

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education and Scientific Research

Mohamed Khider University – BISKRA

Faculty of Natural, Natural and Life Sciences

Computer science department

Order no:3/RTIC/M2/2023

Memory

Submitted for the Academic Master’s degree in

Computer science

Journey: Networks and Information and Communication Technologies (RTIC)

Metaheuristics for solving the routing problem

in Ad-Hoc Mobile Networks

By:

MAHMOUD REBHI

 Supported on 19/06/2023 before the jury composed of:

Bahi Naima
President M.C.B

Berghida Meryem
Supervisor M.C.B

Belounar Saliha
Examiner M.A.A

Année universitaire 2022-2023

Table des matières

1 The Manets networks 1
1.1 Introduction . 1

1.1.1 General introduction . 1
1.1.2 Definition of Ad-Hoc network . 1

1.2 MANET Features . 1
1.2.1 Mobile . 1
1.2.2 Wireless . 1
1.2.3 Without infrastructure . 1
1.2.4 Self-organized and distributed . 1
1.2.5 Multi-hop . 2
1.2.6 limited resources . 2
1.2.7 Security challenges . 2

1.3 Classification of ad hoc networks . 2
1.3.1 Classification According to the communication . 2

1.3.1.1 Single-Hop Ad Hoc Network . 2
1.3.1.2 Multihop Ad Hoc Network . 2

1.3.2 Classification According to the Node Configuration . 2
1.3.2.1 Homogeneous Ad Hoc Networks . 2

1.3.3 Classification According to the Coverage area . 2
1.4 Routing protocols in MANET . 2

1.4.1 Reactive Routing Protocols . 3
1.4.1.1 An example of a protocol in this category . 3
1.4.1.2 Ad hoc on-demand distance vector (AODV) . 3

1.4.2 Proactive Routing Protocols . 3
1.4.2.1 An example of a protocol in this category . 3
1.4.2.2 Destination Sequence Distance Vector (DSDV) 3

1.4.3 Hybrid Routing Protocols . 3
1.4.3.1 An example of a protocol in this category . 3
1.4.3.2 Zone routing protocol (ZRP) . 3

1.5 importance of Routing Protocols in MAnet . 4
1.5.0.1 Importance of the routing approach to solve problems. 4
1.5.0.2 Routing protocols should have the following features : 4

1.6 Conclusion . 4

2 Metaheuristics 5
2.1 Introduction . 5
2.2 Complexity theory . 5

2.2.1 Algorithmic Complexity . 5
2.2.2 Complexity of problem . 6

2.3 Optimization Problem . 7
2.3.1 Discrete optimization problem . 7

2.3.1.1 Example : Traveling salesman problem . 7
2.3.2 Continuous optimization problem . 7

2.3.2.1 Example : Maximizing the Area of a Garden . 8
2.4 Methods for solving optimization problems . 9

2.4.1 Exact methods . 9
2.4.1.1 Heuristics . 10
2.4.1.2 Meta-heuristics . 10

2.5 Heuristics and meta-heuristics . 11

1

2.6 Classification of metaheuristics . 11
2.7 Biogeography-based optimizatio approach : . 12

2.7.0.1 The Structure of Standard BBO . 12
2.8 Conclusion . 13

3 Adaptive BBO for solving shortest path problem 14
3.1 Introduction . 14
3.2 Shortest path problem definition . 14
3.3 Objective function . 14
3.4 Solution encoding . 14

3.4.1 Network representation . 14
3.4.2 Encoding path . 14
3.4.3 Fitness Evaluation . 15

3.5 Adaptive BBO algorithm to solve a shortest path problem . 15

4 Results and Experimentation 20
4.1 Introduction . 20
4.2 Development environment . 20

4.2.1 Hardware environment . 20
4.2.2 Software environment . 20

4.3 Programming languages . 21
4.4 Presentation of the application . 21

4.4.1 Application Function . 21
4.4.2 Main features of the application . 21

4.5 Test data . 22
4.6 Experimental results and discussion . 22

4.6.1 Comparison of the two appropriate methods . 23
4.7 Conclusion . 25

General introduction
Optimization algorithms are an essential tool for solving complex problems in various domains, including ad hoc
networks, pathfinding, and metaheuristics[29]. These algorithms aim to find the best solution to a given problem
by exploring the search space and evaluating the fitness of candidate solutions. One of the most challenging
problems in optimization is finding the shortest path in a graph.

This document provides a comprehensive overview of optimization algorithms and their applications in
solving the shortest path problem in ad hoc networks. The first chapter introduces mobile ad hoc networks
(MANETs) and their routing protocols, highlighting the importance of efficient routing in these networks[17].
The second chapter discusses complexity theory and optimization problems, including discrete and continuous
optimization problems and introduces heuristics and metaheuristics as general approximation algorithms for
solving difficult problems[29][10][1].

The third chapter focuses on the Biogeography-Based Optimization (BBO) algorithm[19], a metaheuristic
approach that can be used to solve hard combinatorial problems. The chapter provides an introduction to
the BBO algorithm and its application in solving the shortest path problem in ad hoc networks. The chapter
also compares the BBO algorithm with Ant Colony Optimization (ACO) and discusses their similarities and
differences.

The fourth chapter presents a Java application that uses the BBO algorithm to solve the shortest path
problem in a given graph. The application includes a user-friendly GUI interface and allows users to input
parameters, visualize progress, display the best path, and control the execution. The chapter also compares the
performance of the BBO algorithm with that of ACO and shows that the BBO algorithm outperforms ACO in
finding the shortest path with lower fitness values.

Finally, the document provides a list of academic papers and books related to optimization algorithms
and their applications, including genetic algorithms, dynamic programming, and branch-and-bound algorithms.
These sources cover a range of case studies and methods, providing a useful resource for researchers and prac-
titioners in the field of optimization algorithms.

Overall, this document provides a comprehensive overview of optimization algorithms and their applications
in solving the shortest path problem in ad hoc networks. The BBO algorithm is shown to be an effective
approach for finding the shortest path in a graph, and the Java application provides a useful tool for researchers
and practitioners in this field.

0

Chapitre 1

The Manets networks

1.1 Introduction

1.1.1 General introduction
The scientific and industrial community’s interest in communications has recently shifted to more difficult

scenarios where a variety of mobile units equipped with wireless transmitters and receivers continue without
any fixed infrastructure[17].

1.1.2 Definition of Ad-Hoc network
Ad-Hoc Network is an independent group of mobile phone users that connect to one another with a radio

link in a dynamic environment
Network topology changes rapidly and unexpectedly over time. So the connection between the contract can

vary in time because of the departure of the node, and the arrival of the new node, and the possibility of having
a mobile node to maintain the connection between the nodes in the network.

Each node operates in an Ad-hoc wireless network as a transmitter, host, router. Other functions are also
distributed to the contract such as Management, Control, Topology Discovery, Information Transfer and Efficient
Use of Battery Power.

Whatever the application, the MANET needs efficient distributed algorithms to determine the organization
of the network and the timing of linking, power monitoring and routing.

Due to limited range of transmission, mobile hosts can communicate directly with each other if sufficiently
close (peer-to-peer) or (multi-hopper) in a non-direct manner by having other intermediate mobile phone hosts
move their packages[17].

1.2 MANET Features

1.2.1 Mobile
— The stations are not fixed in the MANETs networks ;
— They can move and are completely independent ;
— New stations are allowed to enter or leave the network at any time ;
— Modifying the topology of a MANET network over time is a key factor[15].

1.2.2 Wireless
— Stations in a MANET network use wireless support to communicate with each other[18].

1.2.3 Without infrastructure
— MANETs are not dependent on a fixed architecture, so they can be easily deployed[18].

1.2.4 Self-organized and distributed
— MANETs networks do not have a central point to coordinate or centralize exchanges ;
— Nodes must self-organize for proper network operation[11].

1

1.2.5 Multi-hop
— Since the range of stations is limited, it may be necessary for stations to act as an intermediate bridge

to transmit a packet from a source to a destination. therefore, the nodes of a MANET network act as a
router and relay the packets they receive to participate in multi-jump routing[18].

1.2.6 limited resources
— Limited resources affect the entire communication chain of a MANET network, from nodes to commu-

nication links ;
— As the terminals are mobile, they are mainly battery operated[6] ;
— Wireless link capacity is also limited compared to wired networks ;
— The error rate is much higher than in a wired network[6].

1.2.7 Security challenges
— MANETs are vulnerable to various security threats, such as eavesdropping, interception, and denial of

service attacks. The lack of a fixed infrastructure and the decentralized nature of the network makes it
challenging to implement effective security measures.

1.3 Classification of ad hoc networks

1.3.1 Classification According to the communication
Depending on the configuration, communication in an ad hoc network can be either single hop or multihop[18].

1.3.1.1 Single-Hop Ad Hoc Network

— Nodes are in their reachable area and can communicate directly ;
— Single-hop ad hoc networks are the simplest type of ad hoc networks.

1.3.1.2 Multihop Ad Hoc Network

— This category differs from the first class in that some nodes are remote and cannot communicate directly
with them. So there should be another intermediate node ;

— High performance routing protocols should be adaptable to rapid topology modification[18].

1.3.2 Classification According to the Node Configuration
A further classification of ad hoc networks can be performed on the basis of the hardware configuration of

the nodes. There are two types of node configurations : homogeneous networks and heterogeneous networks[18].

1.3.2.1 Homogeneous Ad Hoc Networks

— In homogeneous ad hoc networks, all nodes possess the same characteristics regarding the hardware
configuration as processor, memory, display, and peripheral devices. Most wellknown representatives of
homogeneous ad hoc networks are wireless sensor networks[18].

1.3.3 Classification According to the Coverage area
— Ad hoc networks can be categorized, depending on their coverage area, into several classes : body area

network (BAN), personal area network (PAN), local area network (LAN), metropolitan area network
(MAN), and wide area network (WAN)[18].

1.4 Routing protocols in MANET
Several ad hoc protocols have been designed for accurate, fast, reliable routing for a high volume of changeable

network topology.
These protocols deal with network topology changes such as high power consumption, low bandwidth and

high error rates.

2

These routing protocols may generally be categorized into three main types : proactive or table-driven,
reactive or on-demand-driven, and hybrid. These protocols are classified according to : their techniques, their
hop count, link state, and source routing in a route-discovery mechanism[18].

1.4.1 Reactive Routing Protocols
1. This Protocol creates a route to destination only upon request. So whenever a sender node needs to

transfer data packets to a receiver node, the sender node commences the route search process in this
protocol. As a result, the demand for a route initiates the route search process, hence the name "reactive
protocol" ;

2. The network layer (Layer 3 of the OSI reference model) of mobile nodes implements reactive protocols ;
3. The mechanisms utilized for routing are the Route Discovery and Route Maintenance functions.

1.4.1.1 An example of a protocol in this category

1.4.1.2 Ad hoc on-demand distance vector (AODV)

— The AODV protocol is a protocol based on the construction of routing tables. Indeed, each node has
its own routing table containing for each destination the next node to contact. A route is discovered by
flooding by the issuer of a Route Request (RREQ) package ;

— Upon receipt of one of these packets, if the node knows the path to the source, it sends a RREP (Route
Reply) response to the transmitter that stops flooding the network.if the node does not know the path,
it transmits the packet to its neighbors while memorizing the previous node that made the request ;

— If the link breaks, a RERR (Route Error) message is sent to the sender who decides whether or not to
repeat the sending of the packet according to the rate of use of the route[22].

1.4.2 Proactive Routing Protocols
1. Proactive routing protocols enable each node to keep up-to-date routing information in a routing table ;
2. This routing table is periodically exchanged with all other nodes as well as when network topology

changes ;
3. When the node needs to send a message it simply looks on the path to the destination in the routing

table ;
4. The biggest challenge faced by this type of protocol is updating routing tables[18].

1.4.2.1 An example of a protocol in this category

1.4.2.2 Destination Sequence Distance Vector (DSDV)

— It is a vector routing system that needs each node to communicate routing changes on a frequent basis ;
— DSDV uses the table-driven routing mechanism ;
— A routing table is stored on each network node and specifies all of the network’s destinations as well as

the number of hops required to reach them ;
— Each item has a sequence number that can be used to identify stale entries ;
— This approach avoids routing loops in the protocol from arising[22].

1.4.3 Hybrid Routing Protocols
1. Hybrid protocols are created by combining proactive and reactive protocols. Their design combines the

benefits of both proactive and reactive techniques to obtain superior results ;
2. To begin, proactive routing is employed to collect any previously unknown routing data ;
3. Reactive routing approaches are used to keep the routing information updated when the topology

changes[18].

1.4.3.1 An example of a protocol in this category

1.4.3.2 Zone routing protocol (ZRP)

— Is a hybrid routing protocol that merges the proactive intrazone routing mechanism of (IARP) with the
reactive interzone routing mechanism of IERP ;

— If the destination of a packet is in the same zone as the origin, the proactive protocol is used to transport
the packet immediately using a previously saved routing table ;

3

— A reactive protocol takes over if the route extends beyond the packet’s originating zone, examining each
succeeding zone in the route to see if the destination is within that zone ;

— This reduces the time it takes to process specific routes ;
— After a zone is validated to include the target node, the stored routing table listing is utilized to broadcast

the packet[16].

1.5 importance of Routing Protocols in MAnet
The routing protocols for ad hoc wireless networks should be capable of handling multiple hosts with limited

resources, such as bandwidth and energy. The main challenge for routing protocols is that they must also deal
with host mobility.

There are two main algorithms used and based on path selection for most of the existing MANET routing
protocols : the Bellman–Ford algorithm and Dijkstra’s algorithm.

1.5.0.1 Importance of the routing approach to solve problems.

— some routing protocols use proactive (table-driven) path discovery to reduce the route discovery delay
(time) ;

— Other routing protocols use reactive (on-demand) path discovery to reduce and control overhead ;
— Some other approaches merge proactive and reactive path discoveries to reduce delay and control over-

head. This type of protocol is called a hybrid routing protocol.

1.5.0.2 Routing protocols should have the following features :

— Providing quick and high efficiency, for example, bandwidth, memory, and battery, in adapting to MA-
NET topology change, especially in a high mobility environment ;

— Providing an alternative path in case the primary path fails ; this will save time and power in an eve-
rhanging MANET network topology ;

— Finding the optimum path instead of the shortest path when applications require QoS, for example,
bandwidth, end-to-end delay, and packet losses, to deliver data from the source to the destination ;

— Providing quick establishment of paths, so that they can be used before an existing path becomes invalid ;
— Consideration of QoS parameters, such as data rate, delay, and node battery life, when locating a path

between the source and destination[18].

1.6 Conclusion
The chapter has presented the overview of wireless networks and different aspects of MANET, such as,

definition, routing protocols, classification, special features and importance of routing protocols in MANET. The
MANET characteristic features are also pointed out such as Wirele, Without infrastructure, limited resources
and security. This chapter also briefly covered the classification of MANETs in terms of communication procedure
(single hop/multi hop), coverage area[18].

4

Chapitre 2

Metaheuristics

2.1 Introduction
There are many real problems of finding the perfect solution from a limited range of options. These tasks are

often considered extremely difficult. So we have seen that approximation algo- rithms are the main alternative
for solving this category of problems.

— Approximate algorithms can decompose into two categories : specific heuristics and meta-heuristics.
Specific heuristics are problem dependent ; they are designed and applicable to a particular problem ;

— Meta-heuristics represent the most general approximation algorithms. They are applicable to a wide
variety of optimization problems, i.e. they can be designed to optimize any problem. meta-heuristics
solve problem- cases that they think are difficult, generally by studying the search space efficiently ;

— The meta-heuristics serves three main themes : solving problems faster, solving difficult problems, and
getting powerful algorithms, moreover they are easy to design, execute and very flexible ;

— Meta-heuristics is a branch of optimization in computer science and ap- plied mathematics associated
with algorithms and computational complexity theory.[29]

2.2 Complexity theory
This section addresses some of the findings regarding the intractability of problems, our focus is on the

complexity of resolvable problems ; It means she has an algorithm to solve[29].

2.2.1 Algorithmic Complexity
Algorithmic complexity is a measure of how long an algorithm would take to complete given an input of

size n. sometimes complexity is also analyzed in terms of space, which translates to the algorithm’s memory
requirements[4]."

5

Complexity classes Type of complexity Definition Example

O(1) Constant time An algorithm is said to
run in constant time if it
requires the same amount
of time regardless of the
input size[25].

array : accessing
any element

O(n) Linear time An algorithm is said
to run in linear time
if its time execution is
directly proportional to
the input size, i.e. time
grows linearly as input
size increases[25].

array : linear
search, traversing,
find minimum

O(log n) Logarithmic time An algorithm is said to
run in logarithmic time if
its time execution is pro-
portional to the logarithm
of the input size[25].

binary search

O(n2) Quadratic time An algorithm is said to
run in logarithmic time if
its time execution is pro-
portional to the square of
the input size[25].

bubble sort, selec-
tion sort, insertion
sort

Table 2.1 – Complexity classes with their definitions and examples.

2.2.2 Complexity of problem
In computer science : there are some problems whose solutions have not yet been found, these problems are

classified into categories called : complexity class.
These categories help scientists classify problems based on the amount of time and distance in memory

necessary to solve and verify problems[2].
— The time complexity of an algorithm describe how long it takes to verify the answer[2].
— The space complexity of an algorithm describes how much memory is required for the algorithm to

operate[2].

Table 2.2 – Types of Complexity Classes | P, NP, CoNP, NP hard and NP complete[2].

Complexity class Characteristic feature Example

P Easily solvable in polynomial
time.

The Greatest common factor (GCD) of
3 and 5 is 1

NP Yes, answers can be checked in
polynomial time.

Hamiltonian path problem : Asks whe-
ther there is a route in a directed graph
from a beginning node to an ending
node, visiting each node exactly once.

Co-NP No, answers can be checked in
polynomial time.

Check prime number.

NP-hard All NP-hard problems are not in
NP and it takes a long time to
check them.

Halting problem : The problem of deter-
mining, from a description of an arbi-
trary computer program and an input,
whether the program will finish run-
ning, or continue to run forever.

NP-complete NP-complete problems are the
hard problems in NP.

Traveling salesman problem.

6

2.3 Optimization Problem
Human beings face daily difficulties - challenges or contradictory situations to be solved to achieve the

desired goal, these situations can in practice be called problems. Theoretically, the problem can be summarized
as a dif- ficulty that raises an analytical position on a topic to gain knowledge and overcome this problem.

From a computer science perspective, the problem is a task that the algorithm can solve or answer from a
practical perspective, computational problems can be broadly classified into six main categories of problems :
ordering, counting, searching, decision, function, and optimization. Con- cerning ordering, counting, and sear-
ching, Their own definitions describe their objectives as problems. The decision problem is a category of prob-
lems that is decided after the analysis of the situation. The return of this type of problem is the answer by ”Yes”,
”No” or 1, 0, Whereas a function problem is an extension of the decision, any data type can be returned, The
problem of optimization (OP) is a category of problems solved by methods of optimization aimed at finding an
optimal solution in a wide range of pos- sible solutions. Consequently, the output of an optimization problem is
the solution itself[23].

Optimization problems are divided into two categories of problems :

1. Continuous optimization problems.
2. Discrete optimization problems.

2.3.1 Discrete optimization problem
A discrete optimization problem is the act of trying to find out the value (combination) of variables that

optimizes an index (value) from among many options under various constraints.

2.3.1.1 Example : Traveling salesman problem

As an example of the traveling salesman problem let’s think about the prob- lem of a delivery route problem.
This issue is a question of how the seller should navigate for the shortest route (optimal route) when visiting
multiple cities when given a list of in- tercity distances. A major caveat is that he will visit each city only
once. If the number of cities is small, it is possible to investigate all the solution can- didates. However, as the
number of cities increases to 30 cities, for example, meaning the number of candidates has increased, meaning
the combination becomes the phenomenal number of 10 to the 30th power. In this case, to comprehensively list
all solution candidates and to find the optimum route, even if using a supercomputer, will take the astronomical
time of 14 million years ! The obvious feature of the combinatorial optimization problem is that it becomes very
difficult to get an accurate solution as the number of parameters increases[3].

Figure 2.1 – TSP problem[3]

2.3.2 Continuous optimization problem
The metaheuristics are very often employed for Discrete problems, but there is a class of problems often

encountered in engineering, where the objective function is continuous and for which the metaheuristics can be
of great help[10].

— For example in engineering If we make the side lengths of the garden bigger, the garden space
becomes bigger.

what if we have some restriction on how much fencing we can use for the perimeter ?

7

2.3.2.1 Example : Maximizing the Area of a Garden

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for
the other three sides (Figure 1.2). Given 100ft of wire fencing, determine the dimensions that would create a
garden of maximum area. What is the maximum area ?

Figure 2.2 – We want to determine the measurements x and y that will create a garden with a maximum area
using 100ft of fencing[14].

Solution
— Let x denote the length of the side of the garden perpendicular to the rock wall and y denote the length

of the side parallel to the rock wall.
— Then the area of the garden is

A = x ∗ y.

— We want to find the maximum possible area subject to the constraint that the total fencing is 100ft.
— From Figure, the total amount of fencing used will be 2x+y. Therefore, the constraint equation is

2x+ y = 100.

— Solving this equation for y, we have y = 100− 2x Thus, we can write the area as

A(x) = x ∗ (100− 2x) = 100x− 2x2.

— Before trying to maximize the area function A(x) = 100x− 2x2, we need to determine the domain under
consideration. To construct a rectangular garden, we certainly need the lengths of both sides to be posi-
tive. Therefore, we need x>0 and y>0. Since y = 100− 2x, if y>0, then x<50. Therefore, we are trying

8

to determine the maximum value of A(x) for x over the open interval (0,50). Therefore, let’s consider the
function A(x) = 100x − 2x2 over the closed interval [0,50]. If the maximum value occurs at an interior
point , then we have found the value x in the open interval (0,50) that maximizes the area of the garden.

Therefore, we consider the following problem :

Maximize A(x) = 100x− 2x2 Overtheinterval [0, 50].

— As mentioned earlier, since A is a continuous function on a closed, bounded interval, by the extreme
value theorem, it has a maximum and a minimum. These extreme values occur either at endpoints or
critical points. At the endpoints, A(x)=0. Since the area is positive for all x in the open interval (0,50),
the maximum must occur at a critical point . Differentiating the function A(x), we obtain :

A′(x) = 100− 4x.

— Therefore, the only critical pointis x=25 (Figure 1.3). We conclude that the maximum area must occur
when x=25.

Figure 2.3 – To maximize the area of the garden, we need to find the maximum value of the function A(x) =
100x− 2x2[14].

— Then we have y = 100 − 2x = 100 − 2(25) = 50. To maximize the area of the garden, let x=25ft and
y=50ft. The area of this garden is 1250ft2[14].

2.4 Methods for solving optimization problems
Following the optimization problem, it may be solved by an exact method or an approximate method. (Figure

1.4[29])

2.4.1 Exact methods
— Exact methods (also called complete) produce an optimal solution for a given optimization problem

instance ;

9

Figure 2.4 – Classical methods for optimization problems.

— They are used to find at least an optimal solution to a problem ;
— The most well-known exact algorithms are dynamic programming[24], Branch and bound[28] and A*[12],

Constraint programming ;
— The major disadvantage of its methods is the combinatorial explosion The number of combinations

increases with the increase in the size of the problem. The effectiveness of these algorithms is only
promising for instances of small-sized problems[8].

Dynamic programming –Developed by Richard Bellman in the 1950s– is based on the recursive division
of a problem into simpler subproblems. so ”If the branch is optimal, the original is opti- mal” according to
Bellman[29].

Branch and bound and A* is an algorithm design paradigm which is gen- erally used for solving discrete
optimization problems. These problems are typically exponential in terms of time complexity and may require
ex- ploring all possible permutations in worst case[29].

Constraint programming –Jaffar and Lassez in 1987– is also an efficient approach to solving and opti- mizing
problems that are too irregular for mathematical optimization. This includes time tabling problems, sequencing
problems, and allocation or ros- tering problems[29].

2.4.1.1 Heuristics

Heuristics find “good” solutions on large-size problem instances. They allow to obtain acceptable performance
at acceptable costs in a wide range of problems. In general, heuristics do not have an approximation guarantee
on the obtained solutions[29].

2.4.1.2 Meta-heuristics

The basic properties of metaheuristics are[26]

— Metaheuristics are strategies to guide the search for an optimal solution ;
— The goal of metaheuristics is to explore the research space effectively in order to determine (almost)

optimal solutions ;
— The techniques that make up meta-heuristic algorithms range from simple local search procedures to

complex learning processes ;
— Their goal is to achieve a global optimum while avoiding local ones ;
— Metaheuristics are generally non-deterministic and provide no guarantee of optimality ;

10

— Metaheuristics can contain mechanisms to avoid being blocked in areas of the research space ;
— Metaheuristics can use heuristics that take into account the specificity of the problem being treated, but

these heuristics are controlled by a higher level strategy ;
Metaheuristics are methods that can be divided into two classes :
1. Single Solution Metaheuristics : These methods process only one solution at a time, in order to

find the optimal solution ;
2. metaheuristics to population of solutions : These methods use a population of solutions at

each iteration until the overall solution is obtained ;

2.5 Heuristics and meta-heuristics

Comparisons Heuristics Metaheuristics

Definition

A strategy that uses information

about the problem being solved to

find promising solutions.

Similar to heuristics, metaheuristics

aims to find promising results for a

problem. However, the algorithm

used in metaheuristics is general and

can deal with different problems

Target

Not necessarily finding the perfect

solution but just finding a good

enough solution.

Finding promising solutions to

different problems.

Characteristics

Problem-based design : means that

heuristics is designed for a specific

problem (one-to-one relationship)

Independent design of the problem :

ability to use the same metaheuris-

tics algorithm to solve countless

problems by simply adjusting their

input

Non-measurable success : different from approximate algorithms,

heuristics don’t provide a clear indication of how close (or far) the

obtained result is to the optimal one.

Reasonable execution : the time or computational resources for

executing a heuristic must never exceed the requirements of any

exact method that solves the same problem.

Depend gready search-based.
Genetic algorithms, particle swarm

optimization, simulated annealing...

Table 2.3 – Heuristics and meta-heuristics comparative table[13]

In this section, we’ll take heuristics, metaheuristics algorithms. We’ll focus on their definition, Target, Cha-
racteristics, and Depend.

2.6 Classification of metaheuristics
Many grading criteria can be used for metaheuristics :
— Nature inspired versus non nature inspired : Many metaheuris- tics are inspired by natural pro-

cesses : evolutionary algorithms and artificial immune systems from biology ; ants, bees colonies, and
parti- cle swarm optimization from swarm intelligence into different species (social sciences) ; and simu-
lated annealing from physics ;

11

— Memory usage versus memoryless methods : Some metaheuris- tic algorithms are memoryless ;
that is, no information extracted dy- namically is used during the search. Some representatives of this
class are local search, GRASP, and simulated annealing. While other meta- heuristics use a memory that
contains some information extracted on- line during the search. For instance, short-term and long-term
mem- ories in tabu search ;

— Deterministic versus stochastic : A deterministic metaheuristic solves an optimization problem by
making deterministic decisions (e.g., local search, tabu search). In stochastic metaheuristics, some random
rules are applied during the search (e.g., simulated annealing, evo- lutionary algorithms). In deterministic
algorithms, using the same initial solution will lead to the same final solution, whereas in stochas- tic
metaheuristics, different final solutions may be obtained from the same initial solution. This characteristic
must be taken into account in the performance evaluation of metaheuristic algorithms ;

— Population-based search versus single-solution based search : Single-solution based algorithms
(e.g., local search, simulated anneal- ing) manipulate and transform a single solution during the search
while in population-based algorithms (e.g., particle swarm, evolutionary al- gorithms) a whole population
of solutions is evolved. These two fam- ilies have complementary characteristics : single-solution based
meta- heuristics are exploitation oriented ; they have the power to inten- sify the search in local regions.
Population-based metaheuristics are ex- ploration oriented ; they allow a better diversification in the
whole search space. In the next chapters of this book, we have mainly used this classification. In fact,
the algorithms belonging to each family of metaheuristics share many search mechanisms ;

— Iterative versus greedy : In iterative algorithms, we start with a complete solu- tion (or population
of solutions) and transform it at each iteration using some search operators. Greedy algorithms start
from an empty solution, and at each step a decision variable of the problem is assigned until a complete
solution is obtained. Most of the metaheuristics are iterative algorithms[29].

2.7 Biogeography-based optimizatio approach :
The problems in NP-hard is not easy to solve using an exact method as the scale getting larger. Nowadays,

the number of research which develop and apply metaheuristics methods in solving combinatorial problems are
quite high. One of new metaheuristics method which adopt biogeography phenomenon is Biogeography-based
Optimization (BBO).

Biogeography-based optimization is a metaheuristics method that newly introduced by Simon. BBO algorithm[19]
is able to generate a competitive solution for unimodal or multimodal functions compared with other metaheu-
ristics algorithms based on populatio. BBO is able to solve 57 out of 75 instances. BBO has a better performance
compared to Particle Swarm Optimization (PSO) with solving 19 out of 75. But, compared to modified Genetic
Algorithm which can solve 67 instances, BBO is not better.

Nowadays, there are high numbers of research developing metaheuristics algorithm for solving NP-hard
problems. The most popular of metaheuristics are those which based on biology (biology based). These me-
thods adopt nature phenomenon and animal behaviour in daily life. Biology based methods, among of them
are, Particle Swarm Optimization, Ant Colony Optimization, Genetic Algorithm, and Biogeography-based
Optimization[19].

Biogeography describes the distribution and speciation of biological organisms, and is typically viewed as
a process that maintains species equilibrium in their habitats. Equilibrium is achieved when the immigra-
tion/speciation and emigration/extinction rates are equal[19].

2.7.0.1 The Structure of Standard BBO

— As with any other Evolutionary algorithms (EAs), we begin with an optimization ;
— Each solution is composed of features, or independent variables ;
— A good solution corresponds to a biological habitat that is well suited for life ;
— poor solution corresponds to a habitat that is poorly suited for life. problem and a population of candidate

solutions[19].
Like other EAs, BBO includes two steps : information sharing and mutation. In BBO, information sharing

is implemented with migration.
BBO migration is probabilistic. Each solution’s migration rate is used to stochastically share features.
Mutation is a probabilistic function that can modify solution features, and can be implemented as in any

other EA. The purpose of mutation is to increase diversity among the population[19].

12

2.8 Conclusion
A heuristic is a technique designed for solving a problem more quickly when classic methods are too slow,

or when classic methods fail to find any exact solution. The objective of a heuristic is to produce a solution in
a reason- able time frame that is good enough for solving the problem at hand. This solution may not be the
best of all the actual solutions to this problem, or it may simply approximate the exact solution. But it is still
valuable because finding it does not require a prohibitively long time.

Meta-heuristics are strategies that “guide” the search process. The goal is to efficiently explore the search
space in order to find (near-) optimal solutions. Metaheuristic algorithms are approximate and usually nonde-
terministic. Meta-heuristics are not problem-specific and may make use of domain-specific knowledge in the
form of heuristics that are controlled by the upper level strategies. Meta- heuristics can obtain better quality
solutions than heuristic methods[9].

13

Chapitre 3

Adaptive BBO for solving shortest path
problem

3.1 Introduction
In this chapter we propose to apply approximate method from a metaheuristics, exactly the BBO(Biogeography-

Base Optimization) algorithm, for solving big instances of a hard combinatorial problem, which requires opti-
mization when exact methods are very time consuming, in the ad-hoc networks (MANETs) exactly the shortest
path(SP) problem.

3.2 Shortest path problem definition
The shortest path problem in networks is finding the most effi- cient path between two nodes within the

network, with the minimum distance between the source node and the destination node in the network[1].
Between these knots are edges where each edge has nu- merical weight that represents the distance associated
with crossing that edge[20]

3.3 Objective function
In the context of ad hoc networks, the objective function in the shortest path problem typically refers to

the metric or criteria used to determine the ”shortest” or most optimal path between two nodes. In this case we
will choose :
Minimum Distance : This objective function seeks to find the path with the shortest physical distance
between the source and destination.

3.4 Solution encoding
In the problem that we have, is to reduce the distance to cross from the source node to the destination node

by finding the shortest path. We want to represent the solution in a specific format, which involves converting
the solution into a simple form that can be easily understood and entered into the computer :

3.4.1 Network representation
We will define the network we have in the form of a graph, and to process it effectively by computer later

we will enter it as a matrix.

3.4.2 Encoding path
We encode a path (route) by listing up node IDS from its source node to its destination. Each node in the

network is represented as a separate island in the BBO algorithm. Islands correspond to potential solutions
(routes) connecting source and destination nodes. An island (solution) can be encoded as a sequence of nodes
representing the path from the source to the destination. The encoding can be implemented as an array or a
linked list or a list[21].

14

3.4.3 Fitness Evaluation
The quality of a island (solution) is measured by a fitness function. Here, the fitness function is obvious as

the goal is to find the minimal cost path. Thus, the fitness of ith island is defined as :

Figure 3.1 – Fitness Calculation Process[30]

— PP i is the set of sequential node IDs for ith island ;
— Ni = |PPi| = number of nodes that constitute the path represented by ith island ;
— Cyz is the cost of the link connecting node y and node z.
Thus, the fitness function takes maximum value when the shortest path is obtained. If the path represented

by a island happens to be an invalid path, then its fitness is assigned a penalty value (=0).

3.5 Adaptive BBO algorithm to solve a shortest path problem

Algorithm 1 Algorithm Path
1: data :
2: nodes : list of integers
3: fitness : integer
4: constructor Path(nodes) :
5: this.nodes = nodes
6: this.fitness = calculateFitness()
7: method calculateFitness() :
8: totalDistance = 0
9: for i = 0 to nodes.size() - 2 do : do

10: totalDistance += graph[nodes[i]][nodes[i + 1]]
11: end for
12: return totalDistance
13: method compareTo(other) :
14: if this.fitness < other.fitness then then
15: return -1
16: else if this.fitness > other.fitness then then
17: return 1
18: else
19: return 0
20: end if

— The Path class represents a path consisting of a sequence of nodes. It has two member variables : nodes
and fitness. nodes is a list of integers that represents the sequence of nodes in the path. fitness is an
integer that represents the fitness or cost of the path ;

— The constructor Path(List<Integer> nodes) initializes a Path object with the given list of nodes. It
assigns the nodes parameter to the nodes member variable. Additionally, it calls the calculateFitness()
method to compute and assign the fitness value for the path.

Algorithm 2 Calculate Fitness

1: fun Int calculateFitness(nodes : List<Int>, graph : Array<IntArray>) :
2: for i = 0 ; i < nodes.size - 1 do
3: totalDistance += graph[nodes[i]][nodes[i + 1]]
4: end for
5: return totalDistance

15

6:— The calculateFitness() function takes a list of integers nodes and a two-dimensional array graph as
input. It calculates the fitness of a path by iterating through the nodes list and summing the distances
between consecutive nodes using the graph array. Finally, it returns the totalDistance as the fitness
value of the path.

Algorithm 3 Compare Paths

1: fun Int Path.compareTo(other : Path) :
2: return this.fitness.compareTo(other.fitness)

— The compareTo() method is overridden from the Comparable interface. It allows instances of the Path
class to be compared to each other based on their fitness values. The method compares the fitness of the
current Path object (this.fitness) with the fitness of the other Path object passed as a parameter. It
returns a negative integer, zero, or a positive integer depending on whether the current object’s fitness
is less than, equal to, or greater than the other object’s fitness, respectively ;

— By implementing the Comparable interface and overriding the compareTo() method, instances of the
Path class can be easily sorted or ordered based on their fitness values, which can be useful in various
algorithms that involve finding the best or optimal paths ;

— Overall, this code defines a Path class that represents a path in a graph, calculates the fitness of the path
based on distances between nodes, and provides a mechanism to compare paths based on their fitness
values.

Algorithm 4 Generate Random Path
1: path < − empty list of integers
2: for i < − 0 to size of graph - 1 do : do
3: Add i to path
4: end for
5: for i < − size of path - 1 down to 1 do : do
6: j < − random integer between 0 and i
7: temp < − path[i]
8: path[i] < − path[j]
9: path[j] < − temp

10: end for
11: Return path

— The generateRandomPath() function takes a two-dimensional array graph as input and returns a
randomly generated path as a list of integers ;

— We initialize an empty mutable list path and then iterate from 0 until the size of the graph array. For
each iteration, we add the current index to the path list ;

— Next, we create a Random object and iterate from path.size - 1 down to 1. In each iteration, we
generate a random index j using random.nextInt(i + 1) and perform a swap operation to shuffle the
elements in the path list ;

— Finally, we return the shuffled path list.

Algorithm 5 Initialize Population

1: function initializePopulation(populationSize)
2: Val population =
3: for i = 1, populationSize do do
4: Val path = generateRandomPath()
5: table.insert(population, Path(path))
6: end for
7: return population

— the initializePopulation() function takes an populationSize integer as input and returns a list of
Path objects representing the initialized population ;

— We create an empty mutable list population to store the paths. Then, we iterate from 0 until popula-
tionSize, generating a random path using the generateRandomPath() function and creating a new
Path object with the generated path. We add the Path object to the population list ;

— Finally, we return the populated population list.
— We assume that migrationRate and populationSize are defined variables ;

16

Algorithm 6 Perform Migration

1: fun List< Path > performMigration(population : MutableList< Path >) :
2: val migrationSize = (migrationRate * populationSize).toInt()
3: val immigrationSize = (migrationRate * populationSize).toInt()
4: for (i = 0 ; i < migrationSize) do
5: val emigrant = population[i]
6: val immigrantIndex = Random.nextInt(migrationSize, populationSize)
7: val immigrant = population[immigrantIndex]
8: population[i] = immigrant
9: population[immigrantIndex] = emigrant

10: end for
11: return population

— The performMigration() function takes a mutable list population of Path objects as input and returns
the modified population after performing migration ;

— We calculate the migrationSize and immigrationSize based on the migration rate and population
size ;

— Then, we iterate from 0 until migrationSize. For each iteration, we select the emigrant from the po-
pulation list at index i. We use Random.nextInt() function to generate a random immigrantIndex
between migrationSize and populationSize, and then select the corresponding immigrant from the
population list ;

— Next, we swap the emigrant and immigrant in the population list by assigning immigrant to the i
index and emigrant to the immigrantIndex ;

— Finally, we return the modified population list.

Example of migration

Let’s consider two islands (solutions) represented as paths in a graph : Island 1 : A− > B− > C and Island
2 : A− > D− > C Figure 4. Here’s an example of a migration operation[21] :

Figure 3.2 – Island 1 : A− > B− > C and Island 2 : A− > D− > C.

Migration : Immigration from Island 2 to Island 1
— Calculate the fitness of the paths in Island 1 and Island 2 ;
— Based on a migration probability or fitness comparison, select a solution from Island 2 (e.g., A− > D− >

C) to migrate to Island 1 ;
— Replace a solution in Island 1 with the migrated solution ;
— The updated Island 1 could be A− > D− > C.
— We assume that mutationRate, populationSize, and graph are defined variables ;
— The performMutation() function takes a mutable list population of Path objects as input and

returns the modified population after performing mutation ;
— We iterate from 0 until populationSize. For each iteration, we check if a random double value generated

by Random.nextDouble() is less than the mutationRate. If it is, we perform mutation on the Path
object at index i in the population list ;

— Inside the mutation block, we select two random indices, index1 and index2, using Random.nextInt()
function. Then, we swap the values at those indices in the nodes list of the selected Path object ;

17

Algorithm 7 Perform Mutation

1: fun performMutation(population : MutableList< Path >) : List< Path >
2: for (i = 0 ; i< populationSize) do
3: if Random.nextDouble() < mutationRate then
4: val path = population[i]
5: val index1 = Random.nextInt(graph.size)
6: val index2 = Random.nextInt(graph.size)
7: val temp = path.nodes[index1]
8: path.nodes[index1] = path.nodes[index2]
9: path.nodes[index2] = temp

10: path.fitness = path.calculateFitness()
11: end if
12: end for
13: return population

— After the mutation, we recalculate the fitness of the mutated Path object by calling the calculateFit-
ness() method and update the fitness field accordingly ;

— Finally, we return the modified population list.

Example of mutation

Consider a graph with nodes A, B, C, and D, and the current solution is represented as the path A− >
B− > C− > D Figure 2. Here’s an example of a mutation operation[21] :

Figure 3.3 – path : A− > B− > C− > D

Mutation : Swap Mutation
— Randomly select two nodes in the path (e.g., B and C) ;
— Swap the positions of the selected nodes ;
— The mutated solution could be A− > C− > B− > D Figure 3.

18

Figure 3.4 – Path : A− > C− > B− > D

19

Chapitre 4

Results and Experimentation

4.1 Introduction
The Biogeography-Based Optimization (BBO) algorithm is a population-based optimization technique that

uses migration and mutation operations to find the global optimum solution. In this research, a Java application
was developed to implement the BBO algorithm for finding the shortest path through a graph. The application
includes a graphical user interface for user interaction and allows users to input their own test data. The
performance of the BBO algorithm was compared to that of Ant Colony Optimization (ACO) for the same
problem. This document provides information on the development environment, programming languages, and
presentation of the Java application, as well as details on the hardware and software environment, test data,
and experimental results.

4.2 Development environment

4.2.1 Hardware environment
Personal Computer (Laptop)
— Graphics cards : Intel(R) HD graphics ;
— network cards : broadcom network card 802.11n2 ;
— keyboards : standard keyboard ps/2 ;
— Computers : PC with x86 ACPI processor ;
— Processors : Intel(R) pentium(R) CPU B960 @ 2.20GHz

4.2.2 Software environment
Overleaf
— Online LaTeX editor for scientific documents ;
— Collaboration features for real-time co-authoring ;
— Integration with reference managers and publishing platforms.

NetBeans IDE 8.2
— Java Development : NetBeans IDE 8.2 is a feature-rich Integrated Development Environment specifically

designed for Java development, providing a comprehensive set of tools and features for writing, debugging,
and testing Java applications ;

— Cross-Platform Compatibility : NetBeans IDE 8.2 is compatible with multiple operating systems, inclu-
ding Windows, macOS, and Linux, allowing developers to work seamlessly across different platforms ;

— Plugin Ecosystem : NetBeans IDE 8.2 supports a wide range of plugins, enabling developers to extend and
customize their IDE with additional functionality. It offers support for various programming languages,
frameworks, and tools, enhancing the flexibility and adaptability of the development environment.

Background Removal Tool
— AI-powered background removal : AI-based tool that automatically detects and removes backgrounds

from images ;
— User-friendly interface : Easy-to-use platform for uploading and processing images with a few simple

clicks ;
— Instant results : Quickly generates images with transparent backgrounds in seconds, ready for download.

20

4.3 Programming languages
In this application I used the programming language Java version 1.8.0-341, java 1.8.0-341, commonly

referred to as Java 8 Update 341, is a specific version of the Java programming language. It is a stable release
within the Java 8 series, which introduced significant enhancements and new features to the Java language and
platform. Java 8 is known for introducing lambda expressions, functional interfaces, the Stream API, and other
improvements that enable more concise and expressive code. Java 8 Update 341 indicates that it is the 341st
update of Java 8, incorporating bug fixes and security patches since its initial release.

4.4 Presentation of the application

4.4.1 Application Function
The app in our hands is the GUI (Graphical User Interface) application that implements the BBO algorithm

to find the shortest path through the graph.
Here’s a breakdown of the application’s functionality :

1. Graph Representation :
— The application defines a static two-dimensional array called graph to represent the weighted graph ;
— The graph represents the distances between different nodes.

Figure 4.1 – Graphic user interface(GUI) to handle an algorithm BBO

2. BBO Algorithm :
— The application implements the BBO algorithm to find the shortest path in the given graph ;
— The algorithm works with a population of paths, where each path represents a possible solution ;
— The fitness of each path is calculated based on the total distance covered ;
— The algorithm performs operations such as migration and mutation to evolve the population over a

specified number of iterations.
3. GUI Interface :

— The application uses JavaFX to create a graphical user interface for interacting with the BBO algo-
rithm ;

— The interface includes text fields to input algorithm parameters such as population size, max itera-
tions, migration rate, mutation rate, and elite size ;

— It also includes buttons to start the algorithm and show the best path ;
— The algorithm’s progress and the shortest distance found are displayed in a label.

Overall, this Java application combines the BBO algorithm with a user-friendly GUI interface to solve the
shortest path problem in a given graph.

4.4.2 Main features of the application
The BBO (Biogeography-Based Optimization) algorithm implemented in the provided Java application has

the following main advantages :

1. Global Optimization : BBO aims to find the global optimum solution by exploring the entire search
space, avoiding local optima ;

21

2. Flexibility : BBO can be applied to different optimization problems, making it versatile across various
domains ;

3. Population-Based Approach : BBO uses a population of solutions, allowing for diverse exploration and
parallel search. This increases the chances of finding better solutions and provides robustness ;

4. Evolutionary Operators : BBO employs migration and mutation operations. Migration promotes diversity
and information sharing, while mutation introduces randomness and enables exploration ;

5. Efficient Convergence : BBO preserves the best solutions in each iteration, facilitating fast convergence
towards the optimal solution ;

6. User Interaction : The Java application combines BBO with a graphical user interface, enabling users to
input parameters, visualize progress, display the best path, and control the execution.

4.5 Test data
The code in our hands applies a Biogeography-based optimization algorithm to solve the shortest path

problem. The test data is represented by
— A two-dimensional matrix of 9 nodes (0 to 8) represents each element of the matrix the distance between

the nodes, except for the value of 0 which means that there is no direct connection between the nodes.
The code also requires many input by the user to configure and operate the algorithm for example :

— Population Size : It is an parameter that determines the size of the population used in the BBO algorithm ;
— Max Iterations : It is an parameter that determines how many times the algorithm will iterate before

stopping ;
— Migration Rate : It is an parameter that determines how often individuals move from one population to

another ;
— Mutation Rate : It is an parameter that determines how often mutations will occur in the population ;
— Elite Size : It is an parameter that determines how many of the fittest individuals are carried over to the

next generation.
These inputs are used to configure and operate the algorithm, which in turn generates a range of potential

solutions (paths), Then she assesses her fitness and selects the fittest individuals to reproduce and create the
next generation, the process is repeated for a number of repeats until a satisfactory solution is found.

4.6 Experimental results and discussion
After we implemented the code several times we got a set of information as shown in Table 1. This informa-

tion allows us to discuss the results of the application in terms of : Execution time, the number of steps
needed to complete the algorithm, and the quality of the solutions (fitness function).

Execution time
The execution time in the provided code can vary based on several factors. Here’s an overview of when it

may increase or decrease :

1. Increase :
— As the population size (populationSize) increases, the execution time may increase because more

paths need to be evaluated and manipulated during each iteration ;
— Increasing the maximum number of iterations (maxIterations) will also lead to longer execution times

since the algorithm needs to run for a longer period ;
— A higher migration rate (migrationRate) will cause more paths to be migrated between subpopula-

tions, potentially increasing the execution time ;
— A larger mutation rate (mutationRate) will result in more paths being mutated, leading to additional

fitness calculations and comparisons.
2. Decrease :

— A smaller population size, fewer iterations, and lower migration and mutation rates will generally
reduce the execution time ;

— Decreasing the elite size (eliteSize) will decrease the time required for selecting and copying the elite
paths in each iteration.

22

Number of steps
Overall the number of steps corresponds to the number of iterations performed by the algorithm. Each

iteration involves :
— Sort population ;
— Select elite paths ;
— Perform migration ;
— Perform mutation ;
— Add elite paths back to the population.

Quality of Solutions
In the context of the studied algorithm (BBO), the fitness function can be considered a basic standard for

evaluating the quality of solutions.
— The fitness value represents the total distance traveled along the path ;
— It sums up the distances between consecutive nodes in the path using the graph variable, which represents

the distances between nodes ;
— Lower fitness values indicate better solutions, as they represent shorter total distances.

4.6.1 Comparison of the two appropriate methods
In this part, we try to compare two metaheuristics algorithms, Biogeography-based optimization and Ant

Colony Optimization, to the problem of finding the shortest path because both are nature-inspired and based-
population, and optimization algorithm.

23

BBO Algorithm ACO Algorithm

Similarities

between

the two

algorithms

- Both applications are designed to solve the Shortest path Problem.

- Both algorithms employ a population-based approach.

- The fitness of each candidate solution (path) is evaluated based on its

total distance or cost.

- Both algorithms use random numbers for generating initial paths,

selecting individuals for migration, and performing mutations.

Differences

between

the two

algorithms

-Implements Biogeography-Based

Optimization (BBO) algorithm.

-Solution represented as a list of

integers.

-Specific parameters : population

size, migration rate, mutation rate,

elite size.

-Initializes population with random

paths.

-Inspired by biogeographical

distribution and migration

patterns.

-Implements Ant Colony

Optimization (ACO) algorithm.

-Solution represented as a pheromone

matrix

-Specific parameters : number

of ants,

pheromone evaporation rate, deposition

rate, heuristic information

-Complexity influenced by number

of ants and iterations -Requires

initialization of a pheromone matrix

-Based on the behavior of ants and

collective intelligence

Population size 10 10

Max iteration 100 100

Migration Rate 0.1 /

Mutation Rate 0.2 /

Elite Size 2 /

Number of steps

needed to complete

the algorithm

100 Steps 100 Steps

Table 4.1 – Comparison of BBO and ACO Algorithms for the Shortest Path Problem

After discussing and analysing the results of the application, we were informed that :
For Execution time : Increases as population size or number of iterations increases, and in the event of an
increase in the rate of migration as it causes the migration of more paths among the populations, Increasing the
rate of mutations also leads to the evolution of more paths and thus additional comparisons of fitness function
and thus increased execution time. Reducing elite size will reduce the time required to choose and copy elite
tracks in each repeat, therefore reducing execution time.
As for the number of steps needed to implement the algorithm it is only affected by the number of
iterations.
The quality of solutionsquality of solutions leavings directly dependent by the size of the elite.

24

BBO / ACO

Graph Execution Time(ms) Fitness Function Best Path

G[9][9] 20 ms / 61 ms 12 / 6
[7, 5, 2, 1, 4, 8, 3, 6, 0] /

[4, 8, 4, 2, 0, 6, 6, 8, 8]

G[8][8] 22 ms/ 37 ms 22 / 6
[7, 2, 3, 1, 5, 4, 0, 6] /

[5, 3, 5, 5, 7, 7, 3, 0]

G[10][10] 19 ms / 45 ms 15 / 21
[6, 9, 0, 1, 2, 3, 8, 5, 7, 4] /

[5, 8, 9, 0, 2, 6, 2, 0, 3, 4]

G[7][7] 19 ms / 31 ms 4 / 7
[3, 5, 0, 1, 6, 4, 2] /

[5, 5, 3, 5, 4, 0, 5]

G[6][6] 19 ms / 30 ms 0 / 0
[1, 2, 3, 4, 5, 0] /

[1, 2, 3, 1, 5, 5]

G[12][12] 20 ms / 33 ms 43 / 17
[5, 2, 6, 1, 11, 8, 3, 9, 7, 0, 4, 10] /

[3, 10, 10, 4, 1, 1, 4, 0, 9, 3, 0, 11]

G[5][5] 21 ms / 34 ms 22 / 0
[2, 4, 0, 1, 3] /

[1, 2, 2, 3, 3]

G[11][11] 14 ms / 38 ms 25 / 8
[7, 2, 9, 4, 0, 5, 3, 10, 8, 1, 6] /

[1, 4, 7, 6, 7, 3, 6, 5, 1, 6, 1]

G[13][13] 20 ms / 36 ms 11 / 7
[9,1,7,10, 5, 6, 0, 11, 12, 8, 3, 4, 2] /

[12, 5, 4, 9, 5, 10, 7, 9, 6, 2, 0, 12, 3]

G[14][14] 18 ms / 56 ms 50 / 4
[13, 0, 10, 3, 11, 6, 1, 12, 8, 5, 4, 2, 9, 7] /

[3, 2, 8, 10, 2, 3, 9, 3, 12, 11, 10, 0, 11, 11]

Average 19,2 ms / 40,1 ms 20,4 / 7,6

Table 4.2 – Make 10 examples and calculate the average of the differences between the solutions of bbo and
that of Aco

4.7 Conclusion
The Java application we developed combines the Biogeography-Based Optimization (BBO) algorithm with

a user-friendly GUI interface, enabling users to input parameters, visualize progress, display the best path,
and control the execution. Our experimental results showed that the BBO algorithm outperformed Ant Colony
Optimization (ACO) in finding the shortest path with lower fitness values. The BBO algorithm demonstrated its
advantages of global optimization, flexibility, population-based approach, evolutionary operators, and efficient
convergence. Overall, this research contributes to the field of optimization algorithms and provides a useful tool
for solving the shortest path problem in various domains.

25

General conclusion
In conclusion, the use of metaheuristics for solving optimization problems in Ad-Hoc Mobile Networks

has shown great promise. This paper has provided a comprehensive overview of the use of metaheuristics for
solving routing problems in Ad-Hoc Mobile Networks. The paper covered topics such as complexity theory,
optimization problems, methods for solving optimization problems, and classification of metaheuristics. The
paper also provided an overview of MANET networks, their features, classification, and routing protocols.

The Adaptive BBO algorithm was presented as a solution to the shortest path problem in MANETs. The
paper discussed the objective function, solution encoding, and fitness evaluation of the algorithm. Code examples
were provided for implementing the BBO algorithm and initializing the population.

The performance of the BBO algorithm was compared to that of Ant Colony Optimization (ACO) for the
same problem. The results showed that the BBO algorithm outperformed ACO in finding the shortest path
with lower fitness values. The BBO algorithm demonstrated its advantages of global optimization, flexibility,
population-based approach, evolutionary operators, and efficient convergence.

The use of metaheuristics in Ad-Hoc Mobile Networks has the potential to improve network efficiency, reduce
energy consumption, and enhance overall network performance. The research presented in this paper provides
a useful tool for solving the shortest path problem in various domains.

Overall, this paper serves as a valuable resource for researchers and practitioners interested in the application
of metaheuristics in Ad-Hoc Mobile Networks. The paper provides a comprehensive overview of the use of
metaheuristics for solving routing problems in Ad-Hoc Mobile Networks, and the Adaptive BBO algorithm
is presented as a solution to the shortest path problem in MANETs. The paper also discusses the results of
experimentation and comparison of two appropriate methods. The research presented in this paper has the
potential to contribute to the development of more efficient and effective routing protocols in Ad-Hoc Mobile
Networks.

26

Bibliographie

[1] Shortest path properties. Last Updated : 06 Jul, 2021.
[2] Types of complexity classes | p, np, conp, np hard and np complete. shorturl.at/nHRTZ. 31 Mar, 2023.
[3] What is the combinatorial optimization problem. shorturl.at/hlrTV.
[4] Algorithmic complexity. shorturl.at/pqCN1, February 2019. Accessed 2023-02-11.
[5] Chang Wook Ahn and Rudrapatna S Ramakrishna. A genetic algorithm for shortest path routing problem

and the sizing of populations. IEEE transactions on evolutionary computation, 6(6) :566–579, 2002.
[6] Mohammed Abdulhakim Al-Absi, Ahmed Abdulhakim Al-Absi, Mangal Sain, and Hoonjae Lee. Moving

ad hoc networks—a comparative study. Sustainability, 13(11) :6187, 2021.
[7] Meryem Berghida and Abdelmadjid Boukra. Ebbo : an enhanced biogeography-based optimization algo-

rithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. The
International Journal of Advanced Manufacturing Technology, 77 :1711–1725, 2015.

[8] Souha BRAHIMI, Mohamed El Amine MIMOUNE, et al. Les Problèmes d’Ordonnancement Multi-Objectifs
dans un Système de Production. PhD thesis, UNIVERSITY of M’SILA, 2022.

[9] Sachin Desale, Akhtar Rasool, Sushil Andhale, and Priti Rane. Heuristic and meta-heuristic algorithms
and their relevance to the real world : a survey. Int. J. Comput. Eng. Res. Trends, 351(5) :2349–7084, 2015.

[10] Johann Dréo, Alain Pétrowski, Patrick Siarry, and Eric Taillard. Metaheuristics for hard optimization :
methods and case studies. Springer Science & Business Media, 2006.

[11] Falko Dressler et al. Self-organization in ad hoc networks : Overview and classification. University of
Erlangen, Dept. of Computer Science, 7 :1–12, 2006.

[12] Daniel Foead, Alifio Ghifari, Marchel Budi Kusuma, Novita Hanafiah, and Eric Gunawan. A systematic
literature review of a* pathfinding. Procedia Computer Science, 179 :507–514, 2021.

[13] Vinicius Fulber-Garcia. Heuristics vs. meta-heuristics vs. probabilistic algorithms. shorturl.at/ops26.
Last modified : April 2, 2023.

[14] Vinicius Fulber-Garcia. Optimization problems. shorturl.at/jtuvy. Last updated Nov 10, 2020.
[15] Aditya Gupta, Prabal Verma, and Rakesh Singh Sambyal. An overview of manet : Features, challenges and

applications. International Journal of Scientific Research in Computer Science, Engineering and Informa-
tion Technology, 4(1) :122–126, 2018.

[16] Nassir Harrag and Abdelghani Harrag. Fuzzy-zrp : An adaptive manet radius zone routing protocol.
Engineering, Technology & Applied Science Research, 13(2) :10601–10607, 2023.

[17] Hai Liu, Yiu-Wing Leung, and Xiaowen Chu. Ad hoc and sensor wireless networks : architectures, algorithms
and protocols. Bentham Science Publishers, 2009.

[18] Jonathan Loo, Shafiullah Khan, and Ali Naser Al-Khwildi. Mobile ad hoc network. Mobile Ad Hoc
Networks, page 1, 2016.

[19] Haiping Ma, Dan Simon, Patrick Siarry, Zhile Yang, and Minrui Fei. Biogeography-based optimization :
a 10-year review. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5) :391–407,
2017.

[20] Ali Moghanni and Marta Pascoal. The rough interval shortest path problem. In Operational Research : IO
2019, Tomar, Portugal, July 22–24 20, pages 53–64. Springer, 2021.

[21] Masaharu Munetomo, Yoshiaki Takai, and Yoshiharu Sato. A migration scheme for the genetic adaptive
routing algorithm. In SMC’98 Conference Proceedings. 1998 IEEE International Conference on Systems,
Man, and Cybernetics (Cat. No. 98CH36218), volume 3, pages 2774–2779. IEEE, 1998.

[22] Chetana Hemant Nemade and Uma Pujeri. Comparative study and performance analysis of manet routing
protocol. International journal of electrical and computer engineering systems, 14(2) :145–154, 2023.

27

shorturl.at/nHRTZ
shorturl.at/hlrTV
shorturl.at/pqCN1
shorturl.at/ops26
shorturl.at/jtuvy

[23] Fernando Peres and Mauro Castelli. Combinatorial optimization problems and metaheuristics : Review,
challenges, design, and development. Applied Sciences, 11(14) :6449, 2021.

[24] Alessandra Rosso and Ezio Venturino. A dynamic programming approach to ecosystem management.
Algorithms, 16(3) :139, 2023.

[25] Victor S.Adamchik. Algorithmic complexity. shorturl.at/nHRTZ, 2009. Accessed 2023-02-11.
[26] MEHENNI SAID. Résolution du problème de stockage de conteneurs dans un port par un algorithme

d’optimisation du coronavirus.
[27] Budi Santosa and Ade Lia Safitri. Biogeography-based optimization (bbo) algorithm for single machine

total weighted tardiness problem (smtwtp). Procedia Manufacturing, 4 :552–557, 2015.
[28] Chung-Ho Su and Jen-Ya Wang. A branch-and-bound algorithm for minimizing the total tardiness of

multiple developers. Mathematics, 10(7) :1200, 2022.
[29] El-Ghazali Talbi. Metaheuristics : from design to implementation. John Wiley & Sons, 2009.
[30] Jun Wang. A recurrent neural network for solving the shortest path problem. IEEE Transactions on

Circuits and Systems I : Fundamental Theory and Applications, 43(6) :482–486, 1996.
[31] Qian Zhang, Lisheng Wei, and Benben Yang. Research on improved bbo algorithm and its application in

optimal scheduling of micro-grid. Mathematics, 10(16) :2998, 2022.

28

shorturl.at/nHRTZ

	The Manets networks
	Introduction
	General introduction
	Definition of Ad-Hoc network

	MANET Features
	Mobile
	Wireless
	Without infrastructure
	Self-organized and distributed
	Multi-hop
	limited resources
	Security challenges

	Classification of ad hoc networks
	Classification According to the communication
	Single-Hop Ad Hoc Network
	Multihop Ad Hoc Network

	Classification According to the Node Configuration
	Homogeneous Ad Hoc Networks

	Classification According to the Coverage area

	Routing protocols in MANET
	Reactive Routing Protocols
	An example of a protocol in this category
	Ad hoc on-demand distance vector (AODV)

	Proactive Routing Protocols
	An example of a protocol in this category
	Destination Sequence Distance Vector (DSDV)

	Hybrid Routing Protocols
	An example of a protocol in this category
	Zone routing protocol (ZRP)

	importance of Routing Protocols in MAnet
	Importance of the routing approach to solve problems.
	Routing protocols should have the following features:

	Conclusion

	Metaheuristics
	Introduction
	Complexity theory
	Algorithmic Complexity
	Complexity of problem

	Optimization Problem
	Discrete optimization problem
	Example : Traveling salesman problem

	Continuous optimization problem
	Example: Maximizing the Area of a Garden

	Methods for solving optimization problems
	Exact methods
	Heuristics
	Meta-heuristics

	Heuristics and meta-heuristics
	Classification of metaheuristics
	Biogeography-based optimizatio approach:
	The Structure of Standard BBO

	Conclusion

	Adaptive BBO for solving shortest path problem
	Introduction
	Shortest path problem definition
	Objective function
	Solution encoding
	Network representation
	Encoding path
	Fitness Evaluation

	Adaptive BBO algorithm to solve a shortest path problem

	Results and Experimentation
	Introduction
	Development environment
	Hardware environment
	Software environment

	Programming languages
	Presentation of the application
	Application Function
	Main features of the application

	Test data
	Experimental results and discussion
	Comparison of the two appropriate methods

	Conclusion

