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General introduction 
This thesis is a part of scientific study for partial differential equations in 

physics and applied mathematics that has been developed in laboratory and 
supervised by Professor A. Zerarka. The investigation of the travelling waves 
solutions for nonlinear partial differential equations plays an important role in the 
study of nonlinear physical phenomena, where nonlinear wave phenomenon appears 
in various scientific and engineering fields, such as fluid mechanics, plasma physics, 
biology, solid state physics, chemical kinematics, chemical physics ,geochemistry and 
optical fibers. This later includes: nonlinear wave dispersion phenomena, dissipation, 
diffusion, reaction and convection which are very important in nonlinear wave 
equations. 

New exact solutions may help us well to find new phenomena by using a 
variety of powerful methods, such as inverse scattering method [1,2], bilinear 
transformation [3], the tanh–sech method [4–6],extended tanh method [7–9], sine–
cosine method [10,11], homogeneous balance method (HBM) [12].The 
homogeneous balance method is a powerful tool to find solitary wave solutions from 
nonlinear partial differential equations (NPDEs) [13–16]. 

       Although, the limited work which was done to symbolically compute 
exact solutions for nonlinear differential-difference equations (NDDEs)? However, 
NDDEs play an important role in numerical simulations of NPDEs; for example, 
queuing problems, and discretizations in solid state and quantum physics which go 
back to  the work of Fermi, Pasta and Ulam in the 1950s [17]. Another example 
of higher importance in high energy physics is the systems in numerical simulation 
of soliton dynamics; where they arise as approximations of continuum models.  

The nonlinear differential–difference equations (NDDEs) appear in different 
fields such as condensed matter physics, biophysics and mechanical engineering. 
Thus, the exact solutions for the nonlinear differential–difference equations (NDDEs) 
play a crucial role in the modeling of many phenomena; one of them is the 
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physical as particle vibrations in lattices, currents in electrical networks, pulses in 
biological chains, etc. 

Nonlinear differential–difference equations (NDDEs) have been the focus of 
many nonlinear studies [18, 19]. There is a widely researchers’ work on NDDEs. 
It includes investigations of integrability criteria, the computation of densities, 
generalized and master symmetries, and recursion operators [20]. Levi and 
colleagues [21, 22], Yamilov [23,24] and co-workers [25-30] that classify the 
NDDEs into canonical forms, integrability tests ,and connections between integrable 
NPDEs and NDDEs are analysis in detail. Considerable quantity of information about 
integrable NDDEs was provided by Suris in his articles [31–35] and his book 
[36]. Suris and other researchers have shown that many lattices are closely related 
to the Toda lattice [37],its relativistic counterpart due to Ruijsenaars [38], Baldwin 
[39] implemented the tanh-method, also sech, cn, and sn-methods in 
Mathematica, Liu and Li [40,41] implemented the tanh method in Maple. 

With the rapid development of nonlinear science, scientists and engineers 
have been interested in the asymptotic analytical techniques for nonlinear problems. 
Although, it is very easy for us now to find solutions for linear systems by using 
the computer, it is always very difficult to solve nonlinear problems numerically or 
analytically. This is probably due to the fact that the various methods of numerical 
simulations apply to iteration techniques to find their numerical solutions to non-
linear problems, and almost all iterative methods are sensitive to the initial 
solutions. Thus, it seems difficult to obtain consistent results in the case of strong 
nonlinearity. Other evolution equations in physics are completely integrated, but this 
unique aspect has the disadvantage of causing unstable disturbance for the 
equation; in the sense it does not allow the refinement of the physical modeling.  

The objective of this work is to construct solutions for some physical models 
that are mathematically processed by using the method coth, coth-csch, the method 
of fractional transformations and the decomposition method of the functional variable; 
so we are going to proceed as follows: 

- Presentation of new methods for solving nonlinear lattice equations. 

- The application of functional variable methods to solve various nonlinear 
equations. 

- Using homogeneous balance method to find precise and explicit solutions. 



 

 

 

 

 

 

 

 

 
 3 

This thesis consists of a general introduction which presents the importance 
of theme, the objectives of the search and shows the outline of the thesis that 
contains four main chapters, and finally a general conclusion. In the first chapter, 
some methods to solve nonlinear lattice equation, where we address the method 
coth and method coth-csch   which has proved its effectiveness in solving 
nonlinear lattice equation are stated. In the second chapter, the nonlinear lattice 
equation is investigated with the aid of symbolic computation; we use some 
fractional transformations to obtain many types of new precise solutions. The third 
chapter contains a set of solutions for the generalized one-dimensional of the 
Benjamin-Bona-Mahony (BBM) equation for any order by using the function 
variable method. The last chapter proposes a method of functional variable applied 
on nonlinear problem with coefficients variable. 
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Chapter 1  

Some methods to solve the lattice 
differential equation 

1.1 Introduction 

       In this section we present some various methods to construct the 
travelling wave solutions of the non-linear lattice equation which it’s among 
nonlinear differential-difference equations (NDDEs), where it is observed in many 
important scientific fields [42-49]. 

     So, in this chapter we offer a new expanded method for solving 
nonlinear differential-difference equations, where we show its demonstration to get 
the travelling wave structures. 

     For comparing the wave solutions of non-linear equation, also we 
offer a strong and effective non-linear model is the tanh-method for solving the 
nonlinear lattice problem. This provides us with some new kink-type and bell-type 
travelling wave solutions with different forms. 

In order to obtain new wave solutions for non-linear lattice equation, we will 
apply our new method called coth and coth-csch method. We expect that this 
method will provide deeper and more complete understanding of the complex 
structures of complicated nonlinear lattice equation of atom or molecule. 

1.2 The nonlinear lattice differential-difference equations 
(NDDEs)  
  A differential equation is a mathematical equation that relates to 

some functions with their derivatives. In applications, the functions usually represent 
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physical quantities, the derivatives represent their rates of change, and the equation 
defines a relationship between the two. Such relations are extremely common. 

Within differential equations the nonlinear differential equations  which can 
exhibit very complicated behaviour over extended time intervals, characteristic of 
chaos. Even the fundamental questions of existence, uniqueness, and ability of 
extending solutions for nonlinear differential equations, were  studied  by Boyce, et al. 

(1967) [50], For searching those solutions we consider the following nonlinear 
problem for the differential equation 

 

        

       
   

mm

m

n l n l n l n l

n l
r

n l
r

P u t u t u t u t

u t u t
1

1 1

( ) ( )

( ,.., , , , ,

, ,...., ) 0
   

 

 

 
                 (1.1)  

where P is a polynomial of u and its derivatives, ( ) ( , )nu t u n t  is a function  
with continuous variable t  and discrete variable , , 1,2,....  in l i m  . 

To find the traveling wave solutions of Eq. (1.1) we introduce the wave 
transformation:   

                        
0

0

,   


 
p

i i

i

                     (1.2) 

i are the independent variables, and 0 andi  are free parameters. When 

1p , 0 0 1 1 0,        the parameters 0 , 1 are identified as the wave 
pulsation and the wave number k  respectively if 0 , 1  are the variables t and x  
respectively. In the discrete case for the position x and with continues variable for 
the time t ,  becomes 0   n nd ct  and n  is the discrete variable  d and 

0  are arbitrary constants. 

 We introduce the following transformation for a travelling wave solution of Eq. 
(1.1), 

So that 

                                                                        ( , ) ( )u n t u                             (1.3) 

 

 where, 0  is arbitrary constant and c is a parameter of wave speed to be 
determined later. Substituting (1.3) into (1.1), we can obtain an equivalent 
equation of (1.1): 
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1 1

1

( ) ( )

, ,....., ,

,..

( ( ),....., ( ) ( ) ( ),.....

( ) (... )), 0

   

 
   

 

 


m m

m

n l n l n l n l

r r
n l n l

Q u u u u

u u           
(1.4)   

 

1.2.1 A new expanded method for solving nonlinear differential-difference 
equation 

     To seek for the different solutions of NDDEs, it is important to include 
some mathematical transformations. So in this example, we would like to propose a 
new transformation called the expanded method, to find more closed-form solutions 
of NDDEs [51], where it treats the lattice equation introduced by Wadati 1976 
[52] as following 

 

       
         2

1 1

( )
       n

n n n n

du t
u t u t u t u t

dt
        (1.5) 

Where  ,  ,   are three parameters. This equation contains Hybrid lattice 
equation [53]. We seek for the traveling wave solutions of Eq. (1.4) as the 
following assumption: 

        

           1

0 1 1

    

  

     
k k k

j
m

i

i

j

m
n n i n j n n n

m

u u A B Jt f gf f     (1.6) 

With 

 

                      

 
 

   
 

   
1

sinh
,

sinh cosh

,
sinh cosh




 


 

    

n

n

n n

n

n n

f
S

g
S

                  (1.7) 

 

     Where , , ,i j mBA J S are constants, one can easily get the degree 
1k  in Eq. (1.6) by balancing the highest nonlinear terms and the highest-

order derivative term in Eq. (1.4). And therefore it gives us the following solutions 
which are formal travelling wave solutions of  Eq. (1.5) . 
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 
 

   
   

 

   

1 1

0

1

sinh ( sinh cosh )

sinh cosh sinh

sinh cosh

  


  

 


  






n n n

n

n n n

n n

A B S
u A

S

J

S
   

(1.8) 

 

Where 0 1 1 1,  ,  ,  ,  B JA A S  are constants to be determined later. We have  

 

              0 ,        
in p i n in p d ct dp            (1.9) 

 

and  

 

         

 
 

sinh sinh( )cosh( ) cosh( )sinh( )

cosh cosh( )cosh( ) sinh( )sinh( )

  

  

x y x y x y

x y x y x y
     (1.10) 

and 

                   2 2sinh  cosh  1 x x                 (1.11) 

 

 Substituting the Eq. (1.8) into Eq. (1.5) , and using the identity Eq. 
(1.9) and Eq. (1.10) and Eq.(1.11), clearing the denominator and setting the 
coefficients of cosh ( ) sinh  ( ) p l

n n  (p = 0, 1, ... , 7; l = 0, 1) to zero, and 
solve it with the aid of computer symbolic software Maple and, one can obtain the 
following  periodic solutions 

 

     
   

 
 

2 4 tan
: tan

2 2

 
 

 



  n n n

d
u t u        (1.12) 

and 

     
   

 
 

2 4 tan
: cot

2 2

 
 

 



  n n n

d
u t u        (1.13) 
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where 

             
 

2

0

4
tan

2

 
 


  


n nd d t  

 

 

     and 

     
   

 
   

2 4 sin 2
: (tan cot )

2 4

 
  

 



   n n n n

d
u t u   (1.14) 

where 

             
 

2

0

4
sin 2

4

 
 


 


n nd d t

 
and 

   
 

   
2 4 tan 2

: (tan cot )
2 4

 
  

 



   n n n n

d
u t u   (1.15) 

where 

               
 

2

0

4
tan 2

4

 
 


 


n nd d t  

The periodic solutions (12) and (14) are completely in accordance with the 
solutions given by Xie [54], but the solutions (13) and (15) are given firstly. 

 

Note: 

The computation procedure shows that computer algebra plays an important 
role in exactly solving NDDEs, which includes several famous lattice. 

 

1.2.2 The non-linear lattice equation 
The solutions for nonlinear lattice equations are travelling wave solutions 

which describe the asymptotic behaviours and propagations of waves. So the types 
of solutions are very important. Thus, we choose nonlinear lattice equations to 
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illustrate the validity and advantages of the algorithm. In this study, we focus on 
the following types of nonlinear lattice equation [55-70]. 

 

            
         2

1 1

( )
      n

n n n n

du t
u t u t u t u t

dt
         (1.16) 

 

where   and   are constants and ( )u t is a displacement wave function 
with the continuous variable t  (time) ; and which represents the solution of 
equation (1.16). For solving a big class of nonlinear equations, we present some 
of the following models. 

1.2.2.1 The method of tanh 

The tanh-function method, developed for a long time, is one of the most 
direct and effective algebraic method for finding the exact solutions of the nonlinear 
equations. We present a method tanh-function in reference [54] for the solutions 
of (1.1) as the form  

 

                                     0
( ) tanh( ) : ( ) 


 k

n i n ni
u t A u                                        (1.17) 

 
 

Using equation (1.17) in the system (1.1) We get Eq. (1.4), and for 

convenience purposes, we use ( )


p

p
n

d u
O

d
 to represent the highest order polynomial 

as we find 

                                        

 

, 0,1,2,

1 , , 0,1,2,





         
          

p

p
n

p
q

p
n

d u
O k p p

d

d u
O u q k p q p

d

                           (1.18) 

This is a homogeneous balance principle, since( )


p

p
n

d u

d
 it is a polynomial of 

tanh( )n  and sech( )n  and we have  
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  0 , 1,2 , ,          n i i nl n l d ct dl i m                       (1.19) 

 

and  
 

                                            
   2 2tanh sech 1  n n                                          (1.20) 

 

The algebraic equations (1.4) provide a system in which all coefficients

0, , , kc A A  , in which all coefficients of tanh ( )i
n are cancelled. Therefore, solving 

the nonlinear algebraic system with the help of Mathematica for example, the final 
shape of the solution can be obtained. 

 

1.2.2.2 The exact solutions of (1.16) for a case of physical interest 

 We notice that a different choice of forms of the exact traveling wave 
solutions can have its own advantage in applications. In what follows, we will 
concentrate on the applications and development of the tanh-function method. 

  The nonlinear physical system from (1.16) is as follows 

 

                         
2

( 1) ( 1)( ) ( ( ) ( ))( ( ) ( ))           n n n n ncu u u u u                (1.21) 

 

We now present six types of exact traveling wave solutions of Eq. (1.16) 
with the use of the method of the function tanh ( )i

n . 
Case 1: According to the homogeneous balance principle, where 1k , Eq 

(1.17) becomes. 

 

                        0 1 tanh  n nu A A                (1.22) 

 
therefore 
 

                
 

   
 

1

1 0

(tanh tanh )

1 tanh tanh( )








 



n

n

n

A d
u A

d
         (1.23) 
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 

   
 

1

1 0

(tanh tanh )

1 tanh tanh( )








 



n

n

n

A d
u A

d
         (1.24) 

 
Substituting (1.22) - (1.24) in (1.21), and taking into account that the 

coefficients of  tanh ,( 0,1,2) i
n i are zero, it follows a set of nonlinear algebraic 

equations for c , 0A and 1A  : 

                                          

   
   

 

2
0 0

0

2
1

2 tanh 0

2 tanh 0

2 tanh

 

0

 



        

A A d c

A d

A c d

                              (1.25) 

 

This system provides the unknown coefficients 

 

                         

 
22

0 1

44
, tanh , tanh( )

2 2 2

    
   A c d A d  

 

Thus the two kink soliton solutions (1.16) are obtained: 

 

         
 

 2 4 tanh
tanh(

2 2
)

 


 


 n n

d
u t         (1.26) 

 Where   
2

0

4
tanh

2

 
 


  n nd d t   and 0,d are arbitrary 

constants. The configurations of (1.26) are shown in Figure (1.1) where 

   : n nu t u is on the left, and    : n nu t u  is on the right. 
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Figure 1.1    n nu t u  in (1.26) and 4, 1, 1   d and 0 0    

 

 

 

 

 

Case 2: 

We put the solution in the following form 

        
       

k k

i j j
n i n j n n

i j

u A B
0 1

1tanh sech tanh   

 

        (1.27) 

 
Then by using the homogeneous balance principle is obtained 1k , so the 

solution is written: 

 

                   0 1 1tanh sech( )   n n nu A A B           (1.28)  

 
Where 0A and 1A   and 1B  are constants to be determined later. Similarly, we 

can derive some algebraic equations by placing the coefficients of  

 tanh sech ( )( 0,1,2,3; 0,1)   i j
n n i j  zero. According to (1.28), travelling 

wave solutions of Eq. (1.16) are identified as bell-type solutions and kink-shaped 
solitary solutions: 

                                               

24
( ) sinh( )sech( )

2

  


  
n nu t d

       

             (1.29) 
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and 

 

          
  

2 4
( ) tanh tanh sech( )

2 2

  
 

         
n n n

d
u t i    (1.30) 

 
where  

 

 
 

2

0

4
sinh

2

 
 


  n nd d t      for Eq (1.29)         

and  
2

0

4
tanh

2 2

 
 

        
n

d
nd t     for Eq (1.30) 

Note that the hybrid-lattice systems in the literature [64, 65, 51, 66] are 
of the same type to the nonlinear lattice equation which it studied by tanh-method. 
It is found that some of their exact solutions are uniform with the exact solutions 
obtained by tanh-method if the parameters and coefficients are appropriately chosen. 
if we pay attention to the work of [65], in which Zhu successfully gave three 
kinds of exact travelling wave solutions by using exp-function method:  namely, 
monotone decreasing solution, monotone increasing solution and symmetry solution 
with a jump wave. These three types of travelling wave solutions are also obtained 
by tanh-method. The difference between tanh-method and Zhu's could be the 
curvature of the curve for monotone wave solutions and the amplitude of the wave 
for symmetry solution with jump. 

1.2.2.3 The method coth and coth-csch functions 

We further extend those methods to construct more new types of exact 
solutions using the coth-function method. It will be shown that the proposed coth-
function method can construct coth-form travelling wave solutions for non-linear 
lattice equations. Furthermore, through generalizing the coth-function we can obtain 
a general form of hyperbolic functions which can be used to construct exact 
travelling wave solutions for the non-linear lattice equations. The proposed coth-
function method is verified by obtaining new types of exact solutions for some 
DDEs whose solutions had been successfully constructed by tanh-function method. 
The coth- and csch-form solutions can also be found from the proposed coth-
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method under some special cases. The method can also deduce triangular type 
periodic wave solutions by using the similarity properties of triangular functions and 
hyperbolic functions. 

1.2.2.4 The method coth function 

   We propose coth-function method to solve the equation (1.1) where it’s 
written as following form: 

                  
     

0

coth : 


  i
n i n

i

n

k

u t A u              (1.40) 

Substituting (1.40) in (1.1), we can obtain an equivalent equation (1.1) 
as in Eq (1.4) 

For reasons of convenience, we use ( )


p

p
n

d u
O

d
 to represent the highest order 

of a polynomial, there are  

                     
,  0,1,2,



         

p

p
n

d u
O k p p

d
                                             

                 
 1 ,  , 0,1,2,



          

p
q

p
n

d u
O u q k p q p

d
                             

This is the homogeneous balance principle. 

We notice that 


p

p
n

d u

d
and 



p
q

p
n

d u
u

d
are polynomials of coth( )n  and csch( )n , 

it was therefore  

             
 

in l i n in l d ct dl i m0 , 1,2 , ,                                

              

                     

2 2coth  csch   1

csch   1 / sinh

 



x x

x x
                 (1.41) 

 
The relation (1.4) present a system of algebraic equations for 0, , , kc A A , 

all coefficients of  coth i
n are zero. Therefore, solving the nonlinear algebraic 

system with the help of Mathematica, the final shape of the solution ( )nu can be 
obtained. 
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1.2.2.5 The exact solutions of the wave of Eq. (1.16) 

We now present the travelling wave solutions of eq. (1.21) by applying the 
method coth function.  According to the homogeneous balance principle, we find 

1k  in Eq (1.21), we have  

 

                       0 1 coth  n nu A A                 (1.42) 

 
where 0A and 1A  are constants to be determined later, we also have the 

following interesting expressions  

 

             
 

   
 

1

0

(coth coth 1)
1

coth coth( )







  



n

n

n

A d
u A

d
         (1.43) 

 

             
 

   
 

1

0

(coth coth 1)
1

coth coth( )







  



n

n

n

A d
u A

d
          (1.44) 

 

                     2coth'( ) 1 coth  n n                 (1.45)  

 
we set ( ) coth( )  n n  therefore 
 

                   
 21




   
  

n n

d d d d

d d d d
              (1.46)  

    
   we have  
 

                 

 
 

 
 2 2

11 1
 

 
 

   
n n

n

du du
A

d d
         (1.47) 

 
and 
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    2

1 1 coth   nu A n              (1.48)     

  
Substituting (1.42),(1.43),(1.44) and (1.48) in Eq. (1.21) gives  

 
2 2

0 0

2
1 1 1

(2 coth( ) 2 coth( ) 2 coth( ) coth ( ))

(2 coth( ) 4 coth( ))coth( )) (2 coth( ) )coth( ) 0

 

  

   

   n n

d A d A d c d

A d A d A d c
  (1.49) 

 
By setting the coefficients of  coth ,( 0,1,2) i

n i  to zero, we obtain a set 

of nonlinear algebraic equations for c , 0A  and 1A : 

       

2 2
0 0

1 1

2
1

2 coth( ) 2 coth( ) 2 coth( ) coth ( ) 0

2 coth( ) 4 coth( ) 0

2 coth( ) 0

 



   

 

 

d A d A d c d

A d A d

A d c

   (1.50) 

 
 

 

 

 

We can get 

                   

 

0

2

2

1

,
2

4
tanh ,

2
4

tanh( )
2



 

 

 





 

A

c d

A d

 

Thus a pair of displacement solutions (1.42) is obtained 

 

           
     

2 4
tanh coth( )

2 2

 
  

  n n nu t u d      (1.51) 
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We note that we obtain Kink-shaped soliton solutions, where 

 
2

0

4
tanh

2

 
 


  n nd d t  and 0,d  are arbitrary constants provided by 

the user. Graphically, we illustrate the solutions Eq. (1.51) in the Figures (1.2, 
et 1.3),   the physical wave [ , ] [ ]n nu un t , and Figures (1.4 and 1.5), the 
physical wave [ , ] [ ]n nu un t . 

 

 

 

Figure 1.2 Plot 3D representation of ,         n nnu ut  and  =1,  =4, d=1, 

0 0   

 

 
                      for  t=0                                                     for  n=0                     

Figure 1.3 Plot 2D representation of ,         n nnu ut  and  =1, 4  , d=1

0 0   

 

 

4 2 2 4
n

8

6

4

2

2

4

un

4 2 2 4
t

6

4

2

2

un
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1.2.2.6 Method  coth-csch 

 It can be shown that the proposed coth-csch function method can construct 
coth-csch form travelling wave solutions for equations (1.21) under form 

        
       

k

j j j
n j n j n n

j

u A A B csch 1
0

1

coth coth   



      (1.52) 

Substituting (1.52) into (1.1), we can obtain an equivalent equation (1.1) 
as in Eq. (1.4). So by the homogeneous balance principle, we obtain 1k  

 

                   0 1 1coth csch( )    n n nu A A B           (1.53) 
 

Where 0A , 1A and 1B  are constants to be determined later. We write the 
following practical expression 

 

 
   
   

 
 

 
   
 

 
 

1

0 1

1

0 1

(coth coth 1) csch csch( )
1

coth coth coth coth( )

coth coth 1) csch csch( )
1

coth coth( ) coth c h(

(

ot )

 


 

 


 

              

n n

n

n n

n n

n

n n

A d d
u A B

d d

A d d
u A B

d d

            (1.54) 

 
 

 

and 

                    2
1 1csch coth csch( )      n n n nu A B       (1.55) 

 

Similarly, we can derive a system of algebraic equations by substitution of 
(1.53), (1.54) and (1.55) in Eq. (1.21) and placing the coefficients of 

          0,  1,  2,  3,      0,coth c  , 1sch   i j
n n i j

 
to zero, we obtain the traveling 

wave solution Eq. (1.21) is then the system  

 



 

 

 

 

 

 

 

 

 
 19 

     
     

       
     

 
       

3 2 2
1 1 1 1 1 1

3 2 2
1 1 1 1 1 1

2
2 2 2

1 1 1 0 0 1 1

2 2 2
1 1 1 1 1 1

0 1 1 1

0 1 1 1 0 1 1 1

1

2 csch 2 coth 0

2 csch 2 coth 0

coth 4 coth 2 csch 0

2 csch 4 coth 0

2 2 0

2 2 coth 2 2 csch 0

c

 



 

   

   

     

   

 

   



cA A B d A B A d

cA A B d A B A d

cB d A B d A A B B d

cB A B B d A B d

A B B A

A A A A d A B B B d

A    2 2
0 0 1 1coth d 2 0 

     
A A B A

  (1.56) 

 
 Who provides symmetrically bell solutions and symmetrically kink-shaped soliton 

solutions and symmetrically kink-shaped solitary solution as  
 

        
       

24
sinh csch

2 2

 
   

  n n nu t u d       (1.57) 

and 

        
2 4

tanh coth csch
2 2 2

 
  

          
n n n n

d
u t u      (1.58) 

and 

        
       

2 4
tanh coth

2 2

 
  

  n n nu t u d        (1.59) 

 

where   
2

0

4
sinh

2

 
 


  n nd d t  in (1.57) 

and    
2

0

4
tanh

2 2

 
 

        
n

d
nd t  in (1.58) 

and  
2

0

4
tanh

2

 
 


  n nd d t  in (1.59) 

The configuration of (1.57) is shown in Fig. 1.3 
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1.3 Discussion and conclusion 
      In this chapter, we have proposed methods to construct various kinds 

of exact travelling wave solutions for nonlinear differential–difference equations 
(NDDEs); which include several famous lattice equations such as non-linear 
equation. 

The efficiency of the homogeneous balance method (HBM) can be 
demonstrated on a large variety for a class of nonlinear evolution equations to 
obtain many kinds of exact travelling wave solutions. Those solutions may be useful 
for describing certain nonlinear phenomena. Thus, the extended homogeneous 
balance method is more effective and simple than the other methods where a lot 
of solutions can be obtained in the same time. 

The computation procedure of HBM and several other methods show that 
computer algebra such as Mathematica plays an important role in solving the 
NDDEs, accurately, which include generalized soliton solutions, kink-type solitary 
solutions and travelling wave solutions. Therefore, we think that expanded method is 
a new powerful method for four symmetrical solutions of NDDEs. Through its 
application,  closed form solutions  and periodic solutions of a lattice equation are 
obtained. 

   Various discussions and calculations on different examples have indicated 
to the validity of generalized tanh-function method, that can  be also extended to 
many NDDEs. On the one hand, generalized tanh-function method can be used in 
the study of a nonlinear lattice equation, and the result is six types of new exact 
traveling wave solutions that are obtained. On the other hand, in our work, we 
have provided a new trial travelling solution to find the exact structures of solutions 
to the nonlinear lattice equation. Two types of functions are used to find the exact 
solutions; namely: the coth-function and the coth-csch function methods and the 
result is eight variants of new exact travelling wave solutions that are obtained. 
Hence, the present method provides a reliable technique that requires less work if 
compared with the difficulties arising from computational aspect. This method has 
been successfully applied for solving some nonlinear wave equations. For example a 

wide variety of modern examples of applications from nonlinear areas of plasma physics, 
fluid dynamics, nonlinear optics and gas dynamics can be carefully handled by this 
method. 

 



 

 

 

 

 

 

 

 

 
 21 

 In summary, we may conclude that, this method is a reliable and 
straightforward to find wave solutions of closed structure, for travelling waves of 
nonlinear partial differential equations (NPDEs).It will be then interesting to study 
more general systems, this point will be considered in the following chapter. 
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Chapter 2 

Exact fractional solutions of 
nonlinear lattice equation via some 
fractional transformation methods  

2.1 Introduction 
   The effort to find an exact solution of nonlinear equation by using 

powerful methods is important to understand most non-linear physical phenomena. 
So, in this chapter we will introduce strange and effective method, where we will 
extend the fractional transformations method that it can be used to deal with a 
class of nonlinear equations and to investigate many types of new fractional 
solutions of nonlinear equations. 

Similarly, the corresponding of a fractional transformations method has found 
that the solutions are necessarily of rational form, containing both trigonometric and 
hyperbolic types and terms quadratic in Jacobi elliptic functions [1], in addition to 
having constant terms, this method used to connect the travelling wave solutions of 
the nonlinear Schrödinger equation (NLSE), phase locked with a source, to the 
elliptic equations satisfying[2], which currently is an area of active research such as 
the seminal work of Kaup and Newell [3], the Miura transformation [4]. Among 
the several applications of an externally driven NLSE, perhaps the most important 
ones are Josephson junctions [5], charge density waves [6], plasmas driven by rf 
fields [7] and chaotic phenomena [8]. The phenomenon of auto-resonance [9, 
10], the solitary wave solutions of the NLSE [11-14].Also, the fractional 
transformations method studied exact solutions in obtaining the GNLS equation [15] 
by using some transformations [16-21]. 
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To more understand in solving non-linear problems, we first consider given 
NPDEs system [22].for the lattice equation with some physicals fields 

 , , , ,...u t x y z
 
as 

                                         
, , , , , ,( , 0, ) x y z xy yz xz xxP uu u u u uu u                                 (2.1) 

 

where the subscript denotes partial derivative, P is some function, 

 , , , ,...u t x y z and is called a dependent variable or unknown function to be 

determined. 

By using the wave transformation 
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,   
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i i
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                 (2.2) 

 

i  are the independent variables, and andi  are free parameters. When 

p=1, 0 0 1 1 0,         the parameters 0 , 1  are identified as the 
wave pulsation and the wave number k  respectively if 0 1,    are the variables t 
and x  respectively. In the discrete case for the position x and with continues 
variable for the Time t, becomes 0   n nd ct  and n is the discrete variable, 
d and 0  are arbitrary constants. 

We introduce the following transformation for a travelling wave solution of Eq. 
(1), 

                      0 1, ,.( ) ( ).  u u                  (2.3) 

 

and the chain rule  
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By using (2.3) and (2.4), the nonlinear partial differential equation (2.1) 
is reduced to a nonlinear ordinary differential equation (ODE) 

 

                , , , , ,..... 0    Q U U U U U               (2.5) 

2.2 Applications 
In our applications of fractional transformations methods, we will focus on the 

extraction travelling wave solutions from The one-dimensional Lattice system (1.16) 
which it reads 

 

      
         2

1 1

( )
0       n

n n n n

du t
u t u t u t u t

dt
        (2.6) 

 

Where                    ,nu t u n t  

We first combine the independent variables, into a wave variable using n  
as 

 

                      0   n nd ct                  (2.7) 

 

We seek the travelling wave solutions of the system (2.6) using (2.7) as 

   ,  nu n t u  and upon using eq (2.4), the system (2.6) leads to the 

transformed system which is  

 

          
2

1 1( ) ( ( ) ( ))( ( ) ( )) 0            n n n n ncu u u u u       (2.8) 
 
 

where  and   are constants and  nu is a travelling wave function which 

represents the solution of equation  (2.8). The travelling wave solutions for a big 
class of nonlinear equations can be expressed as fractional transformations. 
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2.3 The fractional transformation methods 
  For facilitating and simplify the fractional transformations method has found 

that the solutions are necessarily of rational form. We assume the travelling wave 
type solutions for solving the non-linear lattice equation written as follows 
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where a  and b and j are constants to be determined later and )( n  is a 

function of n . We now present five cases of exact travelling wave solutions of 
Eq. (2.8) 

Case 1: )(  n n   

Eq. (2.9) becomes 
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We write the following practical expression 
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Substitution of (2.10), (2.11) and (2.12) in Eq. (2.8), and taking into 

account that the coefficients of  ,( 0,1,2,..) 
i

n i  are zero, it follows a set of 

nonlinear algebraic equations for c, a  and b 
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Solving the nonlinear algebraic system with the help of Mathematica we can 
obtain the unknown coefficients 

       

2
2

2

2 2

(4 )
(3 ,

2

(4 )

)
4

,
2
( 4 )(4

8

4
)

  

  

 

      
 

     
 






J
a j d

j

b
j

d d j

d

d

c
j

                (2.14)    

and the two rational travelling wave solutions of the problem of interest as 
follows as : 
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where 
2

0

2( 4 )(4 )

8

 
 

 
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d d j
nd t

j
, d and 0  are arbitrary 

constants. Graphically  we illustrate the solutions Eq. (2.15) in the Figure (2.1), 
the physical wave ,         n nnu ut , and Figure (2.2), the physical wave 

,         n nnu ut . 
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Figure 2.1 Plot 3D  representation of ,         n nnu ut  and   =1,  =4, d=1 and 

0 0  , j= -0.5 

 

                         for  n=0                                                  for  t=0 

Figure 2.2 Plot 2D  representation of ,         n nnu ut  and  =1,  =4, d=1 and 

0 0  , j= -0.5 

Case 2 : if ) sin )( (  n n  so that  Eq. (2.9) becomes 
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We have the following practical expression: 
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         sin sin( )cos( ) cos( )sin( )    n n nd d d           (2.17) 

 

So that  

 

    

1

1

)

)

(sin( )cos( ) cos( )sin( ))²
(

(sin( )cos( ) cos( )sin( ))²
(sin( )cos( ) cos( )sin( ))²

(
(sin( )cos( ) cos( )sin( ))²

 


 
 


 





          

n n
n

n n

n n
n

n n

a b d d
u

j d d

a b d d
u

j d d

         (2.18) 

 

Where 
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Substitution of (2.16), (2.18), (2.19)  in Eq. (2.8),  and taking into 
account that the coefficients of s ( ,( 0,1,2,..)in ) n

i i are zero, it follows a set of 
nonlinear algebraic equations for c, a , b and j: 
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After some algebra, and with the help of Mathematica, the following values 
for the parameters are obtained 
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4

2

22( ( 4 )( ( ( )),
2 2

,
2

,
2

(4 )cos( )sin( ),
2

1
sin ) sin )

1

1


 



 

    

 

 

 

a d d

b

j

c d d

       (2.21) 

 

This provides the periodic wave solutions 

 

 

  

2 4 2

2

2 sin ) si( 4 )( ( ( )n ) sin (
2(

)
)

sin1 2 ( )


   





    


 

n

n

n

d d

u      (2.22) 

 

 

where 2
00.5(4 )cos( )sin( )      n nd d d t  

we illustrate the solutions Eq. (2.22) in the Figure (2.3), the physical wave 

,         n nnu ut , and Figure (2.4), the physical wave ,         n nnu ut . 
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Figure 2.3 Plot 3D  representation of ,         n nnu ut  and  =1,  =4, d=1 and 

0 0   

 

    
              for t=0                     for n=0 

Figure 2.4 Plot 2D representation of n nu un t,     
     and =1,  =4, d=1 and 

0 0  . 

 

Case 3: if ) sinh( ( )  n n , Eq. (2.9) becomes  
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2

2

 sinh ( )
(

sinh ( )
)










n
n

n

a b
u

j
              (2.23) 

 

 We write the following practical expression 

 

        sinh sinh( )cosh( ) cosh( )sinh( )    n n nd d d      (2.24) 

 and therefore we have 

 

     

1

1

)

)

(sinh( )cosh( ) cosh( )sinh( ))²
(

(sinh( )cosh( ) cosh( )sinh( ))²
(sinh( )cosh( ) cosh( )sinh( ))²

(
(sinh( )cosh( ) cosh( )sinh( ))²

 


 
 


 





          

n n
n

n n

n n
n

n n

a b d d
u

j d d

a b d d
u

j d d

    (2.25) 

 

   and  

 

             
2 2

)sinh )
)

2( )cosh( (
'(

( ( ))cosh

 



 




n n
n

n

a bj
u

j
          (2.26) 

 

Substitution of (2.23), (2.25), (2.26) in Eq. (2.8), and with the help 
of Mathematica we get a system of algebraic equations with respect to a , b, j 
and c 

 

    

2 2 2

2 4

2 2

2

(2 2 2 )cosh( )sinh( )

2 sinh ( ) sinh ( ) 0,

2 (4 4 2 2 )cosh( )sinh( )

4 sinh ( ) 2 sinh ( ) 0,

(2 2 2 )cosh( )sinh( ) 0,

 

  

 

               

cj a j aj d d

cj d c d

cj ab j a bj d d

cj d c d

c b b d d
     

(2.27) 

So that the final shape can be obtained from the solitary wave solutions: 
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2 2 24

2

( 4 )(sinh ( ) sin sinh )
)

sin

h ( )) (
2(

1 h2 )(


   





    


 

n

n

n

d d

u     (2.28) 

 

Where 

         2
00.5(4 )cosh( )sinh( )      n nd d d t  

The configurations of solutions Eq. (2.28) are shown in the Figure (2.5), 
and Figure (2.6) for the physical wave ,         n nnu ut . 

 

 

Figure 2.5 Plot 3D representation of ,         n nnu ut  and  =4,  =1, d=1 and 

0 0   
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Figure 2.6 Plot 2D representation of ,         n nnu ut  and  =4,  =1, d=1 and 

0 0  . 

 

 

Case 4: for ) cosh( ( )  n n , Eq. (2.9) becomes 

                   

 cosh²( )
(

cosh
)

)²(










n
n

n

a b
u

j
              (2.29) 

Therefore 

        cosh cosh( )cosh( ) sinh( )sinh( )    n n nd d d     (2.30) 

So that we have 

      

1

1

)

)

(cosh( )cosh( ) sinh( )sinh( ))²
(

(cosh( )cosh( ) sinh( )sinh( ))²
(cosh( )cosh( ) sinh( )sinh( ))²

(
(cosh( )cosh( ) sinh( )sinh( ))²

 


 
 


 





          

n n
n

n n

n n
n

n n

a b d d
u

j d d

a b d d
u

j d d

    (2.31) 

and  

2 2

)sinh )
)

2( )cosh( (
'(

( ( ))cosh

 



 




n n
n

n

a bj
u

j         
 (2.32) 

Substitution of (2.29), (2.31), (2.32) in Eq. (2.8), then we have the 
system 

 

2 2 4

2 2

2

2

2 (2 2 )cosh ( ) cosh ( )

(2 2 2 )cosh( )sinh( ) 0,

2 2 (2 4 )cosh ( ) (4 4 2 2 )cosh( )sinh( ) 0,

(2 2 2 )cosh( )sinh( ) 0,

 

  

 

                    

c cj cj c cj d c d

a j aj d d

c cj c cj d ab j a bj d d

c b b d d

                             

(2.33) 

 With the aid of computer symbolic software Mathematica and solve it, we 
can obtain the solitary solutions: 

2 2 4 2

2

( 4 )(cosh ( cosh ( ) cosh (
2(

1 2cosh
)

(

) ) )

)


   





    


 

n

n

n

d d

u    (2.34) 
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Where 2
00.5(4 )cosh( )sinh( )      n nd d d t , and the solutions Eq. 

(2.34) are shown in the Figure (2.7)  for the physical wave ,         n nnu ut , 

and Figure (2.8)  for the physical wave ,         n nnu ut . 

 

Figure 2.7 Plot 3D representation of ,         n nnu ut  and  =4,  =1, d=1 and 

0 0   
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Figure 2.8 Plot 3D representation of ,         n nnu ut  and  =4,  =1, d=1 and 

0 0   

 

 

Case 5: Doubly periodic wave (Jacobian elliptic function) solutions, 

 We consider now that ( ( , ))  n ncn m , Eq. (2.9) becomes: 

 

                 

2

2

 ( , )
(

( , )
)










n
n

n

a b cn m
u

j cn m
                (2.35) 

 

where a and b and j are constants to be determined later, and m is a 
modulus of Jacobi elliptic; if m = 0, 2 2( , ) cos ( ) n ncn m , The above also has 
localized soliton solutions 

     for m = 1, 2 2( , ) ech ( )s n ncn m , thus we have two types of solution. 

The first type: If m=0,  so 2 2( , ) cos ( ) n ncn m , Eq. (2.35) becomes: 

                 

 cos²( )

( )²
)(

cos










n
n

n

a b
u

j
                  (2.36) 

   We write the following practical expression 

 

           cos cos( )cos( ) sin( )sin( )    n n nd d d        (2.37) 

 

     We get 
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(
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(cos( )cos( ) sin( )sin( ))²

(
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
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n n

n n
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u

j d d

a b d d
u

j d d

    (2.38) 

     And 
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2 2

)si2( )cos( (
'(

(

n )
)

)cos ( )

 



 




n n
n

n

a bj
u

j
           (2.39) 

 

Substitution of (2.39), (2.38), (2.37) in Eq. (2.8), and with the help 
of Mathematica we get a system of algebraic equations with respect to a , b, j 
and c : 

2 2 4

2 2

2

2

2 ( 2 2 )cos ( ) cos ( )

(2 2 2 )cos( )sin( ) 0,

2 2 (2 4 )cosh ( ) (4 4 2 2 )cos( )sin( ) 0,

(2 2 2 )cos( )sin( ) 0,

 

  

 

                    

c cj cj c cj d c d

a j aj d d

c cj c cj d ab j a bj d d

c b b d d

                            

(2.40) 

Solving this system, we get the periodic solutions that can be expressed in 
the following formulas 

   

2 2 2 2

2
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2(

1 2cos

) ) )
)

)(


   





    


 

n

n

n

d d

u     

(2.41) 

 

 where         2
00.5(4 )cos( )sin( )      n nd d d t  

 

  Finally, the fifth case admit the following two types of the traveling wave 
solutions 

       

2 2 4 2

2

( 4 )(cos ( cos ( ) cos ( , )
2(

1 2cos ( , )
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
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n

n

d d m
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  (2.42) 

 

The second type: If m=1 so 2 2( , ) ech ( )s n ncn m , Eq. (2.35) becomes: 

                    

 sech²( )
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)²(


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
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   We write the following practical expression 

 

      sech( ) 1 / cosh( )cosh( ) sinh( )sinh( )   n n nd d d     (2.44) 

 

 

we get 
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    (2.45) 

and 

 

          

2

2 2

)2( )sech ( tanh(
'(
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)
)

)

 



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
 n n

n

n

a bj
u

j
            (2.46) 

 

 Substitution of (2.43), (2.45), (2.46) in Eq. (2.8), and with the help 
of Mathematica and after transformation, we get a system of algebraic equations 
with respect to a , b, j and c: 

 

    

c cj cj c cj d c d

a j aj d d

c cj c cj d

ab j a bj d d

c b b d d

2 2 4

2 2

2

2

2 ( 2 2 )sech ( ) sech ( )

(2 2 2 )sech( )csch( ) 0,

2 2 (2 4 )sech ( )

(4 4 2 2 )sech( )csch( ) 0,

(2 2 2 )sech( )csch( ) 0,

 

  

 

                   





        

(2.47) 

 

Solving this system, we get the periodic solutions that can be expressed in 
the following formulas 
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2 2 4 2

2
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
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    


 

n

n

n

d d

u     (2.48) 

where  

          2
00.5(4 )sech( )csch( )      n nd d d t  

Graphically, we illustrate the solutions Eq. (2.48) in the Figure (2.9), the 
physical wave ,         n nnu ut

 
and in the Figure (2.10), the physical wave 

,         n nnu ut . 

 

Figure 2.9 Plot 3D representation of ,         n nnu ut  and  =1,  =4, d=1 and 

0 0   
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Figure 2.10 Plot 3D representation of ,         n nnu ut  and  =1,  =4, d=1 and 

0 0   

 

 

Finally, the fifth case admit the following two types of the traveling wave 
solutions 
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    (2.49) 

 

 

 Remark 

   A novel class of explicit exact solutions to nonlinear equations can be 
derived   from fractional transformations methods or an extended auxiliary fractional 
shape (Exafs) using a non singular combination   of these functions as: 

 

                                      
/

0

1

2

( )

( )
( )

M
K

k

k

M
u

F

F

  











                                           (2.50) 
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where F  is a known appropriate function. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Discussion and conclusion 
     In conclusion, we have obtained many types of fractional solutions of 

the nonlinear lattice equation by using fractional transformations. The fifth cases are 
used to find the exact solutions; these solutions include the symmetrical rational 
solutions, the symmetrical periodic wave solutions, the symmetrical solitary wave 
solutions, and the symmetrical Jacobi elliptic function solutions. 

This method has more advantages: it is direct and concise. The availability 
of computer systems like Mathematica facilitates the tedious algebraic calculations 
and complexes. In the other hand, the fractional transformations method has 
disadvantages : each supposed type a fractional solution to give two the 
symmetrical solutions when we Compare it to the solutions of coth–csch method 
which it is effective for giving more solutions. 

The fractional transformations method which we have proposed in this chapter 
is also direct and computerizable method, which allows us to obtain the exact 
traveling wave solutions of nonlinear equation; these solutions may be useful to 
further understanding of the nonlinear lattice equation. In addition, these 
transformations can be also applied to other types of nonlinear wave equations. 
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Chapter 3 

Symbolic computational of nonlinear 
wave equation with constant coefficients 

via the functional variable method 

Equation Section (Next) 

3.1 Introduction 
      The recent developments of nonlinear problems with intense effort 

increased the need of constructing new approaches. In this section we will deal 
with direct treatment of the construction of exact solutions for a number of nonlinear 
wave equations via the Functional Variable Method. In this chapter, we will use the 
functional variable method for solving the generalized one-dimensional of the 
Benjamin-Bona-Mahony (BBM) equations for every order to find the exact 
solutions.  

    Exact solutions not only certify whether the obtained numerical solutions 
are better, but also are used to watch the mathematical rule of the wave by 
making the graphs of the exact solutions. This is due to the complexity of 
nonlinear wave equations, see ref [1-7]. 

In the coming pages, firstly, we describe a new development based on the 
functional variable method to find the exact solutions for a family of nonlinear wave 
equations. Afterwards, we will examine some applications together with the help of 
symbolic software like the Mathematica [8-17]. 

    For showing the effectiveness of this method, We treat some of non-
linear equations structures with constant coefficients, and we treat also the effect of 
the negative exponent of nonlinear terms. 
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3.2 Formulation of the method 

      We describe the method of the functional variable (MVF) [18,19] 
which led to the integration of several models of nonlinear partial differential 
equations PDE. Let us consider the following nonlinear partial differential equation, 
written in several independent variables: 

 

                      
, , , , , ,( , 0, ) x y z xy yz xz xxP uu u u u uu u

                              (1.1)
 

 

Where P the subscript which denotes partial derivative to some function ,and 

 , , , ,...u t x y z  is called a dependent variable or unknown function to be determined 

later.  

We firstly introduce the new wave variable as 

 

                                              
0

0

   


 
p

i i

i

                                       (1.2)                                                                                             

When  0 0 0 1 11,        p , the parameters 0 , 1  are identified 
as the wave pulsation    and the wave vector  k respectively if 0 , 1  are the  
variables t   and  x   respectively.  

We introduce the following transformation for a travelling wave solution of 
Eq.(3.1)  

                                                           0 1, ,( ) ( )  u u
                                     (1.3)

                                                                                                         

And the chain rule 

                                        

       
2 2

2
. . , . . ,.. 

    
 

 
  i i j

i i j

d d

d d
               

(3.4) 
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By using these transformations, the nonlinear partial differential (3.1) can be 
converted to an ordinary differential equation ODE like 

                                                         
 , , , , ,..... 0    Q u u u u u

                                
(3.5) 

Let us make a transformation in which the unknown function u  is considered 
as a functional variable in the form   

                                                                   
  u F u                                                      (3.6) 

and some successively derivatives of  u are  

                                              

2 2 2

2 2 2 2

1 1
( ) , ( ) ,

2 2
1
[( ) ( ) ( ) ]

2

 



  

   

u F u F F

u F F F F

                                (3.7) 

where ‘ stands for d

du
. The ODE (3.5) can be reduced in terms of ,u F

and its derivatives upon using the expressions of Eq. (3.7) and (3.6) into Eq. 
(3.5) gives   

                                                   
( , , , , ,......) 0   R u F F F F                                      (3.8) 

The key idea of this particular form Eq.(3.8) is of special interest because 
it admits analytical solutions for a large class of nonlinear wave type equations. 
After integration, the Eq. (3.8) provides the expression of  F  and this in turn 
together with Eq. (3.7) gives the relevant solutions to the original problem.  

In order to illustrate how the method works we examine some examples 
treated by other approaches. This matter is exposed in the following section. 

3.3 Application 
The BBM equation is a model that characterizes long waves in nonlinear 

dispersive. It describes an approximation for surface water waves in a uniform 
channel. Moreover, the BBM equation covers also, in addition to the surface waves 
of long wavelength in liquids, hydromagnetic waves in cold plasma, acoustic waves 
in anharmonic crystals, and acoustic gravity waves in compressible fluids [20]. 
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So, we apply the results obtained earlier in the generalized form of the 
Benjamin-Bona-Mahoney (BBM) for every order [20] as follows: 

 

                          
      0, 1    n n m

t xxx x
u u a u n m                                 (3.9) 

and negative exponents 

                      
      0, 1     n n m

t xxx x
u u a u n m                            (3.10) 

a generalized form of the BBM equation 

              
       ( 1) 0, 1      n n n m

t x xxx x
u u u a m u u n m            (3.11) 

and negative exponents 

              
       ( 1) 0, 1        n n n m

t x xxx x
u u u a m u u n m       (3.12) 

Equations (3.9) - (3.12) were studied by Wazwaz [1] using the sine-
cosine method to obtain compactions, solitary wave solutions and solitary periodic 
patterns. 

3.3.1 Benjamin-Bona-Mahony (BBM) equation 

   The aim of the present work is to obtain travelling wave solutions of 
distinct physical structures for the BBM equation and its variants given by 

Case 1: If 0   x ct and   mv u    Eq. (3.9) becomes the ODE 

                                      
( ) ( ) ( ) 0     

n n

m mc v v v                                     (3.13) 

The parameters , c  are identified as the constant and the velocity 
respectively. Integrating the system (3.13) once with respect to  , setting the 
constants of integration to zero, and combining both equations yields the simplified 
form 

                             

ξ

1 2 21
( ) (( ) ) ( ) 0

2 2


   



n n

m m
cm

v v v
n m  

                     

(3.14) 
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According to Eq. (3.7), we get from Eq. (3.14) the expression of the 
function ( )F U reads  

                                          

1
2

1

(1 )




 

 


n

mcv
F v

n

m

                                        (3.15) 

By virtue of Eq. (3.15), the differential Eq. (3.6) is completely integrable, 
since its solutions are deduced directly from the integral.  

                                  

1 1
ln

1 1 1

 


  
ydy

y y y
                                    (3.16) 

In view of Eq. (3.6) and the relation Eq. (3.16), we can easily obtain 
the following quadratic equation 

 

                                 
A Z A Z A2 2 2 24(1 ) 4(1 ) 0                                    (3.17) 

where 

                                  

1
2 tan ²[ ( 1 ) ]

2
1

1 tan ²[ ( 1 ) ]
2





 


  

n

mA
n

m                                       

(3.18) 

and  

                                               

1
2

(1 )

 




n

mcv
Z

n

m

                                               (3.19) 

The two solutions of the above system Eq. (3.17) follow, after some 
simple algebraic manipulation 
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  For  0 :   

        

1

1 1

1

1

1
(1 ) sech ²[ ( 1 ) ]

2v [ ] 2
 



 
 

             

n

mn

m

n n

m m

c
                      (3.20) 

1

1 1

1

2

1
(1 ) csch ²[ ( 1 ) ]

2v [ ] 2
 



 
 

             

n

mn

m

n n

m m

c
                       (3.21) 

For 0 :  

1

1 1

1

1

1
(1 ) sec ²[ ( 1 ) ]

2v [ ] 2
 



 
 

              

n

mn

m

n n

m m

c

                             

(3.22) 

1

1 1

1

2

1
(1 ) sc²[ ( 1 ) ]

2v [ ] 2
 



 
 

              

n

mn

m

n n
c

m m

c

                         

(3.23) 
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We have 
1

m[ ] [ ] u v , so : 

For  0 :  we obtain the following the solitary solutions 

             

1

n m

1

n m
1

1
(1 ) sech ²[ ( 1 ) ]

2[ ] 2
 








             

n n

m mu
c

                            (3.24) 

 

    

1

n m

1

n m
2

1
(1 ) csch ²[ ( 1 ) ]

2[ ] 2
 








             

n n

m mu
c

                           (3.25) 

  

 

for 0 :  we obtain the periodic solutions 

1

n m

1

n m
1

1
(1 ) sec ²[ ( 1 ) ]

2[ ] 2
 








              

n n

m mu
c

                              (3.26) 

1

n m

1

n m
2

1
(1 ) csc ²[ ( 1 ) ]

2[ ] 2
 








              

n n

m mu
c

                         (3.27) 

Graphically, we show on Fig. (3.1), and Fig. (3.2), the formation of 
solitary solutions 1[ ]u  for 0  . 
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Figure 3.1 Plot 3D representation of Eq. (3.24) for both curves: 

4, 2, 1, 1   n m c and 0 0   

 

       

                for 0t                                                 for 0x                                                      

Figure 3.2 Plot 2D representation of Eq. (3.24) and 4, 2, 1, 1   n m c , 

and 0 0   

 

 

Case 2: We have 0   x ct and   nv u   Eq. (3.9)becomes the ODE 

 

                ( ) ( ) ( ) 0     
m

nc v v v             (3.28) 
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after twice integral we obtain 

                                       

1
2

1

(1 )


 

  


m

nv
F v c

m
c

n                                        

(3.29) 

In the same method and by virtue of Eq. (3.29), the differential Eq. 
(3.6) is completely integrable, since its solutions are deduced directly from the 
integral 

 

                                     

1 1
ln

1 1 1

 


  
ydy

y y y
                                    (3.30) 

By Eq. (3.6) and the relation Eq. (3.30), we can obtain the following 
quadratic equation 

 

                                
2 2 2 24(1 ) 4(1 ) 0,    A Z A Z A                              (3.31) 

where 

                                 

1
2 tan ²[ ( 1 ) ]

1
1 tan ²

2

2
[ ( 1 ) ]





 


  
A

m
c

n

m
c

n

                                      (3.32) 

and 

                                                    

1
2

(1 )


 




m

nv
z

m
c

n

                                                (3.33) 

The two solutions of the above system Eq. (3.31) follow, after some 
simple algebraic manipulation 
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For  0c  

             

1

1
(1 )sech ²[ ( 1 ) ]

v [ ] 2 2










             

m n

n

m

n

n

m m
c c

n n                              (3.34) 

             

2

1
(1 )csch ²[ ( 1 ) ]

v [ ] 2 2










             

n

n

m n

m

n

m m
c c

n n                            (3.35) 

  For  0 :c  

               

1

1
(1 )sec ²[ ( 1 ) ]

v [ ] 2 2










              

m n

m n

n

n

m m
c c

n n
                              (3.36) 

                

2

1
(1 )csc ²[ ( 1 ) ]

2v [ ] 2










              

n

n

m n

m

n

m m
c c

n n                          (3.37) 

 

We have 
1

[ ] [ ]  nu v , so: 

For  0 :c  we obtain the following the solitary solutions 

 

                

1

1

1
1

(1 )sech ²[ ( 1 )
] 2

]
[ 2











             

m n

m n

m m
c c

n nu                               (3.38) 
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1

1

2

1
(1 )csch ²[ ( 1 ) ]

[ ] 2 2










             

m n

m n

m m
c c

n nu                           (3.39) 

 For 0 :c  we obtain the following the periodic solutions 

                

1

1

1
1

(1 )sec ²[ ( 1 ) ]
[ ] 2 2











              

m n

m n

m m
c c

n nu                              (3.40) 

                

1

2

1

1
(1 )csc ²[ ( 1 ) ]

[ ] 2 2










              

m n

m n

m m
c c

n nu                           (3.41) 

 

 

3.3.2 Equation Benjamin-Bona-Mahony (BBM) with negative exponents 

For more clarity the method function variable applies on Benjamin-Bona-Mahony               

(BBM) equation with negative exponents as following form: 
Case 1: 0   x ct and   nv u   Eq. (3.10) becomes the ODE 

              ( ) ( ) ( ) 0  


   
m

nc v v v                 (3.42) 

 

In the same method and after some simple algebraic manipulation we obtain 
the following solutions. 

For  0 :c  
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1

1
(1 )sech ²[ ( 1 ) ]

v 2[ ] 2








             

n

n

m

n

m

n

m m
c c

n n                                    (3.43) 

            

2

1
(1 )csch ²[ ( 1 ) ]

v [ ] 2 2











             

m n

m n

n

n

m m
c c

n n                                 (3.44) 

For 0 :c  

             

1

1
(1 )sec ²[ ( 1 ) ]

v ] 2 2[











              

n

n

m n

m n

m m
c c

n n                                   (3.45) 

             

2

1
(1 )csc ²[ ( 1 ) ]

v [ ] 2 2










              

m

n

n

n

m n

m m
c c

n n                               (3.46) 

 

 

    We have 
1

[ ] [ ] 


 nu v , so, 

For  0 :c  we obtain the following the solitary solutions 

 

         

1

1

1
1

(1 )sech ²[ ( 1 )
] 2

]
[ 2












             

m n

m n

m m
c c

n nu                                        (3.47) 
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1

1

2

1
(1 )csch ²[ ( 1 ) ]

[ ] 2 2








             

m n

m n

m m
c c

n nu                                    (3.48) 

 

For 0 :c  we obtain the following the periodic solutions 

 

          

1

1

1
1

(1 )sec ²[ ( 1
2

) ]
[ ] 2











              

m n

m n

m m
c c

n nu                                      (3.49) 

 

          

1

2

1

1
(1 )csc ²[ ( 1 ) ]

[ ] 2 2










              

m n

m n

m m
c c

n nu                                   (3.50) 

 

 

Case 2: If 0   x ct  and   mv u    Eq. (3.10) becomes the ODE 

 

                                      
( ) ( ) ( ) 0  

 

   
n n

m mc v v v                               (3.51) 

After integrals and some simple algebraic manipulation we obtain two 
solutions. 
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For  0 :  

1

1 1

1

1

1
(1 ) sech ²[ ( 1 ) ]

2v [ ] 2
 



 
 

             

n

mn

m

n n

m m

c
                               (3.52) 

1

1 1

1

2

1
(1 ) csch ²[ ( 1 ) ]

2v [ ] 2
 



 
 

             

n

mn

m

n n

m m

c
                        (3.53) 

For 0 :  

1

1 1

1

1

1
(1 ) sec ²[ ( 1 ) ]

2v [ ] 2
 



 
 

              

n

mn

m

n n

m m

c
                            

(3.54) 

1

1 1

1

2

1
(1 ) csc ²[ ( 1 ) ]

2v [ ] 2
 



 
 

              

n

mn

m

n n

m m

c
                            (3.55) 
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We have 
1

m[ ] [ ] u v , so: 

  

For  0 :  we obtain the following the solitary solutions 
1

n+m

1

n+m
1

1
(1 ) sech ²[ ( 1 ) ]

2[ ] 2
 





             

n n

m mu
c

             (3.56) 

1

n+m

1

n+m
2

1
(1 ) csch ²[ ( 1 ) ]

2[ ] 2
 





             

n n

m mu
c

                                  (3.57) 

For 0 :  we obtain the following the periodic solutions 

1

n+m

1

n+m
1

1
(1 ) sec ²[ ( 1 ) ]

2[ ] 2
 





              

n n

m mu
c

                                     (3.58) 

1

n+m

1

n+m
2

1
(1 ) csc ²[ ( 1 ) ]

2[ ] 2
 





              

n n

m mu
c

                              (3.59) 

 

Graphically, we show on Fig. (3.3) and Fig. (3.4) the formation of 
periodic solutions 2[ ]u  for 0  . 
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Figure 3.3 Plot 3D representation of Eq. (3.59) and 4, 2, 1, 1   n m c , 

and 0 0   

 

                 

                                          for 0t                                                 for 0x                                    

Figure 3.4 Plot 2D representation of Eq. (3.59) and 4, 2, 1, 1   n m c , 

and 0 0   

 

3.3.3 A generalized form of the BBM equation 
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For motivation work analytically and numerically we use our method on The 
complexity of the nonlinear wave equations of BBM, where the balance between  
the nonlinear convection term  m

xu u and the dispersion effect term  ( )n
xxxu ,       

see ref [22]. We will search the exact solutions of nonlinear problem through cases 
as follows as.   

Case 1: If 0   x ct and  1 mv u    Eq. (3.11) becomes the ODE 

                           
1 1( 1)( ) ( ) ( ) 0       

n n

m mc v v v
                            

(3.60) 

after some simple algebraic manipulation we have the following solutions. 

 For  0 :   
1

( 1)
1

1

1
( 1)sech ²[ ( 1 ) ]

1 1v [ ]
2(

2
1 )

  





                

n

m
n n

m m

c
                     (3.61) 

( )
1

2

1

11
( 1)csch ²[ ( 1 ) ]

1 1v [ ]
2(1

2
)

 





               

n

m
n n

m m

c
                   (3.62)  

For  0 :  

1

( 1)
1

1

1
( 1)sec ²[ ( 1 ) ]

1 1v [ ]
2(1 )

2
  






                 

n

m
n n

m m

c
                       (3.63) 

( )
1

2

1

11
( 1)csc ²[ ( 1 ) ]

1 1v [ ]
2(1

2
)

  





                

n

m
n n

m m

c
                     (3.64) 
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We have 
1

1[ ] [ ]  mu v , so: 

For 0  : we obtain the following the solitary solutions 

       

1

( 1)

1

1
( 1)sech ²[ ( 1 ) ]

1 1[ ]
2(1 )

2
  



                

n mn n

m m
u

c
                      (3.65) 

       

1

( 1)

2

1
( 1)csch ²[ ( 1 ) ]

1 1[ ]
2(1

2
)

  


                

n mn n

m m
u

c
                              (3.66) 

For 0   : we obtain the following the periodic solutions 

      

(

1

1

1)1
( 1)sec ²[ ( 1 ) ]

1 1[ ]
2(

2
1 )

  


                 

n mn n

m m
u

c
                       (3.67) 

      

(

2

1

1)1
( 1)csc ²[ ( 1 ) ]

1 1[ ]
2(

2
1 )

  


                 

n mn n

m m
u

c
                        (3.68) 

 

Case 2: We have  0   x ct and   nv u   Eq. (3.11) becomes the 
ODE : 

                                      

1

( 1)( ) ( ) ( ) 0  


    
m

nc v v v                                  (3.69) 
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We have the two solutions of the above Eq. (3.69) follow, after some 
simple algebraic manipulation 

 

 

 For  1 0 : c  

( 1 )

1

( (1 )1 1
(1 )( 1)sech ²[ (

2
1) ]

v [ ]
2






                

m

n

ncm m
c

n n
      (3.70) 

( 1 )

2

( (1 )1 1
(1 )( 1)csch ²[ ( 1)

2
]

v [ ]
2






                

n

m ncm m
c

n n
          (3.71) 

   For  1 0 : c  

( 1 )

1

( (1 )1 1
(1 )( 1)sec ²[ ( 1) ]

v [ ]
2

2





                 

m

n

ncm m
c

n n
         (3.72) 

( 1 )

2

( (1 )1 1
(1 )( 1)csc ²[ ( 1

2
) ]

v [ ]
2






                 

m

n

ncm m
c

n n
       (3.73) 

We have 
1

[ ] [ ]  nu v , so: 

For  1 0 : c  we obtain the following the solitary solutions 
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( 1

1

1

)

1

1

( (1 )1 1
(1 )( 1)sech ²[ ( 1) ]

[ ] 2 2





 


 

               

m n

m n

cm m
c

n nu     

                                (3.74) 

(

1

2

1

1 )

1 2

( (1 )1 1
(1 )( 1)csch ²[ ( 1) ]

[ ] 2





 


 

               

m n

m n

cm m
c

n nu  (3.75) 

For  1 0 : c  we obtain the following the periodic solutions 

 

( 1

1

1

)

1

1

( (1 )1 1
(1 )( 1)sec ²[ ( 1) ]

[ ] 2 2





 


 

                

m n

m n

cm m
c

n nu

                  

                               

(3.76) 

(

1

2

1

1 )

1 2

( (1 )1 1
(1 )( 1)csc ²[ ( 1) ]

[ ] 2





 


 

                

m n

m n

cm m
c

n nu                      

                                (3.77) 

3.3.4 A generalized form of the BBM equation with negative exponents  
Motivated by the rich treasure of the Benjamin–Bona–Mahony equation in 

science, we will study a generalized form of the BBM equation with negative 
exponents respectively. 
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Case 1:  We have  0   x ct and   nv u   Eq. (3.12) becomes 
the ODE: 

                                         

1
( )

( 1)( ) ( ) ( ) 0  



    

m

nc v v v                            (3.78) 

We obtain two solutions, after some simple algebraic manipulation 

 

 

For  1 0 : c  

( 1 )

1

1 1
(1 )( 1 )sech ²[ 1 ( ) ]

2v [ ]
2






                    

m n

n

m n
c m n c

n

n
   (3.79) 

( 1 )

2

1 1
(1 )( 1 )csch ²[ 1 ( ) ]

2v [ ]
2






                    

m n

n

m n
c m n c

n

n
     (3.80)  

For  1 0 : c  

( 1 )

1

1 1
(1 )( 1 )sec ²[ (1 )( ) ]

2v [ ]
2






                     

m n

n

m n
c m n c

n

n
 (3.81) 

( 1 )

2

1 1
(1 )( 1 )csc ²[ (1 )( ) ]

2v [ ]
2






                     

m n

n

m n
c m n c

n

n
    (3.82) 
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We have 
1

[ ] [ ]  nu v , so : 

For  1 0 : c  we obtain the following the solitary solutions 

 

( 1 )

1

1

1
1

1 1
(1 )( 1 )sech ²[ 1 ( ) ]

2[ ] 2





  


 

                  

m n

m n

m n
c m n c

nu
n

             

                             (3.83) 

(

1

1 )

1

1
2

1 1
(1 )( 1 )csch ²[ 1 ( ) ]

2[ ] 2





  


 
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                             (3.84) 

 

For  1 0 : c  we obtain the following the periodic solutions 
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                             (3.86) 

 

 

Graphically, we show in Fig. (3.5), and Fig. (3.6) the formation of 
periodic solutions  1[ ]u for  1 0 : c  

 

 

Figure 3.5 Plot 3D representation of Eq. (3.85) and  5, 2, 1, 2   n m c  
and 0 0   
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                           for 0t                                                 for 0x                                                 

Figure 3.6 Plot 2D representation of Eq. (3.85) and  5, 2, 1, 2   n m c  
and 0 0   

 

Case 2: If 0   x ct and  1 mv u    Eq. (3.12) becomes the 
ODE: 

                     
1 1( 1)( ) ( ) ( ) 0  

 
     
n n

m mc v v v                                (3.87) 

The two solutions of the above system Eq. (3.87) follow: 

For  0 :  
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                   (3.89) 
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We have

1

1[ ] [ ]  mu v , so: 

For 0  : we obtain the following the solitary solutions 
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For  0  : we obtain the following the periodic solutions 
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1
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3.4 Discussions 
The exact solutions of BBM equations obtained by Wazwaz in the literature 

[1, 6, 20, 22, 23, 24] found that some of their exact solutions are uniform with 
what is found here if the parameters and coefficients are appropriately chosen.  

   We also notice that the work of [21] is of the same types to the 
nonlinear equations of BBM that we studied where it gave three kinds of exact 
traveling wave solutions; one periodic solution and tow solitary wave solutions by 
using the unified algebraic method with symbolic computation in each BBM equation 
with negative exponents numbers (3.10) and (3.12). These types of traveling 
wave solutions are also obtained in our method, but the difference is in the 
number of types, where we find four types of exact traveling wave solutions; two 
periodic solutions and two solitary wave solutions that prove the effectiveness and 
strength of the function variable method. 

There is another difference about solutions in equations (3.09), (3.11), we 
have periodic solutions and solitary wave solutions but they obtained compaction 
solutions and solitary patterns solutions in [21]. 

 

3.5 Conclusion 
In this work, we have introduced the new functional variable method to find 

the exact structures of solutions to a class of nonlinear wave equations with 
constant coefficients (BBM equation) where we have constructed a series of 
travelling wave solutions for solitary wave and periodic wave of the one-dimensional 
generalized BBM equation of any order with positive and negative exponents which 
proves the effectiveness and success of this method.  
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A wide variety of modern examples of applications from nonlinear areas of 
plasma physics, fluid dynamics, nonlinear optics, and gas dynamics can be carefully 
handled by this method. This finding suggests that the formulation of the functional 
variable method presented in this work can be readily extended to complex 
nonlinear evolution systems. This matter is in progress.  
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Chapter 4 

Exact solutions for the KdV-mKdV 
equation with time-dependent 
coefficients using the modified 
functional variable method 

Equation Section (Next) 
 

4.1 Introduction 
There are several forms of nonlinear partial differential equations have been 

presented in the past decades to investigate new exact solutions. Several methods 
[1-12] have been proposed to handle a wide variety of linear and non-linear wave 
equations. As is well known, the descriptions of these nonlinear model equations 
were appeared to supply different structures to the solutions. Among these are the 
auto-Backlund transformation, inverse scattering method, Hirota method, Miura's 
transformation. 

The availability of symbolic computation packages can be facilitate many direct 
approaches to establish solutions to non-linear wave equations [13-17]. Various 
extension forms of the sine-cosine and tanh methods proposed by Malfliet and 
Wazwaz have been applied to solve a large class of nonlinear equations [18-19]. 
More importantly, another mathematical treatment is established and used in the 
analysis of these nonlinear problems, such as Jacobian elliptic function expansion 
method, the variational iteration method, pseudo spectral method, and many others 
powerful methods [20-21]. 
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One of the major goals of the present chapter is to provide an efficient 
approach based on the functional variable method to examine new developments in 
a direct manner without requiring any additional condition on the investigation of 
exact solutions for the combined KdV-mKdV equation. Abundant exact solutions are 
obtained together with the aid of symbol calculation software, such as Mathematica. 

 

 4.2 Description of the method fvm 
To clarify the basic idea of fvm proposed in our paper [22], we present the 

governing equation written in several independent variables as 

 

            
( , , , , , , , , ,...) 0,t x y z xy yz xz xxR u u u u u u u u u

        (2.1) 

 

where the subscripts denote differentiation, while  ( , , , ,...)u t x y z   is an 

unknown function to be determined. Equation (4.1) is a nonlinear partial differential 
equation that is not integrable, in general. Sometime it is difficult to find a 
complete set of solutions. If the solutions exist, there are many methods which can 
be used to handle these nonlinear equations. 

The following transformation is used for the new wave variable as  

 

                    0

,   


 
p

i i

i           (2.2)
 

 

 i   are distinct variables, and when  1p  ,  0 0 1 1          , 
and if the quantities  0 1,    are constants, then, they are called the wave 

pulsation    and the wave number  k    respectively if  0 1,    are the 

variables  t   and  x   respectively. We give the traveling wave reduction 
transformation for Eq. (4.1) as 
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                    0 1( , ,...) ( ),  u U
          (2.3) 

 

and the chain rule 

 

 
2 2

2
(.) (.),  (.) (.), . 

    
 

 
  

i i j

i i j

d d

d d
  (2.4) 

         
 

Upon using (4.3) and (4.4), the nonlinear problem (4.1) with suitably 
chosen variables becomes an ordinary differential equation (ODE) like 

 ( , , , , ,...) 0.    Q U U U U U   (2.5) 

    
 

A transformation of functions as variables can sometimes be found that 
transforms a nonlinear equation into a linear equation, or some other nonlinear 
equation easily integrable. Thus, if the unknown function  U   is treated as a 
functional variable in the form 

 

 ( ), U F U   (2.6) 

 

then, the solution can be found by the relation 

 

 0,( )
 

dU
a

F U
  (2.7) 

 

here  0a   is a constant of integration which is set equal to zero for 
convenience. Some successive differentiations of  U   in terms of  F   are given 
as 
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2

2 2

2 2 2 2

1
( ) ,

2
1
( ) ,

2
1

( ) ( ) ( ) ,
2
,











      


U F

U F F

U F F F F

  (2.8) 

 

where "   " stands for  d

dU
 . The ordinary differential equation (4.5) can 

be reduced in terms of  U  ,  F   and its derivatives upon using the expression 
of (4.8) into (4.5) give 

 
 (4)( , , , , , ,...) 0.   R U F F F F F   (2.9) 

 
 

The key idea of this particular form (4.9) is of special interest because it 
admits analytical solutions for a large class of nonlinear wave type equations. After 
integration, the Eq. (4.9) provides the expression of  F  , and this in turn 
together with (4.6) give the relevant solutions to the original problem. 

 

4.3 KdV-mKdV solutions 
Let us consider the KdV-mKdV equation [23-25] is written as 

 
 2

0 1 2 3 46 ( ) 6 ( ) ( ) ( ) ( )( ) 0.      t x x xxx x xu h t uu h t u u h t u h t u h t Au xu   (2.10) 

 
This equation arises in many physical problems including the motions of 

waves in nonlinear optics, plasma or fluids, water waves, ion-acoustic waves in a 
collisionless plasma, where  , 0,1,2,3,4,ih i   are arbitrary smooth model functions 

that symbolize the coefficients of the time variable  t   and the subscripts denote 
the partial differentiations with respect to the corresponding variable. The first 
element  tu   designates the evolution term which governs how the wave evolves 
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with respect to time, while the second one shows the term of dispersion. We first 
combine the independent variables, into a wave variable using     as 

 
 ( ) ( ),   t x t   (2.11) 

 
where    and     are time-dependent functions, and we write the 

travelling wave solutions of Eq. (4.10) with (4.11) as  ( , ) ( , )u x t U t  . By 

using the chain rule (4.4), the differential equation (4.10) can be transformed 
as: 

 

  2 3
0 1 2 3

4

6 ( ) 6 ( ) ( ) ( )

( )( ) 0,

     



         
  

t t tU x U h t UU h t U U h t U h t U

h t AU xU
 (2.12) 

where the primes denote the derivatives with respect to the argument    , 
and it is known that many nonlinear models with linear dispersion coefficient  2( )h t   
and convection coefficient  0( )h t   generate quite stable structures such as the 
solitons and kink solutions. 

4.4 Partial structures 
In order to prepare the complete solution for Eq. (4.10), we begin with the 

special case when  4 0h   and  ,    and  ih  ,  0,1,2,3i   are constant 

functions. Thus, Equation (4.10) is then integrated as long as all terms contain 
derivatives where integration constants are considered zeros, and it looks like 
following: 

 

 2 3 3
3 0 1 2( ) 3 ( ) 2 ( ) ( ) 0,        h t U h t U h t U h t U   (2.13) 

 
from Eq.(4.13) and the method fvm, we obtain 

 
 2 3 4( ) ,   F U U aU bU cU   (2.14) 
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where 
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  (2.15) 

 
From (4.14), we obtain the desired solution as [5, 26] 
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  (2.16) 

 

4.5 Full structures 
Now we reveal the main features of solutions by working directly from 

(4.14) and (4.16). Let us take a closer look at the equation in presence of the 
term  4h   and  ,    and  ih  ,  0,1,2,3,4i   are time-dependent functions. 

According to the previous situation, we expand the solution of Eq. (4.12) in the 
form: 
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where    satisfies Eq. (4.14) as 

 
 2 3 4 ,           (2.18) 

 
and the possible structures are known from (4.16), and    ,     and  

   are free parameters and  M   is an undetermined integer and  kq   are 
coefficients to be determined later. One of the most useful techniques for obtaining 
the parameter  M   in (4.17) is the homogeneous balance method. Substituting 
from (4.17) into Eq. (4.12) and by making balance between the linear term 
(cubic dispersion)  U   and the nonlinear term (cubic nonlinearity)  2 U U   to 
determine the value of  M  , and by simple calculation we have got that  

1 3 1  M M  , this in turn gives  1M  , and the solution (4.17) takes 
the form 

 
  0 1( , ) ( ).   U t q q   (2.19) 

 
 
Now, we substitute (4.19) into (4.12) along with (4.18) and set each 

coefficient of    
l

k   and  x   ( 0,1,2k   and  0,1l  ) to zero to 

obtain a set of algebraic equations for  0q  ,  1q  ,   , and     as,   
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Solving the system of algebraic equations, we would end up with the explicit 
pulse parameters for  0q  ,  1q  ,    and    , we obtain 
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where  00q  ,  10q  ,  0   and  0   are the integration constants and 

are identified from initial data of the pulse. Notice that (4.20e) and (4.20f) 
serve as constraint relations between the coefficient functions and the pulse 
parameters. 

From  (4.20e) and (4.20f), one may find that      

 

 

 40
00 10

1

,
4 2




  
A h dth

q q e
h

  (2.22) 

 
And 
 
 

              A h dth
e h h

q h

410 1
1 2

10 2

, 0,





           (2.23) 

    

 
which indicate that (4.22) and (4.23) must be satisfied to assure the 

existence and the formation process of soliton structures. Taking account of these 
data, we attain the exact solutions for Equation (4.12) as following 

 



 

 

 

 

 

 

 

 

 
 90 

 

 
 

 
 

 

4

4

4

1 00 10 2

2

2 00 10 2

2

2
2

3 00 10
2

2 sech
( , ) ,  ( )

4 sec h

 0,  4 0,

2 csch
( , ) ,  ( )

4 csch

 0,  4 0,

sech
( , )



 

    

  

 

    

  

 

 







          
  

          
  

 


A h dt

A h dt

A h dt

u x t e q q a

u x t e q q b

u x t e q q

  

4

2

2

4 00 10

2

,   ( )
1 tanh

 0,

( , ) 1 tanh ,           ( )
2

 0,  4 ,

  



 
 



  



         


                     
 

A h dt

c

u x t e q q d

  (2.24) 

 
 

where  ( ( , ) ( , )i iu x t U t  ,  1,2,3,4)i  ,  ( ) ( )   t x t   and  

1   .  
 
 

We note that, Equation (4.18) admits several other types of solutions; it is 
easy to see that we can include more solutions as listed in [5], we omit these 
results here. The propagation velocity of the soliton pulse is related to parameters 
describing the process and is expressed by the relation  ( )/ ( )( )   d t t

dt
v t  , and the 

inverse widths are given by  ( ) t   and  
2

( )  t   , which exist provided  
0    for the wave solutions (4.24) respectively. All the solutions found have 

been verified through substitution with the help of Mathematica software. However, 
to our best knowledge, all solutions obtained are completely new except the solution 
3 is just the result found by Triki et al. [23] with a different route using directly 
the ansatz method. 
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A qualitative plot of the solution (24a), 1 1( , ) ( )u x t U  is presented in 

Figure 4.1, and the Figure 4.2 shows the physical wave (24d), 4 4( , ) ( )u x t U . 

It is apparent that the amplitude contributes to the formation of solitons mainly 
through the model function  4( )h t  (for full structures). Consequently, in the 
absence of the coefficient function  4( )h t  or the parameter A , the partial and full 
structures become substantially equivalent versions. 

 

 

 

 

 
Figure 4.1 The graph shows the wave solution of  1 1( , ) ( )u x t U  in (4.24a). The 
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Figure 4.2 The evolution of the wave solution  4 4( , ) ( )u x t U   given by Eq. 

(4.24d), input parameters:  1,A  4,   1,   4,   1,   4
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4.6 Conclusion 
In this work, we applied a new analytical technique namely, the functional 

variable method (fvm) to establish some new exact analytic wave structures to the 
KdV-mKdV equation with time-dependent coefficients. On one side, for the first 
case study, we obtained the limited solutions using the partial structures for the 
function  4 0h  . On the other side, for the second case study, we introduced 
the results obtained for the partial structures to solve the KdV-mKdV nonlinear 
differential equation for the full structures in the presence of the function  4 0h  . 
Four variants of complete travelling wave solutions are obtained. The present 
method provides a reliable technique that requires less work if compared with the 
difficulties arising from computational aspect. The main advantage of this method is 
the flexibility to give exact solutions to nonlinear PDEs without any need for 
perturbation techniques, and does not require linearizing or discrediting. All 
calculations are performed using Mathematica. 
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We may conclude that, this method can be easily extended to find the 
solution of some high-dimensional nonlinear problems. These points will be 
investigated in a future research. 
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General conclusion 

    The goal in our work is to determine the behaviour of wave solutions 
by solving nonlinear equations and through two phases: 

    In the first step we studied the nonlinear lattice equation by applied two 
types of functions are used to find the exact solutions namely: the coth-function 
and the coth-csch function methods and the result is eight variants of new exact 
travelling wave solutions that are obtained, where we note that the system provide 
us the symmetrically bell solutions and symmetrically kink-shaped soliton solutions 
and symmetrically kink-shaped solitary solution. In the context of solving the lattice 
equation we have obtained many types of fractional solutions of the nonlinear lattice 
equation by using fractional transformations method; the five cases are used to find 
the exact solutions, these solutions include the symmetrical rational solutions, the 
symmetrical periodic wave solutions, the symmetrical solitary wave solutions, and the 
symmetrical Jacobi elliptic function solutions. 

We investigated by using these modern methods the results as follows: 

-To solve the non-linear lattice equation and we get the series variety of 
solutions. 

-The successful application of our methods for solving the nonlinear lattice 
equations 

-Simplification of analytical processes by using the homogeneous balance 
principle. 

   In the second step we applied the functional variable (implicit) method on 
the set of nonlinear equations of BBM with constant coefficients and the generalized 
equation of KdV–mKdV with variable coefficients, where we have constructed a 
series of travelling wave solutions for solitary wave and periodic wave of the one-
dimensional generalized equation of BBM for any order with positive and negative 
exponents. 

   For establishing some new exact analytic wave structures we applied the 
functional variable method on the KdV-mKdV equation with time-dependent 
coefficients. Four variants of complete travelling soliton wave solutions are obtained.  
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We investigated by applying the functional variable (implicit and modified) 
method to obtain a series of travelling wave solutions without any need for 
perturbation techniques and do not require linearizing or discrediting. 

 

Perspectives: 

- Using the coth-function and the coth-csch function methods and fractional 
transformation method to solve some nonlinear wave equations. 

- The development of analytical methods of using the homogeneous balance 
principle.  

- The functional variable (implicit and modified) method can be expanded 
to a wide variety and more complex of nonlinear equations for example the coupled 
systems. 

- The functional variable (implicit and modified) method can be developed 
and applying it to nonlinear differential systems. 
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In the present work we examine a generalized coth and csch functions method to construct new exact 
travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance 
method is used to handle the appropriated solutions. Some exact solutions obtained are new. 
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INTRODUCTION  
 
Several methods have been developed for analytic 
solving of nonlinear partial differential equations. 
Specially, almost all of these nonlinear model equations 
were appeared (Wang and Li, 2008; Korteweg and Vries, 
1995; Khelil et al., 2006) to give different structures to the 
solutions. Besides traditional methods such as auto-
Backlund transformation, Lie Groups, inverse scattering 
transformation and Miura's transformation, a vast variety 
of the direct methods for obtaining explicit travelling 
solitary wave solutions have been found (Zerarka and 
Foester, 2005; Ibrahim and El-Kalaawy, 2007; Lü, 
2014a,b). The availability of symbolic computation 
packages can be facilitating many direct approaches to 
establish solutions to non-linear wave equations (Xu and 
Zhang, 2007; Özis and Yıldırım, 2008). Various extension 
forms of the sine-cosine and tanh methods proposed by 
Malfliet and Wazwaz have been applied to solve a large 
class of nonlinear equations (Malfliet 1996a,b; Wazwaz 
2004; He and Wu, 2006a,b). More importantly, another 
mathematical treatment is  established  and  used  in  the 

analysis of these nonlinear problems, such as Jacobian 
elliptic function expansion method, the variational 
iteration method, pseudo spectral method, the averaging 
method, and many others powerful methods (Odibat and 
Momani, 2006; Rafei and Ganji, 2006; Yu, 2007; Zhu, 
2007a,b; Lü and Peng, 2013a,b,c; Lü, 2013; Lü et al., 
2010; Jia et al., 2014; Liu and Qian, 2011). The aim of 
this work is to propose an efficient approach to examine 
new developments in a direct manner without requiring 
any additional condition on the investigation of exact 
solutions with the coth and csch functions method for a 
lattice system. We expect that the presented method 
could lead to construct successfully many other solutions 
for a large variety of other nonlinear evolution equations. 
 
 
ANALYSIS OF THE PROBLEM  
 
We consider the following nonlinear problem for the 
lattice equation as: 
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Here the subscripts represent partial derivatives, and  

,...),,,( zyxtu   is an unknown function to be determined. 

We take the following transformation for the new wave 
variable as:  
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i   are distinct variables, and when  1p  ,  

  1100   , the quantities  10 ,   are called 

the wave pulsation  and the wave number k  

respectively if 10,  are the variables t  and x   

respectively. In the discrete case for the position x  and 

with continuous variable for the time t  ,    becomes with 

some modifications   ctndn  and n  is the 

discrete variable. d  and   are arbitrary constants and 

c  is the velocity. We use the traveling wave reduction 

transformation for Equation (1) as: 
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Upon using Equations (3) and (4), the nonlinear problem 
(1) becomes an ODE like 
 

0,...),,,,(  UUUUUQ                       (5) 

 
 
APPLICATIONS  
 
The one-dimensional lattice equation (Zhu, 2007, 2008) 
is written as: 
 

,0)],1(),1())[,(),((
),( 2  tnutnutnutnbua

dt

tndu      (6) 

 
We first combine the independent variables, into a wave 

variable using n  as 

 

  ctndn                        (7) 

   
and we take the travelling wave  solutions  of  the  system  
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(6) using Equation (7) as  )(),( nUtnu  . By using the 

chain rule (4), the system (6) can be obtained as follows: 
 

,0))()())(()(()( 11

2   nnnnn UUUbUacU
n


          (8) 

    
Where subscript denotes the differential with respect to 

n . 

 
 
THE COTH FUNCTION METHOD 
 
Suppose that Equation (8) has the following solution: 
 

),(coth)(
0

n

j

j

M

j

n AU  




                     

        (9) 

 

Where M  is an undetermined integer and jA  are 

coefficients to be determined later. In order to determine 

values of the parameter M , we balance the linear term of 
highest order in Equation (8) with the highest order 
nonlinear term. By simple calculation, we have 

12 MM  and the solution (9) takes the form 
 

),coth()( 10 nn AAU                                       (10) 

 
Substituting the solution (10) into Equation (8), and 
equating to zero the coefficients of all powers of 

)(coth n

j    yields a set of algebraic equations for 0A  , 

1A  and c  as: 

 

  

cdA

dcAbAa

AAbA







)coth(2

)coth()(2

02

2

1

2

00

101

                     (11) 

 
 Solving the system of algebraic equations with the aid of 
Mathematical, we obtain 
 

),4(
2

)tanh(

,4
2

)tanh(

,
2

2

2

1

0

ba
d

c

ab
d

A

b
A







          (12) 

 
and the two travelling wave solutions of the problem of 
interest follow 
 









  tba

d
ndab

db
U n )4(

2

)tanh(
coth4

2

)tanh(

2
)( 22

     

(13) 
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  







  tba

d
ndab

db
U n )4(

2

)tanh(
coth4

2

)tanh(

2
)( 22

   

(13) 

 

where d  and   are arbitrary constants. 

The Figures fig1(a) and Figure fig1(b) show the physical waves )(),( nUtnu    and  )(),( nUtnu      

in Equations (13). 
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Figure 1: The graphs show the wave solutions of  )(),( nUtnu     in Equation (13): (a) solution  )(),( nUtnu   , (b) solution  

)(),( nUtnu    . For both curves:  0,1,3,2  dba  . 
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Where d  and   are arbitrary constants. 

Figure 1(a) and (b) show the physical waves 

)(),( nUtnu    and  )(),( nUtnu   in Equations 

(13). 
 
 
THE COTH-CSCH FUNCTION METHOD 
 
The solutions of Equation (8) can be expressed in the 
form 
 

),(csch )(coth)(
1

n

j

jn

j

j

M

j

n BAU   
        

(14) 

 

Where  , jA  and jB  are parameters to be determined. 

The parameter M  is found by balancing the highest-
order linear term with the nonlinear terms, we 

obtain 1M  , and )( nU   becomes 

 

),(csch )coth()( nnn BAU                       (15)  

 
Substituting Equation (15) into the relevant nonlinear 
differential Equation (8) and with the help of Mathematical 
we get a system of algebraic equations with respect to c , 

 , A  and B .  

 
  

 
   

 
   

  0)coth(2

,0)(csch22)coth(22

,022

,0)(csch2)coth(4

,0)(csch2)coth()coth(4

,0)(csch4)coth(2
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2222
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
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




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dcAbaBA

dbBBBdbAAA

bBBA

dBABdBAcB

dbaBBdcBdBA

dBAdBAAcA









(16) 

After some algebra, and with the help of Mathematical, 

the following values for the parameters c ,  , A , and  

B  are obtained: 
 
 

First set 
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2

1
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2
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
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B
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and the travelling solutions of Equation (17) are obtained 
as: 
 

),coth(4
2

)tanh(

2
)( 2

nn ab
db
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Where   tband
d

n )4( 2

2

)tanh(
. The solutions (18) 

are similar to those obtained by the coth-function method 
Equation (13). 
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where   tband
d

n )4( 2

2

)sinh(
 . The portraits of solutions (20) for )( nU   are displayed in Figures 

fig2(a) and (b). 
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Figure 2: The graphs show the wave solution of  )( nU   in (20): (a) solution )(),( nUtnu    , (b) solution  )(),( nUtnu   . For 

both curves:  0,1,3,2  dba  . 
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and the travelling solutions of Equation (19) are obtained 
as 
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          (20) 

 

Where   tband
d

n )4( 2

2

)sinh(
. The portraits of 

solutions (20) for )( nU  are displayed in Figure 2(a) and 

(b). 
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Finally, third set admits the following two types: 
 

)),(csch)(coth(4)
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tanh(
2

1

2
)( 2

1 nnn ab
db

U  
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and 
 

)),(csch)(coth(4)
2

tanh(
2

1

2
)( 2

2 nnn ab
db

U  
     (23)  

Where     tband d
n )tanh(4

2

2
. The behaviors 

of solutions (22) and (23) for )(1 nU   and  )(2 nU   are 

shown in Figure 3(a) and (b) respectively. The solutions 
given for the second and the third sets appear to be new. 
 
 
CONCLUSION 
 
The basic goal of this work, is to provide a new trial 
travelling solution to build the exact solutions to the 
nonlinear lattice equation. Two types of functions are 
used to find the exact solutions, which are named the 
coth-function and the coth-csch function methods. Eight 
variants of travelling wave solutions are obtained. The 
present method provides a reliable technique that 
requires less work if compared with the difficulties arising 
from computational aspect. The main advantage of this 
method is the flexibility to give exact solutions to 
nonlinear problems without linearization. We may 
conclude that, this method can also be extended to other 
high-dimensional nonlinear phenomena. It will be then 
interesting to study more general systems. These points 
will be investigated in a future research. 
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In this  study  we  introduce  the  functional  variable  method  (fvm  for short)  for obtaining
new  exact  travelling  solutions  of  the  combined  KdV–mKdV  equation.  The  technique  of  the
homogeneous  balance  method  is used  in  second  stage  to handle  the  appropriated  solutions.
We show  that,  the  method  is  straightforward  and  concise  for several  kind of  nonlinear
problems.  Many  new  exact  traveling  wave  solutions  are  successfully  obtained.
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. Introduction

A considerable research work has been invested to study the systems of nonlinear partial differential equations. Several
ethods [1–12] have been proposed to handle a wide variety of linear and non-linear wave equations. As is well known, the

escription of these nonlinear model equations were appeared to supply different structures to the solutions. Among these
re the auto-Backlund transformation, inverse scattering method, Hirota method, Miura’s transformation.

The availability of symbolic computation packages can be facilitate many direct approaches to establish solutions to
on-linear wave equations [13–17]. Various extension forms of the sine-cosine and tanh methods proposed by Malfliet and
azwaz have been applied to solve a large class of nonlinear equations [18,19]. More importantly, another mathematical

reatment is established and used in the analysis of these nonlinear problems, such as Jacobian elliptic function expansion
ethod, the variational iteration method, pseudo spectral method, and many others powerful methods [20,21].
One of the major goals of the present article is to provide an efficient approach based on the functional variable method

o examine new developments in a direct manner without requiring any additional condition on the investigation of exact
olutions for the combined KdV–mKdV equation. Abundant exact solutions are obtained together with the aid of symbol
alculation software, such as Mathematica.

. Basic idea of the method fvm
According to the idea proposed in our paper [22], this method can be presented as follows. The governing equation
ritten in several independent variables can be expressed as

R(u, ut, ux, uy, uz, uxy, uyz, uxz, uxx, . . .)  = 0, (1)

∗ Corresponding author.
E-mail address: abzerarka@yahoo.fr (A. Zerarka).

http://dx.doi.org/10.1016/j.ijleo.2016.07.045
030-4026/© 2016 Elsevier GmbH. All rights reserved.
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where the subscripts denote differentiation, while u(t, x, y, z, . . .)  is an unknown function to be determined. Eq. (1) is a
nonlinear partial differential equation that is not integrable, in general. Sometime it is difficult to find a complete set of
solutions. If the solutions exist, there are many methods which can be used to handle these nonlinear equations.

The following transformation is used for the new wave variable as

� =
p∑

i=0

˛i�i + ı, (2)

�i are distinct variables, and when p = 1, � = ˛0�0 + ˛1�1 + ı, and if the quantities ˛0, ˛1 are constants, then, they are called the
wave pulsation ω and the wave number k respectively if �0, �1 are the variables t and x respectively. We  give the traveling
wave reduction transformation for Eq. (1) as

u(�0, �1, . . .)  = U(�), (3)

and the chain rule

∂
∂�i

(.) = ˛i
d

d�
(.),

∂2

∂�i∂�j

(.) = ˛i˛j
d2

d�2
(.), · · · (4)

Upon using (3) and (4), the nonlinear problem (1) with suitably chosen variables becomes an ordinary differential equation
(ODE) like

Q (U, U�, U��, U���, U����, . . .)  = 0 (5)

A transformation of functions as variables can sometimes be found that transforms a nonlinear equation into a linear
equation, or some other nonlinear equation easily integrable. Thus, if the unknown function U is treated as a functional
variable in the form

U� = F(U), (6)

then, the solution can be found by the relation∫
dU

F (U)
= � + ˛0, (7)

here a0 is a constant of integration which is set equal to zero for convenience. Some successive differentiations of U in terms
of F are given as

U�� = 1
2

(F2)
′
,

U��� = 1
2

(F2)
′′√

F2,

U���� = 1
2

[
(F2)

′′′
F2 + (F2)

′′
(F2)

′]
,

...,

(8)

where “′” stands for d
dU . The ordinary differential equation (5) can be reduced in terms of U, F and its derivatives upon using

the expressions of (8) into (5) gives

R(U, F, F ′, F ′′, F ′′′, F (4), . . .)  = 0 (9)

The key idea of this particular form (9) is of special interest because it admits analytical solutions for a large class of nonlinear
wave type equations. After integration, the Eq. (9) provides the expression of F, and this in turn together with (6) give the
relevant solutions to the original problem.

3. KdV–mKdV solutions

Let us consider the KdV–mKdV equation [23–25] is written as

u − 6h (t) uu − 6h (t) u2u + h (t) u − h (t) u + h (t) (Au + xu ) = 0, (10)
t 0 x 1 x 2 xxx 3 x 4 x

This equation arises in many physical problems including the motions of waves in nonlinear optics, plasma or fluids, water
waves, ion-acoustic waves in a collisionless plasma, where hi, i = 0, 1, 2, 3, 4, are arbitrary smooth model functions that
symbolize the coefficients of the time variable t and the subscripts denote the partial differentiations with respect to the
corresponding variable. The first element ut designates the evolution term which governs how the wave evolves with respect
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o time, while the second one shows the term of dispersion. We  first combine the independent variables, into a wave variable
sing � as

� = ˛(t)x + ˇ(t), (11)

here  ̨ and  ̌ are time-dependent functions, and we  write the travelling wave solutions of Eq. (10) with (11) as u(x, t) = U(t,
). By using the chain rule (4), the differential equation (10) can be transformed as:

Ut +
(

˛tx + ˇt

)
U ′ − 6˛h0(t)UU ′ − 6˛h1(t)U2U ′ + ˛3h2(t)U ′′′ − ˛h3(t)U ′ + h4(t)(AU + ˛xU ′) = 0, (12)

here the primes denote the derivatives with respect to the second argument, and it is known that many nonlinear models
ith linear dispersion coefficient h2(t) and convection coefficient h0(t) generate quite stable structures such as the solitons

nd kink solutions.

. Partial structures

In order to prepare the complete solution for Eq. (10), we begin with the special case when h4 = 0, ˛,  ̌ and hi, i = 0, 1, 2, 3
re constant functions. Thus, Eq. (10) is then integrated as long as all terms contain derivatives where integration constants
re considered zeros, and it looks like following:[

ˇt − ˛h3(t) + (˛t + h4(t)˛) x
]

U − 3˛h0(t)U2 − 2˛h1(t)U3 + ˛3h2(t)U ′′ = 0, (13)

rom Eq. (13) and the method fvm, we obtain

F (U) = U ′ =
√

aU2 + bU3 + cU4, (14)

here

a = h3 (t)
a2h2 (t)

,

b = 2h0 (t)
a2h2 (t)

,

c = h1 (t)
a2h2 (t)

(15)

rom (14), we obtain the desired solution as [5,26]

U(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a sec h
(√

a�
)

ε
√

b2 − 4ac − b sec h
(√

a�
) , a > 0, b2 − 4ac > 0,

2acsch
(√

a�
)

ε
√

4ac − b2 − bcsch
(√

a�
) , a > 0, b2 − 4ac < 0,

−ab sec h2

(√
a

2
�

)

b2 − ac

(
1 + ε tanh

(√
a

2
�

))2
, a > 0,

− a

b

[
1 + ε tanh

(√
a

2
�

)]
, a > 0, b2 = 4ac,

ε = ±1

(16)

. Full structures

Now we reveal the main features of solutions by working directly from (14) to (16). Let us take a closer look at the
quation in presence of the term h4 and ˛,  ̌ and hi, i = 0, 1, 2, 3, 4 are time-dependent functions. According to the previous
ituation, we expand the solution of Eq. (12) in the form:

U
(

t, �
)

=
M∑

q �k(�), (17)
k=0

k

here � satisfies Eq. (14) as

�′ =
√

��2 + 	�3 + 
�4, (18)
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and the possible structures are known from (16), and �, 	 and 
 are free parameters and M is an undetermined integer and
qk are coefficients to be determined later. One of the most useful techniques for obtaining the parameter M in (17) is the
homogeneous balance method. Substituting from (17) into Eq. (12) and by making balance between the linear term (cubic
dispersion) U ′′′ and the nonlinear term (cubic nonlinearity) U2U′ to determine the value of M,  and by simple calculation we
have got that M + 1 =3M − 1, this in turn gives M = 1, and the solution (17) takes the form

U
(

t, �
)

= q0 + q1�(�) (19)

Now, we substitute (19) into (12) along with (18) and set each coefficient of �k(�′)l and x�′ (k = 0, 1, 2 and l = 0, 1) to
zero to obtain a set of algebraic equations for q0, q1, ˛, and  ̌ as,

dq0

dt
+ Ah4q0 = 0, (20a)

dq1

dt
+ Ah4q1 = 0, (20b)

d˛

dt
+ h4  ̨ = 0, (20c)

dˇ

dt
− 6h0q0  ̨ − 6h1q2

0  ̨ + h2˛3� − h3  ̨ = 0, (20d)

h2˛2	 − 4h1q0q1 − 2h0q1 = 0, (20e)

h2˛2
 − h1q2
1 = 0, (20f)

Solving the system of algebraic equations, we would end up with the explicit pulse parameters for q0, q1,  ̨ and ˇ, we
obtain

q0 (t) = q00e−A
∫

h4dt, (21a)

q1 (t) = q10e−A
∫

h4dt, (21b)

˛ (t) = ˛0e−
∫

h4dt, (21c)

ˇ (t) =
∫ (

6h0q0  ̨ + 6h1q2
0  ̨ − h2˛3� + h3˛

)
dt + ˇ0, (21d)

where q00, q10, ˛0 and ˇ0 are the integration constants and are identified from initial data of the pulse. Notice that (20e) and
(20f) serve as constraint relations between the coefficient functions and the pulse parameters.

From (20e) to (20f), one may  find that

q00 − 	

4

q10 = − h0

2h1
eA
∫

h4dt, (22)

and

˛0

q10
=
√

h1

h2

e

(1−A)

∫
h4dt

,

h1h2
 > 0,

(23)

which indicate that (22) and (23) must be satisfied to assure the existence and the formation process of soliton structures.
Taking account of these data, we attain the exact solutions for Eq. (12) as following

u1(x, t) = e
−A

∫
h4dt

(
q00 + q10

2� sec h
(√

��
)

ε
√

	2 − 4�
 − 	 sec h
(√

��
)
)

, � > 0, 	2 − 4�
 > 0, (24a)

u2(x, t) = e
−A

∫
h4dt

(
q00 + q10

2�csch
(√

��
)

ε
√

4�
 − 	2 − 	csch
(√

��
)
)

, � > 0, 	2 − 4�
 < 0, (24b)

∫ ⎛ (√ ) ⎞

u3(x, t) = e

−A h4dt⎜⎜⎜⎝q00 + q10

−�	 sec h2 �

2
�

	2 − �


(
1 + ε tanh

(√
�

2
�

))2

⎟⎟⎟⎠ , � > 0, (24c)
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Fig. 1. The graph shows the wave solution of u1(x, t) = U1(t, �) in (24a). The curve, was  performed with the parameters A = 1, 	 = 4, � = 1, 
 = 3, ε = 1, q00 = 4
3 ,

q10 = 1, ˛0 =
√

2/3, ˇ0 = 0, h0 = 4, h1 = −2t, h2 = − t, h3 = 2
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ig. 2. The evolution of the wave solution u4(x, t) = U4(t, �) given by Eq. (24d), input parameters: A = 1, 	 = 4, � = 1, 
 = 4, ε = 1, q00 = 4/3, q10 = 1, ˛0 =
1/2, ˇ0 = 0, h0 = 4, h1 = −2t, h2 = − t, h3 = 2/t, h4 = t−1.

u4(x, t) = e
−A

∫
h4dt (

q00 − q10
�

	

[
1 + ε tanh

(√
�

2
�

)])
, � > 0, 	2 = 4�
,

(24d)

here (ui(x, t) = Ui(t, �), i = 1, 2, 3, 4), � = ˛(t)x + ˇ(t) and ε = ±1.
We note that, Eq. (18) admits several other types of solutions, it is easy to see that we  can include more solutions as

isted in [5], we omit these results here. The propagation velocity of the soliton pulse is related to parameters describing the
rocess and is expressed by the relation v(t) = (dˇ(t)/˛(t)/dt), and the inverse widths are given by ˛(t)

√
� and ˛(t)(

√
�/2),

hich exist provided � > 0 for the wave solutions ((24a), (24b)) and ((24c), (24d)) respectively. All the solutions found have
een verified through substitution with the help of Mathematica software. However, to our best knowledge, all solutions
btained are completely new except the solution 3 is just the result found by Triki et al. [23] with a different route using
irectly the ansatz method.

A qualitative plot of the solution (24a), u1(x, t) = U1(t, �) is presented in Fig. 1, and Fig. 2 shows the physical wave (24d),
4(x, t) = U4(t, �). It is apparent that the amplitude contributes to the formation of solitons mainly through the model function
4(t) (for full structures). Consequently, in the absence of the coefficient function h4(t) or the parameter A, the partial and
ull structures become substantially equivalent versions.

. Conclusion

In this work, we applied a new analytical technique namely, the functional variable method (fvm) to establish some
ew exact analytic wave structures to the KdV–mKdV equation with time-dependent coefficients. On one side, for the first
ase study, we obtained the limited solutions using the partial structures for the function h4 = 0. On the other side, for the
econd case study, we introduced the results obtained for the partial structures to solve the KdV–mKdV nonlinear differential

quation for the full structures in the presence of the function h4 /= 0. Four variants of complete travelling wave solutions
re obtained. The present method provides a reliable technique that requires less work if compared with the difficulties
rising from computational aspect. The main advantage of this method is the flexibility to give exact solutions to nonlinear
DEs without any need for perturbation techniques, and does not require linearizing or discrediting. All calculations are
erformed using Mathematica.
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We  may  conclude that, this method can be easily extended to find the solution of some high-dimensional nonlinear
problems. These points will be investigated in a future research.
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Abstract: In this article, the functional variable method (fvm for short) is introduced 
to establish new exact travelling solutions of the combined KdV–mKdV equation. 
The technique of the homogeneous balance method is used in second stage to 
handle the appropriated solutions. We show that, the method is straightforward 
and concise for several kinds of nonlinear problems. Many new exact travelling wave 
solutions are successfully obtained.
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2005) have been proposed to handle a wide variety of linear and nonlinear wave equations. As is well 
known, the description of these nonlinear model equations appeared to supply different structures 
to the solutions. Among these are the auto-Backlund transformation, inverse scattering method, 
Hirota method, Miura’s transformation.

The availability of symbolic computation packages can facilitate many direct approaches to estab-
lish solutions to nonlinear wave equations (Hirota, 1971; Iskandar, 1989; Jinquing & Wei-Guang, 
1992; Xu & Zhang, 2007; Zhou, Wang, & Wang, 2003). Various extension forms of the sine–cosine 
and tanh methods proposed by Malfliet and Wazwaz have been applied to solve a large class of 
nonlinear equations (Fan & Zhang, 2002; Malfliet, 1992). More importantly, another mathematical 
treatment is established and used in the analysis of these nonlinear problems, such as Jacobian el-
liptic function expansion method, the variational iteration method, pseudo spectral method and 
many other powerful methods (Liu & Yang, 2004; Yomba, 2005).

One of the major goals of the present article is to provide an efficient approach based on the func-
tional variable method to examine new developments in a direct manner without requiring any ad-
ditional condition on the investigation of exact solutions for the combined KdV–mKdV equation. 
Abundant exact solutions are obtained together with the aid of symbol calculation software, such as 
Mathematica.

2.  Description of the method fvm
To clarify the basic idea of fvm proposed in our paper (Zerarka, Ouamane, & Attaf, 2011), we present 
the governing equation written in several independent variables as

where the subscripts denote differentiation, while u(t, x, y, z,…) is an unknown function to be de-
termined. Equation (1) is a nonlinear partial differential equation that is not integrable, in general. 
Sometime it is difficult to find a complete set of solutions. If the solutions exist, there are many 
methods which can be used to handle these nonlinear equations.

The following transformation is used for the new wave variable as

where �i are distinct variables, and when p = 1, � = �
0
�
0
+ �

1
�
1
+ �, and if the quantities �

0
, �

1
 are 

constants, then, they are called the wave pulsation � and the wave number k   respectively, if �
0
,�

1
 

are the variables t and x, respectively. We give the travelling wave reduction transformation for 
Equation (1) as

and the chain rule

Upon using (3) and (4), the nonlinear problem (1) with suitably chosen variables becomes an ordi-
nary differential equation (ODE) like

(1)R(u,ut,ux,uy ,uz,uxy ,uyz,uxz,uxx,…) = 0,

(2)� =

p∑
i=0

�i�i + �,

(3)u(�
0
,�

1
,…) = U(�),

(4)
�

��i
(⋅) = �i

d

d�
(⋅),

�
2

��i��j
(⋅) = �i�j

d
2

d�2
(⋅),… .

(5)Q(U,U
�
,U

��
,U

���
,U

����
,…) = 0.
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If we consider a function as a variable, it is sometimes easy to transform a nonlinear equation into 
a linear equation. Thus, if the unknown function U is treated as a functional variable in the form

then, the solution can be found by the relation

here a
0
 is a constant of integration which is set equal to zero for convenience. Some successive dif-

ferentiations of U in terms of F are given as

where “′” stands for d
dU

. The ordinary differential equation (5) can be reduced in terms of U, F and its 
derivatives upon using the expressions of (8) into (5) gives

The key idea of this particular form (9) is of special interest because it admits analytical solutions for 
a large class of nonlinear wave type equations. After integration, the Equation (9) provides the ex-
pression of F, and this in turn together with (6) give the relevant solutions to the original problem.

3. KdV–mKdV solutions
Let us consider the KdV–mKdV equation (Li & Wang, 2007; Triki, Thiab, & Wazwaz, 2010; Wazwaz, 
2007b) is written as

This equation arises in many physical problems including the motions of waves in nonlinear optics, 
plasma or fluids, water waves, ion-acoustic waves in a collisionless plasma, where hi , i = 0, 1, 2, 3, 4, 
are arbitrary smooth model functions that symbolize the coefficients of the time variable t and the 
subscripts denote the partial differentiations with respect to the corresponding variable. The first 
element ut designates the evolution term which governs how the wave evolves with respect to time, 
while the second one shows the term of dispersion. We first combine the independent variables, into 
a wave variable using � as

where � and � are time-dependent functions, and we write the travelling wave solutions of Equation 
(10) with (11) as u(x, t) = U(t, �). Using the chain rule (4), the differential equation (10) can be trans-
formed as:

(6)U
�
= F(U),

(7)∫
dU

F(U)
= � + a

0
,

(8)

U
��
=
1

2
(F2)�,

U
���

=
1

2
(F2)��

√
F2,

U
����

=
1

2

�
(F2)���F2 + (F2)��(F2)�

�
,

⋮,

(9)R(U, F, F�, F��, F���, F(4),…) = 0.

(10)ut − 6h0(t)uux − 6h1(t)u
2ux + h2(t)uxxx − h3(t)ux + h4(t)(Au + xux) = 0.

(11)� = �(t)x + �(t),

(12)

Ut +
(
�tx + �t

)
U� − 6�h

0
(t)UU� − 6�h

1
(t)U2U� + �

3h
2
(t)U��� − �h

3
(t)U� + h

4
(t)(AU + �xU�) = 0,
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where the primes denote the derivatives with respect to the argument �, and it is known that many 
nonlinear models with linear dispersion coefficient h

2
(t) and convection coefficient h

0
(t) generate 

quite stable structures such as the solitons and kink solutions.

4. Partial structures
In order to prepare the complete solution for Equation (10), we begin with the special case when 
h
4
= 0 and �, � and hi, i = 0, 1, 2, 3 are constant functions. Thus, Equation (10) is then integrated as 

long as all terms contain derivatives where integration constants are considered zeros, and it looks 
like following:

from Equation (13) and the method fvm, we obtain

where

From (14), we obtain the desired solution as (Sirendaoreji, 2007; Yomba, 2004)

5. Full structures
Now we reveal the main features of solutions by working directly from (14) to (16). Let us take a 
closer look at the equation in presence of the term h

4
 and �, � and hi, i = 0, 1, 2, 3, 4 are time- 

dependent functions. According to the previous situation, we expand the solution of Equation (12) in 
the form:

where Φ satisfies Equation (14) as

and the possible structures are known from (16), and �, � and � are free parameters and M is an 
undetermined integer and qk are coefficients to be determined later. One of the most useful tech-
niques for obtaining the parameter M in (17) is the homogeneous balance method. Substituting from 
(17) into Equation (12) and by making balance between the linear term (cubic dispersion) U′′′ and the 

(13)−�h
3
(t)U − 3�h

0
(t)U2 − 2�h

1
(t)U3 + �

3h
2
(t)U�� = 0,

(14)F(U) = U� =
√
aU2 + bU3 + cU4,

(15)

a =
h
3
(t)

�
2h

2
(t)
,

b =
2h

0
(t)

�
2h

2
(t)
,

c =
h
1
(t)

�
2h

2
(t)
.

(16)U(𝜉) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2a sec h
�√

a𝜉
�

𝜀

√
b2−4ac−b sec h

�√
a𝜉

� , a > 0, b2 − 4ac > 0,

2a csc h
�√

a𝜉
�

𝜀

√
4ac−b2−b csc h

�√
a𝜉

� , a > 0, b2 − 4ac < 0,

−ab sec h
2
� √

a

2
𝜉

�

b2−ac
�
1+𝜀 tanh

� √
a

2
𝜉

��2 , a > 0,

−
a

b

�
1 + 𝜀 tanh

� √
a

2
𝜉

��
, a > 0, b2 = 4ac,

𝜀 = ±1.

(17)U(t, �) =

M∑
k=0

qkΦ
k(�),

(18)Φ� =

√
�Φ2 + �Φ3 + �Φ4,
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nonlinear term (cubic nonlinearity) U2U′ to determine the value of M, and by simple calculation we 
have got that M + 1 = 3M − 1, this in turn gives M = 1, and the solution (17) takes the form

Now, we substitute (19) into (12) along with (18) and set each coefficient of Φk
(
Φ�

)l
 and xΦ� 

(k = 0, 1, 2 and l = 0, 1) to zero to obtain a set of algebraic equations for q
0
, q

1
, �, and � as, 

Solving the system of algebraic equations, we would end up with the explicit pulse parameters for q
0
, 

q
1
, � and �, we obtain 

where q
00

, q
10

, �
0
 and �

0
 are the integration constants and are identified from initial data of the 

pulse. Notice that (20e) and (20f) serve as constraint relations between the coefficient functions and 
the pulse parameters.

From (20e) and (20f), one may find that

and

(19)U(t, �) = q
0
+ q

1
Φ(�).

(20a)
dq

0

dt
+ Ah

4
q
0
= 0,

(20b)
dq

1

dt
+ Ah

4
q
1
= 0,

(20c)
d�

dt
+ h

4
� = 0,

(20d)
d�

dt
− 6h

0
q
0
� − 6h

1
q2
0
� + h

2
�
3
� − h

3
� = 0,

(20e)h
2
�
2
� − 4h

1
q
0
q
1
− 2h

0
q
1
= 0,

(20f)h
2
�
2
� − h

1
q2
1
= 0.

(21a)q
0
(t) = q

00
e−A ∫ h

4
dt,

(21b)q
1
(t) = q

10
e−A ∫ h

4
dt,

(21c)�(t) = �
0
e− ∫ h

4
dt,

(21d)�(t) = ∫
(
6h

0
q
0
� + 6h

1
q2
0
� − h

2
�
3
� + h

3
�

)
dt + �

0
,

(22)q
00

−
�

4�
q
10

= −
h
0

2h
1

eA ∫ h
4
dt,

(23)

𝛼
0

q
10

=

√
h
1

h
2
𝜈
e(1−A) ∫ h4dt,

h
1
h
2
𝜈 > 0,
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which indicate that (22) and (23) must be satisfied to assure the existence and the formation pro-
cess of soliton structures. Taking account of these data, we attain the exact solutions for Equation 
(12) as following 

 where (ui(x, t) = Ui(t, �), i = 1, 2, 3, 4), � = �(t)x + �(t) and � = ±1.

We note that, Equation (18) admits several other types of solutions, it is easy to see that we can 
include more solutions as listed in Sirendaoreji (sire1), we omit these results here. The propagation 
velocity of the soliton pulse is related to parameters describing the process and is expressed by the 
relation v(t) = d�(t)∕�(t)

dt
, and the inverse widths are given by �(t)

√
� and �(t)

√
�

2
 , which exist pro-

vided 𝜆 > 0 for the wave solutions ((24a), (24b)) and ((24c), (25d)), respectively. All the solutions 
found have been verified through substitution with the help of Mathematica software. However, to 
our best knowledge, all solutions obtained are completely new except the solution 3 is just the result 
found by Triki et al. (2010) with a different route using directly the ansatz method.

A qualitative plot of the solution (24a), u
1
(x, t) = U

1
(t, �) is presented in Figures 1 and 2 shows the 

physical wave (24d), u
4
(x, t) = U

4
(t, �). It is apparent that the amplitude contributes to the formation 

of solitons mainly through the model function h
4
(t) (for full structures). Consequently, in the absence of 

the coefficient function h
4
(t), the partial and full structures become substantially equivalent versions.

(24a)
u
1
(x, t) = e−A ∫ h

4
dt

⎛
⎜⎜⎜⎝
q
00

+ q
10

2𝜆 sec h
�√

𝜆𝜉

�

𝜀

�
𝜇
2 − 4𝜆𝜈 − 𝜇 sec h

�√
𝜆𝜉

�
⎞
⎟⎟⎟⎠
,

𝜆 > 0,𝜇2 − 4𝜆𝜈 > 0,

u
2
(x, t) = e−A ∫ h

4
dt

⎛
⎜⎜⎜⎝
q
00

+ q
10

2𝜆 csc h
�√

𝜆𝜉

�

𝜀

�
4𝜆𝜈 − 𝜇

2 − 𝜇 csc h
�√

𝜆𝜉

�
⎞
⎟⎟⎟⎠
,

𝜆 > 0,𝜇2 − 4𝜆𝜈 < 0,

u
3
(x, t) = e−A ∫ h

4
dt

⎛⎜⎜⎜⎝
q
00

+ q
10

−𝜆𝜇 sec h
2
� √

𝜆

2
𝜉

�

𝜇
2 − 𝜆𝜈

�
1 + 𝜀 tanh

� √
𝜆

2
𝜉

��2
⎞⎟⎟⎟⎠
,

𝜆 > 0,

u
4
(x, t) = e−A ∫ h

4
dt

�
q
00

− q
10

𝜆

𝜇

�
1 + 𝜀 tanh

� √
𝜆

2
𝜉

���
,

𝜆 > 0, 𝜇
2 = 4𝜆𝜈,

Figure 1. The graph shows 
the wave solution of 
u
1
(x,t) = U

1
(t, �) in Equation 

(24a). The curve, was 
performed with the parameters 
A = 1, � = 4, � = 1, � = 3, � = 1,

q
00

=
4

3
, q

10
= 1, �

0
=

√

2

3
, 

�
0
= 0, h

0
= 4, h

1
= -2t, h

2
= -t, 

h
3
=

2

t
, h

4
= t-1.

−10

0

0

−40

u(x, t)

10

10 −20

20

t x
0

20
20

30 40

(24b)

(24c)

(24d)
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6. Conclusion
In this work, we applied a new analytical technique namely, the functional variable method (fvm) to 
establish some new exact analytic wave structures to the KdV–mKdV equation with time-dependent 
coefficients. On one side, for the first case study, we obtained the limited solutions using the partial 
structures for the function h

4
= 0. On the other side, for the second case study, we introduced the 

results obtained for the partial structures to solve the KdV–mKdV nonlinear differential equation for 
the full structures in the presence of the function h

4
≠ 0. Four variants of complete travelling wave 

solutions are obtained. The present method provides a reliable technique that requires less work if 
compared with the difficulties arising from computational aspect. The main advantage of this method 
is the flexibility to give exact solutions to nonlinear PDEs without any need for perturbation techniques, 
and does not require linearizing or discrediting. All calculations are performed using Mathematica.

We may conclude that, this method can be easily extended to find the solution of some high- 
dimensional nonlinear problems. These points will be investigated in a future research.

Figure 2. The evolution of the 
wave solution u

4
(x,t) = U

4
(t, �) 

given by Equation (24d), input 
parameters: A = 1, � = 4, � = 1,

� = 4, � = 1,  q
00

=
4

3
, q

10
= 1,

�
0
=

√
1

2
, �

0
= 0, h

0
= 4, 

h
1
= -2t, h

2
= -t,  h3 =

2

t
, h

4
= t-1.

40

20

0.5

x
4 0

u(x, t)
1.0

t
−202

1.5

−400
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1 Introduction

In recent decades, much progress has been made to study the systems of nonlinear par-

tial differential equations. Because of its importance to the field of engineering and

many physical systems, a great deal of methods and numerical calculations were ap-

peared [1–6] to give different structures to the solutions. Besides traditional methods

such as auto-Backlund transformation, Lie Groups, inverse scattering transformation and

Miura’s transformation, a vast variety of the direct methods for obtaining explicit travel-

ling solitary wave solutions have been found [7–14].

The availability of symbolic computation packages can be facilitate many direct ap-

proaches to establish solutions to non-linear wave equations [15–23]. Various extension

forms of the sine-cosine and tanh methods proposed by Malfliet and Wazwaz have been

applied to solve a large class of nonlinear equations [24–27]. More importantly, an-

other mathematical treatment is established and used in the analysis of these nonlinear

problems, such as Jacobian elliptic function expansion method, the variational iteration

method, pseudo spectral method, and many others powerful methods [28–39].
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The governing equation that studies the propagation of solitons is formulated through

an nonlinear lattice. We expect that the presented method could lead to construct suc-

cessfully many other solutions for a large variety of other nonlinear evolution equations.

The prime motive of this work is to derive an effective auxiliary technique for a class of

nonlinear model equations.

2 Mathematical formulation of the problem

The governing equation written in several independent variables is presented as

R(u,ut,ux,uy,uz,uxy,uyz,uxz,uxx,...)=0, (2.1)

where the subscripts denote differentiation, while u(t,x,y,z,...) is an unknown function

to be determined. Equation (2.1) is a nonlinear partial differential equation that is not

integrable in general. Sometime it is difficult to find a complete set of solutions. If the

solutions exist, there are many methods which can be used to handled these nonlinear

equations.

The following transformation is used for the new wave variable as

ξ=
p

∑
i=0

αiχi+δ, (2.2)

χi are distinct variables, and when p=1, ξ=α0χ0+α1χ1+δ , the quantities α0,α1 are called

the wave pulsation ω and the wave number k respectively if χ0,χ1 are the variables t and

x respectively. In the discrete case for the position x and with continuous variable for the

time t, ξ becomes with some modifications ξn =nd+ct+ δ and n is the discrete variable.

d and δ are arbitrary constants and c is the velocity.

We give the traveling wave reduction transformation for Eq. (2.1) as

u(χ0,χ1,...)=U(ξ), (2.3)

and the chain rule

∂

∂χi
(·)=αi

d

dξ
(·), ∂2

∂χi∂χj
(·)=αiαj

d2

dξ2
(·),··· . (2.4)

Upon using (2.3) and (2.4), the nonlinear problem (2.1) becomes an ordinary differential

equation (ODE) like

Q(U,Uξ,Uξξ ,Uξξξ ,Uξξξξ ,...)=0. (2.5)
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3 Applications

The one-dimensional Hybrid-Lattice equation reads [40–45]

du(n,t)

dt
−

(
α+βu(n,t)+u2(n,t)

)
[u(n+1,t)−u(n−1,t)]=0. (3.1)

We first combine the independent variables, into a wave variable using ξn as

ξn =nd+ct+δ. (3.2)

and we write the travelling wave solutions of the system (3.1) with (3.2) as u(n,t)=U(ξn).
By using the chain rule (2.4), the differential equation (3.1) can be transformed as:

cUξn
(ξn)−

(
α+βU(ξn)+U2(ξn)

)(
U(ξn+1)−U(ξn−1)

)
=0, (3.3)

in which, the subscript indicates the differential with respect to ξn.

4 The sin function method

Supposing Eq.(3.3) has the following solution:

U(ξn)=
a+bsin2(ξn)

j+sin2(ξn)
, (4.1)

where a, b and j are coefficients to be determined later. In order to determine values of

coefficients, we substitute the solution (4.1) into (3.1), and equating to zero the coefficients

of all powers of sin(ξn), and the Mathematica software has been used for programming

and computations to obtain the two travelling wave solutions of the problem of interest

as

u±(n,t)=U±(ξn)=

β
2 ±

√
(β2−4α)

(
sin2(d)−sin4(d)

)
−βsin2(ξn)

−1+2sin2(ξn)
, (4.2)

and the wave variable is found as

ξn =nd− 1

2
(β2−4α)cos(d)sin(d)t+δ. (4.3)

5 The sinh function method

Now we seek the solution as

U(ξn)=
a+bsinh2(ξn)

j+sinh2(ξn)
. (5.1)
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Substituting the solution (5.1) into (3.1), and equating to zero the coefficients of all powers

of sinhj(ξn) yields a set of algebraic equations for a, b and j, and the two travelling wave

solutions of the problem of interest are

u±(n,t)=U±(ξn)=

β
2 ±

√
(β2−4α)

(
sinh2(d)−sinh4(d)

)
−βsinh2(ξn)

−1+2sinh2(ξn)
, (5.2)

where the wave variable is found to be

ξn =nd− 1

2
(β2−4α)cosh(d)sinh(d)t+δ. (5.3)

6 The cosh function method

Now, the general solutions can be written in terms of cosh function in the form

U(ξn)=
a+bcosh2(ξn)

j+cosh2(ξn)
. (6.1)

Substituting these solutions into the relevant nonlinear differential equation (3.1) and

solving the resulting system with the help of Mathematica gives the two travelling wave

solutions as

u±(n,t)=U±(ξn)=

β
2 ±

√
(β2−4α)

(
cosh2(d)−cosh4(d)

)
−βcosh2(ξn)

−1+2cosh2(ξn)
, (6.2)

where

ξn =nd− 1

2
(β2−4α)cosh(d)sinh(d)t+δ. (6.3)

7 The cn function method

We consider now, the Jacobian elliptic function cn to describe doubly periodic wave so-

lutions,

U(ξn)=
a+bcn2(ξn,m)

j+cn2(ξn,m)
, (7.1)

where a, b and j are constants to be determined later, and m is a modulus of Jacobi elliptic

function. If m= 0, cn(ξn,0)= cos(ξn), becomes localized soliton solutions, and if m= 1,

cn(ξn,1)= sech(ξn) . The result for m=0 is similar to the sin function with the following

mapping: sin −→ cos and ξn ≡ ξn. The cas m=1 is not treated here.
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Remark 7.1. We note that there is no imposed restriction on u(n,t) because the β and α

parameters contribute in a similar way in the construction of solutions provided that the

term
(β2−4α)

cosh2(d)−cosh4(d)
must be positive. It follows from (6.3) that the propagation velocity

of the localized lattice wave is related to parameters β, α and d describing the process

and is expressed by the relation as

c=

(
β2−4α

)
cosh(d)sinh(d)

2d
, (7.2)

such a real lattice wave exists, provided β> 2
√

α. This lattice problem leads to indicate

that from the above analysis, all solutions are of compression waves type. The solution

reduces to a localised form in a particular position nd when β=±2
√

α and the velocity

becomes zero. For more information about the existence of solitary waves on lattices for

a wider classes of systems lattice, the reader is referred to [49-50]. We conclude by adding

an important observation regarding the nature of solutions: The profiles of all structures

obtained from above ansatz are equivalent through the amplitude and the velocity in

changing the principal function in each case.

Physically, these solutions represent waves propagating in the positive nd direction

with constant speed c without change of shape as shown in Fig. 1, given by u+(n,t) =
U+(ξn) (4.2), and the solution u+(n,t)=U+(ξn) (5.2) is displayed in Fig. 2. The plot of

the third structure is depicted in Fig. 3
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Figure 1: The graph shows the wave solution of u+(n,t)=U+(ξn) in (4.2): The curve, was performed with the
parameters α=d=1, β=4, δ=0.

Remark 7.2. A novel class of explicit exact solutions to nonlinear equations can be de-

rived from an extended auxiliary fractional shape (Exafs) using a non-singular combina-

tion of these functions as

U(ξ)=

α0+
M

∑
k=1

αkFk(ξ)

FM/2(ξ)
, (7.3)
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Figure 2: The graph shows the wave solution in (5.2) u+(n,t)=U+(ξn). The curve, was performed with the
parameters α=d=0.5, β=4, δ=0.
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Figure 3: The graph shows the wave solution in (6.2) u+(n,t)=U+(ξn). The curve, was performed with the
parameters α= β=d=1,δ=0.

where F are functions of the same category and can be expressed in terms of any trigono-

metric functions, hyperbolic functions, Jacobi elliptic function, or Weierstrass elliptic

functions. The constant M is deduced from the homogeneous balance method in the

nonlinear wave equation in question. The complete formulation and some applications

of the (Exafs) will be given in a subsequent paper.

8 Conclusion

In summary, we applied a new trial travelling solution to find out several exact solu-

tions to the nonlinear lattice equation. All solutions obtained are completely found with

a different route using directly the ansatz method. However, to our best knowledge,

all solutions obtained are new, and all the solutions found have been verified through

substitution with the help of Mathematica software.

Four types of functions are used to find the exact solutions, which are named the
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sin-function, the sinh function, the cosh function and the cn function. These functions

are taken as primary profile to construct the auxiliary fractional shape. The modified

auxiliary fractional shape formulation plays an important part for finding the analytic

solution of problems which may be useful to further describe the mechanisms of the

complicated nonlinear phenomena. The basic idea of this approach can be further used

to solve other strongly non-linear situations. It will be then interesting to study more

general systems. This direction of inquiry is under considerations and is envisioned for

a sequel to this paper.
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 ممخص 

. المتجانس و أساليب التحميل  يهدف هذا العمل الى تحديد سموك الحل الموجي في ظل اللاخطية بمساهمة مبدأ التوازن
 تحصمنا عمى coth-csch وطريقة cothقمنا في المرحمة الأولى بدراسة المعادلة اللاخطية لمشبكة الذرية بتطبيق طريقة 

أما  .مختلف حلول دقيقةو التي أعطت  وفي نفس السياق، تم إدخال طريقة التحولات الكسرية .ثمانية حمول جديدة لانتقال الموجة 
ذات  BBMـ عمى مجموعة من المعادلات اللاخطية ل (الضمني  )في المرحمة الثانية  طبقنا طريقة المتغير الوظيفي

  . المعممة ذات المعاملات المتغيرة Kdv-mKdvالمعاملات الثابتة ومعادلة 

 . (الضمني)مبدأ التوازن، طريقة التحويلات الكسرية، طريقة المتغير الوظيفي   معادلات اللاخطية،:الكممات المفتاحية

 

Abstract 

This work aims to determine the behavior of wave solution under the effect of nonlinearity 

with the contribution of the homogeneous balance principle and analysis methods. In the first 

step we studied the nonlinear atomic lattice equation via the coth and coth-csch methods. 

Eight new travelling wave solutions have been obtained. In the same context, the method of 

fractional transformations is introduced and which has provided various exact solutions. In the 

second step we applied the functional variable method to a set of nonlinear BBM equations of 

constant coefficients and the general equation Kdv-mKdv of variable coefficients. 

Keywords: The nonlinear equations, the homogeneous balance principle, the fractional 

transformations methods, functional variable method. 

Résumé 

Ce travail vise à déterminer le comportement des solutions d’onde sous l’effet de la non 

linéarité avec la contribution du principe d’équilibre homogène et les formes d’analyses. Dans 

la première étape de ce travail nous avons étudié en premier lieu l’équation non linéaire  d’un 

réseau d’atomes en appliquant les méthodes coth et coth-csch. On a obtenu huit  nouvelles  

solutions du  déplacement d’onde. Dans le même contexte, la méthode des transformations 

fractionnelles est introduite et qui a fournit diverses solutions exactes. Dans la deuxième étape 

nous avons appliqué la méthode de la variable fonctionnelle sur un ensemble  d’équations non 

linéaires de BBM de coefficients constants et l’équation générale Kdv-mKdv de coefficients 

variables.  

Mots-clés: Equations non-linéaires, principe de l'équilibre homogène, méthodes  des 

transformations fractionnelles, méthode de la variable fonctionnelle. 




