

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
Ministère de l’Enseignement Supérieur et de la Recherche Scientifiq

 Université Mohamed Khider – BISKRA

Faculté des Sciences Exactes, des Sciences de la Nature et de la vie

Département d’informatique

N° d’ordre:SIOD34/M2/2022

 Mémoire

 Présenté pour obtenir le diplôme de master académique en

 Informatique

 Systeme d’Information Optimisation Et Decision (SIOD)

 Autocomment Generation from Source

 Code using ML Techniques

Par :

DORSAF KIHAL

Soutenu le 20/062023 devant le jury composé de :

Aloui Imen MCB Président

Tibermacine Okba MCA Rapporteur

Benchaabane Mofida MMA Examinateur

Année universitaire 2022-2023

Dédicace

I dedicate this work to myself.

Remerciement

First of all, I would like to offer thanks to Allah for having granted us all the

determination, and strength to carry out this modest work. I would also like

to be infinitely grateful to my supervisor Dr.TIBERMACINE Okba for his

advice, his patience, his availability, and his support throughout this period.

I would like to express my gratitude to my parents Abd ELmadjid Rania ,my

sister and my brothers Abd Raouf and Fares Seif Dine, who gave me their

moral support and lively discussions throughout my effort, and my

grandmother Rachida and my grandfatherAhmed Bouchouareb who always

accompanied me with his prayers.

We would like to express our deepest gratitude and sincere thanks to the

members of the jury for having accepted to judge our work and to have

enriched it.

Abstract

During software maintenance, developers spend a lot of time understanding

the source code. Existing studies show that code comments help developers

comprehend programs and reduce additional time spent on reading and

navigating source code. Unfortunately, these comments are often

mismatched, missing or outdated in software projects. Developers have to

infer the functionality from the source code. This paper proposes a new

approach to automatically generate code comments for the functional units

of Java language, namely, Java methods. The generated comments aim to

help developers understand the functionality of Java methods.

Keywords: comment generation, deep learning, machine learning, LSTM,

Code2Seq, Software Development, Java

General Introduction

Contexte

Source code comments play a crucial role in software development by

enhancing code readability, maintainability, and collaboration among

developers. These comments provide explanations and descriptive language

that is not executed by the program itself. They help both the original author

and future developers understand the purpose, functionality, and logic of

the code by providing additional details and insights.

Generating comments within source code is a fundamental practice in

software development. It involves adding explanatory text to clarify the

purpose, functionality, and logic of the code. Such comments serve as

documentation, benefiting both the original author and future developers

who work on the codebase. Autocomment creation improves code

readability, documentation, and relieves developers from the manual task of

writing and maintaining comments. It also ensures consistent and

informative code documentation.

However, due to factors such as tight project schedules and other

constraints, code comments are often mismatched, missing, or outdated in

many software projects. Automatic generation of code comments can

address these issues, saving developers time and aiding in source code

understanding. Several approaches have been proposed to generate

comments for methods and classes in Java, which is the most popular

programming language in the past decade. These techniques range from

manual crafting to leveraging Information Retrieval. In this thesis, we aim to

develop a novel model for generating descriptive comments based on Java

source code and Abstract Syntax Tree (AST) using NMT based techniques. A

special attention is given to Code2seq and Open NMT architecture to

develop automatic comment generator from source code.

Objective and Research Questions:

The objective of this master thesis is to explore the generation of comments

from source code using Neural Machine Translation (NMT). NMT has shown

significant advancements in natural language processing tasks and has the

potential to create high-quality translations. By applying NMT approaches to

generate comments from source code, we can investigate the feasibility of

leveraging these models to automate the process and enhance the clarity

and effectiveness of comment generation.

The primary research question addressed in this study is as follows:

• Research Question: How can Neural Machine Translation be leveraged

to generate comments from Java code snippets (Java methods)?

Manuscript organization

This manuscript is organized into four chapters as follows:

• Chapter 1: Neural Machine Translation: This chapter provides an

overview of the foundational concepts and techniques of neural

machine translation.

• Chapter 2: Source Code Analysis and Documentation: In this chapter,

we describe source code analysis, documentation practices, and

explain the concept of abstract syntax tree (AST) and structure-based

traversal.

• Chapter 3: NMT-based Comment Generation from Source Code: The

third chapter presents our proposed models for generating comments

from source code and outlines the generation process. It also includes

a discussion of related work in the field.

• Chapter 4: Implementation, Testing, and Validation: In this chapter, we

showcase the frameworks, tools, and libraries employed in this

project. Additionally, we present the results of our work.

• Conclusion: The manuscript concludes with a general summary and

some perspectives.

Contents

General Introduction ... 5

1 Neural Machine Translation ... 11

1.1 Introduction ... 11

1.2 Machine Learning .. 11

1.3 Neural Machine Translation .. 12

1.4 Neural Networks .. 14

1.4.1 Architecture of Neural Network ... 14

1.5 Type of Neural Network .. 14

1.5.1 Linear Models ... 14

1.5.2 Multiple Layers ... 15

1.6 Neural Languge Models ... 15

1.6.1 Feed-Forward Network .. 16

1.6.2 Word Embedding .. 16

1.6.3 Reccurent Neural Network RNN... 16

1.6.4 Long Short-Term Memory Models (LSTM) .. 17

1.6.5 Gated Reccurent Units ... 17

1.6.6 Deep Model .. 18

1.7 Neural Translation Models(Tronsformer) ... 19

1.8 Transformer Functioning ... 21

1.8.1 Data Preprocessing ... 21

1.8.2 Model Training ... 21

1.8.3 Model Prediction .. 21

1.9 Sequence To Sequence Model (Seq2Seq) ... 22

1.9.1 Encoder - Decoder Architecture ... 23

1.10 Conclusion ... 24

2 Code Source Analysis and Documentation .. 25

2.1 Introduction ... 25

2.2 Code Source ... 25

2.2.1 Code Statement Level .. 26

2.3 Code Source Documentation .. 26

2.3.1 General Principles ... 26

2.4 Comments ... 28

2.4.1 Comments and Inline Documentation ... 28

2.4.2 Comments Categories .. 28

2.5 Code Source Analysis ... 29

2.5.1 Analysis of Source code .. 29

2.6 Structure and Necessary Elements for source code ... 31

2.6.1 Source File .. 31

2.6.2 Method and Function ... 31

2.6.3 Identifying ... 32

2.7 Abstract Syntax Tree.. 32

2.7.1 AST Tools .. 34

2.7.2 AST Design and Construction ... 35

2.7.3 Stages of Creating an AST ... 36

2.7.4 Application of Abstract Syntax Trees ... 36

2.8 Graph Traversal Algorithms ... 37

2.8.1 Breadth-First Search (BFS) .. 38

2.8.2 Depth-First Search (DFS) .. 39

2.9 Structure Based Traversal ... 39

2.10 Conclusion ... 41

3 NMT-based Comment Generation from Source Code ... 41

3.1 Introduction ... 41

3.2 Related work .. 42

3.3 An approach for Comment generation from java source code .. 42

3.3.1 Model design .. 43

3.3.2 Out of Vocabulary problem .. 44

3.4 Dataset ... 44

3.4.1 Preprocessing ... 45

3.4.2 Building Vocabularies ... 46

3.5 Abstract Syntax Tree.. 47

3.5.1 SBT traversal ... 48

3.6 Code2Seq architecture .. 50

3.6.1 Encoding ... 50

3.6.2 Decoding ... 51

3.7 Evaluation metrics ... 54

3.7.1 Precision ... 55

3.7.2 Recall .. 55

3.7.3 F1 .. 55

3.7.4 BLEU score .. 56

3.8 Conclusion ... 57

4 Implementation, Experiments and Results .. 57

4.1 Introduction ... 57

4.2 Environment of Development ... 58

4.2.1 Python... 58

4.2.2 Google Colaboratory .. 58

4.2.3 Visual Studio Code .. 59

4.3 Tools of Devlopelment .. 59

4.3.1 Tensorflow .. 59

4.3.2 Numpy .. 59

4.4 Experimental methodology ... 60

4.5 Experiments ... 60

4.6 First Experiment: Code2Seq based-model experimentation .. 61

4.6.1 Description ... 62

4.6.2 Training ... 63

4.6.3 Validation and results ... 64

4.6.4 Discussion ... 65

List of Figures

1.1 Relation between AI and ML and DL 13

1.2 Process of Neural Machine Translation 15

1.3 Visualization of a neural network and deep neural network 15

1.4 linear model scoring formula . 16

1.5 feed forward neural network . 18

1.6 Recurrent neural networks (RNNs) 19

1.7 Long Short-Term Memory Models 20

1.8 Gated Recurrent Units . 20

1.9 deep neural network . 21

1.10 The Transformer architecture

1.11 sequence to sequence architecture, Blue and green boxes are LSTM

23

 cells . 26

1.12 encoder-decoder- architecture 27

1.13 encoder-decoder- architecture RNN 27

2.1 java code source example . 30

2.2 Code Source Documentation . 31

2.3 how static analysis work . 34

2.4 analysis code source . 36

2.5 Introduction to Abstract Syntax Trees 38

2.6 Abstract Syntex Tree Example 39

2.7 Abstract Syntex Tree Tooling 40

2.8 The Different stages of creating an AST. 42

2.9 Graph Traversal Algorithm . 44

2.10 Breadth-First Search algorithm 45

2.11 Depth-First Search algorithm 46

2.12 SBT Algorithm . 47

2.13 Example an AST to SBT . 48

3.1 General Process of the proposed approach 52

3.2 A Sample from the used data . 53

3.3 Preprocessing function . 54

3.4 Distribution of comment lengths below 40 words in length 54

3.5 Build vocabulairae function . 55

3.6 Function of the SBT . 57

3.7 an example of the Java method 58

3.8 Graphic representation of Encoder and Decoder. 60

3.9 Example LSTM, operation groups are overlaid for clarity. 61

3.10 The Decoder part . 62

3.11 IR metrics function . 64

3.12 Implementation of BLEU-4 calculation 65

4.1 Overleaf logo. 67

4.2 Overleaf logo. 67

4.3 Visual studio logo. 68

4.4 Tensorflow logo. 68

4.5 Tensorflow logo. 69

4.6 The Code2seq function from the proposed model 71

4.7 . 72

4.8 The Configuration file . 73

Chapter 1

Neural Machine Translation

 1.1 Introduction

Machine Translation (MT) is an important task that aims to translate natural

language sentences using computers. The early approach to machine

translation relies heavily on handcrafted translation rules and linguistic

knowledge. As natural languages are inherently complex, it is difficult to

cover all language irregularities with manual translation rules. In this

chapter, we present an overview about Neural Machine translation (NMT),

especially in the context of the translation of source code as a sequence of

words to comment generation cases. Therefore, we will discuss in general

the Recurrent Neural Networks (RNNs) which are sequence-based deep

learning architectures. With a focus on long-short-term memory (LSTM)

networks which deal with sequential data and time series, RNNs are ideal for

mimicking source code’s sequential structure.

 1.2 Machine Learning

Artificial intelligence (AI) has a subject called machine learning that focuses

on developing algorithms and models that let computers learn from data

and get better at a particular activity. Machine learning, in other terms, is

the act of teaching a computer system to recognize patterns and make

choices without being expressly programmed to do so.

supervised learning, unsupervised learning, and reinforcement learning are the

three primary categories of machine learning.

In supervised learning, a model is trained on labeled data with the

appropriate result being given for each sample of the input. By reducing the

discrepancy between its predictions and the accurate labels in the training

data, the model learns to map inputs to output

In unsupervised learning, a model is trained on unlabeled data and is

required to discover patterns and structure on its own, without being given

specific objectives. Tasks like grouping, dimensionality reduction, and

anomaly detection require this form

A model is trained through reinforcement learning to take decisions

based on rewards or consequences. The model develops the ability to act in

a way that maximizes a success indicator known as a reward signal. In tasks

like playing video games, building robots, and solving optimization issues,

this kind of learning is employed.

Deep learning, decision trees, random forests, support vector machines,

and a number of other subfields are examples of machine learning

algorithms that can be further divided into subcategories. [1]

Figure 1.1: Relation between AI and ML and DL

 1.3 Neural Machine Translation

Neural machine translation (NMT) is a type of machine translation that uses

artificial neural networks to translate text from one language to

and get better at a particular activity. Machine learning, in other terms, is

e act of teaching a computer system to recognize patterns and make

choices without being expressly programmed to do so.

supervised learning, unsupervised learning, and reinforcement learning are the

three primary categories of machine learning.

ed learning, a model is trained on labeled data with the

appropriate result being given for each sample of the input. By reducing the

discrepancy between its predictions and the accurate labels in the training

data, the model learns to map inputs to outputs.

In unsupervised learning, a model is trained on unlabeled data and is

required to discover patterns and structure on its own, without being given

specific objectives. Tasks like grouping, dimensionality reduction, and

anomaly detection require this form of learning.1.1

A model is trained through reinforcement learning to take decisions

based on rewards or consequences. The model develops the ability to act in

a way that maximizes a success indicator known as a reward signal. In tasks

ames, building robots, and solving optimization issues,

this kind of learning is employed.

Deep learning, decision trees, random forests, support vector machines,

and a number of other subfields are examples of machine learning

er divided into subcategories. [1]

Figure 1.1: Relation between AI and ML and DL

Neural Machine Translation

Neural machine translation (NMT) is a type of machine translation that uses

artificial neural networks to translate text from one language to another.

and get better at a particular activity. Machine learning, in other terms, is

e act of teaching a computer system to recognize patterns and make

supervised learning, unsupervised learning, and reinforcement learning are the

ed learning, a model is trained on labeled data with the

appropriate result being given for each sample of the input. By reducing the

discrepancy between its predictions and the accurate labels in the training

In unsupervised learning, a model is trained on unlabeled data and is

required to discover patterns and structure on its own, without being given

specific objectives. Tasks like grouping, dimensionality reduction, and

A model is trained through reinforcement learning to take decisions

based on rewards or consequences. The model develops the ability to act in

a way that maximizes a success indicator known as a reward signal. In tasks

ames, building robots, and solving optimization issues,

Deep learning, decision trees, random forests, support vector machines,

and a number of other subfields are examples of machine learning

Neural machine translation (NMT) is a type of machine translation that uses

another.

NMT models train on a huge quantity of bilingual data, in contrast to

conventional rule-based or statistical machine translation techniques.

Typically, NMT models have an encoder and a decoder, each of which is a

neural network. The decoder receives the input sentence from the encoder

and decodes it into a fixed-length representation. Based on the input

representation and the previous tokens it has created, the decoder creates

the output sentence one token at a time.

NMT models can be trained using a variety of techniques, including

supervised learning, unsupervised learning, and reinforcement learning. In

supervised learning, the model is trained on pairs of source and target

language sentences, with the goal of minimizing the difference between the

predicted translation and the correct translation. In unsupervised learning,

the model is trained on monolingual data in both the source and target

languages, with the goal of learning to translate without explicit supervision.

In reinforcement learning, the model is trained to maximize a reward signal,

which can be thought of as a measure of translation quality.

NMT models have been shown to be highly effective at translating

between a wide range of language pairs, and have achieved state-of-the-art

results on several machine translation benchmarks. Some of the advantages

of NMT models over traditional machine translation methods include their

ability to handle long-range dependencies between words, their ability to

learn representations that generalize across different languages, and their

ability to produce more fluent and naturalsounding translations.??

NMT models do have significant drawbacks, though, such as their high

processing needs, propensity to create translations that are excessively

impacted by the training data, and their inability to handle uncommon or

uncommon terms. Addressing these drawbacks and enhancing the

performance of NMT models across a range of translation tasks are the main

goals of ongoing research. The process followed for NMT is depicted in

figure 3.1.

Figure 1.2: Process of Neural Machine Translation

 1.4 Neural Networks

Neural networks, often known as artificial neural networks (ANNs) is a

machine learning algorithm . The idea of these networks has been inspired

from the neurons in human brains that communicate with each other using

electrical and chemical signals Which is later translated into an actions , the

same way in neural networks . The output from the previous layer is the

input to the next layer . In the end, the final value arrives at the output layer

and it is taken as a prediction . In deep neural network, The more hidden

layers, the more efficient and complex the network.[2] [3]

Figure 1.3: Visualization of a neural network and deep neural network

 1.4.1 Architecture of Neural Network

In the 1980s, most neuron networks formed only one layer due to the cost

of computing and the availability of data. Nowadays we can This allows us to

have more layers hidden in our neural networks, hence the nickname deep

learning. The different types of neuronal networks available for use They are

also known as

Convolutionary Neural Networks (CNNs) and Recurrent neural networks

(RNNs).

 1.5 Type of Neural Network

 1.5.1 Linear Models

Linear models are a core element of statistical machine translation.Possible

translations x from A sentence is represented by a set of features hi(x).Each

feature is weighted by the parameter i to get the total score.Ignore the

exponential function we used to rotate earlier To convert a linear model to a

log-linear model, the following formula summarizes the model.

Figure 1.4: linear model scoring formula

Graphically, a linear model can be represented by a network of input

eigenvalues Nodes, arrows are weights, scores are output nodes (see Figure

2)

Most prominently, we use linear models to combine different

components of a machine translation system, such as the language model,

the phrase translation model, the reordering model, and properties such as

the length of the sentence, or the accumulated jump distance between

phrase translations. Training methods assign a weight value i to each such

feature hi(x), related to their importance in contributing to scoring better

translations higher. In statis- tical machine translation, this is called tuning.

 1.5.2 Multiple Layers

Neural systems adjust straight models in two critical ways. The primary is the

utilize of multiple layers.Instead of computing the output value directly from

the input values, a hidden layer

The network is processed in two steps. First, a linear combination of
weighted input node is computed to produce each hidden node value. Then a

linear combination of weighted hidden nodes is computed to produce each
output node value. At this point, let us present numerical documentations

• a vector of input nodes with values x = (x1, x2, x3, ...xn) T

• a vector of hidden nodes with values h = (h1, h2, h3, ...hm) T

• a vector of output nodes with values y = (y1, y2, y3, ...yl) T

•a matrix of weights connecting input nodes with hidden nodes W = wij

•a matrix of weights connecting hidden nodes with output nodes U = uij

 1.6 Neural Languge Models

In order to lessen the effects of the curse of dimensionality, neural network

language models, which are based on neural networks, can develop distributed
representations.

A neural language model surpasses n-gram language models in terms of

dimensionality reduction by using distributed word representations. Several

models based on feedforward networks, log-bilinear models, skip-gram

models, and recurrent neural networks have been developed. Each word in

the vocabulary is represented as a real-valued feature vector, and these

vectors are linked together so that the cosine of the angles between these

vectors is high for words that are semantically related. [4]

 1.6.1 Feed-Forward Network

A feedforward network is a multilayer network in which the units are

connected with no cycles; the outputs from units in each layer are passed to

units in the next higher layer, and no outputs are passed back to lower

layers.

A feed forward neural network is a type of artificial neural network in which

there is no cycle in the connections between the nodes. A recurrent neural

network, in which particular paths are cycled, is the reverse of a feed

forward neural network. Since information is only processed in one

direction, the feed forward model is the simplest type of neural network.

Although the data may move through several hidden nodes, it always

proceeds forward and never backward.

Figure 1.5: feed forward neural network

 1.6.2 Word Embedding

Word embeddings, also known as word immersion, are the mapping of

words to real-number vectors in a condensed space dimension [34], which

may be one of the key advancements for the impressive results of deep

learning methods on challenging natural language processing problems. The

vectors of word inclusion represent words and their contexts; as a result,

words with similar meanings (synonyms) or close semantic relationships will

have more similar dives. Additionally, word inclusions must reflect the

relationships between individual words. For instance, the word "man"

should be written "king" just as "women" is written "queen."

 1.6.3 Reccurent Neural Network RNN

Recurrent neural networks (RNNs) are a form of neural network in which the

results of one step are fed into the current stage as input. Traditional neural

networks have inputs and outputs that are independent of one another, but

there is a requirement to remember the previous words in situations when it

is necessary to anticipate the next word in a phrase. As a result, RNN was

developed, which utilized a Hidden Layer to resolve this problem. The

Hidden state, which retains some information about a sequence, is the

primary and most significant characteristic of RNNs.

RNNs have a "memory" that retains all data related to calculations. It

executes the same action on all of the inputs or hidden layers to generate

the output, using the same settings for each input. In contrast to other

neural networks, this minimizes the complexity of the parameter set.

Figure 1.6: Recurrent neural networks (RNNs)

 1.6.4 Long Short-Term Memory Models (LSTM)

An RNN model is a version known as long short-term memory (LSTM). A

LSTM can handle lengthy time-series data, but an RNN can only memorize

short-term information. In addition, lengthy sequence data present an RNN

model with the vanishing gradient problem, which LSTM can avoid during

training. An LSTM model has automated control over whether to keep

important properties in the cell state or toss out unimportant ones, and it

can recall past long-term time-series data. The input gate, forget gate, and

output gate are the three gates that an LSTM model uses to regulate its

characteristics. The input gate regulates how new information enters the cell

state.

The main components of the LSTM are its gates. There are three gates in an

LSTM: the input gate, the forget gate, and the output gate. The input gate

will control the inflow of new information into the cell. The forget gate will

control the content of the memory, that is, the forget gate will decide if we

want to forget a piece of information so we can store new information.

The output gate will control when the information is used in the output

from the cell. A gated recurrent unit (GRU) is a simplification of an LSTM.

Unlike an LSTM, a GRU has just two gates. This kind of setup ultimately

makes the execution faster as there is a lower number of weights to learn

 1.6.5 Gated Reccurent Units

When compared to long short term memory (LSTM), the Gated Recurrent

Unit (GRU) is a type of recurrent neural network (RNN). GRU is quicker and

requires less memory than LSTM, however LSTM is more accurate when

working with datasets that contain longer sequences.

Additionally, GRUs address the issue with vanishing gradients that affects

regular

Figure 1.7: Long Short-Term Memory Models

recurrent neural networks (values used to update network weights). Grading

may become too little to have an impact on learning if it shrinks over time as

it back propagates, rendering the neural network untrainable.

RNNs can basically "forget" lengthier sequences if a layer in a neural net is

unable to learn.

GRUs solve this problem through the use of two gates, The update gate and

reset gate are two gates that GRUs utilize to address this issue. These gates

may be taught to retain information from further back and determine what

information is let through to the output. As a result, it can transfer

important information along an event chain to improve its forecasts.

Figure 1.8: Gated Recurrent Units

 1.6.6 Deep Model

An artificial neural network (ANN) with numerous layers in between the

input and output layers is known as a deep model. In a deep model,

information is transformed via a number of non-linear layers in a

hierarchical fashion. The model may learn increasingly sophisticated

representations of the input data by employing several layers, which can

increase the predictability of the model.

Deep models have grown in prominence in recent years as a result of their

propensity to handle challenging problems including audio, picture, and

natural language processing. Convolutional neural networks (CNNs) for

image recognition and recurrent neural networks (RNNs) for sequence

modeling are two examples of deep models.

However, because of problems like vanishing gradients and overfitting,

training deep models can be difficult. To assist with these issues, academics

have created approaches including regularization, dropout, and batch

normalization.

Figure 1.9: deep neural network

 1.7 Neural Translation Models(Tronsformer)

The Transformer is a deep learning model that was first proposed in 2017. It

uses a "self-attention" method that enhances neural machine translation

(NMT) applications’ performance in comparison to the conventional

recurrent neural network (RNN) model. As a result, training for natural

language processing (NLP) tasks is accelerated.

A neural network called a transformer model follows relationships in

sequential input, such as the words in this phrase, to acquire context and

subsequently meaning.

Transformers use positional encoders to tag data elements coming in and

out of the network.These tags are followed by attention units, which

calculate a sort of algebraic map showing how each element connects to the

others.

Figure 1.10: The Transformer architecture The

Transformer model, like the Sequence-to-Sequence

(seq2seq) machine translation paradigm, is built on an

encoder-decoder architecture.However, the Transformer

differs from the seq2seq model in three ways:

• Transformer Block: The recurrent layer in seq2seq is replaced by a

Transformer Block. This block contains a multi-head attention layer

and a network with two Position-Wise Feed-Forward network layers

for the encoder. Another multi-head attention layer is used to

compute the encoder state for the decoder.

• Add Norm: The inputs and outputs of both the multi-head attention

layer and the Position-Wise Feed-Forward network are processed by

two Add Norm layers which contain a residual structure and a layer

normalization layer.

• Position Encoding: Since the self-attention layer does not distinguish

the order of items in a given sequence, a positional encoding layer is

used to add sequential information into each sequence item.

 1.8 Transformer Functioning

Data preparation, model training, and model prediction are the

Transformer’s three main tasks; Data preprocessing, model training and

model prediction.

 1.8.1 Data Preprocessing

The data is preprocessed using tokenizers before being fed into the

Transformer model.Tokenization of the inputs is followed by the conversion

of the created tokens into the token IDs required by the model.Tokenizers,

for instance, are created for PyTorch by using the "AutoTokenizer from

pretrained" function to:

• Get tokenizers that correspond to pretrained models in a one-to-one

mapping.

• Download the token vocabulary that the model needs when using the

model’s specific tokenizer.

 1.8.2 Model Training

A well-liked training technique for neural machine translation is teacher

forcing. It cuts down on training time by using the actual output as inputs

rather than the anticipated output from the prior timestamp.

 1.8.3 Model Prediction

• The encoder encodes the input sentence of the source language.

• The decoder uses the code generated by the encoder and the start

token () of the sentence to predict the model.

• At each decoder time step, the predicted token from the previous time

step is fed into the decoder as an input, in order to predict the output

sequence token by token. When the end-of-sequence token () is

predicted, the prediction of the output sequence is complete.

 1.9 Sequence To Sequence Model (Seq2Seq)

Sequence-to-Sequence (or Seq2Seq) is a neural net that transforms a given
sequence of elements, such as the sequence of words in a sentence, into

another sequence.

Sequence transformation is the process used by Seq2seq to change one

sequence into another. To get over the vanishing gradient issue, it uses a

recurrent neural network (RNN), or more frequently an LSTM or GRU. The

output from the preceding stage serves as the context for each item. One

encoder and one decoder network make up the main parts. Each item is

converted by the encoder into a matching hidden vector that includes both

the object and its context. Using the previous output as the input context,

the decoder reverses the process and produces the vector as an output item.

Seq2Seq models are particularly good at translation, where the sequence

of words from one language is transformed into a sequence of different

words in another language. A popular choice for this type of model is Long-

Short-TermMemory (LSTM)-based models. With sequence-dependent data,

the LSTM modules can give meaning to the sequence while remembering (or

forgetting) the parts it finds important (or unimportant). Sentences, for

example, are sequencedependent since the order of the words is crucial for

understanding the sentence. LSTM are a natural choice for this type of data.

Encoder and Decoder are the main components of Seq2Seq models. The

input sequence is translated by the encoder into an n-dimensional vector in

a higher level space. The Decoder receives this abstract vector and converts

it into an output sequence. The output sequence might consist of symbols,

another language, a duplicate of the input, etc.

Figure 1.11: sequence to sequence architecture, Blue and green boxes are

LSTM

cells

 1.9.1 Encoder - Decoder Architecture

Encoder-decoder architecture is a type of neural network architecture that is

best suited for use cases like machine translation where the input is a series

of data and the output is another sequence of data. In other words,

sequence-to-sequence modeling is best suited to encoder-decoder

architecture. The initial purpose of the encoder-decoder design was to

address the issue of machine translation, which entails translating text from

one language to another. The major difficulty in machine translation is that it

is challenging to directly map the input to the output since the input and

output sequences have distinct lengths and structures.

The input data is initially passed through an encoder network in this

configuration. The encoder network converts the input data into a numerical

form that extracts the crucial information. The hidden state is another name

for the numerical representation of the input data. The decoder network is

subsequently given with the numerical representation (hidden state). One

output sequence element is produced by the decoder network at a time to

produce the output. The encoder decoder architecture is shown in the

illustration below. As seen in the image below, data sequences for both the

input and output might have different lengths.

RNN/LSTM used as an Encoder and a Decoder: For applications like

machine translation, where the input and output are both collections of

words with different lengths, this architecture can be employed. While the

RNN/LSTM in the decoder may produce the appropriate output sequence of

words in a different language, the RNN/LSTM in the encoder can encode the

input sequence of words into a hidden state or numerical representation.

The encoder-decoder architecture shown below uses RNN in both the

encoder and the decoder networks. English words are used as the input

sequence, and German is translated automatically.

Figure 1.12: encoder-decoder- architecture

Figure 1.13: encoder-decoder- architecture RNN

 1.10 Conclusion

The foundational information required to understand the ideas of neural

machine translation, recurrent neural networks (RNNs), long short-term

memory (LSTM) networks, and sequence-to-sequence (seq2seq) models has

been covered in this chapter. For the upcoming investigation of comment

creation from source code using these methodologies, it is essential to have

a firm grasp of these ideas.

Chapter 2

Code Source Analysis and

Documentation

 2.1 Introduction

AST tools and code source documentation both aid in the comprehension,

evaluation, and advancement of software projects. Developers can

understand and edit code with the help of documentation, while AST tools

provide insights and capabilities for sophisticated program analysis and

manipulation. In this chapter, we focus on Source code and especially on

documentation source code, analysis source code, and the categories of

comments in Java code. we talk also about the Abstract Syntax tree, AST

tools, and AST application, we describe traversed algorithms (structure-

based traversal and graph traversal algorithm).

 2.2 Code Source

Source code is a text that represents the instructions that must be executed

by a microprocessor. The source code is often materialized in the form of a

set of text files. The source code is usually written in a programming

language, thus enabling better human understanding. Once the source code

is written, it generates a binary representation of a sequence of instructions

executable by a microprocessor. for example of source code 3.1

Figure 2.1: java code source example

 2.2.1 Code Statement Level

Software is a collection of programs with documentation. A program is a

sequence of code statements. Many researchers have proposed comment-

generation methods at the code block level. We can classify it further into

two categories. The first is the single code statement level (pseudo code

generation), and the second, the multiple code statement level.[5]

 2.3 Code Source Documentation

Source code documentation is a type of technical document that is

embedded within the source code itself. Software developers write source

code documentation at various levels of abstraction. Developers require

source code documents to understand the code during the maintenance

phase.

Code Documentation By using comments, annotations, and detailed
justifications, the code may be documented. Future developers will benefit

from having a better understanding of the functions and purposes of various

code parts.
in this section describes in a very synthesized manner the rules

concerning the documentation of the code Programming in C++ and Java.

This document also provides guidelines for Formatting the source code .

 2.3.1 General Principles

• The documentation is intended for readers and users of a program,

not not to its author (except 6 months after writing it; the author then

no longer remembers Good for what he did.

• It helps the reader understand the source code and use it; it does not

duplicate information already explicitly contained in the source code.

• It must be clear, concise, accurate, complete, uniform and simple to

maintain.

• It must be done as the program is developed, otherwise it It will never

be done (correctement).

• It facilitates the maintenance of programs in an organization.

programming style, which allows a person to It’s easier to get

another’s job done.

Keep in mind that documentation is a continuous operation. It’s crucial

to update the documentation when the code changes and new features are

introduced in order to keep it accurate and helpful.

Figure 2.2: Code Source Documentation

Software development must include code source documentation

because it promotes better knowledge, maintainability, and developer

cooperation. Here are some important considerations for source code

[6]documentation:

1. Readme Files:Include a readme file that gives a summary of the

codebase, installation guidelines, a getting started guide, and links to

pertinent documentation or resources at the project level.

2. Code Dependencies:Identify the external frameworks, libraries, or

modules that the code uses. To guarantee correct configuration and

setup while deploying or working on the codebase, note the versions

and dependencies.

3. Code Style and Standards:Make that the code adheres to accepted

best practices and coding standards. Record any departures from the

norms and offer suggestions for bringing the code into line with the

desired aesthetic.

4. Documentation Format:Establish the documentation for the code’s

format. Inline comments, a separate documentation file, or an outside

documentation tool like Doxygen or Javadoc are all possible forms of

documentation.

5. Purpose and Overview:Give a brief explanation of the functionality and

goal of the code. Describe its key characteristics, planned applications,

and integration with the system’s general design.

6. Module/Class/Function Level Documentation: Clearly describe the

roles, inputs, outputs, and any pertinent side effects for each module,

class, and function. Specify the desired actions and usage instructions,

along with the parameters’ descriptions and return values.

 2.4 Comments

 2.4.1 Comments and Inline Documentation

Use inline comments within the code to explain complex or non-obvious

sections, algorithms, or decisions. Comment key variables, constants, or

logic blocks to provide additional context. However, strive for self-

explanatory code and avoid excessive or redundant comments.

 2.4.2 Comments Categories

For the Java and C/C++ programming languages, we differentiate between

seven different types of comments:

• Copyright Comments: include information about the copyright or the

license of the source code file. They are usually found at the beginning

of each file.

• Header Comments: give an overview about the functionality of the

class and provide information about, e. g.,the class author, the revision

number, or the peer review status. In Java, headers are found after the

imports but before the class declaration.

• Member Comments :describe the functionality of amethod/field,

being located either before or in the same line as the member

definition. They provide information for the developer and for a

project’s API.

• Inline Comments :describe implementation decisions within a method

body.

• Section Comments : address several methods/fields together

belonging to the same functional aspect. A fictitious example looks

like// —- Getter and Setter Methods —and is followed by numerous

getter and setter methods.

• Code Comments: contain commented out code which is source code

ignored by the compiler. Often code is temporarily commented out for

debugging purposes or for potential later reuse.

• Task Comments : are a developer note containing a remaining todo, a

note a about a bug that needs to be fixed,or a remark about an

implementation hack.

 2.5 Code Source Analysis

Static code analysis, in which the source code is examined just as code and

the program is not in use, is the same as source code analysis. This

eliminates the requirement for developing and utilizing test cases and may

help it avoid featurespecific issues like buttons that aren’t the color that the

specs specify. It focuses on identifying programming errors such lines of

code that might cause crashes that could be harmful to the program’s ability

to run properly.[7]

Static code analysis, sometimes referred to as code source analysis or

source code review, is the act of looking at the source code of a software

program to find potential problems, weaknesses, or enhancements. It entails

examining the code’s structure, grammar, and logic without actually running

it.

Coding standards compliance, bug detection, and security vulnerability

identification are all goals of code source analysis. It aids in the early

identification of possible problems by developers, enabling them to address

them before they become difficulties during runtime.

Figure 2.3: how static analysis work

 2.5.1 Analysis of Source code

Various methods and instruments can be used to study the code during

source code analysis[8], including:

• Code Review: To begin, read through the source code to become

familiar with its organization, structure, and features. Identify the key

classes, modules, and components that make up the codebase.

• Code Flow:Trace the execution route to analyze the code flow and find

any potential bottlenecks, dependencies, or performance problems.

Record the high-level overview of the code’s operation and the

relationships between its many components.

• Error Handling::Check the code’s handling of exceptions, errors, and

edge situations. Any error-handling procedures that are in place

should be documented, along with how they affect the code’s overall

behavior.

• Security Analysis: Examine the system for potential security flaws like

SQL injections, cross-site scripting (XSS), or weak authentication and

authorisation systems. Keep a record of any hazards found and make

suggestions for improvements or mitigations.

• Performance Analysis:Check the code for any performance issues or

potential improvements. Record any areas where performance,

memory consumption, or resource utilization might be improved.

• Testing and Test Coverage:Check the code to see whether it has any

unit tests, integration tests, or other automated tests. Examine the

code coverage and note any testing strategy shortcomings.

• Automated tools: specialized software tools made to check source

code for compliance with coding standards, common programming

errors, and security flaws. These tools use pre-established rules or

patterns to examine the code.

• Metrics analysis:To evaluate the quality and maintainability of the

code, code metrics including complexity, cyclomatic complexity,

duplication, and other software metrics are analyzed.

Developers can find possible problems, minimize defects, increase

security, optimize speed, and improve code quality by doing code source

analysis. For software developers to create trustworthy and durable

applications, this technique is crucial.

Figure 2.4: analysis code source

2.6 Structure and Necessary Elements for source code

 2.6.1 Source File

Each source file contains an entity consisting of the elements[6] The

following:

• Name of the program

• A brief description

• the authors and their registrations;

• the date of completion of the first implementation

• the end date of each version with authors and authors;

• the course for which the file is developed;

• a longer description containing:

a- program entries and their preconditions; b- the

outputs of the program and their post-conditions.

• A history of changes for each version.

 2.6.2 Method and Function

Each method and function:

• includes an entrance describing the processing carried out; ideally,

describe the Pre-entry conditions and post-exit conditions;

• includes, if necessary, comments in the body that explain the sections

the complexity of the treatment;

 2.6.3 Identifying

• Use of Significant Identificators a- The names of classes, variables

and constants must be accurate. b- A function or method name

describes the treatment performed. c- Indices in an iteration can

be simple letters.

• Construction of identifiers

 2.7 Abstract Syntax Tree

The structure of a program or a piece of code is represented by an abstract

syntax tree (AST), a data structure used in computer science and

programming language theory. It is a generic representation of the syntax of

the code, unrelated to any particular computer language. When a program is

parsed, its syntactic components, such as statements, expressions,

operators, and control flow structures, are separated from the source code

and organized into a hierarchical structure. The standard visual

representation of this hierarchical structure is a tree, where each node

corresponds to a syntactic element and the edges show the connections

between these components.

Figure 2.5: Introduction to Abstract Syntax Trees

While abstracting away elements like style, whitespace, and other non-

essential information, the AST preserves the code’s core structure and

meaning. Compared to the raw source code, it offers a higher-level

representation that is simpler to understand and manipulate. ASTs are

frequently used in tools for code restructuring, interpreters, compilers, and

other stages of program analysis and transformation. By navigating and

modifying the tree nodes, they make it possible to perform actions like

syntax checking, semantic analysis, optimization, code creation, and

program modifications.[9]

Tools and frameworks may support several programming languages

without having to worry about the nuances of each language’s particular

syntax by working with code in a language-agnostic way utilizing an AST.

An Abstract Syntax Tree (AST) is a hierarchical representation of the

syntactic structure of a program written in a programming language. It

captures the structure and relationships among the various components of

the code,

Figure 2.6: Abstract Syntex Tree Example

When a compiler or interpreter processes source code, it typically goes

through several stages, including lexical analysis (breaking code into tokens),

parsing (building a parse tree), and finally constructing an AST. The AST

represents the parsed code in a more abstract and structured form, which

makes it easier for subsequent stages of the compilation process, such as

type checking, optimization, or code generation.

Here are some key points about Abstract Syntax Trees:

1. Hierarchical Structure:An AST is a structure that resembles a tree, with

each node standing in for a particular piece of code, such as a function

declaration, a loop statement, or an arithmetic expression. The

layering and composition of code components are represented by the

parent-child connections connecting the nodes.

2. Abstracted Representation: The AST concentrates on the underlying

structure and meaning by abstracting away some of the source code’s

specifics. For instance, the AST may represent a

explicitly describing how it is implemented or collapse many levels of

parentheses in an arithmetic statement.

3. Language-Dependent: Because the organization of code components

and linguistic requirements differs, every programming

its own AST representation. The exact syntax and semantics of the

language it represents are captured by the AST.

4. Loss of Certain Details:An AST may lose certain syntactic

characteristics, such as formatting, comments, or original variable

names, but it still retains the fundamental structure and meaning of

the code. These specifics can be skipped over during parsing because

they are frequently not necessary for later compilation steps.

5. Analysis and Transformation:ASTs are frequently used for a

compiler-related activities, including code creation, optimization, and

analysis. Compilers may do static analysis using the AST, spot possible

mistakes, apply optimizations, and produce effective machine code.

6. Tooling and Language Tools:Develo

refactoring tools also use ASTs. These tools make use of the AST to

offer capabilities like automatic refactorings, code navigation, code

recommendations, and static code analysis.

Figure 2.7: Abstract Syntex Tree Tool

There are several tools available for working with Abstract Syntax Trees

(ASTs) in various programming languages. Here are some popular AST tools:

 2.7.1 AST Tools

Some industrial and academic AST tools are listed bellow.

specifics. For instance, the AST may represent a loop construct without

explicitly describing how it is implemented or collapse many levels of

parentheses in an arithmetic statement.

Dependent: Because the organization of code components

and linguistic requirements differs, every programming language has

its own AST representation. The exact syntax and semantics of the

language it represents are captured by the AST.

Loss of Certain Details:An AST may lose certain syntactic

characteristics, such as formatting, comments, or original variable

es, but it still retains the fundamental structure and meaning of

the code. These specifics can be skipped over during parsing because

they are frequently not necessary for later compilation steps.

Analysis and Transformation:ASTs are frequently used for a variety of

related activities, including code creation, optimization, and

analysis. Compilers may do static analysis using the AST, spot possible

mistakes, apply optimizations, and produce effective machine code.

Tooling and Language Tools:Development tools like IDEs, linters, and

refactoring tools also use ASTs. These tools make use of the AST to

offer capabilities like automatic refactorings, code navigation, code

recommendations, and static code analysis.

Figure 2.7: Abstract Syntex Tree Tooling

There are several tools available for working with Abstract Syntax Trees

(ASTs) in various programming languages. Here are some popular AST tools:

Some industrial and academic AST tools are listed bellow.

loop construct without

explicitly describing how it is implemented or collapse many levels of

Dependent: Because the organization of code components

language has

its own AST representation. The exact syntax and semantics of the

Loss of Certain Details:An AST may lose certain syntactic

characteristics, such as formatting, comments, or original variable

es, but it still retains the fundamental structure and meaning of

the code. These specifics can be skipped over during parsing because

variety of

related activities, including code creation, optimization, and

analysis. Compilers may do static analysis using the AST, spot possible

pment tools like IDEs, linters, and

refactoring tools also use ASTs. These tools make use of the AST to

offer capabilities like automatic refactorings, code navigation, code

There are several tools available for working with Abstract Syntax Trees

(ASTs) in various programming languages. Here are some popular AST tools:

• Tree-sitter: A parsing package called Tree-sitter produces ASTs for

several programming languages. It offers a single API and facilitates

effective incremental parsing. Tree-sitter is a flexible option because it

offers bindings for several languages.

• Esprima and Babel: Esprima is a parser for JavaScript code that creates

ASTs. Esprima is an internal tool used by the JavaScript compiler Babel

to create ASTs. For the analysis and manipulation of JavaScript code,

these tools are frequently used.

• Roslyn: Microsoft’s Roslyn platform is an open-source compiler for C

and VB.NET. It has APIs for AST interaction, code analysis, and

transformation. Roslyn offers comprehensive assistance for working

with and analyzing C and VB.NET code.

• Eclipse JDT:Java Development Tools (Eclipse JDT) are a collection of

libraries and APIs for working with Java programming. It offers

assistance in constructing ASTs and parsing Java source code. JDT

offers a number of tools for examining and modifying Java code.

• Python ast module:The ’ast’ module of Python’s standard library offers

tools for interacting with Python ASTs. It enables the parsing of Python

source code, the creation of ASTs, and the exploration and analysis of

those ASTs.

• Clang and LibTooling: The Clang frontend for the C/C++ compiler offers

a robust framework for dealing with C/C++ code. It contains

LibTooling, which enables the creation of unique tools for the use of

ASTs in the analysis and transformation of C/C++ code.

• TypeScript Compiler API: TypeScript, a superset of JavaScript, has a

Compiler API that enables parsing TypeScript code and generating

ASTs. The API allows working with TypeScript ASTs to perform various

code analysis and transformation tasks.

These are only a few illustrations of AST tools that are accessible for

various programming languages. There may be more libraries, frameworks,

or languagespecific tools that offer AST capabilities, depending on the

language and particular needs.

 2.7.2 AST Design and Construction

• AST Nodes must hold sufficient information to recall the essential

elements of the program fragments they represent – For example, want to

know that node X of the AST corresponds directly to procedure Foo of the

program • Implementation of ASTs should be decoupled from what is

represented – Accessors are used to hide a nod

No single class hierarchy – Each phase may view the nodes differently

 2.7.3 Stages of Creating an AST

To transfer the code to an AST there are different stages that need to be

done before creating an AST which are Lexical Ana

1. Lexical Analysis : In this stage, we will firstly determine each of the

token types that make up the source code. It is also called

Tokenization, which tokenizes the source code into smaller units.

2. Syntax Analysis : The next step

parser. This process creates the tree structure using the tokens

produced by the lexical analyzer.

Figure 2.8: The Different stages of creating an AST.

 2.7.4 Application of Abstract Syntax Trees

Abstract Syntax Trees (ASTs) are commonly used in programming language

theory, compilers, interpreters, and various static analysis tools. Here are a

few application areas in which ASTs are utilized:

• Compilation :A computer language’s source code is converted into an

executable format during the compilation phase. At the heart of this

shift are ASTs. An AST, which encapsulates the structure and semantics

of the code, is created by parsing the source code. Then, further steps

like optimization, code creation, and linking make us

• Interpretation : In interpreted languages, an interpreter immediately

processes the AST to carry out the program rather than converting

source code into machine code. The program may be run step

because the interpreter moves through t

tasks listed by each node.

Accessors are used to hide a node’s internal representation •

Each phase may view the nodes differently

Stages of Creating an AST

To transfer the code to an AST there are different stages that need to be

done before creating an AST which are Lexical Analysis and Syntax Analysis.

Lexical Analysis : In this stage, we will firstly determine each of the

token types that make up the source code. It is also called

Tokenization, which tokenizes the source code into smaller units.

Syntax Analysis : The next step is syntax analysis, also known as a

parser. This process creates the tree structure using the tokens

produced by the lexical analyzer.

Figure 2.8: The Different stages of creating an AST.

Application of Abstract Syntax Trees

(ASTs) are commonly used in programming language

theory, compilers, interpreters, and various static analysis tools. Here are a

few application areas in which ASTs are utilized:

Compilation :A computer language’s source code is converted into an

e format during the compilation phase. At the heart of this

shift are ASTs. An AST, which encapsulates the structure and semantics

of the code, is created by parsing the source code. Then, further steps

like optimization, code creation, and linking make use of the AST.

Interpretation : In interpreted languages, an interpreter immediately

processes the AST to carry out the program rather than converting

source code into machine code. The program may be run step-by-step

because the interpreter moves through the AST and carries out the

tasks listed by each node.

e’s internal representation •

To transfer the code to an AST there are different stages that need to be

lysis and Syntax Analysis.

Lexical Analysis : In this stage, we will firstly determine each of the

token types that make up the source code. It is also called

is syntax analysis, also known as a

parser. This process creates the tree structure using the tokens

(ASTs) are commonly used in programming language

theory, compilers, interpreters, and various static analysis tools. Here are a

Compilation :A computer language’s source code is converted into an

e format during the compilation phase. At the heart of this

shift are ASTs. An AST, which encapsulates the structure and semantics

of the code, is created by parsing the source code. Then, further steps

Interpretation : In interpreted languages, an interpreter immediately

processes the AST to carry out the program rather than converting

step

he AST and carries out the

• Program analysis and optimization : ASTs give the code a structured

form that enables different analysis and optimizations. The AST may

be examined by static analysis tools like linters and static analyzers to

look for possible mistakes, security holes, coding style infractions, and

other problems. Based on the knowledge obtained from the AST,

optimizations such as dead code reduction, constant propagation, and

loop modifications can be done.

• Code refactoring and transformation: Code may be automatically

refactored or transformed using ASTs. Integrated development

environments (IDEs) and similar tools frequently use ASTs to carry out

automatic refactorings such renaming variables, removing methods, or

rearranging code structure. Developers can enhance the readability,

maintainability, and general quality of their code by using AST-based

modifications.

• Domain-specific language implementation : ASTs offer a practical form

for capturing the domain-specific semantics while developing domain-

specific languages. Developers can design customized languages

targeted to certain problem areas by specifying the syntactic rules of

the DSL, parsing the code into an AST, then interpreting or translating

it accordingly.

These are only a handful of applications for ASTs in programming. A

variety of operations including analysis, transformation, and

interpretation are made possible by ASTs, which act as an intermediary

representation of code.

 2.8 Graph Traversal Algorithms

A graph’s nodes or vertices can be explored or visited using graph

traversal methods. By starting from one node and visiting every

accessible node, they provide systematic traversal or navigation over

the graph. Because they make it easier to comprehend the structure

and interactions inside the network, traversal algorithms are crucial for

understanding and modifying graphs. Graph traversal algorithms major

objective is to efficiently cover

Figure 2.9: Graph Traversal Algorithm

all of the nodes in the graph by ensuring that each node is visited

precisely once, avoiding endless loops, and completing the graph.

BreadthFirst Search (BFS) and Depth-First Search (DFS) are two popular

graph traversal techniques.

 2.8.1 Breadth-First Search (BFS)

BFS begins at a particular source node and traverses the graph level by

level. Prior to going on to their neighbors, it first visits all of the

neighbors of the source node. To keep track of the nodes that need to

be visited,

this method employs a queue data structure. BFS ensures that nodes

that are closer to the source node are accessed before nodes that are

farther away. It is helpful for examining a graph breadth-first and for

determining the shortest path between two nodes.

Figure 2.10: Breadth-First Search algorithm

 2.8.2 Depth-First Search (DFS)

:

DFS investigates the graph by delving as far as feasible down each

branch and then turning around. It travels to one of its neighbors after

starting from a certain source node. It then moves on to that

neighbor’s subsequent unexplored neighbor and so forth until it comes

to a dead end. Then it circles back to the first node and investigates a

different unexplored neighbor. Up till all nodes have been visited, this

procedure keeps on. DFS often keeps track of the nodes to be visited

using a stack data structure (or recursion). It is helpful for discovering

cycles in a graph and for exploring all potential pathways. Other

specialized graph traversal methods exist in addition to BFS and DFS,

such Dijkstra’s algorithm for locating the shortest path in weighted

graphs and A* search algorithm for locating the shortest path with

heuristic information. Based on particular issue requirements, these

algorithms use extra factors and heuristics to enhance the traversal

process.

Figure 2.11: Depth-First Search algorithm

 2.9 Structure Based Traversal

The analysis and processing of tree-like structures, such as abstract

syntax trees (ASTs) in programming languages, are done using the

Structure-Based Traversal (SBT) technique. To carry out numerous

tasks, like program analysis, code modification, or code generation,

SBT tries to capture the structural relationships and attributes of

nodes within a tree.[10]

Figure 2.12: SBT Algorithm

To visit and process nodes in the AST, traversal rules or patterns must

be established as part of the SBT approach. These guidelines are based

on the node types, parent-child relationships, sibling relationships, and

other structural elements of the tree. SBT algorithms explore the AST

in an organized manner by abiding by these principles, visiting nodes in

accordance with their locations and connections within the tree.

SBT is essential in code generation tasks, where an AST is translated

into executable code or another representation.Code generation

methods can either produce code based on predetermined templates

or map the tree nodes to the relevant code constructs in the target

programming language by traversing the AST according to predefined

patterns.

Figure 2.13: Example an AST to SBT

 2.10 Conclusion

In Conclusion, the purpose of comprehending and maintaining

software projects, code source documentation is crucial. It gives

details about the function, usage, and intent behind certain code

elements. However, program analysis and modification greatly benefit

from the use of an Abstract Syntax Tree (AST) tool. The grammar and

semantics of the code are represented in an organized manner by AST

tools, which improve the productivity and efficiency of software

development.

Chapter 3

NMT-based Comment

Generation from Source Code

 3.1 Introduction

For big software systems, the maintenance phase typically lasts longer

than all the earlier life-cycle stages combined [2]. The maintenance

cycle includes understanding software as a major component. In fact,

knowing the code base takes up around 59% of the total time spent

during the software development life cycle. This is due to project

deadlines and time restrictions, which causes mismatched code

comments, full omissions of comments, or failures to update

comments of patched code in the database [11]. As a result, there has

been extensive research on the automatic generation of comments

given uncommented source code. Some of the early research on this

topic conducted by [12] [13] [14]

In this chapter, we present the essence of our work. First, we give an

overview of related work on generating comments from source codes.

Then we introduce our proposition by explaining, and after that, we

will present the process we followed and provide a comprehensive

and detailed description of our approach.

 3.2 Related work

in the literature, many notable approaches have been proposed to

generate code comments automatically from source code. Different

methods and techniques have been used, from clone detection to

copy comments [6] to deep learning to forecast when new comments

will be generated for uncommented code [11].

Code summarization research is a related area of study. Code summary

aims to condense lengthy chunks of code into a manageable number

of words. Using bidirectional LSTMs, such as in code2seq [15], which

uses a bidirectional LSTM in conjunction with an attention mechanism

to highlight the most crucial nodes in an abstract syntax tree (AST),

significant progress has been made in this area. The function is then

summarized using these ideas.

The function is then summarized using these ideas. As a result, the

code’s actions are briefly summarized. Of course, these summaries

differ significantly from good comments.

An encoder-decoder architecture often employs 2 related models. who

initially enters an encoded state from the input sequence. The decoder

network, which has been trained to translate its input into a desired

target, is then given this state. Because it enables the learning of

translations across many types of sequences, this technique is

frequently employed in neural machine translation (NMT).

Previous studies have demonstrated that using deep learning models

to automatically generate code comments is a practical application

[11] [16]. These studies train a sequence2sequence model (encoder-

decoder architecture) using syntactical information stored in an AST.

The comment that would describe a line of code is then predicted

from a group of comments using this model. The BLEU score is used to

compare the performance of these models. [17] This score serves as a

gauge for machine translation accuracy. The models in papers [11] [16]

received BLEU-4 scores of 38% and 39 %, respectively. Because the use

of neural networks in software engineering is a rapidly progressing

field, the authors of the paper (code2vec) upon which deepcomm is

based have released a new paper boasting higher accuracy (code2seq).

To improve upon the deepcomm paper we suggest a similar

architecture, while using code2seq.

3.3 An approach for Comment generation from java

source code

in this work, we propose a comment generator model using a new

state-ofthe-art technique that is based on code2seq model for

comment generation from Java source code. Our proposition is based

on the DeepCom [11] architecture. Instead of directly generate

comments from the traversed AST sequences. we propose to combine

the source code and the modified AST sequences together to generate

the comments. We focus on replicating the code2seq model with

added capabilities such as, predicting natural language and modified

ASTs.

 3.3.1 Model design

We will employ a code to sequence model to automatically produce

comments. It has been demonstrated that this is a successful method

for NMT[18], code summarization[15] and comment generation [11]

[16]. In this part, the network’s overall architecture will be covered,

starting with a dataset analysis, followed by AST processing, input code

encoding, and finally decoding.

The propsoed model, shown in Figure 3.1 adopts an attention-based

Code2Seq model to generate high-level description of code snippets.

Compared to deepcomm, the BLEU score of Code2Seq model increases

to 35.5on the Java corpus. In order to capture the structural information,

AST sequences traversed by SBT are input into our model.

Fig 3.1. provides an illustration of the general structure of the

proposed work. Three phases are required: data processing, model

training, and testing. We analyze and preprocess the source code we

downloaded from GitHub into a parallel corpus of Java methods and

the comments that go with them. The Java methods are turned into

AST sequences via a particular traversal methodology in order to

understand the structural information.

The main propositions in this method are :

– Our method uses AST sequences as an input to obtain structural

data. We suggest a new method for analyzing ASTs called SBT,

which provides unambiguity while expressing semantics with

structural infor-

Figure 3.1: General Process of the proposed approach

mation. By better aligning source code to the natural language

description, our model can generate comment that are more

accurate.

 3.3.2 Out of Vocabulary problem

The Out of Vocabulary issue in NMT is well-known, especially when

invented terms are employed, like in the name of variables in source

code. This is not an issue when translating from one language to

another if the majority of terms have been defined and trained upon

by the model. However, because a (Bi)LSTM in a sequence2sequence

model can only predict words it has been trained on, this issue is

particularly common in comment creation. The way that different

programmers name variables in their code might vary significantly,

even within the same project [2]. A major obstacle for producing

quality comments is presented by this. In this study, we use the AST to

address this issue.

 3.4 Dataset

The comment generator model is trained on the same dataset as Hu et

al.’s deepcom network [11] in order to compare its capabilities with

the stateof-the-art methods. To maintain a fair test, the same data

split as in [11] will be utilized, which is 80% train, 10% test, and 10%

validation. The dataset contains 588,108 code-comment pairs that can

be used for training and evaluation. Details can be found in table 3.1

 # Methods # All tokens # All identifiers #Unique tokens #Unique identifiers

 588,108 44,378,497 13,779,297 794,711 794,621

Table 3.1: Statistics for code snippets in DeepComm dataset

The 9,714 Java projects that were scraped from GitHub with the [11]

form the basis of the dataset.

Figure 3.2: A Sample from the used data

 3.4.1 Preprocessing

From these Java projects, we first extract the Java methods and their

related Javadoc. Because they frequently describe the functionality of

Java methods in accordance with Javadoc recommendations, the initial

phrases of the Javadoc are used as the target comments. This refers to

the person who also utilized the first sentence of a method’s Javadoc

as a concise synopsis. The methods without Javadoc have been

removed. Second, we remove some of the Method and Comment

pairs gathered in the preceding stage. In this work, pairs with one-

word Javadoc descriptions are filtered out since they cannot

adequately describe the Java method functionality.

Figure 3.3: Preprocessing function

Figure3.4 shows the distribution of just the comments that are less

than 40 words in length, which will help you better understand how

the data is organized.

Figure 3.4: Distribution of comment lengths below 40 words in length

 3.4.2 Building Vocabularies

Java lang and NLTK each parse the source code and comments into

tokens. After that, all tokens are made lowercase. The generic tokens

NUM and STR are used in place of the numerals and strings during the

training. Source code and AST sequences are limited to 200 and 500

characters, respectively, in length. The shorter sequences are padded

with a special symbol called PAD, and the longer sequences are divided

into 500-token sequences. During training, we add the unique tokens

START and EOS to the decoder sequences. START initiates the

decoding process, and The EOS signifies its conclusion. The cap on

comments is 30 characters. A unique token called UNK is used in place

of the out-of- vocabulary tokens.

Figure 3.5: Build vocabulairae function

We then address the Out of Vocabulary problem (OOV) after analyzing

the distribution. The OOV problem, as previously established, arises

from an LSTM’s inability to forecast words it has never encountered

before. This is due to the fact that variable names in code are made up

and therefore it is irrelevant whether various words are concatenated

 3.5 Abstract Syntax Tree

Luckily, working with code does have some advantages. Compared to

more traditional natural language tasks, code contains a clear

semantic relationship between the different lines of the code. This

relationship can be captured using Abstract Syntax Trees (AST), which

is a tree based representation of the code, where each node is a

statement and the connections are the relations between nodes.

Figure 3.7 shows an example of an AST for a given function 3.5.1

 3.5.1 SBT traversal

After the AST generation, we propose a new approach to parse it using

SBT. The goal of using SBT is to generate sequence of keywords,

identifiers and modifiers. SBT uses brackets to present a subtree given

a node. The procedure of SBT applied on the function 3.5.1 is listed as

follows :
1
2
3
4
5
6
7

Listing 3.1: Java example

– The tree structure is first represented from the root node using a

pair of brackets, with the root node itself placed behind the right

bracket.

– After that, scan the root node’s subtrees and place all of its root

nodes between brackets.

– Recursively traverse each subtree until all nodes are traversed

and get the final sequence

Our Model processes each AST into a sequence following the steps

above. For example, the AST sequence of the following Java method

Listing 3.1 extracted from Github is shown in Figure 3.7.

/**
* Extracts request method name bound to request identifier

*/
public String extractFor(Integer id){

LOG.debug("Extracting method with ID:{}", id); return requests.remove(id);
}

Figure 3.6: Function of the SBT

The nodes outside of boxes are non-terminal nodes, and nodes in

boxes signify terminal nodes. The source code’s structure information

is specified via non-terminal nodes. Non-terminals can be of several

types, including ExpressionStatement and ReturnStatement. The

program text is encoded by the terminal nodes that the leaf nodes

correspond to. A terminal node has a type as well as a value that can

be strings, operators, variable names, etc. The terms Tnon and

TtermVterm are used to denote non-terminal and terminal nodes,

respectively. Types of non-terminal and terminal nodes are indicated,

respectively, by Tnon and Tterm. TtermVterm stands for type-value

pairs of terminal nodes that occur frequently . If TtermVterm is out-of-

vocabulary, we use its type Ttermto represent it. For example, if

SimpleName-extractFor is out-of-vocabulary, the token will be

replaced by SimpleName.

Figure 3.7: an example of

 3.6 Code2Seq architecture

Our model adopts Code2Seq translating source code to natural

language. The Seq2Seq, as shown in Figure 3.8, consists a two

Long ShortTerm Memory (LSTM) to encode AST sequences, and

another deep LSTM to dec

illustrated in the figure, the encoder receives sequences generated by

traversing the AST of Java methods using the SBT during the training

phase. Subsequently, the decoder is tasked with learning the string

sequences that correspond to the comments associated with the

methods. The encoding and decoding process are explained in the

following subsections.

 3.6.1 Encoding

We’re attempting to solve a sequence

model. An encoder-decoder structure i

employed. A sequence must first be encoded before it can be

decoded.

The encoder is responsible for encoding every AST sequence of the

Java method into a fixed

Figure 3.7: an example of the Java method

Code2Seq architecture

Our model adopts Code2Seq translating source code to natural

language. The Seq2Seq, as shown in Figure 3.8, consists a two-layered

Long ShortTerm Memory (LSTM) to encode AST sequences, and

another deep LSTM to decode the target natural language. As

illustrated in the figure, the encoder receives sequences generated by

traversing the AST of Java methods using the SBT during the training

phase. Subsequently, the decoder is tasked with learning the string

at correspond to the comments associated with the

methods. The encoding and decoding process are explained in the

We’re attempting to solve a sequence-to-sequence problem with our

decoder structure is an architecture that is

employed. A sequence must first be encoded before it can be

The encoder is responsible for encoding every AST sequence of the

Java method into a fixed-size vector. At each time stamp t, it reads one

Our model adopts Code2Seq translating source code to natural

layered

Long ShortTerm Memory (LSTM) to encode AST sequences, and

ode the target natural language. As

illustrated in the figure, the encoder receives sequences generated by

traversing the AST of Java methods using the SBT during the training

phase. Subsequently, the decoder is tasked with learning the string

at correspond to the comments associated with the

methods. The encoding and decoding process are explained in the

sequence problem with our

s an architecture that is

employed. A sequence must first be encoded before it can be

The encoder is responsible for encoding every AST sequence of the

size vector. At each time stamp t, it reads one

token of the AST sequence, then updates and records the current

hidden state. ht=f(ht − 1,xt) and c=q(h1,...,hm)

where c is a vector created from the sequence of the hidden states

and ht is a hidden state at timestamp t. Our study uses LSTM as f and

other nonlinear functions like f and q. The rule is that q(h1,...,hm)=hm.

Attention mechanism defines individual ci for each target word yi as a

weighted sum of all hidden states h1,..., hm rather than producing

target words using the same context vector c (c=q(h1,...,hm)=hm).A

graphical representation of this can be seen in ??.

 3.6.2 Decoding

The decoder aims to generate the target sequence y by sequentially

predicting a word yi conditioned on the context vector c and the

previously generated words y1,...,yi1 where y=y1,...,yn and for each

conditional probability is modeled as

p(yi|y1,...,yi1,x)=g(yi1,si,ci)

where g is a LSTM that outputs the probability of yi, and si is the

hidden state of the decoder LSTM for time stamp i. The probability is

conditioned on a distinct context vector ci for each target word yi. And

si is computed by

si=f(si − 1,yi1,ci)

and The context vector ci is computed as a weighted sum of hidden

state hi in encoder.

Figure 3.8: Graphic representation of Encoder and Decoder.

An LSTM is a network that uses a time

keeps track of what the network has seen in the past. The network can

choose to add knowledge into the hidden state and choose to forget

knowledge. Below is shown that

future sequence is influenced by previous important features. Figure

3.9 gives a graphical representation of the described LSTM, where

small circles denote element

[19].

Figure 3.9: Example LSTM, operation groups are overlaid for clarity.

Figure 3.8: Graphic representation of Encoder and Decoder.

LSTM is a network that uses a time-dependent hidden state (ct) that

keeps track of what the network has seen in the past. The network can

choose to add knowledge into the hidden state and choose to forget

knowledge. Below is shown that ht−1 is an input. This assures that the

future sequence is influenced by previous important features. Figure

3.9 gives a graphical representation of the described LSTM, where

small circles denote element-wise operations and big circles are layers

STM, operation groups are overlaid for clarity.

) that

keeps track of what the network has seen in the past. The network can

choose to add knowledge into the hidden state and choose to forget

is assures that the

future sequence is influenced by previous important features. Figure

3.9 gives a graphical representation of the described LSTM, where

wise operations and big circles are layers

The value returned at time step t as the prediction is ht. In order to

overcome problems when a sequence starts and stops, special

characters are used. These are often denoted as < sos >and < eos >for

start and end of sequence respectively.

Figure 3.10: The Decoder part

 3.7 Evaluation metrics

We use Information Retrieval (IR) metrics and Machine Translation

(MT) metrics to evaluate the proposed method. For IR metrics, we

report the precision, recall, F1 of different approaches. For machine

translation metrics, we use the BLEU to evaluate our approach. The

definition of these metrics are introduced as follows.

 3.7.1 Precision

In statistics, precision is defined as the proportion of accurately

predicted positive observations to all positively anticipated

observations. In accordance with the suggested method, we calculate

the precision According to (Denkowski and Lavie 2014). Both function

words and words with substance are given varying weights. Typically,

content words include details that help us understand the phrases. For

grammar, function words are essential. In other words, content words

provide us with the most crucial information, whereas function words

connect those words.is computed as: Precision = TruePositive /

(TruePositive + FalsePositive)

 3.7.2 Recall

Similar to precision, we calculate the weighted recall to evaluate approaches.is

calculated as :

Recall=Truepositive/(Truepositive+Falsenegative)

 3.7.3 F1

A summary measure that combines both precision and recall; it

evaluates if an increase in precision (recall) outweighs a reduction in

recall (precision). In many cases, High recall indicates the sacrifice of

precision, and vice versa. is computed as : F1 = 2* Precision/

(Precision + Recall)

– True Positive (TP): Correctly predicting a label.

– True Negative (TN): Correctly predicting the other label.

– False Positive (FP): Falsely Predicting a label.

– False Negative (FN): Missing and incoming label.

Figure 3.11: IR metrics function

 3.7.4 BLEU score

The Bilingual evaluation understudy (BLEU

evaluation metric used to assess the comments produced by our

models [17]. Using a corpus of potential translations, BLEU evaluates

the accuracy of a translation (in our instance, from source code

comments). It is frequently used to gauge how accurate neural

machine translation (NMT)[20]. BLEU measures how close the output

of the machine is to the one of a human expert. The closer they are,

the higher the BLEU score will be [7]. The BLEU score ra

0 and 1, with 1 being perfect natural language. BLEU has shown a high

correlation with human quality judgment [21] and is one of the most

popular metrics to measure the quality of machine translated text.

Our final evaluation result is obtaine

scores for each of the analyzed snippets. The n

calculated by BLEU and used to generate a score using the following

equation:

As the reference corpus in our scenario has only one comment per

code snippet, BP = 1. N is the maximum length of n

utilized in the comparison[17], which in our case is N=4;

vector that adds to 1, pn

Figure 3.12: Implementation of BLEU

Figure 3.11: IR metrics function

e Bilingual evaluation understudy (BLEU-4) was the primary

evaluation metric used to assess the comments produced by our

models [17]. Using a corpus of potential translations, BLEU evaluates

the accuracy of a translation (in our instance, from source code

comments). It is frequently used to gauge how accurate neural

machine translation (NMT)[20]. BLEU measures how close the output

of the machine is to the one of a human expert. The closer they are,

the higher the BLEU score will be [7]. The BLEU score ranges between

0 and 1, with 1 being perfect natural language. BLEU has shown a high

correlation with human quality judgment [21] and is one of the most

popular metrics to measure the quality of machine translated text.

Our final evaluation result is obtained as the average of the BLEU

scores for each of the analyzed snippets. The n-gram similarity is

calculated by BLEU and used to generate a score using the following

!

As the reference corpus in our scenario has only one comment per

. N is the maximum length of n-grams being

utilized in the comparison[17], which in our case is N=4; wn is a weight

n is the modified n-gram precision

Figure 3.12: Implementation of BLEU-4 calculation

4) was the primary

evaluation metric used to assess the comments produced by our

models [17]. Using a corpus of potential translations, BLEU evaluates

the accuracy of a translation (in our instance, from source code to

comments). It is frequently used to gauge how accurate neural

machine translation (NMT)[20]. BLEU measures how close the output

of the machine is to the one of a human expert. The closer they are,

nges between

0 and 1, with 1 being perfect natural language. BLEU has shown a high

correlation with human quality judgment [21] and is one of the most

d as the average of the BLEU

gram similarity is

calculated by BLEU and used to generate a score using the following

As the reference corpus in our scenario has only one comment per

grams being

is a weight

We also measured precision, recall, and F1 score as used in [22] and

[23] over all the sub-tokens of the target sequence, case-insensitive.

 3.8 Conclusion

Automatic comment generation for Java code can be very beneficial.

Both for readability of old code, but also for better comment

suggestions as a programmer aid. With the DeepCom as the baseline.

In this chapter, we have presented an overview of the related work,

introduced our proposition, and provided a detailed description of our

approach. In the subsequent sections, we will present the results of

our experiments and evaluate the effectiveness of our proposition.

Chapter 4

Implementation, Experiments

and Results

 4.1 Introduction

So far, we introduced the process of generating comments from Java

source code using an NMT-based technique. In this chapter, we

present the technical details for implementing this process by training

our proposed approach(Code2Seq) and also by using Open NMT, an

open-source and extensible NMT architecture, on a subset of the

dataset the same which used in deepcom. First, we briefly present the

tools, languages, and programming environment used in this work.

Second, we describe the proposed approach and the Open NMT

architecture, training and validation phases. Finally, We conclude the

chapter by presenting a sample of obtained results and a discussion.

 4.2 Environment of Development

 4.2.1 Python

Figure 4.1: Overleaf logo.

Python is a high-level programming language created by Guido van

Rossum and released in 1991[24].Python has a portable

dynamic, extensible, free, very simple syntax, code shorter than C or

Java, multi-thread, object

Python code is simple, and it is brief without being obscure. Python is

an effective expressive progra

 4.2.2 Google Colaboratory

Figure 4.2: Overleaf logo.

Google Colaboratory[27], often abbreviated as "Colab" is a cloud

service, offered by Google (free), based on Jupyter Notebook and

intended for training and research in machine lear

allows to train machine learning models directly into the cloud. So

without having to install anything on our computer except a

browser.This environment allows us to write and execute Python code

in your browser, with no configuration r

easy sharing.

Environment of Development

Figure 4.1: Overleaf logo.

level programming language created by Guido van

Rossum and released in 1991[24].Python has a portable type system,

dynamic, extensible, free, very simple syntax, code shorter than C or

thread, object-oriented, scalable [25],Reading and writing

Python code is simple, and it is brief without being obscure. Python is

an effective expressive programming language [26]

Google Colaboratory

Figure 4.2: Overleaf logo.

Google Colaboratory[27], often abbreviated as "Colab" is a cloud

service, offered by Google (free), based on Jupyter Notebook and

intended for training and research in machine learning. This platform

allows to train machine learning models directly into the cloud. So

without having to install anything on our computer except a

browser.This environment allows us to write and execute Python code

in your browser, with no configuration required, free access to GPUs,

level programming language created by Guido van

type system,

dynamic, extensible, free, very simple syntax, code shorter than C or

oriented, scalable [25],Reading and writing

Python code is simple, and it is brief without being obscure. Python is

Google Colaboratory[27], often abbreviated as "Colab" is a cloud

service, offered by Google (free), based on Jupyter Notebook and

ning. This platform

allows to train machine learning models directly into the cloud. So

without having to install anything on our computer except a

browser.This environment allows us to write and execute Python code

equired, free access to GPUs,

 4.2.3 Visual Studio Code

Figure 4.3: Visual studio logo.

Visual Studio Code is a source code editor that can be used with a

variety of programming languages, including Java, JavaScript, Go,

Node.js, and C++. It is based on the Electron Framework, which is used

to develop Web applications that run on the Blink presentation engine.

[28]

 4.3 Tools of Devlopelment

 4.3.1 Tensorflow

Figure 4.4: Tensorflow logo.

TensorFlow is an open-

digital computing. Its flexible architecture enables easy deployment of

computing across a variety of platforms (CPU, GPU, TPU), and from

desktop computers to server clusters to mobile and peripheral devices.

Originally developed by resear

Brain team within Google’s AI organization, it has strong support for

machine learning and deep learning, and flexible digital computation is

used in many other scientific fields.[29]

 4.3.2 Numpy

Visual Studio Code

Figure 4.3: Visual studio logo.

Visual Studio Code is a source code editor that can be used with a

variety of programming languages, including Java, JavaScript, Go,

t is based on the Electron Framework, which is used

to develop Web applications that run on the Blink presentation engine.

Tools of Devlopelment

Figure 4.4: Tensorflow logo.

source software library for high-performance

digital computing. Its flexible architecture enables easy deployment of

computing across a variety of platforms (CPU, GPU, TPU), and from

desktop computers to server clusters to mobile and peripheral devices.

Originally developed by researchers and engineers from the Google

Brain team within Google’s AI organization, it has strong support for

machine learning and deep learning, and flexible digital computation is

used in many other scientific fields.[29]

Visual Studio Code is a source code editor that can be used with a

variety of programming languages, including Java, JavaScript, Go,

t is based on the Electron Framework, which is used

to develop Web applications that run on the Blink presentation engine.

performance

digital computing. Its flexible architecture enables easy deployment of

computing across a variety of platforms (CPU, GPU, TPU), and from

desktop computers to server clusters to mobile and peripheral devices.

chers and engineers from the Google

Brain team within Google’s AI organization, it has strong support for

machine learning and deep learning, and flexible digital computation is

Figure 4.5: Tensorflow logo.

NumPy is a library for the Python programming language, adding

support for large multidimensional matrices and matrices, as well as a

large collection of high-level mathematical functions to run on these

matrices.NumPy’s predecessor, Numeric, was originally created by Jim

Hugunin with contributions from several other developers.

In 2005, Travis Oliphant created NumPs by incorporating Numarray’s

capabilities into Numerics, with numerous modifications.[24]

 4.4 Experimental methodology

This section demonstrates how the evaluation of the proposed method

is conducted. We provide two implementations of this method; The

first using Code2Seq architecture and the second using Open NMT

framework. The two experiments use the deepcom dataset that we

described in the previous chapter. In the first experiment, (Code2Seq

based model) we used Code2Seq code to train a new model with the

aforementioned dataset with the inclusion of the ASTs based

sequences. This task is more challenging when generating comments

than when predicting function names. This difficulty arises from the

fact that comments are usually longer than function names. Also, we

are generating natural language instead of a sequence of descriptive

words. In the second experiment, we use a research-friendly

framework called Open NMT. This framework enables us to test novel

approaches effortlessly

The results of both methods are then compared with the results of the

DeepCom[11] as the baseline.

(Method1 OpenNMT), it is created to be research-friendly so that

researchers may test out novel approaches to tasks like

summarization, language modeling, and translation. While for the

second one For each of these 2 experiments, we calculated the BLEU

score as a measure of the quality of the obtained results.

 4.5 Experiments

our experiment (Method2), we traversed the Java AST extractor used

in Code2Seq. Instead of using the name of the examined function of

the Java snippet. Instead of using each variable with a generic name

and its type, we also added the actual name of the variable [30]. The

reason behind this choice was that the name of each variable may play

an important role in the functionality of the examined snippet. Thus,

by knowing its name we will be able to generate more accurate

comments.

4.6 First Experiment: Code2Seq based-model

experimentation

The adapted Code2Seq model is illustrated in Figure 3.1. We address

the code generator task as a machine translation problem that

translates program code to a natural language sequences. To embed

the structural information, Code2Seq uses AST sequences as its input.

The AST sequences are generated by applying SBT on the AST which

can not only express the tree structure but also keep no ambiguity.

The proposed Code2Seq model mainly contains three components: An

AST builder with the SBT traversal component, an attention-based

Seq2Seq model builder, and a trained model (generated by the two

previous components) to generate comment given a code snippets.

Figure 4.6: The Code2seq function from the proposed model

 4.6.1 Description

Our model translates the source code to a high-level description at the

method level. our method combines the source code and the AST

sequences to generate the code comments. It learns both the lexical

and syntactical information to generate the comments. Our framework

consists of three stages: data processing, model training, and testing.

Figure 4.7:

The source code we obtained from GitHub is parsed and preprocessed

into a parallel corpus of Java methods and their corresponding

comments. In order to learn the structural information, the Java

methods are converted into AST sequences by a special traversal

approach before input into the model. With the parallel corpus of the

source code, traversed AST sequences, and comments, we build and

train generative neural models based on the idea of NMT. There are

three challenges during training process:

– How to represent ASTs to preserve the structural information

and keep the representation unambiguous while traversing the

ASTs?

– How to learn both the lexical information and the syntactic

information?

– How to reduce the out-of-vocabulary tokens in the source code?

 4.6.2 Training

Code2Seq is trained on the Tensorflow framework, During training, the

model is validated every 2,000 minibatches on the validation set by

BLEU score which is a commonly used evaluation metric for NMT. The

maximum number of epochs is 50. The validation set is used to

estimate how well the model has been trained and to estimate model

properties. Finally, the accuracy of the model on test set gives a

realistic estimate of the performance of the model on unseen data.

However, the validation process takes extra time. Taking time and

model capacity into consideration, we validate every 2,000

minibatches and select the model which performs best on the

validation dataset as the best model. The best model is then evaluated

on the test set by computing average BLEU scores. For

implementation, we build our model using Tensorflow which is an

open-source deep learning framework. The time of training lasts about

80 hours for each model. The hyperparameters are shown as follows

figure 4.8:

– We use two-layered LSTMs with 256 dimensions of the hidden

states and 128-dimensional word embeddings.

– The learning rate was 0.01 and decayed by 0.05 every epoch.

– We applied dropout of 0.3 and a recurrent dropout of 0.5 on the

LSTM encoding the AST

Figure 4.8: The Configuration file

 4.6.3 Validation and results

We evaluate the difference between comments generated

automatically and those posted by humans. The average BLEU-4 scores

of various techniques for producing comments for Java methods are

shown in Table 4.1.

Approaches BLEU-4 score

DeepCom 38.17

Our Method 38.72

Table 4.1: Evaluation results on Java Methods

Approaches Precision Recall F1

our Method 46.94 27.44 34.63

Table 4.2: Performance on Java code

As the structural information is included, the BLEU-4 score increases

even further. The SBT-based model is much better and is able to

understand the semantic and syntactic information contained inside

Java methods Our Method confirms the effectiveness of solving the

problem of Out of Vocabulary in the ASTs. The results are depicted in

Table 4.4. The results show that the proposed method is capable of

understanding the syntactic and semantic meaning of java source

codes and hence generates meaningful comments automatically.

left=2cm,right=0.25cm,bottom=0.25cm,top=0.25cm

 4.6.4 Discussion

As shown in previous sections, our model can achieve promising

performance in generating comments for Java methods. However,

there are some other observations worth further investigation. In this

section, we will report some observations, including:

1. When The proposed generates comments with high BLEU score?

2. Why there are unknown words in the generated comments?

To analyze the reason why generates comments with high BLEU

scores, and unknown words, The detailed steps are as below: • We

first split the generated comments into two distinct sets, namely, the

high BLEU score comments(more than 70%), and comments with UNK.

In search at the Comments with a High BLEU Score we get that There

are many comments generated by the proposed approach with high

BLEU score and we are interested in which kinds of comments with

high BLEU score.For example, as Case 5 in Table 4.3 shows, the

method “sort” aims to sort an array using quick sort, our proposed

model captures the correct functionality and generates the correct

comment. However, deepcom ignores much important information

and just generates one keyword “sort”. There are many Java source

code-generated comments the same as the references. Most of these

Java methods have clear functionality and the code conventions are

universal. the method proposed can generate exactly correct

comments from the source code(Case 1 in Table 4.3), which validate

the capability of our approach to encode Java methods and decode

comments. The comment generated by Deepcom is related to the

source code, but it losses a lot of functionalities of Java methods.

Investigating the Reasons for Unknown Words in Generated

Comments that ,there are unknown words in the generated comments

and these words have no meaning for describing the Java methods.

Similar to the evaluation of the above discussion, we also randomly

select 100 generated comments with unknown words.we analyze the

accurate words that are replaced by unknown token UNK shown in

table

4.4.

As Case 3 in Table 4.3 shows, the proposed approach fails to predict

the token “SeparaterPainter” which is the method name defined by

developers. Our model is not good at learning the method or

identifiers names occurred in comments cause of Developers define

various names while programming and most of these tokens appearing

at most once in the comments. However,

Samples (100 generated

comments)

Classname 12

Methodename 30

Variablename 10

Others 50

Table 4.4: The accurate words of the UNK words in a Sample

we can not determine tokens of comments are identifiers from source

code or ordinary natural language words. It is hard for the proposed

approach to learn these user-defined tokens in comments that have

been replaced by the unknown token UNK during data processing.

 4.7 Second Experiment: Open NMT-based model

We believe that building the comment generator for the Java language

from scratch is a tedious task. Thus, we adapted the open NMT

architecture, which is an open source platform for training translators

between spoken languages, to build a model for generating comment

from source code. The training process is conducted on a large subset

of Java codes and their corresponding naturel languge comments . Full

details are provided in the following subsections.

 4.7.1 Open-NMT

OpenNMT [20] is a complete library for training and deploying neural

machine translation models. The system is the successor to seq2seq-

attn, developed at Harvard, and has been completely rewritten for

ease of efficiency, readability, and generalizability. It includes vanilla

NMT models along with support for attention, gating, stacking, input

feeding, regularization, beam search and all other options necessary

for state-of-the-art performance. The core system of OpenNMT is

implemented using the Lua/Torch mathematical framework, allowing

easy extension through Torch’s internal neural network components.

Additionally, Adam Lerer from Facebook Research has extended the

library to support the Python/PyTorch framework while maintaining

the same API [20].

The pretraining of OpenNMT on Our dataset the same of deepcomm

goes through several steps that starts by the configuration file after

the partition and the preparation of the source and target files for

both training and validation. These steps are detailed bellow.

 4.7.2 Open NMT configuration

For training the model, Open NMT requires a YAML configuration file,

known as config in OpenNMT. This file defines the parameters for the

training step. The location of the target and source data for both the

validation and training. In addition, the file holds the following

parameters.

Figure 4.9: Configuration file for OpenNMT method

– overwrites : if this option is set in TRUE, you can write

overwritten during the training process.

– data : in this part, we define the paths to the training and

validation data files.

– save data : it means setting the base filename and location where

the vocabulary files and preprocessed data will be saved.

– save model :sets the base filename and location where the

trained model checkpoints will be saved.

– save checkpoint steps : save checkpoint steps: it is a saved

snapshot of the model at a particular moment. For example, as

shown in Figure 4.9, we set "save checkpoint steps" to 500, which

means that a checkpoint will be saved for every 500 training

steps.

– train steps and valid steps Indicates the total number of training

and validation steps that will be performed.

 4.7.3 Training data and code

In this project, we utilized the same dataset of deepcomm, which

contains Java code and there corresponding natural language

comments, to train a model for generating comments. To effectively

use this dataset with OpenNMT, we had to split it into six separate

files:

"train_source.txt,""valsource.txt,""testsource.txt,""train_target.txt,""v

altarget.txt," and "testtarget.txt." The src files hold the source Java

code for training, validation, and testing, respectively, and the target

files will hold the target test cases corresponding to the source Java

code. This split is a crucial step in preparing the data for training and

evaluation using OpenNMT. The table 4.7.3 represents the number of

examples in the dataset for different sets: training, validation, and

test. Each set contains a certain number of source code and target-

code pairs.

Set Source Target

Training 119013 119013

Validation 20000 20000

Test 20000 20000

The data has been uploaded to the "content" directory in Google

Colaboratory as per the following figure 4.10

Figure 4.10: Dataset path.

First, we need to install OpenNMT-py. In order to do that, we use the

following command figure4.11 in Google Colab:

Figure 4.11: The installation command .

Next, we execute the command shown in Figure 4.12 to build the

vocabulary using the provided configuration file.

Figure 4.12: Command for building the Vocabulary.

Samples from the vocabulary files (source files which is the vocabulary

of java source code and target files which is the vocabulary of

comment generation) are shown in the figure4.13 below :

Figure 4.13: Example from source and target vocabulary files.

The vocabulary files contain a list of tokens with their corresponding

numerical representations. Once the vocabulary file is prepared, we

move to the training step by executing the following command in

figure4.14.

Figure 4.14: Training command

 4.7.4 Results

After completing the training step in OpenNMT-py, we can move

forward to the translation phase. During this phase, we will translate

the contents of the source file Data/test-source.txt using the trained

model. The translated output will be saved to the file named

Data/pred_1000.txt. To perform the translation, we execute the

following command in figure 4.15

Figure 4.15: The Obtained results

In this command, we specify the path to the trained model using the-

model option, the source file is provided with the -src option
1

2

!onmt_translate -model data/run/model_step_10000.pt -src data/test-source.txt
-output data/pred_1000.txt -gpu 0 -verbose

Listing 4.1: Validation Command

 4.8 Conclusion

Our Work focused on replicating the code2seq model with added

capabilities such as predicting natural language and traversed ASTs,

From our results we see that both our methods do perform as well as

the baseline in terms of the BLEU-4 scores. In this chapter, we describe

our proposed model and show the obtained results also we present

the OpenNMT approach and how does it work and show the results

obtained by OpenNMT.

General conclusion

In this study, we have explored the concept of producing

autocomments and investigated its potential applications and

limitations. Through our investigation, we have observed that

autocomments generation can be a powerful tool in multiple domains,

including customer assistance, code documentation, social media

interactions, and more.

To achieve this purpose, we first offered a complete explanation of

Neural Machine Translation in Chapter 1. We looked into the

underlying concepts and procedures of NMT, including code-to-

sequence architectures, attention mechanisms, and training

methodologies. This chapter established an excellent comprehension

of NMT, developing the framework for this study.

In Chapter 2, we focused on source code and the documentation and

analysis source code methodologies. We described alternative

documentation approaches and proposed the concept of Abstract

Syntax Tree (AST) and Structure Based Traversel(SBT). Understanding

the analysis source code and AST was essential for comprehending the

future chapters and their contributions.

Chapter 3 presented our proposed models and the process of

generating comments from source code. We discussed the novel

approaches and methodologies employed in this research. Additionally,

we reviewed related work, highlighting existing studies and approaches

relevant to autocomments generation from source code. This chapter

showcased the advancements and contributions made in the field.

In Chapter 4, we provided implementation details, experimental

approach, and the validation methodology applied in this project. We

addressed the frameworks, tools, and libraries utilized to design and

execute our proposed models. In addition, we showed the results

derived from the suggested technique and OpenNMT training

framework with the Deepcom dataset. Results are demonstrating the

efficacy and performance of the our approach .

Although our study exhibited promising results in producing

autocomment from Java source code, further refining of the NMT

models can boost their efficiency. Future work can focus on

researching advanced NMT architectures, including domain-specific

information, and optimizing training procedures to increase the quality

and accuracy of the generated auto comments. However, the

proposed approach was much better then deepcom. With the first

expirement as our best method, an important takeaway is that ASTs

traversed generally hold the problem of Out of Vocabulary affecting

the training process and a suitable AST generation technique.

Nevertheless, looking at the comments generated by our best

performing model , we see that our proposed approach is capable of

understanding the syntactic and semantic meaning of java codes to

generate comments automatically.ur model outperforms the state-of-

the-art approaches and achieves better results on the automatic

measure metric named BLEU.

In conclusion, this work seeks to contribute to the field of automatic

comment generation by exploring the application of NMT techniques

to generate comments from Java code snippets. The findings and

insights gained from this research can potentially improve the

efficiency and quality of software development processes.

Bibliography

[1] Rene Y Choi, Aaron S Coyner, Jayashree Kalpathy-Cramer,

Michael F Chiang, and J Peter Campbell. Introduction to machine

learning, neural networks, and deep learning. Translational Vision

Science & Technology, 9(2):14–14, 2020.

[2] Krishan K Aggarwal, Yogesh Singh, and Jitender Kumar Chhabra.

An integrated measure of software maintainability. In Annual

Reliability and Maintainability Symposium. 2002 Proceedings

(Cat. No. 02CH37318), pages 235–241. IEEE, 2002.

[3] C.C. Aggarwal. Neural Networks and Deep Learning: A Textbook.

Springer International Publishing, 2018.

[4] S Zargar. Introduction to sequence learning models: Rnn, lstm,

gru. no. April, 2021.

[5] Jingwen Wang, Wenhao Jiang, Lin Ma, Wei Liu, and Yong Xu.

Bidirectional attentive fusion with context gating for dense video

captioning. CoRR, abs/1804.00100, 2018.

[6] Edmund Wong, Taiyue Liu, and Lin Tan. Clocom: Mining existing

source code for automatic comment generation. In 2015 IEEE

22nd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), pages 380–389. IEEE, 2015.

[7] Kishore Papineni Salim Roukos Todd Ward and John Henderson

Florence Reeder. Corpus-based comprehensive and diagnostic mt

evaluation: Initial arabic, chinese, french, and spanish results.

2002.

[8] D. Sarkar. Implementing code source methods and fonction

engineering for text data: The skip-gram model - kdnuggets, n.d.

[9] Alex Graves. Generating sequences with recurrent neural

networks. CoRR, abs/1308.0850, 2013.

[10] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur

Panesar-Walawege. A systematic review of the application and

empirical investigation of search-based test case generation. IEEE

Transactions on Software Engineering, 36(6):742–762, 2009.

[11] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment

generation. In Proceedings of the 26th Conference on Program

Comprehension, pages 200–210. ACM, 2018.

[12] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and

K Vijay-Shanker. Towards automatically generating summary

comments for java methods. In Proceedings of the IEEE/ACM

international conference on Automated software engineering,

pages 43–52. ACM, 2010.

[13] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker.

Automatically detecting and describing high level actions within

methods. In Proceedings of the 33rd International Conference on

Software Engineering, pages 101–110. ACM, 2011.

[14] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Generating

parameter comments and integrating with method summaries. In

2011 IEEE 19th International Conference on Program

Comprehension, pages 71–80. IEEE, 2011.

[15] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:

Generating sequences from structured representations of code.

In arXiv preprint arXiv:1808.01400, 2018.

[16] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment

generation with hybrid lexical and syntactical information.

Empirical Software Engineering, Jun 2019.

[17] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.

Bleu: A method for automatic evaluation of machine translation.

In Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg,

PA, USA, 2002. Association for Computational Linguistics.

[18] An Nguyen Le, Ander Martinez, Akifumi Yoshimoto, and Yuji

Matsumoto. Improving sequence to sequence neural machine

translation by utilizing syntactic dependency information. In

Proceedings of the Eighth International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages 21–

29, Taipei, Taiwan, November 2017. Asian Federation of Natural

Language Processing.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.

[20] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and

Alexander M Rush. Opennmt: Open-source toolkit for neural

machine translation. arXiv preprint arXiv:1701.02810, 2017.

[21] Chris Callison-Burch, Miles Osborne, and Philipp Koehn.

Reevaluation the role of bleu in machine translation research. In

11th Conference of the European Chapter of the Association for

Computational Linguistics, 2006.

[22] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A

convolutional attention network for extreme summarization of

source code. In International Conference on Machine Learning,

pages 2091–2100, 2016.

[23] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.

code2vec: Learning distributed representations of code.

Proceedings of the ACM on Programming Languages, 3(POPL):40,

2019.

[24] resentation du language python,. http://www.linux-

center.org/articles/ 9812/python.html, page 36, 2020.

[25] Guido Van Rossum and Fred L Drake Jr. Python tutorial, volume

620. Centrum voor Wiskunde en Informatica Amsterdam, The

Netherlands, 1995.

[26] Mark Summerfield. Programming in Python 3: a complete

introduction to the Python language. Addison-Wesley

Professional, 2010.

[27] Ekaba Bisong and Ekaba Bisong. Google colaboratory. Building

machine learning and deep learning models on google cloud

platform: a comprehensive guide for beginners, pages 59–64,

2019.

[28] Murad Khan, Bilal Jan, and Haleem and Farman. Visual studio

code free software directory. Free Software Foundation, page 42,

2017.

[29] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey

Irving, Michael Isard, et al. Tensorflow: a system for large-scale

machine learning. In Osdi, volume 16, pages 265–283. Savannah,

GA, USA, 2016.

[30] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang.

Augmenting java method comments generation with context

information based on neural networks. Journal of Systems and

Software, 156:328 – 340, 2019.

	General Introduction
	Neural Machine Translation
	 1.1 Introduction
	 1.2 Machine Learning
	 1.3 Neural Machine Translation
	 1.4 Neural Networks
	 1.4.1 Architecture of Neural Network

	 1.5 Type of Neural Network
	 1.5.1 Linear Models
	 1.5.2 Multiple Layers

	 1.6 Neural Languge Models
	 1.6.1 Feed-Forward Network
	 1.6.2 Word Embedding
	 1.6.3 Reccurent Neural Network RNN
	 1.6.4 Long Short-Term Memory Models (LSTM)
	 1.6.5 Gated Reccurent Units
	 1.6.6 Deep Model

	 1.7 Neural Translation Models(Tronsformer)
	 1.8 Transformer Functioning
	 1.8.1 Data Preprocessing
	 1.8.2 Model Training
	 1.8.3 Model Prediction

	 1.9 Sequence To Sequence Model (Seq2Seq)
	 1.9.1 Encoder - Decoder Architecture

	 1.10 Conclusion

	Code Source Analysis and Documentation
	 2.1 Introduction
	 2.2 Code Source
	 2.2.1 Code Statement Level

	 2.3 Code Source Documentation
	 2.3.1 General Principles

	 2.4 Comments
	 2.4.1 Comments and Inline Documentation
	 2.4.2 Comments Categories

	 2.5 Code Source Analysis
	 2.5.1 Analysis of Source code

	2.6 Structure and Necessary Elements for source code
	 2.6.1 Source File
	 2.6.2 Method and Function
	 2.6.3 Identifying

	 2.7 Abstract Syntax Tree
	 2.7.1 AST Tools
	 2.7.2 AST Design and Construction
	 2.7.3 Stages of Creating an AST
	 2.7.4 Application of Abstract Syntax Trees

	 2.8 Graph Traversal Algorithms
	 2.8.1 Breadth-First Search (BFS)
	 2.8.2 Depth-First Search (DFS)

	 2.9 Structure Based Traversal
	 2.10 Conclusion

	NMT-based Comment Generation from Source Code
	 3.1 Introduction
	 3.2 Related work
	3.3 An approach for Comment generation from java source code
	 3.3.1 Model design
	 3.3.2 Out of Vocabulary problem

	 3.4 Dataset
	 3.4.1 Preprocessing
	 3.4.2 Building Vocabularies

	 3.5 Abstract Syntax Tree
	 3.5.1 SBT traversal

	 3.6 Code2Seq architecture
	 3.6.1 Encoding
	 3.6.2 Decoding

	 3.7 Evaluation metrics
	 3.7.1 Precision
	 3.7.2 Recall
	 3.7.3 F1
	 3.7.4 BLEU score

	 3.8 Conclusion

	Implementation, Experiments and Results
	 4.1 Introduction
	 4.2 Environment of Development
	 4.2.1 Python
	 4.2.2 Google Colaboratory
	 4.2.3 Visual Studio Code

	 4.3 Tools of Devlopelment
	 4.3.1 Tensorflow
	 4.3.2 Numpy

	 4.4 Experimental methodology
	 4.5 Experiments
	4.6 First Experiment: Code2Seq based-model experimentation
	 4.6.1 Description
	 4.6.2 Training
	 4.6.3 Validation and results
	 4.6.4 Discussion
	 4.7.1 Open-NMT
	 4.7.2 Open NMT configuration
	 4.7.3 Training data and code
	 4.7.4 Results

