
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC

RESEARCH

University Mohamed Khider of Biskra
Faculty of Exact Sciences and Natural and Life Sciences

Third cycle doctoral thesis in Mathematics

Option: Applied mathematics

Titre

On optimal stochastic control problem of McKean-Vlasov type with some
applications via the derivative with respect the law of probability

Presented by : Lina GUENANE

Members of the jury:

Boulakhras GHERBAL Pr, University of Biskra President.
Mokhtar HAFAYED Pr, University of Biskra Supervisor.
Abdelmoumen TIAIBA Pr, University of M’sila Examiner.
Khalil SAADI Pr, University of M’sila Examiner.

College year 2020/2021



Acknowledgements

I would like to express my deep-

est gratitude to my advisor Mokhtar Hafayed, Professor,

University of Biskra, not only because this work would have been not

possible without his help, but above all because in this years he taught me

with passion and patience the art of being a mathematician. I would like

to adress my sincere thanks to Professor Khalil SAADI, University of

M’sila, Professor Abdelmouman Tiaiba, University of M’sila and

Professor Boulakhras Gherbal, University of Biskra because

they agreed to spend their times for reading and evalu-

ating my thesis. I thank all my colleagues of

the Mathematics Department in

University of Biskra.

♥

v Lina



Résumé

Cette thèse de doctorat s’inscrit dans le cadre de l’analyse stochastique et optimi-

sation stochastique, dont le thème central est basé sur l’étude d’un problème de

contrôle optimal stochastique de type McKean-Vlasov. On s’intéresse par l’obtention

des conditions nécessaires et suffisantes sous forme du maximum stochastique de type

McKean-Vlasov et ses applications. Les systèmes considérerés dans ce travail sont gou-

vernés par des équations différentielles stochastiques de type McKean-Vlasov.

Cette thèse s’articule autour de trois chapitres:

Dans le premier chapitre, on décrit brièvement les différentes méthodes de résolution d’un

problème de contrôle stochastique, bien-connues, qui sont la méthode de programmation

dynamique et le principe du maximum de Pontryagin. On s’intéresse aussi dans ce chapitre

aux différentes classes de contrôle optimal stochastique.

Dans le deuxième chapitre, on établit les conditions nécessaires d’optimalité pour un

système gouverné par EDS de type McKean-Vlasov Ces resultats ont été prouvé par

Andersson D, Djehiche B. Voir [7].

Dans le troisième chapitre, on a prouvé les conditions nécessaires et suffisantes d’optimalité

vérifiées par un contrôle optimal stochastique singulier, pour un système différentiel gou-

verné par des équations différentielles stochastiques EDS de type McKean-Vlasov où la

variable de contrôle est une paire (u(·), ξ(·)) de processus mesurables A1 × A2−estimé,

Ft−adaptés, tels que ξ(·) est de variation bornée, non décroissante continue sur la gauche

avec des limites à droite et ξ(0−) = 0.

Puisque dξ(t) peut être singulier par rapport à la mesure de Lebesgue dt, on appelle



ξ(·) la partie singulière du contrôle et le processus u(·) sa partie absolument continue. Le

domaine de contrôle stochastique est supposé convexe. La méthode utilisée est basée sur

la dérivation par rapport à une mesure de probabilité.

Les résultats obtenus dans ce chapitre, sont nouveaux et font l’objet d’un premier article

intitulé:

L Guenane, M. Hafayed, S. Meherrem, S. Abbas:

On optimal solutions of general continuous-singular stochastic control problem of McKean-

Vlasov type,

Journal: Mathematical Methods in the Applied Sciences, Doi.org/10.1002/mma.6392.,

Volume 43, Issue 10„ Pages 6498-6516 (2020)



Abstract

In this thesis, we study the optimal stochastic control for systems governed by McKean-

Vlasov stochastic differential equation. of mean-field type. The central theme is the

necessary conditions in the form of the Pontryagin’s stochastic maximum of the McKean-

Vlasov type for optimality with some applications. Recently, the main purpose of this

thesis is to derive a set of necessary conditions of optimality, where the differential system

is governed by stochastic differential equations of the McKean-Vlasov type. This thesis

is structured around three chapters:

In the first chapter, we have presented the different class of stochastic control, such as

singular controls, relaxed controls, feedback controls, ergodic controls,..etc. . We briefly

write the different the well-known methods of solving a stochastic control problem, which

are the dynamic programming method and the Pontryagin maximum principle.

In the second chapter, we establish the maximum principle for the optimal control for

EDS of McKean-Vlasov type.These results have been proved by Andersson D, Djehiche

B, See [7].

In the third chapter, we study singular control problem, where control variable is a pair

(u(·), ξ(·)) of measurable A1 × A2−valued, Ft−adapted processes, such that ξ(·) is of

bounded variation, non-decreasing continuous on the left with right limits and ξ(0−) = 0.

Since dξ(t) may be singular with respect to Lebesgue measure dt, we call ξ(·) : the singular

part of the control and the process u(·) : its absolutely continuous part. In this chaptre,

we established a new set of necessary conditions of optimal singular control, where the

system is governed by stochastic differential equations EDSs.



In this work, the control domain is not assumed to be convex (i.e., the control domain is

a general action space). The derivatives with respect to measure is applied to establish

our new result. The results obtained in Chapter 4 are all new and are the subject of a

first article entitled:

L. Guenane, & M. Hafayed, & S. Meherrem, & S. Abbas: On optimal solutions of gen-

eral continuous-singular stochastic control problem of McKean-Vlasov type,

Journal: Mathematical Methods in the Applied Sciences, Doi.org/10.1002/mma.6392.,

Volume 43, Issue 10„ Pages 6498-6516 (2020).
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• (Ω,F ,P): probability space.

• {Ft}t≥0 : filtration.

•
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• Lp(F , ) : the set of Rn-valued F−measurable random variables X such that

E( |X|p) <∞.
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E( |X|p) <∞.

• LpF([0, T ] ,Rn) : the set of all (Ft)t≥0-adapted Rn-valued processes X such that

E
∫ T

0
|X(t)|p dt <∞.

• L∞F ([0, T ] ,Rn) : the set of all (Ft)t≥0-adapted Rn-valued processes X essentially

bounded processes.

• a.e.,: almost everywhere.

• a.s.,: almost surely.

• cadlag: right continuous with left limits.
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Introduction

It is well-known that control theory was founded by N. Wiener in 1948. After that,

this theory was greatly extended to various complicated settings and widely used in

sciences and technologies. Clearly, control means a suitable manner for people to change

the dynamics of a system. The modern optimal control theory has been well developed

since early 1960s, when Pontryagin et al., published their work on the maximum principle

and Bellman [12] put forward the dynamic programming method. Peng [60] obtained the

optimality stochastic maximum principle for the general case.

In this work, we consider the optimal stochastic control for systems governed by

stochastic differential equations of McKean-Vlasov type. The coefficients of the system

depend on the state of the solution process as well as of its probability law and the con-

trol variable. We study continuous-singular control problem, where control variable is a

pair (u(·), η(·)) of measurable A1×A2−valued, Ft−adapted processes, such that η(·) is of
bounded variation, non-decreasing continuous on the left with right limits and η(0−) = 0.

Since dη(t) may be singular with respect to Lebesgue measure dt, we call η(·) : the

singular part of the control and the process u(·) : its absolutely continuous part. More

precisely, we established a set of necessary conditions in the form of the Pontryagin’s

stochastic maximum of the McKean-Vlasov type for optimal continuous-singular control.

Recently, the main purpose of this thesis is to derive the necessary conditions for op-

timal continuous-singular control, where the differential system is governed by stochastic

11



Introduction 12

differential equations of the McKean-Vlasov type of the form:

dXu,η(t) = f
(
t,Xu,η(t), PXu,η(t), u(t)

)
dt+ σ

(
t,Xu,η(t), PXu,η(t), u(t)

)
dB(t)

+G(t)dη(t),

Xu,η(0) = x0,

(0.1)

The cost functional to be minimized over the class of admissible controls is also of McKean-

Vlasov type, which has the form

J (u(·), η(·)) = E
[∫ T

0
l(t,Xu,η(t), PXu,η(t), u(t))dt+ h(Xu,η(T ), PXu,η(t)) (0.2)

+
∫

[0,T ]
M(t)dη(t)

]
.

where B(·) is a Brownian motion defined on a complete probability space (Ω,F ,F,P) ,

and PXu,η(t) denotes the law of the random variable Xu,η.

The stochastic differential equations of McKean-Vlasov is very general, in the meaning

that the dependence of the coefficient on the law of the solution PXu,η(t) could be genuinely

nonlinear as an element of the space of probability measures. This kind of equations was

studied by Kac [53] as a stochastic model for the Vlasov-kinetic equation of plasma and

the study of which was initiated by McKean [54] to provide a rigorous treatment of special

nonlinear partial differential equations. We note that the Vlasov equation describes the

evolution of the system of particles in the force field F (t, x, p), which depends on time t,

position x, and momentum p.

Recently, the main purpose of this thesis is to prove the general McKean-Vlasov nec-

essary conditions of the optimal continuous-singular control without the convexity as-

sumption. Finally, we extend the maximum principle of Buckdahn et al., [11] to singular

control problems.

In this work, the control domain is not assumed to be convex (i.e., the control domain

is a general action space). The derivatives with respect to probability measure is applied

to derive our new maximum principle. This method was introduced by Lions [63]. The

main idea is to identify a distribution µ ∈ Q2 (Rn) with a random variable X ∈ L2(F ,Rn)

so that µ = PX .The results obtained are all new and are the subject of a first article by

Guenane et al:

Université Mohamed Khider de Biskra
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• On optimal solutions of general continuous-singular stochastic control problem of

McKean-Vlasov type”,

• Journal: Mathematical Methods in the Applied Sciences,

• Doi.org/10.1002/mma.6392.,

• Volume 43, Issue 10, Pages 6498-6516 (2020).

• Site: https://onlinelibrary.wiley.com/doi/10.1002/mma.6392

We note that, our work distinguishes itself from the existing ones in the following

aspects.

1. We consider the more general controlled nonlinear McKean-Vlasov type stochastic

system, where the coefficients of the equation depend on the state of the solution

process as well as of its probability measures.

2. We apply the first and second-order derivatives with respect to probability measures

to establish our Peng’s type necessary optimality conditions.

3. We study the general continuous-singular control problem, where the control domain

is not assumed to be convex.

4. The second-order derivative with respect to probability measures in Wasserstein

space is applied to establish our result without convexity conditions.

5. Our McKean-Vlasov control problem occur naturally in the probabilistic analysis

of financial optimization problems. Moreover, the above mathematical McKean-

Vlasov approaches play an important role in different fields of economics, finance,

physics, chemistry and game theory.

6. We extend the stochastic maximum principle of Buckdahn et al., [11] to continuous-

singular control problems.

Université Mohamed Khider de Biskra



Chapter 1

Stochastic optimal control problems

1.1 Formulation of the control problem

It is well-known that control theory was founded by N. Wiener in 1948. After that, this

theory was greatly extended to various complicated settings and widely used in sciences

and technologies. Clearly, control means a suitable manner for people to change the

dynamics of a system under consideration.

In this section, we present two mathematical formulations (strong and weak formula-

tions) of stochastic optimal control problems in the following two subsections, respectively.

Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be a given filtered probability space.

1.1.1 Stochastic process

Let T be a nonempty index set and (Ω,F ,P) a probability space. A family {X(t) : t ∈ T}
of random variables from (Ω,F ,P) to Rn is called a stochastic process. For any w ∈ Ω

the map t 7→ X (t, w) is called a sample path.

1.1.2 Natural fitration

Let X = (Xt, t ≥ 0) a stochastic process defined on the probability space (Ω,F ,P). The

natural filtration of X , denoted by FXt , is defined by FXt = σ (Xs, 0 ≤ s ≤ t). Also, we

called the filtaration generated by X.

1.1.3 Brownian motion

The stochastic process (B(t), t ≥ 0) is a brownian motion (standard) if:

1. P [B(0) = 0] = 1.

14



1.1. FORMULATION OF THE CONTROL PROBLEM 15

2. t→ B(t, w) is continuous.P−p.s.

3. ∀s ≤ t, B(t)−B(s) is normally distributed; center with variation (t− s) i.e

B(t)−B(s) ∼ N (0, t− s).

4. ∀n, ∀ 0 ≤ t0 ≤ t1 ≤ ... ≤ tn, the variables
(
Btn −Btn−1 , ..., Bt1−Bt0 , Bt0

)
are

independents. The following result gives special case of the Itô formula for jump

diffusions.

1.1.4 Integration by parts formula

Suppose that the processes xi(t) are given by: for i = 1, 2, t ∈ [0, T ] : dxi(t) = f (t, xi(t), u(t)) dt+ σ (t, xi(t), u(t)) dB(t)

xi(0) = 0.

Then we get

E (x1(T )x2(T )) = E
[∫ T

0
x1(t)dx2(t) +

∫ T

0
x2(t)dx1(t)

]

+ E
∫ T

0
σᵀ (t, x1(t), u(t))σ (t, x2(t), u(t)) dt.

1.1.5 Strong formulation

Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be a given filtered probability space satisfying the usual condi-

tion, on which an d-dimensional standard Brownian motion B(·) is defined, denote by A

the separable metric space, and T ∈ (0,+∞) being fixed.

Consider the following controlled stochastic differential equation:
dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dB(t),

x(0) = x0 ∈ Rn,

(1.1)

where

f : [0, T ]× Rn × U −→ Rn,

σ : [0, T ]× Rn × U −→ Rn×d,

and x(·) is the variable of state.

Université Mohamed Khider de Biskra



1.1. FORMULATION OF THE CONTROL PROBLEM 16

The function u(·) is called the control representing the action of the decision-makers

(controller). At any time instant the controller has some information (as specified by the

information field {Ft}t∈[0,T ]) of what has happened up to that moment, but not able to

foretell what is going to happen afterwards due to the uncertainty of the system (as a

consequence, for any t the controller cannot exercise his/her decision u(t) before the time

t really comes), This nonanticipative restriction in mathematical terms can be expressed

as "u(·) is {Ft}t∈[0,T ]−adapted".
The control u (·) is an element of the set

U [0, T ] = {u : [0, T ]× Ω −→ U such that u (·) is {Ft}t∈[0,T ] − adapted}.

We define the cost functional

J(u(·)) = E
[∫ T

0
l(t, x(t), u(t))dt+ h(x(T ))

]
, (1.2)

where
l : [0, T ]× Rn × U −→ R,

h : Rn −→ R.

Definition 1.1

Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be given satisfying the usual conditions and let B(·) be a

given d-dimensional standard {Ft}t∈[0,T ]-Brownian motion. A control u(·) is called an

admissible control, and (x(·), u(·)) an admissible pair, if

1. u(·) ∈ U ([0, T ]) ;

2. x(·) is the unique solution of equation (1.1)

l(·, x(·), u(·)) ∈ L1
F([0, T ];R) and h(x(T )) ∈ L1

F(Ω;R).

We denote by U [0;T ] the set of all admissible controls.

Our stochastic optimal control problem under strong formulation can be stated as

follows:

Université Mohamed Khider de Biskra



1.1. FORMULATION OF THE CONTROL PROBLEM 17

Problem 1.1
(SS) Minimize (1.2) over U ([0, T ]) . The goal is to find u∗(·) ∈ U ([0, T ]) (if it ever

exists), such that

J(u∗(·)) = inf
u(·)∈U([0,T ])

J(u(·)). (1.3)

For any u∗(·) ∈ U ([0, T ]) satisfying (1.3) is called an strong optimal control.

The corresponding state process x∗(·) and the state control pair (x∗(·), u∗(·)) are called
an strong optimal state process and an strong optimal pair, respectively.

In stochastic control problems, there exists for the optimal control problem another

formulation of a more mathematical aspect, it is the weak formulation of the stochastic

optimal control problem. Unlike in the strong formulation the filtered probability space(
Ω,F , {Ft}t∈[0,T ],P

)
on which we define the Brownian motion B (·) are all fixed, but it is

not the case in the weak formulation, where we consider them as a parts of the control.

1.1.6 Weak formulation

The strong formulation is the one that stems from the practical world, whereas the weak

formulation sometimes serves as an auxiliary but effective mathematical model aiming at

ultimately solving problems with the strong formulation.

Definition 1.2
We define a set of admissible control denoted by UB ([0, T ]) the set of 6-tuple π =(
Ω,F , {Ft}t∈[0,T ],P, B (·) , u (·)

)
satisfying the following conditions:

i) (Ω,F , {Ft}t≥0,P) is a filtered probability space satisfying the usual conditions;

ii) B(·) is anm-dimensional standard Brownian motion defined on (Ω,F , {Ft}t≥0,P) ;

iii) u(·) is an {Ft}t≥0-adapted process on (Ω,F ,P)taking values in U ;

iv) x(·) is the unique solution of equation (1.1) on (Ω,F , {Ft}t≥0,P) under u(·) and

some prescribed state constraints are satisfied;

v) l(·, x(·), u(·)) ∈ L1
F([0, T ];R) and h(x(T ) ∈ L1

FT (Ω;R). L1
F([0, T ];R) and L1

FT (Ω;R)

are defined on the given filtered probability space (Ω,F , {Ft}t≥0,P) associated

Université Mohamed Khider de Biskra



1.2. METHODS TO SOLVING OPTIMAL CONTROL PROBLEM 18

with the 6-tuple π is called weak-admissible control and (x(·), u(·)) an weak ad-

missible pair, if the set of all weak admissible controls is denoted by UB ([0, T ]).

Sometimes, might write u(·)) ∈ UB ([0, T ]) instead of
(
Ω,F , {Ft}t∈[0,T ],P, B (·) , u (·)

)
∈

UB ([0, T ]) .

Our stochastic optimal control problem under weak formulation can be formulated as

follows:

Problem 1.2
(WS) The objective is to minimize the cost functional given by equation (1.2) over

the of admissible controls UB ([0, T ]) . Namely, one seeks π∗(·) ∈ UB ([0, T ]) such that

J(π∗(·)) = inf
π(·)∈UB([0,T ])

J(π(·)).

1.2 Methods to solving optimal control problem

Two major tools for study an optimal control are Bellman’s dynamic programming method

and Pontryagin’s maximum principle.

1.2.1 Dynamic Programming Method

In this section, we are researching a valuable approach to solve optimal control problems,

utilizing the dynamic programming technique that R.Bellman originated in the early

1950s.

It is a mathematical technique for making a series of interrelated decisions that can be

extended to many optimization problems, namely optimal control problems. The basic

principle of this approach used for optimal control is to consider the family of optimal

control problems with distinct initial terms and states,to define relationships between

these problems through the so-called Hamilton-Jacobi-Bellman equation (HJB, for short)

which is a nonlinear first order in the deterministic case or second order in the stochastic

case of partial differential equation. If the HJB equation is resolvable (either analytically

or numerically), an optimal feedback control can be obtained by maximizing / minimizing

Université Mohamed Khider de Biskra



1.2. METHODS TO SOLVING OPTIMAL CONTROL PROBLEM 19

Hamiltonian or generalized Hamiltonian involved in the HJB equation. It’s the so-called

authentication technique. Notice that, in truth, this approach offers solutions to the entire

family of problems (with distinct initial terms and states).

However, there was a big downside in the classical dynamic programming approach:

it allowed the HJB equation to admit classical solutions, meaning that the solutions must

be smooth enough (to the order of the derivatives involved in the equation). In the early

1980s, Crandall and Lions implemented the so-called viscosity methods to address this

challenge.This latest paradigm is a kind of non-smooth approach to partial differential

equations, the core function of which is to substitute traditional derivatives with (set-

valued) super-/sub differentials while preserving the uniqueness of solutions under very

mild conditions. In the stochastic case where diffusion can degenerate, the HJB equation

may not necessarily have any classical solutions either.

The Bellman principle: Let T > 0 be given and let U be a metric space. For any

(s;x) ∈ [0;T )× Rn, consider the state equation

dx(s) = f(s, x(s), u(s))ds+ σ(s, x(s), u(s))dB(s), s ∈ [0, T ] . (1.4)

To ensure the existence of the solution to SDE-(1.4), the Borelian functions

f : [0, T ]× Rn × U −→ Rn

σ : [0, T ]× Rn × U −→ Rn×d

satisfy the following conditions:

|f(t, x, u)− f(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ C |x− y| ,

|f(t, x, u)|+ |σ(t, x, u)| ≤ C [1 + |x|] ,

for some constant C > 0.

The cost functional associated with (1.4) is the following:

J(t, x, u) = E
[∫ T

t
l(s, x(s), u(s))ds+ h(x (T ))

]
, (1.5)

where

l : [0, T ]× Rn × U −→ R,

h : Rn −→ R,
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be given functions.We have to impose integrability conditions on l and h in order for

the above expectation to be well-defined, e.g. a lower boundedness or quadratic growth

condition.

We denote by U [s;T ] the set of all 5-tuples (Ω,F ,P, B (·) , u (·)) satisfying the follow-

ing :

a) (Ω,F ,P) is complete probability space;

b) (Bt)t≥s is an m-dimensional standard Brownian motion defined on (Ω,F ,P) over

[s;T ] (with B(s) = 0 a:s:) ; and F st = σ {Bt : s ≤ r ≤ t} augmented by all P-nul

sets in F ;

c) u : [s;T ]× Ω→ U is an (F st )t≥s-adapted process on (Ω,F ,P) ;

d) under u(.), for any x ∈ Rnequation (1.4) admits a unique solution;

e) l(., x(.), u(.)) ∈ L1
F(0, T ;R) and h(x(T )) ∈ L1

F(Ω;R) are defined on
(
Ω,F , (F st )t≥s ,P

)
;

The objective is to maximize the gain function therefore we introduce the so-called

value function.

Definition 1.3
We define the value function of the original Problem

V (s, y) = inf
u(.)∈U([s,T ])

J(s, y, u(.)), ∀ (s, y) ∈ [0;T ]× Rn,

V (t, y) = h(y), ∀y ∈ Rn.

Note that the value function to be well defined J(s, y, u(.)) must be defined, i.e the

function f, σ, l and h satisfy the following condition (S1)

i) f, σ, l and h are uniformly continuous;

ii) there exists a constant L > 0 such that for :ϕ(t, x, u) = f(t, x, u), σ(t, x, u), l(t, x, u), h(x);

in addition the following condition (S2)

1. (U, d) is polish space (complete separable metric space).
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We say that u∗ ∈ U ([t, T ]) is an optimal control if

V (t, x) = J(t, x, u∗).

Theorem 1.1
Let (S1)-(S2)hold. Then for any (t, x) ∈ [0, T ]× Rn be given. Then we have

V (t, x) = sup
u∈U([t,T ])

E
[∫ t+h

t
l(s, x(s), u(s))dt+ V (t+ h, x(t+ h))

]
, for t ≤ t+ h ≤ T.

(1.6)

Proof : The proof of the dynamic programming principle is technical and has been studied

by different methods, we refer the reader to Yong and Zhou [89].

The Hamilton-Jacobi-Bellman equation

Proposition 1.1
Let (S1)-(S2) hold. Then the value function V (s, y) satisfies the following:

i) |V (s, y)| ≤ K(1 + |y|), ∀ (t, x) ∈ [0, T ]× Rn, K > 0.

ii) |V (s, y)− V (s∗, y∗)| ≤ K
{
|y − y∗|+ (1 + |y| ∨ |y∗|) |s− s∗| 12

}
, ∀ s, s∗ ∈ [0, T ] ,

y, y∗ × Rn, K > 0 (a ∨ f = max(a, f)).

iii) if V ∈ C1,2([0, T ]×Rn). Then V is a solution of a second-order partial differential

equation:


−v(t) + sup

u∈U
G(t, x, u,−vx,−vxx) = 0, (t, x) ∈ 0, T )× Rn,

v|t=T = h(x), x ∈ Rn,

(1.7)

where

G(t, x, u, p, P ) = 1
2tr(Pσ(t, x, u)σ(t, x, u)T ) (1.8)

+ (p, f(t, s, u))− f(t, x, u),

∀(t, x, u, p, P ) ∈ [0, T ]× Rn × U × Rn × Sn.

Université Mohamed Khider de Biskra



1.2. METHODS TO SOLVING OPTIMAL CONTROL PROBLEM 22

Equation (1.7) is called the Hamilton -Jacobi-Bellman equation, which is the infinites-

imal version of the dynamic programming principle. The function G(t, x, u, p, P ) defined

by (3.25) is called the generalized Hamiltonian.

Viscosity Solutions

The HJB equation generally does not admit regular solutions, i.e. which are not not in

C1,2 ([0, T ]× Rn) . Viscosity solutions introduced by Crandall and Lions (1983) remedy

this shortcoming.

Definition 1.4

1. A function v ∈ C([0, T ]× Rn) is called a viscosity sub-solution of (1.7) if

v(T, x) ≤ h(x), ∀x ∈ Rn,

and for ϕ ∈ C1,2 ([0, T ]× Rn) , whenever v − ϕ attains a local maximum at

(t, x) ∈ [0, T ]× Rn, we have

−ϕt(t, x) + sup
uεU

G(t, x, u,−ϕx(t, x),−ϕxx(t, x)) ≤ 0.

2. A function v ∈ C([0, T ]× Rn) is called a viscosity supersolution of (1.7) if

v(T, x) ≥ h(x), ∀x ∈ Rn,

and for ϕ ∈ C1,2 ([0, T ]× Rn) , whenever v − ϕ attains a local minimum at

(t, x) ∈ [0, T ]× Rn, we have

−ϕt(t, x) + sup
uεU

G(t, x, u,−ϕx(t, x),−ϕxx(t, x)) ≥ 0

3. A function v ∈ C([0, T ] × Rn) is both a viscosity sub-solution and viscosity

supe-rsolution of (1.7), then it is called a viscosity solution of (1.7).

Theorem 1.2
Let (S1)-(S2) hold. Then the value function V is a viscority solution of (1.7).
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The classical verification

The classical verification approach consists in finding a smooth solution to the HJB equa-

tion, and to check that this candidate, under suitable sufficient conditions, coincides with

the value function. This result is usually called a verification theorem and provides as

a byproduct an optimal control. It relies mainly on Itô’s formula. The assertions of a

verification theorem may slightly vary from problem to problem, depending on the re-

quired sufficient technical conditions. These conditions should actually be adapted to the

context of the considered problem. In the above context, a verification theorem is roughly

stated as follows:

Theorem 1.3
. Let (S1)-(S2) hold. Then the value function V is a viscority solution of the HJB

equation (1.8), so we have:

v(s, y) ≤ J(s, y, u(.)), ∀u(.) ∈ UB ([s, T ]) , ∀ (s, y) ∈ [0;T ]× Rn.

An admissible pair (x∗(·), u∗(·)) is an optimal pair for Cs,y if and only if

v(t, x∗(t)) = maxG(t, x∗(t), u,−vx(t, x∗(t)),−vxx(t, x∗(t)))

= G(t, x∗(t), u∗,−vx(t, x∗(t)),−vxx(t, x∗(t))).

A proof of this verification theorem can be found in book, by Yong & Zhou [89].

1.2.2 Pontryagin’s maximum principle

The seminal work on the stochastic maximum principle has been established by Kushner.

Since then, a lot of work has been done on this subject, including, in particular, those by

Bensoussan, Peng, and so on. The classic approach to optimization and control problems

is to guarantee that the required conditions are satisfied by an optimal solution. The

claim is to use an accurate calculus of the variations on the gain function J(t, x, .) as far

as the control variable is concerned, in order to derive the required condition of optimality.

The Maximum Principle, proposed by Pontryagin in the 1960s, specifies that the optimal

state trajectory must solve the Hamilton system along with the maximum condition of
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a function called the generalized Hamilton. In general, it should be easier to solve a

Hamilton than to solve the original control problem.

The original version of the Pontryagin Maximum Principle was derived for determinis-

tic concerns. (see Yong & Zhou [89]) As in the classic variance calculus, the basic concept

is to perturb optimal control and to use some kind of Taylor expansion of state trajectory

and objective functional around optimal control. By sending a perturbation to zero, one

obtains any inequality, and by duality, the maximum principle is articulated in terms of an

adjoint variable.In the 1970s, Bismut, Kushner, Bensoussan and Haussmann extensively

developed the first version of the stochastic maximum principle. However, at that time,

the results were basically obtained on the basis that there is no control on the coefficient

of diffusion. For instance, see Haussmann [52] examined the maximum transformation

principle of Girsanov and this limitation explains why this approach does not work with

control-dependent and degenerate diffusion coefficients. See also [3, 4, 22, 35, 48].

But, the first version of the stochastic maximum principle, where the diffusion coeffi-

cient depends directly on the control variable and the control domain is not convex, was

obtained by Peng who studied the second-order term in Taylor’s expansion of the pertur-

bation method resulting from the Itô integral. He then obtained the maximum principle

for potentially degenerating and controlling-dependent diffusion, which, in addition to

the first-order adjoint variable, includes the second-order adjoint variable. The adjoint

variables are defined by what is known today as backward stochastic differential equations

(BSDE). Bismut first suggested linear BSDE in 1973. We note Pardoux and Peng had the

uniqueness and existence theorem for solutions of nonlinear BSDE driven by Brownian

motion under the Lipschitz condition in 1990. Today, BSDE theory plays a vital role

not only in dealing with stochastic optimal control problems, but also in mathematical

science, especially in the hedging and non-linear pricing theory of imperfect markets.
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The maximum principle

We provide a sketch of how the maximum principle for a deterministic control problem is

derived. In this setting, consider the following stochastic controlled system
dx(t) = f(t, x(t), u(t))dt, t ∈ [0, T ] ,

x(0) = x0,

(1.9)

where

f : [0, T ]× R× U −→ R,

and the action space U is some subset of R. The objective is to minimize some cost

function of the form:

J(u (·)) =
∫ T

0
l(t, x(t), u(t)) + h(x (T )), (1.10)

where

l : [0, T ]× R× U −→ R,

h : R −→ R.

That is, the function l inflicts a running cost and the function h inflicts a terminal cost.

Any u∗ ∈ U [0, T ] satisfying

J(u∗ (·)) = inf
u
J(u (·)),

is called an optimal control.

We now assume that there exists a control (t) which is optimal. And we are going

to derive necessary conditions for optimality, for this we make small perturbation of the

optimal control. Where uε is the spike variation of u∗ defined as follows:

uε(t) =

 v for τ − ε ≤ t ≤ τ,

u∗(t) otherwise.
(1.11)

We denote by xε(t) the solution to (1.9) with the control uε(t). We set that x∗(t) and

xε(t) are equal up to t = τ − ε and that

xε(τ)− x∗(τ) = (f(τ, xε(τ), v)− f(τ, x∗(τ), u∗ (τ)))ε+ o (ε)

= (f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ)))ε+ o (ε) ,
(1.12)
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where the second equality holds since xε(τ) − x∗(τ) is of order ε. We look at the Taylor

expansion of the state with respect to ε. Let

z(t) = ∂

∂ε
xε(t) |ε=0,

i.e. the Taylor expansion of xε(t) is

xε(t) = x∗ (t) + z(t)ε+ o(ε). (1.13)

Then, by (1.12)

z (τ) = f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ)). (1.14)

Moreover, we can derive the following differential equation for z(t).

dz(t) = ∂

∂ε
dxε(t) |ε=0

= ∂

∂ε
f(t, xε(t), uε(t))dt |ε=0

= fx(t, xε(t), uε(t))
∂

∂ε
xε(t)dt |ε=0

= fx(t, x∗(t), u∗(t))z(t)dt,

where fx denotes the derivative of f with respect to x. If we for the moment assume that

l = 0, the optimality of u∗(t) leads to the inequality

0 ≤ ∂

∂ε
J(uε)

∣∣∣∣∣
ε=0

= ∂

∂ε
h (xε(T )) |ε=0

= hx (xε(T )) ∂

∂ε
xε(T ) |ε=0

= hx (x∗(T )) z(T ).

We shall use duality to obtain a more explicit necessary condition from this. To this end

we introduce the adjoint equation:
dΨ(t) = −fx(t, x∗(t), u∗(t))Ψ(t)dt, t ∈ [0, T ] ,

Ψ(T ) = hx(x∗(T )).

Then it follows that

d(Ψ(t)z(t)) = 0,

Université Mohamed Khider de Biskra



1.2. METHODS TO SOLVING OPTIMAL CONTROL PROBLEM 27

i.e. Ψ(t)z(t)) = constant. By the terminal condition for the adjoint equation we have

Ψ(t)z(t) = hx(x∗(T ))z(T ) ≥ 0, for all 0 ≤ t ≤ T.

In particular, by (1.14)

Ψ(τ) (f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ))) ≥ 0.

Since τ was chosen arbitrarily, this is equivalent to

Ψ(t)f(t, x∗(t), u∗(t)) = inf
v∈U

Ψ(t)f(t, x∗(t), v), for all 0 ≤ t ≤ T.

By repeating the calculations above for this two-dimensional system, one can derive the

necessary condition

H(t, x∗(t), u∗(t),Ψ(t)) = inf
v
H(t, x∗(t), v,Ψ(t)) for all 0 ≤ t ≤ T, (1.15)

where H is the so-called Hamiltonian (sometimes defined with a minus sign which turns

the minimum condition above into a maximum condition) :

H(x, u,Ψ) = l(x, u) + Ψf(x, u),

and the adjoint equation is given by
dΨ(t) = −(lx(t, x∗(t), u∗(t)) + fx(t, x∗(t), u∗(t))Ψ(t))dt,

Ψ(T ) = hx(x∗(T )).
(1.16)

The minimum condition (1.15) together with the adjoint equation (1.16) specifies the

Hamiltonian system for our control problem.

The stochastic maximum principle

Stochastic control is the extension of optimal control to problems where it is of importance

to take into account some uncertainty in the system. One possibility is then to replace

the differential equation by an SDE:

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t))dB(t), t ∈ [0, T ] , (1.17)
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where f and σ are deterministic functions and the last term is an Itô integral with respect

to a Brownian motion B defined on a probability space
(
Ω,F , {Ft}t∈[0,T ],P

)
.

More generally, the diffusion coefficient σ may has an explicit dependence on the

control: t ∈ [0, T ] .

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dB(t), (1.18)

The optimal control problem we are concerned with is to minimize the following cost

functional over U [0, T ]:

J(u (·)) = E
[∫ T

0
l(t, x(t), u(t)) + h(x (T ))

]
.

For the case (1.17) the adjoint equation is given by the following Backward SDE:

−dΨ(t) = {fx(t, x∗(t), u∗(t))Ψ(t) + σx(t, x∗(t))Q(t)

+(lx(t, x∗(t), u∗(t))}dt−Q(t)dB(t),

Ψ(T ) = hx(x∗(T )).

(1.19)

A solution to this backward SDE is a pair (Ψ(t), Q(t)) which fulfills (1.19). The Hamil-

tonian is

H(x, u,Ψ(t), Q(t)) = l(t, x, u) + Ψ(t)f(t, x, u) +Q(t)σ(t, x),

and the maximum principle reads for all 0 ≤ t ≤ T,

H(t, x∗(t), u∗(t),Ψ(t), Q(t)) = inf
u∈U

H(t, x∗(t), u,Ψ(t), Q(t)) P− a.s. (1.20)

Noting that there is also third case: if the state is given by (1.18) but the action space

U is assumed to be convex, it is possible to derive the maximum principle in a local form.

This is accomplished by using a convex perturbation of the control instead of a spike

variation, see Bensoussan 1983 [9]. The necessary condition for optimality is then given

by the following: for all 0 ≤ t ≤ T

E
∫ T

0
Hu(t, x∗(t), u∗(t),Ψ∗(t), Q∗(t)) (u− u∗(t)) ≥ 0.
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1.3 Some classes of stochastic controls

Let (Ω,F ,Ft≥0, P ) be a complete filtred probability space.

1.3.1 Admissible control

An admissible control is Ft-adapted process u(t) with values in a borelian A ⊂ Rn

U := {u(·) : [0, T ]× Ω→ A : u(t) is Ft-adapted} . (1.21)

1.3.2 Optimal control

The optimal control problem consists to minimize a cost functional J(u) over the set of

admissible control U . We say that the control u∗(·) is an optimal control if

J(u∗(t)) ≤ J(u(t)), for all u(·) ∈ U .

1.3.3 Near-optimal control

Let ε > 0, a control is a near-optimal control (or ε-optimal) if for all control u(·) ∈ U we

have

J(uε(t)) ≤ J(u(t)) + ε. (1.22)

See Yong & Zhou [89].

1.3.4 Singular control

An admissible control is a pair (u(·), ξ(·)) of measurable A1 × A2−valued, Ft−adapted
processes, such that ξ(·) is of bounded variation, non-decreasing continuous on the left

with right limits and ξ(0−) = 0. Since dξ(t) may be singular with respect to Lebesgue

measure dt, we call ξ(·) the singular part of the control and the process u(·) its absolutely
continuous part, see [3, 4, 22, 35, 48].
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1.3.5 Feedback control

We say that u (·) is a feedback control if u (·) depends on the state variable X(·). If FXt
the natural filtration generated by the process X, then u (·) is a feedback control if u (·)
is FXt −adapted.

1.3.6 Impulsive control

Impulse control: Here one is allowed to reset the trajectory at stopping times (τi) from

Xτi− (the value immediately before i) to a new (non-anticipative) value Xτi , resp., with an

associated cost L
(
Xτi− , Xτi

)
. The aim of the controlled is to minimizes the cost functional:

E
∫ T

0
exp

[
−
∫ t

0
C(X(s), u(s))ds

]
K(X(t), u(t))

+
∑
τi<T

exp
[
−
∫ τi

0
C(X(s), u(s))ds

]
h(Xτ , Xτi−)

+ exp
[
−
∫ τi

0
C(X(s), u(s))ds

]
h(X(T )).

1.3.7 Ergodic control

Some stochastic systems may exhibit over a long period a stationary behavior character-

ized by an invariant measure. This measure, if it does exists, is obtained by the average

of the states over a long time. An ergodic control problem consists in optimizing over

the long term some criterion taking into account this invariant measure. (See Pham [69],

Borkar [16]). The cost functional is given by

lim sup
T→+∞

1
T
E
∫ T

0
f(x(t), u(t))dt.

1.3.8 Robust control

In the above formulated problems, the dynamics of the control system are assumed to be

known and fixed. Robust control theory is a method to measure the performance changes

of a control system with changing system parameters. This is of course important in

engineering systems, and it has recently been used in finance in relation with the theory
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of risk measure. Indeed, it is proved that a coherent risk measure for an uncertain payoff

x(T ) at time T is represented by :

ρ(−X(t)) = sup
Q∈S

EQ(X(T )),

where S is a set of absolutely continuous probability measures with respect to the original

probability P.

1.3.9 Partial observation control problem

It is assumed so far that the controller completely observes the state system. In many real

applications, he is only able to observe partially the state via other variables and there

is noise in the observation system. For example in financial models, one may observe the

asset price but not completely its rate of return and/or its volatility, and the portfolio

investment is based only on the asset price information. We are facing a partial observation

control problem. This may be formulated in a general form as follows:

We have a controlled signal (unobserved) process governed by the following SDE:

dx (t) = f (t, x (t) , y (t) , u (t)) dt+ σ (t, x (t) , y (t) , u (t)) dB (t) ,

and

dy (t) = h (t, x (t) , y (t) , u (t)) dt+ h (t, x (t) , y (t) , u (t)) dB (t) ,

where B (t) is another Brownian motion, eventually correlated with B (t) . The control

u(t) is adapted with respect to the filtration generated by the observation F Y
t and the

functional to optimize is :

J (u (·)) = E
[
h (x (T ) , y(T )) +

∫ T

0
h (t, x (t) , y(t), u (t)) dt

]
.

1.3.10 Random horizon

In classical problem, the time horizon is fixed until a deterministic terminal time T . In

some real applications, the time horizon may be random, the cost functional is given by

the following:

J (u (·)) = E
[
h (x (τ)) +

∫ τ

0
h (t, x (t) , y(t), u (t)) dt

]
,

where τ s a finite random time.
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1.3.11 Relaxed control

The idea is then to compact the space of controls U by extending the definition of controls

to include the space of probability measures on U . The set of relaxed controls µt (du) dt,

where µt is a probability measure, is the closure under weak* topology of the measures

δu(t)(du)dt corresponding to usual, or strict, controls. This notion of relaxed control is

introduced for deterministic optimal control problems in Young (Young, L.C. Lectures on

the calculus of variations and optimal control theory, W.B. Saunders Co., 1969.) (See

Borkar [16]).
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Chapter 2

Maximum Principle for SDE of

mean-field type

In this chapter, we presente the stochastic maximum principle for optimal control, where

the system is governed by stochastic differential equations SDEs of mean-field type.

the control domain is assumed to be convex. this result was introduced by Anderson &

Djehiche [7].

2.1 Formulation of the Problem

Let T > 0 be a fixed time horizon and (Ω,F ,Ft,P) be a filtered probability space satisfying

the usual conditions, on which a standard Brownian motion B = (Bt)t≥0 is defined. We

assume that (Ft)t≥0 is the natural filtration of B augmented by P-null sets of F .
We consider the following stochastic differential equation

dx(t) = f (t, x(t),EΨ (x(t)) , u(t)) dt+ σ (t, x(t),EΦ (x(t)) , u(t)) dBt,

x (0) = x0,

(2.1)

where,

f : [0, T ]× R× R× U → R,

Ψ : R→ R,

σ : [0, T ]× R× R× U → R,

Φ : R→ R.

The action space, U , is a non-empty, closed and convex subset of R, and U is the class of

measurable, Ft -adapted and square integrable processes u : [0, T ]× Ω→ U .

33



2.1. FORMULATION OF THE PROBLEM 34

We denote the set of all admissible controls by U [0, T ].

The optimal control problem we are concerned with is to minimize the following cost

functional over U [0, T ] :

J (u) = E
(∫ T

0
l (t, x(t),Eϕ (x(t)) , u(t)) dt+ h (xT ,Eχ (T ))

)
, (2.2)

where,

h : R× R→ R,

χ : R→ R,

l : [0, T ]× R× R× U → R,

ϕ : R→ R.

The following assumptions will be in force throughout this chapter.

(H1) Ψ,Φ, χ and ϕ are continuously differentiable. h is continuously differentiable with

respect to (x, y). f, σ, l are continuously differentiable with respect to (x, y, v).

(H2) All the derivatives are Lipschitz continuous and bounded.

(H3) The function h is convex in(x, y) .

(H4) The Hamiltonian is convex in (x, y, υ) .

(H5) The functions Ψ,Φ, ϕ and χ are convex.

(H6) The functions fy, σy, ly and hy are nont-negative.

We note that x denotes the state variable, y the ‘expected value’, and υ the control

variable.

Under the above assumptions (H1) , (H2), the SDE (2.1) has a unique strong solution.

The optimal control problem is to minimize the functional J (·) over U .

A control that solves this problem is called optimal. We denote for any process ϕt, such

that

|ϕ|∗,2T = sup
t∈[0,T ]

|ϕ(t)|2 .

fx, fy, fυ denotes the derivative of f with respect to the state trajectory, the ‘expected

value’ and the control variable, respectively, and similarly for the other functions.

Finally, we denote by x(t) and u∗(t) the optimal trajectory and control, respectively.
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2.2 Necessary conditions for optimality

In this section, we state the conditions necessary for optimality in the form of a maximum

principle, we can use the convex perturbation method of optimal control.

2.2.1 Taylor Expansions

Let x(t) denote the state trajectory corresponding to the following perturbation :

uθ(t) = u∗(t) + θυ(t), υt ∈ U.

We denote by

f̂ (t) = f
(
t, x(t),EΨ̂ (t) , u∗(t)

)
,

Ψ̂ (t) = Ψ (x(t)) ,

and similarly for the other functions and their derivatives.

The objective of this section is to determine the Gateaux derivative of the cost functional

in terms of the Taylor expansion of the state process.

Lemma 2.1
Let 

dz(t) =
(
f̂x (t) z(t) + f̂y (t)E

(
Ψ̂x (t) z(t)

)
+ f̂υ (t) υ(t)

)
dt

+
(
σ̂x (t) z(t) + σ̂y (t)E

(
Φ̂t (t) z(t)

)
+ σ̂υ (t) υ(t)

)
dBt,

z0 = 0.

(2.3)

Then,it holds that,

lim
θ→0

E
∣∣∣∣∣x(t)− x̂(t)

θ
− z(t)

∣∣∣∣∣
∗,2

T

= 0.

Proof : Since the coefficients in (2.3 ) are bounded, it follows from Proposition (3.53 ) in

[[73]], that there exists a unique solution such that

E
(

sup
t∈[0,T ]

| z(t) |p
)
<∞. ∀p ∈ N+. (2.4)

we define yθ(t) = x(t)− x̂(t)
θ

− z(t) and noting ( 2.4 ), it is also clear that

E
(

sup
t∈[0,T ]

| yθ(t) |p
)
<∞ ∀p ∈ N+. (2.5)
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we have yθ0 = 0 et yθ(t) fulfills the following SDE

dyθ(t) = 1
θ

(
f
(
x̂(t) + θ

(
yθ(t) + z(t)

)
,E(Ψ

(
x̂(t) + θyθ(t) + z(t)

)
, û(t) + θυ(t)

)
− f̂ (t)

)
dt

−
(
f̂x (t) z(t) + f̂y (t)E

(
Ψ̂x (t) z(t)

)
+ f̂υ (t) υ(t)

)
dt

+ 1
θ

(
σ
(
x̂(t) + θ

(
yθ(t) + z(t)

)
,E(Φ

(
x̂(t) + θ

(
yθ(t) + z(t)

))
, û(t) + θυt

)
− σ̂ (t)

)
dBt

−
(
σ̂x (t) z(t) + σ̂y (t)E

(
Φ̂x (t) z(t)

)
+ σ̂υ (t) υt

)
dBt. (2.6)

Noting that

d

dλ
f
(
·,E

(
Ψ
(
x̂(t) + λθ

(
yθ(t) + z(t)

)))
, ·
)

= fy
(
·,E

(
Ψ
(
x̂(t) + λθ

(
yθ(t) + z(t)

)))
, ·
)
E
(
Ψx

(
x̂(t) + λθ

(
yθ(t) + z(t)

)) (
yθ(t) + z(t)

))
θ.

We proceed as in [10], and write

1
θ

(
f
(
x̂(t) + θ

(
yθ(t) + z(t)

)
,EΨ

(
x̂(t) + θ

(
yθ(t) + z(t)

))
, û(t) + θυt

)
− f̂ (t)

)
dt

=
∫ 1

0
fx
(
x̂(t) + λθ

(
yθ(t) + z(t)

)
,EΨ

(
x̂(t) + λθ

(
yθ(t) + z(t)

))
, û(t) + λθυt

) (
yθ(t) + z(t)

)
dλ

+
∫ 1

0
fy
(
x̂(t) + λθ

(
yθ(t) + z(t)

)
,EΨ

(
x̂(t) + λθ

(
yθ(t) + z(t)

))
, û(t) + λθυt

)
.E
(
Ψx

(
x̂(t) + λθ

(
yθ(t) + z(t)

)) (
yθ(t) + z(t)

))
dλ

+
∫ 1

0
fυ
(
x̂(t) + λθ

(
yθ(t) + z(t)

)
,EΨ

(
x̂(t) + λθ

(
yθ(t) + z(t)

))
, û(t) + λθυt

)
υtdλ.

(2.7)

Denoting x(t) = x̂(t) + λθ
(
yθ(t) + z(t)

)
and uλ,θ(t) = û(t) + λθυt for notational conve-

nience, we may insert (2.7) into (3.51) to obtain the equality

1
θ

(
f
(
x̂(t) + θ

(
yθ(t) + z(t)

)
,EΨ

(
x̂(t) + θ

(
yθ(t) + z(t)

))
, û(t) + θυt

)
− f̂ (t)

)
−
(
f̂x (t) z(t) + f̂y (t)E

(
Ψ̂x (t) z(t)

)
+ f̂υ (t) υt

)
=
∫ 1

0
fx
(
x(t),EΨ

(
x(t)λ,θ

)
, uλ,θ(t)

)
yθ(t)dλ

+
∫ 1

0
fy
(
xλ,θ(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

)
E
(
Ψx

(
xλ,θ(t)

)
yθ(t)

)
dλ

+
∫ 1

0

(
fx
(
xλ,θ(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

)
− f̂x (t)

)
z(t)dλ

+
∫ 1

0

(
fy
(
xλ,θ(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

)
E
(
Ψx

(
xλ,θ(t)

)
z(t)

)
− f̂y (t)E

(
Ψ̂x (t) z(t)

))
dλ

+
∫ 1

0

(
fυ
(
xλ,θ(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

)
− f̂υ (t)

)
υtdλ. (2.8)
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The three last terms tend to 0 in L2 (Ω× [0, T ]) as θ → 0. To see this, we rewrite the

second to last term above as

It :=
∫ 1

0

(
fy
(
xλ,θ(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

)
− fy

(
x̂(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

))
E
(
Ψx

(
xλ,θ(t)

)
z(t)

)
dλ

+
∫ 1

0

(
fy
(
x̂(t),EΨ

(
xλ,θ(t)

)
, uλ,θ(t)

)
− fy

(
x̂(t),EΨ (x̂(t)) , uλ,θ(t)

))
E
(
Ψx

(
xλ,θ(t)

)
z(t)

)
dλ

+
∫ 1

0

(
fy
(
x̂(t),EΨ (x̂(t)) , uλ,θ(t)

)
− f̂y (t)

)
E
(
Ψx

(
xλ,θ(t)

)
z(t)

)
dλ

+ f̂y (t)
∫ 1

0

(
E
(
Ψx

(
xλ,θ(t)

)
z(t)

)
− E

(
Ψ̂x (t) z(t)

))
dλ.

By using the Lipschitz continuity and boundedness of the functions as well as Cauchy-

Schwarz inequality, we obtain the following estimate of the L2 (Ω× [0, T ]) norm of the

expression above (K > 0 is a constant).

E
∫ T

0
| It |2 dt ≤ K


(∫ T

0

∫ 1

0
E | λθ

(
yθ(t) + z(t)

)
|4 dλdt

) 1
2
(∫ T

0
E | z(t) |4 dt

) 1
2

+
(∫ T

0

∫ 1

0
E | λθυt |4 dλdt

) 1
2
(∫ T

0
E | z(t) |4 dt

) 1
2
 ,

which converges to 0 as θ → 0 since the expected values are finite. Similar estima-

tions for the thirdand fifth terms in (2.8) show that these terms also converge to 0 in

L2 (Ω× [0, T ])). Now, rewriting the diffusion part in (3.51) in the same way and using

the Burkholder-Davis-Gundy inequality, we have bythe boundedness of the functions and

Jensen’s inequality that

E
∣∣∣yθ(T )

∣∣∣∗,2 ≤ K (∫ T

0
E
∣∣∣yθ(t)∣∣∣∗,2 dt+

∫ T

0
sup
s∈[0,t]

∣∣∣E (yθ(s))∣∣∣2 dt)+ ρθ

≤ K
∫ T

0
E
∣∣∣yθ(t)∣∣∣∗,2 dt+ ρθ,

where K > 0 is a constant andρθ → 0 as θ → 0. Applying Gronwall’s lemma gives the

result.

Lemma 2.2
The Gateaux derivative of the cost functional J is given by

d

dθ
J (û+ θυ)

∣∣∣∣∣
θ=0

= E
(∫ T

0

(
l̂x (t) z(t) + l̂y (t)E (ϕ̂x (t) z(t)) + l̂υ (t) υt

)
dt

)

+ E
(
ĥx (T ) zT + ĥy (T )E (χ (T ) zT )

)
.
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Proof : By the definition of the derivative of Gateaux, and by using the notation

h (xT ) = h (xT ,E (χ (xT ))) , we have

d

dθ
E
(
h
(
xθT

))∣∣∣∣
θ=0

= lim
θ→0

E

h
(
xθT

)
− h (x̂T )
θ


= lim

θ→0
E
∫ 1

0
hx
(
x̂T + λ

(
xθT − x̂T

)) xθT − x̂T
θ

dλ

+ E
∫ 1

0
hy
(
x̂T + λ

(
xθT − x̂T

))
E
(
χx
(
x̂T + λ

(
xθT − x̂T

)) xθT − x̂T
θ

)
dλ

= E
(
ĥx (T ) zT + ĥy (T )E (χ̂x (T ) zT )

)
.

Similarly one can show that

d

dθ
E
(∫ T

0
l
(
xθ(t), uθ(t)

)
dt

)∣∣∣∣∣
θ=0

= E
(∫ T

0

(
l̂x (t) z(t) + l̂y (t)E (ϕ̂x (t) z(t)) + l̂υ (t) υt

)
dt

)
.

From the definitions of the cost function and the perturbed control, we see that this

proves the lemma

2.2.2 Adjoint equations and duality

In this subsection , we introduce the mean-field type adjoint equations:

dp̂(t) = −
(
f̂x (t) p̂(t) + σ̂x (t) q̂(t) + l̂x (t)

)
dt+ q̂(t)dBt

−
(
E
(
f̂y (t) p̂(t)

)
Ψ̂x (t) + E (σ̂y q̂(t)) Φ̂x (t) + E

(
l̂y (t)

)
ϕ̂x (t)

)
dt,

p̂T = l∗x (T ) + E
(
l∗y (T )

)
χ̂x (T ) .

(2.9)

This equations reduces to the standard one, when the coefficients do not depend explicitly

on the marginal law of the underlying diffusion. Under the assumptions (H1)− (H2), this

is a linear mean-field backward SDE with bounded coefficients and it follows from [5],

Theorem 3.1, that it has a unique Ft-adapted solution (p; q) such that

E |p̂|∗,2T + E
∫ T

0
|q̂(t)|2 dt < +∞. (2.10)

The duality relations between p and z displayed in the next lemma, follow immediately

from integration by parts via Ito’s formula.
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Lemma 2.3
We have

E (p̂T zT ) = E
(∫ T

0

(
p̂(t)f̂υ (t) υt − z(t)l̂x (t)− z(t)E

(
l̂y (t)

)
ϕ̂x (t) + q̂(t)σ̂υ (t) υt

)
dt

)
.

Proof : In view of ( 2.3 ) and ( 2.9), applying Ito’s formula to p̂tz(t),

p̂(t)z(t) =
∫ T

0

(
p̂(t)f̂x (t) z(t) + p̂(t)f̂y (t)E (Ψx (t) z(t)) + p̂(t)f̂υ (t) υt − z(t)f̂x (t) p̂(t)

− z(t)E
(
f̂y (t) p̂(t)

)
Ψ̂x (t)− z(t)σ̂x (t) q̂(t)− z(t)E (σ̂y (t) q̂(t)) Φ̂x (t)− z(t)l̂x (t)

−z(t)E
(
l̂y (t)

)
ϕ̂x (t) + q̂(t)σ̂x (t) z(t) + q̂(t)σ̂y (T )E

(
Φ̂t (t) z(t)

)
+ q̂(t)σ̂υ (t) υt

)
dt+Mt,

where Mt is a zero-mean martingale. By taking expectations we are left with

E (p̂T zT ) = E
∫ T

0

(
p̂(t)f̂υ (t) υt − z(t)ĥx (t)− z(t)E

(
ĥy (t)

)
ϕ̂x (t) + q̂(t)σ̂υ (t) υt

)
dt,

Let us introduce the Hamiltonian :

H (t, x, µ, u, p, q) = l
(
t, x,

∫
ϕdµ, µ

)
+ f

(
t, x,

∫
Ψdµ, u

)
p

+ σ
(
t, x,

∫
Φdµ, u

)
q.

To ease the notation, whenever x is a random variable whose probability law is µ, we use

the following notation for the Hamiltonian.

H (t, x, µ, u, p, q) := l (t, x,E (ϕ (x)) , u) + f (t, x,E (Ψ (x)) , u) p

+ σ (t, x,E (Φ (x)) , u) q.

By combining Lemma 2.3 with Lemma 2.2 and by observing that

E (p̂T zT ) = E
(
l̂x (T ) zT + l̂y (T )E (χ̂x (T ) zT )

)
.

We obtain the following result.
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Corollary 2.1
The Gateaux derivative of the cost functional can be expressed in terms of the Hamil-

tonian H in the following way

d

dθ
J (û+ θυ)

∣∣∣∣∣
θ=0

= E
(∫ T

0

(
l̂υ (t) υt + p̂(t)f̂υ (t) υt + q̂(t)σ̂υ (t) υt

)
dt

)

= E
(∫ T

0

d

dυ
H (t, x̂(t), û(t), p̂(t), q̂(t)) υtdt

)
.

2.2.3 Maximum principle for stochastic optimal control

Since U is convex, we may choose the following convex perturbation

uθ(t) = u∗(t) + θ (υt − u∗(t)) ∈ U for θ ∈ [0, 1] ,

The control uθ is called perturbed control. Since the control u∗ is optimal, we have the

inequality

d

dθ
J (u∗ + θ (υ − u∗))

∣∣∣∣∣
θ=0

= E
(∫ T

0

d

dυ
H (t, x̂(t), u∗(t), p̂(t), q̂(t)) (υt − u∗(t)) dt

)
≥ 0.

As in [3], we can reduce this to

d

dυ
H (t, x̂(t), u∗(t), p̂(t), q̂(t)) (υt − u∗(t)) ≥ 0,

a.e., P-a.s., for all υ ∈ U .
The following theorem is the main result of this section.

Theorem 2.1 (Stochastic maximum principe)
Under assumptions (H1)−(H2), if û(t) is an optimal solution of control problem, then

there exists a pair (p̂(t), q̂(t)) of adapted processes which satisfies (2.9) and (2.10), such

that

d

dυ
H (t, x̂(t), û(t), p̂(t), q̂(t)) (υt − û(t)) ≥ 0, P− a.s, for all t ∈ [0, T ] . (2.11)
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2.3 Sufficient conditions for optimality

In this section, we state the sufficient optimality conditions, with the same notations as

those of the previous section.

Theorem 2.2
Let Assumptions (H1)− (H6) hold. Let (x̂, û) be an admissible pair û ∈ U , and such

that there exist solutions p̂(t), q̂(t) to the adjoint equation (2.9). Then, if

H (t, x̂(t), û(t), p̂(t), q̂(t)) = inf
υ∈U

H (t, x̂(t), υ, p̂(t), q̂(t)) P− p.s, ∀t ∈ [0, T ] , (2.12)

so û is an optimal control.

Proof : We supposons f (t) = f (t, x(t),E (Ψ (x(t))) , u(t)) and the same for the other func-

tions. Moreoverwe denoteH (t) = H (t, x(t), u(t), p̂(t), q̂(t)) and Ĥ (t) =H (t, x̂(t), û(t), p̂(t), q̂(t)).

Since h and χ are convex and hy ≥ 0 it holds that

E
(
ĥ− h

)
≤ E

(
ĥx (T ) (x̂T − xT ) + ĥy (T )E (χ̂ (T )− χ (T ))

)
≤ E

(
ĥx (T ) (x̂T − xT ) + ĥy (T )E (χ̂x (T ) . (x̂T − xT ))

)
= E (p̂T (x̂T − xT )) .

By using the formula of integration by part, we obtain by taking the expectations

E (p̂T (x̂T − xT ))

= E
(∫ T

0
(x̂(t)− x(t)) dp̂(t) +

∫ T

0
p̂(t)d (x̂(t)− x(t)) +

∫ T

0
q̂(t) (σ̂ (t)− σ (t)) dt

)

= −E
∫ T

0
(x̂(t)− x(t))

(
f̂x (t) p̂(t) + E

(
f̂y (t) p̂(t)

))
Ψ̂x (t) + σ̂x (t) q̂(t)

+ E (σ̂y (t) q̂(t)) Φ̂x (t) + l̂x (t) + E
(
l̂y (t)

)
ϕ̂x (t) dt

+ E
∫ T

0
p̂(t)

(
f̂ (t)− f (t)

)
dt+ E

∫ T

0
q̂(t) (σ̂ (t)− σ (t)) dt

= −E
∫ T

0
(x̂(t)− x(t))

(
f̂x (t) p̂(t) + E

(
f̂y (t) p̂(t)

)
Ψ̂x (t) + σ̂x (t) q̂(t)

+ E (σ̂y (t) q̂(t)) Φ̂x (t) + l̂x (t) + E
(
l̂y (t)

)
ϕ̂x (t)

)
dt

+ E
∫ T

0

(
Ĥ (t)−H (t)

)
dt− E

∫ T

0

(
l̂ (t)− l (t)

)
dt,

where, in the last step, we have used the definition of the Hamiltonian H. Next, we

differentiate the Hamiltonian and use the convexity of the functions to get for all t ∈
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[0.T ], P− p.s,

Ĥ (t)−H (t)

≤ Ĥx (t) (x̂(t)− x(t)) + l̂y (t)E (ϕ̂ (t)− ϕ (t)) + f̂y (t)E
(
Ψ̂ (t)−Ψ (t)

)
p̂(t)

+ σ̂y (t)E
(
Φ̂ (t)− Φ (t)

)
q̂(t) + Ĥu (t) (û(t)− u(t))

≤ Ĥx (t) (x̂(t)− x(t)) + l̂y (t)E (ϕ̂x (t) (x̂(t)− x(t))) + f̂y (t)E
(
Ψ̂x (t) (x̂(t)− x(t))

)
p̂(t)

+ σ̂y (t)E
(
Φ̂x (t) (x̂(t)− x(t))

)
q̂(t) + Ĥu (t) (û(t)− u(t))

≤ Ĥx (t) (x̂(t)− x(t)) + l̂y (t)E (ϕ̂x (t) (x̂(t)− x(t))) + f̂y (t)E
(
Ψ̂x (t) (x̂(t)− x(t))

)
p̂(t)

+ σ̂y (t)E
(
Φ̂x (t) (x̂(t)− x(t))

)
q̂(t),

where in the last step we have used that Ĥu (û(t)− u(t)) ≤ 0 due to the minimum

condition (2.12 ). Combining the inequalities above gives us

J (û)− J (u)

= E
∫ T

0

(
l̂ (t)− l (t)

)
dt+ E

(
ĥ (T )− h (T )

)
≤ E

∫ T

0

(
Ĥ (t)−H (t)

)
dt− E

∫ T

0
(x̂(t)− x(t))

(
f̂x (t) p̂(t) + E

(
f̂y (t) p̂(t)

)
Ψ̂x (t)

+ σ̂x (t) q̂(t) + E (σ̂y (t) q̂(t)) Φ̂x (t) + l̂x (t) + E
(
l̂y (t)

)
ϕ̂x (t)

)
dt

= E
∫ T

0

(
Ĥ (t)−H (t)

)
dt− E

∫ T

0
(x̂(t)− x(t))

(
Ĥx (t) + E

(
f̂y (t) p̂(t)

)
Ψ̂x (t)

+ E (σ̂y (t) q̂(t) (t)) Φ̂x (t) + E
(
l̂y (t)

)
ϕ̂x (t)

)
dt

≤ 0,

Finaly, we deduce

J (û) ≤ J (u) .

And thus, the control u∗ is optimal.
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Chapter 3

Optimal singular control problem for

general McKean-Vlasov differantial

equation

3.1 Introduction and brief history

In this chapter, we establish a general necessary optimality conditions for stochastic

continuous-singular control of McKean-Vlasov type equations. The coefficients of the

state equation depend on the state of the solution process as well as of its probability

law and the control variable. The coefficients of the system are nonlinear and depend

explicitly on the absolutely continuous component of the control. The control domain

under consideration is not assumed to be convex.

The proof of our general maximum principle is based on the first and second-order

derivatives with respect to measure in Wasserstein space of probability measures, and by

using variational mehtod with some estimations.

Stochastic differential equations of the McKean-Vlasov type are Itô’s stochastic dif-

ferential equations, where the coefficients of the state equation depend on the state

of the solution process as well as of its probability law. Optimal control problems

for McKean-Vlasov type SDEs have been studied by many authors; see, for example,

[11, 82, 74, 31, 48, 37, 49, 13, 15, 64, 75, 20, 70, 50, 23]. A Peng’s type necessary

conditions in the form of maximum principle for SDEs of mean-field type have proved by

Buckdahn et al. [11]. The necessary optimality conditions for SDEs has been established

by Wang et al. [82]. Stochastic optimal control of mean-field jump-diffusion systems with

delay has been studied by Meng and Shen [74]. The necessary and sufficient conditions for

mean-field SDEs governed by Teugels martingales associated to Lévy process have been

43



3.1. INTRODUCTION AND BRIEF HISTORY 44

studied in [31, 48]. The singular optimal control for mean-field SDEs has been inves-

tigated by Hafayed [37]. Maximum principle for McKean-Vlasov FBSDEs of mean-field

type has been studied by Hafayed et al. [49]. The mean-field maximum principle for SDEs

has been established in Buckdahn et al. [15]. A general mathematical modeling approach

for high-dimensional systems corresponding to a large number of particles has been intro-

duced by Lazry and Lions [64]. The maximum principle for mean-field stochastic delay

differential equations and its application to finance have been investigated in Shen et al.

[75]. In 1990, a general maximum principle for optimal stochastic control has been estab-

lished in a recent work by Peng [60]. Controlled McKean-Vlasov type forward-backward

stochastic differential equations (FBSDEs) have been studied by Carmona and Delarue.

[20]. Linear quadratic optimal control problem for conditional McKean-Vlasov equation

with random coefficients with applications has been investigated by Pham [70]. Singular

optimal control problem for general controlled nonlinear SDEs, in which the coefficients

depend on the state of the solution process as well as of its law and control has been

investigated by Hafayed et al [50]. Infinite horizon optimal control problem for mean-field

delay system with semi-Markov modulated jump-diffusion processes has been investigated

in Deepa and Muthukumar [23].

Necessary conditions for optimal stochastic singular control have been investigated by

many authors, see for instance [31, 48, 1, 3, 4, 8, 17, 22, 25, 26, 24, 52]. Necessary

conditions for optimal singular stochastic control systems with variable delay have been

studied in Aghayeva and Morali [1]. The first version of maximum principle for singular

stochastic control problems was obtained by Cadenillas and Haussmann [17]. Necessary

conditions for singular optimal control have been derived by Bahlali and Mezerdi [8].

In Dufour and Miller [22], the authors derived stochastic maximum principle where the

singular part has a linear form by using a time transformation. Sufficient conditions for

existence of optimal singular control and the connection between the singular control

and optimal stopping problems have been studied in Dufour and Miller [25]. Necessary

conditions for general optimal singular stochastic control problems have been derived by

Dufour and Miller [26]. When first-order necessary condition is singular in some sense,

second-order necessary conditions for optimal stochastic control with recursive utilities

Université Mohamed Khider de Biskra



3.2. NOVELTY IN THIS WORK 45

has been studied by Dong and Meng [24]. A second-order maximum principle for singular

optimal controls with recursive utilities of stochastic delay systems has been considered

by Hao and Meng [51]. We refer to Haussmann and Suo [52] and the references cited

therein for the recent developments of stochastic singular control problems.

In this thesis, we establish a general Peng’s type necessary conditions for McKean-

Vlasov optimal continuous-singular control problem (3.14)-(3.15). The derivative with

respect to probability measures in Wasserstein space and the associate Itô formula are

applied to derive our results. Noting that the McKean-Vlasov dynamics (3.14) occur

naturally in the probabilistic analysis of financial optimization problems. So, we have

based ourselves on the notion of first and second-order derivative with respect to the

probability measure which was introduced by Lions [63], see also, [11, 18]. Our optimal

singular control problem is strongly motivated by the recent study of the mean-field games

and play an important role in different fields of economics, finance and physics.

The main technical issue to prove the maximum principle for stochastic optimal con-

trol without the convexity conditions on either the control domain or the Hamiltonian

function, especially in the case where the law of the state and the control variable enters

the diffusion coefficient is the need to consider a second-order variational equation, or

equivalently, a second-order Taylor expansion (see Peng [60] ]), which naturally involves

the second-order derivatives of all spatial variables in the coefficients.

3.2 Novelty in this work

Our work distinguishes itself from the above ones in the following aspects.

1. First, we study the more general controlled nonlinear McKean-Vlasov type system,

where the coefficients of the equation depend on the state of the solution process

Xu,η as well as of its probability measures PXu,η(t).

2. Second, we apply the first and second-order derivatives with respect to probability

measures to establish our Peng’s type necessary optimality conditions.

3. Third, we study the general continuous-singular control problem, where the control

domain is not assumed to be convex.
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4. Forth, the second-order derivative with respect to probability measures in Wasser-

stein space is applied to establish our result without convexity conditions.

5. Our McKean-Vlasov control problem occur naturally in the probabilistic analysis

of financial optimization problems. Moreover, the above mathematical McKean-

Vlasov approaches play an important role in different fields of economics, finance,

physics, chemistry and game theory.

The main purpose of this chapter is to prove the general McKean-Vlasov necessary

conditions of the optimal continuous-singular control without the convexity assumption.

Finally, we extend the maximum principle of Buckdahn et al., [11] to singular control

problems.

3.3 Differentiability with respect to measure

We now recall briefly an important notion in McKean-Vlasov control problems: the dif-

ferentiability with respect to probability measures, in Wasserstein space which was in-

troduced by Lions [63]. The main idea is to identify a distribution µ ∈ Q2 (Rn) with

a random variable X ∈ L2(F ,Rn) so that µ = PX . We assume that probability space

(Ω,F , P ) is rich-enough in the sense that for every µ ∈ Q2 (Rn) , there is a random vari-

able X ∈ L2(F ,Rn) such that µ = PX . We suppose that there is a sub-σ−field F0 ⊂ F
such that F0 is rich-enough i.e,

Q2 (Rn) 4=
{
PX : X ∈ L2(F0,Rn)

}
. (3.1)

By F = (Ft)t∈[0,T ] we denote the filtration generated by B (·), completed and aug-

mented by F0.

Next, for any function g : Q2 (Rn)→ R we define a function g̃ : L2 (F ,Rn)→ R such

that

g̃ (X) = g (PX) , X ∈ L2 (F ,Rn) . (3.2)

Clearly, the function g̃, called the lift of g, depends only on the law of X ∈ L2(F ,Rn) and

is independent of the choice of the representative X. (see [11])
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Definition 3.1
A function g : Q2 (Rn)→ R is said to be differentiable at a distribution µ0 ∈ Q2 (Rn) if

there exists X0 ∈ L2(F ,Rn), with µ0 = PX0 such that its lift g̃ is Fréchet-differentiable

atX0.More precisely, there exists a continuous linear functionalDg̃(X0) : L2(F ,Rn)→
R such that

g̃ (X0 + ζ)− g̃ (X0) = 〈Dg̃(X0) · ζ〉+ o (‖ζ‖2) (3.3)

= Dζg(µ0) + o (‖ζ‖2) ,

where 〈. · .〉 is the dual product on L2(F ,Rn).We called Dζg(µ0) the Fréchet-derivative

of g at µ0 in the direction ξ. In this case we have

Dζg(µ0) = 〈Dg̃(X0) · ζ〉 = d
dt g̃ (X0 + tζ)

∣∣∣∣∣
t=0

, with µ0 = PX0 . (3.4)

By applying Riesz representation theorem, there is a unique random variable Θ0 ∈
L2(F ,Rn) such that 〈Dg̃(X0) · ζ〉 = (Θ0 · ζ)2 = E [(Θ0 · ζ)2] where ζ ∈ L2(F ,Rn).

It was shown (see [11], [19]) that there exists a Boral function Φ [µ0] (·) : Rn →
Rn, depending only on the law µ0 = PX0 but not on the particular choice of the

representative X0 such that

Θ0 = Φ [µ0] (X0) . (3.5)

Thus we can write (3.3) as

g (PX)− g (PX0) = (Φ [µ0] (X0) ·X −X0)2 + o (‖X −X0‖2) ,

∀X ∈ L2 (F ,Rn) .

We denote

∂µg (PX0 , x) = Φ [µ0] (x), x ∈ Rn.

Moreover, we have the following identities

Dg̃(X0) = Θ0 = Φ [µ0] (X0) = ∂µg (PX0 , X0) , (3.6)

and

Dξg(PX0) = 〈∂µg (PX0 , X0) · ζ〉 , (3.7)

where ζ = X −X0.
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Remark 3.1
For each µ ∈ Q2 (Rn) , ∂µg (PX , ·) = Φ [PX ] (·) is only defined in a PX(dx)− a.e sense

where µ = PX .

Among the different notions of differentiability of a function g defined over Q2 (Rn) , we

apply for our control problem that introduced by Lions [63] and revised in the notes by

Cardaliaguet [18], we refer the reader to Buckdahn et al.,[11] and Carmona and Delarue

[19].

Definition 3.2
We say that the function g ∈ C1,1

b (Q2(Rn)) if for all X ∈ L2(F ,Rn) there exists a

PX−modification of ∂µg (PX , ·) (denoted by ∂µg) such that ∂µg : Q2 (Rn)× Rn → Rn

is bounded and Lipschitz continuous. That is for some C > 0, it holds that

1. |∂µg(µ, x)| ≤ C, ∀µ ∈ Q2(Rn), ∀x ∈ Rn.

2. The derivatives ∂µg satisfied the following

|∂µg(µ, x)− ∂µg(µ′, x′)| ≤ C [T (µ, µ′) + |x− x′|] ,

∀µ, µ′ ∈ Q2(Rn),∀x, x′ ∈ Rn.

Noting that if g ∈ C1,1
b (Q2(Rn)) the version of ∂µg (PX , ·) , X ∈ L2(F ,Rn) indicate in

Definition 3.2 is unique (see [11, Remark2.2], and [18]). We shall denote by ∂µg (t, x, µ0)

the derivative with respect to µ computed at µ0 whenever all the other variables (t, x) are

held fixed.

Second-order derivatives with respected to probability law:

We present a second order derivatives with respected to measure of probability.

Let g ∈ C1,1
b (Q2(Rn)) and consider the mapping (∂µg (·, ·)1 , ∂µg (·, ·)2 , ..., ∂µg (·, ·)n)> :

Q2(Rn)× Rn → Rn.
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Definition 3.3
We say that the function g ∈ C2,1

b (Q2(Rn)) if g ∈ C1,1
b (Q2(Rn)) such that ∂µg(·, x) :

Q2(Rn)→ Rn

1. ∂µg(·, y) ∈ C1,1
b (Q2(Rn)), ∀y ∈ Rn and i ∈ {1, 2, ..., n} .

2. ∂µg(µ, ·) : Rn → Rn is differentiable, for evry µ ∈ Q2(Rn).

3. The mapps ∂x∂µg(·, ·) : Q2(Rn)× Rn → Rn ⊗ Rn and ∂2
µg(PX0 , y, Z) : Q2(Rn)×

Rn × Rn → Rn ⊗ Rn are bounded and Lipshitz continuous, where

∂2
µg(PX0 , y, Z) = ∂µ [∂µg(·, y)] (PX0 , Z) .

3.3.1 Second-order Taylor expansion

Now, we give a second-order Taylor expansion that plays an essential role to establish our

maximum principle.

Let g ∈ C2,1
b (Q2(Rn)), for j ∈ {1, 2, ..., n} , we obtain

Dg̃j(X0)−Dg̃j(X0 − ξ) = [∂µg]j (PX0 , X0))− [∂µg]j (PX0−ξ, X0 − ξ))

= [∂µg]j (PX0 , X0))− [∂µg]j (PX0−ξ, Z))
∣∣∣
Z=X0−ξ

+ [∂µg]j (PX0 , Z)
∣∣∣
Z=X0

− [∂µg]j (PX0 , Z)
∣∣∣
Z=X0−ξ

(3.8)

=
∫ 1

0

〈
D[̃∂µg]j (X0 + θξ, Z) ·ξ

〉
dθ
∣∣∣∣
Z=X0

+ (∂x [∂µg]j (PX0 , X0) , ξ) + o (‖ξ‖2) .

then, we obtain

D[̃∂µg]j (X0, y) = ∂µ
[
[∂µg]j (·, y)

]
(PX0 , X0)

=
[
∂2
µg
]
j
(PX0 , y, Z)

∣∣∣∣
Z=X0

.

Second-order derivatives of f at a measure µ0. Let (Ω̂, F̂ , P̂ ) be a copy of the proba-

bility space (Ω,F , P ). For any pair of random variable (Z, ξ) ∈ L2(F ,Rd)×L2(F ,Rd), we
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let (Ẑ, ξ̂) be an independent copy of (Z, ξ) defined on (Ω̂, F̂ , P̂ ). We consider the product

probability space (Ω× Ω̂,F ⊗ F̂ , P ⊗ P̂ ) and setting (Ẑ, ξ̂)(w, ŵ) = (Z(ŵ), ξ(ŵ)) for any

(w, ŵ) ∈ Ω× Ω̂.

Let (û∗(t), X̂∗(t)) is an independent copy of (u∗(t), X∗(t)), so that PX∗(t) = P̂
X̂∗(t). We

denote by Ê the expectation under probability measure P̂ .

Remark 3.2
The expectation Ê (·) acts only on random variables marked with a “.̂..”, where

Ê (X) =
∫

Ω̂
X(ŵ)dP̂ (ŵ).

Now, for any µ0 ∈ Q2(Rn), in the direction ξ, we define the second-order derivatives

of a function g at µ0 with µ0 = PX0

D2
ξg (µ0) =

〈〈
D[̃∂µg]j (·, y) (PX0 , Z) |

Z=X̂0
· ξ̂
〉
|
y=X̂0

, ξ
〉

+ 〈(∂y∂µg) (PX0 , X0) ξ · ξ〉 ,

= E
[
Ê
[
tr
(
∂2
µg(PX0 , X0, X̂0)ξ̂ ⊗ ξ

)]]
(3.9)

+ E [tr (∂y∂µg(PX0 , X0)ξ ⊗ ξ)] ,

where

Ê
[
tr
(
∂2
µg(PX0 , X0, X̂0)ξ̂ ⊗ ξ

)]
(3.10)

=
∫

Ω̂
tr
[
∂2
µg(PX0 , X0 (w) , X̂0(ŵ))ξ̂ ⊗ ξ(w, ŵ)

]
dP̂ (ŵ).

and

E
[
Ê
[
tr
[
∂2
µg(PX0 , X0, X̂0)ξ̂ ⊗ ξ

]]]
=
∫

Ω

∫
Ω̂
tr
[
∂2
µg(PX0 , X0 (w) , X̂0(ŵ))ξ̂ ⊗ ξ(w, ŵ)

]
d(P ⊗ P̂ )(w, ŵ). (3.11)

For convenience, we will use the following notations throughout the chapter, for ϕ =

f, σ, `, h :

δϕ(t) = ϕ(t,X∗(t), PX∗(t), u
∗(t))− ϕ(t,X∗(t), PX∗(t), u(t));

ϕx(t) = ∂ϕ

∂x
(t,X∗(t), PX∗(t), u

∗(t));

ϕ̂µ(t) = ∂µϕ(t,X∗(t), PX∗(t), u
∗(t); X̂∗(t)), (3.12)

ϕ̂∗µ(t) = ∂µϕ(t, X̂∗(t), PX∗(t), û∗(t);X∗(t)),
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and similarly, we denote the second derivative processes:

ϕxx(t) = ∂2ϕ

∂x2 (t,X∗(t), PX∗(t), u
∗(t)),

ϕ̂µµ(t) = ∂2
µϕ(t,X∗(t), PX∗(t), u

∗(t);X∗(t), X̂∗(t)), (3.13)

ϕxµ(t) = ∂x∂µϕ(t,X∗(t), PX∗(t), u
∗(t);X∗(t)),

ϕ̂∗xµ(t) = ∂x∂µϕ(t, X̂∗(t), PX∗(t), û∗(t); X̂∗(t)).

3.4 Formulation of the continuous-singular control

problem

Let us formulate the optimal continuous-singular control problem. Let T be a fixed

strictly positive real number and (Ω,F , {Ft}t∈[s,T ] , P ) be a fixed filtered probability

space satisfying the usual conditions in which one−dimensional Brownian motion B(t) =

{B(t) : 0 ≤ t ≤ T} and B(0) = 0 is defined. We study general stochastic continuous-

singular control problem driven by stochastic differential equation of McKean-Vlasov type

of the form:

dXu,η(t) = f
(
t,Xu,η(t), PXu,η(t), u(t)

)
dt+ σ

(
t,Xu,η(t), PXu,η(t), u(t)

)
dB(t)

+G(t)dη(t),

Xu,η(0) = x0,

(3.14)

The criteria to be minimized over the class of admissible controls has the form

J (u(·), η(·)) = E
[∫ T

0
l(t,Xu,η(t), PXu,η(t), u(t))dt+ h(Xu,η(T ), PXu,η(t)) (3.15)

+
∫

[0,T ]
M(t)dη(t)

]
.

We consider the following sets:

• U1 : is a a non empty subset of Rn,

• U2 = ([0,+∞))m .
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• U1 the class of measurable, adapted processes u(·) : [0, T ]× Ω→ U1.

• U2 the class of measurable, adapted processes η(·) : [0, T ]× Ω → U2 such that η(·)
is of bounded variation, nondecreasing continuous on the left with right limits and

η(0) = 0.

Since we are interested in continuous-singular stochastic control, we give here the

precise definition of an admissible continuous-singular control. (see [52])

Definition 3.4
An admissible continuous-singular control is a pair (u(·), η(·)) of measurable U1×U2-

valued, Ft−adapted processes, such that

(1) η(·) is of bounded variation process, nondecreasing, continuous on the left with

right limits and η(0) = 0.

(2) E
[

sup
t∈[0,T ]

|u(t)|2 + |η(T )|2
]
<∞.

In this chapter, we denote by U1 × U2 ([0, T ]) , the set of all admissible continuous-

singular controls. We note that since dη(t) may be singular with respect to Lebesgue

measure dt, we call η(·) the singular part of the control and the process u(·) its absolutely
continuous part. This construction allows us to define integrals of the form

∫
[0,T ]

G(t)dη(t) and
∫

[0,T ]
M(t)dη(t),

where
∫

[0,T ]
G(t)dη(t) =

∫ T

0
G(t)dη(t) and

∫
[0,T ]

M(t)dη(t) =
∫ T

0
M(t)dη(t).

We remark that the criteria to be minimized (3.15) over the class of admissible controls in-

volves the law of the solution in a nonlinear way. We note that the integral
∫

[0,T ]
M(t)dη(t)

called the intervention cost.

Any admissible control (u∗(·), η∗(·)) ∈ U1 × U2 ([0, T ]) satisfying

J (u∗(·), η∗(·)) = inf
(u(·),η(·))∈U1×U2([0,T ])

J (u(·), η(·)) , (3.16)

is called an optimal continuous-singular control.
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The maps

f : [0, T ]× Rn ×Q2 (Rn)×U1→ Rn

σ : [0, T ]× Rn ×Q2 (Rn)×U1→Mn×d (R)

` : [0, T ]× Rn ×Q2 (Rn)× U1→ R

h : Rn ×Q2 (Rn) −→ R

G : [0, T ]→Mn×m (R)

M : [0, T ]→ ([0,+∞))m ,

are given deterministic functions, where Q2 (Rn) is Wasserstein space of probability mea-

sures on (Rn,B(Rn)) with finite second-moment, i.e;
∫
Rn
|x|2 µ (dx) < ∞, endowed with

the following 2−Wasserstein metric: for µ1, µ2 ∈ Q2 (Rn) ,

T (µ1, µ2) = inf
{[∫

R2n
|x− y|2 ρ (dx, dy)

] 1
2
, ρ ∈ Q2(R2n), ρ(·,Rn) = µ1, ρ(Rn, ·) = µ2

}
.

(3.17)

Remark 3.3
In order not to over complicate the already notational heavy presentation of this

chapter, in what follows we shall assume all processes are one-dimensional (i.e., n =

d = m = 1). We define a metric d1 (·, ·) on the space of admissible controls U1 ([0, T ])

such that (U1 ([0, T ]) , d1) becomes a complete metric space. For any u(·) and v(·) ∈
U1 ([0, T ]) we set

d1 (u(·), v(·)) = P⊗dt {(w, t) ∈ Ω× [0, T ] : u (w, t) 6= v (w, t)} , (3.18)

where P⊗dt is the product measure of P with the Lebesgue measure dt on [0, T ] .

Moreover, it has been shown in the book by Yong and Zhou ([89], 146-147) that

(U1 ([0, T ]) , d1) is a complete metric space.
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3.5 Main results

3.5.1 Assumptions

We will always take the following assumptions in this chapter.

Assumption (H1) The coefficients f, σ, `, h are measurable in all variables. More-

over, for all (u(t), η(t)) ∈ U1 × U2, f(·, ·, u), σ(·, ·, u), `(·, ·, u) ∈ C1,1
b (R × Q2(Rd);R),

h(·, ·) ∈ C1,1
b (R × Q2(Rn);R). More precisely, for each u(t) ∈ U1, denoting ϕ(x, µ) =

f(t, x, µ, u), σ(t, x, µ, u), l(t, x, µ, u), h(x, µ), the function ϕ(·, ·) enjoys the following prop-

erties:

(1) For fixed µ ∈ Q2(R), ϕ(·, µ) continuously differentiable with respect to x;

(2) For fixed x ∈ R, ϕ(x, ·) ∈ C1,1
b (Q2(R));

(3) All the derivatives ∂xϕ and ∂µϕ : ϕ = l, σ, `, h, are bounded and Lipschitz contin-

uous, with Lipschitz constants independent of (u(t), η(t)).

Assumption (H2) The coefficients f, σ, `, h satisfy assumption (H1). Furthermore,

for all u(t) ∈ U1, f(t, ·, ·, u), σ(t, ·, ·, u), `(t, ·, ·, u) ∈ C2,1
b (R×Q2(R);R), h(·, ·) ∈ C2,1

b (R×
Q2(R);R). More precisely, for each u(t) ∈ U1, the derivatives of f, σ, `, h, denoted by a

generic function ϕ(t, x, µ), enjoy the following properties:

(1) ∂xϕ(t, ·, ·) ∈ C1,1
b (R×Q2(R));

(2) ∂µϕ(t, ·, ·) ∈ C1,1
b (R×Q2(R)× R);

(3) All the second-order derivatives of f, σ, `, h, are bounded and Lipschitz continuous

with Lipschitz constants independent of (u(t), η(t)).

Assumption (H3) The functions G (·) : [0, T ] → R, and M (·) : [0, T ] → R+ are

continuous and bounded.

Under the assumptions (H1)−(H3), for each (u(·), η(·)) ∈ U1 × U2 ([0, T ]) , Eq-(3.14)

has unique strong solution Xu,η (·) given by

Xu,η(t) = x0 +
∫ t

0
f(r,Xu,η(r), PXu,η(r), u(r))dr +

∫ t

0
σ(r,Xu,η(r), PXu,η(r), u(r))dB(r)

+
∫

[0,t]
G(r)dη(r),

such that E
[

sup
t∈[0,T ]

|Xu,η(t)|n
]
< Cn, where Cn is a constant depending only on n and the

functional J (·, ·)) is well defined.
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Remark 3.4
As in Peng’s maximum principle [60] and Buckdahn et al.’s maximum principle [11],

we do not require any differentiability assumptions of the coefficients f, σ, `, h on the

control variable u (·). Also, we assume that the control set is a general open set that

is not necessary convex.

Let (u∗(·), η∗(·)) ∈ U1 × U2 ([0, T ]) is an optimal continuous-singular control, the cor-

responding state process Xu∗,η∗(·), solution of McKean-Vlasov dynamic (3.14) is denoted

by X∗(·) = Xu∗,η∗(·).
Finally, we define for t ∈ [0, T ] :

Lxx(t, ϕ, z) = 1
2∂xxϕ(t,X∗(t), PX∗(t), u

∗(t))z2, (3.19)

Lyµ(t, ϕ̂, z) = 1
2∂y∂µϕ(t,X∗(t), PX∗(t), u

∗(t); X̂∗)z2.

3.5.2 Hamiltonian

Let us define the Hamiltonian associated to our continuous-singular control problem. For

any (t, x, µ, u, p, q) ∈ [0, T ]× R×Q2(R)× R× R× R

H(t, x, µ, u, p, q) = f(t, x, µ, u)p+ σ(t, x, µ, u)q − `(t, x, µ, u). (3.20)

where (p (·) , q (·)) be a pair of adapted processes, solution of the first-order adjoint equa-

tion (3.23). Since the coefficientsG (·) andM (·) are independent toX(·), the Hamiltonian

functional H is independent to singular control η(·).
We denote

H(t) = H(t,X∗(t), PX∗(t), u
∗(t), p(t), q(t)). (3.21)

We define

δH(t) = δf(t)pt + δσ(t)·qt − δ`(t);

Hx(t) = fx(t)p(t) + σx(t)q(t)− ∂x`(t); (3.22)

Hxx(t) = fxx(t)p(t) + σxx(t)⊗ q(t)− `xx(t).

We introduce the adjoint equations involved in the stochastic maximum principle for our

continuous-singular control problem.
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3.5.3 Adjoint equation

First-order adjoint equation. We consider the first-order adjoint equation, which is

the following McKean-Vlasov linear BSDE:

−dp(t) =
[
fx(t)p(t) + Ê

[
f̂ ∗µ(t)(t)p̂(t)

]
+ σx(t)q(t) + Ê

[
σ̂∗µ(t)q̂(t)

]
− `x(t)

−Ê
[̂̀∗
µ(t)(t)

]]
dt− q(t)dB(t),

p(T ) = hx(T ) + Ê[ĥ∗µ(T )].

(3.23)

Here, from (3.13), t ∈ [0, T ] , for ϕ = f, σ, `, we obtain

Ê
[
∂µϕ̂∗(t)

]
= Ê

[
∂µϕ(t, X̂(t), PX∗(t), û

∗(t); z)
] ∣∣∣∣∣z=X∗(t)

(3.24)

=
∫

Ω̂
∂µϕ(t, X̂(t, ŵ), PX∗(t,w), û

∗(t, ŵ);X∗(t, w))dP̂ (ŵ),

and the same argument allows to show that

Ê
[
∂µĥ

∗(T )
]

= Ê
[
∂µh(X̂(T ), PX∗(T ); z)

] ∣∣∣∣∣z=X∗(t)
(3.25)

=
∫

Ω̂
∂µh(X̂(T, ŵ), PX(T,w);X∗(T,w))dP̂ (ŵ).

Second-order adjoint equation. Consider the following standard linear BSDE

dP (t) = −
{

2(fx(t) + Ê[f̂ ∗µ(t)])P (t) + [σx(t) + Ê(σ̂∗µ(t))]2P (t)

+ 2(σx(t) + Ê[σ̂∗µ(t)])Q(t) + (Hxx (t) + Ê[Ĥ∗µy(t)])
}

dt+Q(t)dB(t),

P (T ) = −(hxx(T ) + Ê[ĥ∗µy(T )]).

(3.26)

Similar to (3.24) and (3.25), we have

Ê[Ĥ∗µy(t)]) = Ê
[
∂µ∂yH(t, X̂(t), PX∗(t), û

∗(t), p̂(t), q̂(t); y)
] ∣∣∣∣∣y=X∗(t)

=
∫

Ω̂
∂µ∂yH(t, X̂(t, ŵ), PX∗(t), û

∗(t, ŵ), p̂(t), q̂(t);X∗(t))dP̂ (ŵ).

We have the following remarks:
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Remark 3.5

1. Since the coefficients G (·) andM (·) are independent to X(·), the adjoint process
(p (·) , q (·)) and (P (·) , Q (·)) are independent to singular control η(·), and it is

readily seen that the adjoint equations (3.23), (3.26) coincides with the results

in [11].

2. If the coefficients f, σ, `, h do not explicitly depend on law of the solution, the

McKean-Vlasov BSDE-(3.23) and (3.26) reduce to a standard BSDE (see Peng

[60, Equation19, page974]), or Buckdahn et al., [11]).

3. Since the derivatives fx, fµ, σx, σµ, `x, `µ, hx, hµ are bounded, by assumption H1-

(3), the McKean-Vlasov BSDE (3.23) admits a unique Ft-adapted solution

(p (·) , q (·)) which satisfies the following estimate

E
[

sup
t∈[0,T ]

|p(t)|2 +
∫ T

0
|q(t)|2 dt

]
< +∞. (3.27)

4. From the boundedness of the first and second derivatives of the coefficients

f, σ, `, h with respect to(x, µ) , (see Assumption H2), the linear BSDE-(3.26)

has a unique Ft−adapted solution (P (·) , Q (·)) such that

E
[

sup
t∈[0,T ]

|P (t)|2 +
∫ T

0
|Q (t)|2 dt

]
< +∞. (3.28)

3.5.4 Necessary conditions of optimal singular control

The purpose of the stochastic maximum principle is to establish necessary conditions for

optimality satisfied by an optimal control. In this section, we establish a set of general

Peng’s type necessary conditions for the optimal continuous-singular control, where the

system evolves according to controlled McKean-Vlasov SDEs.

Our result is proved by applying spike variation method for continuous parts of the control

and convex perturbation technique for singular parts.

Let (u∗(·), η∗(·), X∗(·)) is an optimal solution of the McKean-Vlasov control problem
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(3.14)-(3.15). We introduce the following variational equations for our continuous-singular

control problem. Let Y uε,ηε(·) and Zε(·) be the solutions of (3.34), (3.30) associated to

(u∗(·), η∗(·)) respectively.

First-order variational equation: let Eε = [0, ε] , t ∈ [0, T ]

dY uε,ηε(t) =
[
fx(t)Y uε,ηε(t) + Ê[f̂µ(t)Ŷ uε,ηε(t)] + δf(t)1Eε (t)

]
dt

+
[
σx(t)Y ε(t) + Ê[σ̂µ(t)Ŷ uε,ηε(t)] + δσ(t)1Eε (t)

]
dB(t)

+G(t)d(ηε − η∗)(t),

Y uε,ηε(0) = 0.

(3.29)

Here the process Y uε,ηε (·) is called the first-order variational process, associated to (uε(·), ηε(·))
which is depend explicitly to singular control. The process ηε(·) is the convex perturbed

control given by ηε(t) = η∗(t) + ε (η(t)− η∗(t)) .
Second-order variational equation:

dZε(t) =
[
fx(t)Zε(t) + Ê[f̂µ(t)Ẑε(t)] + Lxx(t, f, Y ε) + Lµx(t, f̂ , Ŷ ε)

]
dt

+
[
σx(t)Zε(t) + Ê[σ̂µ(t)Ẑε(t)] + Lxx(t, σ, Y ε) + Lµx(t, σ̂, Ŷ ε)

]
dB(t),

+
[
δfx(t)Y ε(t) + Ê[δf̂µ(t)Ŷ ε(t)]

]
1Eε (t) dt

+
[
δσx(t)Y ε(t) + Ê[δσ̂µ(t)Ŷ ε(t)]

]
1Eε (t) dB(t),

Zε(0) = 0.

(3.30)

Here the process Zε (·) is called the second-order variational process.

To prove our main result, we need the following technical Lemmas.

Lemma 3.1
Let Xε(·) = Xuε,ηε(·) be the solutions of (3.14) corresponding to continuous-singular

control (uε(·), ηε(·)). Let assumptions (H1) and (H2) hold. Then we have

lim
ε→0

E( sup
t∈[0,T ]

|Xε(t)−X∗(t)|2) = 0.
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Proof : From standard estimates and the Burkholder-Davis-Gundy inequality, we obtain

E( sup
t∈[0,T ]

|Xε(s)−X∗(s)|2)

≤ E
∫ t

0

∣∣∣f (s,Xε(s), PXε(s), u
ε(s)

)
− f

(
s,X∗(s), PX∗(s), u

∗(s)
)∣∣∣2 ds

+ E
∫ t

0

∣∣∣σ (s,Xε(s), PXε(s), u
ε(s)

)
− σ

(
s,X∗(s), PX∗(s), u

∗(s)
)∣∣∣2 ds

+ E
∣∣∣∣∣
∫

[0,t]
G(s)d (ηε − η∗) (s)

∣∣∣∣∣
2

,

by applying assumption (H1) and the Lipschitz conditions on the coefficients f, σ with

respect to x, µ, with the help of (3.18), uε(t, B) 6= u∗(t, B) we get

E( sup
0≤t≤T

|Xε(t)−X∗(t)|2) ≤ CTE
∫ t

0
sup
τ∈[0,s]

|Xε(τ)−X∗(τ)|2 ds+ CT ε
2,

by applying Gronwall’s Lemma, the desired result follows immediately by letting ε tends

to zero.

Lemma 3.2
Let Xuε,η∗(·) be the solution of (3.14), corresponding to (uε(·), η∗(·)). Let Y ε(·) be the
solution of (3.29), corresponding to (uε(·), η∗(·)), then the following estimation holds

lim
ε→0

E
[

sup
0≤t≤T

∣∣∣Xuε,η∗(t)−X∗(t)
∣∣∣2] = 0. (3.31)

lim
ε→0

E
[

sup
0≤t≤T

∣∣∣Xε(t)−Xuε,η∗(t)
∣∣∣2] = 0. (3.32)

lim
ε→0

E
[

sup
0≤t≤T

∣∣∣Xuε,η∗(t)−X∗(t)− Y ε(t)
∣∣∣2] = 0. (3.33)

Proof : Let Y ε(·) = Y uε,η∗(·) the first-order adjoint process corresponding to (uε(·), η∗(·))
defined by the following SDE:

dY ε(t) =
[
fx(t)Y ε(t) + Ê[f̂µ(t)Ŷ ε(t)] + δf(t)1Eε (t)

]
dt

+
[
σx(t)Y ε(t) + Ê[σ̂µ(t)Ŷ ε(t)] + δσ(t)1Eε (t)

]
dB(t)

Y ε(0) = 0.

(3.34)
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A simple computation shows that[
Xuε,η∗(t)−X∗(t)

]
=
∫ t

0
[f(s,Xuε,η∗(s), PXuε,η∗ (s), u

ε(s))− f(s,X∗(s), PX∗(s), u
∗(s))]ds

+
∫ t

0
[σ(s,Xuε,η∗(s), PXuε,η∗ (s), u

ε(s))− σ
(
s,X∗(s), PX∗(s), u

∗(s)
)
]dB(s),

and [
Xε(t)−Xuε,η∗(t)

]
=
∫ t

0
[f(s,Xε(s), PXε(s), u

ε(s))− f(s,Xuε,η∗(s), PXuε,η∗ (s), u
ε(s))]ds

+
∫ t

0
[σ(s,Xε(s), PXε(s), u

ε(s))− σ(s,Xuε,η∗(s), PXuε,η∗ (s), u
ε(s))]dB(s)

+
∫

[0,t]
G(s)d (ηε − η∗) (s).

Since
[
Xuε,η∗(t)−X∗(t)

]
is independent to the singular control η∗ (·), the proof of (3.31)

follows immediately, (see [11, P roposition4.2, estimate(4.8)] . The proof of (3.32) fol-

lows directly from Assumption (H1), (H3) and by applying Gronwall’s Lemma and

Burkholder-Davis-Gundy inequality.

Now, we proceed to estimate (3.33). We set t ∈ [0, T ] ,

βε(t) =
[
Xuε,η∗(t)−X∗(t)

]
− Y ε(t). (3.35)

By standard arguments, it can be proved that

βε(t) =
∫ t

0
{(f(r,Xε(r), PXε(r), u

ε(r))− f(r,X∗(r), PX∗(r), u
∗(r)))

−
(
fx(r)Y ε(r) + Ê[f̂µ(r)Ŷ ε(r)] + δf(r)1Eε (r)

)
}dr

+
∫ t

0
{(σ(r,Xε(r), PXε(r), u

ε(r))− σ(r,X∗(r), PX∗(r), u
∗(r))

−
(
σx(r)Y ε(r) + Ê[σ̂µ(r)Ŷ ε(r)] + δσ(r)1Eε (r)

)
})dB(r)

=
∫ t

0

[
aε1(r) + fx(r)βε(r) + Ê[f̂µ(r)β̂ε(r)]

]
dr (3.36)

+
∫ t

0

[
aε2(r) + σx(r)βε(r) + Ê[σ̂µ(r)β̂ε(r)]

]
dB(r),

where

aε1(r) = (f(r,Xε(r), PXε(r), u
ε(r))− f(r,X∗(r), PX∗(r), u

∗(r))

− fx(r)
[
Xuε,η∗(r)−X∗(r)

]
− Ê[f̂µ(r)(X̂uε,η∗(r)− X̂∗(r))]

− δf(r)1Eε (r) ,
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and

aε2(r) = (σ(r,Xε(r), PXε(r), u
ε(r))− σ(r,X∗(r), PX∗(r), u

∗(r))

− σx(r)
[
Xuε,η∗(r)−X∗(r)

]
− Ê[σ̂µ(r)(X̂uε,η∗(r)− X̂∗(r))]

− δσ(r)1Eε (r) .

Since

δf(r)1Eε (r) = (f(r,X∗(r), PX∗(r), u
ε(r))− f(r,X∗(r), PX∗(r), u

∗(r)),

and

δσ(r)1Eε (r) = (σ(r,X∗(r), PX∗(r), u
ε(r))− σ(r,X∗(r), PX∗(r), u

∗(r)),

we deduce∫ t

0
aε1(r)dr =

∫ t

0
{(f(r,Xε(r), PXε(r), u

ε(r))− f(r,X∗(r), PX∗(r), u
ε(r))

− fx(r)
[
Xuε,η∗

(r)−X∗(r)
]
− Ê[f̂µ(r)(X̂uε,η∗

(r)− X̂∗(r))]}dr

=
∫ t

0

∫ 1

0
{[fx(r,X∗(r) + λ

[
Xuε,η∗

(r)−X∗(r)
]
, P(X∗(r)+λ(Xuε,η∗ (r)−X∗(r))), u

ε(r))− fx(r)]

×
[
Xuε,η∗

(r)−X∗(r)
]
}dλdr (3.37)

+
∫ 1

0
{Ê[f̂x(r, X̂∗(r) + λ[X̂uε,η∗

(r)− X̂∗(r)], P(X̂∗(r)+λ(X̂uε,η∗ (r)−X̂∗(r)), u
ε(r))− f̂x(r)]

× (X̂uε,η∗
(r)− X̂∗(r))]dλdr.

The same argument allows to show that∫ t

0
aε2(r)dB(r) =

∫ t

0
{(σ(r,Xε(r), PXε(r), u

ε(r))− σ(r,X∗(r), PX∗(r), u
ε(r))

− σx(r)
[
Xuε,η∗

(r)−X∗(r)
]
− Ê[σ̂µ(r)(X̂uε,η∗

(r)− X̂∗(r))]}dB(r)

=
∫ t

0

∫ 1

0
{[σx(r,X∗(r) + λ

[
Xuε,η∗

(r)−X∗(r)
]
, P(X∗(r)+λ[Xuε,η∗ (r)−X∗(r)]), u

ε(r))− σx(r)]

×
[
Xuε,η∗

(r)−X∗(r)
]
}dλdB(r) (3.38)

+
∫ 1

0
{Ê[σ̂x(r, X̂∗(r) + λ[X̂uε,η∗

(r)− X̂∗(r)], P(X̂∗(r)+λ(X̂uε,η∗ (r)−X̂∗(r)), u
ε(r))− σ̂x(r)]

× (X̂uε,η∗
(r)− X̂∗(r))]dλdB(r).

Finally, the desired result (3.33) follows immediately by combining (3.33), (3.37), (3.38),

Gronwall Lemma and estimates (3.31). This completes the proof of Lemma 4.2.
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Proposition 3.1
Let Y ε(t) solution (3.30) associated to (uε (·) , η∗ (·)) . Under assumption H1, the fol-

lowing estimate holds

lim
ε→0

E
[

sup
0≤t≤T

∣∣∣Xuε,η∗(t)−X∗(t)− Y ε(t)− Zε(t)
∣∣∣2] = 0. (3.39)

Proof : Since δf(t)1Eε (t) = f ε (t) − f∗ (t) and δσ(t)1Eε (t) = σε (t) − σ (t) , then a simple

calculation shows that

Y ε(t) =
∫ t

0

[
fx(s)Y ε(s) + Ê[f̂µ(s)Ŷ ε(s)] + f ε (s)− f∗ (s)

]
ds

+
∫ t

0

[
σx(s)Y ε(s) + Ê[σ̂µ(s)Ŷ ε(s)] + σε (s)− σ (s)

]
dB(s),

and

Zε(t) =
∫ t

0
[f εx(s)− fx(s)]Xε

2(s) + fx(s)Xε
2(s)

+ 1
2fxx (s)Xε

1 (s)2)]ds

+
∫ t

0
[σεx(s)− σ∗x(s)]Xε

2(s) + σ∗x(s)Xε
2(s)

+ 1
2σxx (s)Xε

1 (s)2)]dB(s).

Now, it is clear that Xuε,η∗(t) − X∗(t) − Y ε(t) − Zε(t) depend only on the continuous

component of the control and independent to singular control. The result follows by

applying the same proof as in [11, P roposition5.1, page526]. This completes the proof of

Proposition 3.1.

The following theorem constitutes the main contribution of this chapter.

Theorem 3.1 (Stochastic maximum principle)
Let (u∗(·), η∗(·), X∗(·)) is an optimal solution of the McKean-Vlasov control problem
(3.14)-(3.15). Let assumptions (H1), (H2) and (H3) hold. Then there are two pairs
of Ft−adapted processes (p(·), q(·)) and (P (·), Q(·)) that satisfy (3.23) and (3.26)
respectively, such that for all (u(t), η(t)) ∈ U1 × U2, we have:
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0 ≤ H(t,X∗(t), PX∗(t), u
∗(t), p∗(t), q∗(t))−H(t, x∗(t), PX∗(t), u(t), p∗(t), q∗(t))

− 1
2P (t)

(
σ(t,X∗(t), PX∗(t), u(t)))− σ

(
t,X∗(t), PX∗(t), u

∗(t)
))2

(3.40)

+ E
∫

[0,T ]
(M(t) +G(t)p(t))d (η − η∗) (t).

P−a.s., a.e. t ∈ [0, T ] .

Proof : To derive our main result, the approach that we use is based on a double per-

turbation of the optimal continuous-singular control. The first perturbation is a spike

variation, on the absolutely continuous part of the control and the second one is convex

variation method, on the singular component. This perturbation is described as follows:

Let (u∗(·), η∗(·)) is an optimal control and (u(·), η(·)) is an arbitrary element of

Ft−measurable random variable with values in U1×U2 which we consider as fixed from

now on. We define a perturbed control (uε(t), ηε(t)) as follows. Let Eε = [0, ε]

uε (t) =


u(t), t ∈ Eε,

u∗(t), t ∈ Ecε,
(3.41)

and

ηε(t) = η∗(t) + ε (η(t)− η∗(t)) . (3.42)

By combining (3.41), (3.42), we define

(uε(t), ηε(t)) =


(u(t), η∗(t) + ε (η(t)− η∗(t))) : t ∈ Eε

(u∗(t), η∗(t) + ε (η(t)− η∗(t))) : t ∈ Ecε,
(3.43)

where ε a sufficiently small ε > 0. Then, we derive the variational inequality (3.40) in

several steps. From the optimality of (u∗(·), η∗(·)) , we have

J (uε(·), ηε(·))− J (u∗(·), η∗(·)) ≥ 0. (3.44)

Now, we separate the above inequality into two parts

Jε1 = J (uε(·), ηε(·))− J (uε(·), η∗(·)) , (3.45)

Jε2 = J (uε(·), η∗(·))− J (u∗(·), η∗(·)) , (3.46)

where J (uε(·), ηε(·))−J (u∗(·), η∗(·)) = Jε1 +Jε2 . The variational inequality will be derived

from the fact that

lim
ε→0

1
ε

(Jε1 + Jε2) ≥ 0. (3.47)
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We proceed to estimate the left hand side of inequality(3.47).

Lemma 3.3
The following estimate holds, for any η(·) ∈ U2 ([0, T ])

lim
ε→0

J1

ε
= E

[
hx(X∗(T ))Z(T ) + Ê(ĥµ(X∗(T ))Ẑ(T ))

]
+ E

∫ T

0
`x(X∗(t))Z(t)dt+ E

∫ T

0
Ê(ĥµ(X∗(t))Ẑ(t)) (3.48)

+ E
∫

[0,T ]
M(t)d (η − η∗) (t),

where Z(·) solution of the following SDEs:

dZ(t) =
[
fx(t)Z(t) + Ê[f̂µ(t)Ẑ(t)]

]
dt+

[
σx(t)Z(t) + Ê[σ̂µ(t)Ẑ(t)]

]
dB(t)

+G(t)d (η − η∗) (t)

Z(0) = 0.

(3.49)

Proof : Under assumptions H1 and H3, Eq-(3.49) admits a unique strong solution Z(t)

given by

Z(t) =
∫ t

0

[
fx(s)Z(s) + Ê[f̂µ(s)Ẑ(s)]

]
ds

+
∫ t

0

[
σx(s)Z(s) + Ê[σ̂µ(s)Ẑ(s)]

]
dB(s)

+
∫

[0,T ]
G(t)d (η − η∗) (s).

Now, it follows easily by the same arguments developed in Lemma 3.2, the condition

(3.33) implies that

lim
ε→0

E

 sup
0≤t≤T

∣∣∣∣∣Xuε,η∗(t)−X∗(t)
ε

−Z(t)
∣∣∣∣∣
2
 = 0. (3.50)
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By a simple computations, we get

Jε1
ε

= 1
ε

[J (uε(·), ηε(·))− J (uε(·), η∗(·))]

= 1
ε
E[[h(Xuε,ηε(T ), PXuε,ηε (T ))− h(Xuε,η∗(T ), PXuε,η∗ (T ))]

+ 1
ε
E
∫ T

0
[`(t,Xuε,ηε(t), PXuε,ηε (t), u

ε(t))

− `(t,Xuε,η∗(t), PXuε,η∗ (t), u
ε(t))]dt

+ 1
ε
E
∫

[0,T ]
G(t)d (ηε − η∗) (t).

By Tylor’s formula, the fact that

ηε(t)− η∗(t)
ε

= (η(t)− η∗(t)) ,

for any η(·) ∈ U2 ([0, T ]) and for real λ ∈ [0, 1], we have

Jε1
ε

= E
∫ 1

0
hx(Xuε,ηε(T ) + λ

(
Xε(T )−Xuε,η∗(T )

)
, PXuε,ηε (T )+λ(Xε(T )−Xuε,η∗ (T )))

×
(
Xε(T )−Xuε,η∗(T )

)
ε−1dλ

+ E
∫ 1

0
Ê[hµ(X̂uε,ηε(T ) + λ(X̂ε(T )− X̂uε,η∗(T )), P

X̂uε,ηε (T )+λ(X̂ε(T )−X̂uε,η∗ (T )))]

× (X̂ε(T )− X̂uε,η∗(T ))ε−1dλ

+ E
∫ T

0

∫ 1

0
`x(t,Xuε,ηε(t) + λ

(
Xε(t)−Xuε,η∗(t)

)
, PXuε,ηε (T )+λ(Xε(T )−Xuε,η∗ (T )), u

ε(t)])

×
(
Xε(t)−Xuε,η∗(t)

)
ε−1dλdt

+ E
∫ T

0

∫ 1

0
Ê[`µ(t, X̂uε,ηε(t) + λ(X̂ε(t)− X̂uε,η∗(t)), P

X̂uε,ηε (t)+λ(X̂ε(t)−X̂uε,η∗ (t)), u
ε(t))]

× (X̂ε(t)− X̂uε,η∗(t))ε−1dλdt

+ E
∫

[0,T ]
M(t)d (η − η∗) (t).

Finally, since the derivatives hx, hµ, `x and `µ are continuous and bounded, the result

follows from (3.50) and by letting ε going to zero. This completes the proof of Lemma
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Lemma 3.4
Let Z(·) be the solution of (3.49) and p(·) the solution of equation (3.23).

E(hx(T )Z(T )) + E(Ê(ĥ∗µ(T )Z(T )))

= −E
∫ T

0
Z(t)`x(t)dt− E

∫ T

0
Z(t)Ê[ ̂̀∗µ(t)(t)]dt. (3.51)

+ E
∫

[0,T ]
G(t)p(t)d (η − η∗) (t).

Proof : By applying Itô’s formula to p(t)Z(t) and taking expectation, we get

E(p(T )Z(T )) = E
∫ T

0
p(t)dZ(t) + E

∫ T

0
Z(t)dp(t)

+ E
∫ T

0
q(t)[σx(t)Z(t) + Ê[σ̂µ(t)Ẑ(t)]]dt (3.52)

= I1 (T ) + I2 (T ) + I3 (T ) .

From (3.50), we obtain

I1 (T ) = E
∫ T

0
p(t)dZ(t)

= E
∫ T

0
p(t)[fx(t)Z(t) + Ê[f̂µ(t)Ẑ(t)]]dt

+ E
∫

[0,T ]
G(t)p(t)d (η − η∗) (t) (3.53)

= E
∫ T

0
p(t)fx(t)Z(t)dt+ E

∫ T

0
p(t)Ê[f̂µ(t)Ẑ(t)]dt

+ E
∫

[0,T ]
G(t)p(t)d (η − η∗) (t).

By applying (3.23), we have

I2 (T ) = E
∫ T

0
Z(t)dp(t)

= −E
∫ T

0
Z(t)[fx(t)p(t) + Ê[f̂∗µ(t)(t)p̂(t)] + σx(t)q(t) + Ê[σ̂∗µ(t)q̂(t)]

−`x(t)− Ê[̂̀∗µ(t)(t)]
]

dt

= −E
∫ T

0
Z(t)fx(t)p(t)dt− E

∫ T

0
Z(t)Ê

[
f̂∗µ(t)(t)p̂(t)

]
dt (3.54)

− E
∫ T

0
Z(t)σx(t)q(t)dt− E

∫ T

0
Z(t)Ê

[
σ̂∗µ(t)q̂(t)

]
dt

− E
∫ T

0
Z(t)`x(t)dt− E

∫ T

0
Z(t)Ê

[̂̀∗
µ(t)(t)

]
dt.
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By a simple computation, we obtain

I3 (T ) = E
∫ T

0
q(t)[σx(t)Z(t) + Ê[σ̂µ(t)Ẑ(t)]]dt

= E
∫ T

0
q(t)[σx(t)Z(t)]dt+ E

∫ T

0
q(t)Ê[σ̂µ(t)Ẑ(t)]]dt. (3.55)

By combining (3.52)-(3.55), with some direct computation using Fubini’s theorem, we

get

E(p(T )Z(T )) = −E
∫ T

0
Z(t)`x(t)dt− E

∫ T

0
Z(t)Ê[̂̀∗µ(t)(t)]dt. (3.56)

+ E
∫

[0,T ]
G(t)p(t)d (η − η∗) (t).

Finally, the result follows from (3.56) and (3.23). This completes the proof of Lemma

3.4

Proposition 3.2
Let η∗ (·) the optimal singular control. For any η (·) ∈ U1 ([0, T ]) , we have

lim
ε→0

Jε1
ε

= E
∫

[0,T ]
(M(t) +G(t)p(t))d (η − η∗) (t). (3.57)

Proof : The result follows from Lemma 3.3 and Lemma 3.4, by substituting (3.51) in (3.48).

This completes the proof of Proposition 3.2.

We proceed to estimate the second term Jε2 . From (3.46), we have

Jε2 = [J (uε(·), η∗(·))− J (u∗(·), η∗(·))]

= E[[h(Xuε,η∗(T ), PXuε,η∗ (T ))− h(X∗(T ), PX∗(T ))] (3.58)

+ E
∫ T

0
[`(t,Xuε,η∗(t), PXuε,η∗ (t), u

ε(t))− `(t,X∗(t), PX∗(t), u
∗(t))]dt.

Noting that Jε2 in is independent to singular component of the control. By applying the

similar proof as in [11, Eq − (6.5)] with the help of Proposition 3.1, and since J (u∗, η∗) ≤
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J (uε, η∗) , we get

Jε2 = J (uε (·) , η∗(·))− J (u∗(·), η∗(·))

= −E
[∫ T

0
(H(t,X∗(t), PX∗(t), u, p

∗(t), q∗(t))

−H(t, x∗(t), PX∗(t), u
∗(t), p∗(t), q∗(t)) (3.59)

+ 1
2Pt (δσ (t))2

]
1Eε (t))dt+ o(ε)

= −E
∫ T

0
(δH (t) + 1

2Pt (δσ (t))2)1Eε (t) dt+ o(ε) ≥ 0,

where o(ε) = Cερ(ε), and ρ(ε)→ 0 as ε→ 0. By letting ε going to zero in (3.59), we get

0 ≤ lim
ε→0

Jε2
ε

= −E
∫ T

0
(δH (t) + 1

2P (t) (δσ (t))2)dt

= −E
∫ T

0
[H(t,X∗(t), PX∗(t), u(t), p∗(t), q∗(t))

−H(t, x∗(t), PX∗(t), u
∗(t), p∗(t), q∗(t)) (3.60)

+ 1
2P (t)

(
σ(t,X∗(t), PX∗(t), u(t)))− σ

(
t,X∗(t), PX∗(t), u

∗(t)
))2

]dt.

From (3.47), (3.57), (3.60), we obtain

0 ≤ E
∫ T

0
[H(t,X∗(t), PX∗(t), u

∗(t), p∗(t), q∗(t))−H(t, x∗(t), PX∗(t), u(t), p∗(t), q∗(t))

− 1
2P (t)

(
σ(t,X∗(t), PX∗(t), u(t)))− σ

(
t,X∗(t), PX∗(t), u

∗(t)
))2

]dt (3.61)

+ E
∫

[0,T ]
(M(t) +G(t)p(t))d (η − η∗) (t).

Finally by applying the Lebesgue differentiation theorem to (3.60), we deduce from (3.61)

that, for all (u(t)) , η(t)) ∈ U1 × U2, a.e., t ∈ [0, T ], it holds P -almost surely,

H(t,X∗(t), PX∗(t), u
∗(t), p∗(t), q∗(t))−H(t,X∗(t), PX∗(t), u(t), p∗(t), q∗(t))

− 1
2P (t)

(
σ(t,X∗(t), PX∗(t), u(t)))− σ

(
t,X∗(t), PX∗(t), u

∗(t)
))2

(3.62)

+ E
∫

[0,T ]
(M(t) +G(t)p(t))d (η − η∗) (t) ≥ 0.

This completes the proof of Theoem 3.1
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Conclusion

In this thesis, we have discussed a general Peng’s type necessary conditions in the form

of Pontryagin stochastic maximum principle of optimal continuous-singular control for

nonlinear controlled McKean-Vlasov stochastic differential equation. If the coefficients of

the singular parts G(t) = M(t) = 0, our stochastic maximum principle (Theorem 3.1)

coincides with maximum principle developed in Buckdahn et al. [11, Theorem3.5].

Apparently, there are many problems left unsolved such as:

A. One possible problem is to study the general Peng’s type maximum principle for

optimal control for SDE, the coefficients of the singular parts G (·) andM (·) depend
explicitly to the state of the solution process Xu,η of the form

dXu,η(t) = f (t,Xu,η(t), u(t)) dt+ σ (t,Xu,η(t), u(t)) dW (t)

+G(t,Xu,η)dη(t),

Xu,η(0) = x0,

and the cost functional of the form

J (u(·), η(·)) = E

[∫ T

0
f(t,Xu,η(t), u(t))dt+ h(Xu,η(T ))

+
∫

[0,T ]
M(t,Xu,η)dη(t)

]
,

B. It would be interesting to investigate the McKean-Vlasov maximum principle (local

version via Bensoussan’s convex method and general Peng’s maximum principle)

for optimal continuous-singular control for McKean-Vlasov SDE, the coefficients of
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the singular parts G (·) and M (·) of the state equation depend on the state of the

solution process as well as of its probability law and the control variable.of the form

dXu,η(t) = f
(
t,Xu,η(t), PXu,η(t), u(t)

)
dt+ σ

(
t,Xu,η(t), PXu,η(t), u(t)

)
dW (t)

+G(t,Xu, PXu,η(t))dη(t),

Xu,η(0) = x0,

and the expected cost has the form

J (u(·), η(·)) = E

[∫ T

0
f(t,Xu,η(t), PXu,η(t), u(t))dt+ h(Xu,η(T ), PXu,η(t))

+
∫

[0,T ]
M(t,Xu,η, PXu,η(t))dη(t)

]
.

C. Another challenging problem left unsolved is to derive a various maximum principles

in the case where the coefficients f, σ, `, G andM depend on the state of the solution

process Xu,η (·) , the continuous control variable u(·) as well as of probability law of

the pair P(Xu,η(t),u(t)). So we investigate the problem:

dXu,η(t) = f
(
t,Xu,η, u(t), P(Xu,η(t),u(t))

)
dt+ σ

(
t,Xu,η(t), u(t), P(Xu,η(t),u(t))

)
dW (t)

+G(t,Xu,η, u(t), P(Xu,η(t),u(t)))dη(t),

Xu,η(0) = x0,

and the cost functional has the general form

J (u(·), η(·)) = E

[∫ T

0
f(t,Xu,η, u(t), P(Xu,η(t),u(t)))dt+ h(Xu,η(T ), PXu,η(t))

+
∫

[0,T ]
M(t,Xu,η, u(t), P(Xu,η(t),u(t)))dη(t)

]
.

We hope to study these interesting new problems in forthcoming works.
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