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Abstract— When speaking about the diagnostic and reliability 

of induction motor (IM), it is important to note that the 
modeling is a main step permitting to study the evolution laws 
of the faults related harmonics. This is the aim of many previous 
works, but only few attempts on axial air-gap eccentricity 
modeling can be found. This paper deals with a new model of 
axial air-gap eccentricity faults in IM. This model is based on a 
variant of the modified winding function approach (MWFA) 
which allows the axial nonuniformity to be taken into account 
by considering that the eccentricity levels rise linearly along the 
rotor shaft. The model proves very useful to study the most 
documented IM faults without any need for Fourier series 
developments of turns and permeance functions in case of axial 
eccentricity. Knowing that the skew factor can be applied only 
under axial air-gap uniformity, the proposed model offers an 
accurate way in order to include the slots permeance and 
skewing effects even under axial eccentricity. The analysis is 
completed by a simulation tests on a 2-pole IM. 

 
Index Terms— Induction motor, space harmonics, skew, slot 

permeance effect, axial air-gap eccentricity.   
 

I. INTRODUCTION 

Nowadays, three-phase squirrel cage induction motors are 
omnipresent in industrial and manufacturing processes. This 
is mainly due to their low cost, reasonable size, ruggedness 
and ease of control. Usually, the IMs work under many 
stresses from various natures (thermal, electric, mechanical 
and environment) which can affect their lifespan by 
involving the occurrence of stator and/or rotor faults leading 
to unscheduled downtime. Therefore, one can reduce 
significantly the maintenance costs by preventing sudden 
failures in IM. This is the main goal of the operator of 
electrical drives.  

Most of faults in three-phase IMs have relationship with 
air-gap eccentricity which is the condition of the unequal 
air-gap between the stator and the rotor. This fault can result 
from variety of sources such as incorrect bearing positioning 
during assembly, worn bearings, a shaft deflection, and so on. 
In general, there are two forms of air-gap eccentricity: radial 
(where the axis of the rotor is parallel to the stator axis) and 
axial. Each of them can be static (where the rotor is displaced 
from the stator bore centre but is still turning upon its own 

axis) or dynamic eccentricity (where the rotor is still turning 
upon the stator bore centre but not on its own centre). 
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In order to develop improved methods to diagnose stator 
and rotor faults, extensive research has been done on the 
dynamic modeling of the IM in both healthy and faulty states. 
Numerous IM model are based on the MWFA in order to 
account for the air-gap eccentricity. The principal related 
spectral frequencies are derived from the general equation 
given in [1] and expressed as follow 
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In healthy state and static eccentricity, the called principal 
slot harmonics PSH are obtained for . In case of 
dynamic eccentricity, 

0 =dn
...,,nd 21= . If both types coexist, in 

the low range frequency appear the harmonics of the mixed 
eccentricity described by [2] 

rsmix f.kff ±= ,                                                               (2)       

with ...,3,2,1 =k    
In order to reduce torque and speed ripples due to the slot 

harmonics, it is usually recommended to use skewed rotor 
and/or stator slots. In this context, the skewing of the rotor 
bars was modeled in [2] and [3] thanks to the well known 
skew factor, whereas the authors of [4] use the definition of 
the inductance per unit of length.  

Following the literature, few attentions on axial 
eccentricity can be found. One can recall that the axial 
eccentricity is obtained when the air-gap is not equal along 
the rotor shaft for the same angular position. It is also called 
the inclined eccentricity. In such fault, the radial force may 
differ at the low ends of the rotor which may yield bearing 
damages, excessive vibration and acoustic noises [3]. By 
considering the cylindrical whirling motion, of the rigid 
rotor, the symmetrical conical whirling motion, and the 
combination of both types, electromagnetic forces acting 
between the stator and the rotor when the rotor is misaligned 
was studied in [5]. In [6], transient and steady state studies of 
unbalanced magnetic forces in case of rotor misalignment 
using the magnetic equivalent circuit method prove that good 
estimate of these forces requires a precise modeling of the 
permeance function of air-gap. Through theoretical and 
experimental studies of the vibration behaviors, the authors 
of [7] have confirmed the possibility of detecting some case 
of shaft misalignment in large IMs via the motor current 
signature analysis (MCSA). This can be done by inspecting 
some of the frequency components given by (2) under 
various fault levels.  The work states that the modes of 
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vibration were dependent on the bearing stiffness and that the 
rotor vibration in large induction motors will principally 
consist of its radial rigid translation or rotation. Besides, it 
was verified that these modes can be considered as a mixture 
of dynamic and static axial eccentricity which make 
indispensable the search of a good model of the air-gap 
permeance function. 

An effort to extend the MWFA to consider the axial 
nonuniformity for skew and air-gap eccentricity modeling 
was performed in [8] and later-on in [9]. It is interpreted as 
2-D extension of the MWFA. Afterward, the rotor saliencies 
produced by the radial and axial air-gap eccentricity was 
employed in order to detect the fault from the zero sequence 
voltage [10]. In [3], a comprehensive study of the static axial 
eccentricity was performed. It was verified that static axial 
eccentricity demonstrates similar characteristics such as 
static radial eccentricity and can be recognized from the 
current spectrum, excluding the symmetric case to the 
midpoint of the motor shaft.  It is important to note that none 
of the referred works analyzed all the possible cases of 
dynamic and mixed axial eccentricity.  Furthermore, it should 
be noted that the use of the skew factor is limited to the 
inductance calculation when there is no axial asymmetry 
other than the slot skewing. In case of axial eccentricity, a 
new formalism is to be developed. These are what this paper 
attempts to elucidate.    

 

II. EXPERIMENTAL CREATION OF RADIAL AND AXIAL 
ECCENTRICITIES 

Referring to Fig. 1, and supposing that the eccentricity 
levels rise linearly along the rotor shaft for the same angular 
position, yield [11] 
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Fig. 1. Axial linear rise of the eccentricity level. 

Note that, for fixed values of 0sδ and 0d δ , the choice  

of  and identifies the shaft misalignment level.     stL dyL
The pure radial eccentricity is well documented previously. 

In practice, the most possibly case is that the non-uniformity 
depends from the rotor axial length. An important step in 
order to study the axial eccentricity is to explain its 
mechanism of reproduction. In static axial eccentricity, the 

rotor rotates around its natural axis which is inclined 
compared to the stator one. In dynamic axial eccentricity, the 
rotor natural axis is inclined compared to its rotational axis 
which is superimposed to the stator one [16]. The 
combinations of these modes and those of pure radial 
eccentricity lead to variants of mixed axial eccentricity.  

  

  

Fig. 2. Artificially created static eccentricity (a) and dynamic eccentricity (b) 
by fitting support parts. 

The dynamic eccentricity can be forced by fitting a support 
parts or a thin eccentric bushing between the rotor shaft and 
the bearing of the front side [10], and with the same manner 
as for the other back side. The static eccentricity is obtained 
by fitting a non-concentric support between the bearing 
external surface and the bearing housing of the front and back 
sides of the motor as can be seen in Fig 2. Note that bearings 
must be replaced by others of bigger internal diameter in case 
of dynamic eccentricity, and a smaller external diameter in 
case of static eccentricity. Support parts with same thickness 
at the front and the back sides placed at the same angle from 
an axe of reference leads to pure radial eccentricity. When the 
support parts are of unequal thickness that lead to an axial 
eccentricity with Lst>l or/and Ldy>l. The third case is when 
the support part of the back side is placed at 180° from that of 
the front side. That leads to axial eccentricity with Lst<l 
or/and Ldy<l. If they are of equal thickness we obtain the 
symmetric case to the midpoint of the motor shaft. Even 
though the described procedure remain an artificial 
arrangement, similar effects can be reproduced in reality 
because of many factors such as inadequacies machining, 
mechanical or thermal deformations or/and stresses of 
different origins. 

 

III.   TRANSIENT MODEL OF THE IM 
 The multi-loops model supposes that the squirrel cage is 

composed of identical and equally spaced rotor loops. Thus, 
the current in each mesh of the rotor cage is an independent 
variable. By supposing that there are no inter-bar currents, no 
eddy currents, saturation and winding losses, and that the 
permeance of the iron is infinite, the voltage and mechanical 
equations of the loaded IM for a three-phase stator winding 
YN-connected (grounded neutral) can be written as 
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[ ]U  corresponds to the system voltages, [  to the stator and 
rotor currents. They are 

]I
1)4( ×+bN  matrix. The resistances 

matrix  and the inductances matrix [ ]R [ ]L  are 
 matrices. In Y-connection (floating 

neutral), the system must be restructured as described in [12].  
)4()4( +×+ bb NN

 

IV.  INDUCTANCES CALCULATION 

A. Global Formulation 

The 2-D modified winding function (MWF) can be 
expressed as in [8].   
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By considering that the mean air-gap radius doesn’t change 
even in case of eccentricity, any variable defined originally 
with respect to φ, z and r, can be considered as a function of 
only φ and z. Then, the magnetic field in the air-gap is 
projected in a cylindrical surface of radius r0. Taking ϕ.0rx =  
and rr rx θ.0=  one can now envisage 2-D representation 
where the skew and the crossing of rotor loops under the field 
of stator coils become more interpretable (Fig. 3) [16]. In this 
case, x correctly translates the linear displacement along the 
arc corresponding to the angular opening ϕ .  

Knowing that N is the MMF per unit of current, the 
expression giving the inductance between any winding W2 
and winding W1 is abridged to  
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Using (6) and taking , a new 
expression can be obtained 
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where υ and ν  are the number of coils of winding W1 and W2 
respectively. Thus, according to the chosen type of winding, 
the mutual inductance between W1 and W2 depends on the 
mutual inductances of their elementary coils. As a detailed 
example, one can use (9) to calculate the mutual inductance 
between stator coil  and rotor loop riA j. The rotor loop is 
regarded to be a coil with one turn (ν =1 in equation (9)). 
Then:  
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Fig.  3.  2-D representation of the crossing of rotor bars under the field of 
stator coils. 

According to Fig. 4, for any rotor position , the 
distribution function of rotor loop r

rx 
1 can be expressed in 2-D 

as follow  

⎩
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Fig. 4. The 2-D distribution function of rotor loop rj  for a known rotor 
position. 

The endpoints of rotor loops depend on xr because of the 
rotor relative displacement. One can choose simply xj to 
indicate xj(xr), and consider only the spatial coordinates x and 
z in the integral’s boundaries.  As for  and , they are 
defined as: 

j1z j2z
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where  )()( 012 rjj rxx λγ +=−

By means of (11), (10) becomes 
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Following Fig. 5, and supposing that the MMF rise linearly 
across the slots of width β , the expression of the distribution 
function  for stator coil  can be deduced. [4]. Ain iA 

 

Fig. 5. The turn function of coil Ai 
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According to (15), when the rotor loop is partially under 
the field of the stator coil, the integral in the external interval 
is null. Then, the integral of (14) becomes a double integral 
over 'D'  
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where 'D' is the common surface  (grey region in Fig. 3) 
among the surface of projection of rotor loop  and that of 

stator coil . In general, the calculation of  is similar to 
the calculation of the volume having the base 'D', and to the 
calculation of the area of 'D' itself in case of constant air-gap 
and a neglected slot width (β=0). Using the above 
relationships, one can obtain the integral of (16).   

jr

iA ArL 1

B- Uniform Air-Gap 
As an example, and when neglecting the slot opening,  

is constant in 'D'. According to which is the aria of 
'D', equation (16) can be written as    
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For this particular case and according to rotor loop 
positions yields 
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Then, the slot skewing is perfectly modelled thanks to the 
plane representation of the crossing of rotor loops under the 
field of stator coils. Therefore, no need for the known skew 
factor and Fourier series development of the turns and 
winding function. Regarding AnP.  and

rjnP. , and due to 

the fact that they are independent from rotor position , their 
values are easily deduced from the two expressions: 

rx
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Knowing that rr drdx θ.0=  and that the derivatives of (21) 

and (22) are null, yield 
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Following the same procedures, it will be possible to find 
all inductances and their derivatives. Note that the resulting 
algorithm is easily adaptable to any winding. In the same 
manner, one can integrate the linear rise of the MMF across 
the slot; in this case, the surface area will be replaced by a 
volume calculation. 

C. Radial eccentricity  
In case of eccentricity, the air-gap function is given by [2] 
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In general, numerical calculation makes it possible to find 
the machine inductances using (9). However, an expansion in 
Fourier series of P using the first p harmonics can be used to 
get an analytical solution [13]. Then, in case of pure radial 
eccentricity   
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with δ and ρ are function of  δs , δd and as described in [2].  rθ

D- Axial eccentricity 
If the double integral leading to the  inductance value in 

case of axial eccentricity will be difficult or we won't even be 
able to evaluate it, it can be facilitated by using a proper 
numerical integration to convert the integral into a simple 
some of terms. The proposed method is based on a 
rearrangement of (10) as: 
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Following (3), (4) and (24), P can be written as follow 
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Substituting (28) into (27) yields   
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At this stage, a simple numerical integration instead of 
double integration could be used to evaluate (31). If there is 
another axial dependency (like air-gap variation due to the 
slot permeance effects accounting for the skew), it should be 
remembered that the use of a double numerical integration in 
order to calculate (16) remain the obvious alternative. Note 
that, unlike the few attempts denoted in section I, the 
proposed solution considers all the harmonics of the inverse 
of air-gap function. This may lead to more accurate signal 
spectra, especially, in the study of IMs having a large number 
of poles. Furthermore, a considerable decreasing on the time 
and calculation process can be obtained thanks to the 
reduction of the double numerical integration into one simple 
integration. 

 

V.   SIMULATION RESULTS 

A. Inductances Calculation 
The studied machine is a three-phase 2-pole star connected 

3kW IM. The skew of rotor bars is taken into account in the 
simulation as well as the linear rise of the MMF across the 
stator slots. However, the slot effects may not be very 
important according to the study of [14]. Average core 
saturation effect can be included as described in [15]. The 
particularity of the MWFA is that it can evaluate these effects 
individually and in a relatively short computation time 
compared to finite element methods. Even as the above 
analysis makes a number of simplifying postulation, it 
identifies the important frequency components one would 
expect to detect in the stator current spectra.  

 
Fig. 6. Self inductance of stator winding A in dynamic radial eccentricity of 
20% (dot line), 40% (dash line) and 60% (solid line) 

In both static radial and static axial eccentricity, the self 
and mutual inductances of the stator windings will be 
independent of the rotor position. However, they will change 
with respect to the rotor position in case of dynamic 
eccentricity (Fig. 6). In case of axial eccentricity, their 
absolute values increase when the coefficient corresponding 
to the position of the concentric cross section of the rotor 
(Ldy) increases. A huge value of Ldy (like 1 m and more) leads 
to pure radial eccentricity (Fig.7 and 8). 

 
Fig. 7. Self inductance of stator winding A in dynamic axial eccentricity of 

0dδ =60%, and =0.5xl...2xl 
dyL

 

Fig. 8. Mutual inductance between stator winding A and B in dynamic axial 
eccentricity of 0dδ =60%, and =0.5xl...2xl 

dyL

 
Fig. 9. Mutual inductance between the first and the second rotor loop in static 
radial eccentricity of 20% (dot line), 40% (dash line) and 60% (solid line)  

As a consequence of static axial eccentricity, the rotor loop 
self inductance and mutual inductances between rotor loops 
are function of rotor position. They describe the same 
characteristics of pure radial eccentricity presented in Fig.9, 
but there values depend on the shaft misalignment level. 
Fig.10 depicts the curve of the mutual inductance between 
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the first and second rotor loop as a function of and the 
rotor position. 

stL

 
Fig. 10. Rotor mutual inductance between the first and second rotor loop in 
static axial eccentricity of 0sδ =50% and  =0.5xl...2xl  stL

 
Fig. 11.  Mutual inductance between stator winding A and rotor loop r1 in 
dynamic axial eccentricity of 0dδ =70% for different values of .  dyL

 
Fig. 12. Mutual inductance between stator winding A and rotor loop r1 in 

static axial eccentricity of  0sδ  =50% for different values of .  stL

The effect of dynamic axial eccentricity in the variation of 
mutual inductance with respect to the rotor angular 
position (from 0 to 2π) and the degree of shaft misalignment 
( from half l to 2.5xl) is shown in Fig. 11. It can be seen 
that the inductances for an axial eccentricity case describe the 
same characteristic of radial eccentricity whose level is the 
average value of the eccentricity levels at the two ends of the 
machine in the actually axial eccentricity. Hence, one can 

predict that the fault- related harmonics would become 
undetectable for the case with average zero dynamic 
eccentricity ( 

ArL 1

dyL

2/lLdy = ). The same analysis as for the static 
axial eccentricity and Fig. 12. 

B- Integration of the slot permeance effect 
For including the slot permeance effect, additional terms 

must be added to (9). It reflects the air-gap variation due to 
the doubly slotting. We attempt here to suggest a simple way 
which profits of the proper potentiality of the MWFA and the 
actual advance in computer hardware and software. After 
some improvements, this may be considered as an alternative 
of methods based on Fourier series development. The air-gap 
length in case of skewed rotor slots is 

),(),,(),,(
),,(

rssrrsre

r

xxgxzxgxzxg         
 xzxg

++
=                   (32) 

where is the air-gap length without slotting effect. 

and are the additional terms due to rotor and stator 
slotting effects respectively. Then, one can define 

eg

rsg ssg
x and 

rx as 

rnxx λ.−=                                                                   (33) 

rrr ntgzxx λγ .))(.( −−=                                                  (34) 

 
Fig. 13. air-gap variation due to rotor slotting effect 

If the quotient rx λ/  is within roundoff error of an 
integer, then n is that integer. In MATLAB software, this can 
be done using the function mod so that ),mod( rxx λ=  and 
similarly )),(.mod( rrr tgzxx λγ−= .   

According to Fig. 13, can be defined as follow rsg

 - If )( rrrx βλ −≤  

⎩
⎨
⎧ +≤≤

=
                      otherwise            0
           )x(  x x         

),,( rr rr
rrs

h
xzxg
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 -Else (If )( rrrx βλ −≥ ) 
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⎨
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                                                  otherwise                 0
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rrs
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As for , it is easily obtained from the following 
expression 

ssg

⎩
⎨
⎧ ≤≤

=
  otherwise               0 
    x ̀0              

),( sλs
rrs

h
xxg                             (37) 
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with ),mod(` sxx λ=  

Fig. 14 depicts the stator-rotor mutual inductance plot in 
axial air-gap eccentricity condition including stator and rotor 
slots permeance effect. 

 

Fig. 14. Mutual inductance between stator winding A and rotor loop r1 in 

static axial eccentricity of  0sδ  =60% and  lLst =

C. Dynamic Simulation 
The next simulation results predict the current spectra 

when the motor is fed from a sine wave symmetrical voltage 
supply. Based on the IM model described above. The 
numerical simulation of the transient startup is performed. 
The frequency spectra of line current are obtained thanks to 
the Fast Fourier Transform (FFT) using a Hanning’s window. 
It is drawn in the logarithmic magnitude scale and normalized 
format. The magnitude of the fundamental is assigned to the 
value of 0 dB. In all simulation, 75% of the full load is 
applied. 

    1)  Radial eccentricity 
Fig. 15 represents the line current spectra of the studied IM 

operating in mixed radial eccentricity condition. The stator 
winding is YN-connected. In the low range frequency, it is 
possible to see the mixed eccentricity components of 
equation   (2).  

 

 
Fig. 15. Simulated stator current spectra in case of mixed radial eccentricity 
of  and , stator winding YN-connected. Low 

frequencies (top), high frequencies (bottom).  
%20=sδ %200 =dδ

It is clear that the lower RSH associated to a triplen pole 
pair appears obviously with the upper one even under 
balanced power supply (Fig 15) in Y-N connection [9].  As 
predicted, when we consider the Y-connection, only the 
highest RSH associated to nontriplen pole pair can be seen, 
while the two RSHs are generated when considering 5% of 
supply unbalance (Fig. 16) [2]. In addition, one can note that 

the dynamic eccentricity harmonics are very weak; this is due 
mainly to the skew effect. 

 

 
Fig. 16. High rang frequency of simulated stator current spectra in case of 
mixed radial eccentricity %20=sδ  and %20=d δ  , stator winding 

Y-connected. Balanced supply (top), 5% of supply unbalance (bottom).   

   2)  Axial eccentricity 
Fig. 17 depicts the rotational speed and electromagnetic 

torque from startup to steady state of the studied IM operating 
in mixed axial eccentricity conditions compared with the case 
of mixed radial eccentricity. Load is applied after 0.7 s. The 
considered axial eccentricity has a static radial eccentricity 
component of 20% and dynamic axial eccentricity of 

%200 =dδ   with lL dy = . One can note that the axial 
air-gap nonuniformity modifies the transient startup as well 
as the slip in steady state.  

 

Fig. 17. Speed (top) and electromagnetic torque (bottom) in mixed 
eccentricity conditions of and . Pure radial 

eccentricity (solid line), axial eccentricity with  (dot line). 
%20=sδ %200 =dδ

lL dy =

The corresponding line current spectra are shown in  
Fig 18. As it is clear, the amplitudes of the characteristic 
components of equation (2) under the same load condition 
and the same level of eccentricity backside the machine as in 
pure radial eccentricity (Fig. 15) decrease. As shown in Fig. 
19 and Fig. 20, In case of average zero dynamic eccentricity 

%200 =δ  with ( 2/lLdy = ) and %20 =sδ , and average 

zero static eccentricity %200 =δ  with ( 2/lLst = ) 
and %20=d δ , the amplitudes of the fault related harmonics 
are smaller than those corresponding to the radial eccentricity 
and the first examined case of axial eccentricity.  
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Consequently, we can state that axial eccentricity with low 
average value (especially when  or/ andlLdy < lL st < ) but 
high value backside of the rotor can be confused with a radial 
eccentricity having a small fault level. So, in order to make a 
reliable diagnosis of radial eccentricity, one must be sure that 
its variation has no axial dependency.    

 

 
Fig. 18. Simulated stator current spectra in case of mixed axial eccentricity of 

%20=sδ radial and %200 =dδ axial with , stator winding 

YN-connected. Low frequencies (top), high frequencies (bottom).   

lL dy =

 
Fig. 19. Simulated stator current spectra in case of mixed axial eccentricity 
of  %20 =sδ radial and %200 =dδ  axial with . Stator 

winding YN-connected. Low frequencies (top), high frequencies (bottom).   
2/lLdy =

 

 

 

Fig. 20. Simulated stator current spectra in case of mixed axial eccentricity of 
%200 =sδ axial with , and 2/lLst = %20=dδ radial. Stator winding 

YN-connected. Low frequencies (top), high frequencies (bottom).   
 

V.    CONCLUSION 
In this work, an accurate mathematical model for 

three-phase induction motor working under radial and axial 
air-gap eccentricity was presented. This model was based on 
the multiple-coupled circuits approach. The authors have 
proposed an improved technique in order to calculate the 
motor inductances using an extension in 2-D of the MWFA 
which make possible to consider any axial no-uniformity 
including the slots skewing and permeance effects. Other 
effects like the linear rise of the MMF across the stator slots 
were also considered. Using this technique, the resulting 
inductances expressions were less complicated and more 
suitable to be implemented in algorithm. The different types 
of the axial eccentricity were successfully modeled taking 
into account that the eccentricity levels rise linearly along the 
rotor shaft. The simulation tests which were carried out on a 
3kW, 2-poles induction motor, confirm that the axial 
eccentricities have the same signatures in the stator current 
spectra as the radial eccentricities. On the other hand, it was 
found that  a non-inspected presence of an axial 
non-uniformity of the air-gap in addition to the radial 
eccentricity reduce the amplitudes of the known fault related 
harmonics which decrease the reliability of the diagnosis 
process of radial eccentricity. 

 

APPENDIX 
- Nomenclature  
 
A,B,C Windings of stator phases As, Bs and Cs respectively 
LW2.W1 Mutual inductance between any winding W1 and W2 of the motor 
l Rotor length  
w  Number of turns per coil 
Nb Number of rotor bars 
Ne Number of stator slots 
Lb Rotor bar leakage inductance 
Le End-ring leakage inductance 
Rs Stator phase resistance 
Rb  Rotor bar resistance 
Re  End-ring resistance   
γ Mechanical angle of the skew 
λs Pitch of the stator slots 
λr Pitch of the rotor slots 
α Opening of the coil (coil pitch) 
β  Stator slot width (opening) 
θr Rotor angular position 
N  Modified winding function  
n Distribution function (turns function) 
F The magnetomotive force 
fs  The main frequency (Fundamental frequency) 
fr Rotational frequency 
s Slip in per unit 
p Number of fundamental pole pairs 
nd   Index of dynamic eccentricity 
μ0   Permeability in vacuum 
δs  Static eccentricity level 
δd  Dynamic eccentricity level 
δ Global eccentricity level 
δs0 Static eccentricity level backside of the rotor (z=0) 
δd0 Dynamic eccentricity level backside of the rotor (z=0) 
Lst , 
Ldy

Position of the concentric cross section of the rotor in static and 
dynamic axial eccentricity respectively 

Ce Electromagnetic torque  
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Cr Load torque 
Jr Moment of inertia 
fv Viscous friction 
ωr Mechanical speed of the rotor 
g0 Average air-gap length 
g  Air-gap function 
P Inverse of air-gap function (permeance function of air-gap) 
r Average radius of the air-gap (a polar radius)  
r0 Average radius of the air-gap in symmetrical condition 
rj The jth rotor loop  
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