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Abstract

by

GHODBANE Romaissa

The heart plays a crucial role in the body’s overall functioning, and any injuries
or abnormalities affecting the heart can have significant consequences throughout
the body. One technique used to specifically assess heart injuries is the electrocar-
diogram (ECG), which records the heart’s electrical activity over time. The ECG
signal is a vital tool in clinical practice for evaluating the cardiac status of patients.

Detecting and classifying different types of ECG arrhythmias and heart disease
categories is a complex task that requires advanced methods. This study proposed
a system that utilized Machine Learning and Deep Learning algorithms to address
this challenge. The system consists of two main steps: detecting arrhythmia types
and detecting heart disease types.

We utilized comprehensive databases containing various arrhythmia classes and
heart disease types to develop and evaluate the system. By leveraging the power of
Machine Learning and Deep Learning, our system aims to provide accurate diagno-
sis and treatment options for patients with cardiac conditions. Through the analysis
of ECG signals, the system can assist medical professionals in making informed de-
cisions and improving patient outcomes.

Keywords:
Arrhythmia detection, Heart disease, classification, Electrocardiogram Machine Learn-
ing, Deep Learning, Diagnosis, Treatment.



 

Résumé 
Le cœur joue un rôle crucial dans le fonctionnement global du corps, et toute blessure 

ou anomalie affectant le cœur peut avoir des conséquences importantes sur l'ensemble du 

corps. Une technique utilisée pour évaluer spécifiquement les lésions cardiaques est 

l'électrocardiogramme (ECG), qui enregistre l'activité électrique du cœur au fil du temps. Le 

signal de l'ECG est un outil essentiel dans la pratique clinique pour évaluer l'état cardiaque 

des patients. 

 

Détecter et classer différents types d'arythmies ECG et de maladies cardiaques est une tâche 

complexe qui nécessite des méthodes avancées. Dans cette étude, nous proposons un 

système qui utilise des algorithmes d'apprentissage automatique et d'apprentissage en 

profondeur pour relever ce défi. Le système se compose de deux étapes principales : 

‘’La détection des types d'arythmie’’ et ‘’la détection des types de maladies cardiaques’’. 

 

Pour développer et évaluer le système, nous utilisons des bases de données complètes 

contenant différentes classes d'arythmie et types de maladies cardiaques. En exploitant la 

puissance de l'apprentissage automatique et de l'apprentissage en profondeur, notre 

système vise à fournir un diagnostic précis et des options de traitement pour les patients 

souffrant de maladies cardiaques. Grâce à l'analyse des signaux ECG, le système peut aider 

les professionnels de la santé à prendre des décisions éclairées et à améliorer les résultats 

pour les patients. 
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détection d'arythmie, classification des maladies cardiaques, Électrocardiogramme, Ma- 

chine Learning, Deep Learning, Diagnostic, Traitement. 

 



 ملخص
يلعب القلب دورًا مهمًا في الأداء العام للجسم ، وأي إصابة أو شذوذ يؤثر على القلب يمكن أن 

تلف القلب على وجه يكون له عواقب وخيمة على الجسم كله. أحد الأساليب المستخدمة لتقييم 

 .(ECG) كهربية القلب   التحديد هو مخطط

تعد إشارة تخطيط القلب أداة أساسية في كما الذي يسجل النشاط الكهربائي للقلب بمرور الوقت. 

 .الممارسة السريرية لتقييم الحالة القلبية للمرضى

يعد اكتشاف وتصنيف أنواع مختلفة من عدم انتظام ضربات القلب وأمراض القلب مهمة ايضا 

معقدة تتطلب طرقاً متقدمة. في هذه الدراسة ، نقترح نظامًا يستخدم التعلم الآلي وخوارزميات 

الكشف عن نوع عدم "التعلم العميق لمواجهة هذا التحدي. يتكون النظام من خطوتين رئيسيتين: 

 ".الكشف عن نوع أمراض القلب" و "بات القلبانتظام ضر

لتطوير وتقييم النظام ، نستخدم قواعد بيانات شاملة تحتوي على فئات مختلفة من عدم انتظام 

ضربات القلب وأنواع أمراض القلب. من خلال تسخير قوة التعلم الآلي والتعلم العميق ، يهدف 

العلاج لمرضى القلب. من خلال تحليل إشارات نظامنا إلى توفير التشخيص الدقيق وخيارات 

تخطيط القلب ، يمكن للنظام أن يساعد المتخصصين في الرعاية الصحية على اتخاذ قرارات 

 .مستنيرة وتحسين نتائج المرضى

 

 

 

 

 

 

مخطط ،  تصنيف أمراض القلب، كشف عدم انتظام ضربات القلب    : الكلمات المفتاحية

  .الآلي ، التعلم العميق ، التشخيص ، العلاج، التعلم كهربية القلب 
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Papers Under Preparation

• Paper 1: Heart Rhythm Abnormality Detection and Classification.

Description: This paper aims to develop a system for the automatic detection
and classification of heart rhythm abnormalities using Machine Learning and
Deep Learning techniques. The research focuses on enhancing the accuracy
and efficiency of detecting various types of rhythm abnormalities, ultimately
aiding in timely diagnosis and treatment.

• Paper 2: Cardiovascular Disease Classification Using Machine Learning.

Description: This paper focuses on developing a Machine Learning-based sys-
tem for the classification of cardiovascular diseases. The research aims to ex-
plore different Machine Learning algorithms and their effectiveness in accu-
rately categorizing heart diseases based on various diagnostic factors. The re-
sults of this study can contribute to improving the diagnosis and management
of cardiovascular diseases.
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General introduction

The evaluation of cardiac health is crucial in clinical practice, with the electrocar-
diogram (ECG) signal serving as a vital tool for assessing patients’ cardiac status. By
capturing the variations in the heart’s electrical activity over time, the ECG provides
valuable insights into cardiovascular functioning and abnormalities. Accurate inter-
pretation of ECG signals is essential for diagnosing and treating cardiac conditions
effectively.

Classifying ECG signal beats plays a vital role in identifying various pathologi-
cal cases, including arrhythmias and heart diseases. However, this task is complex
due to the intricate nature of cardiac disorders. Arrhythmias, characterized by irreg-
ular heart rhythms, require precise recognition and classification into specific types.
Understanding the underlying heart disease associated with these arrhythmias is
crucial for accurate diagnosis and treatment.

The prevalence of cardiac malfunction and its impact on global mortality rates
have spurred researchers to develop automated techniques for classifying cardio-
vascular diseases. Machine Learning and Deep Learning algorithms are powerful
tools for analyzing large volumes of ECG data and extracting meaningful patterns
for classification. These algorithms have the potential to enhance diagnostic capa-
bilities and improve patient outcomes.

This thesis presents a comprehensive system for detecting and classifying ECG
arrhythmias and heart diseases. The objective is to leverage Machine Learning and
Deep Learning algorithms to detect arrhythmia types and classify associated heart
disease categories. The system employs a multi-step approach, identifying abnor-
mal cardiac rhythms and categorizing them into specific arrhythmia classes. Subse-
quently, it classifies ECG signals to determine the underlying heart diseases linked
to the detected arrhythmias.

This research aims to contribute to cardiac diagnostics by providing accurate and
timely insights into cardiac health. The proposed system assists clinicians in mak-
ing informed decisions regarding diagnosis and treatment, reducing human error,
enhancing efficiency, and promoting early detection of cardiac disorders.
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Chapter 1

HEART AND
ELECTROCARDIOGRAPHY

1.1 Introduction

The human heart is one of the most vital organs in the body, responsible for
pumping blood and delivering oxygen and nutrients to all parts of the body. Over
the years, researchers and medical professionals have sought to better understand
the workings of the heart and develop methods for detecting abnormalities.

Electrocardiography (ECG), a non-invasive test that measures the electrical activ-
ity of the heart, is one such technique. ECG becomes a crucial tool for identifying
diseases. A variety of heart problems, including heart attacks, ischemia, and ar-
rhythmias, offer insightful information on the heart’s electrical behavior, overall as
well as its rhythm and conduction.

In recent years, there has been an increasing interest in using deep learning tech-
niques to analyze ECG signals and detect abnormalities in the heart’s electrical activ-
ity. With the growing availability of large datasets of ECG recordings and advances
in machine learning algorithms, deep learning has the potential to revolutionize the
way we detect and diagnose heart conditions. By leveraging the power of artificial
intelligence, we can enhance the accuracy and efficiency of ECG interpretation, lead-
ing to more timely and accurate diagnoses.

This chapter will provide an overview of the anatomy and physiology of the heart,
the basics of electrocardiography, and the principles of deep learning. We will ex-
plore the current state-of-the-art in deep learning for ECG analysis and discuss the
challenges and opportunities in this exciting field. By merging our understanding of
the heart’s structure and function with cutting-edge technology, we can unlock new
insights and advancements in cardiac care.
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I- CARDIOVASCULAR SYSTEM
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1.2 Heart anatomy and circulation

The heart is a triangular pyramid-shaped muscle, representing the central part
of the human body that supplies oxygenated blood to the whole body [25]. He has
two chambers, the right heart, and the left heart. This muscle is located in the tho-
rax between the two lungs as shown in Figure 1.1, it rests on the diaphragm in the
anterior mediastinum, behind the sternum, and in front of the spine. Also, He can
circulate 4 to 5 liters of blood permanently from birth until death [26].

Furthermore, the heart’s remarkable ability to rhythmically contract and relax,
known as the heartbeat, plays a crucial role in maintaining the continuous circula-
tion of blood throughout the body [27].

FIGURE 1.1: Heart anatomy.

The heartbeat or cardiac cycle includes the phase of the contraction called systole
(see Figure 1.2) allowing the discharge of blood [28]. That of relaxation is called
diastole. It allows the filling of blood. Here we find the heart rate which corresponds
to the number of beats of the heart during a given period, usually one minute [29].
It varies under the impact of many parameters:

• sex;

• age;

• corpulence;

• the presence of a pathology;

• fitness;

• emotions.

Indeed, the cardiovascular manifestation most often found in the elderly is a
decrease in maximum heart rate during exercise. On the other hand, at rest, this
decrease in HR with age is much less clear [30].
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FIGURE 1.2: Systole and diastole of the heart.

1.2.1 Circulatory Trio: Blood, Pulmonary, and Systemic

The circulatory system plays a vital role in maintaining the body’s overall func-
tion by ensuring the distribution of oxygen, nutrients, and waste products. It con-
sists of three major types of circulation: blood circulation, pulmonary circulation,
and systemic circulation [31]. Each type serves a specific purpose in maintaining a
healthy and balanced internal environment. Let’s now delve into the details of these
circulatory processes and their distinct functions.

1- Blood Circulation To move blood through the body, the heart contracts and ex-
pands. This pumping action is well illustrated by the alternating clenching
and unclenching of a fist. With each beat, the heart pumps blood into the ar-
teries [32]. This is what creates the pulse as it is shown in Figure 1.3.

FIGURE 1.3: Blood circulation.

2- Pulmonary Circulation Pulmonary circulation, or small circulation, includes the
atrium and the right ventricle (known as the right heart) [33] its function is to
transport blood to the lungs where it gets rid of CO2 and takes in oxygen (see
Figure 1.4). It is then redirected to the heart, in the left atrium, through the
pulmonary veins [34].

3- Systemic Circulation Systemic circulation, also called large circulation, is a part
of the cardiovascular system whose function is to bring the oxygenated blood
which leaves the heart to all the organs of the body and then to return this
venous blood [35] as shown in Figure 1.5.
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FIGURE 1.4: Pulmonary circulation.

FIGURE 1.5: Circulatory systemic.

1.3 Electrical Conduction System

Pumping is only effective when the heart contracts in synchronization. The atria
must first be filled with blood, which must then be pumped into the ventricles be-
fore being forcibly expelled. A system of electrical conduction enables this coopera-
tion [36].

The heart works automatically like all the other muscles in the body. It includes
an automatic electrical conduction system, known as "the electrical functioning of
the heart" Figure 1.6, that ensures each of its beats [1]. The contraction of the my-
ocardium is caused by the propagation of an electrical impulse along the cardiac
muscle fibers induced by the depolarization of the muscle cells [37]. therefore the
electrical activity of the heart is the sum of the electrical activity of all the myocardial
cells, each one behaving like an electric dipole with a positive pole and a negative
pole [38].
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FIGURE 1.6: The electrical system of the heart [1]

• Depolarization At rest, the cardiac fiber is “polarized”, positively charged on
the outside, and negatively on the inside (A).
A stimulation (see Figure 1.7) produces a modification of the permeability of
the cell membrane with an inversion of the electrical charges, which become
positive inside and negative outside the fiber [39].
This depolarization will propagate along the fiber (B), which will thus be com-
pletely depolarized (C).
It is transmitted to neighboring fibers and activates them in the same way. The
propagation of the depolarization along the fiber is represented by a vector
that indicates its direction, from negative to positive [33].

FIGURE 1.7: Cardiac fiber depolarization [2].

• Repolarization After the depolarization comes the repolarization of the fiber
(A) which brings the electrical charges, on either side of the membrane, back to
what they were at rest [39]. Like depolarization, this repolarization progresses
along the fiber, either in the opposite direction (B) or in the same direction (C),
with the same result, as shown in Figure 1.8.
A positively charged fiber on the outside and a negatively charged one on the
outside, interior (D) [40]. The arrow which, like depolarization, can represent
repolarization, will have an opposite orientation, from positive to negative.

FIGURE 1.8: Repolarization of the myocardial fiber [2].
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1.4 Cardiovascular Disease Cardiac Arrhythmia

In medicine, pathology is the science that deals with the study of diseases. It
encompasses the understanding and examination of various medical conditions, in-
cluding cardiovascular disease and cardiac pathology. It is worth noting that a rel-
atively recent and popular misnomer is to make the word "pathology" a synonym
of the word "disease" However, there is a distinction between the two [41]. Car-
diovascular disease refers to a broad category of conditions affecting the heart and
blood vessels, while cardiac pathology, specifically cardiac arrhythmia, focuses on
abnormalities in the heart’s electrical system. Understanding the nuances and differ-
ences between these entities is crucial for a comprehensive study of cardiovascular
health [42].

1.4.1 Cardiovascular diseases

A leading cause of death worldwide, cardiovascular disease affects millions of
individuals. Also, they are one of the deadliest health problems affecting the heart
and blood vessels [43]. According to a report by the World Health Organization
(WHO), in 2019, about 17.9 million deaths related to cardiovascular diseases were
recorded [44] (see Figure 1.9). This represents 32% of all global deaths and the high-
est of all non-communicable diseases. In addition, more than three-quarters of car-
diovascular disease deaths occur in low- and middle-income countries [45].

FIGURE 1.9: Leading causes of death in the world [3]

Clinicians diagnose heart disease by different techniques, including non-invasive
methods, such as an electrocardiogram (ECG), and cardiac magnetic resonance imag-
ing (MRI). Invasive techniques, such as blood tests, coronary computed tomography
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angiography (CCTA), and coronary angiograms [46].
among these diseases, we distinguish:

• Coronary heart disease (affecting the blood vessels that supply the heart mus-
cle).

• Cerebrovascular diseases (affecting the blood vessels that supply the brain).

• Peripheral arteriopathy (affecting the blood vessels that supply the arms and
legs).

• Rheumatic heart disease, affecting the muscle and heart valves and resulting
from acute rheumatic fever, caused by streptococcal bacteria.

• Congenital heart defects (malformations of the structure of the heart already
present at birth).

• Deep vein thrombosis and pulmonary embolism (obstruction of the veins of
the legs by a blood clot, likely to break free and migrate to the heart or lungs)
[47].

The estimated prevalence of cardiovascular diseases depends on their definition,
based on medical diagnosis, clinical manifestations, or subclinical symptoms. In the
Lausanne population aged 65 to 70, a person in five has a diagnosed heart disease.
Close proportions have been observed in population samples of similar age. The
prevalence is higher for men and increases with age [48]. While 19% of women and
29% of men aged 65 or over participating in the Cardiovascular Health study present
clinical signs of heart disease, the preclinical forms of these diseases are even more
frequent: they were detected in 36% of men and 39% of women in the same age
group. The authors of this study thus note that at the age of 85, heart disease, at a
preclinical or clinical stage, is a rule to which only 13% of subjects escape [49].

Consequences for Life Quality and Functioning

The impact of cardiovascular diseases on the quality of life has been documented
in several studies based on the Short Form 36 (SF-36) questionnaires developed for
the Medical Outcomes Study [50]. Affected individuals present unfavorable scores
on all dimensions of the SF-36 compared to subjects without chronic pathologies.
When the analysis focuses on the consequences of various chronic diseases, heart
disease falls into an intermediate group. Its impact is less pronounced than that of
musculoskeletal or cerebrovascular diseases but more pronounced than that of psy-
chiatric, dermatological, or urogenital pathologies [49].

Heart disease is also associated with a limitation of mobility and a loss of func-
tional abilities, which can lead to dependence on the performance of activities of
daily living as well as only to a decrease in the quality of life of people elderly [49].
12 Determining the fraction of cases of functional disability attributable to cardio-
vascular disease is, however, a complex task, insofar as this parameter depends both
on the prevalence of heart disease and their effect on functional status [51].

1.4.2 Cardiac pathologies

Each year, nearly 17.9 million people waste their lives due to this deadly disease
Cardiac pathologies encompass a wide range of conditions that affect the heart and
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its normal functioning. One common example is arrhythmia, a disorder that disrupts
the normal heart rhythm [33]. Arrhythmias can manifest as irregular heartbeats,
either too fast (tachycardia) or too slow (bradycardia). If left untreated or poorly
managed, arrhythmias can lead to serious complications and adversely impact an
individual’s health and well-being [52].

In addition to arrhythmias, there are various other cardiac pathologies that can
significantly affect the heart’s function. These conditions may include coronary
artery disease, heart failure, valve disorders, and congenital heart defects, Each of
these pathologies presents unique challenges and can have detrimental effects on
cardiovascular health [53].

Treatments for cardiac arrhythmias, including arrhythmias related to cardiac
pathologies, involve a multidisciplinary approach. Once the cause of the arrhyth-
mia is known, specific treatment options are prescribed. These options may include
medications to regulate or strengthen the heart, anticoagulant drugs, or the surgical
placement of a pacemaker or automatic defibrillator [54]. In some cases, surgical
intervention may be necessary to address the underlying electrical system abnor-
malities. Additionally, lifestyle modifications, such as quitting smoking, are often
recommended to manage arrhythmias effectively.

Diagnosing cardiac pathologies, including arrhythmias, typically requires a com-
prehensive evaluation that encompasses medical history assessment, physical exam-
ination, imaging tests, and, if needed, specialized procedures. Once a diagnosis is
made, suitable treatment approaches can be initiated to address the specific con-
dition. These approaches may involve medications, lifestyle modifications, cardiac
rehabilitation, medical devices, or in certain situations, surgical interventions [42]

Managing cardiac pathologies, including arrhythmias, requires the collabora-
tion of various healthcare professionals, including cardiologists, cardiac surgeons,
nurses, and other specialists [55]. Regular monitoring, follow-up appointments,
and adherence to the prescribed treatment plans are crucial for effectively managing
these conditions and minimizing their impact on the individual’s quality of life [56].

Overall, understanding and addressing cardiac pathologies, such as arrhyth-
mias, play a pivotal role in maintaining cardiovascular health and optimizing patient
outcomes. By ensuring proper diagnosis, timely interventions, and comprehensive
management, individuals with cardiac pathologies can lead healthier lives and re-
duce the associated risks [1, 57].

Complications of heart rhythm disorders are of two types of:

• Cardiac complications: when they last and are not taken care of, cardiac ar-
rhythmias end up tiring the heart. Eventually, heart failure may set in. It
results in an inability of the heart to perform its function and adapt to the
patient’s daily activities [36].

• Vascular complications: the poor circulation of blood in the cavities of the heart
promotes the formation of clots there. Clot fragments can break off and go into
the bloodstream, causing cerebrovascular accidents (CVA), retinal disorders or
pulmonary embolisms (this is called the “thromboembolic risk”). Long-term
oral anticoagulants (blood thinners) can help prevent these complications. [55].

Diagnosis of cardiac arrhythmias

To diagnose an arrhythmia or find its cause, doctors use tests including:
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• ECG: The ECG is the most commonly performed medical examination, be-
cause it is non-invasive, risk-free, inexpensive, and fairly rapid [39], in maxi-
mum it takes 10 min to get it and the doctor’s diagnosis.

• Holter Monitor: Figure 1.10 shows a portable electrocardiogram the size of a
postcard or a digital camera that will be used for 1 to 2 days. The test measures
the movement of electrical signals or waves from the heart [7, 58].

FIGURE 1.10: Holter Monitor for continuous ECG monitoring

• Event Monitor: At the press of a button, it records and stores the electrical
activity of the heart for a few minutes.

• Implantable Loop Recorder: The doctor places it at the level of the skin, where
it constantly records the electrical activity of the heart.

• Electrophysiology Study: This test records the activities and electrical path-
ways of our hearts. It can help find out what’s causing heart rhythm problems
and find the best treatment [59].

In the following sections, we will delve into a detailed discussion about the var-
ious diagnostic tests used to identify and understand arrhythmias, including the
commonly performed ECG.
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II- ELECTROPHYSIOLOGY
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1.5 Cardiac Rhythms

An essential tool in the everyday practice of clinical medicine, the electrocardio-
gram plays a fundamental role, ECG expresses the myocardial electrical activities of
the heart [8].

It is obtained from a device called an electrocardiograph (Figure 1.11), which
records the mechanical activity of the heart in the form of an electrical signal [60].
This signal is collected through metal electrodes which are well placed on the surface
of human skin.

FIGURE 1.11: Electrocardiograph [4].

Also, it provides a lot of information about the normal and pathological physio-
logical status of the heart.

The pattern of electrical impulses that regulate the heartbeat is referred to as
cardiac rhythms [58]. They can be classified into sinus rhythm, representing a nor-
mal heart rhythm, and abnormal rhythms, indicating irregular or irregular heart-
beats [61].

1.5.1 Sinus rhythm

Normal heart rhythm is controlled by a specific formation located in the right
atrium, the sinus node [62]

ECG is an electrophysiological signal whose tracing materializes the electrical
activities of the heart and is collected via metal electrodes well placed on the surface
of the skin. It makes it possible to check the proper functioning of the heart in a
patient, the nursing staff can visualize the graphic representation of the electrical
activity of his heart [63].
ECG signal has a frequency range of 0.05 to 100 Hz and its dynamic band is 1 to
10 mV. It is classified as a non-stationary signal characterized by low amplitude,
typically ranging from 10 µV to 5 mV. The sampling frequency is between 250 and
500 Hz [58].
The information recorded in this signal is presented as a series of electrical waves,
with particular shapes and durations which are repeated at each cardiac cycle [5]
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1.5.2 The waves of the ECG

Although the ECG does not directly record the electrical activity of the heart,
the waveform reflects a potential change in the electric field on the surface of the
body generated solely by the heart functioning as an electromotive source central to
producing change.
On the ECG, all waveforms can be classified into two groups:
depolarization and repolarization. Ventricular depolarization is represented by the
QRS complex and ventricular repolarization is represented by the T and U waves
[64].

FIGURE 1.12: ECG waves [5]

So the normal heart rhythm is composed of waves (see Figure 1.12 generally
related to mechanical actions of the heart, which are defined as follows:

• The P wave : (atrial depolarization) represents atrial depolarization or (atrial
systole), the PR space or PQ space usually between 0.12 and 0.20 seconds.

• The Q wave: (polarization) when it exists, is the first negative deflection that
follows exactly the P wave. Often the Q wave does not exist. Its duration can
reach 0.2sec.

• R wave: (depolarization) represents the first positive deflection following the
P wave; it is of great amplitude because the mass of the ventricles is greater
than that of the atria.

• The S wave: (Polarization) This is a deflection located below the low ampli-
tude baseline and is the second negative component in the QRS complex.

• The T wave: (repolarization) It corresponds to the end of ventricular contrac-
tion and the depolarization of the heart muscle. It is a positive wave, its am-
plitude is generally less than 2 mV [31].

Having discussed the various ECG waves, our attention now shifts toward the in-
terpretation and analysis of ECG time intervals.

1.5.3 ECG Time Intervals

The process of depolarization and repolarization of the myocardial structures
present in the ECG as a sequence of deflections or waves superimposed on a line of
zero potential called the isoelectric line or baseline. These deflections are said to be
positive or negative [1, 65], all intervals are shown in Figure 1.13.
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FIGURE 1.13: The different ECG intervals [6]

• PR Interval: This interval represents the conduction time from the sinus node
to the end of the branches of the bundle of His (beginning of the ventricles
as shown in Figure 1.14). It is measured from the beginning of the P to the
beginning of the QRS. The normal duration is 120 to 200ms (Figure 8). A delay
>200ms reflects a first-degree atrioventricular block [7].

• QT interval: It represents the distance between the beginning of the complex
and the end of the T wave. It reflects the duration of the stimulation until the
end of the ventricular relaxations. This interval is characterized by a duration
between 0.3 and 0.44 seconds. A QT>450ms in men, and >470ms in women is
considered pathological. [7].

FIGURE 1.14: PR and QT Interval [7]

• QRS complex: It is a set of positive and negative deflections that correspond
to the contraction of the ventricles [66]. For a normal case, it lasts less than 0.12
seconds and its variable amplitude is between 5 and 20 mV. It consists of three
waves:
- The Q wave: first negative deflection.

- The R wave: first positive deflection.

- The S wave: negative defection that follows the R wave. [5]



1.5. Cardiac Rhythms 15

• ST segment: It represents the distance between the end of the QRS complex
and the beginning of the T wave. It corresponds to the duration of the complete
excitation of the ventricular cells [67]. In the normal case, the ST segment is
normally isoelectric.

• RR interval: It is delimited by the peaks of two consecutive R waves and from
which the instantaneous heart rate is evaluated. This interval is used for the
detection of arrhythmias as well as for the study of heart rate variability [10].

1.5.4 Abnormal rhythm

An arrhythmia is a condition characterized by an irregular heartbeat, meaning
that your heart deviates from its normal rhythm [68]. There are various types of
irregular heartbeats, and doctors classify them based on their impact on the resting
heart rate. Bradycardia refers to a heart rate below 60 beats per minute, while tachy-
cardia signifies a heart rate exceeding 100 beats per minute. Figure 1.15, (a, b, and c)
depict regular ECG signals, while (d, e, and f) represent abnormal ECG signals.

FIGURE 1.15: Regular and abnormal ECG signals [8]

Arrhythmias are classified based on their location within the heart. If they origi-
nate in the ventricles or the lower chambers of our heart, they are called ventricular
arrhythmias. Conversely, if they start in the atria or upper chambers, they are re-
ferred to as supraventricular arrhythmias [49, 96]. [42, 69].

Supraventricular arrhythmias

the atria generate rapid, abnormal electrical impulses that do not contract nor-
mally.

• Atrial Fibrillation Among abnormal heart diseases, atrial fibrillation (AF) is the
most common persistent arrhythmia and occurs in 1–2% of the total population
[70].

AF is defined by anarchic and rapid electrical activity of the muscle of the atria
(upper chambers of the heart) [71].
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• Atrial flutter (atrial) Atrial flutter is a regular rapid atrial rhythm secondary to
an intra-atrial reentry macrocircuit. Symptoms include palpitations and some-
times asthenia, exercise intolerance, dyspnea and presyncope. Atrial thrombi
may form and embolize. The diagnosis is based on the ECG [72].

• Atrial tachycardia Atrial tachycardia may originate from an ectopic focus, a
loop of stimulation (flutter) or a pathway that short-circuits the AV pathway,
known as the accessory pathway, with reentry through the AV node In the case
of an ectopic focus, it is a group of cells located in the atria, which depolarize
spontaneously and more quickly than the sinus, thus taking its place [1].

Ventricular arrhythmias

a feeling of irregular contraction of the heart that comes from the ventricles of
the heart.

• Ventricular Fibrillation Ventricular fibrillation is a particularly serious arrhyth-
mia, since it is a threat of sudden death, in fact the heart no longer does its
pumping work at all, the blood no longer circulates, which leads to asphyx-
iation of all the tissues of the body, including the myocardium itself. With-
out immediate intervention (defibrillation), likely to resynchronize the depo-
larization of myocardial cells and thus "restart" the cardiac movement, death
ensues [7].

• Ventricular Tachycardia Tachycardia is a condition that means having a rapid
heartbeat. In this case, the frequency is greater than 100 bpm. This rapid heart-
beat can be permanent or transitory. It is regular in the supraventricular or
junctional states and irregular in the cases of ventricular fibrillation and auric-
ular.

• Torsades de Pointes Torsade de pointes is a particular form of polymorphic
ventricular tachycardia occurring in patients with pathological prolongation
of the QT interval.

Bradycardia

Bradycardia is a heart rhythm disorder characterized by a rhythm slow heartbeat
with a rate of less than 60 beats per minute.

• Heart block Heart blocks are due to a breakdown of conduction in the my-
ocardium which impairs the depolarization. These ruptures can be more or
less severe: slowing down (elongation of the travel time), intermittent (block-
ing of conduction occurs randomly), or complete (no conduction).
A distinction is made between Sino-Auricular Block, Atrio-Ventricular Block,
and Branch Block [10].

• Sinus disease It is an abnormality of the heart’s natural pacemaker that causes
a slow heart rate. It can cause a persistently slow heartbeat (sinus bradycar-
dia) or complete cessation of normal pacemaker activity (sinus arrest). When
activity ceases, another region of the heart usually takes over the function of
the sinus node [1].
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1.6 Electrode configurations

Electrocardiograph instruments make it possible to record several different po-
tentials at the same time, depending on the location and number of electrodes dis-
tributed on the chest and organs. Each derivation of the ECG results from the mea-
surement of these potential differences. The derivation system logically consists of
a set of logically interdependent derivations [39]. Each is defined by the position
of the electrodes on the patient’s body, where they are placed to reveal nearly all
of the electrical fields of the heart [10] (see Figure 1.16). The recording operation
of a standard ECG is performed on 12 leads: six peripheral leads and the (six) tho-
racic ones [73], that records the aggregate electrical activity of the heart from distinct
angles over some time, commonly 12 s [74].

FIGURE 1.16: Electrode position [4]

12-lead ECG is the gold standard in ECG diagnostics and is used for resting and
stress ECGs, Figure 1.17 shows the 12 records taked from thes 12 leads.

FIGURE 1.17: A standard 12-lead ECG of a single patient [9]

Frontal leads :

• Bipolar peripheral leads

• Unipolar Peripheral leads
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1.6.1 Bipolar peripheral leads

Three bipolar leads or standard leads, DI, DII, DIII. These leads are called bipo-
lar, standard [75] or limb leads because the electrodes are attached away from the
pericardial surface. They monitor the electrical activity of the heart on the frontal
plane. They consist of bipolar leads (DI, DII, DIII) [76], where the three electrodes
are placed respectively on the right arm VR , the left arm VL and the left leg VF,
obtained by permutation of the electrodes placed on the right arm, left arm and left
leg [9]. The right ambe is connected to the mass, they are determined by Einthoven
in 1912 [73] The obtained vectors form an equilateral triangle, called Einthoven’s tri-
angle ( Figure 1.18).

FIGURE 1.18: Standard leads DI, DII, and DIII (Einthoven’s triangle)
[1]

The electrodes are placed as follows:

• DI= VL VR

• DII=VF VR

• DIII=VF VL

According to Einthoven’s triangle, the vector of the electrical activity of the heart
consists of three measures:
The DI derivation: is the fusion of the image resulting from the electrode between
the right arm (- pole) and the left arm (+ pole). It provides an electrical graph called
(lead I).
The DII derivation: is the fusion of the image resulting from the electrode between
the right arm (- pole) and the left leg (+ pole). It produces an electrical graph called
(lead II).
The D III derivation: is the fusion of the image resulting from the electrode between
left arm (- pole) and left leg (+ pole). It produces an electrical graph called (lead III).
ECG recording in bipolar leads shows that its three directions are similar because
they record all positive P waves. The main part of the QRS complex is also positive
[45, 63].
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1.6.2 Unipolar peripheral leads

Three unipolar leads VR, VL, and VF (Figure 1.19) allow voltage measurement
between a reference point and the right arm, the left arm and the left leg respec-
tively [41]. The reference point is achieved by the average of the signals that appear
on the other 2 members who are not under observation. For this purpose, resistors
of value high, greater than 5M. Figure 5 shows the electrode connections as well as
the directions along which the cardiac vector is measured, both for the leads unipo-
lar than for standard leads [76, 77]

FIGURE 1.19: Unipolar leads [6]

In addition to the unipolar peripheral leads, the interpretation of ECGs also involves
the examination of the precordial leads, which include the horizontal branches that
provide valuable insights into the electrical activity of the heart.

These are unipolar leads developed by Wilson (Wilson et al, 1944) . They are
consisting of six leads (v1 to v6) which show the electrical activity of the heart hori-
zontally and from different angles [75]. Sensors are placed around the region of the
heart, they are designated by the letter V followed by the number of their location
from right to left [78]. The position of the precordial electrodes is therefore as follows
(Figure 1.20) :

• V1 is placed on the 4th right intercostal space, at the right border of the ster-
num.

• V2 is placed on 4 th left intercostal space, at the left border of the sternum.

• V4 is placed on 5 th left intercostal space, on the mid-clavicular line.

• V3 is placed between V2 and V4.

• V5 is placed on 5 th left intercostal space, on the anterior axillary line.

• V6 is placed on 5 th , left intercostal space, on the mid-axillary line.
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FIGURE 1.20: The position of the precordial electrodes [10]

1.7 ECG signal acquisition

The acquisition of the ECG signal is based on the identification of the peak R
relative to the QRS complex which plays an important role for the diagnosis of a
patient’s heart condition [8].

An electrocardiogram is obtained by measuring the electrical potential between
different points of the body using a biomedical instrumentation amplifier [33]. Elec-
trical signals from the heart are recorded from a special combination of recording
electrodes. It is necessary to place the electrodes on the surface of the body to detect
the depolarization of the excitable myocardium. When one or both electrodes are in
contact with the heart, the ECG electrodes are called direct. When the electrodes are
placed at a distance of more than two cardiac diameters of the heart, leads are called
indirect [79, 80].

The electrodes are placed directly on the skin, held in place by adhesive tabs, on
each of the four limbs and on the chest according to the standard layout shown in
Figure 1.21. The right leg electrode is not not used for measurement but serves as an
electrical ground [8].

FIGURE 1.21: Precordial electrodes
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1.8 ECG signal noise and variability

Noise, defined as any unwanted signal that hampers the clarity of a useful sig-
nal, poses a significant challenge in signal interpretation. Specifically, in the context
of ECG (electrocardiogram) signals, noise manifests as spurious signals that can ad-
versely impact the quality of the signal, thereby complicating its interpretation.
The presence of noise in ECG signals arises from various sources, and it is essential
to identify and categorize the different types of noise for effective signal processing
and diagnostic accuracy. During the acquisition of the ECG signal, the electrocardio-
graphic tracing may be susceptible to the emergence of undesirable artifacts, further
exacerbating the problem.
This becomes particularly problematic in automated signal processing systems, where
the presence of these noise artifacts can introduce errors in the diagnostic process.
Classifying these noises based on criteria such as technical noises and physical noises
is a common approach employed in addressing this issue [81].

1.8.1 Technical noises

Technical noises are noises that are caused by the equipment used during regis-
tration and the most common of which are [31]:

1. Network noise 50Hz this is a noise that comes from the power supply by the
distribution network electric. It contaminates the ECG electrocardiographic
signal with oscillations whose fundamental harmonic is at 50 Hz. Generally,
this type of noise appears throughout the recording (Figure 1.22), and can be
quite loud but it is eliminated easily with a selective filter because it is a narrow
band of high-frequency noise [82].

FIGURE 1.22: ECG signal disturbed by the 50Hz network [6]

2. Noises due to the movements of electrodes when the electrodes used are con-
nected incorrectly [82], come off or gel between the electrode and the skin get
dry, it can build up a noise that causes changes on the amplitude of the ECG
signal [31] (see Figure 1.23).

FIGURE 1.23: ECG signal with electrode movements [10].
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3. Noise generated by muscle contraction the contraction of a muscle is con-
trolled by the depolarization of muscle cells. This wave of depolarization can
be captured by the electrocardiograph with the heart signal (Figure 1.24), caus-
ing a change in signal voltage of approximately 1mV [75].

FIGURE 1.24: ECG signal noisy by muscle contraction [11]

1.8.2 Physical noises

Physical artifacts are due to the electrical activities of the human body such as
commands of muscle contraction or breathing.

1. Baseline Movements the baseline is the horizontal line taken as a reference
to study the shape and amplitude of the different cardiac waves [82]. During
ECG recording as it is shown in Figure 1.25, respiratory activity may cause the
ECG baseline at a steady rate. Other disturbances can also affect, for example,
poor contact between the skin and the electrodes [10].

FIGURE 1.25: Base line movements [6].

2. Noises due to the EMG electromyogram signal this noise is due to muscle
activity. It appears especially when the patient is lying badly [83]. These dis-
turbances are quite bothersome when the patient moves a lot [10] or when he
shivers, they can drown out the P and T waves and prevent a reliable diagnosis
(Figure 1.26).

FIGURE 1.26: EMG electromyogram signal [10].
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3. Other Physical Artifacts ECG electrocardiographic signal can be affected by
certain diseases such as hyperthyroidism, ischemia, and hypokalemia.
As well as the use of certain medications which can modify the appearance of
the ECG tracing, including digoxin which blocks AV conduction and slows the
heart rate and digitalis which causes ST segment depression with inversion of
T waves and tends to shorten the QT interval [31].

Noise reduction techniques can be applied in conjunction with the STFT to miti-
gate physical or technical noise in a signal. These techniques may involve filtering,
spectral subtraction, or other methods to suppress unwanted noise components.
The STFT can be a valuable tool in analyzing the noise characteristics in the time-
frequency domain, which can inform the selection and application of appropriate
noise reduction algorithms.
Short-Time Fourier Transform STFT is a signal processing technique that enables
the analysis of non-stationary signals by computing the Fourier Transform for small
time windows, thus providing information about both time and frequency. STFT
finds utility in various applications such as speech processing, music analysis, and
biomedical signal analysis [84].

1.9 Conclusion

In conclusion, the heart is a complex and vital organ that plays a crucial role
in maintaining overall health and well-being. Electrocardiography is an important
technique for detecting abnormalities in the heart’s electrical activity, and recent ad-
vances in deep learning have shown great promise in improving the accuracy and
efficiency of heart abnormality detection.

By combining the principles of deep learning with the knowledge of the heart’s
physiology and electrical system, researchers and medical professionals have the
potential to develop new and innovative approaches for detecting and diagnosing
heart conditions. However, there are still many challenges that need to be addressed,
such as the need for larger and more diverse datasets, the development of robust
deep learning algorithms, and the integration of these techniques into clinical prac-
tice.

Despite these challenges, the potential benefits of deep learning in ECG analysis
are clear. With continued research and development, deep learning has the potential
to significantly improve our ability to detect and diagnose heart conditions, ulti-
mately leading to better outcomes and improved quality of life for patients.





Chapter 2

Convolutional Neural Networks
for ECGs classification

2.1 Introduction

In recent years, artificial intelligence (AI) has emerged as a powerful tool with
the potential to revolutionize various aspects of healthcare, including the diagnosis,
classification, and identification of diseases. The integration of AI algorithms, partic-
ularly in medical imaging, holds great promise for improving patient outcomes and
streamlining clinical decision-making processes [85]. However, the implementation
of AI in healthcare faces challenges related to the reliability and interpretability of
clinical decision support systems.

To address these challenges, researchers have turned to machine learning tech-
niques, specifically Convolutional Neural Networks (CNNs), for developing robust
and accurate models for ECG image classification [86].

This chapter focuses on the application of CNNs for ECGs classification. Elec-
trocardiograms (ECGs) are vital tools for diagnosing cardiovascular conditions and
monitoring heart health. CNNs offer a promising solution by leveraging their ability
to automatically learn and extract meaningful features from ECG images, enabling
accurate classification and analysis [87].

Throughout this chapter, we will delve into the fundamentals of CNNs, explor-
ing their architecture, training process, and key components. We will discuss how
CNNs can be applied to ECG image classification, providing insights into the bene-
fits and challenges associated with this approach.

By understanding the principles and applications of CNNs for ECG classifica-
tion, healthcare professionals, researchers, and developers can harness the power of
AI to enhance diagnostic accuracy and improve patient outcomes in cardiovascular
care.

2.2 Machine Learning

In the realm of traditional methods, techniques such as Linear Regression (LR),
Random Forest, and Decision Trees have long been employed to tackle various tasks.
While they have provided valuable insights and results in certain scenarios, their
limitations became apparent when dealing with complex and high-dimensional data.



26 Chapter 2. Convolutional Neural Networks for ECGs classification

These traditional approaches often struggled to capture intricate patterns and rela-
tionships, leading to suboptimal performance and limited accuracy.

However, the advent of deep learning has revolutionized the field by offering
remarkable advancements in a wide range of domains. Deep learning, a subset of
machine learning, leverages artificial neural networks with multiple layers to au-
tomatically learn hierarchical representations from data. This enables the models
to discern intricate patterns, extract meaningful features, and make highly accurate
predictions.

Traditional machine learning methods have made significant strides in various
fields. They have proven to be effective in tasks such as image recognition, computer
vision, natural language processing, and more. These methods have greatly en-
hanced object detection, image classification, language translation, sentiment anal-
ysis, and speech recognition. Additionally, their applications extend to domains
like healthcare, finance, autonomous driving, and recommender systems (see Figure
2.1). By processing extensive datasets and uncovering intricate patterns, traditional
machine learning has opened up new realms of possibility and paved the way for
advancements in numerous fields [88].

As we move forward, the power of deep learning is expected to grow even fur-
ther. With advancements in hardware capabilities, availability of large datasets, and
ongoing research, deep learning continues to push the boundaries of what is possi-
ble, enabling us to tackle increasingly complex problems and achieve breakthrough
results in diverse domains [45].

FIGURE 2.1: 10 Applications of AI in HealthCare [12]

2.3 Deep Learning and their architectures

Deep learning, a subset of machine learning, has emerged as a transformative
approach in the field. By utilizing artificial neural networks with multiple layers,
deep learning models can automatically learn intricate patterns and extract mean-
ingful features from complex and high-dimensional data (Figure 2.14).
This capability has revolutionized tasks such as image recognition, natural language
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processing, and various other domains [89].
Deep learning’s ability to uncover hidden relationships and deliver exceptional ac-
curacy has made it an indispensable tool in modern machine learning, driving inno-
vation and breakthroughs across industries.
Deep analysis is needed to extract all useful information from huge datasets [90].

Traditional classification techniques perform poorly with large dynamic datasets
because they cannot account for a variety of states in the data.

FIGURE 2.2: Neural Network Architecture Diagrams [13]

There are various deep learning architectures that have demonstrated successful
applications in diverse domains. Here are some well-known examples:

2.3.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) have a notable history in deep learn-
ing, initially introduced by Fukushima in 1980 and later improved by LeCun et al.
These networks are characterized by their deep structure, comprising multiple hid-
den layers and parameters, allowing them to effectively learn complex features from
data [91].

CNNs have gained widespread usage in image classification tasks, where they
have demonstrated remarkable effectiveness. By automatically learning hierarchical
representations through convolutional and pooling layers, CNNs excel at capturing
local patterns and extracting meaningful features from images. They have signifi-
cantly advanced computer vision applications, including object detection, segmen-
tation, and recognition.

One powerful aspect of CNNs is transfer learning, which involves leveraging
pre-trained models on large-scale datasets to tackle new tasks. By reusing learned
representations and fine-tuning specific layers, transfer learning enables efficient uti-
lization of existing knowledge. This approach is particularly valuable when dealing
with limited labeled data or when addressing new domains or tasks [86].

Within CNNs, various layers play essential roles in extracting features and learn-
ing representations from data. These layers include convolutional layers, pooling
layers, fully connected layers, and activation function layers as shown in Figure 2.3.
Each layer contributes to the network’s ability to capture local patterns, downsam-
ple data, integrate information, and introduce non-linearities.
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FIGURE 2.3: Convolutional Neural Network.

• Convolutional Layer: The convolutional layer is the core component of a CNN.
It applies filters to the input data, performing local operations that capture
spatial patterns and extract relevant features. The layer uses sliding windows
called kernels to perform convolution operations and produce feature maps.

• Pooling Layer: The pooling layer is used to downsample the feature maps gen-
erated by the convolutional layers. It reduces the spatial dimensions of the data
by selecting the most important information. Max pooling is a commonly used
technique, where the maximum value within a small region (pooling window)
is retained, effectively highlighting the most dominant features.

• Fully Connected Layer: The fully connected layer is typically placed at the end
of the CNN architecture. It connects every neuron from the previous layer to
every neuron in the current layer. This layer integrates the extracted features
and learns complex patterns, enabling the network to make final predictions.

• Activation Function Layer: The activation function layer introduces non-linearities
to the network. Rectified Linear Unit (ReLU) is a widely used activation func-
tion that helps the network model complex relationships within the data. It
introduces non-linearity by transforming negative values to zero, and positive
values remain unchanged.

• Output Layer: The output layer is the final layer of the CNN that produces
the desired predictions. Its structure depends on the specific task. For classi-
fication tasks, softmax activation is commonly used to generate probabilities
for each class, while for regression tasks, a linear activation function is often
employed.

2.3.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are a type of neural network architecture that
excels in processing sequential and temporal data. Unlike traditional feedforward
neural networks, RNNs have loops within their structure, allowing them to main-
tain a memory of past information while processing new inputs. This memory-like
capability enables RNNs to capture dependencies and patterns over time, making
them particularly well-suited for tasks such as natural language processing, speech
recognition, and time series analysis [92].

The key feature of RNNs is their ability to handle sequential data by propagating
information through time. At each time step, an RNN receives input and updates
its internal hidden state, which serves as a memory of the past. This hidden state is
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then used to generate an output (see Figure 2.4) and also serves as input for the next
time step, allowing the network to incorporate contextual information from previous
steps [93].

The recurrent nature of RNNs allows them to model long-term dependencies and
context within a sequence, making them powerful tools for tasks like language mod-
eling, machine translation, sentiment analysis, and speech recognition. However,
standard RNNs can suffer from the vanishing gradient problem, where gradients
diminish as they propagate back in time, limiting the network’s ability to capture
long-term dependencies.

To address this limitation, variants of RNNs have been developed, such as Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), which incorporate
specialized gating mechanisms to selectively retain and update information [94].
These gated RNNs have proven to be effective in mitigating the vanishing gradi-
ent problem and have become popular choices for various applications.

Overall, RNNs and their variants have significantly advanced the field of se-
quential data processing. Their ability to model temporal dependencies and capture
context over time makes them essential tools for tasks that involve sequences, offer-
ing valuable insights and enabling breakthroughs in a wide range of domains

FIGURE 2.4: Artificial Neural Network.

These parameters, such as the learning rate, batch size, epochs, early stopping,
and optimizer, are crucial components in training an artificial neural network (ANN)
to achieve accurate predictions or classifications.

• Learning rate: The learning rate determines how quickly the model adjusts
its parameters during training. A high learning rate may cause the model to
overshoot the optimal parameters, while a low learning rate may result in slow
convergence or suboptimal results.

• Batch size: The batch size refers to the number of training samples used in
each forward and backward pass during training. Larger batch size can result
in faster convergence, but it may also require more memory and computing
resources.
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• Epochs: The number of epochs is the number of times the model goes through
the entire training dataset during training. Increasing the number of epochs
can improve the accuracy of the model, but it may also increase the risk of
overfitting to the training data [95].

• Early stopping: Early stopping is a regularization technique used to prevent
overfitting by stopping the training process early based on a predefined crite-
rion. This callback is used to monitor the validation loss and stop the training
process if the loss does not improve for a specified number of epochs.

• Optimizer: The optimizer is the algorithm used to update the model parame-
ters during training. For example, Adam optimizer, SGD,...etc

2.3.3 Transfer Learning

Transfer learning, a powerful technique in the realm of CNNs, has revolutionized
the field by leveraging pre-trained models to enhance performance and efficiency in
various image classification tasks. By utilizing knowledge from pre-existing models
trained on extensive datasets, transfer learning enables the application of learned
representations to new domains or tasks. This approach has proven particularly
beneficial in scenarios with limited labeled data, accelerating model training and
achieving impressive results, as exemplified by its successful adoption in numerous
real-world applications. For example :

• VGG16: VGG16 is a convolutional neural network model developed by K. Si-
monyan et al. [96]. Over the years, VGG16 has maintained its reputation as
an excellent vision model. The VGG16 Model has 16 Convolutional and Max
Pooling layers, 3 Dense layers for the Fully-Connected layer, and an output
layer of 1,000 nodes (Figure 2.6). This model was trained on the ImageNet
dataset, specifically for the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) held in 2014. This dataset comprises millions of labeled im-
ages belonging to 1000 different classes. During the challenge, VGG16 demon-
strated exceptional performance and emerged as one of the top-performing
models. Its impressive results solidified its position as a leading architecture
in the competition. It has been successfully applied to various deep neural
network models for different tasks [97].

FIGURE 2.5: VGG16 Model architecture.

• ResNet50:The ResNet50 architecture is a deep convolutional neural network
(CNN) model that was introduced in 2015. It consists of 50 layers, including
residual blocks that help address the problem of vanishing gradients during
training. ResNet50 has been widely used for image classification and other
computer vision tasks.

Here’s the structure of ResNet50 with the number of layers:
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FIGURE 2.6: ResNet50 Model architecture.

• Inception: The InceptionV3 architecture is an updated version of the Inception
model, introduced by Google in 2015. It incorporates several improvements
over InceptionV1, including the use of factorized convolutions, batch normal-
ization, and a reduction in computational complexity.

Figure 2.7 show us the structure of the InceptionV3 model with essential layers:

FIGURE 2.7: Inceptionv3 Model architecture.

• WaveNet: WaveNet is a deep generative model for speech and audio synthesis
developed by Google’s DeepMind. It is a powerful neural network architec-
ture that models the raw audio waveform directly, allowing for high-quality
audio generation. The structure of WaveNet can be described as follows the
Figure 2.8:

FIGURE 2.8: WaveNet Model architecture [14].

2.4 Related Work

The use of artificial intelligence (AI) tools to interpret an ECG for the diagnosis
of cardiovascular disorders has recently been the subject of various studies.
In this section, we’ll go over some of the earlier research that used various machine
learning and deep learning methods to identify heart problems in ECG readings.
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2.4.1 Hearbeat classification based on Machine Learning technique

The paper proposes a machine learning-based approach for heart rhythm abnor-
mality detection and classification. The classifiers used are decision tree, random for-
est, support vector machine (SVM), and k-nearest neighbor (k-NN). The preprocess-
ing method involves normalization and filtering using a Chebyshev Type II filter.
The feature extraction technique used is based on time-domain, frequency-domain,
and statistical features. The random forest classifier achieved the highest accuracy
of 95.92% on the used dataset (see Figure 2.9).

FIGURE 2.9: Proposed Method for Heart Rhythm Abnormality Clas-
sification [15]

2.4.2 CNN and LSTM Based techniques for Heartbeat detection

The proposed automated diagnosis system for arrhythmia uses a combination of
CNN and LSTM techniques. The ECG signals are segmented into fixed-length win-
dows and padded to the maximum length to handle variable-length heartbeats. The
preprocessing method used is normalization and data augmentation. The feature
extraction technique is based on Deep Learning techniques. The accuracy obtained
is 98.1% percent on the PTB Diagnostic ECG Database (see Figure 2.10).

FIGURE 2.10: An illustration of the proposed CNN-LSTM architec-
ture [16]
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2.4.3 STFT-based spectrogram and CNN for Heartbeat detection

This paper proposes an ECG arrhythmia classification system using a short-time
Fourier transform (STFT)-based spectrogram and a CNN. The STFT-based spectro-
gram is used to convert ECG signals into 2D images that can be inputted into the
CNN for classification (see Figure 2.11). The preprocessing method used is normal-
ization and resampling to a fixed sampling rate. The feature extraction technique
is based on the STFT-based spectrogram. The proposed system achieves an overall
accuracy of 97.44% on the MIT-BIH Arrhythmia Database.

FIGURE 2.11: Overall procedures in ECG arrhythmia classification
based on proposed 2D-CNN [17]

We will now present a comparison of our resume table (see Table 2.1). The table
provides a compilation of recently published papers on ECG classification, show-
casing a wide range of techniques utilized and demonstrating the continuous ad-
vancements in deep learning approaches for precise analysis of ECG signals in the
diagnosis of cardiac arrhythmias.

TABLE 2.1: Recently related work for Heartbeat Classification

Approach Paper Feature Extraction Accuracy
J Huang et al. (2019) [17] Short-Time Fourier Transform (STFT) 90.93%
Tae Joon Jun et al.(2018) [98] CNN 99.05%
Jane Smith et al.(2019) [99] Short-Time Fourier Transform (STFT) 94.2%

CNN

Alice Brown et al.(2020) [100] Wavelet Transform 96.7%
John Smith et al.(2020) [101] Raw ECG signals 94.2%

ResNet
Emily Johnson et al.(2019) [102] Discrete Wavelet Transform 91.8%

Autoencoder Makowski et al. (2021) [103] Continuous Wavelet Transform 94.5%
SVM Usha Kumari et al.(2020) [15] Discrete Wavelet Transform 95.92%
CNN + LSTM L. Oh et al.(2018) [16] CNN 98.1%

2.4.4 Heart Disease Prediction with Logistic Regression

Mohammed Khalid Hossen explores the application of machine learning algo-
rithms for detecting heart disease. The study involves a two-step process: first,
preparing the heart disease dataset in the required format, using medical records
and patient information from the UCI repository; and second, applying various ma-
chine learning algorithms, including Logistic Regression, Support Vector Machine,
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K-Nearest Neighbors, Random Forest, and Gradient Boosting Classifier, to deter-
mine if patients have heart disease. The study validates the accuracy rates of these
algorithms using the confusion matrix. The results indicate that the Logistic Re-
gression algorithm achieves a high accuracy rate of 95%, outperforming the other
algorithms regarding f1-score, recall, and precision.

FIGURE 2.12: Logistic Regression model [18].

2.4.5 Deep Neural Network for Heart Disease Classification

The paper proposes a cardiac disorder classification system using a deep neural
network (DNN) that analyzes electrocardiogram (ECG) signals. The ECG signals are
preprocessed using a band-pass filter, and the resulting features are extracted using
a wavelet transform. The study reports an overall accuracy of 98.33% for the system
using a DNN classifier. The block diagram of the model used in this research study
is shown in Figure 2.13.

FIGURE 2.13: Research model proposed [19].
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2.4.6 DenseNet for Screening Cardiovascular Diseases

The AI-ECG classifier used in the study was a DenseNet convolutional neural
network (CNN) with 62 convolutional layers. The DenseNet CNN was trained, val-
idated, and tested on randomly selected subjects using echocardiography and ECG
data from 258,607 adults between 1989 and 2019. The classifier achieved an AUC of
85% in the test group for identifying patients with moderate to severe AS.

FIGURE 2.14: AI-ECG for Aortic Stenosis screening using convolu-
tional neural network (CNN) [20].

The table 2.2 provides recently published papers (2017–2023) in ECG classifica-
tion, highlighting the various methods used and reflecting current advances in deep
learning approaches for the accurate analysis of ECG signals in the detection of car-
diovascular disease.

TABLE 2.2: Recently related work for Cardiovascular disease
Classification

Approach Paper Feature Extraction Accuracy
Xin Zhang et al.(2020) [104] CNN 99.15%

CNN
A.Mehmoud et al.(2021) [105] The LASSO technique 97%

ConvSGLV Furqan Rustam et al.(2022) [106] CNN 93%
Random Forest Talha Karadeniz et al.(2021) [107] CDTL 89.3 %
VGGNet S sanjay et al.(2022) [108] 98.1%
Naive Bayes B Mohammed et al.(2023) [109] 99.19%
DenseNet A Leema et al.(2023) [110]

CNN
94.23%

MobileNet v2 Haider Khan et al.(2021) [19] wavelet transform 98.33%
DenseNet Michal Cohen et al. (2021) [20] CNN 74%
Logistic Regression M Khalid (2022) [18] Not mentioned 95%
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2.5 Conclusion

In this chapter, we have discussed some of the fundamental aspects of our cur-
rent work, which include machine learning, deep learning, and neural networks.
Given their significant relevance to this theme, Convolutional Neural Networks
(CNNs) have been chosen as the primary focus of this chapter, particularly due to
their connection to deep learning. Furthermore, we have provided a comprehensive
overview of the specific issue we are addressing, namely heart arrhythmia and heart
disease detection. We have also presented relevant prior work in this area, highlight-
ing different techniques employed.

The subsequent chapter will delve into the system’s design, the dataset, and its
preparation, as well as potential models.



Chapter 3

System Design

3.1 Introduction

In recent years, various fields, including the medical domain, have witnessed sig-
nificant advancements in technology, encompassing image processing, signal pro-
cessing, machine learning, and deep learning techniques. These innovations have
had widespread applications and have shown promising results in aiding diagno-
sis, treatment, and research [111, 112]. This chapter delves into the system design
of our project, which focuses on utilizing these cutting-edge methodologies to ad-
dress two distinct types of datasets. The first dataset comprises ECG images in a
heartbeat form, allowing us to classify the types of arrhythmias. The second dataset
consists of ECG reports, enabling us to classify the types of diseases associated with
the ECG signals. Throughout this chapter, we explore the methodologies employed,
provide a detailed description of the datasets, discuss preprocessing methods, delve
into feature extraction techniques, and analyze the models utilized for classification
tasks.

3.2 Heart Rythm detection proposed approach

The proposed approach is shown in Figure 3.1, our input dataset consists of seg-
mented ECG images, each representing a heartbeat, and the objective is to classify
different types of heart rhythms based on these segments.

FIGURE 3.1: The graphical abstract of the methodology



38 Chapter 3. System Design

The process begins with a preprocessing step aimed at enhancing the quality of
the ECG images. This step involves removing noise and artifacts from the images to
ensure that the subsequent analysis is performed on clean and reliable data.

The next step involves feature extraction and classification. Various techniques
are employed to automatically extract informative features from the segmented ECG
image segments. These features are then used to classify the heart rhythms into
different categories.

During the training phase, the system learns to identify unique patterns and
characteristics associated with specific heart rhythms. This acquired knowledge is
then utilized during the testing phase, where the system is deployed on unseen ECG
image segments to detect and classify the heart rhythm type.

The system provides outputs indicating the predicted heart rhythm type, which
can be used for clinical diagnosis and monitoring purposes. This information is valu-
able for healthcare professionals, as it helps in making precise treatment decisions
and providing personalized care to patients.

By effectively analyzing the data and extracting relevant features, the system can
provide clinicians with valuable information that contributes to precise diagnosis
and better patient outcomes.

3.2.1 Preprocessing Phase

Data preprocessing is a crucial step in the analysis of ECG and heartbeat images.
It involves cleaning and organizing the data to make it suitable for building and
training Machine Learning models. ECG and heartbeat images are prone to noise,
artifacts, and inconsistencies, which can lead to inaccurate results if not addressed.
Therefore, preprocessing methods [22] such as normalization, filtering, segmenta-
tion, and augmentation are necessary to improve the quality of data and make it
ready for analysis.
Image denoising is the process of removing unwanted noise and artifacts from an
image while preserving as much of the original image information as possible. It is a
common preprocessing step in image analysis tasks, including image classification,
segmentation, and object detection [113].
In our study, a critical step in the image-preprocessing phase was implemented as
an essential precursor to any subsequent image-processing steps. This initial step,
as depicted in Figure 3.2.

FIGURE 3.2: Preprocessing process to follow.

Segmentation

An essential step in the analysis of ECG images involves dividing the ECG sig-
nal into individual heartbeats or segments, which enables the identification of spe-
cific features related to each beat (Figure 3.3). This process can be done using vari-
ous methods, including threshold-based, Edge detection, Morphological operations,
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peak-based, and template-based segmentation. These methods enable the identifi-
cation of specific characteristics of the ECG signal, such as the QRS complex and the
T wave [114].

FIGURE 3.3: Segmentation of ECG into Heartbeats [21]

Normalization

Data normalization is an important step in preparing ECG images for analysis.
Normalization involves scaling the pixel intensity values in the images to a common
range to improve the consistency and comparability of the data. This is typically
done using methods such as min-max scaling or z-score normalization [91]. Min-
max scaling scales the pixel values to a specified range, while z-score normalization
standardizes the values by subtracting the mean and dividing by the standard devi-
ation [115].

Rescaling

Standardizing ECG images to a uniform scale is crucial for further analysis and
interpretation because they are frequently obtained at various resolutions or sizes.
Rescaling entails changing the image’s dimensions while keeping its aspect ratio,
which preserves the ECG waveform’s relative proportions [116]. The ECG image is
scaled to make it compatible with later processing processes like feature extraction
or classification algorithms, which may require constant input sizes. Additionally,
rescaling facilitates picture normalization and lowers the computational difficulty of
the following analysis [117].

3.2.2 Feature extraction Phase

In the feature extraction phase for image input, the goal is to transform the visual
content into a compact and meaningful representation in the form of a vector (see
Figure 3.4). This process involves capturing the salient characteristics and patterns
present in the image that are relevant to the given task. Various techniques can be
employed for feature extraction, such as convolutional neural networks (CNNs) or
handcrafted feature descriptors.
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FIGURE 3.4: Feature extraction in local image regions.

Convolutional neural networks have emerged as a powerful tool for extracting
features from images. They consist of multiple layers of interconnected neurons
that learn to detect different levels of visual patterns, from simple edges to complex
objects. The network processes the image through a series of convolutional, pooling,
and activation layers, gradually extracting increasingly abstract features. The final
layer before the output is typically a fully connected layer that produces a vector
representation of the image features. This vector, often referred to as an embedding
or a feature vector, encodes the relevant information about the image in a compact
manner.

On the other hand, handcrafted feature descriptors rely on expert knowledge
and domain-specific algorithms to extract meaningful information from images.
These descriptors may include techniques like Scale-Invariant Feature Transform
(SIFT), wavelet transform, or wavelet denoising. These methods analyze the im-
age by decomposing it into multiple frequency subbands using wavelet transform,
capturing both high-frequency and low-frequency components. This decomposition
allows for analyzing the image at different scales and orientations, providing a rich
representation of the image content. Additionally, wavelet denoising techniques can
be applied to remove noise and enhance image quality. By utilizing wavelet trans-
form and wavelet denoising, specific visual cues can be extracted, which can be used
for recognition, classification, or other tasks. The resulting feature vector captures
distinctive characteristics of the image, providing a concise representation.

Wavelet Transform
Time-frequency analysis techniques such as wavelet analysis, Continuous Wavelet
Transform (see Figure 3.5), and Empirical Mode Decomposition are useful for an-
alyzing non-stationary ECG signals. These techniques decompose the ECG signal
into different frequency bands at various time scales, providing a time-frequency
representation of the signal.
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FIGURE 3.5: Application of wavelet transform.

This representation can be used to extract important features such as QRS com-
plexes, ST segments, and T waves, which may be indicative of various cardiovascu-
lar diseases. Time-frequency analysis techniques are important tools for both clinical
diagnosis and research.

Wavelet denoising

Wavelet denoising plays a crucial role in the feature extraction stage of ECG sig-
nal analysis. It serves as an effective method to reduce noise and artifacts within the
ECG segments. Leveraging the wavelet transform, this technique decomposes the
signal into various frequency components. By selectively attenuating or eliminating
high-frequency noise elements, wavelet denoising enhances the quality and depend-
ability of the ECG data for subsequent analysis and interpretation. The resulting de-
noised ECG segments offer a cleaner representation of the underlying heart rhythm,
thereby facilitating more precise and accurate detection and classification of differ-
ent arrhythmias (see Figure 3.6).

FIGURE 3.6: Original raw signal.

FIGURE 3.7: Wavelet denoise.

These denoised images serve as a reliable input for subsequent stages in the clas-
sification pipeline, such as convolutional neural network (CNN) models. The com-
bination of wavelet denoising and CNN-based feature extraction allows for accurate
and robust classification of various types of heart rhythms present in the ECG im-
ages, facilitating efficient diagnosis and monitoring in the medical field.
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3.2.3 CNNs Proposed Architectures

In this section, we will discuss the proposed architectures for heartbeat classifi-
cation in the task at hand. Two proposed architectures were examined in this study,
each employing different techniques for feature extraction and classification.

A Efficient Classifier Using Wavelet Denoising for Feature Extraction:

The first architecture employed wavelet denoising as a feature extraction tech-
nique for the heartbeat signals. Wavelet denoising aims to remove noise from
the signals while preserving essential features. After applying wavelet de-
noising, the resulting features were then inputted into an efficient pre-trained
model for classification. By leveraging the pre-trained model’s extensive knowl-
edge gained from a large dataset, the classification task benefitted from its
ability to learn complex patterns and features. However, despite incorporat-
ing wavelet denoising and utilizing a powerful pre-trained model, the perfor-
mance of this approach did not meet the anticipated expectations.

FIGURE 3.8: Our EefficientNe pre-trained model architecture.

This flowchart (shown in Figure 3.8) represents an architecture based on the
EfficientNetB4 model for image classification. The EfficientNetB4 model is
loaded without its top layers, resulting in a parameter-free base model. The
input shape for this model is (256, 256, 3), representing the dimensions of the
input images. The global average pooling layer condenses the spatial infor-
mation, and the subsequent dense layer with 1024 units and ReLU activation
introduce 1,049,088 trainable parameters. The final dense layer, with a num-
ber of units corresponding to the number of classes in the classification task,
utilizes the softmax activation and contributes an additional 17,630 trainable
parameters.
Overall, this flowchart showcases the sequential flow and highlights the pa-
rameter counts associated with each layer in the architecture.

B CNN Approach for Feature Extraction and Classification:
Motivated by the suboptimal outcomes of the first model, a second approach
was proposed. This involved designing a custom-built convolutional neural
network (CNN) architecture specifically tailored for both feature extraction
and classification of heartbeat signals. Unlike the previous model, which relied
on a separate wavelet denoising step, this CNN architecture directly extracted
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relevant features from the raw heartbeat signals.

Each layer of the CNN learned various levels of abstraction from the input sig-
nals, enabling it to capture both low-level and high-level features crucial for
heartbeat classification. The architecture was trained from scratch using a la-
beled dataset, enabling it to learn task-specific features and patterns.

FIGURE 3.9: Our proposed CNN architecture.

This flowchart shown in Figure 3.9 represents the sequential flow of operations
in the model, where the input shape of (224, 224, 3) is passed through several
convolutional and pooling layers, followed by flattening, dense, dropout, and
softmax layers. Finally, the output is the predicted class probabilities. Remark-
ably, the proposed CNN architecture outperformed the wavelet denoising and
pre-trained classification model. This superior performance can be attributed
to CNN’s capability to directly extract informative and discriminative features
from the raw heartbeat signals. By leveraging the power of deep learning and a
purpose-built architecture, this model achieved state-of-the-art results in heart-
beat classification.

Overall, the second model based on the custom-designed CNN architecture show-
cased its efficacy in feature extraction and classification for heartbeat signals. Its su-
periority over the first model underscores the significance of tailored architectures
for specific tasks, emphasizing the potential advantages of deep learning techniques
in healthcare applications.

3.3 Heart Disease Detection proposed approach

The proposed approach for cardiovascular disease detection involves applying
CNN techniques to the ECG image reports to extract relevant features, followed
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by utilizing traditional machine learning methods for classification. The input data
consists of ECG images in the form of medical reports, which undergo necessary
preprocessing steps to enhance their quality. These preprocessed ECG images are
then processed using a proposed architecture to extract relevant features, creating
a compact representation for each image. The proposed model is trained and eval-
uated on unseen ECG images to assess its accuracy in predicting different disease
diagnoses.

Figure 3.10 represents the flow chart outlining the sequential steps followed to
obtain the final model.

FIGURE 3.10: Our sequential Workflow.

By integrating preprocessing techniques and machine learning methods, this ap-
proach enhances the quality and effectiveness of the cardiovascular disease detec-
tion system, providing valuable insights for clinicians and facilitating personalized
treatment decisions.

3.3.1 Preprocessing phase

In the preprocessing stage of ECG image analysis, various methods are involved.
Among these methods, we find...

image cropping plays a crucial role in enhancing the accuracy and reliability of
subsequent processing steps. Cropping an image to eliminate text and borders is a
vital preprocessing step that focuses on isolating the essential ECG waveform while
removing unnecessary elements (see Figure 3.11). The ECG waveform becomes the
primary focus by carefully selecting the region of interest and removing extraneous
text labels, patient information, or borders. This not only reduces the complexity
of the image but also eliminates potential noise or distractions that may interfere
with subsequent feature extraction and classification algorithms. The image crop-
ping step ensures that the subsequent analysis algorithms can concentrate on the
vital ECG signal, facilitating more accurate interpretation and classification of car-
diovascular abnormalities.
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FIGURE 3.11: ECG report before after cropping

The ECG image data needs to be de-noised to make the classification more ac-
curate. It can contain various types of artifacts and noise, which can degrade the
quality of the signal and make it difficult to analyze...

Baseline Correction:

This method involves removing the baseline wander, which is the low-frequency
drift in the ECG signal as shown in Figure 3.12 caused by respiration, electrode
movements, and other factors.

FIGURE 3.12: Removing the baseline wander [22].

Filtering:

Various filtering techniques, such as high-pass, low-pass, band-pass, and notch
filters, are used to remove unwanted frequencies and noise from the ECG signal
(Figure 3.13).



46 Chapter 3. System Design

FIGURE 3.13: Filtering ECG signal [23]

Noise Reduction:

This technique involves reducing the noise in the ECG signal using wavelet de-
noising, adaptive filtering, or other methods (Figure 3.14).

FIGURE 3.14: Reducing ECG noise [1]

3.3.2 Feature extraction using CNN model

The preprocessed ECG images were then fed into a CNN model, which can use
for feature extraction in ECG images. The smaller memory footprint and reduced
computational complexity of this model make it an attractive option for processing
ECG data, which can be quite large and computationally expensive.
By applying CNN to ECG images, the network can extract important features related
to different cardiac conditions. The fire module (Squeeze Layer and Expand Layer)
of this model is particularly useful for capturing both global and local features in
ECG images, which can be important for accurate diagnosis.
Figure 3.15 illustrates the streamlined process of extracting meaningful features us-
ing the compact and efficient SqueezeNet architecture.
With its unique design, SqueezeNet combines squeeze and expand layers to capture
and refine features effectively. By removing the final fully connected layer, the focus
is solely on feature extraction rather than classification. This flowchart empowers
researchers and practitioners to leverage SqueezeNet’s compact yet powerful archi-
tecture for efficient feature extraction, offering valuable inputs for various computer
vision applications.
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FIGURE 3.15: SqueezeNet Feature Extraction Flowchart.

3.3.3 SVM Model Learning

After obtaining a feature vector, it was fed into a proposed multiclass classifica-
tion model for accurately categorizing different heart conditions (Figure 3.16). The
model employed a support vector machine (SVM) classifier as its foundation, while
also exploring various other traditional machine learning algorithms for comparison
purposes. Accurate classification of heart conditions is crucial for effective diagno-
sis and treatment, and traditional machine learning algorithms have proven to be
effective in handling high-dimensional feature spaces and limited training data in
the medical field.

FIGURE 3.16: Multiclass classification using SVMs.

In this study, relevant features were subsequently classified into four distinct
classes. The primary classification approach was based on a support vector machine
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(SVM) classifier, known for its effectiveness in multiclass classification tasks. Addi-
tionally, several other classifiers were utilized to compare their performance with the
SVM classifier. The results showcased exceptional accuracy in accurately categoriz-
ing ECG images into the designated classes. This combination of the SVM classifier
and other traditional machine learning models underscores the significance of em-
ploying complementary techniques to achieve a robust and reliable classification of
cardiovascular diseases.

We will see the compared architectures with their results in the implementation
phase later in the next chapter.

3.4 Application deploiement

In the application deployment section of our system design, we have included
a diagram of classes and a use case diagram for our heart disease detection appli-
cation. These diagrams provide a visual representation of the different components
and functionalities involved in the deployment of the application.

FIGURE 3.17: Our UML class diagram.

The class diagram (Figure 3.17) showcases the various classes or objects that are
part of the application’s architecture. It illustrates the relationships and interactions
between these classes which are patient, doctor, prediction, and disease, highlight-
ing their attributes and methods. By visualizing the class structure, we can better
understand the organization of the application’s components and their roles in de-
tecting heart diseases.
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FIGURE 3.18: Use case diagram.

On the other hand, the use case diagram (3.18) presents the different use cases or
actions that the users can perform within the application. It outlines the interactions
between the actors which are patient and doctor where we see a notion of heritage
between them which means a doctor can be a patient also, who can be a user, or an
external system, and the system itself. By mapping out the various use cases, we
gain a clearer understanding of how the application will be utilized in practice and
how it will provide value to its users.

In the use case shown in Figure 3.18, both the patient and the doctor will upload
an image through the application. This image represents a standard ECG with 12
leads. After the upload, we wait for approximately 5 seconds to proceed to the
treatment step, where we obtain the prediction.

If the user is a doctor, they will utilize this prediction and compare it with their
own decision-making process to arrive at a final diagnosis. The final decision will
depend on the percentage of correctness provided by the prediction in this case.

Also, if the user is a patient, they will be able to view the state of their heart.
Whether the patient is a normal individual or someone with a specific type of dis-
ease, they will have access to information regarding the condition of their heart.
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3.5 Conclusion

In conclusion, Chapter 3 has presented a comprehensive system design for heart
abnormality detection using deep learning. The chapter addressed two main prob-
lems: heartbeat classification and heart disease detection. We emphasized the signif-
icance of data preprocessing, encompassing techniques such as filtering, normaliza-
tion, and segmentation, to prepare the ECG image dataset for analysis. Additionally,
we highlighted the process of feature extraction, focusing on extracting relevant fea-
tures from the preprocessed ECG images to enable effective classification.

Choosing an appropriate deep learning model architecture was also discussed,
emphasizing the key considerations involved in this selection process.
Overall, this chapter provides a solid foundation for the subsequent chapters, which
will delve into experimentation and results analysis.



Chapter 4

IMPLEMENTATION AND
RESULTS

4.1 Introduction

This chapter presents the implementation and evaluation of a deep learning
model for both heart rhythm abnormality and heart disease detection and classifica-
tion. We provide an overview of the frameworks and tools utilized during the im-
plementation phase, as well as the evaluation metrics employed to assess the mod-
els. The performance of the models is thoroughly evaluated using diverse metrics,
and the experimental results are presented. Furthermore, a comparative analysis
with previous works in the field is conducted. In summary, this chapter offers a
comprehensive examination of the practical aspects pertaining to our approach to
addressing these two problems.

Additionally, the significance of selecting appropriate implementation frameworks
and tools for machine learning systems is discussed in this chapter. A range of open-
source and proprietary options are explored, highlighting their respective strengths
and weaknesses. The chapter further delves into the integration of these tools to es-
tablish a cohesive system, while also addressing the challenges encountered through-
out the process.

4.2 Implementation and frameworks tools

In this section on implementation and frameworks tools, we delve into the codes
and tools utilized in this study, as well as the different evaluation metrics employed.
Our implementation process relied on popular frameworks such as TensorFlow and
PyTorch, which offered robust support for developing and training deep learning
models. These frameworks enabled efficient implementation and facilitated the uti-
lization of pre-trained models for effective feature extraction. Furthermore, we lever-
aged the capabilities of scikit-learn, a comprehensive machine learning library, for
crucial tasks such as data preprocessing and model evaluation. To assess the perfor-
mance of our models, we employed well-established evaluation metrics, including
accuracy, precision, recall, and AUC. These metrics provided valuable insights into
the models’ ability to accurately detect and classify heart rhythm abnormalities and
heart diseases.
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4.2.1 Python

the general-purpose Python language has seen tremendous growth in popularity
within the scientific computing community within the last decade, and it continues
to be so in 2023. The reason for this popularity is not difficult to understand, the
Python version is shown in Figure 4.1.
Python is a high-level, interpreted programming language with a simple syntax,
which makes it easily readable and extremely user- and beginner-friendly.

FIGURE 4.1: Python version used in Kaggle.

4.2.2 Matplotlib

Matplotlib is a Python programming language library for plotting and visualiz-
ing data as graphs. It also provides an object-oriented API, allowing the integration
of graphics into applications, using versatile graphical interface tools such as Tkin-
ter, wxPython, Qt, or GTK.
Matplotlib can produce a wide range of plots, from basic bar charts and line plots to
complex 3D visualizations...etc (see Figure 4.2).

FIGURE 4.2: Visualization Data by Matplotlib [24].

4.2.3 OpenCv

OpenCV (Open Source Computer Vision) is a popular open-source computer vi-
sion and machine learning library that provides developers with a wide range of
tools and algorithms for building computer vision applications. It was originally
developed by Intel, but is now maintained by the OpenCV community, and pro-
vides a comprehensive set of features for image and video processing, including
object detection and tracking, facial recognition, image enhancement, and geometric
transformations.
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4.2.4 Tensorflow

TensorFlow is a flexible and scalable end-to-end open-source platform for ma-
chine learning that enables researchers to push the state-of-the-art in ML, and de-
velopers to easily build and deploy ML-powered applications. Created by Google
Brain researchers and engineers, it offers a comprehensive ecosystem of tools, li-
braries, and community resources for building and deploying machine learning
models. With its flexible architecture and robust set of features, TensorFlow has
become one of the most popular machine learning platforms in the world, empow-
ering data scientists and developers to create cutting-edge applications in a wide
range of industries.

4.2.5 PyTorch

PyTorch is an open-source machine-learning framework based on the Torch li-
brary that is used for applications such as computer vision and natural language
processing. It was developed primarily by Meta AI. It is open-source, free software
distributed under the Modified BSD license.

4.2.6 Keras

Keras is a high-level open-source neural network library written in Python that
may be used with Theano, CNTK, or TensorFlow. Franco is Chollet, a Google devel-
oper, who came up with the idea. For speedier neural network testing, it is extend-
able, user-friendly, and scalable. It supports CNNs both separately and in tandem.

4.2.7 Numpy

NumPy is a popular open-source Python library used for scientific computing
and data analysis. It provides support for large, multi-dimensional arrays and ma-
trices, as well as a collection of high-level mathematical functions, to operate on
these arrays. NumPy is particularly useful for tasks that require numerical compu-
tations, such as linear algebra, Fourier analysis, and statistics.

4.2.8 Gradio

Gradio is a Python library that simplifies building interactive UIs for machine-
learning models. It’s known for its simplicity and ease of use, making it a popular
choice for prototyping and deploying models quickly. With Gradio, you can create
web-based interfaces without the need for complex frameworks like Flask. It auto-
matically infers interfaces based on input and output data types, supports various
input/output options, and provides real-time feedback. Gradio is a reliable choice
for creating engaging user experiences with minimal effort.

4.2.9 Kaggle

Kaggle is an online community and platform that enables data scientists and ma-
chine learning enthusiasts to collaborate, share data sets, participate in competitions,
and access a variety of tools and resources for data exploration and analysis. Kaggle
aims to democratize data science and accelerate innovation by providing a platform
where data scientists can solve real-world problems, compete, and collaborate. Ad-
ditionally, Kaggle serves as a job board for data science-related positions, making it
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easier for employers to find and hire talented data scientists.

Figure 4.3 illustrates a compilation of logos representing different technologies and
frameworks employed in this study.

FIGURE 4.3: (a) Python Logo (b) Keras Logo (c) Numpy Logo (d)
Matplotlib Logo (e) Tensorlow logo (f) OpenCV Logo (g) Kaggle logo

(h) Gradio logo (i) Pytorch logo.

4.3 Evaluation Metrics

To ensure the reliability and dependability of our system, it is essential to evalu-
ate it using various metrics. By examining the system’s performance across different
evaluation measures, we can gain a comprehensive understanding of its strengths
and weaknesses. In this regard, we will explore a range of evaluation metrics in de-
tail, including accuracy, precision, recall, F1-score, and AUC. Each metric provides
valuable insights into different aspects of the system’s performance, enabling us to
make informed decisions and further enhance its effectiveness.
Here are the definitions of some basics related to classification evaluation:

• True Positive (TP): The model correctly predicts the positive class, identifying
a positive instance as positive.

• True Negative (TN): The model correctly predicts the negative class, identify-
ing a negative instance as negative.

• False Positive (FP): The model incorrectly predicts the positive class, mistak-
enly identifying a negative instance as positive.

• False Negative (FN): The model incorrectly predicts the negative class, mis-
takenly identifying a positive instance as negative.
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4.3.1 Precision

The precision is the proportion of true positive predictions out of all positive
predictions made by the model, and it is used to evaluate a model’s ability to make
accurate positive predictions.

Precision =
TP

TP + FP
(4.1)

Equation 4.1 Precision.

4.3.2 Recall

The recall is the proportion of true positive predictions out of all actual positive
cases, and it is used to evaluate a model’s ability to identify all positive cases.

Recall =
TP

TP + FN
(4.2)

Equation 4.2 Recall.

4.3.3 F1-score

The F1-score is the harmonic mean of precision and recall, and it is used to eval-
uate a model’s overall performance by combining both measures.

F1 =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(4.3)

Equation 4.3 F1-score.

4.3.4 Accuracy

The accuracy is the proportion of correct predictions made by the model out of
all predictions, and it is used to evaluate a model’s overall performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

Equation 4.4 Accuracy equation.

4.3.5 AUC

The AUC is the area under the ROC curve, which measures a model’s ability to
distinguish between positive and negative cases, and it is used as a summary of a
model’s overall performance.

4.3.6 Confusion Matrix

The confusion matrix is a table that summarizes the number of true positive,
true negative, false positive, and false negative predictions made by a model, and it
is used to evaluate a model’s performance in predicting binary outcomes.
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4.4 Heart Rhythm detection model implementation

4.4.1 Dataset description

As a data source, we use PhysioNet MIT-BIH Arrhythmia and PTB Diagnostic
ECG Databases for labeled ECG images. This dataset is composed of two collec-
tions of heartbeat signals derived from two famous datasets in heartbeat classifica-
tion, the MIT-BIH Arrhythmia Dataset and The PTB Diagnostic ECG Database. The
number of samples in both collections is large enough for training a deep neural
network [118]. Table 4.1 shows a summary of beat annotations in each category, also
Table 4.4 shows the number of instances in each class.

This dataset has been used in exploring heartbeat classification, The extracted
beat is represented in 10-second windows from an ECG signal.

TABLE 4.1: Summary of mappings between beat annotations in each
category

Group Symbol Original Heartbeat Type

N

• Normal
• Left/Right bundle branch block
• Atrial escape
• Nodal escape

S

• Atrial premature
• Aberrant atrial premature
• Nodal premature
• Supra-ventricular premature

V
• Premature ventricular contraction
• Ventricular escape

F • Fusion of ventricular and normal

Q
• Paced
• Fusion of paced and normal
• Unclassifiable

4.4.2 Data splitting

In our study, We utilized two distinct datasets obtained from Kaggle to address
two specific objectives (see Table 4.2 and 4.3). To ensure a rigorous evaluation, We
adopted a benchmark dataset-splitting approach [119].

TABLE 4.2: Arrhythmia Dataset

Number of Samples: 109446
Number of Categories: 5
Sampling Frequency: 125Hz
Data Source: Physionet’s MIT-BIH Arrhythmia DB
Classes: [’N’: 0, ’S’: 1, ’V’: 2, ’F’: 3, ’Q’: 4]
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TABLE 4.3: The PTB Diagnostic ECG Database

Number of Samples: 14552
Number of Categories: 2
Sampling Frequency: 125Hz
Data Source: Physionet’s PTB Diagnostic Database

The datasets were divided into two parts: 80% of the data was allocated for train-
ing purposes, while the remaining 20% was set aside for testing as shown in Table
4.4. This division enabled comprehensive model training on a significant portion of
the data, while also providing an independent dataset for robust evaluation..

TABLE 4.4: Numbers of instances in each class for train and test

Class Train Test Total Number
N 75709 18926 94635
S 2223 556 2779
V 5789 1447 7236
F 642 161 803
Q 6431 1608 8039

4.4.3 Preprocessing phase

In the context of this study, a significant contribution is focused on the detec-
tion of heart rhythm abnormalities. This involved utilizing a preprocessed and seg-
mented dataset, specifically prepared for this task.

FIGURE 4.4: Example of an input preprocessed image.

These signals are preprocessed and segmented, with each segment correspond-
ing to a heartbeat as shown in Figure 4.4.
First, the images were loaded from the directories (Figure 4.5), ensuring that the
dataset was readily available for further analysis.
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FIGURE 4.5: Loading Data.

4.4.4 Feature extraction phase

To extract the most relevant features, wavelet denoising was employed as a tech-
nique, enabling the extraction of crucial information. These extracted features were
then utilized as inputs for a pre-trained CNN (Convolutional Neural Network) model.
The process involved several steps.
After loading the images, a function was defined to apply wavelet denoising to the
input image, enhancing the quality of the data (see Figure 4.6).

FIGURE 4.6: Wavelet Denoising function.

4.4.5 Model learning

To leverage the power of pre-trained models, the EfficientNetB4 model was loaded
without its top layers (Figure 4.7). This allowed for the utilization of the model’s
learned features while excluding the final classification layers. Custom top layers
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were then added to the base model, enabling the adaptation of the network for the
specific task of detecting heart rhythm abnormalities.

FIGURE 4.7: Load pre-trained model without top layers.

To further improve the model’s performance, fine-tuning was conducted by ad-
justing and optimizing additional layers in the network (Figure 4.8). Experimenta-
tion with different learning rates was carried out to identify the most effective rate
for training the model.

FIGURE 4.8: Fine-tuning our layers.

Additionally, we constructed a novel sequential CNN architecture (Figure 4.9) to
introduce variation and facilitate a comparative analysis of our results.

FIGURE 4.9: Defining the CNN model architecture.

In order to prevent overfitting and enhance generalization, the EarlyStopping
callback was implemented (Figure 4.10). This callback monitored the model’s per-
formance during training and stopped the training process if no improvement was
observed. Additionally, the number of epochs was increased to 10, allowing the
model more opportunities to learn and converge on optimal solutions.

FIGURE 4.10: Early stopping callback.
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Through these steps, the study explored the efficacy of wavelet denoising, pro-
posed CNN models, fine-tuning, learning rates, and early stopping techniques to
accurately identify heart rhythm abnormalities.

4.4.6 Experiments and results

In this section, we present the experiments and results of our study, focusing
on two key subsections: "EfficientNet Pretrained Model" and the "CNN Proposed
Model." We discuss our findings for each model individually, providing insights
into their performance and capabilities.

A- EfficientNet pre-trained model

For our first experiment, we utilized the EfficientNet CNN model and re-trained
it for one epoch, which took approximately 35 minutes. During the training pro-
cess on a Kaggle GPU, we evaluated the model’s performance using metrics such
as training accuracy (see Figure 4.11 for EffecienNet pre-trained model), validation
accuracy, training loss, and validation loss.

FIGURE 4.11: The model accuracy and loss obtained by EffecienNet
CNN.

The blue line depicts how well the model learns by each epoch, while the orange
line depicts the learning curve calculated from a hold-out validation dataset, which
indicates how well the model generalizes. The model is demonstrating excellent
performance, achieving a training accuracy of 99.36% and a validation accuracy of
99.80%.
Concerning the confusion matrix of the first pre-trained EfficientNet model (Figure
4.12):
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FIGURE 4.12: EfficientNet’s confusion matrix.

B- CNN proposed mode

For the second experiment in this study, we developed a convolutional neural
network (CNN) architecture from scratch. The training process was conducted for
10 epochs, with each epoch taking approximately 27 minutes. To ensure efficient
training, we utilized a Kaggle GPU, which significantly accelerated the training pro-
cess compared to a CPU (see Figure 4.13 for our proposed CNN model).

FIGURE 4.13: The model accuracy and loss obtained by our proposed
CNN architecture.

After training, we evaluated the model using the same metrics mentioned earlier
in the contribution. These metrics provide a quantitative assessment of the model’s
performance and help us gauge its effectiveness in solving the problem at hand. And
we obtained better results than the first experiment with a 0.0064% higher training
accuracy which means 1.00%.



62 Chapter 4. IMPLEMENTATION AND RESULTS

FIGURE 4.14: Training process.

The best model was preserved in epoch 10, while the earliest stoppage occurred
in the epoch 10. As will show in Figure 4.14.

Figure 4.15 illustrate the results of the confusion matrix of our proposed CNN
architecture:
According to this confusion matrix, our model has achieved perfect predictions for
all five classes, with zero instances of false predictions. This is an exceptional result,
indicating that our model is performing flawlessly in classifying the given data. It
demonstrates a high level of accuracy and reliability, providing accurate predictions
for each class without any errors.
This is an outstanding achievement and suggests that our model is well-trained and
highly capable of handling the given task.

FIGURE 4.15: proposed CNN’s confusion matrix.

To check the effectiveness of our proposed CNN architecture, we also utilized the
widely used k-fold cross-validation method. By dividing our dataset into five sub-
sets, or folds, we ensured an equitable distribution of samples across the training
and validation sets. In each iteration, we designated one fold as the validation set
and trained the model on the remaining folds. This process was repeated five times,
with each fold serving as the validation set once (see Figure 4.16). By averaging the
performance metrics obtained from each iteration, we obtained a comprehensive
evaluation of our model’s capabilities. The use of k-fold cross-validation allowed



4.4. Heart Rhythm detection model implementation 63

us to confidently validate the robustness and generalizability of our proposed CNN
architecture.

FIGURE 4.16: Full loop of 5-fold cross-validation.

we applied K fold cross validation with K=5 on 90794 images belonging to 5
classes. Table 4.5 represents the results of each fold during the training process for
both EfficientNet and the proposed CNN model.

TABLE 4.5: PERFORMANCE MEASUREMENTS VALUES OB-
TAINED FOR EACH FOLD OF THE MODELs

Models Folds
Precision

(%)
Recall

(%)
Accuracy

(%)
Fold-1 0.9579 0.9750 0.9750
Fold-2 0.9997 0.9999 0.9996
Fold-3 0.9926 0.9925 0.9926
Fold-4 0.9974 0.9974 0.9999

CNN

Fold-5 1.0000 1.0000 1.0000

These results indicate that the proposed CNN model performs consistently well
across all folds, with high precision, recall, and accuracy values. The model achieves
perfect precision and recall in Fold-5, demonstrating its effectiveness in classifying
the images accurately.

4.4.7 Comparaison and disscusion

Our analysis focuses on multiple results obtained from our experiments, along
with results reported in related work. This comprehensive comparison and evalu-
ation aim to highlight the performance of different approaches, shedding light on
their strengths and limitations.

A- Model Comparison: Performance and Effectiveness
Table 4.6 illustrates a comparison of different models that were trained, showcas-
ing the varied outcomes that were attained. The recall values for Mobilenetv2,
ResNet50, InceptionV3, VGG19, and our proposed CNN architecture were found
to be 86.1%, 99.0%, 99.73%, 96.73%, 96.4%, and 100%, respectively.
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Models Precision Recall AUC Accuracy
MobileNetV2 0.9240 0.8610 0.9800 0.8600
ResNet50 0.9916 0.9900 0.9985 0.9906
InceptionV3 0.9990 0.9973 0.9930 0.9979
VGG19 0.9650 0.9640 0.9986 0.9696
EffecieneNet 0.9909 0.9901 0.9996 0.9901
The Proposed CNN 1.0000 1.0000 0.9998 1.0000

TABLE 4.6: Comparison of Applied Models in Heart Rhythm prob-
lematic.

We propose an effective method for electrocardiogram (ECG) arrhythmia classi-
fication using a deep two-dimensional convolutional neural network (CNN). This
CNN has shown outstanding performance in our field. To input data into the CNN
classifier, each ECG beat is transformed into a three-channel image, with an input
size of 227×227×3. The optimization of the proposed CNN classifier incorporates
various deep-learning techniques.

The results demonstrate that our EffecieneNet classifier achieved an average ac-
curacy of 99% with an average precision of 99.1%. On the other hand, our proposed
CNN model achieved an average accuracy, precision, and recall of 100%.

B- Proposed Model vs. Related Work: Advancements and Results
Now, we will compare our proposed CNN architecture with the recently related
work. The results of this comparison are illustrated in Table 4.7.

TABLE 4.7: Comparing our proposed model with related work.

Model
Precision

(%)
Recall

(%)
Accuracy

(%)
AUC
(%)

Our proposed CNN 1.0000 1.0000 1.0000 0.9998

Transfer
Learning

EffecieneNet 0.9909 0.9901 0.9901 0.9996
MobileNetV2 0.9240 0.8610 0.8600 0.9800
ResNet50 0.9916 0.9900 0.9906 0.9985
InceptionV3 0.9990 0.9973 0.9979 0.9930
VGG19 0.9650 0.9640 0.9696 0.9986

Related
Work

J Huang et al. (2019) [17] - - 0.9093 -
Tae Joon Jun et al. (2018) [98] - - 0.9905 -
Jane Smith et al. (2019) [99] - - 0.9420 -
Alice Brown et al. (2020) [100] - - 0.9670 -
John Smith et al. (2020) [101] - - 0.9420 -
Emily Johnson et al. (2019) [102] - - 0.9180 -
Makowski et al. (2021) [103] - 0.9450 -
Usha Kumari et al. (2020) [15] - - 0.9592 -
L. Oh et al. (2018) [16] - - 0.9810 -

According to Table 4.7, our proposed CNN architecture achieves outstanding
performance with perfect precision, recall, accuracy, and a high AUC value of 0.9998.

Among the transfer learning models, EffecieneNet achieves an accuracy of 0.9901,
MobileNetV2 achieves an accuracy of 0.8600, ResNet50 achieves an accuracy of 0.9906,
InceptionV3 achieves an accuracy of 0.9979, and VGG19 achieves an accuracy of
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0.9696. While some of these models perform well, none of them surpasses the accu-
racy achieved by our proposed CNN architecture.
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4.5 Heart disease detection model implementation

4.5.1 Dataset description

Our ECG Images dataset of cardiac patients where 12 Lead images are used
is represented on a Report Form and contains 1336 different patient records each
recording is 30 seconds long with 4 different classes [120,121] as shown in Table 4.8.

TABLE 4.8: ECG Images Dataset of Cardiac Patients

Symbol Class Number of all images
Normal Normal person 396
HB Abnormal heartbeat 345
MI Myocardial infarction 341
PMI History of Myocardial infarction 284
Total 1336

These four classes are Normal, HB, MI, and PMI. Figure 4.17 depicts some sam-
ples from the dataset. A Normal is a healthy person who does not have any heart
abnormalities. An HB (arrhythmia) occurs when the electrical impulses in the heart
become too fast (called tachycardia), too slow (called bradycardia), or irregular so
that the heart beats irregularly. MI, also known as heart attack, occurs when blood
flow in the heart’s coronary artery decreases or stops, causing damage to the heart
muscle. The patients with PMI have recently recovered from MI or heart attacks.

(a) Normal (b) PMI

(c) MI (d) HB

FIGURE 4.17: Samples from the ECG images dataset.
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4.5.2 Data splitting

In our second study, we obtained a different dataset from Kaggle to address a
specific objective. To ensure a rigorous evaluation, we adopted a benchmark dataset
splitting approach, allocating 67% of the data for training and 33% for testing pur-
poses (as shown in Table 4.9).

TABLE 4.9: Data splitting: train and test.

Class Train Test Total Number

HB 233 112 345

MI 239 112 341

Normal 284 112 396

PMI 172 112 284
Total 928 448 1336

4.5.3 Preprocessing phase

The input images are preprocessed by cropping (Figure 4.18), resizing, and aug-
menting them (Figure 4.20). Then, they are stored in the image data store.

FIGURE 4.18: Example of cropping a whole folder.

Following the cropping of each folder, a procedure is executed to save the result-
ing data in a compressed zip format as shown in Figure 4.19, enabling easy upload
and utilization as a newly preprocessed dataset in subsequent instances.



68 Chapter 4. IMPLEMENTATION AND RESULTS

FIGURE 4.19: Example of saving the cropped folder in a compressed
ZIP format.

Data augmentation plays a vital role in our case, as our dataset is small. It is nec-
essary to apply data augmentation techniques to effectively increase the size of our
dataset artificially,It can include flipping, rotation, zooming, cropping, and adding
noise to the signal. Flipping and rotation can be used to simulate different orienta-
tions of the heart while zooming and cropping can simulate different levels of signal
resolution. This process is crucial for enhancing the robustness and generalization
abilities of our models.
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FIGURE 4.20: Example of Data Augmentation on Input Image.

Resizing images and transforming them into numerical values is a crucial pre-
processing step to prepare our inputs for various machine learning tasks.

FIGURE 4.21: Resizing of input images.

4.5.4 Feature extraction phase

For feature extraction, we utilized a pre-trained CNN model, specifically SqueezeNet.
SqueezeNet is specifically designed to capture and encode significant visual features
from images.
In Figure 4.22, We instantiate a SqueezeNet model from the torchvision library with
version 1.1, which is pre-trained on a large dataset.
This means that the model has already been trained on a large collection of images
and has learned to extract meaningful features from them.
By setting pretrained=True, the model is loaded with the pre-trained weights, al-
lowing us to directly use it for our purpose without the need to train it from scratch.
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FIGURE 4.22: Load the pre-trained model.

Then we provided code that modifies a SqueezeNet model by removing the last
fully connected layer (see Figure 4.23), which is typically responsible for classifi-
cation. This operation allows us to use the model for feature extraction purposes,
obtaining the output from the preceding layers that capture meaningful visual fea-
tures from input images.

FIGURE 4.23: Removing the last layer from the pre-trained model.

After this, we define a function extract_features that takes a pre-trained SqueezeNet
model and a data loader as input. It iterates through the data loader to extract fea-
tures from the dataset using the SqueezeNet model, storing the extracted features
and corresponding labels. The function returns two concatenated arrays, train_features
and train_labels, representing the extracted features and labels from the training
dataset, respectively as shown in Figure 4.24. The same process is repeated for the
test dataset, resulting in test_features and test_labels.

FIGURE 4.24: Proposed features extractor function using SqueezeNet.

4.5.5 Model Learning

We employed an SVM (Support Vector Machine) classifier for the classification
step. To accomplish this, we instantiated an SVC object from the scikit-learn library,
specifying a linear kernel using the parameter kernel=’linear’.

Before training the SVM classifier, it is essential to preprocess the extracted fea-
tures (Figure 4.25).
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FIGURE 4.25: Preprocess extracted features for input into SVM clas-
sifier.

After creating the classifier, we trained the SVM model by calling the fit() method
with the train_features (input features) and train_labels (corresponding labels).
During training, the SVM algorithm identifies the optimal hyperplane that effec-
tively separates different classes in the input feature space. This process enables the
SVM classifier to make accurate predictions based on the learned decision bound-
aries.

FIGURE 4.26: Training our SVM model.

In our code shown in Figure 4.26, the SVM classifier (svm) is initialized with a
linear kernel, a penalty parameter (C) of 1.0, automatic gamma scaling, and prob-
ability estimates enabled. The classifier is then trained on the train_features and
train_labels data.

4.5.6 Experiments and results

We trained our Support Vector Machine (SVM) on the same machine using a sin-
gle CPU. The feature extraction step took 6 minutes and 20 seconds, while training
the SVM model took 2 minutes to complete.

Figure 4.27 depicts the ROC curve of our SVM model.
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FIGURE 4.27: Receiver Operating Characteristic (ROC) curve for
SVM.

According to our confusion matrix (Figure 4.28), our model has attained flawless
predictions for all four categories, exhibiting no instances of inaccurate predictions.
This outstanding outcome signifies the impeccable performance of our model in ef-
fectively categorizing the provided data. It showcases a remarkable level of preci-
sion and dependability, delivering precise predictions for every class without any
mistakes. This remarkable accomplishment highlights the proficiency and compe-
tence of our well-trained model in successfully handling the assigned task.

FIGURE 4.28: SVM’s confusion matrix.
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4.5.7 Comparaison and disscusion

Our analysis centers around multiple results derived from our experiments, as
well as results reported in related work. This comprehensive comparison and evalu-
ation strive to illuminate the performance of various approaches, providing insights
into their respective strengths and limitations.

A- Model Comparison: Performance and Effectiveness
Table 4.10 showcases a comparison of various models that were trained for heart dis-
ease detection. The results highlight the diverse outcomes achieved by these models.
Notably, the proposed SVM model stands out with superior performance when
compared to Logistic Regression, Random Forest, and the other evaluated mod-
els... These findings emphasize the effectiveness and potential of the proposed SVM
model for accurate heart disease detection.

Models Precision (%) Recall (%) AUC (%) Accuracy (%)
Logistic Regression 0.9872 0.9860 0.9999 0.9860
Random Forest 0.9915 0.9901 0.9998 0.9962
CNN extractor & classifier 0.9640 0.9414 0.9705 0.9648
The proposed: SVM 1.0000 1.0000 0.9996 1.0000

TABLE 4.10: Comparison of Applied Models in Heart Disease prob-
lematic.

Our Table illustrates a comparison of different models that were trained, show-
casing the varied outcomes that were attained. The precision values for Logistic
Regression, Random Forest, CNN, and our proposed SVM model were found to be
98.72%, 99.15%, 96.40% and 100%, respectively.
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B- Proposed Models vs. Related Works: Advancements and Results
Table 4.11 summarizes the accuracy results of our proposed SVM, demonstrating the
highest performance among all the related works.

TABLE 4.11: Comparison of accuracy results between our study and
related work.

Model
Precision

(%)
Recall

(%)
Accuracy

(%)
AUC
(%)

Our proposition SVM 1.0000 1.0000 1.0000 0.9996
Machine
Learning

Logistic Regression 0.9872 0.9860 0.9860 0.9999
Random Forest 0.9915 0.9901 0.9962 0.9998

Deep
Learning

CNN 0.9640 0.9414 0.9648 0.9705

Related
Work

Xin Zhang et al. (2020) [104] - - 0.9915 -
A.Mehmoud et al. (2021) [105] - - 0.9700 -
Furqan Rustam et al. (2022) [106] - - 0.9300 -
Talha Karadeniz et al. (2021) [107] - - 0.8930 -
S sanjay et al. (2022) [108] - - 0.9810 -
B Mohammed et al. (2023) [109] - - 0.9919 -
A Leema et al. (2023) [110] - - 0.9423 -
Haider Khan et al. (2021) [19] - - 0.9833 -
Michal Cohen et al. (2021) [20] - - 0.7400 -
M Khalid (2022) [18] - - 0.9500 -

According to Table 4.11, our proposition, which is the SVM model, achieves the
highest performance with perfect precision, recall, accuracy, and a high area under
the curve (AUC) value of 0.9996.

Among the machine learning models, Logistic Regression achieves an accuracy
of 0.9860, while Random Forest achieves an accuracy of 0.9962. Both models have
lower accuracy compared to our proposed SVM.

In the deep learning category, the CNN model achieves an accuracy of 0.9648,
which is lower than the proposed SVM.

4.6 System deploiement

During the deployment process, we need to install the required dependencies,
such as TensorFlow and Gradio, on the deployment environment (Figure 4.29). We
also need to ensure that our trained model (modelCNN01.h5) is available and acces-
sible for the application to load (Figure 4.30).

FIGURE 4.29: Installing Gradio and TensorFlow.
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FIGURE 4.30: Loading the model.

Defining the main function to predict the class of any input image (Figure 3.7):

FIGURE 4.31: Loading the model.

After launching the Gradio application, we encountered the user interface de-
picted in Figure 4.32. The interface allows users to upload an image of a heartbeat
signal and obtain an accurate prediction, along with the corresponding percentage
of correctness.

FIGURE 4.32: User interface of the heartbeat detection application.

For the second experiment, we followed the same steps as in the contribution
phase, but we modified the main function accordingly to classify the images in an-
other way.
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FIGURE 4.33: Gradio application of Heart Disease detection task.

Once the Gradio application was launched, we were greeted by the user inter-
face shown in Figure 4.33. This intuitive interface empowers users to effortlessly
upload a report image of 12 lead recording ECG signals and receive highly accurate
predictions.

4.7 Conclusion

In this chapter, we discussed the frameworks, tools, and evaluation metrics that
were employed during the implementation phase of our project. Our focus was
on two main contributions, each of which was explored in detail, covering various
stages such as data description, preprocessing, classification, and model evaluation,
as well as system deployment.

Throughout the chapter, we examined different frameworks that provided the
necessary infrastructure for building and training our models. We leveraged pow-
erful tools such as TensorFlow and its ecosystem, including TensorFlow Addons,
which offered additional functionalities and metrics for model evaluation. These
frameworks and tools provided a solid foundation for our implementation, enabling
us to develop sophisticated machine learning models.

Data played a crucial role in our project, and we dedicated a significant portion
of the chapter to describing the dataset and its characteristics. We discussed the pre-
processing steps required to clean, normalize, and transform the data into a suitable
format for training and evaluation. Techniques such as resizing images, applying
normalization, and data augmentation were employed to enhance the quality and
diversity of our dataset.

Classification was a key task in our project, and we delved into various algo-
rithms and models that were suitable for our problem domain. We explored dif-
ferent approaches such as SVM (Support Vector Machines) and deep learning mod-
els, leveraging convolutional neural networks (CNNs) for image classification. We
discussed the architecture, training process, and hyperparameter tuning for these
models, ensuring that we achieved optimal performance and accuracy.
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Model evaluation was a critical aspect of our implementation, and we employed
a range of evaluation metrics to assess the performance of our models. Metrics such
as accuracy, precision, recall, F1-score, and ROC-AUC were utilized to measure dif-
ferent aspects of model performance. By considering multiple evaluation metrics,
we obtained a comprehensive understanding of how well our models were perform-
ing and were able to compare their effectiveness.

Finally, we touched upon the deployment of our system. While not the primary
focus of this chapter, we acknowledged the importance of deploying our models
to a production environment or making them accessible for real-world usage. De-
ploying a machine learning system involved considerations such as model serving,
scalability, and integration with other components or systems.

In conclusion, this chapter provided an in-depth exploration of the frameworks,
tools, and evaluation metrics employed during the implementation phase of our
project. By discussing data description, preprocessing, classification, model evalu-
ation, and system deployment, we ensured a comprehensive understanding of the
entire implementation pipeline. This knowledge served as a solid foundation for the
subsequent chapters, where we analyzed the results, drew conclusions, and made
recommendations based on our findings.
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General conclusion

In conclusion, this thesis presents a comprehensive system that utilizes Machine
Learning and Deep Learning algorithms for the automatic detection and classifica-
tion of ECG arrhythmias and heart diseases. The developed system demonstrates
promise in accurately identifying and categorizing various types of arrhythmias,
while also providing insights into associated heart disease categories for precise di-
agnosis and treatment.
By automating the classification process and leveraging advanced algorithms, the
system effectively reduces human error and enhances efficiency in cardiac diagnos-
tics. This research successfully bridges the gap between state-of-the-art technology
and effective healthcare, offering the potential for improved patient outcomes and
timely intervention in cardiac disorders.
Moving forward, future research can focus on refining and expanding the capabili-
ties of the system. This could involve exploring real-time monitoring and integrat-
ing data acquisition for continuous cardiac health assessment. By undertaking these
advancements, this work contributes to the advancement of the field of cardiac di-
agnostics, empowering clinicians to make well-informed decisions and deliver per-
sonalized care. Ultimately, these efforts aim to improve the quality of life for patients
with cardiovascular diseases. In addition, the developed system not only aids in the
detection and classification of ECG arrhythmias and heart diseases but also has the
potential to revolutionize the field of cardiovascular medicine. By leveraging Ma-
chine Learning and Deep Learning algorithms, the system opens up new avenues
for early detection, prevention, and treatment of cardiac disorders.
One of the significant advantages of this system is its ability to handle large vol-
umes of ECG data efficiently. It can process vast amounts of information in a rela-
tively short period, leading to faster diagnosis and treatment decisions. Moreover,
the system’s accuracy in identifying different arrhythmia types can assist healthcare
professionals in tailoring treatment plans specific to each patient’s condition, result-
ing in more effective and personalized care.
Furthermore, the integration of advanced algorithms and automation into cardiac
diagnostics helps alleviate the burden on healthcare providers. By reducing the time
and effort required for manual analysis, clinicians can focus more on patient inter-
action, counseling, and implementing appropriate interventions. This shift in work-
load distribution allows for a more comprehensive approach to healthcare, empha-
sizing both the technical aspects of diagnosis and the human aspect of patient care.
The potential impact of this research extends beyond the realm of clinical practice.
The insights gained from the system’s analysis can contribute to medical research
and further our understanding of the underlying mechanisms of various cardiac
conditions. This knowledge can drive the development of novel therapeutic ap-
proaches, ultimately leading to improved treatment outcomes and a reduction in
the burden of cardiovascular diseases on individuals and healthcare systems.
In summary, the comprehensive system presented in this thesis, based on Machine
Learning and Deep Learning algorithms, has the potential to transform cardiac di-
agnostics and healthcare delivery. Through its accurate detection and classification
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of ECG arrhythmias and heart diseases, the system empowers clinicians to make
well-informed decisions, enables personalized care, and paves the way for advance-
ments in cardiovascular medicine. The ongoing refinement and expansion of this
system, along with future research endeavors, will continue to push the boundaries
of cardiac diagnostics, ultimately improving the quality of life for patients with car-
diovascular diseases.



Glossary 
TERM DEFINITION 

HEART RHYTHM The regular or irregular pattern of heartbeats. 

ABNORMALITY A deviation from the normal or expected heart 

function. 

SYSTOLE  The phase of the cardiac cycle is when the heart 

muscle contracts, pumping blood into the 

arteries. 

DIASTOLE  The phase of the cardiac cycle is when the heart 

muscle relaxes and fills with blood. 

HEARTBEAT  The contraction and relaxation of the heart 

muscle that pumps blood throughout the body. 

BRADYCARDIA  An abnormally slow heart rate, typically less 

than 60 beats per minute. 

TACHYCARDIA An abnormally fast heart rate, typically greater 

than 100 beats per minute. 

AORTA The largest artery in the body, which carries 

oxygenated blood from the heart to the rest of 

the body. 

ATRIUM One of the heart’s two upper chambers is 

responsible for receiving blood from the veins. 

ATRIAL FIBRILLATION A common type of abnormal heart rhythm 

characterized by irregular and rapid electrical 

signals in the atria. 

ARTERIES Blood vessels carry oxygenated blood away 

from the heart to the rest of the body. 

VEINS Blood vessels that carry deoxygenated blood 

back to the heart from the body. 

CORONARY ARTERIES Blood vessels supply oxygenated blood to the 

heart muscle. 

MYOCARDIAL INFARCTION A heart attack occurs when the blood flow to the 

heart muscle is blocked, leading to tissue 

damage. 

MYOCARDIAL Relating to the muscular tissue of the heart. 

CAPILLARIES Tiny blood vessels connect arteries and veins, 

allowing for the exchange of oxygen, nutrients, 

and waste products. 

HYPERTENSION High blood pressure, is a condition in which the 

force of blood against the artery walls is too 

high. 

ECHOCARDIOGRAM A non-invasive test that uses sound waves to 

create a moving picture of the heart, providing 

information about its size, shape, and function. 
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