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PREFACE 

This thesis consist of four  stages of the fuel cells researches, The first part is electrode 

preparation for proton exchange membrane fuel cells (PEMFCs), which consist of electrode 

formulation and fabrication using spray method , followed by characterizations. Second part is 

testing the electrode with different parameters such as pressure, temperatures, follow rates, 

humidifiers temperatures effects. Third part is the electrode degradation after operating and the 

last is modeling for proton exchange membrane fuel cell. This work mainly located in Fuel Cell 

Institute UKM Malaysia, which was performed In MEA lab. 
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ABBREVIATION & NOMENCLATURE 

 

PEMFC Polymer electrolyte membrane fuel cell  

PAFC Phosphoric acid fuel cell  

AFC Alkaline Fuel Cell  

MCFC Molten Carbonate Fuel Cell  

SOFC Solid –Oxide Fuel Cell 

MPL Micro-porous layer  

GDL Gas Diffusion layer  

CL Catalyst layer  

PTFE  polyterafluoethylene 

PTFE/C diffusion layer 

(Pt/C/PTFE) catalyst layer 

MEA Membrane electrode assembly 

HHV high heating value 

LHV low heating value 

EW (g/eq) equivalent weight 

SEM Scanning Electron Microscopic  

XRD. X - Ray Diffraction  

XPS. X-Ray Photo-Electron Spectroscopy  

TEM transmission Electron microscopic  

E   fuel cell’s reversible voltage, V 

F   Faraday constant, C  

I    current density, A cm
-2

 

i0    exchange current density, A cm
-2

 

i0c  cathode exchange current density, A cm
-2

 

kc   factor related to reaction speed, A cm
-2

 C
-1

  

iL   limiting current density, A cm
-2

 

ld   diffusion layer thickness, cm 

lm  membrane thickness, cm 

Pcell  fuel cell’s power density, W cm
-2

 



 

iv 
 

PH2   partial pressure of hydrogen, atm 

PO2  partial pressure of hydrogen, atm 

R   universal gas constant, 8.314 J K
-1 

mol
-1

 

RHa relative humidity of anode 

RHc relative humidity of cathode 

rion   ionic resistance, Ω cm
2
 

rel    electronic resistance, Ω cm
2
 

T    temperature, K 

V   voltage, V 

Vactivation activation voltage drop, V 

Vohmic   ohmic voltage drop, V 

Vconcentration   concentration voltage drop, V 

Greek letters 

ψ  electron transfer coefficient 

Φ  relative humidity, % 

λ   water content 

λa   water content 

λc   water content 

β  symmetry factor 

dry dry membrane density, kg m
-3

 

σd diffusion layer electronic conductivity, A V
-1

 cm
-1 
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GENERAL INTRODUCTION  

The beginning of this universe, energy leads the human being activities, and consider as a key for 

survive and development. Coal is the first source of energy use at that time with growing of 

population, the demand of energy increase, which necessity other sources to satisfy the demand. 

Petroleum and gas come later to support the coal and reduce the tension. These fossil fuels 

energies reduce the demand but increase the concentration of CO2 in atmosphere by combustion 

of these fossil fuels. The rising using this energy gives birth a new phenomenon called 

greenhouse effect, which due to the increasing in the carbon dioxide (CO2) in the atmosphere. 

The CO2 result from combustion combined with humidity (H2O) to form carbonic acid, NOX,  

and SOx with humidity in the atmosphere give born to nitric acid (HNO3) and sulfuric acid 

(H2SO4) respectively. All these changes in compounds structures harm the environment. For this 

reason researchers increases their interest in replacing this energy by another energy that can be 

clean and friendly. therefore to solve these problems should change these fossil energies by new 

energies that have less pollution and got may be the same efficiency. Researchers found these 

energies they call it renewable energy, which can replace the old (fossil) energy by new energy. 

That have less pollution (zero carbon dioxide) and renewable. 

Proton exchange membrane fuel cells (PEMFCs) is the one of these promising clean energies 

that required for high efficiency, low pollution (Zero Pollution) and friendly use. This type of 

renewable energy is typically operated on pure hydrogen (H2) as fuel and oxygen (O2) as 

oxidant. The PEM fuel cell combines the hydrogen fuel with the oxygen (O2) from the 

atmosphere to produce Water, heat and electricity. Only Hydrogen as fuel and oxygen as oxidant 

with platinum as catalyst to convert chemical energy to electrical energy. Forever the struggle is 

to reduce the cost of proton exchange membrane fuel cell by studying the different components 

and parameters effect like catalyst loading, monomers, binder, operating conditions (pressure, 

temperature, humidifiers temperature….), and also electrode and MEA degradation. The 

objective for this work is: first electrode fabrication based on Pt as catalyst supported by carbon 

black 10 wt% Pt/C and 20 wt% Pt/C. Second is to characterize the electrodes by Scanning 

Electron Microscopic (SEM), X-Ray photo spectroscopic (XPS), for the first structure , and the 

Scanning Electron Microscopic (SEM), X-Ray photo spectroscopic (XPS), X-Ray Diffraction 

(XRD) and Transition Electron Macroscopic (TEM). Then followed by the physicals parameters 

effect such as: Humidifiers temperature, Pressures and Flowrate Air/H2 on the electrode 



 

2 
 

performance, also the electrode microscopic degradation especially on cathode loaded 20wt% 

Pt/C after 100 hours of testing in single cell 25 cm
2
 surface area, by using the XPS, XRD and 

TEM. The last part is to simulate the elects of these parameters by using a model explaining 

these physical parameters effect. The structure of this thesis is as follows on: 

Chapter I 

Consist of history and development of fuel cell especially for proton exchange membrane fuel 

cell (PEMFCs), which inclusion the principle and aspect thermodynamic, theory of gas diffusion 

electrode, electrode fabrication and components, parameters affecting performance.  

Chapter II 

The chapter describes the experimental part. First is the electrode fabrication for two types of 

electrodes using platinum supported carbon 10 wt % and 20 wt %. The 10 wt % Pt/C used to 

study the diffusion layer and catalyst layer in the electrode, and 20 wt % Pt/C % used for the 

physical parameters effects and electrode (Cathode) degradation. The loading for three electrodes 

EGDL = 0.38 mgPt/cm
2
 platinum loading with diffusion layer using 10 wt % Pt/C, and ETek = 0.4 

mgPt/cm
2
 E-TEK electrode (Commercial) respectively. The second Structure of electrode 20 wt 

%( Pt/C) named E = 0.3 mgPt/cm
2
, which also contain the treatments of membranes (Nafion 

117) ,(Nafion 112) for 10 and 20 wt %  Pt/C %. Finally the testing of electrodes for the 

structures 20 wt % Pt/C % in single cell connected to the test station. 

Chapter III 

Consist of the analysis techniques for different structures 10 wt% Pt/C and 20 wt% Pt/C, which 

analyzed by SEM, XPS, for the 10 wt% Pt/C structure for diffusion layer and catalyst layer. 

Second is the operating of electrode in single cell for 20 wt% Pt/C more than 100 hours with 

different parameters (pressures, flow rate, humidifiers temperatures), than analysis the electrode 

(cathode) 20 wt% Pt/C by using SEM, XPS, XRD, TEM techniques after aggressive operating 

condition as pressures effect, humidifier temperature, flow rate of reactants and on/ off the 

system more than 100 hours in single cell 25 cm
2
. Last part of this chapter is focused on the 

simulation and modeling for PEM fuel cell. The obtained model used to analyze the impact of 

individual fuel cell’s operating parameters on cell’s performance; it is also possible to determine 

the activation loss parameters of the PEM fuel cell.
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Introduction 

In 1839, the first fuel cell was conceived by sir William Robert Grove (1811-1896). He mixed 

hydrogen and oxygen in the presence of catalyst and electrolyte to make electricity and water. 

The principles was discovered by accident during an electrolysis experiment using a battery, then 

disconnect the battery from the electrolyze connected the two electrodes together, he observed a 

current flowing in the opposite direction, consuming the gases of hydrogen and oxygen Fig 

I.1.The invention come later to be known as "fuel cell" in 1889, the term "fuel cell" was first 

coined by Ludwig Mondand Charles Langer Who attempted to build a working fuel cell using air 

from industrial coal gas. Another source states that is was William white Jaques who first coined 

the term fuel cell, Jaques also the first researcher to use phosphoric acid in electrolyte bath in 

1920, fuel cell research in Germany paved the way to the development of the carbonate cycle in 

solid oxide fuel cells of today. 

 

Figure I.1. The principle of an electrolyzer (a); of a fuel cell (b) [1] 

 

In 1932, engineer Francis T Bacon began his vital research into fuels cells used porous 

platinum electrodes and sulphuric acid as electrolyte bath. Later he changed Platinum by 

inexpensive metal by nickel electrodes and used an alkaline electrolyte that less corrosive. It took 

bacon until 1959 to perfect his design and demonstrate a five –kilowatt fuel cell that could power 

a welding machine, and named by his famous fuel cell design ‘Bacon Cell’ [2]. In the early 

1960s, attention turned again to the platinum-catalysed acid electrolyte cell in different forms. 



CHAPTER I  FUEL CELLS GENERALITY AND APPLICATIONS 

4 
 

One used a polymer acid electrolyte, which made it simple and reliable. Its combined electrode-

electrolyte structure made it automatically water-rejecting, and at its original modest power 

levels (37mA/cm
2
) [3] it required no wet proofing. its original electrolyte material restricted its 

operating temperature and thus its performance, but it was developed by general electric for 

modest power requirements (1Kw in 29 kg unit) of the Gemini mission, where its ability to 

produce portable water for astronauts was a great advantage in the lightweight capsule. The 

successes in the space program by Gemini and Apollo spacecraft in design and production of 

fuel cells, but encountered technical barriers and high investment costs for commercialisation 

potential of fuel cells and is the One of three fuel cells aboard the Space Shuttle. These fuel cells 

provide all of the electricity as well as drinking water when Space Shuttle is in flight. It produces 

12 kilowatts electricity, and occupies 154 liters as presented in Fig I.2 (Photo courtesy of 

NASA). 

 

Since then, fuel cells have been used in many other applications. Fuel cells are used for primary 

and backup power for commercial, industrial and residential buildings and in remote or 

inaccessible areas. They are used to power fuel cell vehicles, including automobiles, buses, 

forklifts, airplanes, boats, motorcycles and submarines. 

 

I.1 What is fuel cell? 

A fuel cell is a device that converts the chemical energy of a fuel into direct electrical energy in a 

constant temperature process. This device so great about pollution, changing the climate or 

running with out of oil, natural gas and coal. Fuel cells operate on a wide range of fuels, 

http://en.wikipedia.org/wiki/Fuel_cell_vehicle
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including hydrogen, and are seen as a clean, high efficiency than the existing fuel burning 

engines and high power source. 

 

I.2 Main Categories of fuel cells. 

A number of fuel cell varieties have been developed to differing, and the most basic 

nomenclature to describe them according to the electrolyte material utilized. They are made up 

of three segments which are sandwiched together: the anode, the electrolyte, and the cathode. 

Two chemical reactions occur at the interfaces of the three different segments. The net result of 

the two reactions is that fuel is consumed, water or carbon dioxide is created, and an electric 

current is created, which can be used to power electrical devices, normally referred to as the 

load. At the anode a catalyst oxidizes the fuel, usually hydrogen, turning the fuel into a positively 

charged ion and a negatively charged electron. The electrolyte is a substance specifically 

designed, which the ions can pass through it, but the electrons cannot. The freed electrons travel 

through a wire creating the electric current. The ions travel through the electrolyte to the cathode. 

Once reaching the cathode, the ions are reunited with the electrons and the two react with a third 

chemical, usually oxygen to create water or carbon dioxide. Five major types of fuel cells, 

differentiated from one another on the basis of their electrolyte: 

 

I.2.a Phosphoric acid fuel cell (PAFC).  

In the phosphoric acid, liquid H3PO4 electrolyte (ether pure or highly concentrate) is contained in 

a thin SiC matrix between two porous graphite electrodes coated with a platinum catalyst. 

Hydrogen is used as the fuel and air or oxygen may be used as the oxidant as presented in the Fig 

I.3 and the reactions occurred at the surface of electrodes as following: 

Anode:  H2→2H
+
  + 2e

-
 

Cathode: 1/2O2 + 2H
+
  + 2e

-
 →H2O 

PAFC use platinum catalysts, which susceptible to carbon monoxide can be important 

when running on reformed or impure feed stocks at high temperature carbon monoxide tolerance 

at the anode can be as high as 0.5-1.5%,and sulfur tolerance present as H2S is around 50 ppm 

(Parts per Million) [4]. the operating temperature from 180 -210
o
C with the electrical efficiencies 

are 40% and combined heat and power achieving 70%.the main advantage for PAFC are: 

http://en.wikipedia.org/wiki/Anode
http://en.wikipedia.org/wiki/Electrolyte
http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Catalyst
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excellent reliability /long-term performance, electrolyte is relatively low-cost, and Mature 

technology. Other hand the disadvantages are: expensive platinum catalyst, susceptible to CO, 

and corrosive electrolyte. 

 

Figure I. 3 Schema present the H2/O2 PAFC within Porous SiC Matrix, Porous Graphitic 

electrode Coated with a Pt catalyst 

I.2.b Polymer electrolyte membrane fuel cell (PEMFC)  

The PEMFC is constructed from a proton-conducting polymer electrolyte membrane, usually a 

perfluorinated sulfonic acid polymer. Anode and cathode reaction in the PEMFC is similar like 

PAFC are: 

Anode:   H2 → 2H
+
  + 2e

-
 

Cathode:  ½ O2 + 2H
+
  + 2e

-
 → H2O 

The anode and cathode component are presented in Fig. I.4. The polymer membrane in PEMFC 

use in hydrated state with thickness between (20-200µm), flexible, and transparent. The 

operating temperature for Proton exchange membrane fuel cell is limited to 90
o
C or lower. While 

the H2 is the fuel of choice, liquid fuels can use as methanol (DMFC), formic acid. The main 

advantages that make PEMFC leads all these fuel cells are: High power density (300-1000 

mW/cm
2
), Good start-stop capabilities, low temperature and possibility portable application. 
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Beside the disadvantages are: Expensive platinum catalyst and polymer membrane, water 

management Problem. 

 

Figure I. 4 Schema present the H2/O2 PEMFC within Porous Carbon electrodes (Carbon cloth or 

paper) Coated with a Pt catalyst 

 

And the other type of similar for proton exchange membrane fuel cell is DMFC, which use the 

same components exception the fuel. 

In DMFC methanol is fed directly as the fuel, the methanol systems have several 

advantages over fuel cell system based on hydrogen and compressed a natural gas[4,6].The 

liquid nature of methanol under room temperature and atmospheric pressure simplify the 

methanol transport and application. Methanol has the highest hydrogen-to-carbon ratio among 

alcohol, which means the the highest energy could be generated and less carbon dioxide emitted 

In DMFCs the methanol is introduced to the anode, where it is split into protons and free 

electrons and gives out carbon dioxide, the hydrogen ions flow through the polymer electrolyte 

membrane to the electrode, where the air or oxygen introduced.. 

At the cathode, the hydrogen ions are bonded with the oxygen to form water and the movement 

of the electrons from anode to cathode creates current that can be used to power an electrical 

device. 
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In DMFC the catalyst is similar to PRMFCs ,which use the Pt/Rh (Platinum and Ruthinium) that 

considered to be the best anode catalyst and Pt catalyst  is the best for cathode[7].  

 

I.1.c Alkaline Fuel Cell (AFC). 

The first alkaline electrolyte used in fuel cell was KOH in the 19
th

 century. The fuel was solid 

carbon and oxygen. This was followed by the work of Francis Bacon, whose goal was to develop 

a 5 kW system using pure hydrogen and oxygen as the reactants [8]. The AFC employs an 

aqueous potassium hydroxide electrolyte, in contrast to acidic fuel cells where H
+
 is transmitted 

from the anode to cathode, in an alkaline fuel cell OH
-
 is conducted from the cathode to the 

anode, and the reaction occurs as following. 

2OH
-
 +CO2 → CO3

2-
 + 2H2O 

Thus water consumed at the cathode of an AFC while it is produced (twice as fast) at the anode, 

if the excess water not moving from the system, the performance it will degrade. AFC use nickel 

as catalyst rather than Platinum but can use it at cathode, which required pure Hydrogen (H2) and 

pure oxygen (O2) as fuel and oxidant thus presented in the Fig I.5 depending upon the 

concentration of KOH in the electrolyte, In presence of CO2 in an AFC degrade the KOH 

(electrolyte) as follows: 

2OH
-
 +CO2 → CO3

2-
 + 2H2O 

Over time, the concentration of OH
-
 in the electrolyte declines and the K2CO3 can begins to 

precipitate out of the electrolyte. The AFC can operate at temperature between 60-250
o
C ,  as 

advantage for this type of fuel cell are: low cost for catalyst and electrolyte and disadvantage is 

operating Pure H2/O2. 
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Figure I. 5 Schematic the H2/O2 AFC within PorousCarbon or Nickel electrodes or Pt/C. 

 

I.2.d Molten Carbonate Fuel Cell (MCFC). 

Molten Carbonate Fuel Cell (MCFC) are approaching the stage of commercialization, after 

having been under study and development for more than 50 years [2], the electrolyte in the 

MCFC is a molten mixture of alkaline carbonates, Li2CO3 and K2CO3, immobilized in a 

LiOAlO2 matrix. The carbonate ion, CO3
2-

 act as the mobile charge carrier in the MCFC. the 

electrodes a nickel based; the anode usually consist of a Nickel/Chrome alloy while the cathode 

consist of a lithiated Nickel oxide as presented in the Fig I.6.  
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Figure I.6 Schematic the H2/O2. Molten Carbonate electrolyte immobilized in Ceramic matrix 

with Nickel based electrodes. 

 

The anode and cathode reactions are therefore: 

Anode: H2 + CO3
2-

 → CO2 + 2H2O  + 2e
-
 

Cathode:  1/2O2 + CO2  + 2e
-
 →CO3

2-
 

In the MCFC the CO2 is produce at the anode and consumed in the cathode, therefore MCFC 

systems must exact the CO2 from the anode and recirculate it to the cathode. The relatively high 

operating temperature is 650
o
C. MCFC can run on Hydrogen (H2), simple hydrocarbons (CH4), 

and simple alcohols. Carbon Monoxide tolerance is not an issue for MCFC; rather than as a 

poison, CO act as a fuel. Heat and power can reach 90%. The most advantages for MCFC are: 

Fuel Flexibility, inexpensive catalyst and high –quality waste heat for co-generation applications 

and the disadvantages are: Must implement CO2 recycling, Electrolyte corrosive, degradation 

lifetime issues, and relatively expensive materials. 

I.2.e Solid Oxide Fuel Cell (SOFC) 

Solid Oxide Fuel Cells (SOFC) began with Nernst's 1899 demonstration of the ionic conductivity 

of solid state Yattria-stabilized Zirconia (YSZ) [9]. Modern SOFC developed has been revived 

worldwide in Europe , Unite state ,and Asia are competing to bring small and large SOFC to the 
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market. The SOFC uses a solid ceramic electrolyte consist of Yattria-stabilized Zirconia (YSZ), 

which in an oxygen ion (oxygen vacancy) conductor. Since O
2-

is the mobile conductor in this 

case, the anode and cathode reactions are: 

Anode:  H2 + O
2-

→ 2H2O  + 2e
-
 

Cathode:  ½ O2 + 2e
-
 → O

2-
 

The most common material for the anode electrode in SOFC is a nickel-YSZ cermet (a 

cermet is a mixture of ceramic and metal).the cathode electrode usually a mixt ion-conducting 

and electronically conducting ceramic material as presented in Fig I.7. 

 

Figure I. 7 Schematic the H2/O2 SOFC.the ceramic electrolyte is solid state,a nickel-YSZ cermet 

and mixed conducting for cathode 

 

The current operating temperature of most of SOFC system is around 800-1000
o
C, although new 

technology has demonstrated 600
o
C operation. The advantage of this fuel cell are: fuel 

flexibility, non-precious metal catalyst, solid electrolyte and relatively high power density. Other 

hand disadvantage sealing issues and high temperature. the differences between these fuel cells 

types are in the electrolytes, which gives differences in reaction chemistry, operating 
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temperature, cell materials, cell design. The fuel cell performance and efficiencies follow these 

changes as presented in the Tab I.1. 

 

Tables I. 1.Comparaison Summary of the five Major Fuel Cell Types 

 

All these fuel cell types use the H2 as best fuel, the high-temperature fuel cell can also run on 

simple hydrocarbon fuels or CO via direct electro-oxidation or internal reforming. Today, the 

PEMFC and SOFC appear poised to best meet potential application. PEMFCs are especially 

suitable for portable and small stationary applications while SOFCs appear suitable for 

distributed-power and utility-scale power applications. This is the reason we concentrate to study 

proton exchange membrane fuel cells (PEMFCs) because their specific characteristics like zero 

pollution, high power density, low operating temperature, solid electrolyte. 

 

I.3 Proton exchange membrane fuel cells (PEMFCs). 

Proton exchange membrane (PEM) fuel cells is the one of the most promising types of fuel cells 

precedents because of their no mobile solid polymer electrolyte, relatively lower operating 

temperatures (<80 
◦
C), lightweight, high power density and friendly (Zero emission). However, 

survivability, durability, operation, and rapid startup of fuel cell vehicles under sub-freezing 

temperatures, also the barriers to the technology that should be addressed before mass-market 

penetration of hydrogen powered PEMFC vehicles [10]. The PEM fuel cells still allows better 

Fuel Cell 

Type 

Electrical 

Efficiency 

% 

Power 

Density 

(mW/cm
2
) 

Wk ) 

rewoP 

gnaR  

Internal 

Reforming 

  CO Tolerance 

PAFC 40 150-300 50-1000 oe      poison<1% 

PEMFC 40-50 300-1000 0.001-1000 oe 

 

   poison<50ppm 

AFC 50 150-400 1-100 oe    poison<50ppm 

MCFC 45-55 100-300 100-

1000.000 

soY    Fuel 

SOFC 50-60 250-350 10-

1000.000 

soY    Fuel 
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vehicular fuel economy and meets more stringent emission standards than internal combustion 

engines, also PEM fuel cells system running on hydrohen are seen as a future alternative to 

convrntional combustion engines for automotive application [11]. 

 

I.4 Principe of proton exchange membrane fuel cells (PEMFCs) 

Proton exchange membrane fuel cells consist to deliver the energy from chemical fuels as 

hydrogen or other fuels direct to electrical energy. The PEM fuel cells systems composed of 

three components to convert the chemicals to electrical energy. Anode as a negative pole to split 

hydrogen molecules to atoms and electrons using Pt or other metals as catalyst, cathode as a 

positive pole to collect the electrons and protons coming from anode through the membrane to 

form water and heat. PEM fuel cell system functions as presented in Fig I. 8. Fuel hydrogen and 

oxidant oxygen or air are fueled to anode and cathode respectively, hydrogen fed to the anode in 

contact to Pt catalyst with the proper flow rate and pressure to oxidize to H
+
 and electrons (e

-
) H2 

→ H
+
 + e

-
. The hydrogen proton move toward to the membrane and cross to the cathode to react 

with the oxygen and electrons O2 + 4H
+
 +4 e

- 
→ H2O to form water and heat, the reaction 

mechanism are given as: 

 O2(g) →O2ads adsorption process in presence of catalyst  

O2ads + 2e
-
  →[ O2ads ]

2-
 electron transfer  

(1) [ O2ads ]
2-

  + H 
+
→ [HO2ads ]

-
       ,  (2) [HO2ads ]

-
  + H 

+
 +  e

-
    → [H2O2ads]

 - 
 

(3)H2O2
-
   + 2H 

+ 
+ e

-
  → 2H2O, Final Reaction: (4) O2(g)  + 4H 

+
  + 4e

-
  → 2H2O.[12-13] 
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Figure I.8 Schematic of proton exchange membrane fuel cells (PEMFCs) 

Two kinds of proton exchange membrane fuel cell in current use one use hydrogen 

(PEMFCs) as fuel other use methanol (DMFCs), these two fuel cell using same membrane as 

solid materials, but different in construction of electrode and fuel, the characteristics for both fuel 

cells enclosed in the nT b I.2. Each cell produces approximately 1.1 volts, so to reach the required 

voltage the cells are combined to produce stacks. Each cell is divided with bipolar plates which 

separating them to provide a hydrogen fuel distribution channel, as well as a method of 

extracting the current. 

I.5 Fuel source for proton exchange membrane fuel cells (PEMFCs) 

Hydrogen is the best or ideal fuel for PEMFCs as it yield the highest levels of fuel cells 

performance, but it is a secondary fuel which has to be produced from primary fuels (Naturel 

Gas, Petroleum, or coal), biomass or by electrolysis of water . The near term of hydrogen 

production and delivery as byproduct from chemical reactions, and supply through the pipes as 

http://www.fuelcellmarkets.com/fuel_cell_markets/products_and_services/2,1,1,17.html?refinedsearch1=2307&refinedsearch2=2502
http://www.fuelcellmarkets.com/fuel_cell_markets/products_and_services/2,1,1,17.html?refinedsearch1=2564&refinedsearch2=2502
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natural gas [15]. Hydrogen can be stored as a compressed gas, as a cryogenically cooled liquid or 

as metal hydride.  

Table I.2 Comparison between PEMFCs and DMFCs. Cédric G. 2009(5) [14] 

 Proton exchange membrane 

fuel cells (PEMFCs) 

Hydrogen ( H2) 

Direct methanol fuel 

cells (DMFCs) 

Methanol (CH3OH) 

catalyseur (Pt mg/cm
2
) 1 - 0,5 2 – 5 

Tension d'utilisation (V) 0.75 0.5 

Température d'utilisation (°C) 60-80 60 

Cross over                                / 4.10 
-7

 

Sous-produits                                           H2O CO2 

Densité de puissance 

(mW/cm
2
) 

300 80 

 

I.6. Aspect thermodynamic for proton exchange membrane fuel cells (PEMFCs) 

Thermodynamics is the study the transformation energetic for different forms. Since fuel cells 

are energy conversion devices, which convert the chemical energy (Fuels) into electrical energy. 

Thermodynamics is the key to understand the transformation or conversion the free energy of an 

electrochemical reaction into electrical energy (electrical work) [16-17] - this conversion can be 

based on thermodynamics laws. 

There are two ways to transferred between a close system and its surrounding: via Heat (Q) or 

work (W).this allowed to us to write first law as: 

 

dU = dQ – dW       I.1 

 

This expression states that the change in the internal energy of a closed system (dU) must 

be equal to the heat transferred to the system (dQ) minis the work dones by the system (dW). 

(dW) consider as mechanical work Wmech so we can write as following . 

  

dWmech =  pdV       I.2 
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Where p is the pressure and dV is the volume change; this case of thermodynamic for any 

system. In fuel cell later we will use the electrical work (dW) elec
. 

 

dU = dQ – pdV      I.3 

 

for a reversible system transfer of heat at constant pressure, the entropy S of the system will 

change followed the second law of thermodynamic as: 

dS = dQrev /T       I.4 

For fuel cell we are interested in electrical work and the maximum amount of electrical work that 

we can extract from a fuel cell reaction. The free energy is related to intern energy and entropy S.  

From the equation from intern energy a constant temperature and pressure we can write:  

dU = T dS   - pdV       I.5 

Since we know that (dU/ dS)V  = T, and (dU/ dV)S  = -p  we obtain 

G = U – TS + rV      I.6 

G = H – TS       I.7 

dG = dH – TdS –SdT      I.8 

for isotherm process and writing this relationship in term molar quantities gives 

Gr = Hr–SrT      I.9 

 This function is called the Gibbs free energy and depends on the temperature and pressure.  

dG = dU – TdS - SdT + pdV +Vdp    I.10 

For a reversible system and first Law car write as following: 

dU = T dS   - dW     

dU = T dS   - (pdV +dW elec )     I.11 

From the Equation I.10 and I.11 on obtain: 

dG = - SdT + Vdp - dW elec     I.12 

For a constant temperature, and constant pressure (dT,dp = 0) this reduce to 

dG =  - dW elec       I.13 

the relation between the electrical work W elec and gibbs free energy is give equation  

(I.11) by using molar quantities, this equation can be written as:  

W elec = Gr       I.14  
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The potential of a system to perform electrical work is measured by voltage (also called 

electrical potential). The electrical work done by moving a charge Q measured in coulombs 

through an electrical potential difference  E between anode and cathode  (V rev,c- V rev,a ) in volts 

is: 

W elec = E Q        I.15 

If the charge is assumed to be carried by electrons: 

Q = n F       I.16 

Where n is number of mole of electrons transferred and F is Faraday's constant combining 

Equations I.14, I.15, I.16 yields 

Gr = - n F E      I.17 

Thus, the Gibbs free energy sets the magnitude of the reversible voltage for an electro-chemical 

reaction, for PEMFCs with the Hydrogen and Oxygen as fuel and oxidant the reaction (I.15) has 

a Gibbs free energy change of -237 Kj/mol under standard-state conditions for liquid water 

product.  

H2 + O2 → H2O      I.18  

the reversible voltage is .  

E
o
 = - Gr

o
 /nF  

= - (-237.000 J/mol) / (2 mol e- /mol reactant) (96.400 C/mol) 

= 1.23 V. 

 

I.6.1 Variation of pressure and temperature for reversible voltage of fuel cell under non-

standard state conditions 

Standard state reversible fuel cell voltage (E
o
 value) are only useful under stander state 

conditions (Room Temperature, atmosphere pressure, unite activities of all species), but for other 

condition the temperature and pressure influent on the reversible fuel cell voltage, the 

thermodynamics Equation can predict the reversible voltage of a fuel cell under any arbitrary set 

of conditions. 

 

I.6.1.a Reversible voltage variation with temperature 

The reversible voltage varies with the temperature must go back to Gibbs free energy, From 

Equation I.5 and I.6 we can write; 
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dG = -TdS + Vdp      I.19 

(dG/dT)p = -S       I.20 

Use a molar reaction quantities, this become:  

(Gr /dT)p = -Sr      I.21 

From the equation I.17 allow us to express how the reversible cell voltage varies as a function of 

temperature:  (E /dT)p = Sr/nF      I.22 

The reversible voltage at an arbitrary temperature T, at constant pressure, ET can be calculated 

by:  

ET = E
o
 +  Sr/nF (T – To)     I.23 

Generally, Sr assumed to be independ to the temperature and for more accurate for ET 

can calculate Sr by integrated the heat capacity related to the temperature. 

For proton exchange membrane fuel cell Sr = - 44.43 J/(mol.K) for H2O(g) as product the 

voltage of cell voltage with the temperature is approximate as  

 

ET = E
o
 +  -44.43 J/(mol.K) /2.96400 (T – To)  I.24 

 

I.6.1.b Reversible voltage variation with Pressure 

Same method of calculation based on equation I.19 can get the relation between pressure and 

reversible voltage as: 

(E /dp)T = ng RT/nFp     I.25 

Where   ng represent the change in the total number of moles of gas upon reaction. If np 

(Products) and nr (reactants), then ng =  np - nr. usually the increasing in reversible voltage by 

only 15mV for fuel cell using H2- O2 [17] 

 

I.6.1.c Reversible voltage variation with concentration Nernst equation 

The Nernst equation account for the same pressure affects that as previous in equation I.25.the 

general Nernst equation defined as: 

E = E
o
 + RT/nF ln (Π a

υi
 Products/ Π a

υi
Reactants)      I.26 

Although temperature enters into the Nernst equations a variable, the Nernst equations does not 

account for how the reversible voltage varied with temperature.at the arbitrary temperature T≠To 

the Nernst equation must modified as: 
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E = ET + RT/nF ln (Π a
υi

 Products/ Π a
υi

Reactants)      I.27 

Where ET is given from equation (I.23) as: 

ET = E
o
 +  Sr/nF (T – To)        I.28 

 

I.6.1.d Ideal reversible fuel cell efficiency 

Fuel cell efficiency ( ε ) of a conversion process as the amount of useful energy that can be 

extracted from the process relative to the total energy involve by that process: 

ε = useful energy/total energy     I.29 

If we wish to extract work from a chemical reaction, the efficiency is  

ε = work/Hr       I.30 

for fuel cell the maximum amount of energy available to do work is given by the Gibbs free 

energy. Thus, the reversible efficiency of a fuel cell can be written as 

ε thermo,fc = Gr /Hr      I.31 

For the room temperature and pressure, the H2-O2 fuel cell has Gr
o
 = - 273.3kJ/mol and Hr

o
 

HHV = - 286.kJ/mol 

Where, HHV and LHV are the higher heating value, and the lower - heating value 

respectively, is the heat required to vaporize the water. 

 

ε thermo,fc = - 273.3kJ/mol /- 286.kJ/mol = 0.83  I.32 

 

I.6.1.e Real (Practical) reversible fuel cell efficiency 

The real or practical reversible for fuel cell must always be less than the reversible 

thermodynamic efficiency, because the reasons as follows: 

First voltage losses and second is Fuel utilization losses. Then the real efficiency of a fuel cell ε 

real can be written as: 

ε real = (ε thermo,fc) x( εvoltage) x (ε fuel)     I.33 

Where, (ε thermo,fc) Equation I.31,  εvoltage is the voltage efficiency of fuel cell, and   

ε fuel is the fuel utilization efficiency. The two terms efficiency are describes as follows 

εvoltage = V/E       I.34 

This efficiency is the ratio between the operating voltages of the fuel cell (V) to the 

thermodynamically reversible voltage of a fuel cell (E). 
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Second term of equation I.33 is 

ε fuel =( i/nF)/ υfuel(mol/sec)     I.35 

The supplying fuel is adjustable follow the current needs, so for that the maximum fuels depend 

on the current, which can adjust the fuel by stoichiometry factor, then can write the fuel 

utilization efficiency as  

ε fuel = 1/ λ       I.36 

Combining effects Equation (I.33) of thermodynamics, reversible kinetic losses, and fuel 

utilization losses, the practical efficiency for a real fuel cell can be figured at following equation: 

ε real = (Gr /HrHHV) x(V/E) x (i/nF)/ υfuel)   I.37 

 

I.7 Activation kinetics for fuel cell .Tafel Equation 

Fuel cell depends on many parameters to obtain good performance, thermodynamics and also 

kinetics. At equilibrium, the current densities for forward and reverse reactions are both given 

from equilibrium with the account the change in the forward and reverse activation barriers: 

i1= io e 
(αnFη/RT)

      I.38 

i2= io e 
((1-α)nFη/RT)

     I.39 

The net current (j1-j2) is then  

i= io ( e 
(αnFη/RT) 

 - 
 
e 

((1-α)nFη/RT)
) Equation  Bulter-Volmer     I.40 

 

Activation kinetic is depend to jo current exchange currency ,and io represent the rate of 

exchange between the reactant and product state at equilibrium, jo can defined from the forward 

or reverse reaction direction at equilibrium. From the Bulter-Volmer Equation (I.40), the 

activation can present by two useful approximations. When the activation overvoltage (η act) in 

the Bulter-Volmer Equation is either small or very large: 

1-activation overvoltage (η act) is very small: less about 15 mV the activation overvoltage can 

write as  

i = ionF η act) /RT     I.41 

2-activation overvoltage (η act) is very large; greater than 50-100mV at room temperature, the 

second exponential term in the Bulter-Volmer Equation become negligible, only the forward –

reaction direction dominates: the Bulter-Volmer Equation simplifies to: 

i= io e 
(αnFη/RT) 

       I.42 
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Solving this equation for η act yields 

 

η act =  - RT/ α nF  ln io + RT/ α nF ln i      I.43 

 

A plot of η act versus ln i should be straight line. Determination of jo and α is possible by fitting 

the line of η act versus ln i or log i, the equation (I.43) is generalized in the form  

η act =  a + b ln i     I.44 

This equation known as the Tafel Equation and b is called the Tafel slope 

in fuel cell (PEMFCs) we interested in a large amount of net current are produced, and the Tafel 

Equation shown the behavior of electrochemical process and kinetics parameters as exchange 

current and current , activation overvoltage. 

Activation overvoltage losses are minimized io. there are for major ways to increase io: 1-

increase reactant concentration, 2-increase reaction temperature, 3- decrease the barrier (By 

emplying the catalyst), and 4- increase the number of reaction sites. 

 

I.8 Cell Performance for proton exchange membrane fuel cells (PEMFCs) 

The performance for fuel cell (PEMFCs) device can be summarized with a graph of its current-

voltage characteristics. The Fig I .9 shows the voltage output of the fuel cell for given current 

output, this curve called current – voltage (I – V) curve. 

There are three major regions of fuel cell losses, which give a fuel cell I – V as presented in the 

Fig I.9. 

-First activation losses (η act ) which results from the activation energy barriers of the electrode 

(losses due to the electrochemical reaction) , low activation overvoltage can be achieved by 

utilization of electro-catalyst with high exchange current density, and by maximizing of 

electrochemical active surface area. 

-Second, Ohmic losses ((η Ohmic ): The most common form the resistance overvoltage 

arises from the passage of electric current through an electrolyte solution surrounding the 

electrode [18-19]. the Fig I. 9 show losses mainly due to the ionic and electronic resistance of 

fuel cell , for proton exchange membrane fuel cell the total resistance ca be written: 

RT = Rm + Rc + Rec       I.45 
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Where, Rm is the ionic resistance of the membrane, Rc the ionic contact resistance 

between the membrane and three-dimensional electrodes and the electronic resistance of 

electrode, and Rec the electronic contact and material resistance of the component in the cell 

between electrode and graphite plates. To improve R, membrane with lower resistance can be 

used the thinner one, for example 112 is thinner than 117 [20] ,also to reduce the Ohmic losses 

and increase the performance of the cell, many parameters that can be explored include 

preparation of electrode (Pt particles, support as carbon or carbon nanotube, binder, protonic 

conductor), in addition to external parameters as, flowrates and Pressures (H2/Air/O2), 

-Third is a concentration losses (concentration overvoltage) (η conc ), which consist of 

poor mass transport of the reactant at high current density , This is small, but has important effect 

(particularly for some electro-analytical technique). 

Figure I.9. Shematic of fuel cell (PEMFCs) curve within three losses regione.1-Cell Potential 

losses, 2- Linear Drop in the cell, 3- Mass transport. 

 

An ideal fuel cell would supply any amount of current (as long as it is supplied with sufficient 

fuel) while maintaining a constant voltage output of real fuel cell is less than the ideal 
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thermodynamically predicted voltage. The power density curve Fig I. 10, shown the power 

density delivered by a fuel cell as a function of the current density: 

P = I V       I.46 

 

 

Figure I.10. combined fuel cell I – V and power density curves for proton exchange 

membrane fuel cells (PEMFCs) 

  

I.9 Theory of Gas Diffusion Electrode 

Electrode for proton exchange membrane fuel cells (PEMFCs) is the site of energy conversion 

reactions, so the previous studies are all related to the electrode kinetics, and how the electrode 

fabricated to be useful for oxidation and reduction reactions. The principle function of a porous 

gas diffusion electrode is to provide a large reaction zone area with a minimum mass transport 

hindrance, for the access of reactant and removal of products. In porous gas diffusion electrode 

three zones (Gas diffusion layer , Catalyst Layer, Electrolyte), which, can be present in contact 

with metal and electrolye.the metal use in porous gas diffusion electrode must have a very high 

surface area (100m
2
/g) with  a carbon specific area 1000m

2
/g).  
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Porous gas diffusion electrode can have a high surface area and high porosity by introducing a 

reforming agent to enlargement the pores size during the electrode manufacturing, and removed 

after fabrication by calcinations process. [21] reported that PEM fuel cell at higher temperatures 

has been improved by modifying a Pt black cathode catalyst layer structure with the optimal 

amounts of the “pore-former” (NH3HCO3), Introduction of the ammonium carbonate into the Pt 

black catalyst layer of the high temperature membrane electrodes enhanced the total porosity of 

the catalyst and the performance increase. Beside this the basic structure (carbon or metal) with 

addition of binder and/or impregnation materials used during their fabrication, in which the 

electrode has hydrophobic (Carbon) or hydrophilic (Metal powder surface). Hydrophobic gas 

diffusion electrodes are made of the fine carbon powder or carbon nanotube bonded with a 

polymer as polyterafluoethylene usually is on suspension phase (PEFE), the carbon is light and 

has a large surface area, which is suitable for the deposition of very active catalysts. 

Polyterafluoethylene bonded carbon electrode are easy to manufacture on a large scale. The 

conductivity of carbon is not sufficient for high current (200 mA/cm
2
) and only a carbon bipolar 

plate is acceptable for high current. Gas diffusion electrode at last two porous diffusion layer 

should be presented in the fabrication of electrode, one is gas diffusion layer (GDL) and the 

second is electrocatalyst layer (CL), which the electrochemical reactions take places with 

electrolyte (Nafion® ) in solid form. 

 

I.9.1 Electrode Fabrication for proton exchange membrane fuel cells (PEMFCs)  

In PEMFCs) Pt and Pt alloy considered as the best electro-catalyst, to date for both hydrogen 

oxidation and oxygen reduction reactions. Which the cathode potential always bigger than 

anode hydrogen oxidation from 200 mV to 400 mV for oxygen potential [22]. Le development et 

la fabrication de electrode (Anode and Cathode) related how to construct the electrode from 

substrate until final layer named catalyst layer. Generally three layers exists in electrode for 

proton exchange membrane fuel cell. 

1-Substrate: Consist of carbon paper or carbon cloth Fig I.11 (a,b) treated by hydrophobic 

solution as PTFE and pass to the heat treatment. The substrate use to to support the Gas 

Diffusion Layer (GDL) and permitted to the gas to diffuse through the electrode. 
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 Gas Diffusion layer GDL for electrode Pt/C 

The porous gas diffusion layer (GDL) consider as a second main layer in electrode for PEMFCs 

,because the existence of this layer ensure the diffusivity of  reactants toward the catalyst layer 

and can conduct the electron from baking layer to the catalyst layer. GDL consider as wet-

proofing (hydrophobic) that ensured and keep pore of the gas diffusion layer not ripped by water. 

The GDL composed by Carbon back and PTFE mixed together. Changes in compositions of 

GDL like Carbon Black, PTFE, Micro-porous layer MPL, effects on electrode performance. 

Thickness of the gas diffusion layer can be from 100-300 µm equal to the loading 1-3 mg/cm
2
 

depend on the carbon loading in GDL 

Figure I.11 presented the substrate as (a) Carbon Paper and (b) carbon cloth treated with 15 wt % 

PTFE 

 

 Catalyst layer (CL) for electrode Pt/C 

Catalyst layer can be classified as major part of the electrode as compared to the other two 

layers, baking layer and diffusion layer GDL, and contact with diffusion layer and membrane 

.the catalyst can apply directly to the membrane and also on Gas diffusion layer GDL, which can 

achieved the best activity of the catalyst. Catalyst is the most expensive part for the catalyst 

layer, furthermore, the catalyst layer can be  classified into three groups based on the active 

component: 

a*Pt based catalyst (platinum supported carbon as previous work [23]  

b*Pt catalyst that modified by alloys as ,PtVFe and Pt–Co/C [24-26].  

c*Non-Pt-based catalyst such as non-noble metals, and also organo-metallic complex. 
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Catalyst fabrication consists of catalyst Pt/C  eP Pt/M/C. The catalyst and 5wt.% Nafion® 

ionomer solution were mixed in isopropyl alcohol to form homogeneous catalyst ink for the 

anode and cathode/or  catalyst ink was composed of 20 wt.% Pt/C,Nafion® ionomer, and PTFE. 

The Nafion® contents [27; 28]. 

 

I.9.2 Parameters affecting performance electrode for proton exchange membrane fuel cells 

Electrode fabrication is a vital part in proton exchange membrane fuel cells, which all chemical 

reactions and conversion to energy occurs in the electrode interface. For this important, the 

structure design for electrode should be recognized that the electrode is a field where multi-

components and multi-phases are taking places [23]. The electrode structure consist of three 

layers, namely catalyst (CL), gas diffusion layer (GDL), and backing layer, in which the 

components are presented. The most components presented in the electrode for PEMFCs are: 

catalyst, support of catalyst usually is activated carbon, substrate, Teflon (PTFE), Nafion®  

ionomers, forming agent as Li2CO3, NH3HCO3. Increasing and decreasing in each component 

effect on the electrode performance. These parameters effects have studies by different 

researchers trying to achieve the best and the optimum values for each component for the ideal 

electrode structure. The backing layer contains carbon paper or carbon cloth and Teflon (PTFE), 

the second layer, gas diffusion Layer (GDL), third is catalyst layer (CL) [19; 29] the last one 

contain Teflon, Nafion®. Teflon solution used as water proofing and binder with Nafion® as 

protonic conductor and binder. Varieties of electrodes were prepared using different methods and 

components loading of, Pt, PTFE, Nafion, forming agent in the catalyst layer and also in the 

diffusion layer. Fabrication parameters improve the performance as: Catalyst loading, increasing 

the loading of catalyst increase the performance [30],Thickness of GDL, Carbon substrate, 

carbon powder types, catalyst and catalyst alloys. [31-32] prepared the Electrode by using Pt 

combined with other non-noble metals such as iron (Fe)  and vanadium (V) to form  PtVFe, 

which improved the better performance and The deposition methods of electrode preparation 

effect on the performance as spraying, the plasma sputtering system method, chemical vapor 

deposition, casting, The fabrication method and ink preparation effect presented in Fig 2.5.the 

SEM of catalyst layer for electrode 0.38 mg/cm
2
and cross section of membrane electrode 

assembly are presented in Fig 2.5.a,d,which show the catalyst surface  with the catalyst located 

in front of the surface of electrode. Moreover, give the good performance compared to E-TEK as 
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reported in previous work [19; 29] the preparation methods as casting process using carbon paper 

as substrate. Fig 2.5.b,c show the surface of  the  catalyst layer using a rolling machine (casting) 

with the cracks and the platinum agglomerate with PTFE/These cracks and Pt agglomeration can 

give advantage to loss some performance of electrode. Which allow to water to stagger and block 

the diffusion of electrons and reactants through this crack area of electrode. Moreover in the 

MEA can observe the contact electrode with the membrane have some crinkles these crinkles fill 

by water formed in cathode and stop gas to diffuse award to the catalyst. 

 

Operating parameters: operating electrode in fuel cell system have many parameters effect on the 

performance, for example increasing the pressure of gases (H2, O2, and Air) increase in the 

performance, concentration of gases (oxidant and reactants) flow-rate of gases must have proper 

ration O2/H2 , and the operating Temperature of the single cell or stacks. All these parameters 

can reduce the electrode performance and also aggression of physical parameters effect like 

pressures and temperature water flooded, on and off the system during the operation cause an 

aging in the electrode (Anode and cathode). Moreover the electrode microstructures changer 

during the operation for long time, which the components of electrode (anode and cathode) 

degrade from the original state.[32] demonstrates the impact of a potential cycling treatment on a 
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platinum catalyst carbon-supported, and propose a new corrosion mechanism for fuel cell 

catalyst degradation. Under the applied harsh conditions,  

whole Pt particles detach from the support and dissolve into the electrolyte without re-deposition 

[33]. Therefore, the so-called accelerated degradation test (ADT) is developed These ADT 

methods include: (i) thermal degradation under hot air conditions, (ii) aging in hot aqueous acid 

solution, (iii) open-circuit cell studying the durability issues are reviewed. The degradation of Pt-

based PEMFC catalysts can be categorized into two aspects: the corrosion of carbon Support and 

the degradation of catalytic metals. [34; 35] reported that the main degradation processes in 

MEAs include Pt sintering, agglomeration and redistribution, corrosion of the carbon support in 

the electrodes, chemical and structural degradation of the membrane, and poisonous effects 

aroused by contaminants from external components. Also, agglomeration and particle growth of 

nanostructure, Pt is the most dominant mechanism for catalyst degradation in PEM fuel cells. 

degradation of catalysts related to oxidation of carbon or carbonization, which accelerate Pt 

sintering and make it more catalyst durable, furthermore carbon in presence of water according t 

o the reactions: C+H2O → CO2 +4H+ +4e−   --- E > 0.207 V  and  C+H2O → H2 +CO The 

reaction product CO might poison the catalyst Pt [31-32]; [34]. The electrochemical corrosion of 

the carbon surface leads to changes in the surface chemistry of the carbon and an increase in 

hydrophobicity for the catalyst layer and gas diffusion layer, which result in a decrease in the gas 

permeability. [32-36] believe that two other mechanisms are predominately responsible for 

coarsening: Pt particles detaching from the support and dissolving into the electrolyte without 

redisposition, and/or a combination of Pt particle coalescence and Pt solution/precipitation within 

the solid ionomer. Whatever mechanism the particle growth follows, dissolution of Pt is an 

important step during the catalyst degradation process. The dissolution/ detachment of Pt and/or 

other alloyed catalytic metals into the electrolyte (Pt —› Pt
2+

 + 2 e-) , PtO + H
2+

 —› Pt
2+

 + H2O. 

The diffusion from cathode to anode by reduction of platinum  Pt
2+

 + 2 e- —› Pt explain two 

processes responsible for platinum coarsening, namely Ostwald ripening on the nanometer-scale 

and diffusion of oxidized platinum species on the micrometers–scale with precipitation of 

platinum particles in the ionomer [37]. But research still going on to improve the dissolution or 

detachment catalyst from the support. In term of effect of the structure of electrode. [38] reported 

that after the operation of electrode in single cell using carbon fiber paper for 48 h, the crystalline 

degree of the Nafion® electrolyte as well as the carbon support and platinum catalyst decreased, 
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which depends strongly on the operation conditions, e.g., humidification temperature, also [39] 

cited  the Aging under experimental conditions make a slight evolution of the electrode  

microstructure. The changes showed the increasing in carbon concentration, concentration of CO 

the carbon catalyst-support increases, the platinum decreases by using XPS. 

  

I.9.3 Membrane for proton exchange membrane fuel cells (PEMFCs) 

Last decade the electrolyte use for electrolysis and fuel cell it was a liquid form, which may 

cause hazard problem transportation. The developments of solid electrolyte give advantage for 

technologies and reliable applications. Most modern solid polymer electrolytes are perfluorinated 

ionomers with the fix side chain of sulfuric acid bonded covalently to the inert, but chemically 

stable. The membranes consist of two very different sub-structures: 

 1-hydophilic and ionic conductive phase related to the bond sulfuric acid group.  

2- a hydrophobic and relatively inert polymer that is not ionic conductive but provides chemical 

stability as presented in  Fig 1.13 [9] 

 

 

 

The most solid membrane used in fuel cell specailly for PEMFCs and DMFCs is Nafion® like 

other perfluorinated ionomers is created by sulphonation (SO3
-
) of the basic PTFE structure as 

shown in presedent Fig. I.13. the membrance work only in hydrate state,  which allowed to  H+ 

ino for motion in H3O+ -SO3
-
 groups, dry perfuorinatedionomerss  are almost or completely non-

conductive.two mode  of transport exisit: 
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1-Under low water content : in this case the ionically conductive of the membranes behave a 

nearly Isolated clusters, and proton transport is dominated by vehicular mechanism or diffusion 

and the mode of transport is purely physical. 

 

2-With the high hydratation in the electolyte: in this case high effective proton conductive and 

the proton H3O
+
 moving along a connected pathway in the ionomer structure .this mode call  

The ionic conductivity of the electrolyte that  related to the clusting of the sulfonic acide 

side groups. hydration level give the structural relationship between the non-conductive polymer 

backbone and the conductive side chains, which is the critical factor in the electrolyte water 

uptake,conductivity,and swelling behavior. this structural relationship can be mesure by  the 

equivalent weight (EW) of the ionomeric membrane. 

EW (g/eq) = 100 x k x 446      I.46 

Where: k is the number of tetraflouroethylene groupe per polymer chain.the higher the EW,the 

higher the amount of inert backbone relative to conducting side chains.the EW for fuel cell 

electrolytes is typical from 800-1200, and the most commonly use is Nafion®, for exemple 

nafion 112 represent 51um thick dry membrane with 1100 EW.for the water uptake in the 

membrane (electrolyte) is given by; 

 λ = H2O/SO3H      I.47 

λ,is commonly referenced in terms of water molecules per sulfonic acid site. Water –soaked 

values range from~30 for an EW of 900, to~ 20 for an EW 1100 by weight percent (wt%), biside 

these some additional data commontly used for nafion giveen in the Tab I. 3 .for the membraness 

in a low humidity environment, the water uptake is much lower. For water Uptake of 

 Nafion®1100 EW at 30
o
C Correlated as: 

λ = 0.043 + 17.18 a  - 39.85 a
2
 + 36.0 a

3
  for   0 < a < 1     I.48 

where a is water vapor activity,which is relative humidity RH: 

a = RH = yV P/Psat (T)      I.49 

in the equation I.48 has a maximum value a fully humidified conditions of λ = 14 at 30
o
C, since 

the wate uptake λ decrease with increasing the temperature , the value around λ = 10 at 80
o
C 
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Table I. 3 Water Uptake,Weight Percent,and sweeling for Nafion Membranes [37]. 

Nafion Designation Water Uptake 

λ ( H2O/SO3H ) 

Water Weight 

percentage(%) 

Thickness Strain from 

Water Uptake ,tWet/ tdry 

    

112 

115 

117 

105 

21 – 22 

21 – 22 

21 – 22 

21 – 28 

21 – 26 

21 – 26 

21 – 26 

32 – 33 

14 – 21 

14 – 18 

13 – 15 

26– 30 

 

3-Nafion ionic conductivity, the conductivity of membrane is related to the water uptake in the 

membrane water increase,the ionic concentration increase, which increase the the conductivity. 

Also the temperature has effect of the ionic conductivity as given by: 

σi (S/cm) = exp [ 1268(1/303  - 1/T) (0.005193 λ  - 0.00326)   I.50 

these relation to give idea the ionic conductivity in the membrane as fonction of water uptake, 

temperature. Also Nafion® loading in the electode affect of on electrode performance as showed 

by [40]. 

 

 

I.9.4 Membrane electrode Assembly (MEA) for (PEMFCs)  

Membrane electrode Assembly (MEA) is the heart for PEMFCs because all process of energy 

conversion happens in this sandwich as we call it, MEA consist of two electrodes anode and 

cathode and membrane electrolyte commonly Nafion® , these two electrodes incorporate in 

MEA by hot pressing, with the prepares pressures and temperature, these physical parameters 

effect also on the electrode performance, High pressures and low pressures must take on 

consideration, high temperatures in hot pressing damage the membrane Nafion® , Which can 

stand until 140
o
C. after this temperature start the degradation of membrane (Tg). in previous 

work we realize MEA at temperature 120
o
C - 130

o
C and pressure 1000 psi for 90 seconds 

Rachid [19,29] ,the ,MEA Fabricated as Cross section and MEA under this conditions presented 

in Fig I. 14  
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I.10 Electrode components for (PEMFCs) 

I.10.1 Electrocatalyst (Pt/C) 

Noble metal, used for many applications in electrochemistry . However, this material is known to 

be rare (about 200 tonnes milled at year), and therefore difficult to refine, expensive (€ 30.500. 

kg-1).Platinum is an extremely rare metal occurring at a concentration only 0.005 ppm in the 

Earth's crust [41].this Nobel material is the most important factor in any chemical engineering 

reactions and fuel cells technology,  in  PEMFCs the catalyst Pt consider as the reference for the 

conversion, because their chemicals and physicals characteristics as non-reactive, resistance to 

corrosion, even at high temperatures. Proton exchange membrane fuel cells use Platinum with 

support like Carbon (Pt/C) by preparing Pt/C from hexachloroplatinic acid H2PtCl6 using 

different preparation method, or as commercial Pt/C as powder. For Pt/C preparation many 

methods use to prepare catalyst support even in other applications. For PEMFCs , Pt metal can 

dissolves in hot aqua regia to give soluble hexachloroplatinic acid ("H2PtCl6", formally 

(H3O)2PtCl6·nH2O ) using the following reaction: 

Pt + 4 HNO3 + 6 HCl → H2PtCl6 + 4 NO2 + 4 H2O      I.51 

 

I.10.2 Carbon support catalyst for PEMFCs 

2.Carbon Black and structure 

Carbon is distinct among chemical elements since it is found in dramatically different forms and 

with varying micro-textures. The diverse morphologies of carbon make it an attractive material 

that is widely used in a large range of electrochemical applications. Carbon exists in various 

http://en.wikipedia.org/wiki/Parts-per_notation
http://en.wikipedia.org/wiki/Earth
http://en.wikipedia.org/wiki/Crust_(geology)
http://en.wikipedia.org/wiki/Hexachloroplatinic_acid
http://en.wikipedia.org/wiki/Hexachloroplatinic_acid
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allotropic forms due to its valency [42], with the most well known being carbon black, diamond, 

fullerenes, graphene, and carbon nanotubes 

 

Carbon black is usually produced by the “furnace black” process, namely the partial 

combustion of petrochemical or coal tar oils [43]. Due to the nature of the source materials, heat 

treatment is used (250-500
o
 C) to remove impurities from the formed carbon [44-46]. Carbon 

black consists of spherical particles (diameter less than 50 nm) that may aggregate and form 

agglomerates (~ 250 nm diameter),which The carbon particles have para-crystallite structures 

[47] consisting of parallel graphitic layers with 0.35-0.38 nm interplanar spacing. The crystalline 

graphitic portion of carbon black has sp2 hybridization involving a triangle in-plane formation of 

sp
2
orbitals while the fourth 4 pz orbital lies normal to this plane forming weaker delocalized π 

bonds with other neighboring carbon atoms [48-50]. chemical (ZnCl2/ H3PO4 addition to carbon 

precursor) or gas (steam CO2) treatment of carbon black at high temperatures (800-1100ºC) and 

high pressure leads to the formation of activated carbon black; this form of carbon is 

characterized by larger and more crystalline graphitized carbon particles (~ 20-30 μm) with 

distinct micro-porosity and varying BET surface area (200-1200 m
2
g-1) [47]. 

To make carbon black more efficacy must be activated the carbon black, two methods to 

activated. 

 

1- Physical activated :The physical activation is between 650 °C and 900 °C, in an oxidizing 

atmosphere (carbon dioxide steam , water or a mixture of two) [51]. According to [52] The 

porous structure of the charcoal obtained may different function of the oxidizing gas used by 

[53] disagree that to use of carbon dioxide as oxidizing agent promotes development 

microporosity while steam of water promotes porosity dimensions greater. Thus a mixture of 

water and carbon dioxide is often used [54]. 

 

2-Chemical activation: Chemical activation is contrary to the physical activation, That the 

chemical activation is carried out in gas inert but at temperatures relatively 

low (between 400 °C and 600 °C) after impregnating the precursor by an agent activating, which 

may be a Lewis acid (ZnCl2, AlCl3) and phosphoric acid, or same alkali metal carbonates[55]. It 

also uses agents basic such as sodium hydroxide (NaOH) and potassium hydroxide (KOH) [56 -
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58]. According to a study conducted by [59] on the viscose rayon (or regenerated cellulose) the 

impregnation with chemicals causes several reactions from offset pyrolysis, and avoid mass loss 

that observed during the physical activation. 

 

The performance of the noble metal catalysts in the form of nanoparticle supported on 

high surface area carbon will depend strongly on the support material characteristics like: , type 

of carbon (Carbon Black, Acetylene, Carbon Nanotube,...), chemical/electrochemical stability, 

good electrical conductance, carbon treatment ( heat Treatment), high surface area, suitable pore-

size area distribution and low impurity or surface group contents, these parameters has extra 

effect on the electrode performance. The most used carbon support for catalysts preparation is 

the commercial material Vulcan XC-72 and VulcanXC-72R (Cabot) USA Fig I.15 a and b.The 

only difference between the two materials is that the XC-72 is in the form of pellets, whereas 

XC-72R is in powder form, but even this morphological difference might influence considerably 

the fuel cell performance [60]. Excellent proprieties and parameters may give good electrode 

performance as demonstrate by many researches for fuel cell systems.  

 

I.10.3 Binder PTFE and protonic conduct Nafion®  ionomers solution 

In the beginning of fuel cell system Teflon was present as a binder for catalyst and catalyst 

supported because the chemical and physical proprieties (Inert, resist at high temperature…) 

 

Figure I. 15 -a Presented carbon black type VulcanXC-72R (Cabot) USA and b- Presented TEM 

of Platinum supported Carbon 20 wt% Pt/C 
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also contain more electrons (for an equal length) than a corresponding polyethylene chain. Taken 

together (the good packing and the extra electrons) that means that the van der Waals dispersion 

forces will be stronger than in even high density polyethylene. 

 

I.11 PEM Simulation and Modeling 

PEM fuel cell systems have been showing up as a promising alternative due their high efficiency 

and low impact to the environment. Theoretical approach with mathematical simulation is very 

effective for designing and analyzing the performance of the PEM fuel cell.  

Some work has been reported in the literature on steady-state fuel-cell modeling (e.g., [61-

64], as well as dynamic modeling [65-67]). These studies are mostly based on empirical 

equations and/or the electrochemical reactions inside the fuel cell. Several researches regarding 

influences of certain operating parameters on fuel cell characteristics. There are many other 

models have been developed and reported in literature, but they didn’t focus on impact of 

individual operating parameters on fuel cell output characteristics. 
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Introduction 

This chapter describes the experimental work. The first part is the Electrode Fabrication for two 

type of platinum supported carbon 10% and 20 wt % .the 10 wt % Pt/C use to study the effect of 

the diffusion layer on the electrode performance, and 20 wt % Pt/C % use for the electrode 

degradation. The loading for three electrodes EGDL = 0.38 mgPt/cm
2
 platinum loading with 

diffusion layer, EOut GDL = 0.4 mgPt/cm
2
 without diffusion layer, and ETek = 0.4 mgPt/cm

2
 E-TEK 

electrode, respectively. The second Structure of electrode 20 wt %( Pt/C) named E = 0.3 

mgPt/cm
2
, which included The treatments of membranes (Nafion 117) ,(Nafion112) for 10 

and 20 wt % Pt/C % respectively. Finally the testing of electrodes Performance in single cell 

connected to the test station. 

The second part of experimental work is the technique analysis for both structure of 

electrodes by using scanning electron microscopic (SEM), X-ray photo-electron spectroscopy 

(XPS) for 10 wt% Pt/C and SEM, X - ray diffraction (XRD) analysis, Transmission electron 

microscopy (TEM), XPS for 20wt% Pt/C. 

 

II.1.1 Electrode Preparation 

As mentioned in chapter I, gas diffusion electrodes are porous structures, which consist of 

electrocatalyst dispersed on high surface area carbon black that has been combined with 

polytetrafluoroethylene (PTFE) and Nafion ionomer. The PTFE plays an important role, not only 

as a binder, but also provides a gas permeable pathway, by functioning as a wet proofing agent 

[68]. The catalyst in low platinum loading electrode must be present at the surface of the layer 

(catalyst layer), where the site for electrochemical reactions.  

Carbon cloth supplied from (E-TEK, Inc) as substrate, platinum supported carbon 10 wt% Pt/C 

(Fluka, chemie AG), activated carbon black (Ajax Chemicals, Sydney Australia), 20 wt% Pt/C 

Teflon (PTFE) 60wt% (Aldrich Chemical, Inc) have been used. 

1- Two different structures have been used in preparation of the electrodes, one is with 

diffusion layer (PTFE/C) at EGDL = 0.38 mgPt/cm
2
, and the other one is without diffusion layer 

(PTFE/C) at 0.4 mgPt/cm
2
. The composition of catalyst layer is 70wt% Pt/C and 30 wt% Teflon 

(PTFE)
 
[69]. 
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Electrode generally consists of three layers [70], namely, backing layer (carbon cloth or 

carbon paper & Teflon), diffusion layer (carbon black/Teflon), and catalyst layer (Pt/C/Teflon). 

The simple process to fabricate electrode for fuel cells with different structures.  

1. A backing layer was prepared by teflonizing carbon cloth with Teflon emulsion. The carbon 

cloth was first made hydrophobic by impregnation in a 15 wt% Teflon (PTFE) using 60wt% 

Teflon solution for 3-4 min as shown in the Fig II.1.a.  

 

Figure II.1.a Backing Layer Substrate (Carbon Cloth with 15 wt% PTFE) 

 

It was then dried in an oven at 80
o
C to remove the solvent (water). This backing layer is in 

contact with the diffusion layer as shown in Fig II.2 these layers are typically 350 m. The 

thickness of this layer was measured after impregnating carbon cloth with 15 wt % Teflon 

solution usually this thickness depends on the thickness of carbon cloth or carbon paper. In our 

experiment the carbon cloth was 350 m. According to [71] the thickness of the backing layer, 

the diffusion layer was varied between 300-400 m, and the catalyst layer are dependent on the 

loading of each layer as demonstrated in Fig II.2. 

 

2. The diffusion layer is prepared from carbon black with 30wt%Teflon (using PTFE 60 wt %) 

which were mixed with water and alcohol as solvent, using a magnetic stirrer for a few hours. 

The prepared ink was applied on the backing layer using the spraying method as shown in Fig 

II.1.b. This layer was dried at 80C for one hour (1h) to remove the residual water and alcohol. 
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The diffusion layer is in contact with the catalyst layer, and the loading of diffusion layer is 3-4 

mg/cm
2
, which corresponds to the thickness of about 400 m as shown in the Fig II.2. 

 

3. The catalyst layer is very important in proton exchange membrane fuel cell. This layer was 

prepared from platinum supported carbon black 10% Pt/C and 30wt% Teflon. Firstly a 

homogenous suspension was prepared by mixing and stirring in the beaker containing platinum-

supported carbon black 10 wt% and 30 wt% Teflon with Isopropyl alcohol as solvent. This 

mixture takes a few hours, until a homogenous solution is obtained. The ink was applied onto the 

diffusion layer (PTFE/C) using spraying method and slurry casting, then dried at 80
o
C for one 

hour to remove the solvents (water and alcohol). Finally the electrode was baked at 200
o
C for 20 

min in an oven to remove the residual surfactant in the catalyst layer, and then sintered at 280
o
C 

for 20 min. The thickness of the catalyst layer depends on the loading of platinum supported 

carbon in the layer. 

 

Figure II. 2. Electrode Structure with diffusion layer (GDL). 

Typical Electrode Dimension 

Carbon Cloth Support    350m 

Diffusion Layer    300-400 m  

Catalyst Layer      (10-40m) 

Nafion117 in dry state 175 um and swollen state 210 um Calculated. 
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The catalyst layer can be described as a Pt/C/Ionomer composite, where each of the three 

components is uniformly distributed within the layer. Structure at EGDL = 0.38 mgPt/cm
2
, and the 

other one is without diffusion layer (PTFE/C) at 0.4 mgPt/cm
2
, which is loading deposit on 

backing layer, were all dried at 80
o
C (to remove water and isopropyl alcohol). This is followed 

by thermal treatment at 200
o
C to remove the dispersion agent contained in PTFE. Then sintered 

at 280
o
C for 20 minutes. This layer typically varies between 10-40 m. For the second electrode 

0.3 mg/cm
2
 with 20 wt% the heat treatments was the same as previously only the sintered 

processes at 350
o
C.  

 

*Catalyst layer. Catalyst layer prepared from platinum supported carbon black 20 wt% Pt/C and 

30wt% Teflon. Firstly a homogenous suspension was prepared by mixing and ultrasonic in the 

beaker containing platinum-supported carbon black 20 wt% and 30 wt% Teflon with isopropyl 

alcohol and water as solvent with appropriate ration. This mixing takes 30 min at room 

temperature, in ultrasonic machine model; until a homogenous solution is obtained with The  

speed of ultrasonic was 15 %. The ink was applied onto the diffusion layer (PTFE/C) into two or 

three micro-layers using spraying method and casting, and then dried at 100
o
C for one hour to 

remove the solvents (water and alcohol). Finally the electrode was baked at 260
o
C for 1h in an 

oven to remove the residual surfactant in the catalyst layer, and then sintered at 350
o
C for 1h. 

Finally the loading for anode and cathode 0.3 mgPt/cm
2
. The second layer for catalyst layer is 

electrolyte layer (Nafion


), this layer was coated using manual brush method and the weight of 

Nafion


  was 0.8-0.9 mg/cm
2
. 

 

II.1.2 Membrane treatments 

Treatment of Nafion


  membrane sheet of Nafion


 (112 and 117) membrane (25 cm
2
) as 

previous work [19]. First cleaned with distilled water using backer and heater at 80-90
o
C, 

followed by heating in 5% of H2O2 Baker.Inc for one hour at 70-80
o
C (to remove organic 

impurities). It was then heated in 0.5M H2SO4 Baker for one-hour at 70-80
o
C. The H2SO4 was 

removed by repeated washing treatment in boiling water. The membrane was then stored in dark 

for overnight in distillated water before assembled with the electrodes. 
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II.1.3 Membrane Electrodes Assembly (MEA) 

The electrodes with E = 0.3 mgPt/cm
2
 and membrane were incorporated in to a single cell 

assembly by the hot pressing procedure, using Press (Scientific Press-Motorized Hydraulic 20 

tons), at temperature 120
o
C and pressure 1000 psi for 2-3 min. Then the membrane electrode 

assembly was cooled at room temperature for 30 minutes, than MEA Fig II.3 fixed in 25 cm
2
 

single cell supply from ElectroChem equipped by two graphite plates, and the ribbed channels 

for the distribution of reactant gases behind the porous gas diffusion electrodes, a gasket 

containing the gas inlet and outlet, a copper plate used as the current collector from the fuel cell 

is positioned behind each of the graphite plates. (MEA) incorporates in electroChem.Inc single 

cell with the surface area 25 cm
2
.the single cells connected to GasHub.Ltd test station equipped 

by two humidifier for oxygen and hydrogen that can operated with different humidifiers 

temperature. Two flow controllers for hydrogen and oxygen, this test station connect to the 

digital voltlab computer to get single cell output voltage, versus current density, and also power 

density. 

 

Figure II.3 Membrane Electrode Assembly (MEA) 

 

II.1.4 Single cells components for proton exchange membrane fuel cells (PEMFCs)  

Proton exchange membrane incorporate in single to generate the power needed. The single cell 

(PEMFCs) contains generally: 

*MEA as the main component (Anode cathode separately by membrane) and placed between 

two graphite plates with Teflon gasket as appear in Fig II.4.a-b. 
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*Graphite plate with gas channel to facilities flowing the gases (the Air and Hydrogen) to the 

anode and cathode, usually this graphite should be a high electric conductivity, and use to collect 

the amount of the current from the electrode. 

*Copper plates; copper consider as the high conductivity for this reason most of fuel cell  

system use Copper or Aluminum (light), which .the copper plates use to conduct current 

produced by the system , usually use the copper because is a good conducted for current.  

 

 

Figure II.4.a-b Component od single cell for proton exchange membrane fuel cells(PEMFCs) 

 

II-1.5. Design of operating system for proton exchange membrane fuel cell system 

(PEMFCs) 

The major components for proton exchange membrane fuel cell are  presented in Figure II.5 that 

designed and operation in previous work [19]; the operating of single cell  in this work we and 

use the Gas Hub test station (Singapore) in fuel cells Lab  Ukm. The mean components for this 

test station used for proton exchange membrane fuel cells are: two cylinders of gas (H2, Air), two 

humidifiers, Two mass flowrate controller, two gauge pressures to control gas pressures for Air 

and hydrogen and the last the test station is retated the computer system to measure the current, 

voltage and also the power. 
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Figure II.5 Single cell test station for proton exchange membrane fuel cell system (PEMFCs) 

 

II.2 Analysis Methods 

II.2.1 Scanning Electron Microscopic (SEM)  

Scanning Electron Microscopic (SEM) used to identify the surface of sample and catalyst 

distribution and also the phases presented in the surface. 

Eight samples were prepared for conducting this experiment. The size of each sample is 

about one centimeter square (1 cm
2
). The samples consist of catalyst layers for electrode 

prepared 10wt% Pt/C loaded 0.38 mgPt/cm
2
, the prepared diffusion layer, the cross section of the 

membrane electrode assembly without diffusion layer loaded 0.38mgPt/cm
2 

,
 
the commercial 

electrode (E-TEK) 10 wt% Pt/C loaded 0.4 mgPt/cm
2
. Second the catalyst layer for electrode 

loaded 0.3mgPt/cm
2
 using 20wt% Pt/C, the catalyst layer for electrode loaded E = 0.3mgPt/cm

2
 

using 20wt% Pt/C using Nafion solution, and the cross section of the membrane electrode 

assembly using Nafion 112.  
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II.2.2 X - Ray Diffraction (XRD) Analysis 

The goal of catalyst characterization by XRD is to have information  on the crystal structure of 

the metal nanoparticles. Information on  platinum crystallite size and crystallinity of the 

nanoparticles allow correlation with the activity. 

 

II.2.2.a Apparatus 

The apparatus used for the analysis of X-ray diffraction is a Bruker D8 Advance Bragg-Brentano 

equipped with a copper anticathode powered 00kV and 40 mA. The copper anticathode generates 

radiation of length wave, Cukα1 = 1.54060 Å and = 1.54443 Å Cukα2. The resolution function 

instrumental is obtained by the refinement of a diffractogram of the solid.the machine related to 

computer with Free software Fitik is used to deconvolute the peaks diffraction. 

 

II.2.2.b Sample preparations 

 four samples passed to the XRD analysis,  Raw Material (Powder 20 wt%), EbT (Electrode 

before Test), ECaT(Electrode –Cathode-After Test), sample was prepared each sperately using 

hold powder as shown in the Fig II.6.a-b. Figure 6.a shown the XRD machine and sample holder, 

the catalyst powder was putin the holder cuerfully with smouth distribution of Pt 20 wt% 

prticules using a glass to avid the toughness, it’s the same for the rest of samples. The sample 

holder with the sample placed in the XRD support for analysis.     

 

Figure II.6. a  XRD Analysis machine with the  sample holder 
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Figure II.6.b XRD samples (Powder and ECaT ) for electrode preparation for proton exchange 

membrane fuel cells(PEMFCs) 

 

XRD (X-ray diffraction is) for the samples using the scane type 2Th/T start from 5- 80 end, with 

the step size  0.025 o . The Timing for one step is 0.1s.The XRD machine operating with 

Generator 40 Kv, 40mA, UKM Applied Physic Dept Malaysia. 

 

II.2.3 TEM analysis: The catalyst supported carbon 20 wt% was characterized by TEM analysis 

using a Philips CM 120 microscope as shown in the Fig II.7. The two samples dissolved in 

alcohol (isopropyl l-2). To prepare the sample, a small Drop of the solution was put on an Au 

grid and the solvent was evaporated.  

 

Figure II.7 TEM Machine using a Philips CM 120 microscope Ukm. 
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II.2.4 Surface Analysis   X-Ray Photo-Electron Spectroscopy (XPS) 

Electrode samples with a thickness of 400 m in average and surface area of 1cm
2
 was initially 

prepared. The electrode sample surfaces were cleaned to avoid any contamination by wrapping it 

with clean aluminum foil. Solid sample was directly analyzed without any further treatment. 

Electrode samples were analyzed by X-ray Photoelectron Spectroscopy (XPS) using 

XSAM-HS spectrometer from KRATOS equipped with Magnesium as an X-ray source (Mgk). 

XPS measurement was made in ultra-high vacuum to allow the photoelectrons to reach the 

detector without striking a gas atom and avoid the contamination of the clean surface. The gate 

valve was opened slowly and the sample was inserted using special arm. The sample was left in 

chamber valve (SAC) and before the gate valve was again closed. The vacuum was left for a few 

hours until the pressure reached about 10 
-6

 Torr, before analysis was carried out. The XPS 

measurement parameters used are listed in the Tab II.1. 

Table II.1 XPS measurement parameters 

Technique XPS 

Scan Type Spectrum 

X-ray anode Magnesium (Mgk) 

Exciting energy 1253.6 Ev 

Gun Current 10Ma 

Gun Voltage 12 Kv 

Analyzer mode FAT 

Magnification ELECSTAT 

Pass energy 20 eV for narrow scan and  

160 eV for wide scan 

Maximum Sweep 1 

Fat Code 3 
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Introduction 

This chapter consists: first of the analysis techniques for different structures 10 wt% Pt/C and 20 

wt% Pt/C, which analyzed by SEM, XPS, for the 10 wt% Pt/C structure for diffusion layer and 

catalyst layer. Second is the operating of electrode in single cell for 20 wt% Pt/C more than 100 

hours .third SEM, XPS, XRD, TEM for electrode (cathode) 20 wt% Pt/C Analysis after 

aggressive operating condition as pressures effect, humidifier temperature, flow rate of reactants 

and the last is making a model explain the effect of these parameters as pressure, cell 

temperature and catalyst for electrode loaded 0.38 mgPt/cm
2
 using 10 wt% Pt/C. 

 

III.1. Scanning Electron Microscopy (SEM) 

The samples were analyzed to identify the surface and catalyst distribution. The first structure for 

electrode 10wt% Pt/C loaded 0.38 mg/cm
2
, Fig III.1.a shown the surface for diffusion Layer 

(GDL) contain carbon black and Teflon binder (PTFE/C) no catalyst was observed, for the Fig 

III.1.b represent the Scanning Electron Microscopy of catalyst layer (Pt/C/PTFE) 10 % Pt/C 

loading 0.3 mgPt/cm
2 

that showed the catalyst as slight particles with the good distribution on the 

surface of electrode  naa the Fig III.2.a shown the Scanning Electron Microscopy of E-TEK 

electrode 10 % Pt/C loading 0.4 mgPt/cm. the electrode prepared with the diffusion layer (GDL) 

has a good catalyst  distribution compared to the commercial electrode (E-TEK). Fig III.2.b 

shown the cross section of membrane electrode assembly (MEA) without diffusion layer (GDL), 

which can observe the catalyst layer contact direct to the baking layer (carbon cloth).this contact 

reduce the efficiency of gas diffusion electrode.  
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For the second electrode structure with the loading  0.3mg/cm
2
 using 20wt% Pt/C,this structure 

analyzed by SEM to identify the distribution of the catalyst layer and also diffusion layer (GDL). 

Fig III.3.a Shown the diffusion layer almost the same as before in the first structure , that 

can observe the distribution of teflon (PTFE) all over the layer, and Fig III.3.b shown the surface 
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of electrode without Nafion


  solution, Which shown the catalyst distribution with some 

agglomiration mentioned by yellow circles. Figure III.4.a shown the same electrode but with 

Nafion


  solution using brush method and the Figure III.4.b shown the SEM of electrode 

assembly using membrane Nafion


112. 

 

 

 

III.2 XPS Technique 

XPS analyses for Proton exchange membrane fuel cells (PEMFCs) in this work consist to 

analyse two electrodes structures 10 wt% Pt/C and 20 wt% Pt/C. 
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The first structure 10 wt% Pt/C consist to characterize the surface of electrode with diffusion 

layer (GDL, Catalyst layer prepared electrode, and the Catalyst layer E-TEK electrode 

(commercial). 

Second Structure is 20 wt% Pt/C consists to characterize the electrode before test (EbT), and 

cathode after test (ECaT) with thickness of 300-400 m and surface area of 1cm
2
for both.  

XPS analysis for Proton exchange membrane fuel cells (PEMFCs) electrodes for both diffusion 

layer and catalyst layer, generally give the same XPS spectra pattern except the catalyst. 

 

The wide scan XPS spectra for diffusion layer (PTFE/C), and catalyst layer (Pt/C/PTFE) 

are presented in Fig III.5.a-b with the data given in the Tables III.1 and III.2. Four major 

photoelectron peaks are presented in Fig III.5.a, and five major photoelectron peaks presented in 

Fig III.5.b. Four peaks are present in the  Diffusion layer correspond to the atom of carbon (C1s), 

fluorine (F1s), oxygen (O1s), and silicone (Si2p), which are identified by their binding energies in 

the region of 285.0 eV, 689.5 eV, 532.7, and 103.0 eV. In the catalyst layer, five peaks are 

observed corresponding to the atom of carbon (C1s), fluorine (F1s), oxygen (O1s), silicone (Si 2p), 

and platinum (Pt 4f) which are identified by their binding energies are in the region of 284.3 eV, 

689.3, 532.4 eV, 102.9 eV, and 74.1 eV. Broader and more intense peaks are identified as Auger 

peaks arising from the de-excitation of the corresponding atoms as indicated in the same spectra.  

 

The results of the XPS analysis on the prepared electrodes are in agreement with that of 

the commercial electrode (E-TEK) with the presence of the same components (C, O, F, Pt, and 

Si) as shown in the Tab III.3 except that Si doesn’t appear in the prepared electrode due  to the 

purity of platinum supported carbon black. Five major photoelectron peaks appear in (E-TEK) 

electrode correspond to the atoms of carbon (C1s), fluorine (F1s), oxygen (O1s), silicone (Si 2p), 

and platinum (Pt 4f) which are identified by their binding energies in the region of 284.5 eV, 

289.4 eV, 232.9 eV, 102.8, and 72.4 eV respectively. 
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Table III.1 Semi-quantitative analysis of (Pt/C/PTFE) catalyst layer using XPS technique 

Peak BE (eV) FWHM 

Ev 

Atomic 

Conc%  

Mass Conc% 

C 1s  285.0 1.6 59.5 47.5 

O 1s  532.7 3.7 7.9 8.5 

F 1s  689.5 3.0 28.5 36.0 

Si 2p  103.0 1.3 3.8 7.2 

Pt 4f 73.5 0.19 0.05 0.6 

 

Table III.2 Semi-quantitative analysis  of  (PTFE/C) diffusion layer of using XPS technique 

Peak BE(eV) FWHMeV Atomic 

Conc % 

Mass 

Conc% 

C1s 284.3 2.2 57.98 44.96 

O1s 532.4 3.1 6.62 6.85 

F1s 689.3 2.8 32.93 40.43 

 Si1s 102.9 0.2 2.17 3.94 

 

Table III.3 Semi-quantitative analysis of (E-TEK) electrode using XPS technique  

Peak BE(eV) 

 

FWHM 

EV 

Atomic 

Conc % 

Mass 

Conc% 

C1s 284.5 1.1 53.7 41.8.2 

O1s 532.9 1.49 2.9 3.0 

F1s 689.4 1.9 41.7 51.3 

Si1s 102.8 0.6 1.4 2.6 

Pt4f 72.4 0.4 0.08 2.6 
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Figure III.5.a XPS survey spectrum of a- (PTFE/C) and b- (Pt/C/PTFE) catalyst layer electrode 

 

XPS can be used for semi-quantitative analysis based on the peak area of individual 

atoms. The results for the PTFE/C diffusion layer and the Pt/C/PTFE catalyst layer samples are 

shown in the Tab III.1 and Tab III.2 Narrow scan of each element is shown in Figures III.5.a and 

III.5.b for both the diffusion layer and the catalyst layer. An intensive peak is observed whenever 

there is a high amount of element present in the electrode. In our case, carbon and fluorine give 

intensive peaks in the PTFE/C diffusion layer and in the Pt/C/PTFE catalyst layer  

The elemental or atom compositions represent the elemental compositions at about 10-20 

atom layers from the sample surfaces, which are expected on the elemental composition surfaces 

of the samples. The compositions of carbon for both samples are slightly higher, which may be 

due to some sample contamination. Narrow scan for Pt 4f in Fig III.5.a shows no platinum at all.  

 

2.1 Carbon (C1s) 

C1s peak is very important peak in any XPS studies because all of the charging effects is 

corrected to graphite carbon (C1s) at 284.5 eV.  

The C1s core level spectrum of the PTFE/C diffusion layer is presented in Fig III.6.a and its curve 

fitting parameters for carbons are presented in Tab III.4.a.  

 

Fig III.6.a shows that the C1s peak at 285.0 eV is  broad with FWHM = 1.3 eV. The best 

fit for carbon C1s peak yields six peaks at binding energies 284.5 eV, 285.7 eV, 287.0 eV, 289.3 
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eV, 292.1 eV, and 294.9 eV. The close reading of the energies is a result of good conductivity 

and macroscopic extent to the structural integrity, as observed in graphite [72]. 

The carbon C 1s peak at 284.5 eV is assigned to the graphite carbon atom or -C not bonded to 

either F or O atom. The second peak at 285.7 eV is attributed to the carbon atom C-O. The third 

peak at 287.0 eV is attributed to carbon atom attached to the oxygen atom C=O. The fourth peak 

at 289.3 eV is ascribed to carbon atom attached to the fluorine atom –CF. The fifth peak at 292.1 

eV is ascribed to the carbon atom attached to –CF2 atoms. The sixth peak at 294.9 eV is ascribed 

to the atom carbon attached to –CF3.  

 

Figure III.6.b shows that the C 1s core-level spectrum of the Pt/C/PTFE catalyst layer 

exhibits similar features to those shown in Fig III.6.a for PTFE/C diffusion layer. Figure III.6.b 

shows that the C 1s peak at 284.3 eV is broad with FWHM = 1.4 eV. Figure III.6.b shows the C1s 

spectrum treated by catalyst supported carbon, with the aid of the assignment of the fluorine 

peaks. The curve fitting C1s spectrum yields six component peaks as shown in Fig III.6.b, except 

for one peak with a small intensity about 4% at binding energy 289.1 eV corresponds to carbon 

attached to the hydrogen and fluorine atoms (-CHF). It is evident that the –CF2 and –CH3 groups 

obviously stem from the perfluoro functional groups as demonstrated in [73]. In our case, the 

appearance of –CH and -C- groups should be reasonably ascribed to the cross-linking between 

the main polymeric chains, and the –CF2 components which dominate on the surface more than 

the –CF and –CF3 containing peaks as presented in Fig  III.6.b. The second peak at 285.8 eV is 

due to the oxygenated state of the metal/oxygen environment (C-O-Pt) which forms the principal 

difference between the PTFE/C diffusion layer and the Pt/C/PTFE catalyst layer. The change in 

intensities of peaks, especially at 285.8 eV and 292.4 eV may be due to the interaction between 

the catalyst and the matrix of the PTFE/C diffusion layer. 
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Figure III.6.a Cure Fitting XPS-spectra for carbon (C1s) a)-(PTFE/C) and b- (Pt/C/PTFE) catalyst 

layer electrode 

 

Table III.4.a XPS parameters for carbon (C1s) curve fitting for the diffusion layer (PTFE /C) 

Component 

name 

Model 

name 

BE(eV) 

(corrected) 

FWHM 

Ev 

Intensity(%) Quant’n 

 Factor 

Assign 

C1speak1  Gaussian 284.5 1.3 

 

50.2 0.25  C 

C1s peak 2 Gaussian 285.7 1.3 

 

17.2 0.25 -C-O 

C1s peak 3 Gaussian 287.0 1.3 

 

8.5 0.25 -C =O 

C1s peak 4 Gaussian 289.3 1.3 

 

4.6 0.25 -CF 

C1s peak 5 Gaussian 292..1 1.3 

 

10.5 0.25 -CF2 

C1s peak 6 Gaussian 294.9 1.3 

 

6.8 

 

0.25 -CF3 

 

Table III.4.b XPS parameters for carbon (C1s) curve fitting for the Pt/C/PTFE catalyst layer  

Component 

Name 

Model 

Name 

BE (eV) 

(Corrected) 

FWHM 

eV 

Intensity Quant’n 

Factor 

Assign 

C1s peak1 Gaussian 284.5 1.4 

 

36 0.25 -C 

C1s peak 2 Gaussian 285.8 1.4 

 

22 0.25 -C-O-Pt 

C1s peak 3 Gaussian 287.5 1.4 

 

6.6 0.25 -C =O 

C1s peak 4 Gaussian 289.1 1.4 

 

4.3 0.25 -CHF 

C1s peak 5 Gaussian 290.2 1.4 6.6 0.25 -CF 

C1s peak 6 Gaussian 292.4 1.4 

 

16.6 0.25 -CF2 

C1s peak 7 Gaussian 293.9 1.4 

 

7 0.25 -CF3 
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2.2 Oxygen (O1s) 

The narrow scan XPS-spectra for oxygen is shown in Figures III.7.a and 7.b, which the curve 

fitting parameters for oxygen are presented in Tables III.5.a and III.5.b. Fig  III.7.a shows that 

for the PTFE/C diffusion layer, the O 1s peak at 532.7 eV is broad with FWHM=2.1eV. The best 

fit for oxygen O1s peak yields three peaks at 530.0 eV, 532.3eV, and 533.9 eV, which correspond 

to the different chemical states C-O, O=C, and H-O-H, respectively. This fit internal exists C-O 

with that obtained in C1s as demonstrated (that is mean the oxygen atom bond with carbon atom 

during the contact carbon oxygen) the in curve fitting of C 1s spectrum Fig III.7.a.This oxygen 

concentration is due to the environment [74]. 

 

The O 1s spectrum of the Pt/C/ PTFE catalyst layer as shown in Fig III.7.b, has a similar 

shape to that of the PTFE/C diffusion layer, in which the O1s peak at 532.4 eV is broad with 

FWHM=2.0 eV. The best fit for oxygen O1s peak yields three peaks at 530.7 eV, 532.3eV and 

533.9 eV, which may correspond to the shift of the centroid to a slightly higher binding energy. 

This is due to the incorporation of the catalyst in the electrode layer. The peaks positioned at 

530.7 eV, 532.3 eV and 533.9 eV are almost similar to those observed for the PTFE/C diffusion 

layer. However the peak at 530.7 eV is assigned to the metal oxygen bond formation Pt-O 

[75,76].. The second peak is ascribed to the oxygen atom attached to the carbon atom C=O and 

the third peak at 533.9 eV corresponds to the oxygen atom attached to the two-hydrogen atoms 

H-O-H [77]. 

 

Table III.5.a XPS parameters for oxygen (O1s) curve fitting for the PTFE/C diffusion layer  

Component 

name 

Model 

Name 

BE (eV) 

(corrected) 
FWHM 

eV 

Intensity  
Quant’n 

Factor 

Assign 

 

 O1s peak 1 Gaussian 530.0 2.1 28.3 0.6 C-O 

O1s peak 2 Gaussian 532.3 2.1 53.0 0.6 C =O 

O1s peak 3 Gaussian 533.9 2.1 18.1 0.6 H-O-H 
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Table III.5.b XPS parameters for oxygen (O1s) curve fitting for the (Pt/C/PTFE) catalyst layer  

Component 

name 

Model 

name 

BE (eV) 

(corrected) 
FWHM 

eV 

Intensity Quanta’s 

factor 

Assign 

O1s peak 1 Gaussian 530.7 2.0 25.6 0.6 Pt- O 

O1s peak 2 Gaussian 532.3 2.0 52.6 0.6 C = O 

O1s peak 3 Gaussian 533.9 2.0 21.8 0.6 H-O-H 

 

Figure III.7 Cure Fitting XPS-spectra for Oxygen (O1s) a-(PTFE/C) and b- (Pt/C/PTFE) catalyst 

layer electrode 

 

2.3 Fluorine (F1s) 

Fluorine is the most important element in the structure of electrode because it is used as a binder 

for Pt/C and wet proofing of the electrode. 

The narrow scan XPS-spectra for fluorine are shown in Figures III.8.a-b. The curve 

fitting parameters for fluorine are presented in Tables III.6.a-b. Fig III.8.a shows that for the 

PTFE/C diffusion layer, the F1s peak at 689.5 eV is broad with FWHM=2.4 eV. The best fit for 

fluorine F1s peak yields two peaks at 689.2 eV, and 692.2 eV, which are attributed to the 

presence of two different environments with a chemical shift of 3 eV. The peak at 689.2 eV 

corresponds to CF2 in the diffusion layer as reported in the literature [77] and the peak at 692.2 

eV is correspond to –CF3 type of interaction. On the other hand, the peak at 689.2 eV 

corresponds to CF2 in the dry state as shown in Fig III.8. The minimum peak at 692.2 eV 

correspondents to the CF2 in wet state (dissolved in water) as shown in Fig III.8. 
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Figure III.8 b shows the F1s spectrum of the Pt/PTFE/C catalyst layer, where F1s peak at 

689.3 eV is broad with FWHM=2.3 eV. The best fit for fluorine F1s peak yields two peaks at 

689.2 eV, and 690.8 eV, which can be attributed to the presence of two different environments. 

The maximum peak is at 689.2 eV, and the minimum peak is at 690.8 eV with a chemical shift of 

1.6 eV. The peak at 689.2 eV corresponds to CF2 in the catalyst layer [77].  

the peak at 690.8 eV corresponds CF3.  

 

Table III.6.a XPS parameters for fluorine (F1s) curve fitting for the PTFE/C diffusion  

Component 

name 

Model 

name 

BE (eV) 

(corrected) 

FWHM 

EV 

Intensity Quant’n 

Factor 

Assign 

F1s peak 1 Gaussian 689.2 2.4 72.0 1.00 -CF2 

F1s peak 2 Gaussian 692.2 2.4 27.5 1.00 -CF3 

 

Table III.6.b XPS parameters for fluorine (F1s) curve fitting for the Pt/PTFE/C catalyst layer  

Component 

name 

Model 

name 

BE (eV) 

(corrected) 

FWHM 

EV 

Intensity Quant’n 

Factor 
Assign 

F1s peak 1 Gaussian 689.2 2.2 78.7 1.00 -CF2 

F1s peak 2 Gaussian 690.8 2.3 21.4 1.00 -CF3 

 

Figure III.8 Cure Fitting XPS-spectra for Fluorine (F1s) a-(PTFE/C) and b- (Pt/C/PTFE) catalyst 

layer electrode 
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2.4 Silicon (Si 2p) 

Silicon is also present in the electrode as silicon dioxide (SiO2). Silicon comes from impurity in 

the carbon and exists in small quantity. In the fitting curve of the spectrum yields SiO2 as a 

single peak at 102.3 eV in the diffusion layer. According to the representative chemical shift data 

for Si2p, the binding energy for SiO2 should be at 102.5 eV [77]. In the catalyst layer the peak is 

not very clear and the SiO2 exists in a trace amount as SiO2 as show in Fig III.9.a. 

Table III.7.a XPS parameters for silicon (Si 2p) curve fitting for the PTFE/C diffusion layer  

Component 

name 

Model 

Name 

BE(eV) 

(corrected) 

FWHM 

EV 

Intensity  Quant’n 

Factor 

Assign 

Si 2p peak 1 Gaussian 102.3 3.3 77.4 0.27 Si-O-Si 

 

Table III.7.b XPS parameters for silicon (Si 2p) curve fitting for the Pt/PTFE/C catalyst layer  

Component 

name 

Model 

Name 

BE(eV) 

(corrected) 

FWHM 

EV 

Intensity  Quant’n 

Factor 

Assign 

Si 2p peak 1 Gaussian 102.5 3.3 68.0 0.27 Si-O-Si 

 

Figure III.9 Cure Fitting XPS-spectra for silicon (Si2p) a-(PTFE/C) and b- (Pt/C/PTFE) catalyst 

layer electrode 

 

2.5 Platinum (Pt 4f) 

The Pt 4f spectrum of the PTFE/C diffusion layer shows no existence of platinum in this layer as 

shown in Fig III. 10.a. Fig III. 10.b shows that the Pt 4f spectrum of the Pt/PTFE/C catalyst layer 

at 74.1 eV is broad with FWHM = 2.5 eV. The best fit for platinum Pt4f peak yields two intense 
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peaks of 4f 7/2 and 4f 5/2 at the binding energies of 71.8 eV and 75.0 eV, respectively. The Pt 4f 

7/2 and Pt 4f 5/2 signals are asymmetrically shaped towards the higher binding energies. The peak 

at 71.8ev (Pt 4f 7/2) represents Pt
o
 while some of the Pt oxidize from Pt 

o
 to Pt-O at binding 

energy of 75.0 eV [78]. 

 

Table III.8 XPS Parameters for platinum (Pt 4f) curve fitting for the Pt/PTFE/C catalyst layer  

Component 

name 

Model 

name 

BE(eV) 

(correcte) 

FWHM 

eV 

Intensity Quant’n 

Factor 

Assign 

Pt4f 7/2 peak1 Gaussian 71.8 2.5 56.3 4.4 Pt
o
 

Pt4f 5/2 peak 2 Gaussian 75.0 2.5 43.6 4.4 Pt-O 

 

Figure III.10 Cure Fitting XPS-spectra for platinum (Pt 4f) a-(PTFE/C) and b- (Pt/C/PTFE) 

catalyst layer electrode 

III.3 Electrode Degradation  

III.3.1 Operating cathode in a single cell 25 cm
2
  

The MEA are fixed in single cell 25cm
2
 supply from ElectroChem, equipped with two graphite 

plates with a ribbed channel for the distribution of reactant gases behind the porous gas-diffusion 

electrodes, a gasket containing the gas inlet and outlet, and a copper plate used as the current 

collector from the fuel cell positioned behind each of the graphite plates. The single cell is 

connected to a GasHub,Ltd. test station, which is equipped with two humidifiers for oxygen and 

hydrogen that can operate at various humidifier temperatures, and with two flow controllers for 

hydrogen and air. This test station was connected to the digital voltlab computer to obtain a 

single cell output voltage versus current density and power density. 
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The electrode prepared with 0.3 {mgPt/cm
2
} was operated in a single cell 25 cm

2
 with aggressive 

conditions of the parameters such as: pressures, humidifier temperatures, flow rate of air 

/hydrogen. The values of parameters were measured during the operation, and the on/off switch 

of the single cell. 

Fig III.11.a shows the variation in the air flow rate applied to the single cell 25 cm
2
 at 

room temperature (≈30° C) and at pressures of air/H2 = 2/1 bar. From the plotted voltage and 

power density vs. current density, the increasing flow rate of air from 0.4-0.6-0.9-1.2-1.8-2.4 and 

3 L/min with a fixed hydrogen flow rate at 0.6 L/min increased the power density and current 

density. A flow rate of 3 L/min produces the best values for the open circuit voltage (OCV) Eo = 

0.81 V, current density {103.96 mA/cm
2
} and power density {33.12 mW/cm

2
}, compared to the 

other air flow rate conditions. This explains the free water in the electrode when oxygen 

reduction occurs in the cathode and the lower water resistance at the electrode surface (electrode-

graphite plates).  

 

 

Figure III.11.a Cell voltage and power density vs. current density plots of single cell (25 cm
2
) 

with various air flow rates. b- Cell voltage and power density vs. current density plots of single 

cell (25 cm
2
) with various hydrogen flow rates. 

 

Fig III.11.b shows the variation in the hydrogen flow rates applied to the single 25-cm
2
 

cell at room temperature (≈30°C) and a pressure of air/H2 = 2/1 bar, using 20 wt% Pt/C loaded 

0.3 mgPt/cm
2
. The voltage and power density vs. current density plots show the increase of the 
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voltage and power density with decreasing hydrogen flow rate from 0.3-0.6-0.9-1.2 and 1.8 L.  A 

hydrogen flow rate of 0.3 L/min produces better values for the open circuit voltage (OCV) Eo = 

0.83 V, current density = 103.96 mA/cm
2
 and power density = 31.56 mW/cm

2
 compared to for a 

hydrogen flow rate at 1.5 L/min corresponding to Eo= 0.77 V, current density = 91.96 mA/cm
2
 

and power density 30.72 mW/cm
2
. The best value for the hydrogen flow rate is 0.3 L/min and for 

air is 0.6 L/min; these values produce better values for the open circuit voltage, power density 

and current density as shown in Table 1, the results of which were in accordance with the 

stoichiometry factor ½ from the H2+ ½ O2 → H2O equation. The low flow rate of hydrogen and 

high air flow rate with the appropriate ratio contribute to attaining high performance. Fig. III.12.a 

shows the voltage and power density vs. current density plots of a single cell (25 cm
2
), operating 

with various humidifier temperatures (55, 65, 75°C) for air and for hydrogen plus 5°C (TAir + 

5°C), using same electrode with an operating flow rate of air/H2 = 1.2/0.6 L/min at room 

temperature (≈30°C) and pressures of air/H2 = 2/1 bar. The effect of the humidifier temperatures 

produces better performance at low humidifier temperatures (55/60 H2/air), as demonstrated in 

Fig III.12.a and Tab III.9. 

 

Table III.9 Characteristics of the electrode at various air/H2 flow rates 

Air flow rate (L/min) 0.4 0.6 1.2 1.8 2.4 3 

Eoair (V) 0.81 0.8 0.8 0.8 0.79 0.8 

bair (V/dec) 0.04 0.03 0.03 0.03 0.03 0.03 

P {mW/cm
2
} 30.56 28.48 29.4 28.68 31.24 33.12 

I {m/cm
2
} 95.96 67.96 79.96 83.96 91.96 103.96 

 

H2 flow rate (L/min) 0.3 0.6 0.9 1.2 1.5 

EoH2 (V) 0.83 0.8 0.77 0.77 0.77 

b H2 (V/dec) 0.05 0.01 0.02 0.02 0.03 

P {mW/cm
2
} 31.56 30.36 30.24 30.72 30.72 

I {m/cm
2
} 103.96 55.96 91.96 91.96 91.96 
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Figure III.12.a Cell voltage and power density vs. current density plots of single cell (25 cm
2
) 

with various humidifier temperatures. b- Cell voltage and power density vs. current density plots 

of single cell (25 cm
2
) with various air/H2 pressures ratio. 

 

Fig III.12.b shows the voltage and power density vs. current density plots of a single cell 

(25 cm
2
) with various pressures ratio of air/H2, and a flow rate of air/H2=1.2/0.6 L/min at room 

temperature (≈30°C), which demonstrated that the increasing pressure ratio of air/hydrogen 

increased the current density and power density and the performance of the other electrode 

parameters. Tab III.10 shows the results for an air/H2 pressure ratio of equal to 3/2 the power 

density, 35.48 {mW/cm
2
}, and a current density 99.96  mA/cm

2
} compared to the results for the 

low pressure ratio. 

 

Table III.10 Characteristics of electrodes with various pressure ratios and humidifier  

temperatures of air/H2 

Pressures ratio of air /H2 ( 

bar) 

 1/0.5 2/1.5 3/2 

Eo air /H2 (V) 0.81 0.80 0.83 

b air /H2 (V/dec) 0.03 0.03 0.04 

P {mW/cm
2
} 32.56 28.40 35.48 

I {m/cm
2
} 91.96 59.96 99.96 
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Humieifidi tderdiareide  

air/H2(°C) 

55/60 

 

65/70 75/80 

EoAir (V) 0.81 0.81 0.81 

bAir (V/dec) 0.04 0.04 0.04 

P {mW/cm
2
} 25.16 24.38 21.88 

I {m/cm
2
} 80.0 80.0 68.0 

 

III.3.2  SEM 20 wt% Pt/C 

For the second electrode structure with the loading  0.3mg/cm
2
 using 20wt% Pt/C,this structure 

analyzed by SEM to identify the distribution of the catalyst layer and also diffusion layer (GDL) 

as presented as : Fig III.13.a. Shown the diffusion layer almost the same as before in the first 

structure , that can observe the distribution of teflon (PTFE) all over the layer, and Fig III.13.b 

shown the surface of electrode without Nafion


 solution, Which shown the catalyst distribution 

with some agglomiration mentioned by yellow circles. Fig III.14.a. shown the surface of 

electrode with Nafion


 solution, Which shown the catalyst supported carbon  distribution with 

some agglomiration. Figure III.14.b shown the cross section of membrane assembly (MEA) 

using Nafion


112. 
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III. 3. 3 XPS Analysis for Cathode before test (EbT) and after test (ECaT) 

XPS analysis is one of the physical techniques to identify the composition and chemical state for 

elements presented in the electrode surface. Two samples of electrodes passed to XPS analysis. 

Electrode (Cathode) before test (EbT), and cathode after test (ECaT) with catalyst layer thickness 

30-40 m in the average and surface area of 1cm
2 

for both electrodes.This analysis contains two 

steps one is electrode before testing EbT another is cathode ECaT after 100 hours of operation. 

These two electrodes (EbT, ECaT) were loaded of 0.3 mgPt /cm
2
 using 20 wt% Pt/C. The wide scan 

XPS spectra for the electrode 20 wt% Pt/C before operation (testing) and after testing (EbT, ECaT) 

are presented in the Fig 15.a.b. five peaks corresponding to the atom of carbon (C1s), fluorine 

(F1s), oxygen (O1s), platinum (Pt 4f) and sulfur (S2p). These two Fig 15.a.b. give us a preliminary 

idea on the microstructure aging for electrode operating in the system. The changes in both 

electrodes are clearly by changing in electrode compositions as carbon peak, fluorine, oxygen, 

platinum and sulfur. 
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Figure III.15.a.b XPS survey spectrum of catalyst layer before testing (EbT) and after testing 

(ECaT). 

The semi-quantit 

ative analysis based on the peak area of individual atoms. The results for the catalyst 

layer of electrode 20 wt % Pt/C before testing and after testing (EbT, ECaT) catalyst layer samples 

are shown in the Tab III.11 Narrow scan of each element is shown in Fig III. 16.a..b, which 

shown a clear increasing in carbon C-C (Graphite) state and decrease in CF2 [79], with slight 

increasing in  C=O, and decreasing in CF3 in ECaT compared to EbT . in PEMFC the cathode 

potential always bigger than anode hydrogen oxidation from 200 mV to 400 mV for oxygen 

potential [2], for this reason the electrochemical reactions in electrode operating in single cell 25 

cm
2
 effect on the microstructure for cathode and anode, but more in cathode . the new chemical 

state appear as detachments  between carbon and fluorine, and carbon oxygen bonds as oxidation 

states give the high amount presented in peaks changes. F 1s from 27.41 EbT decrease to 26.74 

ECaT with the difference of 0.67% mass concentration. This due to break bound from -(CF2)n- to 

C–O-(CF2)n ,The C 1s  from 68.72 EbT increase  to 69.76 ECaT due the carbon corrosion during 

the operation ,with the difference of -1.04 % , in the O1s from 2.34 EbT  to 2.08 ECaT with the 

difference of 0.26% maybe replacement Pt by Carbon C to stabilize the catalyst to PtO (this 

changer due to reduction of carbon from oxygen to metal), the Pt 4f from 2.55 for EbT decrease   

to 0.82 for ECaT with the difference of 1.73%  as show in the Fig III. 17 a,b and Tab III.11 this 

percentage due to the detachment from the support and dissolution toward into electrolyte 

Nafion®  as reported by [80]. The peak at 167.861 eV correspond at O=S=O and the second 
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peak at 169.227 correspond at – SO3 (O -S-O)  with the S 2p from 0.71 for EbT to 0.61 for 

ECaT increase to 0.1% in mass concentration respectively. Furthermore carbon in presence of 

water according to the reactions: C+H2O → CO2 +4H+ +4e
−
 ≡ E > 0.207 V and C+H2O → H2 

+CO. The electrochemical corrosion of the carbon surface leads to changes in the surface 

chemistry of the carbon [81].Two intensive peaks is observed for the electrode before testing 

(EbT) and after testing ECaT but in different way for electrode after testing (ECaT). Which present 

high amount of elements fluorine -CF2 and carbon in the electrode (EbT). The C1s spectrum in 

cathode electrode 20 wt% Pt/C after operating more than 100 hours. 

C1s peak is very important peak in any XPS studies because all of the charging effects is 

corrected to graphite carbon (C1s) at 284.5 eV as reference for all binding energies. The C1s core 

level spectrum of the catalyst layer for Electrode before testing (EbT) and (ECaT) are presented in 

Fig III.16.a.b. 

 

Figure III.16.a.b Cure Fitting XPS-spectra for carbon (C1s) of catalyst layer before testing (EbT) 

and (ECaT) 
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The carbon C 1s peak at 284.5 eV is assigned to the graphite carbon atom or -C not bonded to F, 

O, S or Pt atom. The second peak at 286.285 eV is attributed to the carbon atom C-O. The third 

peak at 288.422 eV is attributed to carbon atom attached to the oxygen atom C=O. The fourth 

peak at 290.694 eV, is attributed to carbon atom attached to the fluorine atom ––CF2, and the 

fifth peak at 292.268 eV is ascribed to the carbon atom attached to Fluorine atoms -CF3. 

 

Tabl III.11 Cathode microscopic evolution (aging) for (EbT) and (ECaT). for electrode 20 wt% 

Pt/C loaded 0.3 mgPt/cm
2  

Peaks BE(ev) 

 (EbT)  

BE(ev) 

(ECaT) 

FWHM 

eV(EbT) 

FWHM 

eV(ECaT) 

Atomic 

Conc% 

(EbT)  

Atomic 

Conc% 

(ECaT) 

Mass 

Conc% 

(EbT)  

Mass 

Conc% 

(ECaT) 

MC% MA% 

F 1s  687.0 689.135 2.901 2.375 62.45 19.10 27.41 26.74 0.67 43.35 

O 1s  531.7 531.535 5.289 1.391 6.20 1.76 2.34 2.08 0.26 4.44 

C 1s  290.0 284.535 2.901 0.835 30.50 78.82 68.72 69.76 -1.04 -48.32 

S 2p  168.0 167.735 3.136 0.268 0.63 0.26 0.71 0.61 0.1 0.37 

Pt 4f 75.0 71.485 6.233 1.437 0.22 0.06 2.55 

 

0.82 1.73 0.16 

 

 

;Figure III.17.a Cathode mass concentrations for (EbT) and b- Cathode mass concentration 

degradation (ECaT) for electrode 20 wt% Pt/C loaded 0.3 mgPt/cm
2
 

The C1s core level spectrum of the cathode (catalyst layer) after testing (ECaT) for Electrode 20 wt 

% Pt/C loaded 0.3 mgPt/cm
2
 is presented in Fig III.16.b The carbon C 1s peak at 284.5 eV is 

assigned to the graphite carbon atom or -C not bonded to either F or O, S, or Pt  atom also the 

seem  as in (EbT). The second peak at 286.030 eV is attributed to the carbon atom C-O. The third 
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peak at 287.604 eV is attributed to carbon atom attached to the oxygen atom C=O, the operating 

conditions as pressure, temperature humidifiers, on/off, flow rate can make modification in the 

microstructure as carbon corrosion and others element in the electrode microstructure, The fourth 

peak at 289.819 eV, is ascribed to carbon atom attached to the fluorine atoms –CF2, and the fifth 

peak at 291.966 eV is ascribed to the carbon atom attached to –CF3 atoms. The concentrations of 

all Carbone state decrease exception the Carbone graphite increase this due to the detachment of 

carbon support from the catalyst Pt/C. 

 

Figure III.18.a-b Cure fitting XPS-spectra for oxygen (O1s) of catalyst layer before testing (EbT) 

and (ECaT) 

The O 1s spectrum of cathode after testing for Electrode (ECaT) shown in Fig III.18.b, has 

almost a similar shape to (EbT) electrode (catalyst layer) before testing only the changing in the 

concentrations. The best fit for oxygen O1s peak yields two peaks at 530.985 eV and 532.682 eV, 

which may correspond to the shift of the centroid to a slightly higher binding energy. The 

interaction between carbon and oxygen or catalyst supported carbon to oxygen atom. The peaks 

positioned at 530.985 eV and 532.682 eV are almost similar to those observed for the electrode 

before testing (EbT). However the peak at 530.985 eV is assigned to the metal oxygen bond 
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formation O-Pt The second peak at 532.682 eV is ascribed to the oxygen atom attached to the 

sulfur atom O=S=O. the concentration of  O 1s vary from 2.34 EbT  to 2.08 ECaT with the 

difference of 0.26%.  This changer due to reduction of carbon from oxygen to metal. Fluorine is 

the most important element in the structure of electrode because it is used as a binder for Pt/C 

and wet proofing of the electrode. The F1s peak at 687.0 eV is broad with FWHM=2.901eV. 

Figure III.19.a shown the best fit for fluorine F1s peak at 687.777 eV, which are attributed -CF2 

in catalyst layer for electrode before testing (EbT,). Fig III.19.b shows the best fit for fluorine F1s 

peak yields two peaks at 688.249 eV, and 689.287eV, which can be attributed to the presence of 

two different states. The maximum peak is at 689.287  eV, and the minimum peak is at 688.249 

eV with a chemical shift of 1.031 eV. The peak at 689.287 eV corresponds to C–O-CF2 in the 

catalyst layer and the peak at 688.249 eV corresponds to -CF2. The decreasing in mass 

concentration of F 1s from 27.41 EbT  to 26.74 ECaT  with the difference of 0.67%, This due to 

break bound from - (CF2) n- to C–O--(CF2)n. 

 

Figure III-19.a.b Cure fitting XPS-spectra for oxygen (F1s) before (EbT) and after testing for 

Electrode (ECaT) 
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Figure III.20.a shows the best fit for sulfur (S 2p) come from Nafion® solution. Two intense 

peaks at the binding energies of 168.148 eV and 169.299 respectively. The peak at 168.148 eV 

correspond at O=S=O and the second peak at 169.299 correspond at – SO3 (O -S-O) .   

 

 

Figure III.20.a-b Cure fitting XPS-spectra for oxygen (S 2p) of catalyst layer before testing (EbT) 

and after test (ECaT) 

 

Fig III.20.b shows S 2p spectrum and almost the same shape as EbT. In the Fig III.20.b 

shows two intense peaks of S2p at the binding energies of 167.861 eV and 169.227.respectively. 

The peak at 167.861 eV correspond at O=S=O and the second peak at 169.227 correspond at – 

SO3 (O -S-O). the mass concentration of S 2p decrease from 0.71 in EbT to 0.61 for ECaT with the 

difference of 0.1%. Fig III.21.a-b shows The Pt 4f spectrum of the catalyst layer for electrode 

before testing (EbT) and cathode after testing (ECaT). Fig 21.a. Shows that the Pt 4f spectrum of the 

catalyst layer for electrode before testing at 75.0eV is broad with FWHM = 6.233 eV and Fig 

III.21.b Shows that the Pt 4f spectrum of the cathode after testing (ECaT) (catalyst layer) at 71.485 
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broad with FWHM = 1.437 eV. Fig III. 21.a. shows the best fit for platinum Pt4f peak for 

electrode before test (EbT). Four intense peaks of 4f 7/2 and 4f 5/2 at the binding energies of 71.530 

eV , 72.526 and 74.803, 75.661 eV respectively. The Pt 4f 7/2 and Pt 4f 5/2 signals are 

asymmetrically shaped towards the higher binding energies (71.530 eV , 72.526) . The peak at 

71.530 ev (Pt 4f 7/2) represents Pt
o
 while some of the Pt oxidize from Pt 

o
 to (PtO)  at binding 

energy of 72.526 eV  [81].The second signal peaks at, 75.661 eV shaped also towards the higher 

binding energies (74.803, 75.661 eV). The peak at 74.803eV Pt
o
 and 75.661 eV PtO correspond 

to oxidation state.  

 

Figure III.21.a-b Curve fitting XPS-spectra for platinum (Pt 4f) ) of catalyst layer before and after 

testing (EbT) and (ECaT) 

 

Fig III.21.b. shows similarity fitting for platinum Pt4f peak as electrode before testing. 

Four intense peaks of 4f 7/2 and 4f 5/2 at the binding energies of 71.414 eV, 72.253 eV and 

74.667, 75. 75.682 eV respectively. The Pt 4f 7/2 and Pt 4f 5/2 signals are asymmetrically shaped 

towards the higher binding energies (71.414eV, 72.253 eV) . The peak at 71.414 eV (Pt 4f 7/2) 

represents Pt
o
 while some of the Pt oxidize from Pt 

o
 to PtO at binding energy of 72.253 eV 
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[80,82].The second signal peaks at, 75.661 eV shaped also towards the higher binding energies 

(74.667 eV, 75.682eV). The peak at 74.667 eV corresponds to Pt
o
 and 75.682eV correspond to 

Pt-Ol oxidation state. the difference between electrode before testing and cathode after test is in 

the mass concentration f 

rom 2.55 for EbT  to 0.82 for ECaT  with the difference of 1.73%,  this percentage due to 

the detachment from the support and dissolution into electrolyte Nafion


 as reported by [79]. this 

electrode degradation due to the microstructure of electrode changer in the catalyst and 

components including fluorine , carbon, oxygen and sulfur as presented in Table 11. The main 

degradation modes include Pt Catalyst particles growth and Pt migration both of these 

degradation mechanisms are believed to be closely associated with the dissolution of Pt a Pt 

oxidation/dissolution process occurs due to voltage cycling and high potentials on the cathode 

that results in movement or migration of the Pt in a dissolved state. Platinum particles losses 

accelerated when the cathode operating as start-up and shut-down [80, 83]. 

 

III. 3. 4 XRD Analyses  

XRD analysis was performed using Bruker AXS Brand machine Model D8. The anode using 

Kα1 as source of energy with wave length 1.54060 KV. The scan type 2Th/T start from 5- 80 

end, with the step size 0.025 o with Timing for one step is 0.1 s. The XRD machine operating 

with Generator 40 Kv, 40mA, UKM Applied Physic Dept Malaysia. The Deconvolution peaks 

interpretationusing a Free software Fitik® is used to deconvolute the diffraction peaks. the  

functions are used for the deconvolution of Pearson VII-type functions.Bragg's law Equation 

allows the determination of the lattice parameter and the position of the vertex of the diffraction 

peak.  

Figure 22 Presented the XRD for Pt/C 20 wt % Raw material Powder Peak no:01 .the 

cristallite size shown best cristiliite size between 35-40
o
 (2Ѳ) ,the crystallinity phase consider 

optimal for this structure Pt/C , the cristallinite size in the Area is About 81,3 A
o
, second point 

for this XRD scan, the cristallinite size in the Area 45-48
o
 (2Ѳ is About 101.1 A

o
, so the 

cristality phase decrease in Pt/C 20 wt % with increasing the cristallinite size from 81,3 A
o
 to 90 

A
o
 for the first scan  2Ѳ = 35-40

o
. the second scan point the cristallite size from  101.1 A

o
  at 2Ѳ 

=  45-48
o
 in Pt/C 20 wt % Raw material Powder to 150 A

o
 in ECat. The decreasing in the 

cristallite size decrease the phase cristalline. This is for catalyst for the support carbon the 
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changes is clear .the cristallinity size decrease from 183.7 A
o
 at 2Ѳ 22-27

o
 the cristallite size 

variee from 324 A
o
  in Pt/C 20 wt % to 637 A

o
, which incease the amourphous phace phase in 

decrease in the cristalline phase .this decreasing montre by XPS and TEM Techniques. 

 

 

Figure III.22 XRD for 1.Catalyst 20 wt% Pt/C before operation and, 2. Catalyst (Cathode) after 

operation E Cat loaded 0.3mgPt/cm
2
 

 

III. 3. 5 Transmission electron microscopy (TEM) 

TEM is a microscopy technique whereby a beam of electrons is transmitted through an ultra-thin 

specimen, interacting with the specimen as it passes through to 

 give a picture for the specimen need to analyze. The catalyst particle sizes evolution was 

characterized by TEM and energy dispersive X-ray (EDX) analysis using a Philips CM 120 

microscope/EDX analyzer equipped with a LaB6 filament. To prepare the sample, a small drop 

of the solution was put on an Au grid and the solvent was evaporated. The cycled catalysts are 

recovered by ultrasonification of the Electrode in ethanol. TEM observations allow determining 

the mean size of platinum particles and also evaluating the corrosion and degradation of the 

catalyst and carbon support However, great care has to be taken with the counting of the 

particles. In our case, only isolated-like particles with sizes lower than 6 nm were taken into 

http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Electron
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account; in each case, 12 Values of particles sizes and 12 after and before test respectively were 

measured for the statistics. For the determination of particle size, it was reasonably assumed in 

first approximation that platinum particles were sphere shape. The average particle sizes were 

calculated using the following equation: ¯d = ∑ ni di/n. The electrode before testing (EbT) and 

the electrode after testing (ECaT) are presented in Fig 23. a and b. The Pt nanoparticles, which are 

visible as darker grey/black dots on a brighter gray carbon background, are all round in shape 

with a narrow size distribution. Furthermore, the Pt distribution on the support is very 

homogeneous before test – 20wt Pt/C/Teflon solution as row material to calculate the initial sizes  

Fig III.23.a The distinctive shape of the carbon support in the Fig III.23.b are totally different 

because the detachment of the catalyst from carbon support after testing more than 100h with 

different operating conditions, and in the state a consider as fresh no much oxidation and 

agglomeration support. Furthermore the Pt particles in Fig III.23.a can appear as concentrated 

and attached to the carbon support, which give a big surface area for catalyst.On the other hand 

the Pt after testing in Fig III.23.b no much Pt particles a few point of catalyst explain catalyst 

detachment (dissolution) from the carbon support and goes somewhere toward to the membrane 

electrolyte and dissolved as spices at high voltage (0.75 V) and harsh conditions imposed for 

operating electrode [37,84]. 

 

Figure III.23 TEM of electrode 20 wt% Pt/C –a before testing and –b after testing in single cell 

25 cm
2
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The Pt/C catalyst has a mean particle size close to 4.0 nm then the effect of aggressive operating 

conditions was studied.. Clearly, it appears that the mean particle size has increased compared to 

the Pt before test from (4.14±0.9) to (5.57) nm for the fresh catalyst support carbon and after 100 

h operating. The evolution of particles sizes due the environment evolution as sonacated 

preparation, operating condition, start On/Off the operating for many times. The aggressive 

conditions as hot gas by increasing the humidifiers temperature, water accompanied the Air gas 

to the cell all these parameters change in the particles size of catalyst Pt and support carbon too. 

 

III.4 PEM fuel cell modeling 

Model for PEM fuel cell used to analyze the impact of individual fuel cell’s operating parameters 

on cell’s performance. Using the present model, it is also possible to determine the activation 

loss parameters of the PEM fuel cell. The model is well adapted for PEM cell and it incorporates 

the essential physical and electrochemical processes that happen in cell along its operation 

 

III.4.1 Electrode preparation and single cell operation in fuel cell test apparatus. 

As previous work [19, 85].electrode preparation consist, a substrate made from carbon  cloth "A" 

with thickness 350 μm, platinum-supported carbon 10 wt% Pt/C, activated carbon black, and 

Teflon (PTFE) 60 wt% have been used. Two different platinum loadings have been used in 

preparation of the electrodes. One electrode was with platinum loading 0.18 mg Pt cm
-2

; while 

the second was with platinum loading 0.38 mg Pt cm
-2

. The composition of catalyst layer was 70 

wt% Pt/C and 30 wt% Teflon (PTFE). Detailed electrode preparation can be found in reference. 

During operation of PEM fuel cells, the following processes take place within the 

electrode: (i) the reactant gases diffuse through the porous backing layer; (ii) at the gas-

electrolyte interface, the gases dissolved and then diffuse to the electrolyte-electrode interface; 

(iii) electrocatalytic reaction inside the catalyst layer precedes the gas adsorption at the electrode 

surface; (iv) ionic transport occurs in the electrolyte, but electronic transport takes place in the 

electrode.  

Oxygen and hydrogen were passed through humidifiers before being fed into the cell 

cells. Hydrogen fed into the anode at a flow rate of 140 ml min
-1

 and 1 atm. Oxygen entered the 

fuel cell through the cathode at a flow rate of 380 ml min
-1

 and 2 atm. The electrons generated 

from the anode were connected to a digital multimeter, with an external variable resistance to 
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measure the current and voltage produced by the cell. Electric conductivity was measured by 

using resistivity meter (Loresta-GP MCP-T600). The specific resistance of the gas diffusion 

layer composed of 70 wt% Pt/C and 30 wt% PTFE was measured to be 0.21 Ω cm. The 

parameters of the fuel cells used in the simulation are listed in the Table III.12. 

 

Table III.12 Experimental and calculated parameters used in the simulation 

Parameters Value Parameters Value 

Temperature, T 298 K Diffusion layer electronic 

conductivity, σd 

5 Ω
-1 

cm
-1

 

Pressure, P 1 atm Diffusion coefficient of H2 

into H2O, OH,H 22
D  

1.6x10
-4

 m
2
s

-1
 

Electrode Area 25 cm
2 

Diffusion coefficient of O2 

into H2O, OH,O 22
D  

3.11x10
-5

 m
2
s

-

1
 

Membrane thickness, lm 117 µm Diffusion coefficient of H2O 

into membrane, m,OH2
D  

3x10
-10

 m
2
s

-1
 

Diffusion layer thickness, ld 350 µm Equivalent weight, EW 1100 g mol
-1

 

2OP  2 atm Dry membrane density, dry  2020 Kg m
-3

 

2HP  1 atm   

 

III. 4. 2. Basic fuel cell operation 

PEM fuel cell consists of membrane, through which hydrogen ions diffuse from anode to 

cathode. Schematic of a PEM fuel cell is shown in Fig III. 24.  

 

The hydrogen diffuses through the electrode until it reaches the catalytic layer of the anode 

where it reacts to form protons and electrons, as shown below in the reaction:  

  eHH 222          III.1 

The protons are transferred through membrane to the catalytic layer of the cathode. Electrons 

pass through external electric circuit to cathode. On cathode side of a fuel cell, protons, electrons 

and oxygen react according to the following reaction: 
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heatOHO
2

1
e2H2 22           III.2 

Then, the overall chemical reaction of the PEM fuel cell is 

 energy heatOHO2/1H 222         III.3 

 

 

Figure III.24 Schematic of functioning principle of PEM fuel cell. 

 

III.4.3 Model formulation 

4.3.1 Electrochemical model 

The output voltage of a single cell can be defined as the result of the following [86, 87]: 

ionconcentratohmicactivationcell VVVEV          III.4 

In the equation above, E is the thermodynamic potential of the cell and it represents its reversible 

voltage; activationV  is the voltage drop due to the activation of the anode and cathode, a measure 

of the voltage drop associated with the electrodes; ohmicV is the ohmic voltage drop, a measure of 

the ohmic voltage drop resulting from the resistances of the conduction of protons through the 

solid electrolyte and the electrons through its path; and   ionconcentratV represents the voltage drop 
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resulting from the reduction in concentration of the reactants gases or, alternatively, from the 

transport of mass of oxygen and hydrogen; and fuel cell’s output power density is given by: 

iVP cellcell              III.5 

 

Each one of the terms of Eq. III.4 is discussed and modeled separately in the subsections that 

follow. 

 

4.3.1.1. Cell reversible voltage 

Fuel cell’s output voltage is determined by cell’s reversible voltage that arises from potential 

difference produced by chemical reaction and several voltage losses that occur inside a cell. Fuel 

cell’s reversible voltage is a function of temperature and partial pressures of reactants and 

product as is shown in the following equation: 

     















22
ln

2

1
ln

222
OHref PP

F

RT
TT

F

S

F

G
E       III.6 

 

Where ΔG is the change in the free Gibbs energy; F is the constant of Faraday; ΔS is the 

change of the entropy; R is the universal constant of the gases; while 
2HP  and 

2OP  are the 

partial pressures of hydrogen and oxygen, respectively. Variable T denotes the cell operation 

temperature and Tref the reference temperature. Using the standard pressure and temperature 

(SPT) values for ΔG, ΔS and Tref, Eq. III.6 can be simplified to [86]: 

 

     







 

22
ln

2

1
ln1031.415.2981085.0229.1 53

OH PPTTE    III.7 

 

4.3.1.2. Activation voltage drop  

Activation polarization is related to the energy barrier that must be overcome to initiate a 

chemical reaction between reactants. At low current draw, the electron transfer rate is slow and a 

portion of the electrode voltage is lost in order to compensate for the lack of electro-catalytic 

activity. Expression for activation losses is given by: 
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














0
activation

i

i
ln

F2

RT
V


           III.8 

 is electron transfer coefficient, and is unit less. This value describes the proportion of the 

electrical energy applied that is harnessed in changing the rate of an electrochemical reaction. It 

is this value that differs from one material to another. i represents cell’s current density, whereas 

i0 is exchange current density. i0 is the value on the Tafel plot when the current begins to move 

away from zero, because of higher anode exchange current density, cathode activation losses are 

significantly higher so anode activation losses are negligible. Value of cathode exchange current 

density also depends on operating parameters what is shown by: 











RT

F46.2
expFk2i cc0


           III.9 

β and kc are symmetry factor and factor related to reaction speed, respectively. 

 

4.3.1.3. Ohmic voltage drop 

Ohmic voltage drop or (Ohmic polarization) occurs to resistive losses in the cell. These resistive 

losses occur within the electrolyte (ionic), in the electrodes (electronic and ionic), and in the 

terminal connections in the cell (electronic). Since the stack plates and electrolyte obey Ohm’s 

law, the amount of voltage lost in order to force conduction varies mostly linear throughout this 

region. This is the working region of the fuel cell.  

 elionohmic rriV             III.10 

 

The following expression for the ionic resistance is used [86]:  

  














 

























T

T
i

i
T

i

lr mion
303

18.4exp3634.0

303
062.003.016.181 5.2

2



       III.11 

where lm is the thickness of the membrane. The parameter  is influenced by the membrane 

preparation [88] and it can be related to relative humidity of the membrane   by the following 

expression [89]: 

32 0.368.398.17043.0           III.12 

The electronic resistance can be written as: 
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d

d
el

l2
r


             III.13 

where ld is diffusion layer thickness and σd is diffusion layer electronic conductivity.  

 

 

4.3.1.4. Concentration or mass transport voltage drop 

Mass transport or concentration polarization results when the electrode reactions are hindered by 

mass transfer effects. In this region, the reactants become consumed at greater rates than they can 

be supplied while the product accumulates at a greater rate than it can be removed. Ultimately 

these effects inhibit further reaction altogether and the cell voltage drops to zero. Expression for 

fuel cell’s concentration losses is given by: 













L
ionconcentrat

i

i
1ln

F2

RT
V          III.14 

iL represents limiting current density. This parameter describes maximum current density that can 

flow through electrode. Concentration polarization results from restrictions to the transport of the 

fuel gases to the reaction sites. This usually occurs at high current because the forming of 

product water and excess humidification blocks the reaction sites. This polarization is also 

affected by the physical restriction of the transfer of oxygen to the reaction sites on the cathode 

side of the fuel cell. Concentration polarization can be reduced by using thinner electrodes which 

shortens the path of the gas to the sites [90, 91]. Jordan et al. [91] have observed a dramatic 

change in slope of the voltage versus current density plot using air oxidant. Such a change, 

indicative of a diffusion-limited reaction, was not so apparent when pure oxygen is used as the 

oxidant. The same behavior was also observed by other researchers [92]. This is consistent with 

the experimental data showed in Fig III. 25. Hence, in parameter estimation we have neglected 

the effect of concentration polarization drop.   
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Figure III.25 Fuel cell’s voltage as a function of cell’s current density at T = 298K, data: ▲ Pt 

loading = 0.18 mg cm
-2

, ■ Pt loading = 0.38 mg cm
-2

 and ● E-TECK electrode with Pt loading = 

0.4 mg cm
-2

 [9]; model: (dashed line) Pt loading = 0.18 mg cm
-2

, (solid line) Pt loading = 0.38 

mg cm
-2

 and (dotted line) E-TECK electrode with Pt loading = 0.4 mg cm
-2

 

 

4.4.1. Determination of the activation loss parameters   

The experimental data of the cell voltage versus current density (Fig III. 25) for the two 

fabricated electrodes and the commercial electrode E-TECK with Pt loadings 0.18, 0.38 and 0.4 

mg cm
-2

, respectively, are fitted to the present model using a non linear least squares method. 

Characteristics of fabricated and commercial electrodes are listed in Table III.12. The activation 

loss parameters,   and i0, are determined and listed in Table III.13. Both parameters depend on 

Pt loading. The increase of Pt loading will cause an increase of   and i0. This can be attributed 

to the increase of the active sites for hydrogen adsorption.  
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Table III.13 Variation of the parameters   and i0 with platinum loading at T = 298K 

Parameters Fabricated electrode 

0.18 mg Pt cm
-2

 

Fabricated electrode 

0.38 mg Pt cm
-2

 

E-TECK electrode 

0.4 mg Pt cm
-2

 

  0.13 0.28 0.3 

i0 (A cm
-2

) 2.94 x 10
-9

 4.95 x 10
-8

 2.86 x 10
-8

 

 

An inconsistency between the polarization curves for the prepared electrode with Pt 

loading 0.38 mg cm
-2

 and the commercial on E-TECK with Pt loading 0.4 mg cm
-2

 is observed. 

The cell voltage in E-TECK dropped slightly faster than the former electrode. Also, the value of 

i0 is decreased from 4.95 x 10
-8

 A cm
-2

 (prepared electrode with Pt loading 0.38 mg cm
-2

) to 2.86 

x 10
-8

 A cm
-2

 (E-TECK electrode with Pt loading 0.4 mg cm
-2

). This may be attributed to the 

fabrication process in the preparation of electrode with Pt loading 0.38 mg cm
-2

, which creates a 

better particle distribution of electocatalyst. The localization of platinum in the catalyst layer can 

be improved via the spraying technique [85]. The values of i0 estimated are lower than that 

reported by Amphlett et al. [93], which are 107.6 x 10
-8

 A cm
-2

 at 298K. From these results, it 

can be concluded that not only Pt loading will affect the value of i0.  

Typically the value of   is in a very narrow range; it ranges from about 0.1 to 0.5. The exchange 

current density constant varies over a wide range, and thus has a dramatic effect on the 

performance of fuel cells at low current densities. Hence, it is vital to design fuel cells with high 

exchange current densities. 

 

4.4.2. Effect of the temperature on the performance of the PEM fuel cell 

Fuel cell’s voltage as a function of cell’s current density is shown in Fig III.25. In Fig III. 26 

cell’s power density is shown as a function of current density for two different temperatures. We 

can see from these figures that fuel cell’s efficiency is low and that significant part of theoretical 

output voltage is lost because of different losses inside a cell. We can also notice that increase of 

fuel cell’s operating temperature will cause increase of cell’s output voltage and power. If we 

increase temperature from 298K to 353K, fuel cell voltage would increase for 28% (Fig III. 26). 

The reason for this is that higher temperatures improve mass transfer within the fuel cells and 

results in a net decrease in cell resistance as a result it improves the reaction rate. 



CHAPTER III  DEGRADATION AND MODELING OF ELECTRODE FOR (PEMFCs) 

 

84 
 
 

 

Figure III. 26 Fuel cell’s voltage as a function of cell’s current density for different temperatures 

at Pt loading = 0.38 mg cm
-2

; model: (dotted line) 298K, (solid line) 313K and (dashed line) 

353K 

 

4.4.3. Effect of the partial pressures 

Change in output power related with increase in partial pressures is shown in Fig III. 27. We can 

see that power increase because of reactant pressure increase is 1.1% and is smaller than change 

caused by temperature variations. 
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Figure III. 27 Fuel cell’s power density as a function of cell’s current density for different 

temperatures at Pt loading = 0.38 mg cm
-2

; model: (solid line) 298K and (dashed line) 353K 
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Figure III. 28 Fuel cell’s voltage as a function of cell’s current density for different fuel cell’s 

reactants partial pressure at T = 298K and Pt loading = 0.38 mg cm
-2

; model: (dashed line) PH2 = 

0.995 x 10
5
 Pa  and  Po2 = 0.606 x 10

5
 Pa, (solid line) PH2 = 1.01 x 10

5
 Pa  and Po2 = 1.01 x 10

5
 

Pa 

From these simulations shown in Fig III, 27 and Fig III.28 that must pay attention on cell 

temperature, which is very important in proton exchange membrane fuel cells, while the reactant 

pressures are less significant on output voltage and power as demonstrated in previously.
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CONCLUSION  

The first structure for electrode 10wt% Pt/C loaded 0.38 mg/cm
2
, the surface for diffusion Layer 

(GDL) contain carbon black and Teflon binder (PTFE/C) no catalyst was observed, but for the of 

catalyst layer (Pt/C/PTFE) the catalyst as slight particles with good distribution on the surface of 

electrode, also the chemical states for both diffusion and catalyst layer showed almost showed 

the same chemical state except the catalyst (Pt) incorporated in the matrix PTFE /C. The gas 

diffusion layer (GDL) has big effect on the electrode performance, which use as a support of 

catalyst. 

 

The physical parameters effect as pressure, humidifiers temperatures and flow rate well 

appear in this work, which can conclude that the effect of increasing the pressure, leads to an 

increase in the current and power, the current increase from 2.299 to 2.499 A and power from 

0.814 to 0.887 Watt for Air/H2 0.5/1 bar and 2/3 bar respectively. On the other hand the 

increasing of Air pressure eliminates the water in the cathode channel side and increase the 

electrode performance. Flow rate of Hydrogen and Air, shown the stoichiometry coefficient for 

Air and Hydrogen is 2/1 and the best value is given by flowrate  0.3 L/min for H2  and 0.6 l/min 

for Air, which correspond to the current and power equal to 2.599 A and 0.789 Watt 

respectively. The hydrogen and air flow rates gives the best value of flow rate of 0.3 L/min for 

H2 and 0.6 L/min for air, where the current density and power density is 103.96 {mA/cm
2
} and 

31.56 {mW/cm
2
},

 
respectively. Low humidifier temperatures give advantage to the operating 

fuel cell. 

 

The electrode degradation due to the microstructure of electrode changes in the catalyst 

and components including carbon, fluorine, oxygen and sulfur. The cathode microstructure 

evidently damage after testing (ECaT) compared to the cathode before testing (EbT). the chemical 

states for (ECaT) change compared to the initial state of  cathode  (EbT). The C 1s from 68.72 EbT 

increase to 69.76 ECaT with the difference of -1.04 % due the carbon corrosion during the 

operation and transform to graphite state (C-C) , F 1s from 27.41 EbT decrease to 26.74 ECaT 

with the difference of 0.67% mass concentration. This due to break bound from -(CF2)n- to C–O-

-(CF2)n , in the O1s from 2.34 EbT  to 2.08 ECaT with the difference of 0.26% maybe replacement 

Pt by Carbon C to stabilize the catalyst to PtO (this changer due to reduction of carbon from 
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oxygen to metal), the Pt 4f from 2.55 for EbT decrease   to 0.82 for ECaT  with the difference of 

1.73%  this percentage due to the detachment from the support and dissolution toward into 

electrolyte Nafion® . The peak at 167.861 eV correspond at O=S=O and the second peak at 

169.227 correspond at – SO3 (O -S-O) with the S 2p from 0.71 for EbT  to 0.61 for ECaT  

increase to 0.1% in mass concentration. 

The corrosion of carbon support happened in both electrodes, and the carbon corrosion was 

much more severe after test. The XRD and TEM Shown the decrease of the particle size of Pt 

and detachment from the support. Catalyst followed along with the dissolution/redeposit ion 

mechanism the particle sizes of cathode Pt catalysts after test markedly increased. The size of 

cathode catalyst within, utilization, and agglomeration of cathode catalyst are main factors of the 

performance decay of PEMFC.  

 

TEM photograph for Pt/C catalyst has a mean particle size close to 4.0 nm in raw 

material (Pt/C) before test and, then the effect of aggressive operating conditions change the 

catalyst particle size from (4.14±0.9) to (5.57) nm maybe due to the agglomerate process also the 

detachment of catalyst from the support. 

PEM fuel cell model analyze the influence of fuel cell operating parameters (temperature, 

partial pressures) on fuel cell’s performance. The model showed that temperature has significant 

influence on output voltage and power. However, the influence of partial pressures is less 

significant. Both the electron transfer coefficient and exchange current density are platinum 

loading dependent. The exchange current density constant varies significantly with platinum 

loading, and thus has a dramatic effect on the performance of fuel cell at low current densities. 

This parameter is vital to design the PEM fuel cell. 
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