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Abstract

The number of people with diabetes is expanding at an alarming rate throughout the world.

According to the World Health Organization, there are currently 347 million cases of diabetes

globally, and there will be 552 million cases by the year 2030. 1 in 3 of diabetes patients suffers

from diabetic retinopathy, where DR is considered the fastest disease and the number one that

leads to blindness because DR damages the retina’s blood vessels and DR is time sensitive side

that require early detection to stop it from progressing to irreversible vision loss. Deep learning

is one of the new and powerful solutions to detect and classify various diseases that are diag-

nosed by medical imaging like X-ray, MRI, and Fusndus imaging.

The presented work it was with medical follow-up by an ophthalmologist surgeon in the eye

hospital of Biskra. In our research, it is a deep learning methodology. We used the famous con-

volutional neural network AlexNet, a densely connected convolutional network DenseNet-121,

and Yolov8. The two first models are used to classify the fundus images into five classes based

on their severity: no DR, mild, moderate, severe, and porlifrate DR and the other model is used

to detect the lesion of DR. We applied the three different models mentioned on different dataset

with different structures. All used images are prepossessed with a Gaussian filter to improve the

quality of the images and to emphasize the DR lesion like the blood vessels, microaneurysms

and hemorrhages present in the retina. , also we used augmentation in the prepossessing phase

and the circle crop method to give all images the circle retina form, and then we fed our data to

our training models. Our results were very good and impressed the doctors at the hospital.

Keywords: Healthcare, Diabetes, Diabetic retinopathy, Artificial intelligence, Machine learn-

ing, Deep learning, CNN, DenseNet.
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Résumé

Le nombre de personnes atteintes de diabète augmente à un rythme alarmant dans le monde

entier. Selon l’Organisation mondiale de la santé, il y a actuellement 347 millions de cas de

diabète dans le monde et il y en aura 552 millions d’ici 2030. 1 patient diabétique sur 3 souffre de

rétinopathie diabétique, la RD étant considérée comme la maladie la plus rapide et la première

à entraîner la cécité, car la RD endommage les vaisseaux sanguins de la rétine et la RD est un

aspect sensible au temps qui nécessite une détection précoce pour l’empêcher d’évoluer vers

une perte irréversible de la vision. L’apprentissage profond est l’une des solutions nouvelles

et puissantes pour détecter et classer diverses maladies qui sont diagnostiquées par l’imagerie

médicale comme les rayons X, l’IRM et l’imagerie Fusndus.

Le travail présenté a fait l’objet d’un suivi médical par un chirurgien ophtalmologiste à l’hôpital

ophtalmologique de Biskra. Dans notre recherche, il s’agit d’une méthodologie d’apprentissage

profond. Nous avons utilisé le célèbre réseau de neurones convolutifs AlexNet, un réseau con-

volutif densément connecté DenseNet-121, et Yolov8. Les deux premiers modèles sont utilisés

pour classer les images du fond d’œil en cinq classes en fonction de leur gravité : pas de DR,

légère, modérée, sévère et porlifrate DR, et l’autre modèle est utilisé pour détecter les lésions

de DR. Nous avons appliqué les trois modèles mentionnés sur différents ensembles de données

avec différentes structures. Toutes les images utilisées sont prétraitées avec un filtre gaussien

pour améliorer la qualité des images et mettre en évidence les lésions de la RD comme les vais-

seaux sanguins, les microanévrismes et les hémorragies présents dans la rétine. Nous avons

également utilisé l’augmentation dans la phase de prépositionnement et la méthode du cer-

cle de culture pour donner à toutes les images la forme d’un cercle rétinien, puis nous avons

transmis nos données à nos modèles d’entraînement. Nos résultats ont été très bons et ont

impressionné les médecins de l’hôpital.
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General introduction

Overview

Deep learning is not new it existed from 90s but in that time it was rarely used because of the

weakens of computers and hardware that time. but now with development of computers and

with the availability of enhanced computational resources and capabilities has opened up op-

portunities for developing DL models that accurately detect and classify various pathologies

and this is why DL become used in various applications self driving ,chat bots and healthcare.

In recent years with scary growing of diabetic patients causes increasing in the number of

diabetic retinopathy patient because the DR is a complication associated with diabetes. DR

leads to retinal abnormalities where in severe causes cause partial or even the total blindness

.So to avoid blindness and the retina eye damage we need to detect DR in early stages and this is

time consuming and labor-intensive. this present challenge in the poor or populated countries

that suffer from lack of ophthalmologist like India and other countries in Asia.

Problematic

The world is witnessing a scary increasing in the number of patient with diabetes. According

to the World Health Organization, there are currently 347 million cases of diabetes globally, and

there will be 552 million cases by the year 2030. 1 in 3 of diabetes patients suffers from diabetic

retinopathy, where DR is considered the fastest disease and the number one that leads to blind-

ness because DR is a time sensitive side that require early detection to stop if from progressing

to irreversible vision loss. It also needs a specialist and experienced doctor to diagnose it and

more than that it’s expensive.
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General introduction

Objective of the work

This work aims to present web application use deep learning model for the detection and clas-

sification of the various diabetic retinopathy levels using retinal pictures. After this general in-

troduction, the dissertation is structured as follows:

• Chapter 1: AI and healthcare the use of artificial intelligence in healthcare then provide

an overview of machine learning and deep learning finally we will see together popular

CNN models

• Chapter 2: Diabetic retinopathy and related works This chapter begins by providing an

overview of diabetes including its effects on the body then describes diabetic retinopathy

and discusses its various stages and progression. Finally, provides some recent research

and related works in the field

• Chapter 3: System design This chapter provides an overview of the system design, the

datasets utilized, their structures, the preprocessing phase, and the architectures of our

proposed deep learning models

• Chapter 4: implementation and Results This chapter presents the result of our work,

discusses how specific parameters influence on the obtained results and provides a com-

parative section to show the novelties of this work compared to previous ones.
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Chapter 1

AI and healthcare

1.1 Introduction

When we talk about healthcare comes to our mind’s diagnosis, treatment and injuries and when

we mention AI comes to our mind’s Intelligent robots, automation like self-driving cars like tesla

but may we forget the important role that it plays in healthcare. in recent years AI showed an ex-

cellent result by improving the accuracy and efficiency of diagnoses by reducing medical errors

and providing more personalized treatment plans because AI can analyze vast volumes of med-

ical data and helps healthcare professionals to make wise decisions about patient care by using

a variety of methodologies and technologies including machine learning and deep learning.

In this chapter will examine the use of artificial intelligence in healthcare then provide an

overview of machine learning and deep learning finally we will see together popular CNN mod-

els .

1.2 Healthcare

After conducting an extensive search to ascertain the definition of healthcare, I found many

definitions and this is some definition according to different sites.

1.2.1 Definitions

According to medical dictionary health care is “services provided to people or communities by

agents of the health services or professions for the purpose of promoting, maintaining, monitor-
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ing, or restoring health” [5]

According to oxford dictionary healthcare is “the service of providing medical care” [8]

According to oxford dictionary healthcare is “the activity or business of providing medical

services” [6]

According to Merriam webster dictionary healthcare “is efforts made to maintain or restore

physical, mental, or emotional well-being especially by trained and licensed professionals usually

hyphenated when used attributively” [7]

1.3 AI in Healthcare

Artificial intelligence (AI) is transforming the healthcare industry by altering how care is pro-

vided, enhancing patient outcomes and cutting costs by enhance the accuracy of medical di-

agnoses, enable personalized treatments, and provide more efficient and effective healthcare

services.

we can describe AI as technology that enables robots to see patterns, make decisions, and

learn from feedback and from data like analyzing vast volumes of patient data and spot patterns

and trends and develop predictive models that can be applied to enhance patient care.

The main benefits of ai in healthcare:

• Improved diagnosis accuracy

• Enhanced patient outcomes

• Reduced healthcare costs:

• Personalized medicine

• Improved patient experience

• More efficient healthcare services

After going over just a few of the numerous advantages of AI in healthcare, the AI technology

continues to advance, it will likely play a bigger part in the healthcare like patient outcomes and

assisting healthcare providers in providing better treatment at lower costs. And these is some of

application of Ai in healthcare:
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1. AI in medical diagnosis

AI algorithms can analyze radiology and radioscopy like X-rays, MRIs, and CT scans to

detect for changes or anomalies that can be signs of sickness or injury. This can help

doctors make more accurate diagnoses. [4]

Figure 1.1: Medical imaging analysis

AI achieved excellent accuracy in diagnosing various diseases which is based on its diag-

nosis in radiology and radioscopy like cancer detection, neurology, chronic disease man-

agement.

2. AI in Early Detection

AI can also be used for early detection in different domains such as Alzheimer’s and Parkin-

son’s disease, heart attacks. By analyzing patient data such as medical history and brain

scans, AI algorithms can detect patterns and identify early signs of these diseases in figure

1.2, leading to earlier interventions and improved outcomes for patients.
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Figure 1.2: Apple watch message [26]

3. AI in medical assistance

AI has shown tremendous potential in providing medical assistance to healthcare providers,

reducing workload, improving accuracy, and providing better patient outcomes. Medical

assistance through AI includes a wide range of applications, such as virtual health assis-

tants, chatbots, and smart medical devices. Virtual nurses, often referred to as virtual

health assistants, are AI-powered technologies that offer individualized care to patients,

including keeping track of prescription schedules and responding to inquiries from pa-

tients. These assistants can monitor patients remotely, alert healthcare providers to po-

tential issues, and help prevent hospital readmissions.
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Figure 1.3: virtual nurse [33]

1.4 Machine learning

1.4.1 Introduction

As we all know that Machine learning is a subset of artificial intelligence that involves train-

ing computer algorithms to learn from data, without being explicitly programmed. This allows

computers to make predictions or take actions based on patterns in data, which can be used in

a variety of applications across industries, including healthcare.

In fact, Machine learning algorithms can be trained on large datasets of patient data, medical

images, or electronic health records to identify patterns and predict outcomes. This can be

used to improve the accuracy of diagnosis, personalize treatment plans, and predict patient

outcomes. For example, machine learning algorithms have been used to identify patients at

high risk for heart disease or to predict hospital readmissions [40].

The relationship between artificial intelligence (AI), machine learning (ML), and deep learn-

ing (DL) is depicted in figure 1.4
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Figure 1.4: AI vs ML vs DL [42]

1.4.2 Types of Machine learning algorithms

There are three main types of machine learning:

1. Supervised Learning

A labeled dataset with known inputs and expected outputs is used to train the algorithm in

this type of learning. The algorithm gains the ability to extrapolate and predict outcomes

from, unseen data. Regression and classification are both examples of supervised learning

[40].

For example classification of dogs and cats in figure 1.5 the model learn from labeled data

, after training the model now can predict outputs as cat or dog from new data or test data

(unseen data)
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Figure 1.5: supervised classification cats and dogs

2. Unsupervised Learning

In this kind of learning, the algorithm is trained on a dataset that has no labels and inputs

without corresponding outputs. The algorithm picks up on the structure and patterns in

the data over time. Clustering and dimensionality reduction are two examples of unsu-

pervised learning [40].

In figure 1.6 we have the same example but in unsupervised learning, after training the

model was able to recognize differences between the two classes and create classes ac-

cording to the similar images

Figure 1.6: unsupervised learning cats and dogs [1]
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3. Reinforcement Learning

In this kind of learning, the algorithm picks up new skills through interaction with the

environment and feedback in the form of rewards or penalties. Over time, the algorithm

develops the ability to make decisions that maximize the reward and minimizing penalty.

Playing video games and using robots are two examples of reinforcement learning [40].

In figure 1.7 the dog is playing role of the agent and the environment is the persons that

he trains the dog so he will give him a reward if the dog act correctly and punishment if

the dog didn’t behave well.

Figure 1.7: Reinforcement Learning example

1.5 Deep learning

Deep learning is a type of machine learning that deals with training neurons network. This is

the most powerful technique in classification that justifies its existence in all applications and

disciplines that using machine learning.

DL is neural network architecture with many hidden layers the D is abbreviation of deep

means depth of layers, more than 2 hidden layers [32], DL process and analyze complex data,

such as images, sounds, and text. The layers in these neural networks allow them to learn in-

creasingly abstract features of the data, enabling them to make more accurate predictions or

classifications
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1.5.1 Difference between DL and ML

Key differences between deep learning and machine learning algorithms (see figure 1.8 is that

deep learning algorithms focus on automatic and machine learning of features. Learning that

features must be extracted manually.

Figure 1.8: DL vs ML [47]

1.5.2 Artificial neural networks

In fact the artificial neural network inspired from neurons of human brain so we need to know

some basics of humans neurons to understand the artificial neural network of machines.

1.5.2.1 Biological neuron

Is a cell that forms basic structural and functional unit of nervous system of humans and it’s the

cell that responsible for receiving, processing and transmitting information through signals .its

composed of cell body (soma),dendrites, axon and axon terminals [23]. look at figure 1.9.
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Figure 1.9: Biological neuron [37]

1.5.2.2 Artificial neuron

Like we said in the beginning of this part the artificial neuron is modeled from biological neuron,

also known as a computational neuron, is a mathematical function that models the behavior of

biological neurons, it takes a number of variables (x) as input then applies a weight to each input

***, and sums them up to produce an output. This output is then passed through an activation

function, which determines the final output of the neuron [40].

Figure 1.10: Biological neuron to an artificial neuron [37]

1.5.2.3 Artificial neural network

Artificial neural network is a computational model that consists of interconnectedus nodes, or

artificial neurons, organized into layers, an input layer , a hidden layer, and an output layer, The

output of one layer becomes the input to the next layer, allowing the network to process and

transform information in a hierarchical manner see Figure 1.11.
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Figure 1.11: Artificial Neural Network [30]

1.6 Convolutional Neural Networks

1.6.1 Definition

A Convolutional neural networks is a sub of neural network, They possess all the traits of neu-

ral networks. The key feature of CNNs is their ability to automatically learn and extract features

from images without any manual intervention, the first CNN architecture focused on text recog-

nition [27].

A basic CNN architecture contains one convolutional layer and pooling layer, and also some-

times contains fully connected layers for supervised prediction. So, let us discuss the layers of

CNN in detail as shown in Figure 1.12

Figure 1.12: Convolutional neural network composition
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1.6.2 Convolutional neural network composition and main operations

1.6.2.1 Input layer

The image’s data should be in the CNN’s input layer. The image data is a three-dimensional

matrix that needs to be converted into a single column before being input. Each layer’s output

will be fed into the next layer.

1.6.2.2 Convolutional layer

Convolutional layer is the one where the action starts, is the most important layer in a CNN, it is

responsible for extracting features from the input image, A number of filters or kernels make up

the convolutional layer. which are small matrices that slide over the input image and perform a

dot product operation at each position. Each filter develops the ability to recognize a particular

feature or pattern, such as edges, corners, or textures, in the input image [43].

Here is an example of filter or 3x3 see figure 1.13

Figure 1.13: layer filter 3x3 [9]

We get 235 from applicating filter in image matrix like that:

0 * -1 + 25 * 0 + 75 * 1 + 0 * -2 + 75 * 0 + 80 * 2 + 0 * -1 +75 * 0 + 1 * 80 =235

Here is some Additional parameters, such as padding, stride, and dilation, can be adjusted

for the convolutional layer.

• Padding To keep the input image’s size constant during convolution, padding adds zeros

to the edges of the image. See Figure 1.14
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Figure 1.14: Padding [19]

• Stride Stride determines the spacing between the positions at which the filter is applied

to the input image, by default equal 1 [2].

Here is formula to calculate the output dimension after using stride *******

Here is an example of using stride=2 see Figure 1.15

Figure 1.15: Stride [21]

1.6.2.3 Pooling layer

The pooling layer is a type of layer in a CNN that performs down-sampling of the feature maps

produced by the convolutional layer , the goal of using down sampling is to reduce the spatial

size of the feature maps while keeping the most crucial details about the features. The most

common type of pooling used in CNNs is max pooling [43].
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The method of max pooling involves dividing the feature map into non-overlapping rect-

angular regions called pooling regions and then determining the maximum value inside each

pooling region, this process reduces the size of the feature map by a factor of the pooling region

size.

For example, if the pooling region size is 2x2 then the feature map’s size will be reduced in

half in both directions. See Figure 1.16

Figure 1.16: Max pooling [18]

1.6.2.4 The activation layer

The activation layer applies a non-linear activation function to the output of the previous layer,

this nonlinear function’s objective is to add nonlinearity to the network. which enables the net-

work to learn more complex and non-linear relationships between the input and output [29].

Here is some of activation function see Figure 1.17

Figure 1.17: Activation function [16]
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1.6.2.5 The fully connected layer

Every neuron in the previous layer is connected to every neuron in the current layer (see Fig-

ure 1.18) This layer is similar to the fully connected layers in traditional neural networks. The

purpose of the fully connected layer in a CNN is to combine the features learned by the con-

volutional and pooling layers into a global representation that can be used for classification or

other tasks [51].

Figure 1.18: fully connected layer

1.6.2.6 Dropout

the dropout layer typically comes after the convolutional or fully connected layer. This tech-

nique used to prevent overfitting by randomly dropping out during training some of the neurons

in the layer.

Example when dropout=0.2 that means each of neuron has a probability 0.2 of being "dropped

out" at each iteration see Figure 1.19.

Drop out has many benefits

• Regularization: to prevent overfitting.

• improved generalization: By learning more robust features, the network is better able to

generalize to new, unseen data

• Speed up training: the network converges faster during training.
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• Ensemble learning: By randomly dropping out neurons at each iteration, the Dropout

layer effectively creates an ensemble of smaller sub-networks, which can improve the

overall performance of the network [53].

Figure 1.19: Applying dropout [14]

1.6.2.7 Output layer

The output layer of a Convolutional Neural Network (CNN) is the final layer of the network that

produces the final predictions. The type and structure of the output layer depend on the specific

task that the CNN is designed to solve.

Example if you have problem of classification the output layer is usually a fully connected

layer with a SoftMax activation function [43].

1.7 Popular CNN Architectures

1.7.1 ResNet-50

ResNet-50 is a deep Convolutional Neural Network (CNN) architecture that was proposed by

Microsoft researchers in 2015. ResNet50 is a deep neural network architecture consisting of 50

layers, that’s why he has the number 50 in his name.

Resnet has ability to train very deep neural networks with many layers while avoiding the

problem of vanishing gradients.
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ResNet50 has shown state-of-the-art performance on various benchmark datasets, such as

ImageNet, CIFAR-10, and COCO. It is widely used as a backbone architecture for many computer

vision tasks, such as object detection, semantic segmentation, and image captioning [24].The

Figure 1.20 explain Resnet50 architecture.

Figure 1.20: Resnet50 [20]

1.7.2 EfficientNet

The EfficientNet family consists of seven different models: EfficientNet-B0 to EfficientNet-B7.EfficientNet

is a family of convolutional neural network (CNN) architectures introduced in 2019 by Google.

Its architecture uses a number of methods ,in contrast to other architectures, this one is able to

achieve good accuracy (look at Figure 1.21) with fewer parameters and computational resources

by utilizing a novel method for scaling neural networks that balances network depth, width, and

resolution [54].
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Figure 1.21: Efficientnet [15]

1.7.3 DenseNet

DenseNet is a deep convolutional neural network (CNN) architecture released in 2017 by Face-

book AI. Each of the dense blocks that make up the DenseNet architecture has many convolu-

tional layers, batch normalization, and a dense connection method. A transition layer is placed

after each dense block and is composed of a convolutional layer, batch normalization, and a

pooling process and each layer receives direct feedback from all preceding layers [39] look at

Figure 1.22.

When compared DenseNet to other CNN architectures, it shows good performance on bench-

mark datasets like ImageNet, CIFAR-10, and CIFAR-100 while using fewer parameters and pro-

cessing resources.
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Figure 1.22: DenseNet [11]

1.8 Transfer learning

Instead of training a new model from scratch we use Transfer learning technique to gain time

and to produce accurate model by taking an existing model has been trained on a large dataset

then by training it on the new dataset [52].See Figure 1.23 explain deference between usual ap-

proach and Transfer learning approach.

Figure 1.23: usual Approach VS Transfer learning Approach [44]
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1.9 Conclusion

In this chapter we have covered some main aspects which are the basic of our current work:

healthcare, Artificial intelligence. We have described the different use cases of AI in healthcare,

we detailed the basics of machine learning and deep learning and popular CNN models. The

next chapter will talk about diabets and we will introduce our main topic diabetic retinopathy

and its stages and some recently related works.
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Chapter 2

Diabetic retinopathy and related works

2.1 Introduction

Diabetes is a global epidemic has significant complications, one of which is diabetic retinopa-

thy. This progressive eye disease damages the retina due to high blood glucose levels. Diabetic

retinopathy causes visual impairment, reduces quality of life, and imposes a substantial socioe-

conomic burden. Researchers have made notable efforts to understand and manage this condi-

tion.

This chapter begins by providing an overview of diabetes including its effects on the body

then describes diabetic retinopathy and discusses its various stages and progression. Finally,

provides some recent research and related works in the field.

2.2 Diabetes

2.2.1 what is diabetes

Diabetes, also known as diabetes mellitus, is a chronic metabolic disorder that affects how our

bodies processes blood sugar (glucose).as we all know that Glucose is the main source of energy

for our bodies ,pancreas produce hormone known as Insulin which helps in adjusting the level

of sugar in the blood. The high level of glucose in blood can damage various organs like the eyes

heart, kidneys, nerves and blood vessels.[3].See Figure ?? .
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Figure 2.1: Effects of diabetes on human body [12]

2.2.2 Types of diabetes

1. Type 1 Diabetes

Autoimmune condition, usually diagnosed in childhood or adolescence, where the body

doesn’t produce insulin [34].

2. Type 2 Diabetes

Most common form, often linked to lifestyle factors like obesity and physical inactivity.

The body becomes resistant to insulin or doesn’t produce enough [34].

3. Gestational Diabetes

Occurs during pregnancy and usually resolves after childbirth, but increases the risk of

developing type 2 diabetes later [34].

See Figure 2.2 for more details
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Figure 2.2: Types of diabetes [13]

2.3 Diabetic retinopathy

Diabetic retinopathy is a complication of diabetes that affects the eyes.DR can damage the small

blood vessels of the retina leading to swelling, hemorrhage, and the growth of new abnormal

blood vessels (see Figure 2.3)as result cause vision loss and blindness [45].

Here some of diabetic retinopathy symptoms:

• Blurred or distorted vision

• Dark or empty spots in your vision

• Eye pain or pressure

• Difficulty seeing at night
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Figure 2.3: The difference between a normal retina and DR retina [10]

2.4 Retinal imaging

Retinal imaging is a diagnostic test used by Ophthalmologist to detect various eye diseases like

diabetic retinopathy, macular degeneration, and glaucoma. They use imaging equipment to

capture detailed images of the retina.

There is various types of retinal imaging techniques to diagnose retina like Optical coher-

ence tomography, Indocyanine green angiography, Fundus photography (see Figure 2.4) [49].

for diabetic retinopathy Ophthalmologist use Fundus photography to diagnose patients
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Figure 2.4: Fundus photography machine [17]

2.5 Diabetic retinopathy stages

Diabetic retinopathy can be classified into 4 stages based on blood vessels damage in the retina.

2.5.0.1 Mild

Is the first stage of DR , may not cause any noticeable symptoms and visual acuity may be normal

but the doctor can notice some of small areas of the blood vessels called Microaneurysms [61].

Figure 2.5: Mild DR [28]
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2.5.0.2 Moderate

the damage to the blood vessels in the retina is more than the mild stage, because the blood

vessels may become blocked and we will notice not just Microaneurysms we will see More

widespread areas of hemorrhage, Cotton wool spots, IRMA [61].

Figure 2.6: Moderate DR [28]

2.5.0.3 Severe

In this stage the patient will have more significant vision changes, such as blurred or distorted

vision, floaters, and difficulty seeing at night because the blood vessels are more damaged than

moderate stage and because of that we will notice more and big area of hemorrhage, multiple

areas IRMA ex [61].

Figure 2.7: Severe DR [28]
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2.5.0.4 Proliferate DR

This is advanced level of DR ,the eye will create new blood vessels and they are very fragile which

may cause fluid leakage and the patient will have more problems in vision more than severe and

even blindness [61].

Figure 2.8: Proliferate DR [28]

2.6 Related works

The following piece we will mention some of previous works on classification retinal images

using various ML and DL algorithms.

• A Deep Learning Approach for the Diabetic Retinopathy Detection

M.R. Sebti and all [50], proposed two models, the first model was binary classification (no

DR, DR) and the second model was multi class classification (No DR, Moderate, Severe).

for the preprocessing they have used gaussian filter. The deep learning approach that he

used for multi class classification its CNN architecture with total of 8 layers. From layer

1 to layer 5 are convolutional layers followed by a max pooling layer and from layer 6 to

layer 8 are fully connected layers. His first model trained on aptos19 dataset, number

images was 3662.the training accuracy and training validation were found to be 96.93%

and 95.08%, respectively. And for the second proposed model the results were 93.06% for

training accuracy, 81.12% for training validation.
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Figure 2.9: Diagram of Sebti System [50]

• Deep learning approach for early diabetic retinopathy diagnosis

Falah and all [35], proposed two models, the first model was binary classification (no DR,

DR) and the second model was multi class classification (No DR, Mild, Moderate, Severe).

for the preprocessing they have used gaussian filter for all classes and Histogram equal-

ization just in 2 classes mild and moderate. The deep learning approach that she used for

multi class classification its CNN architecture with total of 11 layers. From layer 1 to layer

8 are convolutional layers followed by a max pooling layer and from layer 9 to layer 11 are

fully connected layers. Her first model trained on aptos19 dataset, number images was

3662.the training accuracy and training validation were found to be 98.75% and 95.35%,

respectively. And for the second proposed model the results were 96.73% for training ac-

curacy, 93.45% for training validation.

Figure 2.10: General architecture of Falah system [35]
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• Classification of diabetic and normal fundus images using new deep learning method

Esfahan and all [58], proposed just one model, he used popular CNN architecture Resnet34

for binary classification to classify DR as normal and DR (see Figure 2.11).

Resnet34 is a pretrained model on ImageNet database. For the preprocessing they have

used gaussian filter, weighted addition and image normalization. The size of the image,

which had the number 35000, was (512,512) pixels. They reported 85% accuracy and 86%

sensitivity.

Figure 2.11: : Block diagram of the proposed method [58]

The table below 2.1 provides a concise comparison of relevant studies and research efforts,

allowing us to identify research gaps and build upon previous findings. This analysis will inform

the unique contributions of our research within the broader context of the field.

Model Accuracy Validation

accuracy

Test Accu-

racy

Number of

classes

Sebti riad

binary[50]

96.93% 95.08% 95.65 2

Fallah kawther

binary[35]

98.75% 95.35% 96.02% 2

Esfahan [58] 85% 86% - 2

Sebti riad [50] 93.06% 81.12% 80,48% 3

Fallah kawther

[35]

96.73% 93.45% 93,43% 4

Table 2.1: Comparison of relative work
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‘

2.7 The critique of previous works

1. Work of Fallah and all [35]

After consulting Dr.Hadrouk an surgeon specialist in ophthalmology in Biskra eye hospi-

tal. He said that the proposed achitecteur of Fallah Kawther and all [35] its wrong.Where

we can not classify diabetic retinopathy like that. where we cannot put class severe with

class proliferate DR (see Figure 2.12).

Figure 2.12: Fallah proposed structure to classify DR

2. Work of Sebti and all [50]

the doctor also confirmed that the proposed achitecteur of Sebti and all [50] its wrong.Where

we can not put class severe with class proliferate DR (see Figure 2.13).
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Figure 2.13: Sebti proposed structure to classify DR

2.7.1 Important note

all our proposed structure certified from doctor Hadrouk an surgeon specialist in ophthal-

mology in Biskra eye hospital. we will see them in the next chapter

2.8 Conclusion

In this chapter we covered diabetes ,diabetic retinopathy and some of previous related works,

the preprocessing of data and type of deep learning technique that they used and the results

achieved. Overall, we found that the related works that we covered are highly relevant to our
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own project then we explain the mistakes they made in their own proposed structure to classify

DR. The previous ideas and findings presented have helped to shape our understanding of the

topic and have provided valuable insights into the challenges we are likely to face. In the next

following chapter we will go into our own strategy and how it fits into the field’s larger context.
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Chapter 3

System design of a deep learning

architecture for Diabetic Retinopathy

detection

3.1 Introduction

Recently, AI showed huge development in many applications in the real world until it became

comparable to humans in intelligence, like Tesla’s self-driving car.on the other side Diabetic

retinopathy detection has received more attention recently. This is because there are more and

more people suffering from this disease. A rapid and correct diagnosis becomes crucial as the

risk of diabetic retinopathy grows. Artificial intelligence has emerged as a potential solution to

address this demand. By leveraging the power of AI, we can effectively diagnose patients with

diabetic retinopathy, providing timely and reliable results.

Our project focuses on developing three deep learning models that can accurately detect and

classify different levels of diabetic retinopathy. We employ sophisticated image processing tech-

niques within our model to accomplish this task. This chapter provides an overview of the sys-

tem design, the datasets utilized, their structures, the preprocessing phase, and the architec-

tures of our proposed deep learning models.

35



Design and implementation of a deep learning architecture for Diabetic Retinopathy detection

3.2 System design

Before we start in explain our work we were working and consulting with DR.Hadrouk an sur-

geon specialist in ophthalmology in Biskra eye hospital

3.2.1 General design

The goal of our research is to create a AI doctor to diagnose patient with diabetes if they have

diabetic retinopathy.First we started by creating our model by choosing dataset then do prepos-

sessing on it and split it then we training our model and testing it we will see more details in the

next section .after we create model we deploy it in cloud to use it with web application that we

are created to connect the users of our application with our intelligent model.when users use

our web application the user send an image of retina imaging then our model can classify and

detect retinopathy if its exist.See figure 3.1 to get general idea of our work.

Figure 3.1: General design of our System
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3.2.2 Detailed design

In order to build a deep learning Model for detecting and classifying diabetic retinopathy levels

(No DR, mild , moderate, severe, proliferate ), our System will be following certain steps depicted

in figure 3.2.

Figure 3.2: Detailed design of our System

The system starts firstly by getting the dataset, do preproccessing on the dataset, split dataset,

then we feed the CNN model with the splitted dataset, by the end we will have a model which

can classify new diabetic retinopathy images.

3.2.3 Dataset

After consult DR Hadrouk this is our dataset that we will work with

3.2.3.1 Datasets for classification

1. Dataset description:

We utilized two Kaggle datasets that can be found at Resized 2015 and 2019 Blindness

Detection Image [60].
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(a) The first original (2019) Dataset is available at APTOS 2019 Blindness Detection [28].

This dataset was used in [50] [35] [58].

(b) The second original (2015) dataset is available at Diabetic Retinopathy (resized) [60]

and was used in [50] [35].

(c) The third dataset created by overflow with team of ophthalmologist and me in biskra.

2. Datasets structure:

(a) Original structure of the available datasests: The images are ranked into five differ-

ent levels of diabetic retinopathy by specialists as it is shown in Figure 3.3

i. No DR which represent Level 0: The patient retina has no diabetic retinopathy.

ii. Mild which represent Level 1: The patient retina has a mild diabetic retinopathy.

iii. Moderate which represent Level 2: The patient retina has a moderate diabetic

retinopathy.

iv. Severe which represent Level 3: The patient retina has a Severe diabetic retinopa-

thy.

v. Proliferate DR which represent Level 4: The patient retina has a proliferate dia-

betic retinopathy.
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Figure 3.3: Original structure

(b) The first proposed structure: we change the original data set’s organizational struc-

ture just to 2 classes NO DR and DR By combining all diabetic retinopathy levels

(mild, moderate, sever, and proliferate) to reflect the DR class and keep class NO DR

like its (see Figure 3.4).

i. NO DR: represent healthy retina people that not infected by DR

ii. YES DR: represent infected retina people with DR.
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Figure 3.4: Our First structure

(c) Our second structure: We used the original structure of original dataset 5 classes

.See Figure 3.5
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Figure 3.5: Our Second structure
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3.2.3.2 creating our dataset for detection

1. Data Collection

The dataset for diabetic retinopathy detection was collected from the APTOS 2019 dataset

[28], which is a commonly used dataset for this task. The dataset consists of retinal images

that were captured from patients with varying degrees of diabetic retinopathy.

2. Data Labeling

The images in the dataset were labeled using an annotation tool roboflow see figure 3.6

. As the labeling was done by help of an ophthalmologist, it ensures accurate and reli-

able annotations for the presence of diabetic retinopathy. Each image was annotated with

bounding boxes to indicate the regions associated with diabetic retinopathy.

Figure 3.6: labeling images with roboflow

3. Augmentation

To increase the diversity and variability of the dataset, data augmentation techniques were

applied. These techniques included random rotations, flips (both vertical and horizon-

tal), and adjustments to brightness. Augmentation helps in preventing overfitting and

improves the model’s ability to generalize to unseen data.
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4. Train/Test Split

The dataset was divided into three subsets: 80% for training, 10% for validation, and 10%

for testing.

5. Data Conversion

The annotations for the dataset were converted into YOLOv8 format, which uses a .txt file

for each image. Each .txt file contains the bounding box annotations of region of DR in a

specific image.

3.2.4 Preprocessing:

Before providing the data to CNN model for the training we need to pass by preprocessing, it is a

crucial phase where we do modifications on data like resizing, applying filters, removing noises,

etc. For that we applied gaussian filter then we resized all images.

1. Gaussian filtering: A Gaussian filter is a commonly used image filtering technique that is

effective in reducing noise and smoothing images [? ].

Figure 3.7: Gaussian filtering on diabetic retinopathy image

Why gaussian filter ?

The Gaussian filter is very helpful in the context of diabetic retinopathy and retinal imag-

ing is used to improve the quality of the pictures and increase the precision of classifica-

tion because it can help to emphasize the diabetic retinopathy lesions in retina image like

the blood vessels, microaneurysms or Hemorrhages present in the retina.
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2. Resize:

The original dataset images were (1024,1024,3) We resize images to (224x224x3). The first

number indicate the width of image and the second indicate Hight and the last number

indicate image channels RGB (Red, Green, Blue).

Why resizing images ?

resizing images improve memory and computational efficiency, ensures consistent input

size, standardizes the dataset and contributing to effective and efficient deep learning

model training and inference.

3. Circle crop:

I noticed that the images are not in same look. Some of them rounded and some of them

zoomed ex...

So, I create a method ’circle crop’ to make them look the same and to give them the circle

retina look

Figure 3.8: Cyrcle Crop on diabetic retinopathy image

3.2.5 Splitting dataset

We divide our dataset to three subsets (train, validation and test),70% of total images to train,20%

for validation and 10% for test
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3.2.6 Data Augmentation

Image augmentations are modifications applied to images to increase the number of images by

applying different transformations for example rotating, scaling, flipping, brightness, cropping

or adding some noise, to create new samples that are similar to the original images. Data aug-

mentation also helpful in improves model generalization, reduces overfitting, addresses class

imbalance, and helps in scenarios with limited data availability.

In this work we increase the number of images by different transformations like rotation, bright-

ness by using ImageDataGenerator by TensorFlow.

Figure 3.9: Data Augmentation using ImageDataGenerator

3.2.7 CNN Learning

Like we mention in chapter 1 CNNs have ability to automatically learn and extract features

from images without any manual intervention. We mention also the composition of the Con-

volutional neural network (see Figure 1.12) like convolutional layer, pooling layer ,fully con-

nected layer , dropout layer and some activation functions and in the same chapter we mention
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some of popular CNN architecture like DenseNet ,EfficientNet and ResNet50 .Now we will train

this models for classification of diabetic retinopathy then we will move to detection to discuss

yolov8.

3.2.8 AlexNet

Alexnet is the name of a convolutional neural network (CNN) that made a major contribution

to the area of computer vision. It was developed by Alex Krizhevsky, Ilya Sutskever and Geof-

frey Hinton and it won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012

[25].

so after this excellent performance of AlexNet we choose it for classification of diabetic retinopa-

thy

3.2.8.1 AlexNet architecture

in general AlexNet like we said is a convolutional neural network (CNN) so it have convolutional

layers, pooling layers,fully connected layers.see figure 3.10 describes architecure of AlexNet.

Figure 3.10: AlexNet architecture

1. Input Layer

AlexNet takes an input image of size 227x227x3 (RGB color images). The three channels

represent the red, green, and blue color channels.

46



Design and implementation of a deep learning architecture for Diabetic Retinopathy detection

2. Convolutional Layers

The first convolutional layer has 96 filters with a stride of 4 pixels and a size of 11x11.

Local response normalization (LRN) across channels is then used after rectified linear unit

(ReLU) activation. By using max-pooling with a 3x3 window and a stride of 2 pixels, the

output volume is downsampled.

3. Second Convolutional Layer

The second convolutional layer has 256 filters of size 5x5. Again, ReLU activation and LRN

are applied, followed by max-pooling.

4. Third Convolutional Layer

This layer has 384 filters of size 3x3, with ReLU activation.

5. Fourth and Fifth Convolutional Layers

The fourth and fifth convolutional layers, respectively, include 384 and 256 filters of size

3x3. ReLU activation is used by both layers.

6. Fully Connected Layers

The last three layers are fully connected. The first fully connected layer has 4096 neurons,

followed by a dropout layer for regularization. The second fully connected layer also has

4096 neurons, followed by another dropout layer. The final fully connected layer has 1000

neurons, corresponding to the 1000 classes in the ImageNet dataset.

7. Output Layer

The output layer employs softmax activation to produce the probability distribution over

the 1000 classes of the ImageNet dataset but in our case we just change number of classes

to 5 beacause we have just 5 classes of diabetic retinopathy.

3.2.9 DenseNet-121

DenseNet-121 is a powerful deep learning model for image classification and is known for its

dense connectivity and has achieved state-of-the-art performance on various computer vision

tasks and this why we choose it for classification diabetic retinopathy
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3.2.9.1 DenseNet-121 architecture:

In general, DenseNet-121 comprises of multiple dense blocks, transition layers, and a final clas-

sification layer. The feature that defines DenseNet-121 Each dense block consists of several

convolutional layers, and each layer receives inputs from all preceding layers within the same

block (see Figure 1.22 ).

After we talk in general now we will talk in detail about comprises of DenseNet-121

Here is architecture of DenseNet-121 Look at 3.11

Figure 3.11: Densenet-121 architecture

1. Dense Blocks

Like we say every dense block has many convolutional layers and within the same block,

each layer’s output is combined with the inputs from all layers that came before it and that

lead to improve model performance. Look at figure 3.5 there is 4 dense blocks and each

block have different layers like block 1 have x6 convolutions layers and each layer consist

of batch normalization and relu function then 3*3 convolution layer then drop out (see

Figure 3.11).

2. Transition Layers

Transition layers are an essential component of DenseNet-121 positioned between his

dense blocks (see Figure 3.11).They are responsible for reducing the spatial dimensions

of the feature maps between dense blocks because they use downsampling operation and

this operation can be achieved by techniques like average pooling or strided convulsion.
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And also they play important role in controlling model complexity and facilitates the shar-

ing of features, enhances the gradient flow and strengthens the representation capabilities

of the network.

3. Classification Layer

The classification layer is the final component of the DenseNet-121 architecture It applies

operations on the feature maps produced by the dense blocks or transition layers before

it in order to get the predicted class probabilities.it consists of Global average pooling and

fully connect layer and finally SoftMax activation (see Figure 3.11).

The classification layer typically begins with a global average pooling operation this oper-

ation reduces the spatial dimensions of the feature maps to a fixed size, regardless of the

input image size. Then there is fully connected layer consists of a set of neurons and each

connected to every element of the feature vector. The purpose of the fully connected layer

is to learn complex relationships between the features and the target classes then finally

the output of connected layer pass through an activation function like SoftMax which con-

verts the raw scores into class probabilities.

Now after we discuss the best model that we used it in our work classification of diabetic

retinopathy now we will move to detection part, in this part we will discuss yolo architec-

ture and why we choose yolo and how yolo learn

3.2.10 YOLOv8

You Only Look Once, YOLO gained popularity for object detection tasks due its speed and ac-

curacy. Yolo’s primary purpose is to detect and locate objects in images and videos. It focuses

primarily on recognizing and categorizing objects based on their visual aspect. YOLO also used

in medical imaging to detect and diagnose diseases like X-rays or MRIs because YOLO can iden-

tify abnormal regions, lesions or specific patterns associated with diseases and because of that

we choose YOLO in our work for detection diabetic retinopathy.

here is deferent yolo version see Figure ??
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Figure 3.12: YOLO versions [59]

Like we see in figure ?? YOLOV8 is the most powerful and accurate that other YOLO versions.

In our work we don’t reel time detection we need accurate detection and because of that we

choose YOLOv8 L model for our work.

3.2.10.1 YOLO learn

It works by dividing an input picture into a grid and determining the bounding boxes and class

probabilities for each grid cell’s objects. Here are the key aspects of how YOLO learns:

1. Single Pass Detection :

YOLO processes the entire image in a single pass, enabling lesion detection of diabetic

retinopathy. The network predicts bounding boxes and class probabilities directly using

convolutional layers, without the need for a separate region.

2. Loss Function :

YOLO uses a specific loss function that combines localization loss (to minimize bounding

box coordinate errors), confidence loss (to penalize false positives and false negatives),

and classification loss (to classify object classes). This loss guides the model during train-

ing to improve detection accuracy.
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3. Anchors :

YOLO uses predefined anchor boxes of different sizes and aspect ratios. These anchor

boxes are used to anchor the predicted bounding boxes, allowing the model to detect ob-

jects at various scales and orientations.

4. Non-Maximum Suppression :

YOLO applies non-maximum suppression during inference to eliminate duplicate detec-

tions and refine the final bounding boxes. This post-processing step removes overlapping

boxes with lower confidence scores, keeping only the most confident detection.

3.2.11 Prediction

in this part the third split of dataset (test) will be used to test our models

in dense net model

• Forward Pass

in dense net model The input image is forward-propagated through the DenseNet net-

work where each layer receives feature maps from all preceding layers of DenseNet net-

work

• Feature Extraction

During the forward pass, DenseNet extracts hierarchical features from the image as it

passes through different layers of the network

• Global Average Pooling

After feature extraction DenseNet applies global average pooling. This process reduces

the spatial dimensions and converts the feature maps into a fixed-length feature vector.

• Classification

The global average pooled features are then fed into a fully connected layer or a softmax

classifier, which then generates predicted probabilities for each class. The displayed class

label for the input picture is taken from the class with the highest probability.
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In YOLO model

• Forward Pass

The input image is forward-propagated through the YOLO network then the network de-

vides image into grid and applies a series of convolutional layers to extract features

• Bounding Box and Class Prediction

For each grid cell, YOLO predicts multiple bounding boxes and their corresponding confi-

dence scores, the confidence score represents the probability of containing an object and

the predicted bounding boxes represent the location of detected object

• Non-Maximum Suppression

YOLO uses non-maximum suppression to refine the predictions after collecting the bound-

ing box predictions. This step removes overlapping boxes with lower confidence scores,

keeping only the most confident detection

• Post-Processing

The final item detection predictions are the bounding boxes, class labels, and confidence

scores. The Bounding boxes on the input image show the recognized lesion of diabetic

retinopathy and their positions.

3.2.12 Evaluation of Models

We need to evaluate our deep learning model before deploy it in real life because we need to

make sure that our model has excellent performance to diagnose patient of diabetic retinopathy

and to do that there are many different types of evaluation metrics available to evaluate the

model like true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

All that predictions used to calculate accuracy, precision, F1 score and mean average precision

according to following equations:

ACCU R AC Y = T P +T N

T P +T N +F P +F N
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PREC I SION = T P

T P +F P

F 1SCORE = T P

T P + 1
2 (F P +F N )

3.3 Conclusion

The purpose of this chapter was to present the general and specific design of our deep learning

model of diabetic retinopathy classification system. Based on the different datasets and CNN

architectures we employed, we could deduce in the following chapter how to implement dia-

betic retinopathy detection architectures and discuss implementation and experiments and the

obtained results.
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Chapter 4

implementation and Results

4.1 Introduction

the previous chapter covered The global and detailed architecture of our system and the dataset’s

structure.In this chapter we will mention tools and frameworks, implement our system design

and present code for each system design phase.Following that, we will summarize the remain-

ing parameters and give the findings for each proposed structure.Finally, we will compare our

findings with previous related works.

4.2 implementation of a Deep Learning architecture

4.2.1 Frameworks , tools and libraries

• Python

Guido van Rossum introduced the high-level programming language Python in 1991 .

Python now is used extensively in various domains like web development, data analysis,

machine learning, automation and scripting [36].

Figure 4.1: Python logo
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• React JS

React.js or React is a JavaScript library for building interactive user interfaces for web ap-

plications.powred by facebook [22].

Figure 4.2: React logo

• FastApi

FastAPI is a Python web framework for building high performance APIs quickly and easily

[48].

Figure 4.3: FastApi logo

• Google Colab

Colab, or Google Colaboratory, is an online platform for coding in Python without the

need for local installation. It provides a cloud-based environment with features like col-

laborative editing and access to powerful hardware resources [38].

Table 4.1: Google Colab resources

GPU Runtime RAM disk capacity

Google Colab T4 12h 12GB 60GB

Figure 4.4: Google Colab logo
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• OpenCv

OpenCV or Open Source Computer Vision Library is a widely used open-source library for

computer vision and image processing tasks. It offers a range of functions and algorithms

for tasks like image manipulation, object detection and video analysis [46].

Figure 4.5: OpenCv logo

• Pycharm

Pycharm is a Python development environment (IDE) .

Figure 4.6: Pycharm logo

• Matplotlib

Matplotlib is a Python toolkit for making flexible plots and visualizations including line

graphs and scatter plots. Data analysis and scientific study both make extensive use of it

[56].

Figure 4.7: Matplotlib logo

• Keras

An effective open source Python library for creating and analyzing deep learning models

is called Keras [55].
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Figure 4.8: Keras logo

• TennsorFlow

TensorFlow is a powerful open source machine learning framework that was created by

Google.it provides a variety of tools and resources for building and deploying machine

learning models [57].

Figure 4.9: Tensorflow logo

• NumPy

A well-known Python package for numerical computation is called NumPy. It offers math-

ematical functions for data management and analysis as well as efficient operations on

huge multidimensional arrays [31].

Figure 4.10: NumPy logo

• Kaggle

Kaggle is a platform for data science competitions and collaboration where users can ac-

cess and use real world datasets [41].

Figure 4.11: Kaggle logo
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4.2.2 Dataset preparation and preprocessing

1. Download Dataset to Google Colab

First, we used the dataset API to download the Kaggle datasets to our Google Colab.

1 !kaggle datasets download -d benjaminwarner/resized -2015 -2019 -
blindness -detection -images

2

2. Functions and parameters of the used Gaussian filter

go to Figure 3.8 to see image before and after using Gaussian filter

(a) cv2.GaussianBlur(image, kernel size, sigmaX).

applies a Gaussian blur filter to the input image "img". The parameter (0,0) specifies

the size of the Gaussian kernel which is automatically calculated based on the sigma

value of 10. This step blurs the image, reducing noise and smoothing out details.

(b) cv2.addWeighted(image1,alpha,image2,beta,gamma).

image1 = img - This parameter represents the input image.

alpha = 4 – The second parameter is the weight or scaling factor applied to the input

image (img). In this case, the weight of 4 means that the contribution of img will be

significantly increased in the final result.

image 2 = cv2.GaussianBlur(img, (0,0), 10) – read (a)

beta = (-4) - The fourth parameter represents the weight or scaling factor applied to

the Gaussian blurred image. In this case, a weight of -4 means that the contribution

of the blurred image will be reduced in the final result.

gamma = 128 - The fifth parameter is the optional scalar value gamma added to the

weighted sum. It adjusts the brightness of the final image. In this case, a value of 128

is added to the weighted sum.

. In the code below we apply gaussian filter , Circle crop and resizing image to 244*244

1 import cv2
2 import os
3 import glob
4 os.chdir("/content/dataset") # dataset path example
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5 for file in glob.glob ("*.jpg"):# look for this image format using
glob library ,our dataset images are in this format

6 img = cv2.imread (file) # load an image
7 #plt.imshow(img)
8 gaussian = cv2.addWeighted (img , 4, cv2.GaussianBlur(img ,(0

,0) , 10) , -4, 128) # apply gaussin filtering
9 processed_image = circle_crop ( gaussian ) #applying Circle

crop
10 processed_image =cv2.resize(cv2.cvtColor(processed_image , cv2

.COLOR_BGR2RGB) ,(224, 224)) #resizing
11 cv2.imwrite (file , processed_image ) # save image
12

Listing 4.1: preprocessing

3. Splitting and preparing Dataset

split_folder.ratio was used to divide our dataset into three subsets. split_folder.ratio pa-

rameters:

splitfolders.ratio(path of input folder,path of output,seed,ratio)

1 pip install split -folders
2 import splitfolders
3 input_folder ="/content/dataset" # dataset path
4 output ="/content/retinopathy" # splitted dataset new path
5 splitfolders.ratio( input_folder ,output ,seed =1337 , # set seed

value for shuffling the items .
6 ratio =(.7 ,.2 ,.1) ) # 70% for training 20% for validation 10% for

testing
7

Listing 4.2: Splitting Dataset

Now after we split our dataset to 70% for training ,20% for validation and 10% for test we

need to prepare it for our models

1 from tensorflow.keras.preprocessing.image import ImageDataGenerator
2 trdata = ImageDataGenerator ()
3 traindata = trdata.flow_from_directory( directory ="/content/

retinopathy/train"#training dataset directory
4 ,target_size =(224 ,224) )
5 tsdata = ImageDataGenerator ()
6 testdata = tsdata.flow_from_directory( directory ="/content/

retinopathy/val"#validation dataset directory
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7 , target_size =(224 ,224) )

Listing 4.3: Dataset preparation

description

ImageDataGenerator() Generate tensor image data in batches

using real-time data augmentation.

target_size All photos will be downsized to (224,224) if the image size does

not correspond to the desired size.For us, resizing images

happens already in the preprocessing stage.

Table 4.2: Dataset preparation using ImageDataGenerator

4.2.3 Building our Models

4.2.3.1 Building our classification models DenseNet-121 and AlexNet

1. Import libraries and modules

First we need to import important libraries likes keras and tensorflow numpy

1 import numpy as np
2 import pandas as pd
3 import tensorflow as tf
4 from tensorflow.keras.applications import DenseNet121
5 from tensorflow.keras.models import Sequential
6 from tensorflow.keras.layers import Dense ,BatchNormalization ,

GlobalAveragePooling2D , Dropout
7 from tensorflow.keras.optimizers import Adam
8 from tensorflow.keras.callbacks import EarlyStopping ,

ReduceLROnPlateau
9 from sklearn.utils.class_weight import compute_class_weight

10

11

12

Listing 4.4: necessary imports for building a CNN Molde

2. DenseNet-121 parameters initialization

Since we have various data structures we are going to delay initialization until the follow-

ing chapter where we will provide initialization details for each structure.
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3. Creating Diabetic Retinopathy Classification DenseNet-121 Model

After testing many DenseNet-121 configurations the configuration that will be described

produced the greatest results.

(a) Used Sequential Model:

1 model = Sequential ()
2

Listing 4.5: Sequential model

We used Sequential() for building DenseNet-121 and AlexNet The sequential model

is a technique for building deep learning models that involves making an instance of

the Sequential class and adding model layers to it.

(b) Used DenseNet-121 Architecture

1 # Load pre -trained model
2 base_model = DenseNet121(weights=’imagenet ’, include_top=False ,

input_shape =(224 ,224 ,3))
3

4 # Add classification layers on top of base model
5 model = Sequential ([
6 base_model ,
7 GlobalAveragePooling2D (),
8 Dropout (0.1) ,
9 Dense(64, activation=’relu’),

10 BatchNormalization (),
11 Dropout (0.1) ,
12 Dense (128, activation=’relu’),
13 BatchNormalization (),
14 Dropout (0.1) ,
15 Dense (256, activation=’relu’),
16 BatchNormalization (),
17 Dropout (0.1) ,
18 Dense (512, activation=’relu’),
19 BatchNormalization (),
20 Dropout (0.1) ,
21 Dense (512, activation=’relu’),
22 BatchNormalization (),
23 Dropout (0.1) ,
24 Dense (1024, activation=’relu’),
25 BatchNormalization (),
26 Dropout (0.1) ,
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27 Dense(5, activation=’softmax ’)
28 ])
29

Listing 4.6: Diabetic retinopathy classification DenseNet Model Architecture

First we start our code by loading the pre-trained DenseNet121 model from the

Keras library .The weights=’imagenet’ argument specifies that the pre-trained weights

should be loaded from the ImageNet dataset .we used “include_top=False” argu-

ment to indicates that the last fully connected layer (top layer) should not be in-

cluded, as we will be adding our own classification layers. Then we creat a sequential

model .sequentail alow as to build a deeplearning model by staking layers on top of

each other . The first layer added to the model is the base_model, which is the pre-

trained DenseNet121 model loaded in the previous step. This serves as the feature

extraction backbone for our model. Following the base_model, a GlobalAverage-

Pooling2D layer is added .After the pooling layer we explained what is GlobalAver-

agePooling2D in densenet-121 architecture then, several Dropout layers are added

with a dropout rate of 0.1 Then A series of Dense layers are added with different

output sizes (64, 128, 256, 512, 512, 1024) and activation functions (’relu’). These

layers introduce non-linearity to the model and allow it to learn complex patterns

from the extracted features and Between each Dense layer, a BatchNormalization

layer is added. Finally, the last Dense layer is added with an output size of 5 and an

activation function of ’softmax’. This layer outputs the predicted probabilities for

the 5 classes in the classification task.

(c) Used AlexNet Architecture

1 input_shape = (224, 224, 3)
2 num_classes = 5
3

4 alexnet_model = Sequential ()
5

6 # Layer 1: Convolutional layer with 96 filters , 11x11 kernel size ,
and ReLU activation

7 alexnet_model.add(Conv2D (96, kernel_size =(11, 11), strides =(4, 4),
padding=’valid’,

8 activation=’relu’, input_shape=input_shape))
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9 alexnet_model.add(MaxPooling2D(pool_size =(3, 3), strides =(2, 2),
padding=’valid’))

10 # Layer 2: Convolutional layer with 256 filters , 5x5 kernel size ,
and ReLU activation

11 alexnet_model.add(Conv2D (256, kernel_size =(5, 5), strides =(1, 1),
padding=’same’, activation=’relu’))

12 alexnet_model.add(MaxPooling2D(pool_size =(3, 3), strides =(2, 2),
padding=’valid’))

13 # Layer 3: Convolutional layer with 384 filters , 3x3 kernel size ,
and ReLU activation

14 alexnet_model.add(Conv2D (384, kernel_size =(3, 3), strides =(1, 1),
padding=’same’, activation=’relu’))

15 # Layer 4: Convolutional layer with 384 filters , 3x3 kernel size ,
and ReLU activation

16 alexnet_model.add(Conv2D (384, kernel_size =(3, 3), strides =(1, 1),
padding=’same’, activation=’relu’))

17 # Layer 5: Convolutional layer with 256 filters , 3x3 kernel size ,
and ReLU activation

18 alexnet_model.add(Conv2D (256, kernel_size =(3, 3), strides =(1, 1),
padding=’same’, activation=’relu’))

19 alexnet_model.add(MaxPooling2D(pool_size =(3, 3), strides =(2, 2),
padding=’valid’))

20

21 # Flatten the feature maps
22 alexnet_model.add(Flatten ())
23

24 # Layer 6: Fully connected layer with 4096 units and ReLU
activation

25 alexnet_model.add(Dense (4096 , activation=’relu’))
26 alexnet_model.add(Dropout (0.5))
27

28 # Layer 7: Fully connected layer with 4096 units and ReLU
activation

29 alexnet_model.add(Dense (4096 , activation=’relu’))
30 alexnet_model.add(Dropout (0.5))
31

32 # Layer 8: Output layer with num_classes units and softmax
activation

33 alexnet_model.add(Dense(num_classes , activation=’softmax ’))
34

35

Listing 4.7: Diabetic retinopathy classification AlexNet Model Architecture
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(d) Used optimizer

1 tf.keras.optimizers.legacy.Adam(lr=0.0001 , decay =1e-9)

Listing 4.8: Used optimizer

• lr=0.0001: This sets the learning rate for the optimizer. The learning rate de-

termines the step size taken during each update of the model’s parameters. A

smaller learning rate can lead to slower convergence but may result in better op-

timization, while a larger learning rate can lead to faster convergence but may

risk overshooting the optimal solution.

• decay=1e-9: This parameter specifies the learning rate decay. It reduces the

learning rate over time to fine-tune the optimization process. A small decay

value ensures a gradual decrease in the learning rate throughout the training

process, helping the model converge smoothly.

(e) used loss function because we have 5 classes (multiclassication) we used "categori-

cal_crossentropy"

4. Model summary

Once our models are ready, we can call summary() method to display its contents.

1 model.summary ()

Listing 4.9: Model summary
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• DenseNet-121 summary

Figure 4.12: DenseNet summary
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• AlexNet summary

Figure 4.13: AlexNet summary

5. Compiling classification Models To build our model, we utilized the following code.

1 model.compile(tf.keras.optimizers.legacy.Adam(lr=0.0001 , decay =1e-9),
loss=’categorical_crossentropy ’, metrics =[’accuracy ’,’Precision ’,’
FalseNegatives ’,’FalsePositives ’,’TrueNegatives ’,’TruePositives ’])

Listing 4.10: code of Compiling our models

Function Arguments

model.Compile() optimizer = adam
learning rate = 0.0001
Loss function = categorical crossentropy
Metrics = [’Precision’,’accuracy’,’FalseNegatives’
,’FalsePositives’,’TrueNegatives’,’TruePositives’]

Table 4.3: Compiling our Models arguments
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4.2.3.2 Building our Detection model YOLOv8

1. import libaries and modules first we install library ultralytics and import YOLO from the

same library

1 !pip install ultralytics -q
2 from ultralytics import YOLO
3

Listing 4.11: necessary imports for building a CNN Molde

2. Creating Diabetic Retinopathy Detection YOLOv8 Mode Now after we import necessary

libraries we will upload a pretrained model YOLOv8 model

1 model = YOLO(’yolov8l.pt’)
2

Listing 4.12: necessary imports for building a CNN Molde

4.2.4 Training Our Models

4.2.4.1 AlexNet and DenseNet training

To train the model we have used fit generator, ModelCheckpoint and EarlyStopping with differ-

ent arguments according to the structure, in this section we will explain the role of each argu-

ment and other functions.

1 from keras.callbacks import ModelCheckpoint , EarlyStopping
2 checkpoint = ModelCheckpoint("modelName.h5", monitor=’monitor ’, verbose=1,

save_best_only=True , save_weights_only=False , mode=’auto’,period =1)
3 earlystop = EarlyStopping(monitor=’val_accuracy ’, min_delta =0.001 ,

patience =10, verbose=1, mode=’max’, restore_best_weights=True)
4 lr_scheduler = ReduceLROnPlateau(monitor=’val_accuracy ’, factor =0.5,

patience=5, verbose=1, mode=’max’, min_lr =0.000001)
5

6 # Train model
7 history = model.fit(
8 traindata ,
9 epochs =50,

10 validation_data=testdata ,
11 class_weight=class_weights_dict ,
12 callbacks =[earlystop , lr_scheduler ,checkpoint ])

Listing 4.13: Fitting Model

67



Experimentation and Results

• ModelCheckpoint

Here, a ModelCheckpoint callback is created. This callback saves the model’s weights at

certain intervals during training. The arguments provided are as follows:

– modelName.h5 : The filename to save the model’s weights.

– monitor=’monitor’ : The value to monitor during training, typically a metric like

accuracy or loss.

– verbose=1 : Verbosity mode. It displays information about the checkpoint being

saved

– save_best_only=True : Specifies to save only the best model based on the monitored

value.

– save_weights_only=False : Determines whether to save only the model’s weights

(True) or the entire model (False).

– mode=’auto’ : The mode for comparison of the monitored value. ’auto’ infers it au-

tomatically based on the monitored metric.

– period=1 : The frequency, in epochs, to save the model.

• EarlyStopping

The EarlyStopping callback is created to stop the training early if a certain condition is met

usualy used to avoid over fiting. The arguments are

– monitor=’val_accuracy’ : The value to monitor, in this case, the validation accuracy.

– min_delta=0.001 : The minimum change in the monitored value to qualify as an

improvement.

– patience=10 : The number of epochs with no improvement after which training will

be stopped.

– verbose=1 : Verbosity mode. It displays information about early stopping being trig-

gered.

– mode=’max’ : The comparison mode. ’max’ means the monitored value should be

maximized.
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– restore_best_weights=True : Restores the weights of the best model found during

training.

• ReduceLROnPlateau

The ReduceLROnPlateau callback is used to reduce the learning rate when a certain metric

plateaus. The arguments are:

– monitor=val_accuracy : The value to monitor for a plateau, which is the validation

accuracy.

– factor=0.5 : The factor by which the learning rate will be reduced (multiplied) when

a plateau is detected.

– patience=5 : The number of epochs with no improvement after which the learning

rate will be reduced.

– verbose=1 : Verbosity mode. It displays information about the learning rate reduc-

tion.

– mode=’max’ : The mode for comparison of the monitored value. ’max’ means it

should be maximized.

– min_lr=0.000001 : The minimum learning rate to be reached.

• model.fit_generator This function will train our for model.

Because we have different structure binary and multi classification structures there is

some parameters will be changed like the last dense output layer will be equal to num-

ber of classes of each structure.

Function Arguments

fit_generator -epochs = 50
-shuffle , when = true , dataset will be shuffled
before the training CNN
class_weight , when data is unbalanced , class
weight takes the value ’balanced’
callbacks=[earlystop, lr_scheduler,checkpoint] , fit_model uses the
2 previous functions

Table 4.4: Function description for the model fitting
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4.2.4.2 YOLOv8 training

after we upload the pretrained model of YOLOv8 now we will do the training. we set the path of

dataset of taring and validation in data.yaml file and we initialise number of epochs to 50 and

size of images to 640*640.

1 !yolo task=detect mode=train model=yolov8l.pt data={ dataset.location }/data
.yaml epochs =150 imgsz =640

2

Listing 4.14: necessary imports for building a CNN Molde

4.3 Testing our Model

4.3.1 Testing DenseNet and AlexNet

In order to test our model on the third subset (test) we have used this code. This code was used

on the first proposed structure model, with some changes we used the same code for the other

structures.

1 import numpy as np
2 import tensorflow as tf
3 import matplotlib.pyplot as plt
4 from tensorflow import keras
5 from keras.models import load_model
6 from tensorflow import keras
7 from keras.preprocessing import image
8 import PIL
9 import os

10 import os.path
11 from PIL import Image
12 from os import listdir
13 from PIL import Image as PImage
14 import numpy as np
15 from keras.preprocessing.image import ImageDataGenerator
16 from tensorflow.keras.utils import img_to_array
17

18 import numpy as np
19 import argparse
20 import glob
21 import PIL
22 import os
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23 import os.path
24 from PIL import Image
25 indiceDR0 =0 #NO DR counter
26 indiceDR1 =0# YES DR counter
27 indiceDR2 =0
28 indiceDR3 =0
29 indiceDR4 =0
30 total =0# total of images
31 listt =[]
32 listt2 =[]
33 listt4 =[]
34

35 f = r’/content/dataset15 /2’ # path of third subset for the no DR
36

37 for file in os. listdir(f):
38 f_img = f+"/"+ file
39 img = tf.keras.utils.load_img(f_img , target_size =(224 , 224) ) # use

the same target size of CNN model
40 img = np.asarray(img ) # converte image to an array
41 img = np.expand_dims(img , axis =0)
42 output = model.predict(img) # what the model predected , it is a matrix
43

44

45 if output [0][0] > output [0][1] and output [0][0] > output [0][2] and
output [0][0] > output [0][3] and output [0][0] > output [0][4]: # if
the

46 #probability that this image belongs to NO DR is bigger than the
47 #probability of that this image belongs to Mild , moderate , and sever

:
48 print ("no", output [0])
49 indiceDR0 += 1
50 total += 1
51 if output [0][1] > output [0][0] and output [0][1] > output [0][2] and

output [0][1] > output [0][3] and output [0][1] > output [0][4] :
52 print("mild", output [0])
53 indiceDR1 += 1
54 total += 1
55 if output [0][2] > output [0][0] and output [0][2] > output [0][1] and

output [0][2] > output [0][3] and output [0][2] > output [0][4] :
56 print("moderate", output [0])
57 indiceDR2 += 1
58 total += 1
59 if output [0][3] > output [0][0] and output [0][3] > output [0][1] and

output [0][3] > output [0][2] and output [0][3] > output [0][4] :
60 print ("sever", output [0])
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61 indiceDR3 += 1
62 total += 1
63 if output [0][4] > output [0][0] and output [0][4] > output [0][1] and

output [0][4] > output [0][2] and output [0][4] > output [0][3] :
64 print ("polifrate", output [0])
65 indiceDR4 += 1
66 total += 1
67

68 print(" =============== ")
69 print(" Diabetic retinopathy predict ")
70 print(" =============== ")
71 print("0: ",indiceDR0 ,", 1 ",indiceDR1 ,", 2: ",indiceDR2 ,", 3: ",

indiceDR3 ,", 4: ",indiceDR4 )

Listing 4.15: Testning Model

4.3.2 Testing YOLOv8

Now the testing part we choose the detection task and val mode for test then we change the path

of validation part of our dataset by path of test part.

1 !yolo task=detect mode=val model="/content/runs/detect/train2/weights/best
.pt" data={ dataset.location }/data.yaml

2

Listing 4.16: necessary imports for building a CNN Molde

4.4 Application interface

we devloped web appilication using react.js and FastApi to diagnose poeple if they have diabetic

retinopathy or not.

The application is designed to be user-friendly and intuitive. When patients visit the app, they

can easily upload their OCT images, which provide valuable insights into their eye health. Thanks

to the power of React.js, the interface is sleek and responsive, ensuring a seamless user experi-

ence

Behind the scenes, FastAPI comes into action. It handles the communication between the fron-

tend and backend, efficiently processing the uploaded OCT images. The image data is securely

transmitted to our deep learning model, which has been trained to accurately diagnose diabetic
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retinopathy then the result return to patient.

our web application composed of 2 interfaces

• Submission interface of the medical image (fundus image)

• Results interface in which we will display the results related to the prediction performed

on the submitted photo.

4.4.1 Submission Interface

Figure 4.14: Home Interface

Figure 4.15: Submission Interface
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4.4.2 Results interface

Figure 4.16: Results interface

Experimentation and Results

4.5 First proposed Structure (Binary classification)

4.5.1 The used Dataset

We employ the APTOS 2019 [48] data set 1 described in Chapter 3. The next table describes the

original structure of the dataset, including the number of images per category.

Level Number of images

NO DR 1805

Mild 370

Moderate 999

Severe 193

Proliferate DR 295

Table 4.5: Original structure Dataset 1

we explained in chapter 3 how we groped our first structure to get just two classes NO DR
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and DR.We splited this dataset to 3 subset :training,validation and testing subset as showen in

table 2.9

Training Validation Test Total

NO DR 1263 361 181 1805
YES DR 1299 371 187 1857

Total 2562 732 368 3662

Table 4.6: first proposed structure Dataset 1

1. Specification of parameters initialization for this structure: The parameters utilized in

this structure are shown in the table below.

Informations

input shape (224,224,3)

Number of Epochs 50

early stopped

Step per Epoch total training images /

batch size =81

Class weight not used ,

balanced dataset

dropOutRate 10%

Patience 5

Last output Layer Dense(2)

ModelCheckpoint val_acc

Monitor

EarlyStopping val_acc

Monitor

Table 4.7: Table of parameters for first proposed structure

4.5.2 AlexNet

1. Results and discussion:Training accuracy, validation accuracy, training loss, and valida-

tion loss have all been used to evaluate our model. We give the following graphs to show
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how our model performed.

• A plot of accuracy and validation accuracy over epochs:

Figure 4.17: AlexNet Accuracy

• A plot of loss and validation loss over epochs over epochs:

Figure 4.18: AlexNet Loss

• The plots of learning curves 4.17 and 4.18 show a good Fit because:

– The accuracy and validation accuracy are converging to the same value but when

we arrive to epoch 9 the accuracy still increasing and the validation accuracy go-

ing down to value 83%.

76



Experimentation and Results

– The loss and loss validation are decreasing to the same value.

2. Saving Model

the early stopping was in the epoch 17. Performance metrics of this model are in the table

4.8.

Figure 4.19: Saving model

Accuracy Validation accuracy Loss Validation Loss
AlexNet Model 92.91% 89.07% 26.17% 81.32%

Table 4.8: Table of results Alexnet

3. Testing Model

To see how well our CNN model performs on new images from the Dataset, we will employ

the third subset in this phase.

After testing our model on the third subset:

• Metrics results on test subset

Figure 4.20: testing our model

4.5.3 DenseNet-121

1. Results and discussion:Training accuracy, validation accuracy, training loss, and valida-

tion loss have all been used to evaluate our model. We give the following graphs to show

how our model performed.
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• A plot of accuracy and validation accuracy over epochs:

Figure 4.21: DenseNet-121 Accuracy

• A plot of loss and validation loss over epochs over epochs:

Figure 4.22: DenseNet-121 Loss

• The plots of learning curves 4.21 and 4.22 show a excellent Fit because:

– The accuracy and validation accuracy are converging to the same value.

– The loss and loss validation are decreasing to the same value.

in conclusion The training model shows promising performance with an initial ac-

curacy of 94% and a validation accuracy of 97% at epoch 0. The accuracy curves of
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both the training and validation sets converge to a high accuracy of 100%, indicating

that the model is consistently improving and generalizing well to unseen data.

2. Saving Model

the the early stopping was in the epoch 31. Performance metrics of this model are in the

table 4.23.

Figure 4.23: Saving model

Accuracy Validation accuracy Loss Validation Loss
DenseNet-121 Model 99.90% 96.43% 0.33% 10.89%

Table 4.9: Table of results DenseNet-121

3. Testing Model

To see how well our CNN model performs on new images from the Dataset, we will employ

the third subset in this phase.

After testing our model on the third subset:

• Metrics results on test subset

Figure 4.24: testing DenseNet-121

Figure 4.25: Classification Report
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• Confusion matrix

The confusion matrix is a table that is often used to describe the performance of a

classification model.

Figure 4.26: Confusion matrix

– The top-left element, 181, represents the number of samples that belong to the

"No DR" class and are correctly predicted as "No DR".

– The bottom-right element, 188, represents the number of samples that belong

to the "DR" class and are correctly predicted as "DR".

– There are no misclassifications or errors in the prediction, as indicated by the

zeros in the off-diagonal elements.

4.5.4 Comparisons of our experiments

After seeing the three trials, we determine that DenseNet-121 is the perfect model for the first

structure.The table 4.10 show the comparisons of our experiments.

80



Experimentation and Results

Accuracy Validation accuracy Test accuracy Loss Validation Loss
AlexNet 92.91% 89.07% 85.91% 26.17% 81.32%

DenseNet-121 99.87% 100% 100% 0.0029% 0.002%

Table 4.10: Table of Comparisons of our experiments on the first Structure.

4.6 Second proposed Structure (Multi Classification)

4.6.1 The used Dataset

We combine two datasets, Aptos 2015 and Aptos 2019, for the Kaggle competition diabetic retinopa-

thy detection. We use the entire Aptos 2019 dataset as is. From the Aptos 2015 dataset, we care-

fully select 17,003 samples, excluding low-quality, blurry, dark, and images with camera artifacts

see figure 4.27. This curated combination enhances the dataset’s quality and diversity for robust

diabetic retinopathy detection algorithm development.

Figure 4.27: low-quality of some images
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Training Validation Test Total

No DR 5770 1650 825 8245

Mild 4733 1367 683 6783

Moderate 3196 911 456 4563

Severe 2462 683 342 3487

Proliferate DR 3771 1082 541 5394

Total 19932 5695 2847 28472

Table 4.11: proposed structure 2

1. Specification of parameters initialization for this structure: The parameters utilized in

this structure are shown in the table below.

Informations

input shape (224,224,3)

Number of Epochs 50

early stopped

Step per Epoch total training images /

batch size =81

Class weight not used ,

balanced dataset

dropOutRate 10%

Patience 5

Last output Layer Dense(2)

ModelCheckpoint val_acc

Monitor

EarlyStopping val_acc

Monitor

Table 4.12: Table of parameters for first proposed structure

82



Experimentation and Results

4.6.2 AlexNet

1. Results and discussion:Training accuracy, validation accuracy, training loss, and valida-

tion loss have all been used to evaluate our model. We give the following graphs to show

how our model performed.

• A plot of accuracy and validation accuracy over epochs:

Figure 4.28: AlexNet Accuracy

• A plot of loss and validation loss over epochs over epochs:

Figure 4.29: AlexNet Loss

• The plots of learning curves 4.28 and 4.29 show a acceptable Fit because:
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– The accuracy and validation accuracy are converging to the same value but when

we arrive to epoch 16 the accuracy still increasing and the validation accuracy

going between value 82% and 85%.

– The loss and loss validation are decreasing to the same value but in epoch 19

there is like overfiting the val loss curve going up.

2. Saving Model

the the early stopping was in the epoch 27. Performance metrics of this model are in the

table ??.

Figure 4.30: Saving model

Accuracy Validation accuracy Loss Validation Loss
AlexNet Model 92.91% 82.14% 6.15% 21.68%

Table 4.13: Table of results Alexnet

3. Testing Model

To see how well our CNN model performs on new images from the Dataset, we will employ

the third subset in this phase.

After testing our model on the third subset:

• Metrics results on test subset

Figure 4.31: testing our model
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4.6.3 DenseNet-121

1. Results and discussion:Training accuracy, validation accuracy, training loss, and valida-

tion loss have all been used to evaluate our model. We give the following graphs to show

how our model performed.

• A plot of accuracy and validation accuracy over epochs:

Figure 4.32: DenseNet-121 Accuracy

• A plot of loss and validation loss over epochs over epochs:

Figure 4.33: DenseNet-121 Loss
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• The plots of learning curves 4.32 and 4.33 show a excellent Fit because:

– The accuracy and validation accuracy are converging to the same value.

– The loss and loss validation are decreasing to the same value.

2. Saving Model

the the early stopping was in the epoch 27. Performance metrics of this model are in the

table 4.34.

Figure 4.34: Saving model

Accuracy Validation accuracy Loss Validation Loss
DenseNet-121 Model 99.47% 97.53% 2.14% 10.70%

Table 4.14: Table of results DenseNet-121

3. Testing Model

To see how well our CNN model performs on new images from the Dataset, we will employ

the third subset in this phase.

After testing our model on the third subset:

• Metrics results on test subset

Figure 4.35: testing DenseNet-121
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Figure 4.36: Classification Report

• Confusion matrix

The confusion matrix is a table that is often used to describe the performance of a

classification model.

Figure 4.37: Confusion matrix

– The element at row 1, column 1 (top-left), 840, represents the number of samples

that belong to the "No DR" class and are correctly predicted as "No DR".

– The element at row 2, column 2, 688, represents the number of samples that

belong to the "mild" class and are correctly predicted as "mild".
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– The element at row 3, column 3, 460, represents the number of samples that

belong to the "moderate" class and are correctly predicted as "moderate".

– The element at row 4, column 4, 323, represents the number of samples that

belong to the "severe" class and are correctly predicted as "severe".

– The element at row 4, column 5, 24, represents the number of samples that be-

long to the "severe" class but are misclassified as "proliferate".

– The element at row 5, column 4, 61, represents the number of samples that be-

long to the "proliferate" class but are misclassified as "severe".

– The element at row 5, column 5, 484, represents the number of samples that

belong to the "proliferate" class and are correctly predicted as "proliferate".

in conclusion:

Our model achieved high accuracy in predicting most of the classes, with the majority of

the elements in the confusion matrix having high values. However, there are some mis-

classifications between the "severe" and "proliferate" classes, as indicated by the non-zero

values in the off-diagonal elements for those classes

4.6.4 Comparisons of our experiments

After seeing the three trials, we determine that DenseNet-121 is the perfect model for the first

structure.The table 4.15 show the comparisons of our experiments.

Accuracy Validation accuracy Test accuracy Loss Validation Loss
AlexNet 92.91% 82.14% 82.93% 6.15% 21.68%

DenseNet-121 99.47% 97.53% 97.05% 2.14% 10.70%

Table 4.15: Table of Comparisons of our experiments on the first Structure.
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4.7 third proposed structure (Detection DR)

4.7.1 The used Dataset

We utilized dataset 3 from Roboflow for this structure.the images annotated to just one classe

DR to detect diabetic retinopathy.

Level Number of images

DR 793

Table 4.16: our dataset

1. Specification of parameters initialization for this structure: The parameters utilized in

this structure are shown in the table below.

Parameter Value

Task Detect

Mode Train

Model yolov8l.pt

Data {dataset.location}/data.yaml

Epochs 100

Imgsz 640

Table 4.17: YOLO Parameter Initialization

2. Results and discussion:Training accuracy, validation accuracy, training loss, and valida-

tion loss have all been used to evaluate our model. We give the following graphs to show

how our model performed.

• Precision Curve

89



Experimentation and Results

Figure 4.38: The model Accuracy

The precision curve showcases the exceptional precision achieved by the YOLO model

. It demonstrates that the model accurately identifies DR with minimal false posi-

tives. The curve consistently maintains high precision values across different con-

fidence thresholds , indicating that the YOLO model achieves excellent accuracy in

detecting DR.

• Recall Curve
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Figure 4.39: The model Accuracy

The recall curve reveals the YOLO model’s outstanding ability to detect a high pro-

portion of true positive objects while minimizing false negatives. It demonstrates

that the model successfully captures a large number of objects in the dataset. The

curve exhibits consistently high recall values across various confidence thresholds

or IoU thresholds, underscoring the YOLO model’s exceptional performance in cap-

turing a vast majority of lession of DR.

• Precision-Recall Curve
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Figure 4.40: The model Accuracy

Looking at the precision-recall curve, we can observe that the precision remains con-

sistently high as the recall increases. This signifies that the YOLO model achieves

precise and reliable DR detection across a range of confidence thresholds.

• F1 Curve
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Figure 4.41: The model Accuracy

The F1 confidence curve for YOLO detection indicates that our model performs ac-

curately across all classes. At a confidence threshold of 0.47, the model achieves an

F1 score of 0.97. This high F1 score suggests a good balance between precision and

recall, resulting in reliable and robust detections.

• Confusion matrix
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Figure 4.42: Confusion matrix

– The top-left element, 34, represents the number of instances that belong to the

"DR" class and are correctly detected as "DR."

– The top-right element, 3, indicates that there are instances of the background

that are incorrectly detected as "DR"

3. Save the model

After training the model will be saved automatically to runs/detect/train/weights.we will

found two models first named best.pt and the second one named last.pt

The main difference is that "best.pt" captures the model’s best performance, while "last.pt"

represents the final state of the model after completing all training epochs.
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Metric Precision Recall F1 Score

DR 100% 100% 97%

Table 4.18: YOLO Evaluation Metrics

4.8 Comparison of our work with previous works

Model Accuracy Validation

accuracy

Test Accu-

racy

Number of

classes

Our DenseNet-

121 (first struc-

ture)

99.87% 100% 100% 2

Our AlexNet (first

structure)

92.91% 89.07% 85.91 2

Sebti riad

binary[50]

96.93% 95.08% 95.65 2

Fallah kawther

binary[35]

98.75% 95.35% 96.02% 2

Esfahan [58] 85% 86% - 2

Our DenseNet-

121 (second

structure)

99.87% 97.53% 97.05 5

Our AlexNet (sec-

ond structure)

92% 82.14% 82.93% 4

Sebti riad [50] 93.06% 81.12% 80,48% 3

Fallah kawther

[35]

96.73% 93.45% 93,43% 4

Table 4.19: Table of comparison

Table 4.19 provides a comparison of different models, including our proposed models, with

other works in the field of diabetic retinopathy detection. The table presents key metrics such
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as accuracy, validation accuracy, test accuracy, and the number of classes.

Our DenseNet-121 (first structure) achieved an accuracy of 99.87%, with both the valida-

tion accuracy and test accuracy reaching 100%. This indicates the excellent performance of the

model in accurately classifying diabetic retinopathy images into two classes.

In comparison, our AlexNet (first structure) achieved a slightly lower accuracy of 92.91%,

with a validation accuracy of 89.07% and a test accuracy of 85.91%. Despite the lower accu-

racy compared to DenseNet-121, AlexNet still demonstrates strong performance in classifying

diabetic retinopathy images.

We also compared our models with two other works: Sebti riad binary [50] and Fallah kawther

binary [35]. Sebti riad binary achieved an accuracy of 96.93% with a validation accuracy of

95.08% and a test accuracy of 95.65%. Fallah kawther binary achieved an accuracy of 98.75%

with a validation accuracy of 95.35% and a test accuracy of 96.02%. Both of these works focus

on the binary classification of diabetic retinopathy images.

Additionally, we included Esfahan [58], which achieved an accuracy of 85% and a validation

accuracy of 86%. However, the test accuracy value is not provided.

Moving to our DenseNet-121 (second structure), which can classify images into five classes,

we obtained an accuracy of 99.87%, a validation accuracy of 97.53%, and a test accuracy of

97.05%. This highlights the effectiveness of the model in achieving high accuracy even with

a larger number of classes.

Similarly, our AlexNet (second structure) achieved an accuracy of 92%, a validation accuracy

of 82.14%, and a test accuracy of 82.93% when classifying images into four classes.

Furthermore, we compared our models with Sebti riad [50] and Fallah kawther [35], which

focused on three and four classes, respectively. Sebti riad achieved an accuracy of 93.06% with

a validation accuracy of 81.12%, while Fallah kawther achieved an accuracy of 96.73% with a

validation accuracy of 93.45%.

Finally, our proposed models, particularly DenseNet-121, demonstrated superior perfor-

mance in terms of accuracy and validation accuracy compared to other works. The ability to

achieve high accuracy in classifying diabetic retinopathy images showcases the effectiveness of

our models in contributing to the field of diabetic retinopathy detection.

Our work examined and approved by ophthalmologist in Biskra Hospital of Ophthalmolo-
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gist. The following figure 4.43 illustrates the approval of our work.

Figure 4.43: Certificate of ophthalmologist
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4.9 Conclusion

In this chapter, we described the many parameters for each structure, worked with various

datasets, described all experiments, and presented the findings with plots and the confusion

matrix for the test phase. The excellent results we have gotten motivate us to improve the model

design.
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Conclusion and Perspectives

Deep learning proved again its performance in detection and classification, especially in health-

care, and the best proof is our work, where the traditional method for detection of DR is still

consuming time, challenging, and it is more expensive.

In this research, we have suggested a variation of deep learning architecteurs to classify and

detect DR, in fact, we have looked at a number of related works that have been put out to deal

with image classification to diagnose DR. We correct some falsely proposed structures in the

previous works and used different architectures to improve the existing results. We used AlexNet

and DenseNet-121 to classify DR into 2 classes (No DR,DR) and 5 classes (No DR,Mild,Moderate,Severe,

Proliferate), and the Yolov8 model to detect DR with bounding boxes. All used models were

compared with different models like CNN and Resnet, where the best accuracy among all was

obtained by the used model.

The result showed that DenseNet-121 and Yolov8 can be used in medical diagnosis, where

they showed excellent results 99% in 2 classes and 93% in 5 classes.

In the near future,we will develop the data by increasing the number of images to get it bigger

and bigger.We also, intend to work on other kinds of diseases especially diseases diagnosed by x

rays or Mri.
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