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Recently, research has picked up a fervent place in the area of fault diagnosis of electrical machines. Like adjustable

speed drives, fault prognosis has become almost indispensable. Motor current signature analysis is a condition monitoring

technique that is now widely used to diagnose problems such as rotor bars broken, abnormal levels of air gap eccentricity,

shorted turns in low voltage stator windings, and some mechanical problems.

This paper presents the effect of the broken bar time evolution since the created incipient fault on the various character-

istics of the induction machine such as torque, speed and current. This one is simulated while the rotor bar resistance may

be varied linearly versus time since its normal value to the final broken bar situation (partial to total broken bar). In this

way we can observe the incipient fault impact on the different characteristics of the machine quantities (torque, speed and
current).

K e y w o r d s: fault simulation, mathematical models, condition monitoring, asynchronous (induction) motors, incipient

broken bar, resistance bar, resistance time ratio

1 INTRODUCTION

The problem of diagnosis is indeed related to that of

the maintenance, utilizing economic factors that are dif-

ficult to evaluate. The issues of preventive and condition-

based maintenance, online monitoring, system fault de-

tection, diagnosis, and prognosis are of increasing impor-

tance.

The key issues for a successful motor operation are

a quality motor, understanding its application, choice of

the proper one for the application, and its proper main-

tenance. The use of induction motors in today’s industry

is extensive and they can be exposed to different hostile

environments, manufacturing defects, etc [1].

The problem of the broken bars in the induction mo-

tors of offshore oilrig pumping stations, which were the

first research tasks of diagnosis, is a good example [2].

Several works followed in the same way [3-6], or initiated

in the diagnosis of other failures of the machine like the

eccentricity of the rotor [7], the open circuits [8], [9], [5],

the wear of the stages [10], [11]. These types of faults usu-

ally refer to the gradual deterioration of the motor that

can lead to motor failure if undetected [1]. Monitoring of

the current per phase can provide indications on the mo-

tors state. This is preferable, compared to other methods

since it is easy for physical measurement. The fault affects

the spectrum current signal while the induction machine

is sufficiently loaded and generally we can extract from

that the number of the broken bars [6].

The motor current based fault detection relies on in-
terpretation of the frequency components in the current
spectrum that are related to rotor asymmetries. In or-
der to study the phenomena taking place in the rotor, we
model it in the form of NR mesh as shown in Fig. 1 [14].

2 INDUCTANCES IN INDUCTION MOTORS

The model assumptions are:

• negligible saturation and skin effect,

• uniform air-gap,

• sinusoidal mmf of stator windings in air-gap,

• rotor bars are insulated from the rotor, thus no inter-
bar current flows through the laminations,

• relative permeability of machine armatures is assumed
infinite.

Although a sinusoidal mmf of the stator winding is
assumed, other winding distributions could also be ana-
lyzed by simply using superposition. This is justified by
the fact that different space harmonic components do not
interact [12].

To study the performance of squirrel cage induction
motors with rotor fault, a mesh model of the rotor is
selected as illustrated in Fig. 1 [12]. The development
of the induction machine model has taken into account
the effective geometry of the rotor that considers the
rotor squirrel cage as a system of (NR + 1) identical and
equally spaced loops. These inductances are conveniently
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Fig. 1. Rotor cage equivalent circuit
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Fig. 2. Form of magnetic induction of rotor mesh created by two

bars

computed by means of an analytical approach. Generally
this approach is based on a linear flux current relation.

A. Stator inductances

The expression of mmf of a phase is given by the
following relation [13].

Fn(θ) =
2NSiSn

πp
cos

(

θp −
2π(n − 1)

3

)

. (1)

By means of the above mentioned assumption the fun-
damental of the radial flux density in the air-gap can be
written as:

BSn =
2µ0NS

πδp
iSn cos

(

θp −
2π(n − 1)

3

)

. (2)

The main flux is thus written as:

ΦSpn =
4µ0N

2
S

πδp2

(D

2

)

l iSn . (3)

The principal inductance of the magnetizing stator phase
is:

LSp =
ΦSpn

iSn

=
4µ0N

2
S

πδp2

(D

2

)

l . (4)

Therefore the total inductance of a phase is equal to the
sum of the magnetizing and leakage inductances, thus:

LS = LSp + LSf . (5)

The mutual inductance between the stator phases is com-
puted as:

MS = −
LSp

2
. (6)

B. Rotor inductance

The form of the magnetic induction produced by a
rotor mesh in the air-gap is supposed to be radial and is
represented in Fig. 2.

The principal inductance of a rotor mesh can be cal-
culated from the magnetic induction distribution shown
in Fig. 2 [13]:

LRp =
2πµ0(NR − 1)

δN2
R

(D

2

)

l . (7)

The self and mutual rotor loops are obtained by consider-
ing each rotor loop k as an elementary mesh with a loop
current iRk .

The total inductance of the kth rotor mesh is equal to
the sum of its principal inductance, inductance of leakage
of the two bars and inductance of the leakage of the two
portions of rings of the short circuit closing the mesh k
as indicated in Fig. 3.
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Fig. 3. Electric diagram equivalent of a rotor mesh

LRR = LRp + 2Lb + 2Le . (8)

The mutual inductance between nonadjacent rotor meshes
is expressed by the following relation deduced from Fig. 3

MRR = −
2πµ0l

δN2
R

(D

2

)

. (9)

The kth mutual inductance between the adjacent meshes
is given by:

MRk(k−1)
= MRk(k+1)

= MRR − Lb . (10)

In the same manner, the stator rotor mutual between
the stator phase “1” and the kth rotor loop can be calcu-
lated using the flux linked to the rotor loop and is given
by:

MRk S1n = −MSR cos
(

θ −
2π(n − 1)

3
+ ka

)

(11)

where:

a =
2π

NR

p and MSR =
4µ0NS

πδp2

(D

2

)

l sin
a

2
.
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3 SQUIRREL CAGE INDUCTION
MOTOR ROTOR MESH MODELLING

The mathematical model of squirrel cage induction
motor can be written as:

[V ] = [R] [I] +
d

dt

(

[L] [I]
)

(12)

where:

[V ] =





[VS ]
. . .

[VR]



 , [I] =





[IS ]
. . .

[IR]





with:

[VS ] = [ VS VS VS ]
>

,

[VR] = [ 0 0 0 · · · 0 ]
1×NR+1

,

[IS ] = [ IS1 IS2 iS3 ]
>

[IR] = [ IR1 IR2 · · · IRk · · · IRNR
Ie ]

>

The global resistance matrix can be written as:

[R] =



















[RS ]3×3

... [0]3×NR

... [0]3×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0]NR×3

... [RR]NR×NR

... −
Re

NR
[1]NR×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0]1×3

... −
Re

NR
[1]1×NR

... Re



















(13)

where:

[RS ]3×3 =





RS 0 0
0 RS 0
0 0 RS





and

[RR]NR×NR
=











Rb0 + Rb(NR−1)
+ 2 Re

NR
− Rb0 0 . . . . . . . . . − Rb(NR−1)

0 · · · − Rb(k−1)
Rbk

+ Rb(k−1)
+ 2 Re

NR
− Rbk

0 . . . 0

−Rb(NR−1)
0 . . . 0 − Rb(NR−2)

Rb(NR−1)
+ Rb(NR−1)

+ 2 Re

NR











The complete matrix inductance can be represented
by:

[L] =



















[LS ]3×3

... [MSR]3×NR

... [0]3×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[MRS ]NR×3

... [LR]NR×NR

... −
Le

NR
[1]NR×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0]1×3

... −
Le

NR
[1]1×NR

... Le



















where:

[LS ]3×3 =





LSp MS MS

MS LSp MS

MS MS LSp



 ,

[MSR]NR×3 =





. . . −MSR cos(θ + ka) . . .

. . . −MSR cos
(

θ + ka −
2π
3

)

. . .

. . . −MSR cos
(

θ + ka −
4π
3

)

. . .





and

[LR] =




























LRp + 2Lb + 2 Le

NR
MRR − Lb MRR

MRR − Lb LRp
+ 2Lb + 2 Le

NR
MRR − Lb

MRR MRR − Lb LRp
+ 2Lb + 2 Le

NR

MRR

..

.
. . .

.

..
. . .

. . .

MRR − Lb MRR MRR

MRR . . . MRR − Lb

MRR MRR . . .

MRR − Lb MRR . . .

. . .
. . .

. . .

. . .
. . .

. . .

. . . MRR − Lb LRp
+ 2Lb + 2 Le

NR

























Using Park’s transformation matrix in the stator,
equation (12) can be written as:

[VT ] = [RG] [IT ] +
d

dt

(

[LG] [IT ]
)

(15)

where:

[VT ] = [ V0S VdS VqS 0 0 . . . 0 . . . 0 ]
>

1×NR+4

[IT ] = [ I0S IdS IqS IR1 IR2 . . . IRk . . . Ie ]
>

1×NR+4
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Fig. 4. Variation order of resistance broken bar No 2
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


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




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






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.
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0 RS 0
.
.
.

0 0 RS

.

.

.
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.
..

0 0 T1

.

.

.

0 −T1 sin(a) T1 cos(a)
.
..

.

..
.
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.
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.
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.

.

.
.
.
.

.

.

.
.
.
.
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.
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.
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.
.
.

0 0 . . .

0 −T1 sin(a) . . .
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. . . . . .
Rb0 + Rb(NR−1)

+ 2 Re

NR
−Rb0 0

. . .
. . .

. . .

0 −Rb(k−1)
Rbk

+ Rb(k−1)
+ 2 Re

NR
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−Rb(NR−1)
0 · · ·

. . . . . . . . .
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NR
. . . . . .

. . . 0
.
.
. 0

. . . −T1 sin(NR − 1)a
.
.
. 0

. . . T1 cos(NR − 1)a
.
.. 0

. . . . . .
.
.. . . .

. . . −Rb(NR−1)

.

.

. − Re

NR

. . .
. . .

.

.

.
.
.
.

−Rbk
0

..

.
..
.

−Rb(NR−2)
Rb(NR−1) + Rb(NR−2)

+ 2 Re

NR

.

.. − Re

NR

. . . . . .
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


























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


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




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
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






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






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[LG] =






































































LS + 2MS 0 0
.
.. 0

0 LS − MS 0
.
.
. LPR

0 0 LS − MS

.

.

. 0

. . . . . . . . .
.
.. . . .

0 LPR 0
.
.
. LP

0 LPR cos(a) LPR sin(a)
..
.

. . .

..

.
..
.

..

.
..
. MRR

.

.

.
.
.
.

.

.

.
.
.
.

. . .

0 LPR cos(NR − 1)a LPR sin(NR − 1)a
..
. MRR − Lb

. . . . . . . . . . . . . . .

0 0 0
.
.
. −Le/NR

0 . . . . . . 0
..
. 0

LPR cos(a) . . . . . . LPR cos(NR − 1)a
.
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. 0

LPR sin(a) . . . . . . LPR sin(NR − 1)a
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.
. 0

. . . . . . . . . . . .
.
.
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.
..
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.
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.
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.

.
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







































































with: T1 =
√

3

2
ωRMSR , LP = LRp

+ 2Lb + 2 Le

NR
,

LPR =
√

3

2
LSR . The mechanical equation is:

d

dt
ωm =

1

Jm

(

Ce − Cr

)

(16)

where: ωm = dθm

dt
and

Ce =
√

3

2
pMSR

{

IqS

NR−1
∑

k=0

Ik+1 cos(ka)

−IdS

NR−1
∑

k=0

Ik+1 sin(ka)
}

.

4 INCIPIENT ROTOR FAULTS SIMULATION

For a three phase squirrel cage motor with NR-bars,

plus one end ring current, equations (15) and (16) can be

resolved using the fourth Runge-Kutta method.

Using a computer program written in Matlab, the par-

tial or the total breakage fault in the bar is modelled by

the assumed linear change of the value of the resistance
RbF named fault bar resistance. The variation of the re-
sistance RbF as a function of time is modelled by relation
(17) represented for three cases of the resistance time ra-
tio named α .

RbFk = Rb

(

1 + α(t − t0)
)

(17)

where: α = tg(γ) ; angle resistance rate as shown in Fig. 4.
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Fig. 6a. Torque for healthy motor and broken bar No 2
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Fig. 8. Logarithmic FFT for the stator current from healthy motor

and one broken bar No 2

The first case assumes that the broken bar is totally

broken at t0 = 1 s. The second one illustrates the medium

cases when the partial broken bar time evolution is done

by α = 5. The third case characterizes the slowly broken

bar situation with α = 2. The RbF -time evolution is

shown in Fig. 4.
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The fault is considered in the kth bar and the fault
matrix [RF ] is added to the rotor sub-matrix:

[RF ] =



























0 . . . 0 . . . . . . 0
... . . .

...
... . . .

...
... . . . 0 0 . . . 0
0 0 RbFk

−RbFk
0 0

0 0 −RbFk
RbFk

0 0
...

... 0 0
...

...
...

...
...

...
...

...



























The curves of speed, electromagnetic torque, currents sta-
tor and rotor versus time are plotted with applied con-
stant load at 0.6 s. It is considered that the failure of a
bar starts at the moment t0 = 1 s as shown in Figs. 5, 6,
7 and 8, respectively.

The oscillations of the curves in Figs. 5b and 6b justify
the presence of a break rotor bar defect in the machine.

The oscillations of the current in the fissured bar fol-
low a deadened pattern because the partial break tends
towards a total break (Fig. 5b).

Direct analysis of the stator current, as presented in
Fig. 7, does not clearly reveal the presence of the defect
because of the weak modulation of the sinusoidal current
in the permanent mode.

The appearance of lines at frequencies (1 ± 2g)g on
the spectrum stator current in the permanent mode is
highlighted by fast Fourier transform FFT presented in
Fig. 8.

Figures 9a and 9b present, respectively, the real rotor
bar current versus time. We can observe the broken bar
evolution for the three above cases.

Figures 10a and 10b present the zooming of spectrum
given by Fig. 8 around the lower and the upper frequency.
We can note that the failure detected rotor bar is in-
creased corresponding to the nature of broken bar time
evolution. Tables 1, 2 and 3 summarize the evolution of
the current spectrum analysis concerning the upper and
the lower incipient rotor bar faults taken respectively for
three time intervals 1–2 s, 2–3 s and 3–4 s. Through theses
tables, we can note the clear increase of the dB-magnitude
corresponding to a lower spectrum fault frequency. A re-
verse situation is also observed from the upper spectrum
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fault frequency. Both of the above spectrum fault fre-
quency evolutions indicate the fault presence in the rotor
bar since its existence.

Table 1. Current spectrum analysis taken between 1 and 2 seconds

after incipient fault

α → ∞ α = 5 α = 2
(case 1) (case 2) (case 3)

f1 = (1 − 2g)fs (Hz) 45.6347 45.6963 45.7349
f ′
1 (Hz) 44.5622 44.5552 44.5552

f2 = (1 + 2g)fs (Hz) 54.3653 54.3037 54.2651
f ′
2 (Hz) 54.3137 54.3265 54.3137

A1 (dB) −26.594 −27.193 −27.493
A2 (dB) −23.153 −23.483 −23.903

Table 2. Current spectrum analysis taken between 2 and 3 seconds

after incipient fault

α → ∞ α = 5 α = 2
(case 1) (case 2) (case 3)

f1 = (1 − 2g)fs (Hz) 45.6347 45.6963 45.7349
f ′
1 (Hz) 45.1613 45.1613 45.1613

f2 = (1 + 2g)fs (Hz) 54.3653 54.3037 54.2651
f ′
2 (Hz) 53.7113 53.7113 53.7113

A1 (dB) −23.5973 −23.597 −24.266
A2 (dB) −23.175 −22.784 −22.661

f ′
1 and f ′

2 are deduced using the maximum values of the
curves (Fig. 10a) and (Fig. 10b) respectively.

The frequencies calculated according to the relation
and deduced from the figures (10a, 10b) show good agree-
ment as indicated in Tables 1, 2 and 3.

In the case of failure of a bar, the distribution of
the RMS values currents bars also shows the nature
of this failure (partial or total break), as shown in fig-
ures 11a, b, c, d.

Table 3. Current spectrum analysis taken between 3 and 4 seconds

after incipient fault

α → ∞ α = 5 α = 2
(case 1) (case 2) (case 3)

f1 = (1 − 2g)fs (Hz) 45.6347 45.6963 45.7349
f ′
1 (Hz) 45.7691 45.7691 45.7691

f2 = (1 + 2g)fs (Hz) 54.3653 54.3037 54.2651
f ′
2 (Hz) 54.9329 54.9297 54.9329

A1 (dB) −23.488 −22.709 −22.413
A2 (dB) −24.549 −24.765 −25.391

5 CONCLUSION

This paper has presented a computer simulation of an
incipient rotor bar fault of an induction motor for diag-
nostic purposes. Based on the developed mathematical

model, the computer simulation takes in consideration
the influence of the resistance broken bar time evolution.

The spectrum analysis of the stator current shows only
the presence of a break of the bar in time evolution (par-
tial or total break). This can be set in obviousness by
the analysis of the response of the speed or torque. In-
deed, these oscillations increase with the break of the ro-
tor bar. In all cases we can observe incipient oscillations
on the speed, torque end stator current. These oscillations
will be increased when the bar fissure increases, because
the distribution of the rotor bar currents becomes unbal-
anced.

Nomenclature

l, p Length of the rotor and number of poles pairs re-
spectively.

NR Number of rotor bars.

NS Number of effective series connected coils per stator
phase.

δ, D Air-gap length and air-gap mean diameter respec-
tively.

Re Resistance of end ring segment between two adja-
cent rotor bars.

RS Resistance of stator phase a winding.

B, α Magnetic flux density and resistance time ratio re-
spectively.

Rb, Re Rotor bar and rotor ring resistance.

Lb Leakage inductance of rotor bar.

Le Leakage inductance of end ring segment between
two adjacent rotor bars.

LSp Principal inductance magnetizing stator phase.

LS , LSf Total inductance of a stator phase and Leakage in-
ductance respectively.

µ0, g Permeability of air gap space and slip respectively.

Ce, Cr Electromagnetic torque and torque of load respec-
tively.

ωr, ωm Electric and mechanical angular velocity respec-
tively.

ISn Phases stator currents; n = 1, 2, 3 (phase number).

fS , Jm Stator supply frequency and inertia respectively.

f1, f2 Lower and upper frequency respectively of current
spectrum.

A1 Current amplitude at the lower frequency of current
spectrum.

A2 Current amplitude at the upper frequency of current
spectrum.

t0 Moment of the incipient failure.

mmf Magneto-motoric force.

iRk, ibk Mesh and branch current respectively.

Ie End ring current.

Ids, Iqs Direct and quadratic park current.
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Fig. 11a. RMS values of the bar currents, healthy motor at t =

2.5 s
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Fig. 11b. RMS values of the bar currents, one broken bar at

t = 2.5 s (case 1: α → ∞)
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Fig. 11c. RMS values of the bar currents, one partially broken bar
at t = 2.5 s (case 2: α = 5)
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Fig. 11d. RMS values of the bar currents, one partially broken bar
at t = 2.5 s (case 3: α = 2)

Appendix

Parameters Rated Values Unit
Output power 1.1 (kW)
Stator voltage 220/380 (V)
Stator frequency 50 (Hz)
Pole number 2
Stator resistance 7.58 (ω )
Rotor resistance 6.3 (ω )
Rotor inductance 0.4612 (H)
Rotor bar resistance 71.5 (µω )
Friction coefficient 0.000 (SI)
Rotor bar inductance 0.1 (µH)
Resistance of end ring segment 1.5 (µω )
Leakage inductance of end ring 0.1 (µH)
Mutual inductance 26.5 (mH)
Length of the rotor 65 (mm)
Air-gap mean diameter 1.5 (mm)
Number of rotor bars 16
Number of turns per stator phase 160
Inertia 0.0054 (Kgm2)
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130 A. Menacer — M S. Nâıt Said — A/H. Benakcha — S. Drid: STATOR CURRENT ANALYSIS OF INCIPIENT FAULT INTO . . .

Received 6 May 2004

Menacer Arezki was born in Batna, Algeria, in 1968. He

received the BSc degree in Electrical Engineering, from the

University of Batna, Algeria, in 1992, and the MSc degree

in Electrical and Computer Engineering from Electrical Engi-

neering Institute of Biskra University, Algeria, in 1996, Since

graduation, he has been with the University of Biskra, Algeria,

where he is a Teaching Assistant at the Electrical Engineer-

ing Institute. He is the member of the Research Laboratory of

Electromagnetic Induction and Propulsion Systems of Batna,

Algeria and Research Laboratory of Electrotechnic of Biskra,

Algeria. He is currently working on his PhD dissertation on

the electric machines and drives control and diagnosis at the

University of Batna, Algeria.

Mohamed-Said Nait-Said was born in Batna, Algeria,

in 1958. He received the BSc degree in Electrical Engineer-

ing from the National Polytechnic Institute of Algiers, Alge-

ria, in 1983, and the MSc degree in Electrical and Computer

Engineering from Electrical Engineering Institute of Constan-

tine University, Algeria, in 1992,. He received the PhD degree

in Electrical and Computer Engineering from University of

Batna, in 1999. Currently, he is an Associate professor at the

Electrical Engineering Institute at the University of Batna.

He is the head of the Research Laboratory of Electromagnetic

Induction and Propulsion Systems of Batna. His is also re-

search interests include electric machines and drives control

and diagnosis.

Said Drid was born in Batna, Algeria, in 1969. He received

the BSc degree in Electrical Engineering, from the University

of Batna, Algeria, in 1994, and the MSc degree in Electrical

and Computer Engineering from Electrical Engineering Insti-

tute of Batna University, Algeria, in 2000, Since graduation,

he has been with the University of Batna, Algeria, where he is

a Teaching Assistant at the Electrical Engineering Institute.

He is the member of the Research Laboratory of Electromag-

netic Induction and Propulsion Systems of Batna, Algeria. He

is currently working on his PhD dissertation on the control of

induction motors at the University of Batna, Algeria.

Benakcha A/Hamid was born in 1961 in Arris, Algeria.

He had a MSc in 1980, a BSc in 1983 from the University

of Batna, Algeria, a Master of Science in 1985 and a PhD in

electronics from the University of Clermont-Ferrand, France.

Since 1991, he teaches at the University of Biskra, Algeria. He

is the member of the Research Laboratory of electrotechnic

of Biskra and the head of the research group “Simulation of

sliding mode control of an asynchronous machine”. His other

research interests are: Electric machines (design, modelling,

identification, control), power electronics, electromagnetism

(antennas, free propagation), electronics (television).

www.artech-house.com

http://www.apnet.com

The Kluwer Online gateway reaches millions of researchers, scientists and

professionals in more than 50 countries with Journals, eBooks,

Custom Books, and eReference Works

http: / /www.k luwe ronline .com

http: / /www.wkap.nl

http://www.springer.de


