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Abstract

Robots are increasingly used in indoor environments to carry out tasks that assist with

everyday living. As these robots are expected to perform more complex tasks in the fu-

ture, they will need to quickly acquire experience from multiple sources. One promis-

ing approach to achieve this is by incorporating interactive feedback. In this approach,

a trainer advises the robot on which actions to take to speed up the learning process.

However, deep reinforcement learning, which has been successfully applied to robotics,

can be time-consuming to learn a task. This thesis proposes a solution to this problem

by incorporating interactive feedback from brain signals to train robots using deep re-

inforcement learning for indoor applications, specifically maze navigation. We aimed

to speed up the learning process in a human-robot scenario by using human emotion

or attention feedback. To achieve this, we allowed the robot to learn new tasks with a

dynamic policy network from human feedback. We also combined this feedback with

other sensor feedback, such as LIDAR. We conducted different experiments to compare

manual feedback, brain signal feedback, and no brain signal feedback using different

Reinforcement Learning models, such as Deep Deterministic Policy Gradient (DDPG),

Deep Q-Network, and twin-delayed deep deterministic policy gradient (TD3). Addi-

tionally, we studied different models for classifying emotions using Graph Neural Net-

work models and traditional deep learning models and compared the results.

Keywords: Reinforcement learning, Human Feedback, Navigation, BCI, Emotion, P300.
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Résumé

Les robots sont de plus en plus utilisés dans les environnements intérieurs pour

effectuer des tâches qui facilitent la vie quotidienne. À mesure que ces robots sont

censés accomplir des tâches plus complexes à l’avenir, ils devront acquérir rapidement

de l’expérience à partir de sources multiples. Une approche prometteuse pour y par-

venir consiste à intégrer des retours interactifs. Dans cette approche, un formateur con-

seille le robot sur les actions à entreprendre pour accélérer le processus d’apprentissage.

Cependant, l’apprentissage par renforcement profond, qui a été appliqué avec succès

à la robotique, peut prendre du temps pour apprendre une tâche. Cette thèse propose

une solution à ce problème en intégrant des retours interactifs à partir des signaux

cérébraux pour former des robots à l’aide de l’apprentissage par renforcement profond

pour des applications en intérieur, en particulier la navigation dans des labyrinthes.

Nous avons cherché à accélérer le processus d’apprentissage dans un scénario homme-

robot en utilisant des retours émotionnels ou d’attention humaine. Pour cela, nous

avons permis au robot d’apprendre de nouvelles tâches avec un réseau de politique dy-

namique à partir des retours humains. Nous avons également combiné ces retours avec

d’autres retours de capteurs, tels que le LIDAR. Nous avons mené différentes expéri-

ences pour comparer les retours manuels, les retours de signaux cérébraux et l’absence

de signaux cérébraux en utilisant différents modèles d’apprentissage par renforcement,

tels que le Deep Deterministic Policy Gradient (DDPG), le Deep Q-Network et le twin-

delayed deep deterministic policy gradient (TD3). De plus, nous avons étudié différents

modèles pour classifier les émotions en utilisant des modèles de Graph Neural Network

et des modèles d’apprentissage profond traditionnels, et nous avons comparé les résul-

tats.
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General Introduction

0.1 General Context

Robotics is a vast and influential domain that has made a significant impact across var-

ious sectors, ranging from healthcare to industry, and has become an integral part of

our everyday lives. The portrayal of advanced robots in fantasy movies exemplifies

the fascination with the potential capabilities of robotic systems. In parallel with these

advancements, the field of artificial intelligence (AI) has witnessed significant break-

throughs, including the development of sophisticated AI systems such as ChatGPT,

which have revolutionized natural language processing tasks.

This thesis explores the intersection of robotics and AI, specifically focusing on the

utilization of reinforcement learning and neural feedback to enable semi-mind con-

trolled robots for indoor applications. The aim is to enhance the learning capabilities of

robots by incorporating human guidance through neural feedback. One of the key as-

pects of this research involves training robots to navigate through randomly generated

mazes by leveraging the principles of reinforcement learning.

The integration of reinforcement learning techniques and neural feedback has yielded

impressive results, as evidenced by existing literature. Through the fusion of AI and

robotics, robots have been able to learn and execute complex tasks efficiently. More-

over, this research contributes to the advancement of the robot industry by harnessing

the power of simulation and reinforcement learning to reduce the costs associated with

prototyping advanced robot systems.

The thesis focuses on two primary areas of investigation. Firstly, it aims to ad-

vance and optimize the learning capabilities of robots, making them more adaptable

and efficient in various indoor environments. Secondly, it explores the integration of

the human sensory system, analogous to the eyes and the brain, as a sensor for robots.

1



Semi-mind controlled robots based on Reinforcement Learning for Indoor Application

This integration aims to enhance the perceptual capabilities of robots by leveraging hu-

man motion feedback, which can be categorized into positive, neutral, and negative

feedback signals.

In this research, the effectiveness of the proposed approach is demonstrated through

experimental evaluations. Notably, the state-of-the-art models in the field have been

surpassed, as exemplified by the achievement of outstanding results in the renowned

benchmark named SEEDIV. Additionally, the thesis presents three main case studies

within the realm of deep reinforcement learning. These studies involve optimizing re-

ward calculation, comparing different sensor feedback systems (such as lidar, emotion,

and hyperdimensional representation), and investigating the impact of human emotion

on advancing the learning process of robots.

To facilitate these experiments, advanced tools such as Gazebo and ROS2 are em-

ployed, enabling the creation of highly realistic 3D physics simulations that simulate

real-world environments. This approach significantly reduces the cost and complexity

associated with building physical prototypes, making it more accessible to develop and

test robot systems.

0.2 Problematic and Objectives

The field of robotics has witnessed significant advancements and has a profound im-

pact on various domains such as healthcare, industry, and everyday human life. Addi-

tionally, the integration of advanced AI systems, including ChatGPT, has made remark-

able strides in natural language processing tasks. This thesis addresses the following

problematic and objectives:

• Problematic

1. Incorporating human neural feedback into reinforcement learning for robot

navigation in indoor applications.

2. Enhancing the learning capabilities of robots by leveraging the integration

of human emotion feedback and sensor feedback.

• Objectives

2



Semi-mind controlled robots based on Reinforcement Learning for Indoor Application

1. To develop a novel method for mapping and navigation of robots in indoor

environments using reinforcement learning and neural feedback.

2. To investigate the impact of human emotion feedback as a form of neural

feedback in the robot learning process.

3. To optimize the learning process of robots by combining sensor feedback,

such as 2D LIDAR data, with human emotion feedback.

4. To compare and evaluate different deep reinforcement learning algorithms,

including Deep Deterministic Policy Gradient (DDPG), Deep Q-Network

(DQN), and twin-delayed deep deterministic policy gradient (TD3), in the

context of robot navigation.

5. To explore different models for classifying human emotions, including Graph

Neural Network models and traditional deep learning models, and analyze

their effectiveness in improving the learning process.

6. To utilize simulation tools such as Gazebo and ROS2 to create realistic 3D

physics simulations that emulate real-world environments and enable cost-

effective prototyping for robot systems.

7. To surpass the state-of-the-art models in the SEEDIV benchmark, demon-

strating the superiority of the proposed method.

8. To investigate the feasibility and effectiveness of utilizing the proposed method

in more general tasks beyond robot navigation.

9. To explore the potential application of the developed method in multi-robot

swarm systems, studying its impact on collective behaviors and coordina-

tion.

By addressing these objectives, this thesis aims to advance the field of robotics by in-

troducing a novel approach that leverages human neural feedback for reinforcement

learning in robot systems. Furthermore, it seeks to explore the wider implications and

potential applications of this method, paving the way for future research and advance-

ments in the field of human-robot interaction and AI-guided robotics.

3
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0.3 Structure of the thesis

In this section, we provide an overview of the structure and contents of the thesis. The

thesis is organized into the following chapters:

1. Chapter 2: Reinforcement Learning

This chapter introduces the fundamentals of reinforcement learning (RL), includ-

ing its definition, key concepts, and terminology. It explores different RL algo-

rithms such as Monte Carlo method, Q-learning, and deep reinforcement learn-

ing (DRL). Additionally, it discusses reinforcement learning with human feedback

(RLHM), its challenges, and applications.

2. Chapter 3: Brain Computer Interface

In this chapter, the theoretical and technical background of Brain Computer Inter-

faces (BCIs) is presented. It covers the definition of BCI, lobes of the brain, EEG

rhythms, event-related potentials, and hybrid BCIs. The technical background

includes brain signal acquisition, artifacts removal and preprocessing, feature ex-

traction and selection, classification, and control unit. The chapter also explores

the applications of BCIs and discusses related works.

3. Chapter 4: Contribution and Results

This chapter presents the proposed model that integrates reinforcement learning

with human feedback and brain signal feedback for robot navigation. It explains

the global system design and provides details on the components related to brain

signal feedback and deep reinforcement learning. The chapter includes infor-

mation about the experimental setup, dataset used, hyperparameters, simulation

challenges in maze environments, and presents the results of EEG experiments

and case studies using DRL. Finally, it concludes with the overall conclusions of

the thesis and suggestions for future work.

4



Reinforcement Learning

1.1 Introduction

Reinforcement Learning (RL) has revolutionized the field of training intelligent agents

to make optimal decisions in complex environments. This chapter provides an ex-

ploration of RL’s fundamental concepts, advancements, and improvements, including

Deep Reinforcement Learning (DRL). Despite its successes, RL faces challenges in un-

certain and dynamic environments, necessitating a paradigm shift towards Reinforce-

ment Learning with Human Feedback (RLHM) [1]. Section 1.2 delves into RLHM, ex-

amining its definition, key components, and various types of human feedback. The

RLHM framework, Reinforcement Learning from Human Feedback, is introduced as a

structured approach incorporating human guidance. The chapter also discusses differ-

ent approaches to integrating human feedback, highlighting their potential benefits and

limitations. Addressing challenges and showcasing diverse applications, from robotics

to game playing, this chapter sets the stage for a comprehensive exploration of RLHM’s

potential.

1.2 Reinforcement Learning

1.2.1 Definition

In Reinforcement Learning, an agent is supposed to learn a specific behavior by trial

and error. The agent interacts with its environment to collect experiences. [Fig. 1.1]

illustrates the basic concept behind Reinforcement Learning. At each time step t =

1, 2, 3, . . ., the agent is in a certain state st ∈ S and takes one of the possible available

actions at ∈ A(s). The action changes the environment, and the agent ends up in a new

state st+1. Furthermore, it receives a reward Rt+1 from the environment that serves as

feedback about how good it was to take action at in state st [2].
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FIGURE 1.1: Agent-environment interaction loop [3]

1.2.2 Key Concepts and Terminology

Reinforcement learning (RL) encompasses a set of key concepts and terminology that

form the foundation of RL algorithms and their application [Fig. 1.1].

• Agent: An agent in RL refers to an entity that interacts with the environment,

making decisions and taking actions based on its observations and goals. The role

of the agent involves perceiving the environment, selecting actions, and learning

from the rewards received. RL encompasses various types of agents, such as de-

terministic and stochastic agents [4], which influence the learning process.

• Environment: The environment in RL is the external system or world in which

the agent operates and interacts. It is represented using states that capture rele-

vant information about the system at a given time. The dynamics of the environ-

ment and the transition model describe how the system evolves from one state to

another based on the agent’s actions.

• Actions: The action space in RL defines the set of possible actions that the agent

can take in a given state. It can be discrete or continuous, and the choice of ac-

tion selection policies, such as deterministic or stochastic policies [5], affects the

agent’s decision-making process.

• Rewards: Rewards in RL are numerical signals received by the agent from the

environment, indicating the desirability of its actions. They can be immediate or

delayed, and designing appropriate reward functions that align with the desired

behavior of the agent is a critical consideration.
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• States: States provide a complete description of the state of the world in rein-

forcement learning. They encapsulate all the relevant information necessary for

the agent to perceive and interact with the environment. Effective state repre-

sentations, typically as real-valued vectors or tensors, are crucial for capturing

essential aspects of the environment while minimizing irrelevant information.

1.2.3 Model-Free vs Model-Based RL

Reinforcement learning (RL) algorithms can be broadly categorized as either model-

free or model-based approaches. In model-free RL, the agent learns directly from ex-

perience without having access to or explicitly learning a model of the environment.

This approach focuses on optimizing the agent’s policy or action-value function, often

through techniques like policy optimization [6] or Q-learning [7]. Model-free methods

are easier to implement and tune but may require more data for effective learning.

On the other hand, model-based RL involves the agent having access to or learning

a model of the environment. This model predicts state transitions and rewards, en-

abling the agent to plan ahead and make informed decisions. By considering a range

of possible choices, the agent can distill the results into a learned policy. While model-

based methods offer the potential for improved sample efficiency, learning an accurate

model from experience poses challenges.

Model-free methods are more popular and extensively developed in the RL field

compared to model-based methods [Fig. 1.2]. They forego the potential benefits of

using a model but tend to be easier to implement and tune. Model-based methods, on

the other hand, require the agent to learn a model and face the risk of exploiting biases

in the learned model.
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FIGURE 1.2: A Taxonomy of RL Algorithms [8]

1.2.4 Markov Decision Process

The Markov Decision Process (MDP) is based on the Markov Assumption, which as-

sumes that the state and behavior of the environment at a given time step are indepen-

dent of past agent-environment interactions (actions) prior to that time step [9]. If an

RL-task satisfies the Markov Assumption, it can be represented as a five-tuple MDP

(S, A, P, R, γ).

Here are the components of the MDP:

• Set of states, denoted as S, represents all possible states of the environment.

• Set of actions, denoted as A, represents the available actions in each state. A(s)

specifies the actions available in state s.

• Transition probabilities, denoted as P(s, a, s′), describe the probability of transi-

tioning from state s to state s′ when taking action a at time step t. It is a function

mapping from (S× A× S) to the range [0, 1].

• Reward probabilities, denoted as R(s, a, s′), define the immediate reward the agent

receives after transitioning from state s to state s′ by taking action a. It is a function

mapping from (S× A× S) to the set of real numbers (R).

• Discount factor, denoted as γ, is a value between 0 and 1 that determines the im-

portance of future rewards in the computation of the discounted expected return.
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It should be noted that the MDP is considered finite if the sets of states (S) and

actions (A) are finite.

1.2.5 Discounted Expected Reward

In order to effectively train an agent, its objective should be to maximize the overall

reward over the long term, rather than focusing solely on immediate returns. Let’s con-

sider the environment depicted in [Fig. 1.4], which consists of six different rooms. The

agent begins in room one and the ultimate goal is to reach room five. The immediate

reward is determined by the negative distance between the agent and room five. If the

agent only prioritizes maximizing the immediate reward, it would choose to move to

room three since the immediate reward there is higher than in rooms one or two. Unfor-

tunately, this decision prevents the agent from reaching room five, and it remains stuck

in room three indefinitely. Consequently, the agent never achieves its final goal. On

the contrary, if the agent’s objective is to maximize the expected return, it is willing to

accept a lower immediate reward in room two, followed by higher immediate rewards

in rooms four, six, and finally five. This sequence of actions leads to the accumulation

of higher overall rewards.

The discounted expected return represents the cumulative sum of potential future

rewards and can be calculated using Equation 1.1. The discount factor, γ, which lies

within the range of [0, 1], determines the significance of future rewards and specifies

how far into the future these rewards are considered. When γ = 1, all future rewards

are given equal weight. In contrast, when γ = 0, only the immediate reward is taken

into account.

The formula for calculating the discounted expected return, denoted as Gt, is as

follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞

∑
k=0

γkRt+k+1 (1.1)

Here, Rt represents the immediate reward at time step t, and k is the index used for

summation.

We can distinguish between two types of tasks: episodic and continuous.
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• Episodic: The training procedure can be divided into episodes. An episode con-

cludes when the agent reaches a terminal state, at which point the scene is reset

and the agent begins the next episode. The terminal state yields an immediate

reward of 0 and can be reached within a finite number of time steps, denoted as

T.

• Continuous: This type of problem cannot be formulated in episodes, as it is an

ongoing, continuous process. In this case, T = ∞, indicating an infinite number

of time steps.

FIGURE 1.3: Immediate reward vs. expected return [10]

1.2.6 Policy and Value Functions

A policy, denoted as π, guides the behavior of the agent. It models a probability dis-

tribution π(a|s) over the available actions a ∈ A(s) for each state s. In other words,

π(At|St) represents the probability of selecting action At in state St. The agent samples

its next action from this probability distribution, π(a|s).

The value function vπ(s) provides an estimate of the advantage of being in a partic-

ular state s. It represents the expected discounted return of being in state s, assuming

the agent follows policy π (see Equation 1.2).

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s

]
, for all s ∈ S (1.2)

Equation 1.2 can be recursively formulated, leading to the Bellman Equation for vπ

(Equation 1.3). In the Bellman equation, the value of a state s depends on the next possi-

ble states s0, weighted by the transition probability Ps,s0 . Many Reinforcement Learning
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approaches approximate the optimal Bellman equation by estimating the value of the

next states.

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= ∑
π(a|s)

∑
Ps,s0

[Rs,s0 + γEπ[Gt+1|St+1 = s′]]

= ∑
π(a|s)

∑
Ps,s0

[Rs,s0 + γvπ(s′)]

(1.3)

The action-value function qπ(s, a) estimates the desirability of taking action a in

state s. It represents the expected return of selecting action a in state s and subsequently

following policy π.

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s, At = a

]
(1.4)

Reinforcement Learning aims to discover an optimal policy π∗. A policy is consid-

ered better than another policy π ≥ π0 if its value function, vπ(s), is superior to vπ0(s)

for all states s ∈ S. When the state-value function is optimal, it implies that the agent

has adopted an optimal policy. It is possible for multiple optimal policies to yield the

same optimal state-value function. The optimal state-value function v∗ is defined as

follows:

v∗(s) = max
π

vπ(s) for all s ∈ S (1.5)

Moreover, optimal policies correspond to the optimal action-value function q∗.

q∗(s, a) = max
π

qπ(s, a) for all s ∈ S and a ∈ A(s) (1.6)

= E [Rt+1 + γv∗(s0)|St = s, At = a] (1.7)

Finally, the Bellman optimality equation [11] (Equation 1.8) can be derived from the

previously introduced equations.
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v∗(s) = max
qπ∗

q∗(s, a) = max
E[Ps,s0 ]

[
Rs,s0 + γv∗(s′)

]
(1.8)

1.2.7 Monte Carlo Method

The Monte Carlo method is an iterative approach used to solve reinforcement problems

with episodic tasks when there is no existing model of the environment. Its goal is to

converge towards the optimal policy as the number of episodes increases [12].

In this method, a Q-table is employed to store the action-value for each possible

state-action pair. The value represents the average return collected across all episodes.

Whenever the agent encounters a state-action pair, the corresponding entry in the Q-

table is updated using the following equation:

Q(St, At) = Q(St, At) +
1

N(St, At)
· (Gt−Q(St, At)) (1.9)

where N(St, At) denotes the number of visits to that specific state-action pair.

To weigh different returns, a factor α can be introduced. By adjusting α, recent

returns can be given more or less importance, as shown in the following equation:

Q(St, At) = Q(St, At) + α · (Gt−Q(St, At)) = (1− α) ·Q(St, At) + α · Gt (1.10)

The Monte Carlo method proceeds through episodes. During the Evaluation step,

the agent follows policy π for one episode. After completing the episode, the agent

possesses a sequence of experiences (S1, A1, R2, S2, ..., ST) and updates the Q-table ac-

cordingly. For each state-action pair (St, At) in the sequence, the expected return Gt is

obtained, and the corresponding entry in the Q-table is updated using equation (1.10).

In the Improvement step, the policy π is updated based on the recent Q-table. The

next iteration begins with the Evaluation step, utilizing the updated policy. Figure 2.8

illustrates the concept of the Monte Carlo method.
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FIGURE 1.4: Concept of the Monte Carlo method [10]

The most conservative policy update is known as the greedy policy. In this case, the

agent always selects the action with the highest action-value. However, relying solely

on greedy actions can lead to suboptimal policies, as the agent might get stuck. To

address this issue, the agent should occasionally take exploratory actions. An e-greedy

policy is employed, where the greedy action is chosen with a probability of (1 − e),

and a random action is selected with a probability of e to explore the action space. The

formula for the e-greedy policy is as follows:

π(a|s)←


1− e if a = argmax Q(s, a)

e
|A(s)| otherwise

(1.11)

Here, e represents a value between 0 and 1, determining the balance between ex-

ploitation and exploration. It is reasonable to emphasize exploration at the beginning

when the agent lacks reliable knowledge. As the agent accumulates more experiences,

the focus shifts towards exploiting the learned knowledge. A common approach is to

gradually decrease e over time until it reaches a minimum value of emin, which reflects

this behavior.

1.2.8 Q-Learning

Q-Learning is a popular off-policy TD control method, which means that the policy π

is not used for updating the Q-table [7]. The main difference compared to Sarsa is that

instead of using the action-value of the next state-action pair Q(St+1, At+1), only the

maximum Q-value of the next state St+1 is taken into account. The action-value update

rule for Q-Learning is shown in Equation 1.12:
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Q(St, At)← Q(St, At) + α [Rt+1 + γ max Q(St+1, a)−Q(St, At)] (1.12)

In this equation, α represents the learning rate, Rt+1 is the reward obtained at time

t + 1, γ denotes the discount factor, and max Q(St+1, a) signifies the maximum Q-value

for state St+1 over all possible actions a. By applying this update rule, the Q-values of

the state-action pairs are iteratively adjusted in Q-Learning.

1.2.9 Deep Reinforcement Learning (DRL)

In the classical Reinforcement Learning discussed, all approaches rely on a tabular set-

ting, which presents essential disadvantages. One limitation is that the use of a table

restricts classical approaches to tasks with a low number of states and actions. How-

ever, real-world problems often involve large state spaces, making it infeasible to visit

all possible states to retrieve values for action-state pairs. Additionally, the size of the

table is constrained by hardware memory limitations.

Furthermore, classical RL approaches lack knowledge sharing among similar states,

which can hinder representation quality and prolong training times.

To overcome these limitations, a common approach is to replace the value table with

a Deep Neural Network (DNN) as a function approximator. DNNs have the ability to

approximate non-linear functions and extract complex patterns from data. By utilizing

a DNN, the drawbacks of the tabular representation can be mitigated. The DNN-based

approach enables more efficient handling of large state spaces and facilitates knowl-

edge transfer between similar states, resulting in improved representation quality and

reduced training times.

1.2.10 Deep Reinforcement Learning: Advancements and Improvements

In classical Reinforcement Learning (RL), traditional methods that rely on tabular rep-

resentations are being replaced by Deep Neural Networks (DNNs). This transition al-

lows for more efficient handling of tasks with large state and action spaces, as well

as the ability to learn from high-dimensional raw sensory input without hand-crafted

features.
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One notable improvement in DRL is the introduction of Deep Q-Network (DQN)

[13]. DQN combines Q-Learning with DNNs to approximate action values and make

decisions. It utilizes an end-to-end architecture, enabling the network to extract rel-

evant features autonomously. The DQN approach overcomes challenges of unstable

learning by incorporating mechanisms such as experienced replay and a frozen target

network.

Experienced replay involves storing and sampling past experiences to break data

correlations and provide independent training samples. The frozen target network,

represented by a separate network with fixed weights, helps stabilize learning by re-

ducing policy oscillations.

Several improvements have been made to enhance DQN’s performance. Double

DQN addresses the overestimation of Q-values by using two separate networks to es-

timate the TD-target. Prioritized Experienced Replay prioritizes important experiences

for more effective learning. Dueling DQN introduces a network architecture that sep-

arates the estimation of state value and action advantage, improving the identification

of relevant state features.

These advancements in DRL, replacing classical RL with DNNs and incorporating

improvements like DQN, have significantly contributed to the success and applicability

of RL in complex and high-dimensional environments.

1.3 Reinforcement Learning with Human Feedback (RLHM)

1.3.1 Definition

RLHM is a subfield of Machine Learning that focuses on building algorithms and mod-

els capable of learning and making decisions interactively [14]. It incorporates the us-

age of an entity called an agent, which interacts with an external system known as the

environment. The agent perceives the current situation or configuration of the envi-

ronment, referred to as the state, and takes a specific move or decision, known as an

action, in that particular state. The agent’s strategy or behavior, represented by a direct

map between states and actions, is called the policy. The policy defines how the agent

chooses actions based on the current state and can be deterministic or stochastic.
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After taking action in a specific condition, the agent receives a scalar feedback signal

from the environment, known as a reward. This reward serves to evaluate the quality

of the agent’s actions and guides it to learn the optimal behavior. The main objective

of RLHM is to find an optimal policy that maximizes the expected cumulative reward

over time. Typically, the agent achieves this by exploring different actions to gather in-

formation about the environment and exploiting its learned knowledge to make better

decisions.

1.3.2 Types of Human Feedback

The input HF in an RL model can take various forms, such as reward shaping, demon-

strations, or detailed evaluations, and it plays a crucial role in improving the agent’s

performance and accelerating the learning process. Below we will look into each HFs

in detail and try to understand their usability and pros and cons.

• Reward Shaping

It involves providing explicit rewards or penalties to the RL agent based on its

actions. Human experts can design reward functions to reinforce the desired re-

wards and discourage undesired behavior. This feedback form helps the agent

learn the optimal policy by maximizing its cumulative compensation.

Pros:

– Faster Learning: Providing informative rewards helps converge to the opti-

mal policy more quickly.

– Guided Exploration: It only allows exploration of the promising regions of

the state-action space.

Cons:

– Potential Bias: Often, it may introduce biases if implemented improperly,

thus influencing the agent’s behaviors in the wrong way, leading to subopti-

mal policies.

– Incorrect Shaping: Designing the correct shaping functions is challenging

and should always be done carefully.
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• Demonstrations

This involves human experts or demonstrators showcasing the desired behavior

by showcasing the desired actions or trajectories. The RL agent then learns or

imitates these behaviors to develop and generalize policies.

Pros:

– Efficient Learning: The learning process can be increased incrementally by

adding the demonstrator’s knowledge to the agent’s initial knowledge.

– Safe Exploration: By imitating expert behavior, the agent can avoid poten-

tially harmful or inefficient actions during the exploration phase.

Cons:

– Lack of Exploration: By solely depending on the expert’s knowledge, the

RL agent may be deprived of its inherent tendency to explore and discover

novel solutions, thus limiting its capabilities.

– Expert Sub-optimality: The availability of high-quality demonstrators is lim-

ited and costly, and using imperfect or suboptimal demonstrators might lead

the RL agent to inherit the limitations.

• Critiques and Advice

Humans critique or advise the agent’s learned policies in this feedback form.

They can evaluate the agent’s behavior or suggest improvements to enhance per-

formance. This feedback helps iteratively refine the agent’s policies and align

them more with human preferences.

Pros:

– Fine-grained Guidance: Humans can provide specific feedback to help the

agent improve its behavior in a targeted manner.

– Policy Refinement: Iterative feedback and advice can enhance the agent’s

policies over time.

Cons:
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– Subjectivity: Human feedback may vary, challenging reconciling conflicting

advice or critiques.

– Feedback Quality: The quality and relevance of human advice can vary, and

suboptimal feedback may hinder learning progress.

• Ranking and Preferences

Human experts provide the RL agent with rankings or preferences for the agent’s

different actions or policies. By comparing the options, the RL agent can develop

the optimal moves.

Pros:

– Preference Learning: Incorporating human preferences allows the agent to

focus on actions or policies more likely to be desired by humans.

– Fine-grained Control: Humans can communicate nuanced preferences, en-

abling the agent to optimize for specific criteria.

Cons:

– Subjectivity: Human preferences may vary, making it challenging to recon-

cile conflicting feedback.

– Limited Feedback Granularity: Assigning precise scores or rankings to ac-

tions or policies may be difficult for humans, leading to less informative

feedback.

1.3.3 RLHM Framework: Reinforcement Learning from Human Feedback

The RLHM (Reinforcement Learning from Human Feedback) framework, also known

as the General Tamer Framework [14], is a method for training agents in sequential

decision-making tasks. In traditional RL approaches, agents learn autonomously through

interaction with the environment using reinforcement learning algorithms. However,

in the RLHM framework, the focus is on learning the reward function through super-

vised learning, with the help of human trainers [Fig. 1.5].
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FIGURE 1.5: Immediate reward vs. expected return [14]

In the RLHM framework, a finite Markov decision process (MDP) is defined by the

tuple (S, A, T, γ, D, R), where S and A represent the sets of possible states and actions, T

is the transition function that specifies the probabilities of transitioning from one state

to another, γ is the discount factor for future rewards, D is the distribution of start

states, and R is the reward function that assigns rewards based on the current and next

states.

Unlike traditional RL, where the agent interacts solely with the environment, the

RLHM framework incorporates human trainers who provide feedback to the agent.

The reward function R is removed from the task specification, and instead, the human

trainer evaluates the agent’s performance and provides rewards in the form of expres-

sions that can be mapped to scalar values. The agent’s goal is to select actions that

maximize the reward provided by the human trainer.

The RLHM framework adopts a supervised learning approach, treating each action

as a training sample. The states and the human trainer’s reward for each action are con-

sidered attributes and labels, respectively. The agent models the human’s reward func-

tion and greedily selects actions that are expected to yield the highest reward. Once the

agent has learned an accurate model of the human’s reward, it can continue performing

the task even in the absence of the human trainer.

A key challenge in the RLHM framework is that human reward functions are not

consistent and may change over time as the trainer’s standards and preferences evolve.

Therefore, recency-weighted function approximators, such as supervised learning al-

gorithms, are used to accommodate these changing reward functions.
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One notable aspect of the RLHM framework is that the reward function comes ex-

clusively from the human trainer, and there is no predetermined "correct" behavior

specified by the environment. The agent’s behavior is deemed correct or optimal solely

based on the trainer’s evaluation.

While it is possible for the agent to learn autonomously by combining the human

trainer’s feedback with environmental rewards using traditional RL algorithms, the

RLHM framework focuses on the challenge of learning the human’s reward function

in isolation. This isolated learning process allows the agent to act greedily based on

the learned reward function. Additionally, the RLHM framework is particularly useful

when the environmental reward function is difficult to define or when the correct policy

depends on specific human preferences.

1.3.4 Approaches to Incorporate Human Feedback into Reinforcement Learn-

ing

Incorporating human feedback into reinforcement learning (RL) agents can be achieved

through various approaches. Here, we will explore different strategies for integrating

human feedback into RL agents and discuss their brief descriptions.

• Interactive Learning

Interactive learning methods involve direct engagement between the learning

agent and human experts or users. The agent actively seeks feedback and adapts

its behavior based on input. Two approaches commonly used in interactive learn-

ing are:

– Active Learning: The agent selects informative instances or queries humans

for feedback on specific data points to accelerate learning.

– Online Learning: The agent receives real-time feedback from humans, con-

tinuously adapting its policy based on the received feedback.

• Imitation Learning

Imitation learning, also known as learning from demonstrations, aims to acquire a

policy by emulating expert behavior. Expert humans provide sample trajectories
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or actions, which the agent tries to mimic. Two popular approaches in imitation

learning are:

– Behavioral Cloning: The agent learns to mimic the demonstrated behavior

by mapping observations to actions, aiming to match the expert’s actions

without considering the underlying reward signal.

– Inverse Reinforcement Learning: The agent infers the underlying reward

function from expert demonstrations, enabling it to learn a policy that aligns

with the expert’s preferences.

• Reward Engineering

Reward engineering involves modifying the reward signal to guide the agent’s

learning. Human experts design shaping functions or provide additional rewards

that encourage desired behavior or penalize undesirable actions. Two common

approaches in reward engineering are:

– Reward Shaping: Shaped rewards are added to the environment’s intrinsic

reward signal to provide additional guidance to the agent.

– Reward Modeling: Human experts explicitly model the reward function

based on their preferences or domain knowledge, allowing the agent to learn

from the expert’s reward model.

• Preference-based Learning

Preference-based learning methods involve gathering comparisons or rankings of

different actions or policies from human evaluators. The agent learns to optimize

its behavior based on observed preferences. Two approaches commonly used in

preference-based learning are:

– Pair-wise Comparison: Humans provide preferences by comparing pairs of

actions or policies and indicating their preferred option.

– Rank-based Comparison: Humans rank different options based on their de-

sirability, providing a relative ordering of actions or policies.

• Natural Language Feedback
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Natural language feedback allows humans to communicate with the learning

agent using instructions, critiques, or explanations. The agent processes the tex-

tual input and adapts its behavior accordingly. Two approaches in natural lan-

guage feedback are:

– Text-based Reinforcement Learning: The agent incorporates natural language

instructions or feedback to guide decision-making.

– Language Grounding: The agent learns to associate textual feedback with

specific states or actions to understand and respond to human instructions.

By combining these approaches, RL agents can effectively leverage human feedback to

improve their decision-making capabilities in complex real-world scenarios.

1.3.5 Challenges of Reinforcement Learning with Human Feedback

Addressing the challenges associated with reinforcement learning with human feed-

back is crucial for effectively integrating and utilizing human guidance. Several key

challenges arise in this context:

• Feedback Quality and Consistency

Human feedback can be subjective and inconsistent, making it difficult to inter-

pret and effectively utilize. Different individuals may have varying preferences,

leading to conflicting guidance. Ensuring high-quality and reliable feedback be-

comes essential for training accurate and robust reinforcement learning models.

• Scalability and Cost

Collecting and annotating human feedback can be resource-intensive, time-consuming,

and costly. As tasks and environments become more complex, obtaining suf-

ficient and diverse feedback becomes increasingly challenging, particularly in

large-scale or real-time systems.

• Exploration-Exploitation Tradeoff

Balancing exploration and exploitation in reinforcement learning is critical for

learning optimal policies. Incorporating human feedback without compromising
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exploration poses a challenge. Over-reliance on human guidance can limit the

agent’s ability to explore and discover novel solutions.

• Generalization and Transfer Learning

Human feedback is often specific to particular tasks or environments, making

generalization to new scenarios or domains non-trivial. Ensuring that learned

policies and models can transfer knowledge from one context to another presents

a significant challenge.

• Subjectivity and Bias

Human feedback can be subjective and influenced by personal preferences, bi-

ases, or context-dependent factors. Addressing bias in feedback and ensuring

fairness and inclusivity become essential considerations.

• Feedback Delay and Feedback Inconsistency

Obtaining real-time feedback from humans may not always be feasible, leading

to feedback delays that can hinder the learning process, especially in dynamic

environments. Additionally, inconsistencies or changes in feedback over time can

challenge maintaining policy coherence.

Effectively addressing these challenges will contribute to the successful integration of

human feedback into reinforcement learning, enabling the development of robust and

adaptive learning systems.

1.3.6 Applications of Reinforcement Learning and Reinforcement Learning

with Human Feedback

Both reinforcement learning (RL) and reinforcement learning with human feedback

(RLHF) have wide-ranging applications across various domains. Let’s explore some

of these applications in detail:

• Robotics

Reinforcement learning with human feedback can be employed in robotics for

tasks such as robot manipulation, object grasping, and locomotion. Human ex-

perts can provide demonstrations or critiques to guide the robot’s learning pro-

cess and improve its performance in real-world environments.
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• Game Playing

Reinforcement learning with human feedback can be used to train game-playing

agents. Human experts can provide demonstrations or rankings to enhance the

agent’s decision-making, strategy, and overall gameplay, leading to more intelli-

gent and competent game-playing agents.

• Autonomous Vehicles

Applying reinforcement learning with human feedback to autonomous vehicle

systems is another valuable application. Human feedback can assist in training

the vehicle to navigate complex traffic scenarios, improve safety, and handle chal-

lenging driving situations, ultimately enhancing the overall performance of au-

tonomous vehicles.

• Dialogue Systems

Reinforcement learning with human feedback can be utilized to train conversa-

tional agents in natural language processing and dialogue systems. Human eval-

uations, critiques, or preferences can guide the agent’s responses, improve dia-

logue coherence, and enhance user satisfaction in conversational interactions.

• Healthcare

Reinforcement learning with human feedback holds potential in healthcare ap-

plications, such as personalized treatment planning, medical diagnosis, and drug

discovery. Human feedback can contribute to optimizing treatment decisions, im-

proving the accuracy of medical diagnoses, and facilitating the discovery of more

effective drugs.

• Recommender Systems

Employing reinforcement learning with human feedback in recommendation sys-

tems enables the system to learn user preferences and provide personalized rec-

ommendations. Human feedback in the form of ratings, reviews, or explicit pref-

erences can guide the system’s learning process, resulting in more accurate and

relevant recommendations for users.
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1.4 Conclusion

In conclusion, the field of Reinforcement Learning with Human Feedback (RLHM) of-

fers valuable approaches to enhance machine learning algorithms and models. By in-

corporating human feedback in the form of reward shaping, demonstrations, critiques

and advice, or ranking and preferences, RLHM aims to improve decision-making and

policy optimization. These approaches bring advantages such as faster learning, safe

exploration, fine-grained guidance, and preference learning. However, challenges like

feedback quality, scalability, exploration-exploitation tradeoff, generalization, subjec-

tivity, and feedback delay need to be carefully addressed. Despite these challenges,

RLHM holds great potential in various applications such as robotics, game playing,

and autonomous vehicles, paving the way for intelligent and adaptive systems.
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Brain Computer Interface

2.1 Introduction

Brain-Computer Interfaces (BCIs) enable direct communication between the brain and

external devices, relying on the recording and interpretation of brain signals. This

chapter provides a theoretical and technical background on BCIs. It begins by dis-

cussing the two approaches in BCI design: synchronous and asynchronous BCIs [15],

highlighting their respective advantages and challenges. The chapter then explores

the categorization of BCIs into invasive and non-invasive methods [16], discussing the

benefits and drawbacks of each approach. Furthermore, it delves into the different

lobes of the brain and their associated functions, emphasizing that brain functions are

integrated and extend beyond individual lobes. The chapter also explains electroen-

cephalography (EEG) rhythms [17] and their significance in understanding brain ac-

tivity. Event-related potentials (ERPs) are introduced as electrical brain responses that

provide insights into cognitive processes [18], with a particular focus on the P300 com-

ponent. Lastly, the chapter introduces hybrid BCIs, which integrate multiple modalities

to enhance accuracy and versatility in capturing and interpreting neural activity. The

technical background section covers brain signal acquisition techniques such as EEG,

fMRI, MEG, NIRS, and ECoG, discussing their characteristics and applications. Un-

derstanding these foundational concepts is crucial for developing effective and reliable

BCI systems.

2.2 Theoretical Background

2.2.1 Definition of BCI

A Brain-Computer Interface (BCI) is a system that enables direct communication be-

tween the brain and external devices or applications. It translates brain activity into

27



Semi-mind controlled robots based on Reinforcement Learning for Indoor Application

commands or actions without relying on traditional motor outputs. BCIs utilize vari-

ous technologies to capture and interpret brain signals, offering potential applications

in communication, control, and neurofeedback.

• Synchronous or Asynchronous BCI

Synchronous and asynchronous BCIs are two distinct approaches in the field of

brain-computer interfaces. Synchronous BCIs provide precise timing control, en-

suring that commands are received and executed consistently. However, they

impose constraints on the user, requiring them to conform to the BCI’s timing

constraints. On the other hand, asynchronous BCIs offer more freedom and flex-

ibility as users can initiate commands at their own pace. They can control the

timing of their actions and even pause the BCI system as needed. Implementing

asynchronous BCIs presents technical challenges due to the need to accurately

recognize the user’s intention to send or withhold commands. Distinguishing the

brain’s "idle" state, which is always functioning, from intentional inactivity can

be complex. Several methods have been developed to address this challenge, in-

cluding thresholding, using a "brain-switch," or utilizing muscle movements or

blinks as triggers to initiate BCI functions. Ongoing research aims to combine

the strengths of both approaches to enhance the usability and performance of BCI

systems [19].

• Non-Invasive BCI vs Invasive BCI

BCIs, or brain-computer interfaces, can be categorized into invasive and non-

invasive methods. Invasive BCIs involve a surgical procedure to implant elec-

trodes beneath the scalp for direct communication with the brain signals. This

method offers the advantage of more accurate readings. However, there are draw-

backs to invasive BCIs, such as potential side effects from the surgery itself, in-

cluding the formation of scar tissue that can weaken brain signals. Moreover,

research by Abdulkader [20] highlights the possibility of the body rejecting the

implanted electrodes, leading to medical complications.

On the other hand, non-invasive BCIs utilize neuroimaging technologies as inter-

faces without the need for surgery. The majority of BCI research focuses on non-

invasive EEG-based BCIs. These EEG-based interfaces are convenient to wear
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and do not require invasive procedures. However, they have limitations in terms

of spatial resolution and the utilization of higher-frequency signals [21]. The skull

dampens signals, causing dispersion and blurring of the electromagnetic waves

generated by neurons. Additionally, EEG-based interfaces require some prepara-

tion time and effort prior to each usage session. In contrast, both non-EEG-based

and invasive BCIs do not require prior training.

2.2.2 Lobes of The Brain

The lobes of the brain are distinct regions or divisions that are responsible for different

functions and processes [Fig. 2.1]. The human brain is typically divided into four main

lobes: the frontal lobe, parietal lobe, temporal lobe, and occipital lobe. Each lobe plays

a crucial role in various aspects of cognition, perception, and motor control [22]. Here’s

a brief overview of the functions associated with each lobe:

• Frontal Lobe: Located at the front of the brain, the frontal lobe is involved in

higher cognitive functions, personality, decision-making, problem-solving, plan-

ning, and motor control. It also houses the prefrontal cortex, which is associated

with executive functions such as reasoning, judgment, and self-control.

• Parietal Lobe: Positioned behind the frontal lobe, the parietal lobe processes sen-

sory information from the body and is responsible for spatial awareness, percep-

tion of touch, temperature, pain, and pressure. It also plays a role in integrating

sensory information with other cognitive processes.

• Temporal Lobe: Situated on the sides of the brain, the temporal lobe is involved

in auditory processing, language comprehension, memory formation, and the

recognition of faces and objects. It includes the primary auditory cortex and the

hippocampus, a structure vital for memory consolidation.

• Occipital Lobe: Found at the back of the brain, the occipital lobe is primarily re-

sponsible for visual processing and interpretation. It contains the primary visual

cortex, which receives and processes visual information from the eyes, allowing

us to perceive and understand the surrounding environment.
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FIGURE 2.1: The lobes of the brain [23]

It’s important to note that while these lobes have specialized functions, the brain works

as an integrated system, and many cognitive processes involve the collaboration of

multiple lobes. Additionally, other regions and structures within the brain also con-

tribute to various functions, and the complexity of brain functions extends beyond the

boundaries of individual lobes.

2.2.3 Electroencephalography Rhythms

Electroencephalography (EEG) is a non-invasive technique used to measure the electri-

cal activity of the brain [17]. EEG rhythms refer to the patterns of electrical oscillations

observed in the EEG signal [Fig. 2.2]. These rhythmic patterns are associated with

different states of brain activity and play a crucial role in understanding brain function.

• Delta Waves (0.5-4 Hz): Delta waves are the slowest brain rhythms and are com-

monly observed during deep sleep. They are characterized by high amplitude

and are indicative of a state of unconsciousness or relaxation.

• Theta Waves (4-8 Hz): Theta waves are often observed during drowsiness or light

sleep. They can also be present during deep meditation or in certain pathological

conditions. Theta waves are associated with memory processes and can be seen

in states of creativity or daydreaming.
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FIGURE 2.2: Electroencephalography Rhythms [24]

• Alpha Waves (8-13 Hz): Alpha waves are prominent in awake and relaxed indi-

viduals with closed eyes. They are commonly observed over the occipital region

of the brain and are associated with a relaxed, calm, and meditative state.

• Beta Waves (13-30 Hz): Beta waves are typically observed when the brain is in

an active, alert state. They are associated with cognitive processes, concentration,

and focused attention. Beta waves can be further divided into low-beta (13-20 Hz)

and high-beta (20-30 Hz) frequencies.

• Gamma Waves (30-100 Hz): Gamma waves are the fastest brain rhythms and are

associated with high-level cognitive processes, perception, and information pro-

cessing. They have been linked to attention, memory formation, and conscious

awareness.

The specific frequency ranges mentioned above are approximate and can vary slightly

depending on the source. It’s important to note that the brain’s electrical activity is

highly complex, and these frequency bands often overlap and interact with each other.
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2.2.4 Event-related potentials

Event-Related Potentials (ERPs) are electrical brain responses that occur in response

to specific stimuli or events. These ERPs provide valuable insights into the underlying

cognitive processes and are widely used in research studies [18, 25]. Among the various

ERP components, the P300 has garnered significant attention and serves as a prominent

focus in many research papers, including the present study. Let’s explore the different

ERP components and delve deeper into the P300 phenomenon.

• N100: The N100 component is a negative waveform that typically peaks around

100 milliseconds after the presentation of a stimulus. It is predominantly ob-

served in auditory tasks and is believed to be associated with the early stages of

sensory processing. The N100 reflects the brain’s response to the onset of stimuli

and contributes to the initial encoding and analysis of sensory information [26].

• P200: The P200 component is a positive ERP waveform that emerges approx-

imately 200 milliseconds after stimulus onset. It is commonly linked to early

cognitive processing, including perceptual and attentional processes. The P200

represents the brain’s engagement in tasks that require the allocation of attention

and the processing of relevant stimuli [26, 27].

• N400: The N400 component manifests as a negative deflection occurring around

400 milliseconds after stimulus presentation. It is primarily associated with lan-

guage and semantic memory processes. The N400 is sensitive to the integration

and processing of semantic information, reflecting the brain’s response to mean-

ingful stimuli in the context of language comprehension [28].

• Late Positive Component (LPC): The Late Positive Component, or LPC, is a posi-

tive ERP wave that typically emerges around 500 milliseconds post-stimulus and

can persist for up to 1 second. The LPC is closely linked to memory processes,

particularly recognition memory. It reflects the brain’s engagement in evaluating

and categorizing stimuli based on previous encounters or memory representa-

tions [29].

• Focus on the P300: In our research, we specifically focus on the P300 component

due to its relevance and significance in cognitive neuroscience and related fields.
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The P300 is a positive waveform that occurs approximately 300 milliseconds af-

ter stimulus onset. It is associated with cognitive processes related to attention,

stimulus evaluation, and decision-making. The P300 is commonly investigated in

tasks involving target detection, oddball paradigms, and cognitive assessments.

Its amplitude and latency variations have been utilized as indicators of cognitive

function, task engagement, and information processing capabilities.

2.2.5 Hybrid Brain-Computer Interfaces

Hybrid Brain-Computer Interfaces (BCIs) represent a cutting-edge approach in the field

of neurotechnology. These interfaces combine multiple modalities, such as electroen-

cephalography (EEG), functional near-infrared spectroscopy (fNIRS), and electromyo-

graphy (EMG), to enable bidirectional communication between the brain and external

devices [30]. By integrating different types of signals, hybrid BCIs offer enhanced ac-

curacy, robustness, and versatility in capturing and interpreting neural activity. They

hold great potential for various applications, including neurorehabilitation, assistive

technologies, and cognitive augmentation [31]. The integration of multiple modali-

ties in hybrid BCIs allows for a more comprehensive understanding of brain activity

and facilitates the development of more advanced and adaptive neurotechnologies for

improved human-machine interaction. Ongoing research in this field aims to further

optimize the performance, usability, and potential applications of hybrid BCIs, paving

the way for exciting advancements in the intersection of neuroscience and technology.

2.3 Technical Background

Brain-Computer Interfaces (BCIs) are systems that enable direct communication be-

tween the brain and external devices or computers. These interfaces rely on the record-

ing and interpretation of brain signals to translate the user’s intentions into commands

or actions. Understanding the technical aspects of BCI frameworks [Fig. 2.3] is essential

for developing effective and reliable systems.
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FIGURE 2.3: The framework of brain-computer interface (BCI)

2.3.1 Brain Signal Acquisition

Brain signal acquisition involves capturing electrical, hemodynamic, or magnetic sig-

nals generated by the brain. There are several types of techniques commonly used for

brain signal acquisition in the field of brain-computer interfaces (BCIs). Here are some

of the main types:

• Electroencephalography (EEG): EEG measures the electrical activity of the brain

by placing electrodes on the scalp. It detects the small voltage fluctuations re-

sulting from neural activity. EEG is non-invasive, portable, and provides a high

temporal resolution, making it widely used in BCI research and applications.

• Functional Magnetic Resonance Imaging (fMRI): fMRI measures changes in

blood oxygenation levels to indirectly infer neural activity. It uses a strong mag-

netic field and radio waves to map brain activation [32]. fMRI provides excellent

spatial resolution but has a lower temporal resolution compared to EEG.

• Magnetoencephalography (MEG): MEG measures the magnetic fields generated

by neural activity. It uses extremely sensitive sensors to detect the tiny magnetic

fields produced by electric currents in the brain. MEG offers excellent temporal

and good spatial resolution [33], allowing for precise localization of brain activity.
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• Near-Infrared Spectroscopy (NIRS): NIRS measures changes in blood oxygena-

tion and hemodynamics in the brain using near-infrared light [34]. It provides an

indirect measure of neural activity and is relatively portable and less expensive

compared to other techniques. NIRS has lower spatial and temporal resolution

but can be suitable for certain BCI applications.

• Electrocorticography (ECoG): ECoG involves placing electrodes directly on the

surface of the brain, either through invasive surgery or using subdural grids [35].

It provides high spatial and temporal resolution and is commonly used in clinical

settings for epilepsy monitoring. ECoG offers insights into neural activity at a

finer scale but requires invasive procedures.

These techniques vary in terms of invasiveness, spatial and temporal resolution,

portability, and cost. The choice of brain signal acquisition technique depends

on the specific requirements of the BCI application, balancing factors such as the

desired resolution, signal quality, and user comfort.

2.3.2 Artifacts Removal and Preprocessing

Artifacts removal and preprocessing are crucial steps in the analysis of EEG signals to

enhance the quality and reliability of the data. These steps aim to minimize or eliminate

unwanted artifacts that can arise from various sources. Here are some common types

of artifacts removal and preprocessing techniques used for EEG signals:

• Filtering: Filtering is a fundamental preprocessing technique that involves ap-

plying digital filters to EEG signals. It helps to remove unwanted noise and arti-

facts while preserving the desired frequency components. Common filters used

in EEG preprocessing include high-pass filters to remove baseline drift and low-

frequency noise, and notch filters to eliminate power line interference [36].

• Artifact Rejection: Artifact rejection is the process of identifying and removing

EEG segments contaminated by artifacts. This can be done manually by visually

inspecting the data or using automated algorithms. Various types of artifacts can

be identified and removed, such as eye blinks, eye movements, muscle activity,

and electrode pops. Techniques like independent component analysis (ICA) [37]
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can be employed to separate artifact-related independent components from the

EEG data.

• Baseline Correction: Baseline correction involves adjusting the EEG signal by

subtracting a baseline value. This helps to remove any offset or drift in the signal

and ensures that subsequent analyses are based on a consistent baseline . Baseline

correction is typically performed by estimating the mean or median value of the

baseline period and subtracting it from the entire signal [38].

• Epoching: Epoching involves segmenting the continuous EEG signal into shorter

epochs or time windows. This segmentation is often based on specific events or

experimental conditions. Epoching facilitates the analysis of EEG responses to

specific stimuli or tasks and allows for the extraction of event-related potentials

(ERPs) and other relevant features.

• Artifact Correction: Artifact correction techniques aim to correct or minimize the

impact of artifacts on the EEG signal. These techniques can include template

matching, regression-based methods [39], or adaptive filtering algorithms [40].

Artifact correction helps to restore the integrity of the EEG data and improve sub-

sequent analysis and interpretation.

These are some of the key techniques used for artifacts removal and preprocessing of

EEG signals. The specific techniques employed may vary depending on the character-

istics of the data, the nature of the artifacts, and the objectives of the analysis. The goal

is to ensure that the EEG data is free from artifacts as much as possible, allowing for

accurate and meaningful analysis of brain activity.

2.3.3 Feature Extraction and Selection

Feature extraction and selection are essential steps in analyzing EEG signals to extract

relevant information and reduce dimensionality. These steps involve identifying infor-

mative features from the raw EEG data that can be used for subsequent analysis and

classification. Here are some common types of feature extraction and selection tech-

niques used for EEG signals:

36



Semi-mind controlled robots based on Reinforcement Learning for Indoor Application

• Time-domain Features: Time-domain features are derived directly from the raw

EEG signal and provide information about the signal’s amplitude, amplitude

variations, and temporal characteristics. Examples of time-domain features in-

clude mean amplitude, root mean square, variance, skewness, and kurtosis [41].

These features capture the overall signal characteristics and can be used to repre-

sent signal dynamics and variability.

• Frequency-domain Features: Frequency-domain features are obtained by trans-

forming the EEG signal from the time domain to the frequency domain using tech-

niques such as the Fourier transform or wavelet transform. These features capture

the spectral characteristics of the EEG signal and provide information about the

power distribution across different frequency bands. Common frequency-domain

features include power spectral density, spectral entropy, and peak frequency.

• Statistical Features: Statistical features involve the application of statistical mea-

sures to the EEG signal or its transformed representation. These features provide

information about the statistical properties of the signal and can capture patterns,

asymmetries, or regularities. Examples of statistical features include mean, stan-

dard deviation, skewness, kurtosis [41], correlation coefficients, and fractal di-

mensions.

• Spatial Features: Spatial features are derived from the spatial distribution of EEG

signals recorded from multiple electrodes. These features capture the spatial pat-

terns and relationships between different electrode locations. Common spatial

features include topographic maps, spatial covariance matrices, and scalp poten-

tial difference measurements.

• Waveform-based Features: Waveform-based features focus on specific waveform

components or patterns present in the EEG signal [42]. These features can be de-

rived from individual waveforms such as peaks, troughs, or deflections, or from

specific waveform patterns such as event-related potentials (ERPs). Examples

of waveform-based features include peak amplitudes, latencies, slope measure-

ments, and ERP components such as P300 or N400.
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• Feature Selection: Feature selection techniques aim to identify the most informa-

tive and relevant features from the extracted feature set. These techniques help

reduce dimensionality, eliminate redundant or irrelevant features, and improve

classification performance. Common feature selection methods include statistical

tests (e.g., t-tests, ANOVA) [43], information-theoretic approaches (e.g., mutual

information, entropy), and machine learning-based feature selection algorithms

(e.g., recursive feature elimination, genetic algorithms).

The choice of feature extraction and selection techniques depends on the specific EEG

analysis task, the characteristics of the data, and the desired outcome. It is important to

select features that capture the relevant aspects of brain activity and can discriminate

between different brain states, events, or conditions.

2.3.4 Classification

Classification is a crucial step in the system design of a Brain-Computer Interface (BCI)

framework, as it involves predicting or categorizing the user’s intentions or mental

states (emotion and P300) based on the extracted features from the brain signals. Ma-

chine learning and deep learning techniques are commonly employed for classification

tasks in BCI frameworks. Here are some examples of machine learning and deep learn-

ing models used in BCI classification:

• Machine Learning Models:

Support Vector Machine (SVM): SVM is a widely used machine learning algo-

rithm for classification. It constructs a hyperplane or set of hyperplanes that sep-

arate different classes in the feature space. SVM has been successfully applied to

various BCI applications, including motor imagery classification and mental state

recognition [44].

Extreme Gradient Boosting (XGBoost): XGBoost is a gradient boosting frame-

work that utilizes an ensemble of decision trees for classification. It combines the

predictions of multiple weak learners to create a strong classifier. XGBoost has

shown excellent performance in BCI tasks, particularly in scenarios with high-

dimensional feature spaces [45].
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Random Forest: Random Forest is an ensemble learning method that builds a

collection of decision trees and combines their predictions for classification [46]. It

is robust against overfitting and can handle large feature sets efficiently. Random

Forest has been employed in BCI applications for motor imagery classification

and cognitive task recognition.

• Deep Learning Models:

Convolutional Neural Network (CNN): CNN is a deep learning architecture par-

ticularly effective in processing structured data [47], such as images or spatially

organized signals. In the context of BCI, CNNs have been applied to analyze

electroencephalography (EEG) signals by treating them as images, where the elec-

trodes or channels represent the image’s spatial dimensions. CNNs can automat-

ically learn spatial filters and hierarchical representations, making them suitable

for tasks like motor imagery classification.

Long Short-Term Memory (LSTM): LSTM is a type of recurrent neural network

(RNN) designed to handle sequential data. LSTM networks [48] excel at capturing

temporal dependencies and have been employed in BCI frameworks for tasks

involving time-series EEG signals. LSTM models can capture the dynamics and

temporal patterns in the EEG data, making them suitable for applications such as

mental state recognition or EEG-based gesture recognition.

2.3.5 Control Unit

The Control Unit is a vital component of the BCI framework, responsible for translating

users’ brain signals into meaningful commands for device control. It also integrates

feedback mechanisms to enhance the user experience. The Control Unit consists of the

following key functionalities:

• Signal Decoding and Command Translation: The Control Unit encompasses the

processes of Signal Decoding and Command Translation, which are crucial for

accurate device control. Signal Decoding involves extracting relevant informa-

tion from the user’s brain signals, while Command Translation translates these
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decoded intentions into specific commands or actions. Machine learning and pat-

tern recognition techniques are employed within the Control Unit to develop ro-

bust models for precise decoding and translation.

• Control Device: The Control Device is an integral part of the Control Unit, es-

tablishing the connection between the user and the BCI framework. It captures

and interprets the user’s intentions, serving as the interface for transmitting com-

mands to the BCI system. The Control Device can take various forms, such as

EEG headsets, implanted electrodes, or other devices capable of recording brain

signals. Its seamless integration within the Control Unit ensures accurate and

efficient transmission of user commands.

• Feedback: Feedback is an essential component integrated within the Control

Unit, enhancing user engagement and performance in the BCI system. While not

extensively discussed in this subsection, feedback plays a significant role within

the framework. By providing real-time information about the system’s interpre-

tation of the user’s intentions and the resulting device control actions, feedback

serves purposes such as performance evaluation, system confidence and relia-

bility assessment, and error correction. It enables users to evaluate their device

control performance, understand the system’s reliability, and make adjustments

or adaptations based on the feedback received. The integration of feedback within

the Control Unit contributes to an improved user experience and facilitates effec-

tive device control.

2.3.6 Applications of Brain-Computer Interfaces (BCIs)

Brain-Computer Interfaces (BCIs) have demonstrated great potential in various fields

and have found applications in numerous domains. The ability to translate brain ac-

tivity into actionable commands has opened up new possibilities for enhancing human

capabilities and improving quality of life. Here are some notable applications of BCIs:

• Assistive Robotics: BCIs enable individuals with severe motor disabilities to con-

trol external devices such as prosthetic limbs, wheelchairs, and robotic exoskele-

tons using their brain signals. This technology empowers individuals with con-

ditions like spinal cord injuries, amyotrophic lateral sclerosis (ALS), or locked-in
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syndrome to regain mobility and independence. I have investigated the imple-

mentation and effectiveness of BCIs in controlling robotic systems for assistive

purposes.

• Sentiment Analysis and Emotion Recognition: In my thesis, I have also explored

the use of BCIs for analyzing brain signals associated with emotions and senti-

ments. By decoding brain activity patterns, BCIs can provide insights into an

individual’s emotional state, allowing for applications in mental health monitor-

ing, affective computing, and personalized user experiences. I have conducted re-

search on developing algorithms and techniques for sentiment analysis and emo-

tion recognition using BCIs.

• Communication and Augmentation: BCIs provide a means for individuals with

communication impairments, such as those with locked-in syndrome or certain

types of motor neuron diseases, to express themselves and communicate with

others. By translating their thoughts into text or speech, BCIs enable them to over-

come the limitations imposed by their physical disabilities. Furthermore, BCIs

can be used to augment existing communication methods by offering faster and

more efficient ways to compose and send messages.

• Neurorehabilitation: BCIs have shown promise in neurorehabilitation, particu-

larly in stroke recovery and motor rehabilitation. They can facilitate the relearning

of motor skills by enabling users to control robotic or virtual reality-assisted ther-

apy systems. BCIs provide real-time feedback and encourage neuroplasticity by

promoting the activation of specific brain areas associated with motor functions.

This technology has the potential to enhance the effectiveness and efficiency of

rehabilitation programs.

• Cognitive Enhancement and Brain Training: BCIs are being explored for cogni-

tive enhancement applications, such as improving attention, memory, and mental

focus. Neurofeedback-based BCIs can provide users with real-time information

about their brain activity and guide them to achieve desired cognitive states. Ad-

ditionally, BCIs have been used in brain training applications to enhance cognitive
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abilities in healthy individuals, such as improving working memory or reducing

stress levels.

• Gaming and Entertainment: BCIs have made their way into the gaming and

entertainment industry, offering novel and immersive experiences. They enable

users to control characters or actions in virtual reality games using their brain

signals, providing a more engaging and interactive gameplay environment. BCIs

can also be used to adapt game difficulty levels based on the player’s cognitive

state or emotional responses, enhancing the overall gaming experience.

2.4 Related Works

2.4.1 EEG Based Emotion Detection of DEAP and SEED-IV Using SVM

In [49] provides a brief overview of related work on EEG-based emotion detection and

proposes a method for detecting inner emotion states using publicly available datasets.

The proposed approach involves applying Discrete Wavelet Transforms [50] to prepro-

cessed EEG signals from the DEAP [51] and SEED-IV [52] databases to extract five fre-

quency bands. Features such as power, energy, differential entropy, and time domain

are then extracted. A supervised machine learning algorithm, specifically a channel-

wise SVM classifier [53], is developed for emotion state recognition. The paper reports

classification rates of 74%, 86%, 72%, and 84% for the DEAP database and 79%, 76%,

77%, and 74% for the SEED-IV database. The literature review section presents several

studies that used different methodologies and achieved accuracy rates ranging from

62.5% to 90%. In this proposed method, the focus is on developing a machine learn-

ing algorithm for classifying emotion states into four classes using a channel fusion

approach with data from DEAP and SEED-IV databases.

2.4.2 Correlated Attention Networks for Multimodal Emotion Recognition

In [54], the authors propose a novel model called Correlated Attention Network (CAN)

for multimodal emotion recognition. The CAN model extends the attention-based re-

current neural network by incorporating correlation calculations of different gated re-

current units to capture the correlation between EEG and eye movement signals. By
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leveraging coordinated representation with complementary features, the CAN model

aims to achieve higher emotion classification accuracy. Experimental results on three

real-world datasets demonstrate that the proposed model outperforms state-of-the-art

methods, achieving mean accuracies of 94.03% on the SEED dataset, 87.71% on the

SEED IV dataset, and 88.51% and 85.62% for four classification and two dichotomies on

the DEAP dataset, respectively. The contributions of the paper include the introduction

of the CAN model, which combines deep gated recurrent neural networks [55] with

canonical correlation and attention mechanism [56], and the exploration of coordinated

representation in multimodal emotion recognition tasks.

2.4.3 Robot Navigation

In [57], an algorithm was proposed to solve the Simultaneous Localization and Map-

ping (SLAM) problem, which is crucial for autonomous navigation of mobile robots in

unknown environments. Another lightweight and real-time efficient SLAM algorithm

called OrthoSLAM [58] was introduced for simple mobile robots in indoor office-like

environments. It simplifies the complexity by assuming parallel or perpendicular lines

in the environment structure. A novel method combining Hector SLAM and artificial

potential field (APF) controller was proposed in [59] for autonomous indoor naviga-

tion of wheeled mobile robots in GPS-denied environments, such as greenhouses. This

method utilizes single Light Detection and Ranging (LiDAR) for localization, Hector

SLAM for pose estimation, and an APF controller for autonomous navigation.

In [60], a semantically rich graph representation was suggested for indoor robotic

navigation, enabling the robot to generate motor commands directly from semantic

information, without explicit computation of precise location or environment geometry.

However, this method was not implemented using a real robot. Two approaches [61,

62] introduced an end-to-end approach using Convolutional Neural Networks (CNNs)

for autonomous mobile robot navigation using RGB-D cameras. One approach [62]

focused on training the CNN model to directly generate velocity and angular rates

for navigation. However, these approaches required extensive labeling and did not

generalize well.

A DRL-based method for mobile robot navigation was proposed in [63], combining
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deep reinforcement learning and recurrent neural network (RNN) modules. This ap-

proach uses DRL to make decisions based on path selection. In [64], deep reinforcement

learning based on a Deep Q-Network (DQN) was proposed for autonomous mobile

robot navigation using only current visual observations. Limitations of this method

include the reliance on RGB-D cameras, which restricts perception of the environment.

[65, 66] presented a deep reinforcement learning approach using a Double Deep Q-

Network (DDQN) for autonomous navigation and collision avoidance. Inputs such as

obstacle size, position, and target position were used to determine the robot’s direction

of motion. An asynchronous advantage actor-critic network was proposed in [67] for

autonomous mobile robot navigation in an indoor environment, incorporating parallel

environment simulation to enhance generalization and reduce learning time.

The paper’s objective is to design autonomous mobile robot navigation trained us-

ing a DRL algorithm, which optimizes actions to maximize environmental rewards.

The DQN and DDQN policies were trained in a Gazebo simulation environment and

then evaluated in a testing environment. Finally, the evaluated policies were deployed

on a real mobile robot without modifications. The training process required multiple

iterations in the Gazebo environment to achieve successful navigation and collision

avoidance. The goal is to train DQN and DDQN agents to autonomously navigate

mobile robots in unknown environments.

In contrast to SLAM, this paper proposes an extension of the method in [66] and an

end-to-end DRL approach for autonomous navigation without collisions in unknown

environments. The primary contribution is a model-free DRL approach that doesn’t re-

quire kinematics and dynamics equations for mobile robots. Additionally, the proposed

method extends [66] by incorporating an RGB-D camera for target object detection and

deploying the algorithm on a real mobile robot without hyperparameter tuning. Ex-

perimental results demonstrate that the proposed DRL algorithm enables autonomous

navigation of mobile robots without collisions in unknown environments.

2.5 Conclusion

In conclusion, this chapter provided a comprehensive overview of Brain-Computer In-

terfaces (BCIs), covering theoretical and technical aspects. The theoretical background
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included definitions, distinctions, brain lobes, rhythms in EEG signals, and the intro-

duction of Event-Related Potentials (ERPs). The technical background explored BCI

frameworks, signal acquisition techniques, artifacts removal, and preprocessing steps.

The concept of hybrid BCIs was also highlighted. Overall, this chapter established a

foundation for understanding BCI fundamentals, enabling further exploration of ap-

plications and advancements in the field.
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Design and Implementation of

Proposed Model

3.1 Introduction

Robots have become essential in various applications, including rescue operations,

medical assistance, and autonomous driving. Autonomous navigation is a key research

topic in mobile robotics [68], with traditional methods relying on map-building-based

techniques like SLAM [69]. However, mapless navigation has gained popularity, offer-

ing a direct mapping between sensory inputs and robot actions. Deep reinforcement

learning (DRL) has made significant contributions to autonomous navigation, but real-

world training poses challenges [70, 71]. This chapter aims to address practical imple-

mentation challenges of DRL in real robotic tasks, focusing on autonomous navigation.

The chapter structure includes sections on related work, proposed methodology, ex-

perimental results, and conclusions. Additionally, an enhanced neurofeedback-based

reinforcement learning model is proposed, incorporating algorithms like DDPG, DQN,

and TD3 [72]. Reward functions and global system settings are discussed, providing

guidance for the learning process. Overall, this chapter presents an in-depth study on

enhanced neurofeedback-based reinforcement learning for robot navigation, leverag-

ing DRL algorithms, reward functions, and global system settings.

3.2 Objectives

• Develop a fast and efficient method for extracting required features from brain

waves, aiming to optimize the learning efficiency of Deep Reinforcement Learn-

ing (DRL) algorithms by incorporating neural feedback. This will enable faster

learning in fewer episodes.
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• Achieve accurate learning of robot navigation in complex and dynamic environ-

ments, leveraging natural human sensors and minimizing the number of addi-

tional sensors required for robot learning.

• Conduct in-depth case studies to identify suitable policies and reward functions

that enable accurate learning of robot navigation and improve the generalizability

of our novel approach.

• Explore different DRL methods to assess the applicability and effectiveness of our

proposed approach in various scenarios.

• Incorporate emotions or attention signals captured when the human is in a re-

laxed state, thereby eliminating the need for additional effort or control during

the robot learning process.

• Reduce the cost of materials required for robot learning by exploring ways to

optimize the architecture and design prior to constructing a physical prototype.

3.3 Proposed model

3.3.1 Global System Design

• Global System Design From AI Perspective

This global system design [Fig. 3.1] focuses on an AI perspective and comprises

two main components: the Brain Signal part utilizing EEG and the DRL (Deep

Reinforcement Learning) part. The system architecture involves an environment

consisting of a maze with static obstacles representing maze walls and dynamic

obstacles. A robot, controlled by a DRL agent, aims to navigate through the maze

to reach a randomly generated red circular goal spot.

The DRL agent receives two primary feedback signals for observations. The first

is the EEG signal, representing emotions such as sadness, happiness, and neutral-

ity. The second feedback is obtained from a 2D LIDAR sensor, providing envi-

ronmental information to the agent. Human interaction with the system occurs

through a BCI (Brain-Computer Interface) setup. Users observe the simulation

and collect EEG recordings. The collected EEG data undergoes preprocessing,
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FIGURE 3.1: Global System Design

feature extraction, and model prediction to classify the emotional states into three

classes: sad, happy, and neutral.

Simultaneously, the 2D LIDAR sensor data is combined with the EEG data and

used as observations for the DRL agent. The agent learns to make optimal de-

cisions and take actions based on the combined feedback to navigate the maze

effectively. Multiple versions of the system have been developed, including vari-

ations that utilize only the 2D LIDAR sensor or focus solely on emotion feedback.

Additionally, different noise types and constant feedback mechanisms have been

explored to enhance system performance.

In the subsequent sections, specific DRL algorithms and their detailed functional-

ities will be explained, providing further insights into the system’s operation and

learning processes.

• System Design From Network Perspective

This figure [Fig. 3.2] represents a global system design from a network per-

spective, specifically for the Robot Operating System (ROS2+Gazebo). The de-

sign aims to illustrate the various nodes, publishers, and subscribers within the
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system. Nodes are depicted as circles, labeled with their corresponding node

names. Publishers and subscribers are represented by solid arrows, while topics

are shown as rectangular shapes pointing from the publisher node to the topic.

To simplify the visualization and avoid complexity, servers and clients are not

displayed in the figure. The focus is primarily on nodes, topics, and their interac-

tions. The schema used in the figure depicts a maze with six dynamic obstacles,

although the same principle applies to different numbers of dynamic obstacles.

In this example, the TD3 agent is utilized. The nodes presented in the figure

include:

– /drl_environment

– /drl_gazebo

– /gazebo

– /obstacle/p3d_base_controller_obstacleX

– /robot_state_publisher

– /td3_agent

– /teleop_twist_keyboard

– /turtlebot3_diff_drive

– /turtlebot3_imu

– /turtlebot3_joint_state

– /turtlebot3_laserscan

The topics depicted in the figure include:

– /cmd_emotion

– /cmd_vel

– /goal_pose

– /imu

– /joint_states

– /obstacle/odom
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– /odom

– /parameter_events

– /performance_metrics

– /robot_description

– /rosout

– /scan

Overall, this figure provides an overview of the network architecture and com-

munication flow within the system, emphasizing the nodes and topics involved

in the ROS2+Gazebo setup.

3.3.2 Brain Signal Feedback Part

This is a sub-system design from the global system [Fig. 3.2] and it has 2 phases:

– Phase 1

This phase involves training the model, such as the CNN model, using the

SEED-IV dataset. We applied the preprocessing and feature extraction tech-

niques as mentioned in the dataset section. For our model, we performed

predictions for four classes. However, in our global system design, the classes

of sadness and fear were treated as a single class. We then transformed the

batches into 2D images to feed them into the CNN model. In addition to

the CNN model trained in the train data loader, we also experimented with

other models, such as advanced CNN architecture, LSTM, and ViT.

– Phase 2

After finishing the first phase, we take the trained weights and apply them to

our system as an offline model. The offline model has a predefined function

that takes input from the BCI API and first transforms the features to predict

the real-time emotions of the human. These predicted emotions are then

stored in the EEG buffer. The EEG buffer is subsequently merged with the

buffer of the 2D lidar to create the sensor buffer and form the created batch.

– Replacmnet of Emotion feedback
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Regarding the brain signal feedback, it can be replaced with keyboard input

using humans as feedback. In this case, the user can provide their emotional

state as input, indicating whether they are feeling happy, sad, or neutral.

Alternatively, we can replace the brain signal feedback system with gener-

ated samples of emotional states following a uniform distribution. In this

approach, we have three variables that control the probability of each emo-

tional event: happiness, sadness, and neutrality.

– Classification Models Used For Emotion Dataset

We utilized emotion classification as a feedback system and observation for

deep reinforcement learning. This feedback provides information about the

human’s emotional state based on the simulation. To achieve this, we em-

ployed various models for classifying brain signals into four classes: angry,

sad, happy, or neutral. These models encompassed a range of techniques.

* Time Series Models

· GRU

The GRU (Gated Recurrent Unit) model [73] consists of two GRU

layers followed by a linear layer. Each GRU layer processes the in-

put sequentially and updates its hidden state based on the current

input and the previous hidden state. The output of the last time step

of the second GRU layer is fed into a linear layer, which produces

the final prediction. The GRU layers enable the model to capture

sequential dependencies and the linear layer maps the learned rep-

resentations to the desired output. Overall, the model utilizes the

GRU architecture to process sequential data and make predictions

based on the learned representations.

Layer Type Input Shape Output Shape Parameters

gru_layer1 GRU [batch_size, 128, 32] [batch_size, 128, 64] 12,672

gru_layer2 GRU [batch_size, 128, 64] [batch_size, 128, 64] 24,576

- Dropout [batch_size, 128, 64] [batch_size, 128, 64] 0

out Linear [batch_size, 64] [batch_size, num_classes] 130
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TABLE 3.1: GRU Model Architecture

· LSTM

The LSTM (Long Short-Term Memory) model [74] consists of two

LSTM layers followed by a linear layer. Each LSTM layer processes

the input sequentially and updates its hidden state and cell state

based on the current input and the previous hidden state and cell

state. The output of the last time step of the second LSTM layer

is fed into a linear layer, which produces the final prediction. The

LSTM layers are designed to capture long-term dependencies and

handle the vanishing gradient problem. The linear layer maps the

learned representations to the desired output. Overall, the LSTM

model utilizes the LSTM architecture to process sequential data and

make predictions based on the learned representations.

TABLE 3.2: Architecture of the LSTM model

Layer Name Layer Type Output Size
LSTM_1 LSTM Layer (batch_size, hid_channels)
LSTM_2 LSTM Layer (batch_size, hid_channels)
Linear Linear Layer (batch_size, num_classes)

* CNN Models

· CNN

The CNN class represents a convolutional neural network (CNN) model

that consists of multiple blocks. Each block follows a similar struc-

ture, comprising the ZeroPad2d, Conv2d, and ReLU layers, details of

layer model represented in the table [Tab. 3.3].

TABLE 3.3: Layers and Parameters in the CNN
Model

Layer Type Input Shape Output Shape Number of Parameters

conv1 Conv2d (batch_size, 20, H, W) (batch_size, 64, H, W) 5,120

ZeroPad2d (batch_size, 64, H, W) (batch_size, 64, H, W) 0

Continued on next page
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Table 3.3 – Continued from previous page

Layer Type Input Shape Output Shape Number of Parameters

ReLU (batch_size, 64, H, W) (batch_size, 64, H, W) 0

conv2 Conv2d (batch_size, 64, H, W) (batch_size, 128, H, W) 131,200

ZeroPad2d (batch_size, 128, H, W) (batch_size, 128, H, W) 0

ReLU (batch_size, 128, H, W) (batch_size, 128, H, W) 0

conv3 Conv2d (batch_size, 128, H, W) (batch_size, 256, H, W) 524,544

ZeroPad2d (batch_size, 256, H, W) (batch_size, 256, H, W) 0

ReLU (batch_size, 256, H, W) (batch_size, 256, H, W) 0

conv4 Conv2d (batch_size, 256, H, W) (batch_size, 64, H, W) 262,208

ZeroPad2d (batch_size, 64, H, W) (batch_size, 64, H, W) 0

ReLU (batch_size, 64, H, W) (batch_size, 64, H, W) 0

lin1 Linear (batch_size, 5184) (batch_size, 1024) 5,306,624

lin2 Linear (batch_size, 1024) (batch_size, num_classes) 4,100

General Structure of the Block:

1. ZeroPad2d: This layer performs zero-padding on the input tensor,

adding zeros around the borders to maintain spatial dimensions

during convolution operations.

2. Conv2d: This layer applies a 2D convolution operation, extracting

features using learnable filters.

3. ReLU: This activation function introduces non-linearity by apply-

ing the rectified linear unit (ReLU) operation element-wise to the

output of the convolution layer.

The CNN class contains four blocks, denoted as conv1, conv2, conv3,

and conv4 in the code. The number of blocks used can vary based

on the specific model design.

The purpose of ZeroPad2d is to control the spatial size of feature

maps during convolutional operations. By adding zeros around the

borders of the input tensor, the spatial dimensions are preserved, en-

suring the output feature maps maintain the same size as the input.
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In summary, the CNN class utilizes a block structure consisting of

ZeroPad2d, Conv2d, and ReLU layers, allowing the model to learn

hierarchical representations of the input data by progressively ex-

tracting more complex features.

· FBCNet

FBCNet model [75] is specifically designed to extract important in-

formation from EEG-MI data, which contains valuable spectro-spatial

discriminative patterns [Fig. 3.3]. It addresses the challenge of over-

fitting when working with small datasets. The architecture of FBC-

Net consists of four main stages:

FIGURE 3.3: FBCNet [75]

1. Multi-view data representation: The raw EEG data is transformed

into a multi-view representation by applying narrow-band filters

that filter specific frequency ranges.

2. Spatial transformation learning: For each view, the model learns

spatial discriminative patterns using a Depthwise Convolution layer.

This layer helps identify important spatial features within each view.

3. Temporal feature extraction: After the spatial transformation, a novel

Variance layer is employed to effectively capture the temporal infor-

mation. This layer focuses on extracting essential temporal patterns

from the data.

4. Classification: Finally, a fully connected (FC) layer is used to classify

the features obtained from the Variance layer into the desired classes.

This step assigns the input data to specific categories based on the

extracted features.
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By employing a multi-view EEG representation and spatial filtering, FBC-

Net is capable of extracting valuable spectro-spatial discriminative fea-

tures. Furthermore, the variance layer provides a concise representation

of the temporal information captured by the model.

* FBCCNN The FBCCNN model represents a Frequency Band Correlation

Convolutional Neural Network (FBCCNN) model, designed for emo-

tion recognition tasks based on EEG data. This model architecture is

described in the paper "Emotion Recognition Based on EEG Using Gen-

erative Adversarial Nets and Convolutional Neural Network" by Pan B.

and Zheng W. (2021) [76], detailed architecture layers [Tab. 3.4], while

the general structure of the FBCCNN model is as follows:

TABLE 3.4: Layers and Parameters of the FBCCNN
Model

Layer Type Input Shape Output Shape Parameters

block1 Conv2d (batch_size, 4, 9, 9) (batch_size, 12, 9, 9) 444

ReLU (batch_size, 12, 9, 9) (batch_size, 12, 9, 9) 0

BatchNorm2d (batch_size, 12, 9, 9) (batch_size, 12, 9, 9) 24

block2 Conv2d (batch_size, 12, 9, 9) (batch_size, 32, 9, 9) 3,488

ReLU (batch_size, 32, 9, 9) (batch_size, 32, 9, 9) 0

BatchNorm2d (batch_size, 32, 9, 9) (batch_size, 32, 9, 9) 64

block3 Conv2d (batch_size, 32, 9, 9) (batch_size, 64, 9, 9) 18,496

ReLU (batch_size, 64, 9, 9) (batch_size, 64, 9, 9) 0

BatchNorm2d (batch_size, 64, 9, 9) (batch_size, 64, 9, 9) 128

block4 Conv2d (batch_size, 64, 9, 9) (batch_size, 128, 9, 9) 73,856

ReLU (batch_size, 128, 9, 9) (batch_size, 128, 9, 9) 0

BatchNorm2d (batch_size, 128, 9, 9) (batch_size, 128, 9, 9) 256

block5 Conv2d (batch_size, 128, 9, 9) (batch_size, 256, 9, 9) 295,168

ReLU (batch_size, 256, 9, 9) (batch_size, 256, 9, 9) 0

BatchNorm2d (batch_size, 256, 9, 9) (batch_size, 256, 9, 9) 512

block6 Conv2d (batch_size, 256, 9, 9) (batch_size, 128, 9, 9) 295,040

Continued on next page
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Table 3.4 – Continued from previous page

Layer Type Input Shape Output Shape Parameters

ReLU (batch_size, 128, 9, 9) (batch_size, 128, 9, 9) 0

BatchNorm2d (batch_size, 128, 9, 9) (batch_size, 128, 9, 9) 256

block7 Conv2d (batch_size, 128, 9, 9) (batch_size, 32, 9, 9) 36,896

ReLU (batch_size, 32, 9, 9) (batch_size, 32, 9, 9) 0

BatchNorm2d (batch_size, 32, 9, 9) (batch_size, 32, 9, 9) 64

lin1 Linear (batch_size, 2592) (batch_size, 512) 1,328,896

ReLU (batch_size, 512) (batch_size, 512) 0

lin2 Linear (batch_size, 512) (batch_size, 128) 65,664

ReLU (batch_size, 128) (batch_size, 128) 0

lin3 Linear (batch_size, 128) (batch_size, num_classes) 258

· The input EEG data is expected to have a shape of [n, 4, 9, 9], where

n represents the batch size, 4 is the number of feature dimensions for

each electrode, and (9, 9) is the spatial grid size of the EEG represen-

tation.

· The model consists of several convolutional blocks (block1 to block7),

each followed by a ReLU activation function and batch normaliza-

tion. These blocks perform feature extraction and learn hierarchical

representations from the input EEG data.

· The output of the last convolutional block (block7) is flattened to a

1D tensor using the flatten function.

· The flattened tensor is then passed through fully connected layers

(lin1, lin2, and lin3) with ReLU activation functions. These layers

further process the extracted features and gradually reduce the di-

mensionality.

· The final fully connected layer (lin3) produces the predicted proba-

bilities for each class, where the number of output units corresponds

to the number of classes to predict.
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Additionally, the FBCCNN class provides a property feature_dim that

calculates the output dimensionality of the flattened tensor after pass-

ing through the convolutional blocks. This property is useful for down-

stream tasks that require the feature dimension of the model.

* EEGNet

The EEGNet model represents a compact convolutional neural network

(EEGNet) model designed for EEG-based brain-computer interfaces [77].

It is specifically recommended for use in emotion recognition tasks, de-

tailed architecture layers [Tab. refEEGNet].The general structure of the

EEGNet model is as follows:

Layer Type Input Shape Output Shape Parameters

block1 Conv2d [batch_size, 1, 60, 151] [batch_size, 8, 60, 151] 64

BatchNorm2d [batch_size, 8, 60, 151] [batch_size, 8, 60, 151] 16

Conv2d [batch_size, 8, 60, 151] [batch_size, 16, 60, 151] 512

BatchNorm2d [batch_size, 16, 60, 151] [batch_size, 16, 60, 151] 32

ELU [batch_size, 16, 60, 151] [batch_size, 16, 60, 151] 0

AvgPool2d [batch_size, 16, 60, 151] [batch_size, 16, 60, 37] 0

Dropout [batch_size, 16, 60, 37] [batch_size, 16, 60, 37] 0

block2 Conv2d [batch_size, 16, 60, 37] [batch_size, 16, 60, 37] 64

Conv2d [batch_size, 16, 60, 37] [batch_size, 16, 60, 37] 256

BatchNorm2d [batch_size, 16, 60, 37] [batch_size, 16, 60, 37] 32

ELU [batch_size, 16, 60, 37] [batch_size, 16, 60, 37] 0

AvgPool2d [batch_size, 16, 60, 37] [batch_size, 16, 60, 5] 0

Dropout [batch_size, 16, 60, 5] [batch_size, 16, 60, 5] 0

- Flatten [batch_size, 16, 60, 5] [batch_size, 4800] 0

num_classes Linear [batch_size, 4800] [batch_size, num_classes] 9600

· The model expects EEG data with a shape of [n, 60, 151], where n

represents the batch size, 60 is the number of electrodes, and 151 is

the number of data points in each EEG chunk.
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· The model consists of two convolutional blocks (block1 and block2),

each followed by an ELU activation function, batch normalization,

and downsampling.

· The output of the last convolutional block (block2) is flattened to a

1D tensor using the flatten function.

· The flattened tensor is then passed through a linear layer (lin) to

produce the predicted probabilities for each class. The number of

output units corresponds to the number of classes to predict.

Additionally, the EEGNet class provides a property feature_dim that

calculates the output dimensionality of the flattened tensor after pass-

ing through the convolutional blocks. This property can be useful for

downstream tasks that require the feature dimension of the model.

* ViT

The Vision Transformer (ViT) [78] is a model architecture that applies

the Transformer architecture, originally designed for natural language

processing, to image recognition tasks. It has gained popularity and

achieved competitive performance on various computer vision bench-

marks.

Layer Name Layer Type Input Size Output Size

PatchEmbedding Sequential (batch_size, C, H, W) (batch_size, P, P, D)

Positional Embedding (batch_size, P*P+1, D) (batch_size, P*P+1, D)

Transformer Encoder Transformer (batch_size, P*P+1, D) (batch_size, P*P+1, D)

MLPHead Sequential (batch_size, P*P+1, D) (batch_size, num_classes)

TABLE 3.6: ViT Model Layers

The ViT model consists of several key components:

· Patch Embedding: The input image is divided into a grid of patches.

Each patch is linearly projected to the desired feature dimension,

transforming the image into a sequence of patches.

· Positional Embedding: Spatial information is added to the patch

embeddings by concatenating a positional embedding vector to each
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patch embedding. This provides the model with knowledge of the

relative positions of the patches.

· Transformer Encoder: The patch embeddings, along with the posi-

tional embeddings, are processed by a stack of Transformer encoder

layers. Each encoder layer comprises two sub-layers: a multi-head

self-attention mechanism and a position-wise fully connected feed-

forward network. The self-attention mechanism captures global de-

pendencies within the image, while the feed-forward network ap-

plies non-linear transformations to each patch independently.

· Pooling: After the Transformer encoder layers, a pooling operation

is applied to obtain a fixed-dimensional representation of the input

image. This can be achieved by either selecting the classification-

related token (CLS token) or performing average pooling over all

the patch embeddings.

· MLP Head: The pooled representation is fed into a multi-layer per-

ceptron (MLP) head, consisting of fully connected layers with non-

linear activations. The MLP head maps the pooled representation to

the output classes.

The self-attention mechanism is a crucial component of the ViT model,

as it allows the model to capture global relationships between different

patches in the image. By assigning weights to each patch based on its

relevance to other patches, the model can attend to informative regions

and understand the context and long-range dependencies within the im-

age.

The ViT model also utilizes techniques such as layer normalization, resid-

ual connections, dropout regularization, and positional encoding to en-

hance stability during training and improve generalization capabilities.

* DGCNN

The DGCNN (Dynamical Graph Convolutional Neural Networks) model

[79] is designed for EEG emotion recognition tasks. It leverages graph
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convolutional operations to capture spatial dependencies between dif-

ferent electrodes in EEG signals. Here is the general structure of the

DGCNN model:

· GraphConvolution: This module performs graph convolution oper-

ations on the input EEG signals. It consists of a graph convolutional

layer with learnable weights and an optional bias.

· Linear: This module applies a linear transformation to its input.

· normalize_A: This function normalizes the adjacency matrix A by

applying ReLU activation, calculating the graph Laplacian matrix,

and performing normalization based on whether symmetry is de-

sired.

· generate_cheby_adj: This function generates a list of Chebyshev

polynomials of the normalized adjacency matrix A, up to the speci-

fied number of layers.

· Chebynet: This module applies multiple graph convolution layers

(GraphConvolution) with Chebyshev filters to the input features. It

uses the generated Chebyshev polynomials as adjacency matrices

for each layer.

· DGCNN: This is the main model class that integrates the above

components. It takes input EEG signals, applies batch normaliza-

tion to the signals, performs graph convolutional operations using

Chebynet, and passes the resulting features through fully connected

layers (Linear) to obtain the final classification output.

Importance of Graph Neural Networks (GNN) in DGCNN:

Graph Neural Networks, such as the DGCNN model, are essential for

capturing and modeling relationships between graph-structured data,

where nodes represent entities and edges represent connections. In the

context of EEG emotion recognition, GNNs enable the DGCNN model

to effectively learn and exploit the spatial dependencies between dif-

ferent electrodes. By leveraging graph convolutional operations, the

DGCNN model can capture complex patterns and representations from
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EEG signals, leading to improved emotion recognition performance.

3.3.3 DRL Part

This is a crucial part of the system design where the learning and creation of the

Agent take place. Most DRL algorithms consist of two main parts:

– Critic Network

The critic network estimates the expected future rewards (Q-values) for dif-

ferent state-action pairs. It helps the agent evaluate the quality of its actions.

– Actor Network

The actor network selects actions based on the observed state, aiming to

maximize the expected future rewards predicted by the critic network. The

actor network takes observations from the lidar and emotion feedback, or

one of them, as input.

Next, we will present the pseudocode for each DRL algorithm [Alg. 1 2 3] in

our implementation:

Algorithm 1 Our DDPG

1: Initialize actor network actor and critic network critic with random parameters
2: Initialize target actor network target_actor and target critic network target_critic

with the same parameters as the actor and critic networks
3: Initialize replay buffer buffer
4: for episode = 1 to max_episodes do
5: Initialize the environment state state
6: for step = 1 to max_steps do
7: Select an action action using the actor network and exploration noise
8: Execute the action in the environment and observe the reward reward and

the next state next_state
9: Store the transition (state, action, reward, next_state) in the replay buffer

10: Sample a random mini-batch of transitions from the replay buffer
11: Update the critic network by minimizing the mean squared Bellman error
12: Update the actor network using the sampled policy gradient
13: Update the target networks by performing a soft update
14: Set the current state state to the next state next_state
15: end for
16: end for

According to these three algorithms, the actor network used in each algo-

rithm contains two hidden neural network layers followed by an output
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Algorithm 2 Our DQN

1: Initialize actor network actor with random parameters
2: Initialize target actor network target_actor with the same parameters as the actor

network
3: Initialize replay buffer buffer
4: Initialize discount factor γ, target update frequency target_update_frequency
5: for episode = 1 to max_episodes do
6: Initialize the environment state state
7: while not done do
8: Select an action action using the actor network and exploration strategy
9: Execute the action in the environment and observe the reward reward and

the next state next_state
10: Store the transition (state, action, reward, next_state) in the replay buffer
11: Sample a minibatch of transitions from the replay buffer
12: Compute the target Q-values using the target actor network
13: Compute the current Q-values using the actor network
14: Compute the loss between the current Q-values and the target Q-values
15: Update the actor network using gradient descent
16: if step is a multiple of target_update_frequency then
17: Update the target actor network by copying the parameters from the ac-

tor network
18: end if
19: Set the current state state to the next state next_state
20: end while
21: end for

neural network layer. The activation function used for the hidden layers

is relu, and the output activation function is Hyperbolic Tangent. The input

size is the state size, and the output size is the action size.

On the other hand, the critic network consists of three hidden layers with the

relu activation function, followed by an output layer. There are differences

in the critic network among the three algorithms. DDPG has a standard

critic network, while DQN does not have a critic network but rather double

actor and target actor networks. TD3 has Q1 layers and Q2 layers. For more

details, please refer to the provided code on GitHub.

Furthermore, we have an Agent container class for the algorithm represented

as a class named DrlAgent. The pseudocode for the class is [Alg. 4]

– reward Function

The reward function has five versions named A, B, C, D, and E. Version A

uses lidar as the observation, version B uses uniform distribution of emotion,

version C combines uniform distribution of emotion with lidar, version D
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Algorithm 3 Our TD3

Initialize actor network actor and target actor network target_actor with random
parameters
Initialize critic network critic and target critic network target_critic with random
parameters
Initialize replay buffer buffer
Initialize noise process noise
Initialize hyperparameters: policy noise policy_noise, noise clip noise_clip, policy
update frequency policy_freq
for episode = 1 to max_episodes do

Initialize the environment state state
while not done do

Select an action action using the actor network and exploration strategy
Execute the action in the environment and observe the reward reward and the

next state next_state
Store the transition (state, action, reward, next_state) in the replay buffer
Sample a minibatch of transitions from the replay buffer
Compute the target Q-values using the target actor and target critic networks
Compute the current Q-values using the critic network
Compute the loss between the current Q-values and the target Q-values for

both critics
Update the critic networks using gradient descent
if step is a multiple of policy_freq then

Compute the loss for the actor network using the critic network
Update the actor network using gradient ascent
Update the target networks using a soft update

end if
Set the current state state to the next state next_state

end while
end for
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Algorithm 4 DrlAgent

procedure INITIALIZE

Set algorithm, training, load_session, load_episode, train_stage
Set is_training as int(training)
Set episode as int(load_episode)
Set num_episodes as NUM_EPISODES
Set device as util.check_gpu()
Set sim_speed as util.get_simulation_speed(train_stage)
Initialize model based on algorithm with device and sim_speed
Set replay_buffer as ReplayBuffer with model.buffer_size
Set graph as Graph
Set sm as StorageManager with algorithm, train_stage, load_session, episode, device
Load model from sm if load_session is not empty, set device, load weights, and load

replay_buffer if is_training is True
Create session directory in sm if load_session is empty and store model in sm
Set graph.session_dir as sm.session_dir
Set logger as Logger with relevant parameters
Create step_comm_client, goal_comm_client, gazebo_pause, and gazebo_unpause

end procedure
procedure PROCESS

Pause simulation
while num_episodes > 0 do

Set episode_done as False
Set step, reward_sum, loss_critic, loss_actor as 0
Set action_past as [0.0, 0.0]
Set state using util.init_episode
if ENABLE_STACKING is True then

Set frame_buffer and next_state
end if
Unpause simulation
Sleep for 0.5 seconds
Set episode_start as time.perf_counter()
while episode_done is False do

Determine action based on is_training and total_steps
Set action_current based on algorithm
Take a step using util.step
Update action_past, reward_sum, and other relevant variables
if ENABLE_STACKING is True then

Update frame_buffer and next_state
end if

end while
num_episodes -= 1

end while
end procedure
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uses emotion only, and version E combines emotion with lidar. We will focus

on the two main reward functions, while the other three are variations of

these two main ones.

The first reward function [Alg. 5] is a hybrid function that utilizes lidar and

emotion as observations. The second reward function [Alg. 6] employs a

uniform distribution of emotion based on a given probability. Addition-

ally, there is a variable called ’constant’ that is added to the reward when

the robot successfully avoids collisions with obstacles. This constant value

varies based on four types: Step-1, Step-2, Episode, and time, which are de-

fined in seconds. The constant is added according to one of these four types.

Algorithm 5 get_reward_E(succeed, action_linear, action_angular, goal_dist,
goal_angle, min_obstacle_dist, emotion)

1: r_yaw← −1× abs(goal_angle)
2: r_vangular ← −1× (action_angular2)

3: r_distance← 2×
(

2×goal_dist_initial
goal_dist_initial+goal_dist − 1

)
4: r_vlinear ← −1× ((0.22− action_linear)× 10)2

5: if min_obstacle_dist < 0.22 then
6: r_obstacle← −4
7: else
8: r_obstacle← 0
9: end if

10: reward ← float(r_yaw) + float(r_distance) + 4.0 × float(emotion) +
float(r_vlinear) + float(r_vangular)− 1.0 + float(r_obstacle)

11: if succeed = SUCCESS then
12: reward← reward + 2500.0
13: else if succeed = COLLISION_OBSTACLE or succeed = COLLISION_WALL

then
14: reward← reward− 2500.0
15: end if
16: return float(reward)

3.3.4 System Settings

The global system settings in the project can be explained as follows. Please refer

to [Tab. 3.7] for a comprehensive overview of these settings. The table provides

detailed descriptions of each parameter, allowing you to understand their pur-

pose and configuration options.
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Algorithm 6 get_reward_C(succeed, action_linear, action_angular, goal_dist,
goal_angle, min_obstacle_dist, emotion)

1: global cnt, samples_sorted
2: cnt← cnt + 1
3: reward← samples_sorted[cnt]
4: if STEP_1 then
5: reward← reward + CONSTANT
6: end if
7: if STEP_5 and (cnt + 1) % 5 == 0 then
8: reward← reward + CONSTANT
9: end if

10: if TIME then
11: global last_increment_time, increment_interval
12: current_time← time.time()
13: time_since_last_increment← current_time− last_increment_time
14: if time_since_last_increment ≥ increment_interval then
15: reward← reward + CONSTANT
16: last_increment_time← current_time
17: end if
18: end if
19: r_yaw← −1× abs(goal_angle)
20: r_vangular ← −1× (action_angular2)

21: r_distance← 2×
(

2×goal_dist_initial
goal_dist_initial+goal_dist − 1

)
22: r_vlinear ← −1× ((0.22− action_linear)× 10)2

23: if min_obstacle_dist < 0.22 then
24: r_obstacle← −4
25: else
26: r_obstacle← 0
27: end if
28: if succeed = SUCCESS then
29: reward← reward + 2500
30: else if succeed = COLLISION_OBSTACLE or succeed = COLLISION_WALL

then
31: reward← reward− 2500
32: end if
33: return reward + float(r_yaw) + float(r_distance) + float(r_vlinear) +

float(r_vangular)− 1.0
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TABLE 3.7: Parameter Descriptions

Parameter Description

General Parameters

ENABLE_BACKWARD A boolean parameter indicating whether backward move-

ment is enabled.

ENABLE_STACKING A boolean parameter indicating whether stacking of subse-

quent frames is enabled.

ENABLE_VISUAL A boolean parameter indicating whether visualizations are

enabled, typically used during evaluation or testing phases.

ENABLE_TRUE_RANDOM_GOALS A boolean parameter indicating whether goals are ran-

domly selected from a list of known valid positions or not.

MODEL_STORE_INTERVAL The interval (number of episodes) at which the model

weights are stored.

DRL Parameters

ACTION_SIZE The size of the action space.

HIDDEN_SIZE The number of neurons in the hidden layers of the neural

network.

NUM_EPISODES The total number of episodes to run.

BATCH_SIZE The number of samples per training batch.

BUFFER_SIZE The maximum number of samples stored in the replay

buffer.

DISCOUNT_FACTOR The discount factor for future rewards in the reinforcement

learning algorithm.

LEARNING_RATE The learning rate for the optimizer used in the training pro-

cess.

TAU The rate at which the target network is updated in the DRL

algorithm.

DRL Algorithm Parameters

Continued on next page
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Table 3.7 – Continued from previous page

Parameter Description

OBSERVE_STEPS The number of initial steps where random actions are taken

to explore the environment.

STEP_TIME The delay (in seconds) between each step in the simulation.

EPSILON_DECAY The decay factor for the epsilon-greedy exploration strat-

egy.

EPSILON_MINIMUM The minimum value for the exploration factor epsilon.

DQN Algorithm Parameters

DQN_ACTION_SIZE The size of the action space specific to DQN.

TARGET_UPDATE_FREQUENCY The frequency at which the target network is updated.

DDPG and TD3 Algorithm Parameters

POLICY_NOISE The standard deviation of the Gaussian noise added to the

actions during training.

POLICY_NOISE_CLIP The maximum absolute value of the noise added to the ac-

tions during training.

POLICY_UPDATE_FREQUENCY The frequency at which the actor network is updated.

Environment and Simulation Parameters

REWARD_FUNCTION The chosen reward function defined in the "reward.py" file.

EPISODE_TIMEOUT_SECONDS The maximum duration (in seconds) of an episode before it

times out.

ENABLE_MOTOR_NOISE A boolean parameter indicating whether normally dis-

tributed noise is added to motor outputs to simulate hard-

ware imperfections.

Stacking Frames Parameters

STACK_DEPTH The number of subsequent frames processed per step.

FRAME_SKIP The number of frames skipped between subsequent frames.

Reward Function Parameters

SIZE The number of samples for the reward function.

P1, P2, P3 The weights for negative, neutral, and positive emotions in

the reward function.

Continued on next page
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Table 3.7 – Continued from previous page

Parameter Description

EPSILON A small value used for calculations.

CONSTANT A constant value added every time the robot avoids colli-

sion.

TIME_REWARD The amount of reward added every value seconds.

STEP_1, STEP_5, EPISODE_1, TIME Boolean parameters controlling the type of constant return.

These parameters provide control and configuration options for various aspects

of the global system in the project.

3.4 Experiments

3.4.1 Experimental Setup

– Software Used

* Programming Languages

· Python: A versatile and high-level programming language known

for its simplicity and readability, widely used in various domains in-

cluding web development, data analysis, and artificial intelligence.

· C++: A powerful and efficient programming language commonly

used for system programming and performance-critical applications,

known for its low-level control and high execution speed.

* Framework

· Gazebo: An open-source 3D physics-based simulator widely used

for robotics and autonomous systems simulations, offering realistic

simulation environments and physics modeling [Fig. 3.4].
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FIGURE 3.4: Gazebo

· ROS2 (Robot Operating System 2): A flexible framework for devel-

oping robotic systems, providing tools and libraries for communica-

tion, control, and integration of robot components. It supports mul-

tiple programming languages, including Python and C++, allowing

developers to write ROS2 nodes using their language of choice [Fig.

3.5].

FIGURE 3.5: ROS2

* Libraries

· PyTorch: An open-source machine learning library known for its dy-

namic computation graphs and extensive support for deep neural

networks. It provides a flexible framework for building and training

various machine learning models [Fig. 3.6].

FIGURE 3.6: Pytroch

· scikit-learn (sklearn): A machine learning library that provides ef-

ficient tools for data mining, data analysis, and machine learning

algorithms. It offers a wide range of supervised and unsupervised

learning techniques, as well as data preprocessing and evaluation

tools [Fig. 3.7].
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FIGURE 3.7: Sklearn

· NumPy: A fundamental library for scientific computing in Python,

providing powerful array manipulation and numerical operations.

It is widely used for tasks such as linear algebra, Fourier transforms,

and random number generation [Fig. 3.8].

FIGURE 3.8: NumPy

· Pandas: A data analysis and manipulation library for Python, of-

fering versatile data structures (such as DataFrames) and tools for

handling structured data. It simplifies tasks like data cleaning, trans-

formation, and analysis [Fig. 3.9].

FIGURE 3.9: Pandas

· MNE: MNE-Python is an open-source Python tool for exploring, dis-

playing, and interpreting human neurophysiological data, including

MEG, EEG, sEEG, and ECoG, among others [Fig. 3.10].

FIGURE 3.10: MNE

· Matplotlib: A plotting library for Python, allowing the creation of

static, animated, and interactive visualizations. It provides a wide

range of plots and customization options for presenting data in a

visually appealing manner [Fig. 3.11].
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FIGURE 3.11: Matplotlib

– Material Used

The following materials were used in the experiments:

* EEG Headset: We used the Emotiv EPOC+ wireless neuroheadset, which

features 14 sensors and two references. It captures raw electrical signals

from the scalp, allowing real-time detection of thoughts, emotions, and

facial expressions. The EEG signals were recorded at a sampling rate of

128 Hz using the EMOTIV-PRO app [Fig. 3.12].

FIGURE 3.12: EEG Headset

* EEG Electrodes Gel: For optimal electrical conductivity, we utilized Bio

True gel (BAUSCH + LOMB) to ensure reliable measurements. This

gel was applied between the EEG electrodes and the skin to establish

a strong electrical connection [Fig. 3.13].

FIGURE 3.13: EEG Electrodes Gel

* Hardware:

· RAM: 8 GB
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· CPU: Intel Core i5 8th generation

· Operating System: Ubuntu 20.04

* Kaggle Notebook:

· RAM: 16 GB

· CPU: Intel(R) Xeon(R) CPU @ 2.30GHz

· Operating System: The Kaggle notebook operates on a cloud-based

environment and does not disclose the specific underlying operating

system.

· GPU: NVIDIA GPU P100 was used for training the models in the

Kaggle notebook.

3.4.2 Dataset

– EEG Dataset

The SEED IV dataset [80] provides a comprehensive collection of EEG sig-

nals, focusing on emotion recognition using EEG and eye movement data.

This subsection presents an overview of the EEG part of the SEED IV dataset

used in this thesis. It includes information about the number of subjects,

the film clips used, and the available classes. Furthermore, details about the

preprocessing of the EEG signals and the feature extraction process are pro-

vided.

* Dataset Overview

The EEG dataset consists of recordings from 15 subjects who partici-

pated in the experiment. Each subject completed three sessions on dif-

ferent days, with each session comprising 24 trials. The film clips shown

during the trials were carefully chosen to induce happiness, sadness,

fear, or a neutral emotional state. Thus, the dataset contains four emo-

tional classes: happiness, sadness, fear, and neutrality.

* EEG Preprocessing and Feature Extraction

In the EEG preprocessing stage, various steps were applied to prepare

the data for further analysis. The details of these steps are summarized

in [Tab. 3.8]. The steps include downsampling the raw EEG data to a
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sampling rate of 200 Hz and applying a bandpass filter from 1 Hz to 75

Hz to remove noise.

TABLE 3.8: EEG Preprocessing

Step Description
Downsampling Reduce the sampling rate of the raw EEG data to 200 Hz
Bandpass Filtering Apply a bandpass filter (1 Hz - 75 Hz) to remove noise

Following the preprocessing stage, EEG feature extraction was performed

to capture relevant information from the data. The features extracted in-

clude Power Spectral Density (PSD) and Differential Entropy (DE), as

outlined in [Tab. 3.9]. PSD measures the power distribution across five

frequency bands, namely Delta (1 Hz - 4 Hz), Theta (4 Hz - 8 Hz), Alpha

(8 Hz - 14 Hz), Beta (14 Hz - 31 Hz), and Gamma (31 Hz - 50 Hz). On the

other hand, DE calculates the differential entropy within each segment

and across the aforementioned frequency bands.

TABLE 3.9: EEG Feature Extraction

Feature Description
Power Spectral Density (PSD) Compute the power distribution across five frequency

bands: Delta (1 Hz - 4 Hz), Theta (4 Hz - 8 Hz), Alpha (8
Hz - 14 Hz), Beta (14 Hz - 31 Hz), and Gamma (31 Hz - 50
Hz)

Differential Entropy (DE) Calculate the differential entropy within each segment and
across the five frequency bands mentioned above

* Utilization of EEG Feature Data

In this thesis, the eeg_feature_smooth folder of the SEED IV dataset was

utilized for feature extraction. Specifically, the PSD and DE features were

employed. The data from each .mat file were loaded and transformed

into a format suitable for model training. To enhance the training pro-

cess, the samples from each .mat file were concatenated into batches of

size 128, where each batch contained EEG segments from different tri-

als of the same subject. Additionally, one label from the four emotional

classes was assigned to each batch. These batches were then used to cre-

ate a dataloader, which was further split into training, validation, and
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testing sets with ratios of 0.8, 0.1, and 0.1, respectively. The dataset was

shuffled to ensure randomness in the training process.

By utilizing this approach, the thesis aimed to train a model capable of

recognizing emotions based on EEG features extracted from the SEED

IV dataset.

– Simulation Feedback Data

The dataset used in this study case consists of environmental data obtained

from a LIDAR sensor and feedback from an EEG (electroencephalogram)

device. The LIDAR sensor provides information about the surroundings,

such as distances to obstacles and the orientation of the robot. The EEG

device measures the brain activity of the operator and provides feedback on

their cognitive state.

3.4.3 hyperparameters

– EEG Training hyperparameters

In the classification models, there are shared implementation parameters.

First and foremost, I would like to mention that the generated experiments

for these models are deterministic. This means that I have fixed the seed

for generating random numbers during the training of each model, ensuring

consistent results if the models are retrained. Additionally, all models utilize

the same loss function called CrossEntropy. The batch size is set to 128, and

the number of epochs for all models is fixed at 100.

Furthermore, each model undergoes three trials with different initialization

weights, based on the seed number. This approach allows us to obtain the

average results and their standard deviation for better performance eval-

uation. For instance, the CNN model is trained three times with varying

initialization weights, ensuring a comprehensive analysis.

Considering these settings, several general parameters are fixed across all

models. We utilize Adam optimization, which has been theoretically and
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practically proven to be superior to gradient descent. This optimization al-

gorithm optimizes the gradient descent steps. Additionally, the learning rate

for all models is fixed at 0.0001.

Overall, these standardized settings and shared implementation parameters

contribute to a robust and consistent evaluation of the models’ performance.

– DRL training hyperparameters

In this subsection, we provide the specific values for the implementation

settings of the system:

* Model Settings:

· ENABLE_BACKWARD: False

· ENABLE_STACKING: False

· ENABLE_VISUAL: False

· ENABLE_TRUE_RANDOM_GOALS: True

· MODEL_STORE_INTERVAL: 100

* DRL Parameters:

· ACTION_SIZE: 2

· HIDDEN_SIZE: 512

· NUM_EPISODES: 1000

· BATCH_SIZE: 128

· BUFFER_SIZE: 1000000

· DISCOUNT_FACTOR: 0.99

· LEARNING_RATE: 0.003

· TAU: 0.003

* DQN Parameters:

· DQN_ACTION_SIZE: 5

· TARGET_UPDATE_FREQUENCY: 1000

* TD3 Parameters:

· POLICY_NOISE: 0.2

· POLICY_NOISE_CLIP: 0.5

· POLICY_UPDATE_FREQUENCY: 2
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* drl_environment Settings:

· EPISODE_TIMEOUT_SECONDS: 30

· ENABLE_MOTOR_NOISE: True

* Stacking Settings:

· STACK_DEPTH: 3

· FRAME_SKIP: 4

3.4.4 Simulation Challenges in Maze Environment

In this subsection, we discuss the various simulation challenges encountered in

the maze environment. These challenges are designed to test the capabilities and

performance of the robot in different scenarios. A screenshot depicting the nine

different challenges is provided in Figure [Fig. 3.14].

– Challenge 1: Square Maze

The first challenge presents a simple square maze where the robot is placed

at the center. This challenge serves as the baseline for evaluating the robot’s

navigation abilities.

– Challenge 2: Square Maze with Dynamic Obstacles

Challenge 2 builds upon the previous one by introducing four dynamic ob-

stacles within the square maze. The presence of these obstacles adds com-

plexity to the robot’s path planning and obstacle avoidance strategies.

– Challenge 3: Varied Speed and Movement of Dynamic Obstacles

In this challenge, the dynamic obstacles exhibit different speeds and move-

ment patterns compared to Challenge 2. The robot must adapt its navigation

strategy accordingly to avoid collisions.

– Challenge 4: Maze with Inner Walls and Two Dynamic Obstacles

Challenge 4 incorporates inner walls within the maze structure and intro-

duces two dynamic obstacles. The presence of inner walls further compli-

cates the robot’s path planning process.

– Challenge 5: Maze with Inner Walls and Six Dynamic Obstacles
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Similar to Challenge 4, this challenge includes inner walls, but with an in-

creased number of dynamic obstacles (six in total). The robot’s ability to

handle a higher density of obstacles is tested here.

– Challenge 6: Maze with Dynamic Obstacles (No Inner Walls)

Challenge 6 removes the inner walls from Challenge 5 while keeping the

same configuration of six dynamic obstacles. This challenge evaluates the

robot’s performance when navigating in an open maze environment.

– Challenge 7: Larger Maze with More Inner Walls

Challenge 7 presents a larger maze with an increased number of inner walls.

The robot must navigate through narrower passages and overcome more

complex maze structures.

– Challenge 8: Larger Maze with Inner Walls and Two Dynamic Obstacles

Building upon Challenge 7, Challenge 8 adds two dynamic obstacles to the

maze. This challenge combines the difficulties of navigating in a larger maze

with the presence of moving obstacles.

– Challenge 9: Larger Maze with Inner Walls and Six Dynamic Obstacles

Lastly, Challenge 9 maintains the larger maze and inner walls from Chal-

lenge 8 but increases the number of dynamic obstacles to six. This challenge

presents a highly demanding scenario, testing the robot’s ability to handle

complex maze structures and a high density of dynamic obstacles.

Overall, these nine challenges encompass a range of maze configurations and ob-

stacle arrangements, progressively increasing in difficulty. They allow for a com-

prehensive evaluation of the robot’s navigation and obstacle avoidance capabili-

ties. Figure [Fig. 3.14] provides a visual representation of the different challenges

discussed.
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Challenge 1 Challenge 2 Challenge 3

Challenge 4 Challenge 5 Challenge 6

Challenge 7 Challenge 8 Challenge 9

FIGURE 3.14: Simulation Challenges in Maze Environment

3.5 Results

3.5.1 EEG Results

– Summary Results

According to the table provided [Tab. 3.10,3.11, which presents the results

of the models trained on the SEED IV dataset, each model was trained three

times, and the average and variance of the scores were calculated. The best-

performing models in terms of accuracy, with results exceeding 90%, are

DGCNN and ViT.
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DGCNN (Dynamic Graph Convolutional Neural Network) achieved an av-

erage training accuracy of 99.52% and an average validation accuracy of

99.03%. ViT (Vision Transformer) achieved an average training accuracy of

99.67% and an average validation accuracy of 98.60%.

The superior performance of DGCNN and ViT can be attributed to their ar-

chitectural characteristics and capabilities. DGCNN utilizes graph convolu-

tional layers that can effectively capture and model complex relationships

and dependencies within the data. This makes it particularly suitable for

tasks involving graph-structured data like the SEED IV dataset. Addition-

ally, the high accuracy achieved by DGCNN indicates its ability to generalize

well to unseen data.

ViT, on the other hand, is a transformer-based model originally designed for

image classification tasks. It utilizes self-attention mechanisms to capture

global dependencies and relationships within the input data, which can be

advantageous for capturing patterns and features in the SEED IV dataset.

The strong performance of ViT suggests that it is able to effectively learn and

represent the relevant EEG signals for emotion recognition.

In summary, the DGCNN and ViT models outperformed the other models

in terms of accuracy in the SEED IV dataset. The success of these models

can be attributed to their architectural design and ability to capture complex

relationships and dependencies within the data.

– Our Models vs State of The Art Models

In the provided table, we compare the accuracy of models trained by us

(marked with ∗) and other referenced models. Certain features contributed

to achieving the reported results. Let’s analyze the performance and role of

features.

Among the models trained by us, the DGCNN and ViT models stood out in

terms of accuracy. The DGCNN model achieved a test accuracy of 99.19%

(with a standard deviation of 5× 10−6), while the ViT model achieved a test

accuracy of 99.02% (with a standard deviation of 2× 10−6). These models

demonstrated superior performance compared to the others.
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TABLE 3.10: Model Performance (Part 1) (The models with ∗ we trained
them, while the other referenced models are state-of-the-art models
taken the accuracy from the referenced papers most of the model trained

for 5 to 15 trials)

Model Train Loss Train Accuracy (%) Validation Accuracy (%) Test Accuracy (%)
GRU∗ 0.0063 ± 4× 10−8 67.15 ± 8× 10−8 65.05 ± 1× 10−7 65.9 ± 3× 10−6

LSTM∗ 0.0062 ± 2× 10−8 68.02 ± 6× 10−8 65.33 ± 1× 10−7 68.2 ± 2× 10−6

CNN∗ 0.0108 ± 5× 10−8 27.54 ± 3× 10−8 26.87 ± 2× 10−7 28.32 ± 3× 10−6

FBCNet∗ 0.0098 ± 6× 10−8 39.645 ± 6× 10−8 38.645 ± 2× 10−7 38.5 ± 5× 10−6

FBCCNN∗ 0.0001 ± 5× 10−8 23.28 ± 3× 10−8 23.83 ± 8× 10−8 28.33 ± 3× 10−6

ViT∗ 0.0003 ± 5× 10−8 99.67 ± 5× 10−8 98.60 ± 2× 10−7 99.02 ± 2× 10−6

DGCNN∗ 0.0001 ± 5× 10−8 99.52 ± 8× 10−8 99.03 ± 8× 10−8 99.19 ± 5× 10−6

CAN [24] / / / 87.71 ± 9.74
SVM [81] / / / 75.88 ± 16.14

PR-PL [82] / / / 85.56 ± 4.78
DCCA [83] / / / 87.45 ± 9.23

TABLE 3.11: Model Performance (Part 2)

Model Precision (%) Recall (%) F1 Score (%) Time per Epoch (seconds)
GRU∗ 66.0 ± 2× 10−7 66.3 ± 6× 10−6 65.9 ± 2× 10−6 13.303 ± 1× 10−6

LSTM∗ 67.7 ± 1× 10−7 68.8 ± 4× 10−6 68.0 ± 1× 10−6 13.370 ± 9× 10−7

CNN∗ 28.0 ± 3× 10−6 28.0 ± 1× 10−6 28.1 ± 2× 10−6 18.93 ± 1× 10−6

FBCNet∗ 39.6 ± 2× 10−7 40.6 ± 4× 10−6 38.6 ± 3× 10−6 13.8146 ± 1× 10−6

FBCCNN∗ 68.0 ± 3× 10−6 26.0 ± 1× 10−6 26.8 ± 1× 10−6 18.8471 ± 7× 10−7

ViT∗ 98.5 ± 3× 10−6 99.2 ± 2× 10−6 98.9 ± 2× 10−6 17.6572 ± 1× 10−6

DGCNN∗ 98.5 ± 3× 10−6 99.2 ± 1× 10−6 98.9 ± 1× 10−6 13.3278 ± 9× 10−7
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Regarding the influence of features, the use of specific features such as ’de_movingAve’,

’de_LDS’, ’psd_movingAve’, and ’psd_LDS’ for all rhythm waves generally

led to better performance.

It’s important to note that the DGCNN and ViT models had better archi-

tecture compared to other models trained by us, such as CNN, LSTM, and

GRU. However, these models had very low accuracy due to not performing

grid search, lacking hyperparameter fine-tuning, and being trained for only

100 epochs.

Comparing our models with the referenced models, our models exhibited

higher accuracy. The CAN model achieved an accuracy of 87.71% (with a

standard deviation of 9.74), SVM achieved 75.88% (with a standard devia-

tion of 16.14), PR-PL achieved 85.56% (with a standard deviation of 4.78),

and DCCA achieved 87.45% (with a standard deviation of 9.23). However,

the DGCNN and ViT models trained by us outperformed these referenced

models with significantly higher accuracy.

– Analysis of DGCNN Training and Validation Results

According to the training accuracy and validation accuracy plots of DGCNN

[Fig. 3.15], the plots show that they are moving together, with the training ac-

curacy slightly better than the validation accuracy. However, the validation

plot is not significantly different from the training plot. This indicates that

our model learns well, can generalize effectively, and demonstrates stable

learning in the first epochs. The convergence of the plots starts from epoch

80.

Furthermore, the loss value decreases as the model progresses through epochs,

indicating that the model is learning and improving its predictions. The

training accuracy increases with each epoch, suggesting that the model is

getting better at predicting the training data. It starts at 48.08% and gradu-

ally improves to 99.26%.

Similarly, the validation accuracy follows a similar trend to the training ac-

curacy. It starts at 46.58% and increases to 98.67%, indicating that the model

is generalizing well and performing consistently on unseen data.
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FIGURE 3.15: Train and Validation accuracy plots for 3 DGCNN model
representing the average with variance

The final test accuracy also improves over the epochs, starting at 47.63% and

reaching 98.64%. This metric provides an overall measure of the model’s

performance on the test set.

In summary, the training and validation accuracies of the DGCNN model

move together, with the training accuracy slightly better. The model demon-

strates stable learning, starts converging from epoch 80, and shows improve-

ment in loss, training accuracy, validation accuracy, and final test accuracy

over the epochs. These results indicate that the model learns well, can gen-

eralize effectively, and achieves high accuracy on both the training and vali-

dation datasets.

– Analysis of ViT Training and Validation Results

The Vision Transformer (ViT) model [Fig. 3.16] was trained and evaluated

over 100 epochs, and the following results were obtained:

During the initial epochs, the model’s performance gradually improved, with

the training accuracy starting at 29.37% and the validation accuracy at 28.45%

in the first epoch. The final test accuracy at this point was 29.06%.

As the training progressed, the model’s accuracy continued to increase. By

the 50th epoch, the training accuracy reached 69.12%, and the validation and

final test accuracies were 67.21% and 66.76% respectively.
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FIGURE 3.16: Train and Validation accuracy plots for 3 ViT model repre-
senting the average with variance

Throughout the remaining epochs, the model’s accuracy consistently im-

proved. The training accuracy continued to increase and reached 99.97% by

the 86th epoch. The validation and final test accuracies also saw significant

improvements, reaching 98.88% and 98.88% respectively.

These results indicate that the ViT model effectively learned from the train-

ing data and generalized well to the validation and final test sets. The model’s

high accuracy on the final test set suggests that it has achieved a good level

of performance and can make accurate predictions on unseen data.

The loss values decreased steadily during training, indicating that the model

was able to minimize the discrepancy between its predictions and the ground

truth labels. This reduction in loss signifies the model’s increasing ability to

fit the training data.

In summary, the ViT model demonstrated consistent improvement in accu-

racy throughout the training process, achieving high performance on both

the validation and final test sets. Its ability to learn complex patterns from

image data and make accurate predictions highlights the effectiveness of the

Vision Transformer architecture.

– Analysis of Loss Curves and Convergence

Throughout the 100 epochs, both the loss curves of DGCNN and ViT exhibit
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remarkable similarity [Fig. 3.17], with minimal variance observed across

multiple trials. This indicates that the models consistently converge towards

similar local minima, resulting in highly accurate predictions.

In the case of DGCNN, the loss curve demonstrates a gradual decline, start-

ing from an initial high value and steadily decreasing over the training pro-

cess. This signifies that the model effectively learns and adjusts its param-

eters to fit the training data better. After 100 epochs, DGCNN achieves an

impressive loss value of 0.0005, indicating a high level of accuracy and strong

predictive capability.

Similarly, the loss curve for ViT showcases a similar trend of continuous re-

duction. As the model progresses through the epochs, the loss steadily de-

creases, suggesting effective learning and adaptation to the training data.

After 100 epochs, ViT attains a final loss of approximately 0.0001, further

validating its ability to converge towards highly accurate predictions.

The minimal variance in the loss values across different trials for both mod-

els demonstrates the consistency in finding similar local minima. This con-

sistency highlights the stability and reliability of the solutions obtained by

both DGCNN and ViT.

In summary, the analysis of the loss curves for both DGCNN and ViT re-

veals their remarkable ability to minimize discrepancies between predictions

and ground truth values, resulting in highly accurate models. Both models

exhibit a strong capacity to learn and converge towards reliable solutions,

making them valuable tools for various applications.

– Analysis of Confusion Matrices of The Best Models

The confusion matrices provide valuable insights into the performance of

classification models. Let’s analyze the results for both ViT and DGCNN

models based on the given confusion matrices [Fig. 3.18].

ViT Model:

* Class 0 (Happiness): The model performs exceptionally well in classi-

fying happiness, with a high accuracy of 0.99. Only a small percentage

(0.01) of the samples in this class are misclassified as other emotions.
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(A) DGCNN (B) ViT

FIGURE 3.17: Loss Plot Over 3 Models Ploting The Average With Min
And Max Noise

(A) DGCNN (B) ViT

FIGURE 3.18: Confusion Matrix for DGCNN and ViT
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* Class 1 (Sadness): Similarly, the ViT model achieves a high accuracy of

0.98 in identifying sadness. It misclassifies only a negligible percentage

(0.02) of the samples in this class.

* Class 2 (Fear): The ViT model demonstrates strong performance in de-

tecting fear, with an accuracy of 0.97. However, it misclassifies a small

portion (0.01) of the samples in this category as other emotions.

* Class 3 (Neutral): The ViT model shows excellent accuracy in recogniz-

ing neutral emotions, with a value of 0.98. Only a small percentage (0.01)

of the samples in this class are misclassified.

Overall, the ViT model exhibits impressive classification results, with high

accuracies across all emotion classes. It displays a strong ability to differen-

tiate between different emotions, particularly in identifying happiness and

neutral emotions.

DGCNN Model:

* Class 0 (Happiness): The DGCNN model achieves perfect accuracy (1.00)

in classifying happiness, indicating no misclassifications in this category.

* Class 1 (Sadness): Similarly, the DGCNN model demonstrates flawless

performance in identifying sadness, with a precision of 1.00.

* Class 2 (Fear): The DGCNN model performs well in detecting fear, with

an accuracy of 0.98. However, it misclassifies a small portion (0.01) of

the samples in this class as other emotions.

* Class 3 (Neutral): The DGCNN model achieves perfect accuracy (1.00)

in recognizing neutral emotions, implying no misclassifications in this

category.

The DGCNN model showcases exceptional classification results, with per-

fect accuracies in identifying happiness, sadness, and neutral emotions. It

also performs admirably in detecting fear, with only a minor misclassifica-

tion rate.

In summary, both the ViT and DGCNN models exhibit strong classification

capabilities across all emotion classes. The ViT model achieves slightly lower
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accuracies compared to the DGCNN model but still demonstrates remark-

able performance. Both models provide reliable predictions, making them

valuable tools for emotion classification tasks.

3.5.2 DRL Case Studies

– Constant Study Case: Finding the Optimal Value

In this study case, we examine the effect of a constant parameter in our

robot’s reward function when it encounters static or dynamic obstacles. We

generate emotions from a uniform distribution, with three possible states:

positive, negative, and neutral. Typically, one of these states has a probabil-

ity of 0.1, while the other two states each have a probability of 0.45.

We investigate the impact of the constant parameter in three different sce-

narios [Fig. 3.19 3.20 3.21]:

1. Stepwise Addition: In this case, the constant is added to the reward func-

tion in every call. 2. Episode-wise Addition: Here, the constant is added

once per episode. 3. Interval Addition: The constant is added every two

seconds.

These cases are tested with three different constant values: 0.5, 0.05, and

0.005. For each case, six lines are plotted, representing different outcomes

such as "unknown," "success," "collision with a wall," "collision with a dy-

namic obstacle," and "tumble."

Overall, the plots for the three types of cases appear quite similar. However,

some subtle differences can be observed. Notably, when the constant is set

to 0.005, it yields the best performance for the reward function, considering

that the negative emotion has a probability of 0.1, while positive and neutral

emotions have a probability of 0.45. This value seems to provide the optimal

parameter for our reward function compared to the other constant values.

Interestingly, regardless of whether the constant is added every step, every

episode, or every two seconds, the differences in performance are relatively

minor for this particular case.

– DRL + LiDAR
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Positive:0.1 Constant:0.5 Negative:0.1 Constant:0.5 Neutral:0.1 Constant:0.5

Positive:0.1 Constant:0.05 Negative:0.1 Constant:0.05 Neutral:0.1 Constant:0.05

Positive:0.1 Constant:0.005 Negative:0.1 Constant:0.005 Neutral:0.1 Constant:0.005

FIGURE 3.19: Case Study Adding Constant every Step

Positive:0.1 Constant:0.5 Negative:0.1 Constant:0.5 Neutral:0.1 Constant:0.5

Positive:0.1 Constant:0.05 Negative:0.1 Constant:0.05 Neutral:0.1 Constant:0.05

Positive:0.1 Constant:0.005 Negative:0.1 Constant:0.005 Neutral:0.1 Constant:0.005

FIGURE 3.20: Case Study Adding Constant every 1 Episode
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Positive:0.1 Constant:0.5 Negative:0.1 Constant:0.5 Neutral:0.1 Constant:0.5

Positive:0.1 Constant:0.05 Negative:0.1 Constant:0.05 Neutral:0.1 Constant:0.05

Positive:0.1 Constant:0.005 Negative:0.1 Constant:0.005 Neutral:0.1 Constant:0.005

FIGURE 3.21: Case Study Adding Constant every 2 seconds

This is a case study for LiDAR results in three different deep reinforcement

learning (DRL) algorithms: DDPG, DQN, and TD3. Each algorithm was

trained for 100 episodes, and four different plots were generated to show the

outcomes: average critic loss, average critic loss and average reward. Each

model has different results [Fig 3.22 3.23 3.24].

Regarding the outcome plots for the three different algorithms, we can ob-

serve that DDPG is dominated by the collision dynamics outcome, while

TD3 and DQN are dominated by collisions from walls (static obstacles). This

means that our model learned to avoid static obstacles for DDPG, while the

other two algorithms learned to avoid collisions with dynamic obstacles.

Additionally, we can see that the success line for TD3 is the best among the

three algorithms, achieving around 12 successes out of 100 episodes, while

DQN slightly performs worse than TD3 with around 7 successes. On the

other hand, DDPG achieves a very low number of successes, around 3.

In terms of average critic loss, we can see that TD3 shows a more convergent

average loss, which corresponds to its better results in the outcome plots.

DQN demonstrates a stable line approximated to 0 because it does not have
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FIGURE 3.22: Results of Training DDPG Model using lidar

a critic network, indicating that no significant learning occurred and the suc-

cesses achieved by the robot did not result from learning. DDPG shows an

attempt to converge but did not fully achieve convergence, which explains

the obtained outcome results.

For average actor loss, TD3 has the lowest value of around 120, followed

by DDPG. DQN has the worst average actor loss of around 5000, primarily

due to a large spike at the beginning of training the algorithm. This spike

suggests that the actor network had poor initial weights.

Regarding the average reward over episodes, we can observe multiple spikes

with higher reward values, approximately around 2000, for TD3. DDPG

shows a slightly lower number of spikes, while DDPG exhibits very few

spikes due to the low number of successes achieved.

– DRL + Emotion

We conducted another experiment by training the three algorithms, DDPG,

DQN, and TD3, using only emotion feedback without lidar. The results are

presented in Figure 3.25, 3.26, and 3.27. This approach shows promise as a

novel technique. Each algorithm was trained for 100 episodes.

When analyzing the outcome line plots, we observed that all three models

struggled with static obstacles. However, the success rate for all models was

better in avoiding dynamic collisions. This suggests that our models were
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FIGURE 3.23: Results of Training DQN Model using lidar

FIGURE 3.24: Results of Training TD3 Model using lidar
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FIGURE 3.25: Results of Training DDPG Model using emotion

unable to effectively handle static walls without lidar information, but they

still demonstrated a learning pattern. Specifically, DDPG achieved approxi-

mately 25 successful outcomes, TD3 achieved around 21, and DQN achieved

about 10.

In terms of average critic loss, DDPG exhibited stable and converging loss

with a low value of around 4. TD3, on the other hand, had unstable aver-

age critic loss that was slightly higher than DDPG. Interestingly, DQN had a

critic loss of 0, indicating that it does not use a critic loss function.

When considering the average actor loss, DDPG showed the best conver-

gence with a lower value of approximately 80. DQN attempted to converge

at around 200, while TD3 performed better than DQN but worse than DDPG.

These trends align with the outcome results of the models.

Examining the average reward plot, DDPG consistently achieved stable and

high rewards, indicating that our model made fewer mistakes and success-

fully reached the goal. TD3 had more spikes in reward, reaching around

2000, but also experienced dips as a result of collisions. DQN had a worse

plot compared to TD3, which can be attributed to its lower number of suc-

cessful goal achievements.

– DRL + LIDAR + Emotion

In this case study, we utilized three models, namely DDPG, DQN, and TD3,
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FIGURE 3.26: Results of Training DQN Model using emotion

FIGURE 3.27: Results of Training TD3 Model using emotion
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trained for 100 episodes using a hypered feedback system that combines li-

dar and emotion feedback [Figure 3.28, 3.29, 3.30].

Analyzing the outcome plots, we observe that DDPG achieved the high-

est success rate, with approximately 45 successful outcomes, surpassing the

other two algorithms. DDPG primarily learned to avoid dynamic obsta-

cles and reduced collisions with static obstacles. On the other hand, DQN

demonstrated proficiency in reaching the goal position with around 32 suc-

cessful outcomes, but struggled with avoiding static obstacles. TD3 obtained

a similar number of successful outcomes as DQN and faced similar chal-

lenges with static obstacle avoidance. However, both DQN and TD3 learned

to avoid dynamic obstacles earlier than DDPG.

Examining the average critic loss, we observe that DDPG mostly converged,

although it exhibited significant noise. TD3 still experienced higher critic

loss, while DQN had a fixed critic loss of 0.

Regarding average actor loss, DDPG demonstrated convergence around 50

episodes, followed by a steady decline, indicating effective learning from

the feedback. DQN exhibited a spiky plot, suggesting significant mistakes in

actor loss over time. TD3 showed a slightly higher average actor loss, which

remained monotonically increasing.

Analyzing the average reward plots, we noticed that all three algorithms ex-

hibited numerous spikes due to achieving the goal multiple times, indicating

successful progress.

Finally, if we compare the three study cases of using DRL algorithms DDPG,

DQN, and TD3 for lidar only, emotion only, and lidar plus emotion, some inter-

esting observations emerge. First, when using lidar alone, the number of episodes

(100) appears insufficient for the algorithms to effectively learn navigation to-

wards the goal. Second, the novelty of incorporating emotion feedback without

any sensor input yielded better results compared to lidar alone. However, it is im-

portant to note that merging both methods, lidar and emotion, together resulted

in even better outcomes than either emotion or lidar alone. Specifically, DDPG

achieved approximately 45 successful outcomes over the course of 100 episodes.
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FIGURE 3.28: Results of Training DDPG Model using lidar + emotion

FIGURE 3.29: Results of Training DQN Model using lidar + emotion

FIGURE 3.30: Results of Training TD3 Model using lidar + emotion
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3.6 Conclusion

In this chapter, we conducted a comprehensive study on the utilization of deep

reinforcement learning (DRL) with emotion feedback. Through various experi-

ments, we determined optimal parameters for enhanced learning outcomes using

DDPG, DQN, and TD3 algorithms with lidar and emotion feedback. Our inves-

tigations resulted in improved overall performance and a significant reduction

in the number of episodes required for successful maze navigation. By incorpo-

rating natural sensor feedback, particularly human visual perception and brain

signals, we gained valuable insights into the potential of utilizing such feedback

in reinforcement learning tasks. Our findings demonstrate the effectiveness of

combining deep reinforcement learning with emotion feedback, opening up new

avenues for leveraging natural sensor feedback and presenting opportunities for

future work in multi-robot scenarios and transfer learning using brain signals be-

yond emotions.
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General Conclusion

4.1 Conclusion

In conclusion, the proposed system design, which combines brain signal analysis

using EEG and deep reinforcement learning techniques, shows promising results

in improving robot navigation in indoor applications. The integration of emo-

tional feedback obtained from the EEG signal and environmental feedback from

a 2D LIDAR sensor enables the robot to make informed decisions and navigate

through maze-like environments effectively.

The results from the emotion classification part of the system demonstrate supe-

rior performance compared to state-of-the-art models. This indicates the poten-

tial of leveraging emotional feedback as a valuable input for the robot’s decision-

making process. The navigation part of the deep reinforcement learning system

also exhibits significant enhancements by incorporating constant variables to pre-

vent collisions with obstacles. Furthermore, a comparison of different feedback

methods highlights the advantages of combining LIDAR and emotion feedback,

surpassing the individual approaches.

The utilization of various deep reinforcement learning algorithms, including DDPG,

TD3, and DQN, has further demonstrated the adaptability and effectiveness of the

proposed system. Additionally, preprocessing techniques and classification mod-

els like ViT and DGCNN have proven to be successful in accurately classifying

emotions.
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4.2 Future work

Future research in this domain will focus on several important aspects. Firstly,

exploring the impact of alternative reinforcement learning algorithms and inves-

tigating their suitability for the proposed system will provide valuable insights

into system performance and optimization. Additionally, studying the effective-

ness of dynamic policy networks in enabling robots to learn new tasks from hu-

man feedback holds promise for expanding the robot’s capabilities.

Furthermore, the potential impact of brain signal feedback extends beyond robot

navigation. Investigating the applicability of this novel method in more general

tasks can open new avenues for research and development in the field of human-

robot interaction.

Another area of future work involves studying the effectiveness of multi-robot

swarm systems using the proposed method. The scalability and coordination ca-

pabilities of such systems can greatly benefit from the integration of neural feed-

back in reinforcement learning.

Moreover, the utilization of neural feedback offers the opportunity to reduce the

reliance on numerous sensors, making the robot more cost-effective and efficient.

Exploring the implications and benefits of this approach in terms of speed and

adaptability will be valuable for further advancements.

Lastly, considering the increasing prevalence of chat GPT systems that heavily

rely on reinforcement learning and human feedback, studying the intersection

between these systems and the proposed method can lead to significant advance-

ments and practical applications.

Overall, the combination of brain signal analysis, deep reinforcement learning,

and human feedback in robot navigation opens up exciting possibilities for re-

search and development in the field. The outcomes of this thesis contribute to the

advancement of semi-mind controlled robots and pave the way for future inno-

vations in human-robot interaction and intelligent systems.
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