thus increasing the risk of 

drug toxicity. Nevertheless, new insights on how to address the pharmacological 

advantages/potential risks balance of covalent drugs have been emerged and discussed in the 

literature [36,37]. Referencing to this latter, several standard values of distance cutoffs to 

consider the formations of hydrophobic interactions have been found. C. Janiak [38] 

suggested that the optimum range is between 3.3 - 3.8 A°. While other researchers have 

suggested a relatively higher range [39–41]. 

Owing to the lack of previous experimental and theoretical studies on Ro12-6377 and 

proflazepam, we will attempt to suggest mechanisms for how they modulate α1β2γ2Rs 

signaling by binding at the ECD and the TMD interfaces, based on the results obtained from 

molecular docking and molecular dynamics simulation.  
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3.1.1 Allosteric modulation of the classical binding site  

The bulky structure of Ro12-6377, compared to DZP, enabled the NHCONHCH3 

group attached at C7 and both phenyls (B) and (C) to penetrate deeper into the binding site. 

Whereas, the diazepine ring exerts its effect by interacting with the residues located in front 

of the pocket (Figure IV.1 (a), Figure IV.2 (a), Table IV.4). The methyl group attached at N1 

forms two hydrophobic interactions type Alkyl-Alkyl and Pi-Alkyl with α1Val203 

and γ2Tyr58, respectively. Concurrently, the π-electron clouds of γ2Tyr58 and γ2Phe77 were 

involved in two Pi-Pi stacked interactions with the π-electron cloud of phenyl (B). The linear 

backbone skeleton of NHCONHCH3 group formed an Alkyl-Alkyl interaction with the side 

chain of γ2Ala79, received two moderate H-bonds from α1Ser206 side chain, and gave two 

moderate H-bonds to the main carbonyl of γ2Phe77. The four moderate H-bonds lead to the 

formation of two intermolecular pentameric rings that contribute to the stability of Ro12-

6377 at the binding site. Also, in addition to the strong H-donor bond received from 

α1His102, an intramolecular interaction was observed between the fluorine atom bound at C2' 

and C2. This interaction could be explained by the strong withdrawing property of the oxygen 

that made C2 a more electrophilic center able to receive the nucleophilic attacks. The pendant 

phenyl (C) is involved deeper into the DZP pocket where is delineated by the hydrophobic 

side chains of γ2Phe77, α1Phe100, α1His102, α1Ter160, and α1Ter210. Here, a hydrophobic 

interaction type Pi-Pi T-shaped was observed between the π-electron cloud of ring (C) and 

the surrounded side chain of α1Phe100. 
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Table IV.4. Detailed binding interactions resulting from the molecular docking of co-

crystallized DZP, Ro12-6377, and proflazepam (PLZ) at the classical site. 

ECD   
 /  

  interface 

Ligand 

Name 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To 

To 

chemistry 

Dist 
b
 

(A°) 

DZP 2 Hydrogen 

Bond 

Conventional 

H-Bond 

D:SER206:H H-Donor D:DZP404:O1 H-Acceptor 2,68 

4 D:DZP404:H151 D:SER205:OG 2,55 

2 C-H Bond D:SER205:HA D:DZP404:O1 2,65 

1 D:DZP404:H202 D:GLN204:O 2,94 

4 Hydrogen 

Bond; 

Electrostatic 

Pi-Cation; 

Pi-Donor H-

Bond 

D:DZP404:H152 Positive; 

H-Donor 

E:PHE77 Pi-Orbitals; 

Pi-Orbitals 

3,03 

Ring C Hydrophobic Pi-Pi Stacked D:TYR160 Pi-Orbitals D:DZP404 Pi-Orbitals 5,24 

D:TYR210 D:DZP404 4,22 

E:PHE77 D:DZP404 5,49 

Pi-Pi T-shaped D:PHE100 D:DZP404 5,36 

1 Alkyl D:DZP404:C20 Alkyl D:VAL203 Alkyl 5,21 

7 Pi-Alkyl D:HIS102 Pi-Orbitals D:DZP404:CL 4,32 

1 E:TYR58 D:DZP404:C20 4,37 

7 E:PHE77 D:DZP404:CL 5,12 

Ring B D:DZP404 D:VAL203 5,24 

Ro12-

6377 

7 Hydrogen 

Bond 

Conventional 

H-Bond 

D:SER206:HG H-Donor :*0:O H-Acceptor 2,57 

:*0:H E:PHE77:O 3,06 

2’ C-H Bond D:HIS102:HE1 :*0:F 2,47 

7 D:SER206:HB3 :*0:O 2,70 

:*0:H E:PHE77:O 2,98 

Internal 
c
 

Halogen Halogen 

(Fluorine) 

:*0:C Halogen 

Acceptor 

:*0:F Halogen 3,66 

Ring B Hydrophobic Pi-Pi Stacked E:TYR58 Pi-Orbitals :*0 Pi-Orbitals 3,93 

E:PHE77 :*0 5.00 

Ring C Pi-Pi T-shaped D:PHE100 :*0 5,23 

7 Alkyl E:ALA79 Alkyl :*0:C Alkyl 3,55 

1 :*0:C D:VAL203 4,55 

Pi-Alkyl E:TYR58 Pi-Orbitals :*0:C 4,88 

PLZ 1 Hydrogen 

Bond 

Conventional 

H-Bond 

D:THR207:HG1 H-Donor :*0:O H-Acceptor 2,10 

D:TYR210:HH :*0:O 2,85 

4 C-H Bond D:HIS102:HE1 :*0:N 2,57 

Ring B Hydrophobic Pi-Pi Stacked E:TYR58 Pi-Orbitals :*0 Pi-Orbitals 4,73 

E:PHE77 :*0 4,55 

7 Pi-Alkyl E:TYR58 :*0:CL Alkyl 3,43 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 
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 Figure IV.2. Binding modes resulting from the molecular docking of Ro12-6377 

and proflazepam at the interfaces of: a, ECD   
 /  

 . b, TMD   
    /  

    . c, TMD 

  
    /  

    , and d, TMD   
 /  

 . 

Figure IV.1. Binding interactions resulting from the molecular docking of 

Ro12-6377 at the interfaces of: a, ECD   
 /  

 . b, TMD   
    /  

    .c, 

TMD   
    /  

    , and d, TMD   
 /  

 . 
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Compared with Ro12-6377 and DZP, proflazepam penetrates less within the binding 

site (Figure IV.1 (a), Figure IV.3 (a), Table IV.4). Phenyl (C) is oriented outside the binding 

pocket, which explains the absence of any interaction on this pendant ring. Rings (A) and 

(B) seem to selectively accept rather than accept and donate bonds to the residues of 

subunits. The    subunit acts through three H-bonds; two are oriented from the hydroxyl 

groups at the side chains of Thr207 and Tyr210 toward the first hydroxyl group of the 

CH2CHOHCH2OH substitute, and one is oriented from the side chain of His102 toward N4. 

The γ2 subunit prefers to act hydrophobically through two types of interactions: Pi-Pi 

Stacked and Pi-Alkyl. The Pi-Pi Stacked is created between the π-electron cloud of phenyl 

(B) and the Tyr58 and Phe77 side chains, while the Pi-Alkyl interaction links the chlorine 

atom at C7 to the side chain of Tyr58.  

Figure IV.3. Binding interactions resulting from the molecular docking of proflazepam at 

the interfaces of: a, ECD   
 /  

 . b, TMD   
    /  

    . c, TMD   
    /  

    , and d, 

TMD   
 /  

 . 
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The binding modes of Ro12-6377 and proflazepam elucidated here agree with the 

previous finding indicating the importance of His102 in the recognition of classical 

benzodiazepines. With the exception of the His102Cys mutant in the α5 subunit, GABAARs 

that contain αHis102 mutation to any other residue suffer from total insensitivity to the DZP 

and its analogs [42]. The topological organization of the α4βγ2 and α6βγ2 receptors reveals the 

presence of a natural substitution of His102 by the Arg residue, which leads to steric 

problems affecting the binding of classical BDZ at their correspondent binding locus. This 

could explain the selectivity of classical BDZ towards αβγ2Rs containing the α1, α2, α3, and α5 

subunits rather than those containing the α4 and α6 subunits [43,44]. Else, the γ2Phe77Tyr 

mutant affects less the binding affinity of DZP but more strongly reduces that of its analogs 

containing the chlorine substitutes at the pendant phenyl (C). This finding was explained by 

the difference in flexibility between the two pendant phenyls since the presence of the 

chlorine atoms possibly caused unfavorable steric clashes with the side chain of the tyrosine 

residue. Furthermore, several other mutation findings were surveyed in detail in the previous 

researches [45–47]. 

3.1.2 Allosteric modulation of the three TMD binding sites   

Despite the common topological organization between the combinations β2(A)/α1(B) 

and β2(C)/α1(D), the two TMD orthosteric pockets inserted at    
       

     and   
     

  
     interfaces are not qualitatively identical and thus may not be functionally equivalent. 

The binding pocket at    
       

     interface was rated as the largest, and estimated to have 

a higher affinity for Ro12-6377 and Proflazepam than the binding pocket at   
     

  
     interface.  

The binding modes of Ro12-6377 for both TMD   
    

  interfaces are equivalents: the 

NHCONHCH3 groups and the fused benzodiazepine rings (A and B) are deeply embedded in 

the binding pockets. Whereas, the pendant phenyl rings (C) interact with the residues in front 

of the pockets (Figure IV.1 (b) and (c)). By superposing the binding modes, a rotation of 

98.8° was observed between the two poses of the phenyl rings (C) (Appendix G). The 

binding interactions at   
       

     interface exhibit the formation of halogen interaction 

between the bound fluorine atom at C2' and N1 (Table IV.6). This intramolecular interaction 

leads the fluorine to orient toward the principal chain of β2Met 286 where it stabilizes 

through the formation of a strong H-bond interaction (Figure IV.2 (c)). Consequently, leads 

the phenyl ring (C) to deviate by an angle of 98.8° from the phenyl plane observed at 

the    
       

     interface (Figure IV.2 (b)). At this latter, the binding interactions exhibit 
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the formation of additional electrostatic and hydrophobic interactions between the substitutes 

groups at N1 and C7 and the side chains of four residues from the β2 subunit: Val258, 

Leu285, Met286, and Phe289 (Table IV.5). 

Table IV.5. Detailed binding interactions resulting from the molecular docking of co-

crystallized DZP, Ro12-6377, and proflazepam (PLZ) at the TMD   
    /  

     interface. 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 

 

 

 

 

TMD   
    /  

     interface 

Ligand 

Name 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To 

To 

chemistry 

Dist 
b
 

(A°) 

DZP 1 Hydrogen 

Bond 

C-H Bond A:DZP406:H201 H-Donor B:ILE228:O H-Acceptor 2,93 

A:DZP406:H202 B:ILE228:O 2,89 

4 Electrostatic Pi-Cation A:DZP406:N15 Positive A:PHE289 Pi-Orbitals 4,22 

1 Hydrophobic Alkyl A:DZP406:C20 Alkyl A:MET286 Alkyl 4,50 

A:DZP406:C20 B:ILE228 4,46 

7 A:DZP406:CL A:MET261 4,42 

A:DZP406:CL A:LEU285 4,79 

Pi-Alkyl A:PHE289 Pi-Orbitals A:DZP406:CL 4,86 

Ring C A:DZP406 B:PRO233 4,28 

Ro12-

6377 

3 Hydrogen 

Bond 

C-H Bond :*0:H H-Donor B:ILE228:O H-Acceptor 2,78 

:*0:H B:ILE228:O 2,89 

1 :*0:H A:LEU285:O 3,04 

7 :*0:H B:THR237:OG1 2,51 

Ring B Hydrophobic Pi-Pi Stacked A:PHE289 Pi-Orbitals :*0 Pi-Orbitals 4,11 

1 Alkyl :*0:C Alkyl A:LEU285 Alkyl 4,64 

:*0:C A:MET286 5,39 

7 :*0:C A:VAL258 5,37 

:*0:C B:LEU240 5,04 

Pi-Alkyl A:PHE289 Pi-Orbitals :*0:C 5,30 

Ring B :*0 B:PRO233 4,65 

Ring C :*0 A:MET286 4,67 

:*0 B:LEU232 5,20 

:*0 B:MET236 4,66 

PLZ 1 Hydrogen 

Bond 

Conventional 

H-Bond 

A:ARG269:HH12 H-Donor :*0:O H-Acceptor 2,10 

:*0:H A:ASN265:OD1 1,97 

Internal 
c
 :*0:H :*0:O 2,44 

1 C-H Bond A:ARG269:HD3 :*0:O 2,72 

3 :*0:H A:LEU285:O 2,90 

7 Hydrophobic Alkyl :*0:CL Alkyl B:LEU232 Alkyl 4,20 

:*0:CL B:MET236 3,73 

Ring B Pi-Alkyl :*0 Pi-Orbitals A:MET286 4,91 

:*0 B:LEU232 5,42 

Ring C :*0 B:PRO233 4,28 
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Table IV.6. Detailed binding interactions resulting from the molecular docking of co-

crystallized DZP, Ro12-6377, and proflazepam (PLZ) at the TMD   
    /  

     interface. 

TMD   
    /  

     interface 

Ligand 

Name 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To 

To 

 chemistry 

Dist 
b
 

(A°) 

DZP 1 Hydrogen 

Bond 

C-H Bond C:DZP406:H201 H-Donor D:ILE228:O H-Acceptor 3,08 

C:DZP406:H202 D:ILE228:O 2,56 

4 Hydrogen 

Bond; 

Electrostatic 

Pi-Cation; 

Pi-Donor H-

Bond 

C:DZP406:H152 Positive; 

H-Donor 

C:PHE289 Pi-Orbitals; 

Pi-Orbitals 

2,65 

Ring C Hydrophobic Pi-Sigma D:PRO233:HB2 C-H C:DZP406 Pi-Orbitals 2,60 

1 Alkyl C:DZP406:C20 Alkyl C:MET286 Alkyl 4,68 

C:DZP406:C20 D:ILE228 4,76 

C:DZP406:C20 D:LEU232 4,82 

C:DZP406:C20 D:PRO233 4,46 

7 C:DZP406:CL C:MET261 4,61 

C:DZP406:CL C:LEU285 4,41 

Pi-Alkyl C:PHE289 Pi-Orbitals C:DZP406:CL 4,99 

Ring C C:DZP406 D:LEU269 5,50 

Ring B C:DZP406 C:MET286 5,39 

Ro12-

6377 

2’ Hydrogen 

Bond; 

Halogen 

C-H Bond; 

Halogen 

(Fluorine) 

C:MET286:HA H-Donor; 

Halogen 

Acceptor 

:*0:F H-Acceptor; 

Halogen 

2,19 

3 Hydrogen 

Bond 

C-H Bond :*0:H H-Donor D:ILE228:O H-Acceptor 2,95 

:*0:H D:ILE228:O 3,03 

7 :*0:H D:THR237:O

G1 

2,79 

Internal 
c
 Halogen Halogen 

(Fluorine) 

:*0:N Halogen 

Acceptor 

:*0:F Halogen 3,50 

Ring B Hydrophobic Pi-Pi Stacked C:PHE289 Pi-Orbitals :*0 Pi-Orbitals 4,14 

7 Alkyl :*0:C Alkyl D:LEU240 Alkyl 4,63 

Ring B Pi-Alkyl :*0 Pi-Orbitals D:PRO233 4,40 

Ring C :*0 C:MET286 4,54 

:*0 D:LEU232 4,94 

:*0 D:MET236 4,87 

PLZ 2’ Hydrogen 

Bond; 

Halogen 

Conventional 

H-Bond; 

Halogen 

(Fluorine) 

C:ASN265:HD21 H-Donor; 

Halogen 

Acceptor 

:*0:F H-Acceptor; 

Halogen 

2,46 

4 Hydrogen 

Bond 

Conventional 

H-Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 1,90 

1 :*0:H D:ILE228:O 2,25 

C-H Bond D:PRO233:HD3 :*0:O 2,58 

Internal 
c
 :*0:H :*0:F 2,53 

Internal 
c
 :*0:H :*0:O 3,07 

2’ Halogen Halogen 

(Fluorine) 

D:ILE228:O Halogen 

Acceptor 

:*0:F Halogen 3,38 

Ring B Hydrophobic Pi-Pi Stacked C:PHE289 Pi-Orbitals :*0 Pi-Orbitals 4,34 

Pi-Alkyl :*0 D:PRO233 Alkyl 4,46 

Ring C :*0 D:PRO233 4,52 

:*0 D:LEU269 5,19 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 

Unlike Ro12-6377, the binding modes of proflazepam for both TMD   
       

     

and   
       

     interfaces reveal significant differences in the docking orientations and 

binding interactions (Figure IV.1 (b) and (c)). At    
       

     interface (Figure IV.3 (b), 
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Table IV.5), the chlorobenzene ring (B) was oriented to interact hydrophobically with side 

chains of residues located in front of the pocket: β2Met286, α1Met236, and α1Leu232. The 

pendant phenyl ring (C) was embedded deeper into the binding pocket, in a manner similar to 

that observed in DZP, and shares Pi-Alkyl interaction at a distance of 4.28 A° with side chain 

of α1Pro233. The diazepine ring (A) established a moderate H-bond between one of the 

hydrogens of C3 and the main carbonyl of β2Leu 285. The CH2CHOHCH2OH group was 

oriented towards the ECD where its first hydroxyl group was stabilized by strong 

intramolecular interaction type H-Donor with lone pairs of the oxygen bond at C2, and with 

three intermolecular H-bonds formed with side chains of Arg269 and Asn265 of subunit β2. 

At    
       

     interface (Figure IV.3 (c), Table IV.6), the pendant phenyl (C) is located at 

a higher level than rings (A) and (B), with its fluorine atom pointing toward the front of the 

binding-site. This orientation drives the π-electron cloud into Pi-Alkyl interactions with side 

chains of Pro233 and Leu269 of subunit α1. As well as, driven the Lone pairs of the fluorine 

atom to form Halogen-Halogen interaction with the main oxygen of α1Ile228 and receive a 

strong H-bond from the side chain of β2Asn265. This latter also shares a strong H-bond with 

N4. Phenyl (B) is located between the side rings of β2Phe289 and α1Pro233, which 

contributes to the formation of two hydrophobic interactions types Pi-Pi Stacked and Pi-

Alkyl. Its chlorine atom is oriented towards the bottom of the binding pocket, more precisely, 

toward Thr265 of α1 subunit. Here, no interactions were observed. The CH2CHOHCH2OH 

group exerts its influence by occupying the front of the binding-pocket and sharing two H-

bonds with α1Ile228 and α1Pro233. The length of its backbone skeleton also leads to forming 

two additional intramolecular bonds with the oxygen atom at C2 and the fluorine at C2'. 

By examining the binding mode of Ro12-6377 at the   
 /  

  interface (Figure IV.1 (d), 

Figure IV.2 (d), Table IV.7), both the diazepine and phenyl (C) are positioned in front of the 

pocket. The methyl group attached at N1 forms two types of interactions. The first is a 

moderate H-Donor bond is given to the carbonyl of γ2Ser280. The seconds are three 

hydrophobic bonds type Alkyl-Alkyl formed with side chains of γ2Ala283, γ2Arg284, and 

γ2Val300. Simultaneously, γ2Asp297 established two hydrogen bonds with the diazepine ring 

(A); strong H-Donor has given to the oxygen attached at C2, and moderate H-acceptor bond 

received from C3. The Phenyl (C) involved in two hydrophobic interactions; type Pi-Pi T-

Shaped with side chain of γ2Phe304, and type Pi-Alkyl with the side chain of β2Pro228.  Its 

fluorine atom was oriented toward TM1:β2 subunit, which resulted in Halogen interaction 

with the lone pair of the oxygen situated in the main chain of Leu223, and in moderate H-

Acceptor bond forms with the side chain of Pro228. On the other hand, the phenyl (B) was 
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inserted deeper in the binding pocket as its π-electron cloud shared Pi-Alkyl interaction with 

side chain of β2Pro228. Its NHCONHCH3 group attached at C7 was pointed towards the 

TM2:β2 helix. In addition to the two Alkyl-Alkyl interactions shared with side chains of 

Pro228 and Ile264 of β2 subunit, the NHCONHCH3 group also received one moderate H-

bond from side chain of γ2Thr277 and simultaneously gave four moderate H-bonds, three of 

which to β2Gln224. Thus, leads to the formation of two intermolecular pentameric rings and 

one butameric ring contribute, as in the classical site, to the stability of Ro12-6377 at the 

binding site.  

Proflazepam adopted a similar binding mode of DZP in the binding locus (Appendix F 

(d)). The binding mode of DZP at the   
 /  

  interface was previously discussed in detail by J. 

J. Kim et al [7]. The uncommon binding interactions observed between the both modulators 

are related to the presence of two distinct binding groups on the structure of proflazepam: the 

fluorine atom at C2' and the long backbone skeleton of CH2CHOHCH2OH at N1. The phenyl 

(C) is placed in front of the pocket (Figure IV.1 (d), Figure IV.3 (d), Table IV.7), its π-

electron cloud establishes two interactions of types Pi-Pi T-shaped and Pi-Alkyl with side 

chains of γ2Phe304 and β2Leu231, respectively. Its fluorine atom points towards the TM1:β2 

subunit, where receives a moderate H-bond from the side chain of Pro228 and establishes 

Halogen interaction with the main oxygen of Leu223. The phenyl (B) binds at a higher level 

than rings (A) and (C), with its chlorine atom pointing towards the TM3:γ2 subunit. This 

orientation results in Pi-Alkyl interaction between the π-electron cloud and γ2Val300. Also, 

leads the chlorine to accept the moderate H-bond from γ2Arg284, forms halogen interaction 

with the side chain of γ2Asp297, and interacting hydrophobically with β2Leu223. The binding 

modes of the oxygen atom attached at C2 in the three   
 /  

 ,    
       

    , and   
     

  
     interfaces reflect the insensitivity of Ro12-6377 and proflazepam to participate in any 

interaction with the neighboring residues using this position. Otherwise, the   
 /  

  interface 

reflects the contribution of the oxygen atom at this position to enable the receptor 

potentiation by accepting, respectively, strong and moderate H-bonds from Asp297 and 

Thr277 of subunit γ2. The CH2CHOHCH2OH group penetrates deep into the binding site. Its 

pose and orientation towards the β2:A:TM2 helix are identical to that observed for the 

NHCONHCH3 group of Ro12-6377. The length of its backbone skeleton allowed it to 

simultaneously influence the γ2:TM2 helix and the β2:A:TM1 by forming six H-bonds with 

γ2:TM2:Ser280, γ2:TM2:Thr281, and β2:A:TM1:Gln224. 
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Table IV.7. Detailed binding interactions resulting from the molecular docking of co-

crystallized DZP, Ro12-6377, and proflazepam (PLZ) at the TMD   
 /  

  interface. 

TMD   
 /  

  interface 

Ligand 

Name 

Posit 
a
 category Type of 

interactions 

From From 

chemistry 

To To 

chemistry 

Dist 
b
 

(A°) 

DZP 3 Hydrogen 

Bond 

C-H Bond E:DZP403:H171 H-Donor E:SER280:OG H-Acceptor 2,77 

1 E:DZP403:H202 E:THR281:OG1 2,80 

Ring C Hydrophobic Pi-Pi  

T-shaped 

E:PHE304 Pi-Orbitals E:DZP403 Pi-Orbitals 5,81 

1 Alkyl E:DZP403:C20 Alkyl A:PRO228 Alkyl 4,25 

7 E:DZP403:CL A:LEU223 4,64 

E:DZP403:CL E:VAL300 4,38 

Ring B Pi-Alkyl E:DZP403 Pi-Orbitals E:VAL300 4,92 

Ro12-

6377 

7 Hydrogen 

Bond 

Conventional 

H-Bond 

:*0:H H-Donor A:GLN224:O H-Acceptor 2,43 

2’ C-H Bond A:PRO228:HD3 :*0:F 2,61 

7 E:THR277:HB :*0:O 2,73 

2 E:ASP297:HA :*0:O 2,28 

3 :*0:H E:ASP297:OD1 2,89 

1 :*0:H E:SER280:O 2,71 

7 :*0:H A:GLN224:O 2,97 

:*0:H E:THR281:OG1 2,78 

:*0:H A:GLN224:O 2,94 

2’ Halogen Halogen 

(Fluorine) 

A:LEU223:O Halogen 

Acceptor 

:*0:F Halogen 2,56 

Ring C Hydrophobic Pi-Pi T-

shaped 

E:PHE304 Pi-Orbitals :*0 Pi-Orbitals 5,40 

1 Alkyl E:ALA283 Alkyl :*0:C Alkyl 4,28 

:*0:C E:ARG284 3,96 

:*0:C E:VAL300 3,90 

7 :*0:C A:PRO228 4,75 

:*0:C A:ILE264 3,81 

Ring B Pi-Alkyl :*0 Pi-Orbitals A:PRO228 5,11 

Ring C :*0 A:PRO228 5,29 

PLZ 1 Hydrogen 

Bond 

Conventional 

H-Bond 

A:GLN224:HE21 H-Donor :*0:O H-Acceptor 2,32 

A:GLN224:HE22 :*0:O 2,59 

:*0:H E:THR281:OG1 1,92 

2’ C-H Bond A:PRO228:HD3 :*0:F 2,80 

2 E:THR277:HA :*0:O 2,79 

7 E:ARG284:HD3 :*0:CL 2,83 

1 :*0:H E:SER280:OG 2,74 

:*0:H A:GLN224:O 2,81 

:*0:H E:THR281:OG1 2,37 

7 Halogen Halogen (Cl, 

Br, I) 

E:ASP297:OD1 Halogen 

Acceptor 

:*0:CL Halogen 3,18 

2’ Halogen 

(Fluorine) 

A:LEU223:O :*0:F 2,90 

Ring C Hydrophobic Pi-Pi T-

shaped 

E:PHE304 Pi-Orbitals :*0 Pi-Orbitals 5,82 

7 Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,29 

Ring B Pi-Alkyl :*0 Pi-Orbitals E:VAL300 4,92 

Ring C :*0 A:LEU231 5,35 

1 Unfavorable Unfavorable 

Acceptor-

Acceptor 

A:GLN224:O H-Acceptor :*0:O H-Acceptor 2,83 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 
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The detailed mechanisms of interactions by which proflazepam modulates the two 

TMD   
       

     and    
       

     sites are appearing to be complementary to each 

other. As can be seen, the    
       

     interface has been predicted to specifically 

modulate by the first hydroxyl group of CH2CHOHCH2OH, C3, the chlorine atom at C7, and 

the π-electron clouds of both phenyls (B) and (C). Whereas, the    
       

     interface has 

been predicted to specifically modulate by the second hydroxyl group of CH2CHOHCH2OH, 

N4, the fluorine atom at C2', and the π-electron cloud of both phenyls (B) and (C). This 

selectivity in binding interactions between the two orthosteric binding sites allows us to 

hypothesize that they may be functionally in a complementary manner, as it previously 

observed for the two agonists (GABA) binding sites which do not yet know an explanation 

for why they are structurally identical and functionally not equivalent [43]. Furthermore, the 

bulky structure of proflazepam allowed it to directly induce influence on the pore-lining 

helices β2:A:TM2, β2:C:TM2, and α1:D:TM2  by creating H-bonds with β2:A:Arg269, 

β2:A:Asn265, β2:C:Asn265, and interacting hydrophobically with α1:D:Leu269. Likewise, 

three hydrophobic interactions with β2:A:TM2:Met261,  β2:C:TM2:Met261, and 

α1:D:TM2:Leu269 are observed for the DZP. Whereas, just one hydrophobic interaction with 

β2:A:TM2:Val258 is established for Ro12-6377. Evidently, rings (C) of both proflazepam and 

DZP adopt a similar hydrophobic interaction with α1:D:TM2:Leu269.  

Obviously, at   
 /    

 interface, the binding mode of Ro12-6377 is the most influential 

on pore-lining by sharing five interactions with the residues of γ2:TM2 helix and one 

interaction with β2:A:TM2 helix. Likewise, the binding mode of proflazepam is connected to 

the pore-lining by participating in five interactions with γ2:TM2 helix. Accordingly, both 

modulators exhibit common interactions with γ2:TM2 residues: Thr281, Thr277, Arg284, and 

Ser280. Otherwise, by examining the binding interactions of DZP, its structure predicted to 

enrich the skeleton of γ2:TM2 through two moderate H-bonds originating from the methyl 

group attached at N1 to Ser280 and from C3 to Thr281. These two interactions are identical 

between the three modulators. 

The feature of interacting with the residues of the TM2 helices is of great importance 

as it leads both Ro12-6377 and proflazepam to directly induce motions in the chloride-

channel lining. Thereby, possibly contributing to the expansion of its diameter by opening the 

9' gate by orienting the β2:C:Leu259 side chain towards one of the two adjacent α subunits. 

As mentioned earlier, this rotation is the main factor in the activation of the pLGICs family 

[7,48].  
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3.2 Molecular dynamics simulation 

MD simulation is used as a complementary tool to validate the docking results before 

they are approved in the drug-design process. MD simulation offers the peculiarity of treating 

biological systems as flexible entities. This flexibility allows for free integrations between the 

macromolecule binding site and the binding-ligand, resulting in binding modes (poses or 

interactions) that confirm or refute the results of molecular docking [49]. Or in some cases, 

may lead to the release of the ligand from the binding-site, and, this latter is an undesirable 

defect especially if the ligand shows the highest stability in the docking simulation [50]. 

For these reasons, Ro12-6377 and proflazepam in complex with the four binding 

interfaces were subjected to MD simulations using the settled parameters cited in the material 

and methods section. Their dynamic behaviors were investigated by evaluating the response 

of the potential energy U (Kcal/mol) over a time period of 1000 picoseconds (ps) (Figure 

IV.4).  

Figure IV.4. Evaluation the response of potential energy U (Kcal/mol) as function of time 

t(ps) for Ro12-6377 and proflazepam in complex with: a, ECD   
 /  

 . b, TMD 

  
    /  

    . c, TMD   
    /  

    , and d, TMD   
 /  

  interfaces. 



140 
 

 

During the first 500 ps of the simulation, the ECD   
 /  

  interface exhibits higher 

stability in complex with Ro12-6377 than in complex with proflazepam. Afterwise, from 500 

ps until the end of the simulation, both complexes tend to have equivalent stability (6270.7 

Kcal/mol for Ro12-6377 and 6226.86 Kcal/mol for proflazepam) (Figure IV.4 (a)). 

Moreover, within the three TMD binding interfaces, the two modulators exhibited stability 

equivalence throughout all the simulation periods (Figure IV.4 (b), (c), and (d)). 

Later, deep analyzes of binding modes, binding orientations, and binding interactions 

of Ro12-6377 and proflazepam within the four binding interfaces were performed and 

discussed between the two simulations. 

3.2.1 MD simulation analysis of the classical binding site  

At ECD   
 /  

  interface, the binding poses of Ro12-6377 are equivalents for the two 

simulations (Figure IV.5 (a), Figure IV.6 (a), and Table IV.8). However, significant 

differences between the two binding orientations were detected, notably in substitutes at C2, 

C5, and C7. The new binding orientation predicted for phenyl (C) is driving the C2' bound 

fluorine atom to move away from the diazepine ring (A), which leads to the disappearance of 

the intramolecular interaction formed with C2. All the H-bonds formed with α1Ser206, 

γ2Phe77, and α1His102 were vanished and replaced by H-bonds given from side chain of 

α1Lys156 to the oxygen atom at C2, and from the NHCONHCH3 group at C7 to both 

α1Tyr160 and γ2Asp56. Similarly, the hydrophobic interactions suggested with Phe100 and 

Val203 of α1 subunit were also replaced by hydrophobic interactions created between the π-

orbitals of Tyr160 and Tyr210 of the same subunit and the π-electron cloud of phenyl (C). In 

contrast, the hydrophobic interactions established with the subunit γ2 residues (Tyr58, Phe77, 

and Ala79) were preserved as the same. 
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Figure IV.6. Binding modes resulting from the molecular dynamics simulation 

of Ro12-6377 at the interfaces of: a, ECD   
 /  

 . b, TMD   
    /  

    . c, 

TMD   
    /  

    , and d, TMD   
 /  

  interfaces. 

Figure IV.5. Binding interactions resulting from the molecular dynamics 

simulation of Ro12-6377 at the interfaces of: a, ECD   
 /  

 . b, TMD 

  
    /  

    . c, TMD   
    /  

    , and d, TMD   
 /  

  interfaces. 
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Table IV.8. Detailed binding interactions resulting from the molecular dynamics simulation 

Ro12-6377 and proflazepam (PLZ) at the classical site. 

ECD   
 /  

  interface 

Ligand 

Name 

Posit 
a
 category Type of 

interactions 

From From 

chemistry 

To To chemistry Dist 
b
 

(A°) 

Ro12-

6377 

2 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

D:LYS156:HZ3 H-Donor :*0:O H-Acceptor 1,67 

7 :*0:H D:TYR160:OH 2,23 

:*0:H D:TYR160:OH 2,27 

C-H Bond :*0:H E:ASP56:OD1 2,63 

Ring C Hydrophobic Pi-Pi Stacked D:TYR160 Pi-Orbitals :*0 Pi-Orbitals 4,46 

Ring B E:TYR58 :*0 4,29 

Ring C Pi-Pi T-

shaped 

D:TYR210 :*0 5,39 

Ring B E:PHE77 :*0 4,68 

7 Alkyl E:ALA79 Alkyl :*0:C Alkyl 3,59 

1 Pi-Alkyl E:TYR58 Pi-Orbitals :*0:C Alkyl 4,47 

PLZ 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

D:LYS156:HZ2 H-Donor :*0:N H-Acceptor 1,57 

1 :*0:H D:SER159:O 1,79 

2’ C-H Bond D:LYS156:HE2 :*0:F 2,51 

Internal 
c
 :*0:H :*0:O 2,51 

Ring C Electrostatic Pi-Cation D:LYS156:NZ Positive :*0 Pi-Orbitals 4,25 

1 Hydrogen 

Bond 

Pi-Donor 

Hydrogen 

Bond 

:*0:H H-Donor D:TYR210 2,69 

Ring B Hydrophobic Pi-Alkyl :*0 Pi-Orbitals D:VAL203 Alkyl 4,72 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 

The binding modes of proflazepam are inconsistent in the binding poses for the two 

simulations. The adequate binding pose generated by MD simulation was placed less deeply 

within the binding-locus than that generated by molecular docking simulation (Figure IV.7 

(a)). Unlike molecular docking simulation, this binding-position emerged its structure to react 

as donor and acceptor with neighboring residues. The most notable differences in the binding 

orientations appear in the substitutes groups at N1, C5, and C7. By examining the binding-

interactions (Figure IV.8 (a) and Table IV.8), the moderate H-bond established between the 

first hydroxyl group of CH2CHOHCH2OH and the side chain of α1Tyr210 was preserved 

between the two simulations. Whereas, the remaining interactions were completely vanished 

and replaced by five interactions with the residues of the same subunit: side chain of Lys156 

gives two H-Donors to N4 and the fluorine atom bond at C2'. Also, involved in Pi-Cation 

interaction with the π-electron cloud of phenyl (C). The main chain of Ser159 receives one 

H-acceptor bond from the second hydroxyl group of CH2CHOHCH2OH. A moderate 

intramolecular H-bond was formed between the oxygen atom at C2 and the 

CH2CHOHCH2OH group. Finally, hydrophobic interaction type Pi-Alkyl was observed 

between the π-electron cloud of phenyl (B) and the side chain of Val203. 



143 
 

 Figure IV.8. Binding modes resulting from the molecular dynamics simulation 

of proflazepam at the interfaces of: a, ECD   
 /  

 . b, TMD   
    /  

    . c, 

TMD   
    /  

    , and d, TMD   
 /  

  interfaces. 

 

Figure IV.7. Binding interactions resulting from the molecular dynamics 

simulation of proflazepam at the interfaces of: a, ECD   
 /  

 . b, TMD 

  
    /  

    . c, TMD   
    /  

    , and d, TMD   
 /  

  interface. 
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3.2.2 MD simulation analysis of the three TMD binding sites  

The binding modes of Ro12-6377 for both TMD   
       

     and    
       

      

interfaces are consistent in docking-poses for the two simulations (Figure IV.5 (b) and (c)). 

However, notable differences were observed between the binding orientations of C5 and C7 

substitutes. The binding interactions at both interfaces exhibit the tendency of Ro12-6377 to 

enhance its interactions with the residues of β2 subunit relative to those established with 

subunit α1 (Figure IV.6 (b) and (c), Table IV.9, Table IV.10).  

Table IV.9. Detailed binding interactions resulting from the molecular dynamics simulation 

of Ro12-6377 and proflazepam (PLZ) at the TMD   
    /  

     interface. 

TMD    
    /  

     interface 

Ligand 

Name 

Posit 
a
 category Type of 

interactions 

From From 

chemistry 

       To To  

chemistry 

Dist 
b
 

(A°) 

Ro12-

6377 

7 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

:*0:H H-Donor B:MET236:O H-Acceptor 2,51 

:*0:H B:MET236:O 1,85 

1 C-H Bond :*0:H A:ASP282:O 2,79 

7 :*0:H B:THR237:OG1 3,06 

Ring C Other Pi-Sulfur B:MET236:SD Sulfur :*0 Pi-Orbitals 3,90 

Ring B Hydrophobic Pi-Pi Stacked A:PHE289 Pi-Orbitals :*0 4,62 

1 Alkyl :*0:C Alkyl A:LEU285 Alkyl 5,05 

:*0:C A:MET286 4,81 

7 :*0:C A:VAL258 5,23 

Ring C Pi-Alkyl :*0 Pi-Orbitals A:MET286 4,84 

PLZ Internal 
c
 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

:*0:H H-Donor :*0:O H-Acceptor 1,63 

1 :*0:H B:ILE228:O 1,85 

C-H Bond A:ARG269:HD2 :*0:O 2,82 

:*0:H A:ASN265:OD1 2,71 

Ring B Hydrophobic Pi-Pi Stacked A:PHE289 Pi-Orbitals :*0 Pi-Orbitals 4,73 

7 Alkyl :*0:CL Alkyl A:MET286 Alkyl 5,41 

:*0:CL B:LEU232 4,88 

:*0:CL B:PRO233 4,64 

:*0:CL B:MET236 4,14 

7 Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL 4,39 

Ring B :*0 B:PRO233 4,39 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 

Briefly, at the     
       

     interface, all interactions created with residues of 

subunit β2:A were preserved and stabilized by removing the moderate H-bond and the Pi-

Alkyl interaction linking, respectively, the substitutes at N1 and C7 with the side chains of 

Leu285 and Phe289, and, creating instead of them, new moderate H-bond oriented from the 

methyl group at N1 towards the main carbonyl group of Asp282. In contrast, only interactions 

with two residues from α1:B subunit (Met236 and Thr237) were preserved. The Pi-Alkyl 

interaction bond the side chain of Met236 to phenyl (C) was vanished and replaced with two 
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H-bonds oriented from C7 substitute towards the main carbonyl group, and Pi-Sulfur 

interaction given from the sulfur atom in the side chain to phenyl (C). At the     
       

     

interface, the binding interactions with Thr237, Leu240, and Leu232 of α1:D subunit were 

vanished and replaced by new interactions with residues from the β2:C subunit: Arg269, 

Leu285, and Val258. Side chains of both Leu285 and Val258 were, respectively, involved in 

Alkyl-Alkyl interactions with the substitutes at N1 and C7. While the side chain of Arg269 

established a strong H-bond with the oxygen atom at C2. Likewise, the intramolecular 

interaction observed between N1 and the fluorine atom at C2' also vanished and created, 

instead of it, additional interaction between this latter and the main carbonyl of Met286. At 

the α1:D subunit, Likewise to B:Met236, D:Met236 was replacing the Pi-Alkyl interaction 

connected its side chain to phenyl (C) by two moderate H-bonds and one Pi-Sulfur 

interaction. The two moderate H-bonds are oriented from the NHCONHCH3 group at C7 

toward the main carbonyl group, whereas the Pi-Sulfur interaction appears between the sulfur 

atom in the side chain and the phenyl (B). 

The binding modes of proflazepam for the TMD   
       

     interface are 

inconsistent in docking-poses for the two simulations (Figure IV.7 (b)). Accordingly, the 

differences between the two binding orientations were detected for the entire structure of 

proflazepam. The adequate binding pose resulting from the MD simulation was inserted more 

deeply into the binding-locus in such a way that the fused benzodiazepine rings and the 

substitute at N1 have facial alignment with the β2:TM3 helix. The binding interactions after 

the MD simulation (Figure IV.8 (b), and Table IV.9) suggested the lack of the two H-bonds 

established with β2Leu285 and β2Arg269, As well as, the three Pi-Alkyl interactions created 

with β2Met286, α1Leu232, and α1Pro233. Alternatively, α1Ile228, β2Phe289, α1Pro233, and 

β2Met286 were estimated to participate in six interactions with phenyl (B) and the substitutes 

at N1 and C7. The second hydroxyl group of CH2CHOHCH2OH gave a strong H-bond to the 

main carboxyl function of α1Ile228. The chlorine at C7 was involved in three hydrophobic 

interactions, two are of the Alkyl-Alkyl type created with side chains of β2Met286 and 

α1Pro233 and one is of the Pi-Alkyl type created with the Pi-orbitals of β2Phe289. Finally, the 

Pi-orbitals of phenyl (B) have participated through Pi-Pi stacked and Pi-Alkyl interactions 

with the side chains of β2Phe289 and α1Pro233, respectively. 
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Table IV.10. Detailed binding interactions resulting from the molecular dynamics simulation 

of Ro12-6377 and proflazepam (PLZ) at the TMD   
    /  

     interface. 

TMD   
    /  

     interface 

Ligand 

Name 

Posit 
a
 category Type of 

interactions 

From From 

chemistry 

   To To  

chemistry 

Dist 
b
 

(A°) 

Ro12-

6377 

2 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

C:ARG269:HH12 H-Donor :*0:O H-Acceptor 1,62 

7 :*0:H H-Donor D:MET236:O 2,55 

2’ Hydrogen 

Bond; 

Halogen 

C-H Bond; 

Halogen 

(Fluorine) 

C:MET286:HA H-Donor; 

Halogen 

Acceptor 

:*0:F H-Acceptor; 

Halogen 

2,53 

3 Hydrogen 

Bond 

C-H Bond :*0:H H-Donor D:ILE228:O H-Acceptor 3,03 

:*0:H D:ILE228:O 2,75 

7 :*0:H D:MET236:O 2,81 

2’ Halogen Halogen 

(Fluorine) 

C:MET286:O Halogen 

Acceptor 

:*0:F Halogen 3,32 

Ring B Other Pi-Sulfur D:MET236:SD Sulfur :*0 Pi-Orbitals 5,26 

Hydrophobic Pi-Pi Stacked C:PHE289 Pi-Orbitals :*0 4,95 

1 Alkyl :*0:C Alkyl C:LEU285 Alkyl 4,68 

:*0:C C:MET286 4,54 

7 :*0:C C:VAL258 4,89 

Ring B Pi-Alkyl :*0 Pi-Orbitals D:PRO233 4,88 

Ring C :*0 C:MET286 5,12 

PLZ 2 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

C:ASN265:HD22 H-Donor :*0:O H-Acceptor 2,20 

1 C:ARG269:HH12 :*0:O 1,42 

Internal 
c
 Hydrogen 

Bond; 

Halogen 

Conventional 

Hydrogen 

Bond;Halogen 

(Fluorine) 

:*0:H H-Donor; 

Halogen 

Acceptor 

:*0:F H-Acceptor; 

Halogen 

1,81 

1 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

:*0:H H-Donor D:ILE228:O H-Acceptor 1,65 

Internal 
c
 C-H Bond :*0:H H-Donor :*0:F 2,50 

Internal 
c
 Halogen Halogen 

(Fluorine) 

:*0:N Halogen 

Acceptor 

:*0:F Halogen 3,44 

Ring B Other Pi-Sulfur D:MET236:SD Sulfur :*0 Pi-Orbitals 5,49 

Hydrophobic Pi-Pi Stacked C:PHE289 Pi-Orbitals :*0 4,64 

7 Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,81 

:*0:CL D:MET236 5,26 

Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL 4,94 

Ring B :*0 D:PRO233 4,44 

Ring C :*0 D:PRO233 5,31 

:*0 D:LEU269 5,36 

a: position of interaction, b: distance of interaction, c: internal interaction, *0: ligand structure 

The binding modes of proflazepam for the TMD   
       

     interface are 

equivalents in the docking-poses for the two simulations (Figure IV.7 (c)). The most 

pronounced differences in the binding orientations have appeared for the substitutes groups at 

N1, C5, and C7. The molecular docking and MD simulations overlap in that the residues 

β2Asn265, β2Phe289, α1Ile228, α1Pro233, and α1Leu269 are essential parts of the    
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     modulation by proflazepam (Figure IV.8 (c), and Table IV.10). However, this does 

not necessarily mean that they have retained the same nature and orientation of their binding 

interactions shared with the proflazepam structure for both simulations, which is an 

observation common to all the binding sites studied in this paper. The binding pose after the 

MD simulation was stabilized by three intramolecular interactions orienting from the 

CH2CHOHCH2OH group and N1 towards the fluorine atom bond at C2'. The four 

hydrophobic interactions created for both phenyls (B) and (C) and the H-bond linked α1Ile 

228 to the CH2CHOHCH2OH group were preserved as the same. β2Asn265 was reduced the 

two H-bonds established with N4 and the fluorine atom at C2' to a single strong H-bond 

directed from its amide group towards the bound oxygen atom at C2. α1Ile228 loses the 

Halogen interaction established with the fluorine atom at C2' and conserves the H-bond 

accepted from the CH2CHOHCH2OH group. α1Pro233 tends to involve in hydrophobic 

interactions using its side chain. Thus, in addition to the two Pi-Alkyl interactions created 

with phenyl (B) and phenyl (C), it prefers to create an Alkyl-Alkyl interaction with the 

chlorine atom at C7 rather than the strong H-bond created with the substitute at N1. β2Phe289 

shows an additional hydrophobic interaction type Pi-Alkyl with the chlorine atom at C7. 

Finally, three interactions with two new residues were observed for phenyl (B) and the 

substitutes at N1 and C7. The second hydroxyl group of CH2CHOHCH2OH accepts a strong 

H-bond from the side chain of β2Arg269, and, both the π-electron cloud of phenyl (B) and the 

chlorine at C7 were formed, respectively, a Pi-Sulfur and Alkyl-Alkyl interactions with the 

side chain of α1Met236. 

At TMD   
 /  

  interface, the binding modes of Ro12-6377 show significant 

differences for the two simulations. The adequate binding mode generated by MD simulation 

was inserted more deeply into the binding-locus, so that phenyl (B) is positioned between 

β2:TM1 and γ2:TM2 helices and phenyl (C) has facial alignment with the β2:TM2 and γ2:TM3 

helices (Figure IV.5 (d)). MD simulation reduced the number of interactions suggested by 

molecular docking to less than half (Figure IV.6 (d) and Table IV.11). Else, suggested three 

interactions with γ2Lys285 and β2Leu268 instead of those established with β2Pro228, 

β2Leu223, γ2Thr277, γ2Thr281, γ2Phe304, and γ2Ala283. Both γ2Lys285 and β2Leu268 

interact with the substitution group at C7 through two H-bonds and one Alkyl-Alkyl 

interaction orienting, respectively, from their side chains towards the lone pairs of the oxygen 

atom and the methyl group. On the other hand, the number of interactions created with 

γ2Asp297 and β2Gln224 is reduced by the factor of one H-bond for each. In contrast, 

interactions with γ2Ser280, γ2Arg284, γ2Val300, and β2Ile264 residues are kept identical 

between the two simulations. 
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Table IV.11. Detailed binding interactions resulting from the molecular dynamics simulation 

of Ro12-6377 and proflazepam (PLZ) at the TMD   
 /  

  interface. 

TMD   
 /  

  interface 

Ligand 

Name 

Posit 
a
 category Type of 

interactions 

From From 

chemistry 

To To 

 chemistry 

Dist 
b
 

(A°) 

Ro12-

6377 

7 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

E:LYS285:HZ2 H-Donor :*0:O H-Acceptor 2,09 

:*0:H A:GLN224:O 2,94 

:*0:H A:GLN224:O 1,74 

C-H Bond E:LYS285:HE2 :*0:O 2,73 

2 E:ASP297:HA :*0:O 2,40 

1 :*0:H E:SER280:O 2,96 

Hydrophobic Alkyl :*0:C Alkyl E:ARG284 Alkyl 4,71 

:*0:C E:VAL300 4,13 

7 :*0:C A:ILE264 4,75 

:*0:C A:LEU268 4,66 

PLZ 1 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

:*0:H H-Donor E:THR281:OG1 H-Acceptor 1,81 

:*0:H A:GLN224:O 2,06 

C-H Bond :*0:H E:THR277:O 2,86 

:*0:H E:THR277:O 2,94 

:*0:H E:SER280:OG 2,51 

:*0:H E:THR281:OG1 2,60 

Ring C Other Pi-Sulfur A:MET227:SD Sulfur :*0 Pi-Orbitals 5,18 

7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,37 

:*0:CL E:VAL300 4,07 

Ring B Pi-Alkyl :*0 Pi-Orbitals E:VAL300 5,15 

a: position of interaction, b: distance of interaction, *0: ligand structure 

Unlike Ro12-6377, the binding modes of proflazepam for the TMD   
 /  

  interface 

are equivalents for the two simulations (Figure IV.7 (d)). However, notable differences in the 

binding orientations of the substitution groups at C5 and C7 have appeared. As previously 

noted for Ro12-6377, after MD simulation, the number of interactions was almost reduced to 

half ((Figure IV.8 (d) and Table IV.11). All the interactions established with β2Pro228, 

γ2Arg284, γ2Asp297, β2Leu231, and γ2Phe304 have vanished, and instead of them, Pi-Sulfur 

interaction was observed between the sulfur atom at β2Met227 side chain and the Pi-Orbitals 

of phenyl (C). The three H-bonds linked β2Gln224 to the CH2CHOHCH2OH group were 

reduced into one moderate H-acceptor bond oriented from the second hydroxyl group toward 

the main carbonyl group of β2Gln224. The Halogen interaction established between 

β2Leu223 and the fluorine at C2' vanished, and the H-bond connected C2 to γ2Thr277 was 

replaced by two moderate H-bonds given from the CH2CHOHCH2OH group to the main 

carbonyl group of the same residue. γ2Val300 involved in additional hydrophobic interaction 

type Alkyl-Alkyl with the chlorine atom at C7. Finally, interactions with γ2Thr281 and 

γ2Ser280 residues are kept identical between the two simulations. 
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Overall, the MD results do not agree with those observed in the molecular docking 

analysis that showed interactions with α1His102. As mentioned earlier, this residue ensures 

the recognition of classical BDZ by the ECD interface. The MD results coincided well with 

those noted in the molecular docking analysis that indicated the features of Ro12-6377 and 

proflazepam to directly connect the pore-lining residues. The bulky structure of Ro12-6377 

and proflazepam is the key factor in the deep penetration towards the TM2 helices. In 

particular, the long backbone skeleton of the NHCONHCH3 and CH2CHOHCH2OH groups; 

where most interactions with the TM2 helices have been observed. At TMD   
       

    , 

the MD simulation generated two interactions for Ro12-6377 with β2:C:TM2:Arg269 and 

β2:C:TM2:Val 258 residues. In addition, at TMD   
 /  

  interface, generated three interactions 

with β2:A:TM2:Leu268 and γ2:TM2:Lys285 instead of those previously observed with 

TM2:Thr277, TM2:Thr281, and TM2:Ala283 of subunit γ2. Likewise, at TMD   
       

     

interface, it suggested an additional interaction for the proflazepam with β2:C:TM2:Arg269, 

and at TMD    
 /  

  interface, suggested a lack of interactions with γ2:TM2:Arg 284. 

3.3 Pharmacokinetic and drug-likeness prediction 

As shown in Appendix H, all BDZ compounds are estimated to have high 

gastrointestinal absorption and nearly all are able to cross the blood–brain barrier. Almost all 

BDZ molecules are not affected by p-gp efflux pump. Besides, all tested compounds respect 

Lipinski, Veber, Egan, Ghose, and Muegge rules. 

Moreover, Ro12-6377 and proflazepam can successfully penetrate the blood–brain 

barrier. They are also estimated to be actively effluxes by P-glycoprotein transporter and to 

act as non-inhibitors towards CYP isoenzymes, except for CYP2D6 in proflazepam. 

Interestingly, these two compounds share one favourable characteristic in which they do not 

inhibit CYP2C19 and CYP3A4 enzymes that might be responsible for the hepatic clearance 

or the formation of active metabolites of BDZ. Indeed, it is well established that the BDZs 

are primarily metabolized via CYP2C19 and CYP3A4 and the inhibition of them can cause 

drug-drug interactions (DDIs) [51,52]. 

3.4 QSAR analysis 

The QSAR study was carried out on the BDZ data set previously investigated through 

molecular docking simulation (Table IV.1). The data set includes a total of 65 compounds 

that were used to generate the PLS regression model and evaluate its performance. Using 5-

fold cross-validation, we randomly split the 65 observations into two sets, a training set 

containing 52 of the data points, and a test set containing the remaining 13 observations. The 
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molecular descriptors are coded into the term of variables: x1=qN1, x2=qC3, x3=qN4, x4=qC6, 

x5=qC7, x6=qC8, x7=qC9, x8=qC2', x9=qC6', x10=πC7, x11=πC2', x12=HA, x13=HD, x14=DM, x15=Log 

(P), x16=MR, x17=FT. The numerical values are summarized in Appendix I. 

Table IV.12 reported the observed and predicted biological activities with the 

corresponding studentized deleted residual    
   and the leverage (hii) values of the training 

and test set compounds of a sample among the 10 000 simulations generated in this study. In 

this case, six outliers (marked in bold) were detected for the activity response. Four 

observations have   
  greater than the threshold |2| and three observations with large hii 

values. Consequently, the training and test sets were reduced to 47 and 12 observations, 

respectively. 

Table IV.12. Studentized deleted residual values (  
 ) and the leverage values (hii) of the 

training and test set compounds. 

Comp 

N° 

Yi norm Yhat   
  hii Comp 

N° 

Yi norm Yhat   
  hii 

Training set 

1 8.2954 8.1891 0.1713 0.2220 35 8.2954 8.5488 -0.4167 0.2493 

3 8.4000 9.1331 -1.1372 0.1352 36 9.2113 9.1223 0.1354 0.1266 

4 8.4393 9.7341 -2.0056 0.0804 37 9.1982 9.5757 -0.5616 0.0800 

6 9.3159 9.8727 -0.9261 0.2553 39 8.3346 8.8803 -0.8621 0.1764 

7 9.6430 9.2510 0.5873 0.0922 40 8.1253 8.9133 -1.2514 0.1698 

8 9.6823 10.0519 -0.5490 0.0775 43 8.9627 9.6633 -1.4642 0.5146 

9 9.7346 9.7370 -0.0036 0.1082 44 8.5309 9.4693 -1.5789 0.2455 

10 9.8393 9.5026 0.4970 0.0669 45 11.0692 10.9866 0.1345 0.2361 

11 9.9701 9.8377 0.1953 0.0698 47 10.6636 9.8739 1.2419 0.1540 

13 10.1271 9.7364 0.5867 0.0962 48 9.5645 10.1277 -0.8436 0.0843 

14 10.3234 10.4628 -0.2098 0.1072 49 10.1926 9.7383 0.6890 0.1121 

15 10.5851 9.9585 0.9361 0.0763 50 10.8206 8.6790 4.5068 0.3328 

16 10.8075 11.0797 -0.4154 0.1287 51 8.8580 9.5543 -1.0520 0.0922 

17 10.8206 10.0065 1.2313 0.0859 52 10.1010 10.2745 -0.2602 0.1000 

19 11.0561 10.9483 0.1691 0.1788 53 10.2711 9.9006 0.5519 0.0827 

20 11.3832 10.6639 1.0698 0.0625 54 11.0169 10.7783 0.3697 0.1553 

21 11.4356 11.6426 -0.3182 0.1425 55 8.4916 9.3474 -1.2840 0.0683 

22 11.4356 11.1475 0.4431 0.1420 56 8.9234 9.4633 -0.7967 0.0581 

23 11.5402 10.0976 2.2560 0.0778 58 10.1010 9.8097 0.4441 0.1263 

25 10.1664 10.7639 -1.0675 0.3503 59 9.3421 9.2794 0.0929 0.0785 

27 10.5066 10.2804 0.3321 0.0600 60 8.5309 9.3314 -1.2208 0.1014 

29 10.9776 10.8453 0.2004 0.1183 61 9.6823 9.8128 -0.1930 0.0745 

30 11.1477 11.5546 -0.6271 0.1413 62 11.0430 10.4101 0.9384 0.0621 

31 10.6636 11.4656 -1.2521 0.1410 63 10.2711 10.0263 0.3632 0.0791 

32 10.4542 9.7895 1.0285 0.1353 64 9.7215 9.7755 -0.0789 0.0547 

33 11.3309 9.9877 2.2297 0.1836 65 9.5253 9.8470 -0.4706 0.0503 
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Table IV.12. Continued 

 

Test set 

2 8.5167 8.6018 -1.2800 0.3654 34 9.5531 9.1409 0.3076 0.3440 

5 9.3272 8.8671 0.5421 0.3889 38 9.2475 9.0331 -0.5152 0.9222 

12 10.2041 10.2062 -0.3840 0.5716 41 10.1111 10.3151 -2.3002 0.4636 

18 11.1873 9.7623 1.8961 0.5383 42 9.7922 9.4752 0.8742 0.8557 

24 11.0146 10.1997 0.7054 0.3238 46 11.8516 12.0887 -1.4227 0.9560 

26 10.8020 10.4640 -0.1934 0.2681 57 10.0314 10.2422 -0.7454 0.4415 

28 11.6789 10.8360 1.6756 0.5610  

Figures IV.9 and IV.10 show the results of the 10 000 simulations obtained for the 

selected biological activity. According to Figure IV.9, the best subsets of variables are those 

with the highest probability of occurrence according to the BIC criterion. As a result, the best 

subset of variables to select is that containing six variables. The intercept is systematically 

included whatever the model. The next step is determining the variables retained in the 

subset. According to Figure IV.10, it appears that the six best variables are x3, x11, x14, x10, 

x15, and x16. This ranking order is a function of their probability of occurrence. By combining 

the results of Figures IV.9 and IV.10, the best variable subset contains: qN4, πC2', DM, πC7, log 

(P), and MR (Table IV.13). 

 
 

Figure IV.9. Box plots of the distribution of the Bayesian Information Criterion (BIC) by 

number of molecular descriptors. 
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Figure IV.10. Probability of occurrence of selected molecular descriptors. 

 

Figure IV.11 depict the plots of the internal indicators R2
,     

 , and F-statistics versus 

their Probabilities of occurrence derived for the 10 000 training sets. The plots show a 

bimodal distribution that is symmetrically distributed around two mean values. The mean 

value with the highest probability is picked in those plots based on where the majority of the 

variables tend to be distributed. Figure IV.12 depict the plots of the external indicators     
  

and    
  versus their Probabilities of occurrence derived for the 10 000 test sets. The plots of 

         
 and       

  demonstrate a monomodal distribution that is symmetrically distributed 

around its mean. To estimate the      
 and    

  coefficients, the mean values with the greatest 

probability are used. 
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Table IV.13. The optimal variables to generate the PLS model. 

 

 

 

 

 

Comp N° qN4 π7 π2' MD (debye) Log P MR Comp N° qN4 π7 π2' MD (debye) Log P MR 

1 -0,608 -1,230 0,000 6,301 1,643 79,708 34 -0,665 -1,230 0,140 6,893 1,786 79,924 

2 -0,618 -1,230 0,000 6,583 1,779 76,592 35 -0,655 -1,030 0,140 4,302 1,743 93,660 

3 -0,590 -0,570 0,000 2,121 2,328 80,729 36 -0,573 0,710 0,000 4,083 4,031 85,262 

4 -0,620 0,000 0,000 5,061 2,608 71,891 37 -0,607 0,710 0,000 3,104 3,304 87,392 

5 -0,655 -1,340 0,140 6,721 2,123 82,211 38 -0,584 0,710 0,000 3,049 3,857 91,754 

6 -0,698 -1,230 0,710 6,791 2,383 81,396 39 -0,569 -0,280 0,000 1,785 2,475 87,181 

7 -0,620 -0,650 0,000 3,137 2,320 78,475 40 -0,587 0,710 0,000 3,222 4,130 93,618 

8 -0,613 0,140 0,000 3,369 2,751 72,108 41 -0,642 0,710 0,140 3,078 2,529 86,321 

9 -0,619 1,020 0,000 5,662 3,566 81,533 42 -0,640 0,710 0,140 5,437 1,843 98,979 

10 -0,634 -0,570 0,140 3,218 2,471 80,945 43 -0,634 0,710 0,140 5,140 1,898 92,283 

11 -0,631 0,820 0,000 4,936 3,345 81,578 44 -0,657 -0,280 0,710 4,125 4,070 99,938 

12 -0,657 0,000 0,140 5,752 2,751 72,108 45 -0,736 0,710 0,140 3,539 3,923 81,406 

13 -0,670 -0,550 0,140 3,274 2,308 82,510 46 -0,766 -0,280 0,710 2,404 3,721 87,510 

14 -0,614 0,880 0,000 1,909 3,486 77,865 47 -0,698 -0,280 0,140 3,063 3,123 86,038 

15 -0,601 0,710 0,000 3,228 3,076 79,812 48 -0,660 0,710 0,000 2,958 3,645 84,306 

16 -0,679 0,710 0,710 3,462 4,284 89,421 49 -0,609 0,710 0,000 4,751 2,787 81,010 

17 -0,659 0,460 0,140 4,057 4,085 82,395 50 -0,541 0,710 0,140 6,653 4,124 84,764 

18 -0,622 -0,280 0,140 3,209 2,555 81,544 51 -0,647 0,560 0,000 5,677 3,635 81,974 

19 -0,673 -0,280 0,880 3,692 3,426 84,185 52 -0,674 0,000 0,140 5,429 2,893 72,324 

20 -0,665 0,710 0,140 4,140 3,355 76,912 53 -0,648 0,000 0,140 5,768 2,615 75,224 

21 -0,696 0,710 0,710 3,938 3,816 81,501 54 -0,666 0,000 0,710 5,557 3,076 79,812 

22 -0,696 -0,280 0,710 2,488 3,152 83,016 55 -0,605 0,000 0,000 4,500 3,212 76,696 

23 -0,649 -0,280 0,140 2,378 2,691 78,428 56 -0,635 0,000 0,140 5,583 3,219 80,028 

24 -0,637 0,140 0,140 4,373 2,757 75,440 57 -0,684 0,000 0,140 4,474 3,497 77,129 

25 -0,597 0,140 0,000 3,338 2,615 57,224 58 -0,676 0,000 0,140 6,296 3,264 77,149 

26 -0,654 0,140 0,140 4,242 2,893 72,324 59 -0,620 0,000 0,140 5,954 3,219 80,028 

27 -0,624 0,710 0,000 3,257 3,212 76,696 60 -0,632 0,000 0,140 4,116 3,823 84,833 

28 -0,689 0,710 0,140 3,645 3,497 77,129 61 -0,611 0,710 0,000 2,420 3,680 84,617 

29 -0,700 0,710 0,140 3,646 3,361 80,245 62 -0,662 0,710 0,140 3,363 3,959 81,717 

30 -0,681 0,710 0,710 3,557 3,959 81,717 63 -0,668 0,560 0,140 5,148 3,868 81,954 

31 -0,710 0,710 0,710 3,486 4,420 86,306 64 -0,614 0,710 0,000 3,589 3,816 81,501 

32 -0,615 -0,280 0,000 1,381 2,548 78,212 65 -0,617 0,710 0,000 3,336 3,725 81,737 

33 -0,663 -0,280 0,710 3,365 3,016 97,151        
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Figure IV.11. Distribution of 10
4
R

2
,        

 , and 10
4
Fstatistics as function of their probability 

of occurrences. 

Figure IV.12. Distribution of       
 and        

  as function of their probability of 

occurrences. 

In order to highlight the weight of each molecular descriptor, the     regression 

models are written with scaled variables. The standardized regression coefficient value of 

each descriptor highlights the relative importance of the descriptors in determination of 

biological activity of the compounds. 
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The final QSAR model with 95% confidence interval of the regression coefficient is: 

            
                 

         
 

          
          

 

          
          

 

          
          

 

          
          

 

          
          

 

 

Where            ⁄
   

  ⁄  and          
⁄ . sy: The standard deviation corresponding to 

the biological response. sxj: The standard deviation corresponding to the jth descriptor. 

Table IV.14 summarizes the statistical indicators used for internal and external 

validation. According to the goodness of fit statistics, 63.2% of the variability in BDZ 

activity around its mean is explained by the PLS regression equation. The quality of models 

can be judged and compared based on the     
  values. The F-statistics reveal the significance 

of the PLS regression equations. The obtained p-value shows that the model is statistically 

highly significant at 95%. Moreover, it is well known that cross validation is useful for 

overcoming the problem of overfitting [22]. This problem refers to a situation when the 

model requires more information than the data can provide. Indeed, in our case the difference 

between R
2
 and     

  is much less than the threshold of 0.30, confirming that the     

regression models are not overfitted. Additionally, our model exhibits a high value of    
  

(0.813). This result confirms that the resulting QSAR model has good external predictability 

and robustness. 

Table IV.14. Quality and validation metrics. 

Model 
Goodness of fit Goodness of prediction 

R
2
     

  F pvalue      
      

  

Y (ntr=52 ; nts=13) 0.632 0.584 12.806 6.2050e-07 0.639 0.813 
ntr is the training set used for building the PLS regression equation and nts is the test set used to verify a model’s 

predictive ability for new untested molecules. 

Molecular descriptors with positive regression coefficients indicate positive 

correlations with observed activity. Therefore, their increase will improve the GABAA/BDZ 

response. Our model demonstrates a positive contribution from the hydrophobic constants of 

the substitutes at C7 and C2'. As well as, demonstrates a negative contribution from molecular 

lipophilicity (log (P)), molecular polarity (DM), molecular size (MR), and net charge of N4 

(qN4 ). 

According to the standardized regression coefficient values, the hydrophobicity in 

positions 7 and 2’ are the main properties for determining the biological activities of the 

studied compounds. This result is in good agreement with previous reports that the 7 and 2’ 

positions are, respectively, the first and second key positions in the BDZ structures to 
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influence binding with GABAARs [5]. Otherwise, the lipophilic behavior shows the least 

effect on activity. Molecular lipophilicity is directly influenced by both molecular 

hydrophobicity and polarity [53]. In our case, the positive effects of hydrophobicity at 

positions 7 and 2’ on the observed activity seem to be two times more significant than the 

negative effect of molecular polarity. The lipophilic feature plays a pivotal role in 

understanding the pharmacokinetics parameters, pharmacodynamics, and toxicological 

profile of drugs. Besides, exhibits an important influence on host-guest interaction and drug 

binding affinity [34]. BDZ derivatives are relatively weak bases with highly lipophilic 

characters. At physiological pH, this lipophilicity explains their strong binding to plasma 

proteins (70-99%) as well as their high penetration through the blood-brain barrier [54]. 

N4 net charge and molar refractivity exhibit about twice the negative influence of 

molecular lipophilicity on activity. Reducing the negative charge of N4 is important to avoid 

the formation of water-unstable BDZ salts. The imine group (N4) is the most basic nitrogen in 

the classical BDZ structure. Since the amide group at positions 1 and 2 has a non-basic 

character, the lone pair of N4 can easily protonate when placed in a strongly acidic 

environment. Thus, it leads to the formation of BDZ salts (iminium ion). Unfortunately, the 

salts of strong acids are unstable in an aqueous medium and are therefore undergoing 

sequential hydrolysis of the imine and amide groups, respectively. The imine hydrolysis 

reaction is reversible. In contrast, hydrolysis of amide leads to the formation of inactive 

products. Consequently, eliminate activity towards GABAA receptors [55]. Most of the 

classical BDZ agents we study here provide unstable salts and are relatively water-insoluble 

than drugs formed from heterocyclic BDZs. In the latter, the amide group is protected in the 

form of heterocyclic groups such as ImidazoBDZs, TriazoloBDZs, etc. Hence, hydrolysis of 

the amide does not occur and the reaction does not lead to inactive products. To improve the 

solubility of classical BDZ salts in water-soluble injections, in addition to water, it is 

necessary to use co-solvents such as PEG 400, propylene glycol, 10% ethyl alcohol, 2% 

benzyl alcohol, etc [56].  

Our results support those of D.J. Maddalena and S. S. So [5,6] by asserting that 

increased the hydrophobicity at position 7 is necessary to obtain highly potent BDZ 

analogues. Besides, it provides complementary insights on how hydrophobicity at C2’ 

position, the net charge of N4, and molar refractivity, polarity, and lipophilicity of the entire 

molecules would be ameliorated to achieve the optimal activity. In particular, the challenge is 

to provide structures meeting simultaneously the requirements of low lipophilicity/low 

polarity, since they are naturally anti-correlated. Here, our model suggests that the influence 
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of molecular polarity on activity outweighs that of molecular lipophilicity by 7%. 

Accordingly, efforts should be devoted primarily to reducing molecular polarity rather than 

molecular lipophilicity. 

After excluding outliers, a comprehensive analysis of the detailed binding interactions 

with the four binding interfaces was performed for the training and test data sets.  

Subsequently, the hydrophobic interactions with C7 and C2' substitutes and the electrostatic 

interactions with N4 were selected and collected in Appendices J, K, L, and M. As can be 

seen, the richness of the C7 position by hydrophobic interactions is attributed in most cases to 

the presence of chlorine atoms that exhibited Alkyl-Alkyl or Pi-Alkyl interactions with 

neighboring residues. Significantly, the response of chlorine to establish hydrophobic 

interactions with the four binding interfaces is different between ECD and TMD. At ECD 

  
 /  

  interface, it tends to act as an acceptor of interactions, while at the three TMD 

interfaces it acts as a generator of interactions. C2' position shows a total lack of hydrophobic 

interactions with the four binding interfaces, except for the case of the CF3 group in Ro05-

3590 and the chlorine atom in Ro05-4608. This deficiency maybe because most of the 

compounds of our data set contains small substituents (H and F) which mainly tend to 

interact electrostatically rather than hydrophobically. The N4 atom tends to react as a 

hydrogen-acceptor from neighboring residues. Importantly, in the ECD   
 /  

  interface, all 

interactions observed for N4 are received from α1His 102 side chain. As reported previously 

in the molecular docking section, this residue is known to be important in the recognition of 

classical BDZ. This result does not correlate with previous analyses that support cationic 

interactions at this position [57]. 
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4 Conclusion 

In this investigation, a combination of in silico approaches including molecular 

docking/dynamic simulations, and QSAR analysis have been performed to achieve two 

purposes: elucidate the binding mechanism by which a dataset of [
3
H]diazepam derivatives 

allosterically modulates GABAA receptor α1β2γ2 subtypes and identify the structural details 

that contribute to ameliorate the α1β2γ2/BDZ response. Examination of binding affinities 

revealed that the known ECD is the target for the majority of classical benzodiazepines. 

However, the tendency of the remainder to bind mainly on the binding interfaces included in 

TMD, or in some cases, to act on both ECD and TMD binding sites simultaneously, cannot 

be overlooked. This result opens the way for further studies that may combine binding in 

these binding sites with diversity in the activities of benzodiazepines. Binding affinities-

based screening identified Ro12-6377 and proflazepam as the best modulators for the four 

binding interfaces. By monitoring the dynamic behaviors over a time period of 1000 ps, the 

two modulators were observed to have equivalent stability within the four binding sites under 

study. Binding modes after MD simulation were altered from the structures generated by 

molecular docking. Thus, several differences in the binding interactions with key residues 

were detected between the two simulations. Importantly, interactions with pore-lining 

residues have been suggested for both modulators. The combination of ADME 

prediction/Drug-likeness prediction shows their good pharmacokinetic properties as well as 

their compliance with all drug-likeness rules. Furthermore, the developed QSAR model 

yielded satisfactory statistical results that explain 63.2% of the variability in benzodiazepine 

activity. Its stability and predictive power were ensured based on internal and external 

validation indicators:     
 =0.584, F=12.806; Pvalue=6.2050e-07,     

 =0.639, and    
 =0.813. 

The model equation demonstrates a positive contribution from the hydrophobicity of the 

substitutes at C7 and C2'. As well as, demonstrates a negative contribution from molecular 

lipophilicity, molecular polarity, molecular size, and net charge of N4. The model results 

agree well with previous findings indicating that the increase in hydrophobicity at 7-position 

mainly contributes to the enhancement of BDZ activity. Finally, the combination of the 

results of both methods: QSAR and molecular docking show that the hydrophobic 

interactions at the 7-position are mostly attributed to the substitutions of chlorine atoms. The 

latter tends to act as an acceptor of interactions in the ECD binding interfaces and as a 

generator of interactions in the three TMD binding interfaces. 
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GENERAL CONCLUSION 

As part of this dissertation work, we carried out two investigations whose findings 

contribute to a better understanding of the general chemistry of benzodiazepines and how they 

act to treat psychiatric and neurological pathologies.  

Our research provided, first, an original investigation into the chemistry of six 

benzodiazepine basic rings. The data reported here provide chemists with a knowledge base 

of the structural parameters, electronic properties, as well as global, local, and long-range 

reactive behaviors that they need to know for modifying these six basic rings through 

adding/removing substituents. This contributes to ameliorating the structures of 

benzodiazepine drugs while regulating their main therapeutic actions or assisting to 

manufacture new derivatives with various therapeutic applications. Computation of global 

reactivity indices, including electronegativity, global hardness, global softness, 

electrophilicity, and nucleophilicity allowed us to describe and classify the global reactivities 

of considered rings. Also, statistical testing identified the density-based method Hirshfeld as 

the most efficient population scheme for estimating net atomic charges. As recognized, 

Hirshfeld ensures producing non-negative condensed Fukui functions. Accordingly, the dual 

descriptor 3D-mapped surfaces clearly illustrate the selectivity of local sites against attack by 

nucleophilic and electrophilic reactants. Indeed, the delocalization of nitrogen atoms along 

diazepine rings leads to significant differences in local reactivities and this may account for 

the substantial structural diversity of the benzodiazepine family. On the other hand, 

elucidating how these basic structures respond to distant reactants is crucial to acquainting all 

aspects of the reactivity. The repulsive and attractive electrostatic interactions are long-range 

in comparison to the charge-transfer effects characterized by the Fukui functions and the 

derived reactivity indices. To this end, a quantitative MEP analysis was performed to predict 

long-range intermolecular interactions. The ESP-mapped vdW surfaces illustrate well 

electron-deficient and electron-rich sites, thus demonstrating significant differences in the 

responses of local sites to long-distance nucleophilic and electrophilic attacks. Furthermore, 

molecular docking simulation permits incorporating the basic structures into a biological 

environment, and to follow the interactions between their atoms and the various types of 

residues. These latter act as electrophiles and nucleophiles. Therefore, docking can confirm 

MEP results, also offering accurate data on binding modes, binding interactions, and binding 

affinities with the four target sites. It is crucial to emphasize that although the binding 

affinities of all the structures under study are convergent, the binding modes show noticeable 

distinctions. 
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The second investigation falls within the framework of researches aimed at elucidating 

the binding mechanism by which a dataset of [
3
H]diazepam derivatives allosterically 

modulates GABAA receptor α1β2γ2 subtypes, as well as, developing a robust predictive model 

that incorporates the most relevant structural requirements that contribute in improving the 

response of GABAA/α1β2γ2 to benzodiazepines. This model can be used to predict the 

biological response of new derivatives or existing derivatives with an unknown biological 

response. Even after the discovery of the three TMD-binding interfaces, the well-known 

ECD-binding interface remains the main target for most of our benzodiazepines dataset, 

nevertheless, the orientation of certain derivatives to modulate first the TMD-incorporated 

binding interfaces cannot be overlooked. According to the bibliographic research, these 

derivatives have not been the subject of previous activity investigations, and this finding may 

stimulate future researches into their physiological actions. Moreover, the binding affinities-

based screening selected Ro12-6377 and proflazepam as the best modulators for all four 

binding interfaces, simultaneously. The best binding modes and binding interactions with key 

residues were thoroughly discussed and compared with: native diazepam, among themselves, 

and outcomes from the literature. Importantly, molecular docking/dynamic simulations 

exhibit the ability of both modulators to establish interactions with TM2 helices residues, 

thereby inducing direct motions in the chloride-channel lining. This observation leads to 

hypothesize that the two modulators probably contribute to orienting the β2:C:Leu259 side 

chain towards one of the two adjacent α-subunits; this rotation is critical for opening the 9' 

gate and expanding the diameter of the ion channel, thereby activating the pLGICs family. 

Certainly, this hypothesis remains to be confirmed experimentally. Also, the good 

pharmacokinetic properties (ADME prediction) and compliance with all drug-likeness rules 

were checked via in silico tools for all the dataset compounds. The improved PLS regression 

yielded a robust QSAR model explaining 63.2% of the variability in benzodiazepine activity. 

Its stability and predictive power were ensured based on internal and external validation 

indicators:     
 =0.584, F=12.806; Pvalue=6.2050e-07,     

 =0.639, and    
 =0.813. As a final 

result of QSAR analysis, an increase in hydrophobicity at C7 and C2' and a decrease in 

molecular lipophilicity, molecular polarity, molecular size, and net charge of N4 contribute to 

the enhancement of benzodiazepine activity. Briefly, a comprehensive interpretation was 

given based on the incorporation of findings from the literature and molecular 

docking/dynamic simulations.  
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Appendix A. Mullikan, NPA, ChelpG, and Hirshfeld Partial Charges used in the statistical 

test. 
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G (d,p) 

Mullikan NPA 

1 N -0.398 -0.367 -0.228 0.004 -0.188 -0.027 -0.448 -0.461 -0.462 -0.472 -0.462 -0.470 

2 C 0.045 0.029 0.026 -0.003 0.054 0.059 0.100 0.157 0.126 0.174 0.131 0.175 

3 C -0.226 -0.375 -0.407 -0.637 -0.205 -0.426 -0.395 -0.297 -0.381 -0.290 -0.365 -0.294 

4 N -0.350 -0.303 -0.189 -0.015 -0.186 -0.103 -0.437 -0.440 -0.460 -0.459 -0.456 -0.456 

5 C -0.041 -0.004 -0.349 -0.690 -0.495 -0.506 0.056 0.103 0.088 0.128 0.091 0.126 

6 C -0.181 -0.160 -0.781 -0.438 -0.212 -0.267 -0.207 -0.169 -0.201 -0.165 -0.198 -0.165 

7 C -0.131 -0.166 -0.048 -0.220 -0.122 -0.294 -0.244 -0.203 -0.246 -0.208 -0.241 -0.209 

8 C -0.136 -0.132 -0.334 -0.335 -0.084 -0.330 -0.226 -0.183 -0.222 -0.181 -0.217 -0.182 

9 C -0.121 -0.157 -0.619 -0.267 -0.444 -0.360 -0.231 -0.194 -0.233 -0.199 -0.232 -0.200 

10 C 0.100 0.089 -0.169 -0.915 -0.507 -0.779 0.128 0.132 0.131 0.141 0.135 0.143 

11 C 0.115 0.000 1.388 1.485 1.123 1.421 -0.144 -0.140 -0.156 -0.150 -0.151 -0.147 

12 H 0.176 0.201 0.212 0.242 0.162 0.217 0.241 0.193 0.236 0.189 0.228 0.188 

13 H 0.184 0.227 0.237 0.274 0.202 0.182 0.259 0.214 0.251 0.211 0.245 0.211 

14 H 0.170 0.207 0.216 0.269 0.172 0.197 0.267 0.215 0.263 0.212 0.249 0.212 

15 H 0.168 0.198 0.206 0.240 0.159 0.213 0.242 0.196 0.236 0.191 0.229 0.191 

16 H 0.162 0.184 0.213 0.258 0.131 0.192 0.258 0.218 0.256 0.218 0.252 0.218 

17 H 0.155 0.177 0.207 0.250 0.135 0.198 0.259 0.218 0.258 0.219 0.253 0.219 

18 H 0.156 0.177 0.207 0.250 0.143 0.196 0.259 0.218 0.258 0.218 0.253 0.219 

19 H 0.152 0.173 0.212 0.247 0.161 0.218 0.262 0.223 0.259 0.222 0.256 0.221 

 ChelpG Hirshfeld 

1 N -0.659 -0.696 -0.651 -0.649 -0.650 -0.653 -0.167 -0.166 -0.167 -0.164 -0.167 -0.163 

2 C 0.268 0.288 0.224 0.227 0.225 0.242 0.056 0.057 0.063 0.062 0.064 0.064 

3 C 0.412 0.445 0.547 0.524 0.551 0.515 -0.018 -0.019 -0.019 -0.021 -0.019 -0.020 

4 N -0.709 -0.725 -0.748 -0.736 -0.750 -0.736 -0.189 -0.185 -0.191 -0.187 -0.190 -0.185 

5 C 0.477 0.458 0.462 0.447 0.464 0.458 0.032 0.032 0.039 0.038 0.040 0.039 

6 C -0.159 -0.178 -0.178 -0.190 -0.177 -0.177 -0.035 -0.034 -0.033 -0.034 -0.032 -0.032 

7 C -0.103 -0.091 -0.086 -0.088 -0.080 -0.085 -0.041 -0.041 -0.042 -0.043 -0.041 -0.041 

8 C -0.042 -0.055 -0.053 -0.069 -0.056 -0.074 -0.033 -0.032 -0.032 -0.033 -0.031 -0.031 

9 C -0.266 -0.269 -0.252 -0.255 -0.245 -0.229 -0.049 -0.049 -0.051 -0.051 -0.050 -0.049 

10 C 0.488 0.508 0.474 0.471 0.468 0.463 0.036 0.034 0.039 0.037 0.040 0.038 

11 C -0.168 -0.149 -0.124 -0.115 -0.125 -0.125 -0.025 -0.024 -0.020 -0.021 -0.019 -0.019 

12 H 0.045 0.045 0.054 0.056 0.053 0.051 0.059 0.059 0.056 0.057 0.056 0.055 

13 H -0.035 -0.046 -0.082 -0.075 -0.082 -0.073 0.046 0.045 0.045 0.045 0.044 0.044 

14 H -0.034 -0.041 -0.065 -0.057 -0.066 -0.057 0.049 0.050 0.045 0.046 0.045 0.045 

15 H -0.020 -0.006 -0.009 -0.003 -0.009 -0.007 0.051 0.052 0.049 0.050 0.049 0.048 

16 H 0.139 0.144 0.139 0.145 0.137 0.138 0.058 0.057 0.056 0.057 0.055 0.054 

17 H 0.112 0.110 0.104 0.109 0.101 0.105 0.058 0.057 0.056 0.057 0.055 0.054 

18 H 0.111 0.115 0.110 0.118 0.109 0.115 0.059 0.058 0.058 0.059 0.056 0.056 

19 H 0.141 0.142 0.134 0.140 0.131 0.130 0.053 0.050 0.048 0.049 0.046 0.046 
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Appendix B. The bond lengths, bond angles, and dihedral angles calculated in water, using, 

DFT (Ub3lyp)/6-311
++

G(d,p)/Hirshfeld/PCM model/Gaussian W09 software. 

 

 

system 5H-1,2-bpdz 1H-1,3-bpdz 3H-1,4-bpdz 3H-1,5-bpdz 5H-2,3-bpdz 1H-2,4-bpdz 

Bond Length (A°) 

1-2 1.263 1.392 1.276 1.278 1.294 1.470 

2-3 1.408 1.279 1.509 1.508 1.383 1.276 

3-4 1.342 1.403 1.468 1.508 1.279 1.400 

4-5 1.503 1.345 1.281 1.278 1.507 1.289 

5-11 1.509 1.468 1.469 1.402 1.511 1.464 

11-6 1.397 1.402 1.409 1.410 1.397 1.404 

6-7 1.393 1.395 1.385 1.383 1.393 1.390 

7-8 1.397 1.391 1.401 1.403 1.398 1.397 

8-9 1.388 1.396 1.385 1.383 1.389 1.394 

9-10 1.405 1.394 1.407 1.410 1.405 1.395 

10-11 1.411 1.409 1.419 1.423 1.412 1.412 

10-1 1.422 1.429 1.403 1.402 1.466 1.508 

Bond Angle (°) 

10-1-2 124.534 123.236 122.027 121.790 129.543 110.744 

1-2-3 124.619 128.798 124.382 124.103 120.943 117.115 

2-3-4 126.815 122.508 109.533 105.232 121.709 130.372 

3-4-5 121.910 129.591 116.732 124.103 124.800 122.214 

4-5-11 107.613 127.853 128.586 121.790 106.517 128.385 

11-6-7 121.068 121.965 121.344 121.563 120.501 120.392 

6-7-8 120.070 119.281 119.519 119.723 120.270 119.690 

7-8-9 119.653 119.822 120.127 119.723 119.789 120.325 

8-9-10 120.584 120.761 121.058 121.563 120.498 120.650 

1-10-9 114.049 118.242 116.614 116.231 119.676 122.150 

1-10-11 126.016 121.526 124.013 124.824 120.718 118.767 

9-10-11 119.796 120.197 118.957 118.634 119.505 119.045 

5-11-6 122.087 119.186 117.735 116.231 122.555 119.124 

5-11-10 119.189 122.834 123.336 124.824 118.076 121.034 

6-11-10 118.714 117.961 118.828 118.634 119.367 119.834 

Dihedral Angles (°) 

10-1-2-3 -1.941 -48.360 -3.526 3.309 -9.725 65.764 

1-2-3-4 -41.680 -1.721 70.545 -66.577 51.130 2.408 

2-3-4-5 4.371 29.382 -65.391 66.577 -3.827 -43.474 

3-4-5-11 59.751 -1.834 3.152 -3.309 -67.406 2.598 

11-6-7-8 -0.793 0.189 2.783 -3.287 0.214 1.195 

6-7-8-9 0.107 0.277 1.030 0.000 -0.533 0.537 

7-8-9-10 2.370 -1.070 -3.208 3.287 -1.011 -0.577 

8-9-10-11 -4.153 1.395 1.572 -3.253 2.843 -1.096 

8-9-10-1 179.877 -176.478 174.464 -177.161 179.219 176.623 

2-1-10-11 41.170 47.717 -38.468 38.445 -36.503 -66.431 

2-1-10-9 -143.155 -134.440 149.038 -148.070 147.166 115.844 

7-6-11-10 -0.976 0.125 -4.358 3.253 1.622 -2.875 

7-6-11-5 177.823 178.613 179.174 177.161 -177.743 178.170 

4-5-11-10 -61.114 -24.718 33.322 -38.444 61.602 33.308 

4-5-11-6 120.092 156.871 -150.381 148.070 -119.025 -147.749 

1-10-11-5 0.027 -1.536 6.081 0.000 -0.071 3.941 

1-10-11-6 178.861 176.893 -170.178 173.341 -179.465 -174.994 

9-10-11-6 3.412 -0.908 2.152 0.000 -3.127 2.802 

9-10-11-5 -1.941 -48.360 -3.526 3.309 -9.725 65.764 
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- a - 

- b - 

Appendix C. Condensed Fukui functions 3D-mapped surface, calculated in water using DFT 

(Ub3lyp)/6-311
++

G(d,p)/Hirshfeld/PCM model/Gaussian W09 software, visualized in term of 

FMO theory using gaussview 5.0.8, Isovalue MO = 0.0015 a.u, purple color indicate the 

regions of electrophilic attacks a, Negative condensed Fukui function f 
‾
(r).  b, Positive 

condensed Fukui function f 
+
(r).  
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Appendix D. The docking scoring energy of the Co-crystallized DZP structure and the 

studies ligands for the four binding interfaces. 

Ligand Nam 
      

 /  
  

interface 

      
    /  

     

interface 

      
    /  

     

interface 

      
 /  

  

interface 

Co-crystallized DZP -7,003 -6,159 -6,261 -6,347 

Ro05-4318/ Ro05-3418 -6,957 -6,421 -6,056 -6,442 

Ro05-3072 -6,420 -6,252 -5,982 -6,137 

Ro05-4528 -7,100 -6,606 -6,443 -6,539 

Ro05-2921 -6,185 -6,181 -5,978 -5,685 

Ro20-7736 -7,216 -6,765 -6,413 -6,887 

Ro05-4619 -6,613 -6,371 -6,107 -6,145 

Ro20-5397 -6,694 -6,467 -6,697 -6,398 

Ro05-3061 -6,261 -5,965 -5,815 -5,896 

Ro20-2533 -7,162 -6,303 -6,417 -6,618 

Ro20-2541 -7,101 -6,733 -6,558 -6,523 

Ro20-5747 -6,979 -6,251 -6,403 -6,515 

Ro05-4336 -6,144 -6,258 -5,975 -5,948 

Ro20-3053 -7,090 -6,444 -6,216 -6,829 

Triflunordazepam -6,935 -5,968 -6,091 -6,495 

Diazepam -7,040 -6,529 -6,278 -6,592 

Ro07-5220 -7,021 -6,075 -5,463 -6,531 

Ro14-3074 -7,029 -6,548 -6,178 -6,412 

Flunitrazepam -7,540 -6,470 -5,821 -6,600 

Ro05-3590 -7,535 -6,473 -6,377 -6,276 

Norflurazepam -6,543 -5,899 -5,731 -6,270 

Delorazepam -6,785 -6,365 -5,904 -6,118 

Clonazepam -7,554 -6,615 -6,350 -6,000 

Fonazepam -7,329 -6,334 -5,984 -6,387 

Ro05-6822 -6,838 -6,402 -6,097 -6,228 

Ro05-4865 -6,837 -6,173 -6,027 -6,086 

Ro05-6820 -6,182 -5,980 -5,884 -5,896 

Nordazepam -6,550 -5,905 -5,925 -6,191 

Ro07-3953 -6,568 -5,916 -5,779 -6,318 

Difludiazepam -6,755 -6,490 -6,431 -6,555 

Ro07-5193 -6,726 -6,329 -6,165 -6,260 

Ro22-3294 -6,699 -5,838 -5,698 -6,091 

Nitrazepam -7,143 -6,406 -5,918 -6,493 

Methylclonazepam -7,831 -6,531 -6,447 -6,906 

7-Aminoflunitrazepam -6,965 -6,357 -6,188 -6,459 

Ro12-6377 -8,013 -7,409 -7,265 -7,546 

Halazepam -6,858 -6,791 -6,280 -6,615 

Pinazepam -7,151 -7,146 -6,848 -6,990 

Prazepam -7,067 -6,961 -6,435 -6,421 

Motrazepam -7,556 -7,087 -5,919 -6,382 

Ro20-1310 -6,631 -6,156 -6,606 -5,425 

Ro07-2750 -6,938 -7,152 -6,456 -6,918 

Ro08-9013 -7,580 -7,050 -7,455 -7,070 

Proflazepam -7,807 -7,170 -7,077 -6,972 
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Appendix D. Continued 

Ro22-4683 -6,859 -5,566 -5,802 -5,827 

Ro11-4878 -6,729 -6,312 -6,141 -6,427 

Meclonazepam -7,856 -6,821 -6,774 -6,307 

Ro11-6896 -7,785 -6,688 -5,836 -6,351 

L48 -7,296 -6,801 -6,620 -6,017 

Temazepam -7,208 -6,523 -6,469 -6,810 

L50 -7,221 -6,830 -6,675 -6,522 

L51 -6,497 -6,116 -5,645 -6,568 

Ro07-4419 -6,118 -6,102 -5,912 -5,829 

Ro05-4520 -6,779 -6,485 -6,433 -6,167 

Ro05-4608 -6,787 -6,373 -6,612 -6,377 

Ro05-3546 -6,046 -6,199 -6,066 -5,951 

Ro13-0699 -6,298 -6,336 -6,411 -6,579 

Ro07-6198 -6,517 -6,020 -5,989 -6,178 

Ro20-8895 -6,669 -6,299 -5,985 -6,126 

Ro13-0593 -6,884 -6,517 -6,260 -6,460 

L60 -6,535 -6,168 -6,056 -6,100 

Ro22-6762 -6,676 -6,014 -6,419 -6,471 

Ro20-8065 -6,675 -6,218 -5,874 -6,609 

Ro20-8552 -6,702 -6,212 -6,277 -6,704 

L64 -6,795 -6,173 -5,908 -6,288 

L65 -6,834 -6,230 -5,926 -6,394 
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Appendix E. Superposition of     -     to the    -bound structures at the interfaces of: 

a, ECD   
 /  

 . b, TMD   
    /  

    . c, TMD   
    /  

    , and d, TMD   
 /  

 . 
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Appendix F. Superpositions of proflazepam to the    -bound structures at the interfaces of: 

a, ECD   
 /  

 . b, TMD   
    /  

    . c, TMD   
    /  

    , and d, TMD   
 /  

 . 

 

 

 

 

 

 

Appendix G. Superposition of Ro12-6377 binding modes at the two TMD   
    /  

     and 

TMD   
    /  

     interfaces, the purple color designed the Ro12-6377-bound structure at 

  
    /  

     interface. 
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Appendix H. Pharmacokinetic parameters and drug-likeness prediction. 

Ligand 

Nam 

GI 

absorption 

BBB 

permeant 

Pgp 

substrate 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 
Lipinski Ghose Veber Egan Muegge 

Ro05-4318/ Ro05-3418 High Yes No Yes No No No Yes yes yes yes yes yes 

Ro05-3072 High No Yes Yes No No No Yes yes yes yes yes yes 

Ro05-4528 High Yes No Yes Yes Yes No Yes yes yes yes yes yes 

Ro05-2921 High Yes No Yes No No No Yes yes yes yes yes yes 

Ro20-7736 High Yes No Yes No No No No yes yes yes yes yes 

Ro05-4619 High Yes Yes Yes No No Yes Yes yes yes yes yes yes 

Ro20-5397 High Yes No Yes No No No No yes yes yes yes yes 

Ro05-3061 High Yes No Yes No No Yes Yes yes yes yes yes yes 

Ro20-2533 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro20-2541 High Yes No Yes Yes Yes No Yes yes yes yes yes yes 

Ro20-5747 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro05-4336 High Yes No Yes No No Yes Yes yes yes yes yes yes 

Ro20-3053 High Yes No Yes Yes No No Yes yes yes yes yes yes 

Triflunordazepam High Yes No Yes Yes No Yes No yes yes yes yes yes 

Diazepam High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

Ro07-5220 High Yes No Yes Yes Yes No No yes yes yes yes yes 

Ro14-3074 High No No Yes No No No No yes yes yes yes yes 

Flunitrazepam High No Yes Yes No No No No yes yes yes yes yes 

Ro05-3590 High No Yes Yes No No No No yes yes yes yes yes 
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Appendix H. Continued 

 

Norflurazepam High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Delorazepam High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

Clonazepam High No Yes Yes No No No No yes yes yes yes yes 

Fonazepam High No Yes Yes No No No No yes yes yes yes yes 

Ro05-6822 High Yes No Yes Yes No Yes No yes yes yes yes yes 

Ro05-4865 High Yes No Yes Yes No No No yes yes yes yes yes 

Ro05-6820 High Yes No Yes No No Yes Yes yes yes yes yes yes 

Nordazepam High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro07-3953 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Difludiazepam High Yes No No Yes No No No yes yes yes yes yes 

Ro07-5193 High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

Ro22-3294 High Yes No Yes Yes Yes No Yes yes yes yes yes yes 

Nitrazepam High No Yes Yes No No No No yes yes yes yes yes 

Methylclonazepam High No Yes Yes No No No No yes yes yes yes yes 

7-Aminoflunitrazepam High Yes No No No No No No yes yes yes yes yes 

Ro12-6377 High Yes Yes No No No No No yes yes yes yes yes 

Halazepam High Yes No Yes Yes Yes Yes No yes yes yes yes yes 

Pinazepam High Yes No Yes Yes Yes Yes No yes yes yes yes yes 

Prazepam High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

Motrazepam High No Yes Yes No No No No yes yes yes yes yes 

Ro20-1310 High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 
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Appendix H. Continued 

 

Ro07-2750 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro08-9013 High No Yes No Yes No No No yes yes yes yes yes 

Proflazepam High Yes Yes No No No Yes No yes yes yes yes yes 

Ro22-4683 High No Yes Yes No No No No yes yes yes yes yes 

Ro11-4878 High Yes No No Yes No Yes Yes yes yes yes yes yes 

Meclonazepam High No Yes Yes No No No No yes yes yes yes yes 

Ro11-6896 High No Yes No No No No No yes yes yes yes yes 

L48 High Yes No No Yes Yes Yes No yes yes yes yes yes 

Temazepam High Yes No No No No No No yes yes yes yes yes 

L50 High Yes No No Yes Yes No No yes yes yes yes yes 

L51 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro07-4419 High Yes No Yes No No Yes No yes yes yes yes yes 

Ro05-4520 High Yes No Yes Yes No No No yes yes yes yes yes 

Ro05-4608 High Yes No Yes Yes No No Yes yes yes yes yes yes 

Ro05-3546 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro13-0699 High Yes No Yes Yes No No No yes yes yes yes yes 

Ro07-6198 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 

Ro20-8895 High Yes No Yes No No Yes Yes yes yes yes yes yes 

Ro13-0593 High Yes No Yes Yes No Yes No yes yes yes yes yes 

L60 High Yes No Yes Yes Yes No No yes yes yes yes yes 

Ro22-6762 High Yes No Yes Yes Yes No No yes yes yes yes yes 
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Appendix H. Continued 

 

Ro20-8065 High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

Ro20-8552 High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

L64 High Yes No Yes Yes Yes Yes Yes yes yes yes yes yes 

L65 High Yes No Yes Yes No Yes Yes yes yes yes yes yes 
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Appendix I. Molecular descriptors selected for QSAR analysis. 

Comp 

N° 
QN1 QC3 QN4 QC6 QC7 QC8 QC9 QC2' QC6' π7 π2' HA HD 

DM 

(debye) 
Log (P) MR FT 

1 -0,096 0,568 -0,608 -0,227 0,376 -0,268 -0,087 -0,102 -0,106 -1,230 0,000 3,000 1,000 6,301 1,643 79,708 1 

2 -0,541 0,539 -0,618 -0,242 0,389 -0,259 -0,152 -0,091 -0,044 -1,230 0,000 3,000 2,000 6,583 1,779 76,592 1 

3 -0,131 0,533 -0,590 -0,060 -0,043 -0,120 -0,091 -0,080 -0,075 -0,570 0,000 3,000 0,000 2,121 2,328 80,729 2 

4 -0,568 0,518 -0,620 -0,005 -0,147 -0,059 -0,195 -0,095 -0,045 0,000 0,000 2,000 1,000 5,061 2,608 71,891 1 

5 -0,083 0,596 -0,655 -0,207 0,515 -0,386 -0,007 0,351 -0,057 -1,340 0,140 4,000 2,000 6,721 2,123 82,211 2 

6 -0,494 0,631 -0,698 -0,289 0,433 -0,256 -0,153 0,040 -0,110 -1,230 0,710 3,000 2,000 6,791 2,383 81,396 1 

7 -0,514 0,513 -0,620 -0,003 -0,050 -0,160 -0,126 -0,068 -0,011 -0,650 0,000 3,000 1,000 3,137 2,320 78,475 2 

8 -0,531 0,523 -0,613 -0,209 0,381 -0,250 -0,144 -0,083 -0,019 0,140 0,000 2,000 1,000 3,369 2,751 72,108 1 

9 -0,558 0,532 -0,619 -0,127 0,018 -0,147 -0,177 -0,071 -0,024 1,020 0,000 2,000 1,000 5,662 3,566 81,533 2 

10 -0,128 0,581 -0,634 -0,077 -0,043 -0,116 -0,094 0,327 -0,068 -0,570 0,140 3,000 0,000 3,218 2,471 80,945 2 

11 -0,512 0,554 -0,631 -0,105 0,182 -0,217 -0,137 -0,088 -0,034 0,820 0,000 2,000 1,000 4,936 3,345 81,578 2 

12 -0,543 0,540 -0,657 -0,061 -0,134 -0,044 -0,201 0,336 -0,014 0,000 0,140 2,000 1,000 5,752 2,751 72,108 1 

13 -0,516 0,594 -0,670 -0,112 -0,098 -0,022 -0,191 0,344 -0,021 -0,550 0,140 3,000 1,000 3,274 2,308 82,510 2 

14 -0,543 0,509 -0,614 -0,017 -0,144 -0,061 -0,188 -0,090 -0,045 0,880 0,000 2,000 1,000 1,909 3,486 77,865 2 

15 -0,102 0,530 -0,601 -0,027 0,074 -0,110 -0,109 -0,081 -0,053 0,710 0,000 2,000 0,000 3,228 3,076 79,812 1 

16 -0,081 0,559 -0,679 -0,091 0,115 -0,099 -0,116 0,038 -0,037 0,710 0,710 2,000 0,000 3,462 4,284 89,421 1 

17 -0,498 0,561 -0,659 -0,195 0,350 -0,262 -0,105 0,353 -0,013 0,460 0,140 4,000 1,000 4,057 4,085 82,395 2 
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18 -0,111 0,550 -0,622 -0,112 0,022 -0,150 -0,072 0,340 -0,061 -0,280 0,140 5,000 2,000 3,209 2,555 81,544 2 

19 -0,486 0,605 -0,673 -0,146 0,048 -0,133 -0,153 -0,070 -0,079 -0,280 0,880 5,000 3,000 3,692 3,426 84,185 3 

20 -0,510 0,585 -0,665 -0,061 0,060 -0,044 -0,201 0,343 -0,019 0,710 0,140 2,000 1,000 4,140 3,355 76,912 1 

21 -0,483 0,606 -0,696 -0,084 0,077 -0,054 -0,186 0,078 -0,102 0,710 0,710 2,000 1,000 3,938 3,816 81,501 1 

22 -0,468 0,627 -0,696 -0,184 0,080 -0,149 -0,131 0,058 -0,117 -0,280 0,710 5,000 3,000 2,488 3,152 83,016 2 

23 -0,520 0,562 -0,649 -0,116 0,022 -0,120 -0,142 0,357 -0,017 -0,280 0,140 5,000 3,000 2,378 2,691 78,428 2 

24 -0,101 0,563 -0,637 -0,236 0,371 -0,249 -0,063 0,356 -0,049 0,140 0,140 2,000 0,000 4,373 2,757 75,440 1 

25 -0,090 0,544 -0,597 -0,201 0,370 -0,269 -0,062 -0,072 -0,071 0,140 0,000 2,000 0,000 3,338 2,615 57,224 1 

26 -0,492 0,565 -0,654 -0,251 0,393 -0,256 -0,100 0,345 -0,008 0,140 0,140 2,000 1,000 4,242 2,893 72,324 1 

27 -0,527 0,549 -0,624 -0,028 0,064 -0,071 -0,184 -0,113 -0,037 0,710 0,000 3,000 3,000 3,257 3,212 76,696 1 

28 -0,520 0,560 -0,689 -0,011 0,046 -0,039 -0,213 0,399 0,425 0,710 0,140 2,000 1,000 3,645 3,497 77,129 1 

29 -0,108 0,469 -0,700 -0,039 0,091 -0,117 -0,088 0,355 0,381 0,710 0,140 2,000 0,000 3,646 3,361 80,245 1 

30 -0,507 0,520 -0,681 -0,085 0,114 -0,090 -0,176 0,102 0,357 0,710 0,710 2,000 1,000 3,557 3,959 81,717 1 

31 -0,465 0,623 -0,710 -0,092 0,105 -0,076 -0,179 0,070 0,004 0,710 0,710 2,000 1,000 3,486 4,420 86,306 1 

32 -0,531 0,520 -0,615 -0,072 0,006 -0,113 -0,162 -0,084 -0,043 -0,280 0,000 5,000 3,000 1,381 2,548 78,212 2 

33 -0,083 0,601 -0,663 -0,157 0,067 -0,165 -0,066 0,059 -0,145 -0,280 0,710 5,000 2,000 3,365 3,016 97,151 2 

34 -0,084 0,674 -0,665 -0,262 0,408 -0,271 -0,080 0,334 -0,075 -1,230 0,140 3,000 1,000 6,893 1,786 79,924 1 

35 -0,088 0,577 -0,655 -0,193 0,373 -0,269 -0,055 0,356 -0,035 -1,030 0,140 3,000 2,000 4,302 1,743 93,660 4 

36 -0,145 0,462 -0,573 -0,029 0,052 -0,077 -0,134 -0,070 -0,052 0,710 0,000 2,000 0,000 4,083 4,031 85,262 3 
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37 -0,173 0,564 -0,607 -0,008 0,047 -0,091 -0,080 -0,090 -0,063 0,710 0,000 2,000 0,000 3,104 3,304 87,392 3 

38 -0,204 0,494 -0,584 -0,008 0,050 -0,089 -0,114 -0,075 -0,052 0,710 0,000 2,000 0,000 3,049 3,857 91,754 3 

39 -0,077 0,487 -0,569 -0,126 0,019 -0,125 -0,103 -0,057 -0,010 -0,280 0,000 6,000 2,000 1,785 2,475 87,181 4 

40 -0,411 0,502 -0,587 -0,013 0,032 -0,055 -0,145 -0,053 -0,030 0,710 0,000 2,000 0,000 3,222 4,130 93,618 2 

41 -0,325 0,593 -0,642 -0,042 0,050 -0,028 -0,265 0,343 -0,047 0,710 0,140 3,000 1,000 3,078 2,529 86,321 3 

42 -0,221 0,609 -0,640 -0,078 0,086 -0,070 -0,202 0,368 -0,023 0,710 0,140 4,000 1,000 5,437 1,843 98,979 6 

43 -0,179 0,577 -0,634 -0,057 0,069 -0,087 -0,108 0,362 -0,048 0,710 0,140 4,000 2,000 5,140 1,898 92,283 4 

44 -0,451 0,613 -0,657 -0,152 0,046 -0,174 -0,026 0,028 -0,158 -0,280 0,710 5,000 2,000 4,125 4,070 99,938 3 

45 -0,626 0,622 -0,736 -0,014 0,039 -0,042 -0,231 0,357 -0,021 0,710 0,140 2,000 1,000 3,539 3,923 81,406 1 

46 -0,581 0,763 -0,766 -0,134 0,053 -0,128 -0,170 0,059 -0,129 -0,280 0,710 5,000 3,000 2,404 3,721 87,510 2 

47 -0,213 0,718 -0,698 -0,102 0,017 -0,122 -0,126 0,359 -0,067 -0,280 0,140 5,000 2,000 3,063 3,123 86,038 2 

48 -0,180 0,696 -0,660 -0,030 0,079 -0,096 -0,138 -0,069 -0,073 0,710 0,000 2,000 0,000 2,958 3,645 84,306 1 

49 -0,045 0,897 -0,609 -0,012 0,050 -0,070 -0,111 -0,085 -0,078 0,710 0,000 3,000 1,000 4,751 2,787 81,010 1 

50 -0,181 0,408 -0,541 -0,043 0,053 -0,077 -0,135 0,369 -0,026 0,710 0,140 2,000 0,000 6,653 4,124 84,764 1 

51 -0,552 0,512 -0,647 0,058 0,069 -0,191 -0,155 -0,043 -0,016 0,560 0,000 2,000 1,000 5,677 3,635 81,974 1 

52 -0,559 0,540 -0,674 -0,029 -0,142 -0,037 -0,206 0,390 0,417 0,000 0,140 2,000 1,000 5,429 2,893 72,324 1 

53 -0,122 0,600 -0,648 -0,071 -0,108 -0,108 -0,086 0,319 -0,069 0,000 0,140 2,000 0,000 5,768 2,615 75,224 1 

54 -0,110 0,626 -0,666 -0,123 -0,077 -0,102 -0,097 0,028 -0,170 0,000 0,710 2,000 0,000 5,557 3,076 79,812 1 

55 -0,559 0,493 -0,605 0,050 -0,087 -0,122 -0,148 -0,043 -0,042 0,000 0,000 2,000 1,000 4,500 3,212 76,696 1 
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56 -0,094 0,581 -0,635 -0,011 -0,078 -0,124 -0,072 0,393 -0,025 0,000 0,140 2,000 0,000 5,583 3,219 80,028 1 

57 -0,526 0,549 -0,684 -0,049 -0,122 0,127 -0,192 0,406 0,446 0,000 0,140 2,000 1,000 4,474 3,497 77,129 1 

58 -0,525 0,569 -0,676 -0,026 -0,262 0,231 -0,323 0,339 -0,021 0,000 0,140 2,000 1,000 6,296 3,264 77,149 1 

59 -0,116 0,549 -0,620 -0,095 -0,117 -0,077 0,059 0,380 -0,017 0,000 0,140 2,000 0,000 5,954 3,219 80,028 1 

60 -0,045 0,588 -0,632 -0,059 -0,024 0,006 -0,006 0,352 -0,059 0,000 0,140 2,000 0,000 4,116 3,823 84,833 1 

61 -0,087 0,535 -0,611 -0,060 0,073 0,048 -0,067 -0,104 -0,091 0,710 0,000 2,000 0,000 2,420 3,680 84,617 1 

62 -0,512 0,564 -0,662 -0,063 0,048 0,101 -0,189 0,351 -0,004 0,710 0,140 2,000 1,000 3,363 3,959 81,717 1 

63 -0,503 0,560 -0,668 -0,246 0,197 -0,014 -0,127 0,356 -0,006 0,560 0,140 2,000 1,000 5,148 3,868 81,954 1 

64 -0,481 0,514 -0,614 -0,027 0,055 -0,077 -0,006 -0,068 -0,023 0,710 0,000 2,000 1,000 3,589 3,816 81,501 1 

65 -0,462 0,506 -0,617 -0,070 0,108 -0,221 0,117 -0,101 -0,042 0,710 0,000 2,000 1,000 3,336 3,725 81,737 1 
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Appendix J. Hydrophobic interactions established with C7 and C2’ positions and electrostatic 

interactions established with N4, resulting from the molecular docking of the data set at ECD 

  
 /  

  interface. 

a: position of interaction, b: distance of interaction, *0: ligand structure 

 

 

 

ECD   
 /  

  interface 

Ligand 

N° 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To 

To 

chemistry 

Dist 
b
 

(A°) 

L12 4 Hydrogen 

Bond 

C-H  Bond D:HIS102:HE1 H-Donor :*0:N H-Acceptor 2,82 

L14 7 Hydrophobic Pi-Alkyl E:PHE77 Pi-Orbitals :*0:C Alkyl 5,49 

L15 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 5,37 

L19 2’ Hydrophobic Pi-Alkyl D:TYR160 Pi-Orbitals :*0:C Alkyl 4,65 

L20 7 Hydrophobic Alkyl E:ALA79 Alkyl :*0:CL Alkyl 4,16 

L21 7 Hydrophobic Pi-Alkyl D:HIS102 Pi-Orbitals :*0:CL Alkyl 4,36 

L26 4 Hydrogen 

Bond 

C-H Bond D:HIS102:HE1 H-Donor :*0:N H-Acceptor 2,80 

L27 7 Hydrophobic Alkyl E:ALA79 Alkyl :*0:CL Alkyl 4,25 

L28 7 Hydrophobic Pi-Alkyl D:HIS102 Pi-Orbitals :*0:CL Alkyl 4,41 

L29 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 5,32 

L30 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

D:HIS102:HE1 H-Donor :*0:N H-Acceptor 2,81 

7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 4,59 

L35 7 Hydrophobic Alkyl E:ALA79 Alkyl :*0:C Alkyl 3,55 

L36 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 5,24 

L38 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

D:HIS102:HE1 H-Donor :*0:N H-Acceptor 2,60 

7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 3,47 

L42 4 Hydrogen 

Bond 

C-H Bond D:HIS102:HE1 H-Donor :*0:N H-Acceptor 2,69 

7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 4,82 

L45 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET130 Alkyl 4,11 

L48 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 5,32 

L49 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 5,38 

L51 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:C Alkyl 5,02 

7 Hydrophobic Pi-Alkyl E:PHE77 Pi-Orbitals :*0:C Alkyl 4,96 

L52 4 Hydrogen 

Bond 

C-H Bond D:HIS102:HE1 H-Donor :*0:N H-Acceptor 2,81 

L61 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:CL Alkyl 4,58 

L62 7 Hydrophobic Pi-Alkyl D:HIS102 Pi-Orbitals :*0:CL Alkyl 4,43 

L63 7 Hydrophobic Pi-Alkyl E:TYR58 Pi-Orbitals :*0:C Alkyl 4,31 

L64 7 Hydrophobic Alkyl E:ALA79 Alkyl :*0:CL Alkyl 4,48 
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Appendix K. Hydrophobic interactions established with C7 and C2’ positions and 

electrostatic interactions established with N4, resulting from the molecular docking of the 

data set at TMD    
    /  

     interface. 

TMD   
    /  

     interface 

Ligand 

N° 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To 

To 

chemistry 

Dist 
b
 

(A°) 

L2 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

A:MET286:HA H-Donor :*0:N H-Acceptor 2,74 

L4 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,34 

L6 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,77 

L8 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,33 

L9 7 Hydrophobic Alkyl :*0:C Alkyl A:MET286 Alkyl 4,71 

7 Hydrophobic Alkyl :*0:C Alkyl B:ILE228 Alkyl 4,13 

L11 7 Hydrophobic Alkyl :*0:C Alkyl A:MET286 Alkyl 4,17 

7 Hydrophobic Alkyl :*0:C Alkyl B:ILE228 Alkyl 3,95 

L12 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,31 

L14 7 Hydrophobic Alkyl :*0:C Alkyl B:PRO233 Alkyl 4,08 

L15 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,63 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,30 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,69 

L16 7 Hydrophobic Alkyl :*0:CL Alkyl B:LEU232 Alkyl 4,27 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,84 

L18 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

B:PRO233:HA H-Donor :*0:N H-Acceptor 2,94 

L19 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

B:PRO233:HA H-Donor :*0:N H-Acceptor 2,97 

2’ Hydrophobic Alkyl :*0:C Alkyl B:PRO233 Alkyl 4,25 

L20 7 Hydrophobic Alkyl :*0:CL Alkyl A:MET286 Alkyl 4,56 

7 Hydrophobic Alkyl :*0:CL Alkyl B:ILE228 Alkyl 4,06 

L21 7 Hydrophobic Alkyl :*0:CL Alkyl B:LEU232 Alkyl 4,04 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,89 

L26 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,30 

L27 7 Hydrophobic Alkyl :*0:CL Alkyl A:VAL290 Alkyl 5,02 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 4,11 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 5,12 

L28 7 Hydrophobic Alkyl :*0:CL Alkyl A:VAL290 Alkyl 4,99 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 4,13 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 5,10 

L29 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,69 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,26 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,73 
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L30 7 Hydrophobic Alkyl :*0:CL Alkyl B:LEU232 Alkyl 4,04 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,93 

L31 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,23 

L35 7 Hydrophobic Alkyl :*0:C Alkyl A:VAL258 Alkyl 5,37 

7 Hydrophobic Alkyl :*0:C Alkyl B:LEU240 Alkyl 5,04 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:C Alkyl 5,30 

L36 7 Hydrophobic Alkyl :*0:CL Alkyl B:LEU232 Alkyl 4,09 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,77 

L37 7 Hydrophobic Alkyl :*0:CL Alkyl B:LEU232 Alkyl 4,22 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,71 

L38 7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,80 

L39 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

A:MET286:HA H-Donor :*0:N H-Acceptor 2,56 

L40 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,18 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 5,35 

L42 7 Hydrophobic Alkyl :*0:CL Alkyl A:MET286 Alkyl 4,55 

7 Hydrophobic Alkyl :*0:CL Alkyl B:ILE228 Alkyl 4,15 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 3,73 

L44 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

B:PRO233:HA H-Donor :*0:N H-Acceptor 2,99 

L45 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,62 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,37 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,60 

L48 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,54 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,47 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,57 

L49 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,48 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,37 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,31 

L51 7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:C Alkyl 3,74 

L52 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,30 

L53 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,28 

L54 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,26 

L57 4 Hydrogen 

Bond 

Conventional 

Hydrogen 

Bond 

A:ASN265:HD21 H-Donor :*0:N H-Acceptor 2,84 
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L58 4 Hydrogen 

Bond 

Carbon 

Hydrogen 

Bond 

A:MET286:HA H-Donor :*0:N H-Acceptor 2,82 

L62 7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 3,76 

L63 7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:C Alkyl 3,76 

L64 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,43 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,39 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,23 

L65 7 Hydrophobic Alkyl :*0:CL Alkyl B:PRO233 Alkyl 4,47 

7 Hydrophobic Alkyl :*0:CL Alkyl B:MET236 Alkyl 5,20 

7 Hydrophobic Pi-Alkyl A:PHE289 Pi-Orbitals :*0:CL Alkyl 4,24 

a: position of interaction, b: distance of interaction, *0: ligand structure 

Appendix L. Hydrophobic interactions established with C7 and C2’ positions and electrostatic 

interactions established with N4, resulting from the molecular docking of the data set at 

TMD   
    /  

     interface. 

 

 

TMD   
    /  

     interface 

Ligand 

N° 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To 

To 

chemistry 

Dist 
b
 

(A°) 

L2 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

D:PRO233:HA H-Donor :*0:N H-Acceptor 2,61 

L4 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 2,09 

L6 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

D:PRO233:HA H-Donor :*0:N H-Acceptor 2,64 

L7 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

D:PRO233:HA H-Donor :*0:N H-Acceptor 2,58 

L8 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 2,07 

L9 7 Hydrophobic Alkyl :*0:C Alkyl C:LEU285 Alkyl 5,03 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:C Alkyl 4,94 

L11 7 Hydrophobic Alkyl :*0:C Alkyl C:ARG269 Alkyl 4,41 

L12 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 2,06 

L13 7 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

C:MET286:HA H-Donor :*0:O H-Acceptor 2,80 

L14 7 Hydrophobic Alkyl :*0:C Alkyl D:PRO233 Alkyl 4,85 

L15 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,71 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,19 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,62 

L16 7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,37 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,80 

L18 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

C:MET286:HA H-Donor :*0:N H-Acceptor 2,54 



186 
 

Appendix L. Continued 

 

 

L19 4 Halogen Halogen 

(Fluorine) 

:*0:N Halogen 

Acceptor 

:*0:F Halogen 2,83 

4 Halogen Halogen 

(Fluorine) 

:*0:N Halogen 

Acceptor 

:*0:F Halogen 2,91 

2’ Hydrophobic Alkyl :*0:C Alkyl D:PRO233 Alkyl 4,56 

2’ Hydrophobic Alkyl :*0:C Alkyl D:MET236 Alkyl 5,07 

2’ Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:C Alkyl 4,58 

L20 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,94 

L21 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,66 

L26 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

D:PRO233:HA H-Donor :*0:N H-Acceptor 2,64 

L28 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,93 

L29 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,75 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,38 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,72 

L30 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,97 

L31 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,92 

L35 7 Hydrophobic Alkyl :*0:C Alkyl D:LEU240 Alkyl 4,63 

L36 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,75 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,11 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,68 

L37 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,75 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,27 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,41 

L38 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 1,93 

L40 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 1,89 

L42 7 Hydrophobic Alkyl :*0:CL Alkyl C:LEU285 Alkyl 4,59 

7 Hydrophobic Alkyl :*0:CL Alkyl C:MET286 Alkyl 4,00 

L45 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,69 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,22 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,56 

L48 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,66 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,22 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,67 

L49 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,67 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,20 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,64 

L51 7 Hydrophobic Alkyl :*0:C Alkyl C:MET286 Alkyl 4,64 

L52 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 2,04 

L54 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

D:PRO233:HA H-Donor :*0:N H-Acceptor 2,84 

2’ Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 5,20 

2’ Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,47 

2’ Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,52 

L57 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 2,06 

L58 4 Hydrogen 

Bond 

Conventional 

Hydrogen Bond 

C:ASN265:HD22 H-Donor :*0:N H-Acceptor 2,12 
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Appendix L. Continued 

a: position of interaction, b: distance of interaction,*0: ligand structure 

Appendix M. Hydrophobic interactions established with C7 and C2’ positions and 

electrostatic interactions established with N4, resulting from the molecular docking of the 

data set at TMD   
 /  

  interface. 

TMD   
 /  

  interface 

Ligand 

N° 
Posit 

a
 category 

Type of 

interactions 
From 

From 

chemistry 
To To chemistry 

Dist 
b
 

(A°) 

L9 7 Hydrophobic Alkyl :*0:C Alkyl A:PRO228 Alkyl 4,01 

L11 7 Hydrophobic Alkyl :*0:C Alkyl A:PRO228 Alkyl 4,16 

L14 7 Hydrophobic Alkyl :*0:C Alkyl E:VAL300 Alkyl 4,15 

L15 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,73 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,26 

L16 7 Hydrophobic Alkyl :*0:CL Alkyl E:ARG284 Alkyl 3,73 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 3,99 

L19 4 Hydrogen 

Bond 

Carbon Hydrogen 

Bond 

E:SER301:H

A 

H-Donor :*0:N H-Acceptor 3,05 

2’ Hydrophobic Alkyl :*0:C Alkyl A:PRO228 Alkyl 4,56 

2’ Hydrophobic Alkyl :*0:C Alkyl A:LEU231 Alkyl 4,98 

2 ‘ Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:C Alkyl 4,09 

L20 7 Hydrophobic Alkyl :*0:CL Alkyl A:PRO228 Alkyl 4,07 

L21 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET276 Alkyl 4,94 

7 Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:CL Alkyl 4,40 

L27 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET276 Alkyl 5,14 

7 Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:CL Alkyl 4,43 

L28 7 Hydrophobic Alkyl :*0:CL Alkyl A:PRO228 Alkyl 4,11 

L29 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,44 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,51 

L30 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET276 Alkyl 4,93 

7 Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:CL Alkyl 4,40 

L31 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET276 Alkyl 4,82 

7 Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:CL Alkyl 4,42 

L35 7 Hydrophobic Alkyl :*0:C Alkyl A:PRO228 Alkyl 4,75 

7 Hydrophobic Alkyl :*0:C Alkyl A:ILE264 Alkyl 3,81 

L60 4 Hydrogen 

Bond 

Carbon 

Hydrogen Bond 

C:THR262:HA H-Donor :*0:N H-Acceptor 2,70 

7 Hydrophobic Alkyl :*0:CL Alkyl D:LEU232 Alkyl 4,01 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 4,21 

L61 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,70 

7 Hydrophobic Alkyl :*0:CL Alkyl D:LEU269 Alkyl 5,22 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,68 

L62 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,71 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,24 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,64 

L63 7 Hydrophobic Alkyl :*0:C Alkyl C:LEU285 Alkyl 5,20 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:C Alkyl 4,97 

L64 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,71 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,09 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,41 

L65 7 Hydrophobic Alkyl :*0:CL Alkyl D:PRO233 Alkyl 4,70 

7 Hydrophobic Alkyl :*0:CL Alkyl D:MET236 Alkyl 5,09 

7 Hydrophobic Pi-Alkyl C:PHE289 Pi-Orbitals :*0:CL Alkyl 4,42 
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Appendix M. Continued 

L36 7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,18 

L37 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,57 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,42 

L38 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,45 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,58 

L40 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET276 Alkyl 5,40 

7 Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:CL Alkyl 4,37 

L42 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,40 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,56 

L45 7 Hydrophobic Alkyl :*0:CL Alkyl A:PRO228 Alkyl 4,13 

L48 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,73 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,29 

L49 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,71 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,29 

L51 7 Hydrophobic Alkyl :*0:C Alkyl E:VAL300 Alkyl 4,22 

L61 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,80 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,20 

L62 7 Hydrophobic Alkyl :*0:CL Alkyl E:MET276 Alkyl 5,18 

7 Hydrophobic Alkyl :*0:CL Alkyl A:PRO228 Alkyl 4,44 

L63 7 Hydrophobic Alkyl :*0:C Alkyl E:MET276 Alkyl 5,28 

7 Hydrophobic Pi-Alkyl E:PHE304 Pi-Orbitals :*0:C Alkyl 4,49 

L64 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,59 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,35 

L65 7 Hydrophobic Alkyl :*0:CL Alkyl A:LEU223 Alkyl 4,60 

7 Hydrophobic Alkyl :*0:CL Alkyl E:VAL300 Alkyl 4,38 

a: position of interaction, b: distance of interaction, *0: ligand structure 

 

 

 

 

  

 



 



 


