/4:\ REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
/Mv \ Ministére de I'Enseignement Supérieur et de la Recherche Scientifiq
|f' j= R \I Université Mohamed Khider — BISKRA
\ AR / Faculté des Sciences Exactes, des Sciences de la Nature et de la vie

Département d’informatique

N° d’ordre:SIOD34/M2/2022

Mémoire

Présenté pour obtenir le dipldme de master académique en

Informatique

Systeme d’Information Optimisation Et Decision (SIOD)

Autocomment Generation from Source

Code using ML Techniques

Par:
DORSAF KIHAL

Soutenu le 20/062023 devant le jury composé de :

Aloui Imen MCB Président
Tibermacine Okba MCA Rapporteur
Benchaabane Mofida MMA Examinateur

Année universitaire 2022-2023

Dédicace

| dedicate this work to myself.

Remerciement

First of all, | would like to offer thanks to Allah for having granted us all the
determination, and strength to carry out this modest work. | would also like
to be infinitely grateful to my supervisor Dr.TIBERMACINE Okba for his
advice, his patience, his availability, and his support throughout this period.

| would like to express my gratitude to my parents Abd ELmadjid Rania ,my
sister and my brothers Abd Raouf and Fares Seif Dine, who gave me their
moral support and lively discussions throughout my effort, and my
grandmother Rachida and my grandfatherAhmed Bouchouareb who always
accompanied me with his prayers.

We would like to express our deepest gratitude and sincere thanks to the
members of the jury for having accepted to judge our work and to have
enriched it.

Abstract

During software maintenance, developers spend a lot of time understanding
the source code. Existing studies show that code comments help developers
comprehend programs and reduce additional time spent on reading and
navigating source code. Unfortunately, these comments are often
mismatched, missing or outdated in software projects. Developers have to
infer the functionality from the source code. This paper proposes a new
approach to automatically generate code comments for the functional units
of Java language, namely, Java methods. The generated comments aim to
help developers understand the functionality of Java methods.

Keywords: comment generation, deep learning, machine learning, LSTM,
Code2Seq, Software Development, Java

General Introduction

Contexte

Source code comments play a crucial role in software development by
enhancing code readability, maintainability, and collaboration among
developers. These comments provide explanations and descriptive language
that is not executed by the program itself. They help both the original author
and future developers understand the purpose, functionality, and logic of
the code by providing additional details and insights.

Generating comments within source code is a fundamental practice in
software development. It involves adding explanatory text to clarify the
purpose, functionality, and logic of the code. Such comments serve as
documentation, benefiting both the original author and future developers
who work on the codebase. Autocomment creation improves code
readability, documentation, and relieves developers from the manual task of
writing and maintaining comments. It also ensures consistent and
informative code documentation.

However, due to factors such as tight project schedules and other
constraints, code comments are often mismatched, missing, or outdated in
many software projects. Automatic generation of code comments can
address these issues, saving developers time and aiding in source code
understanding. Several approaches have been proposed to generate
comments for methods and classes in Java, which is the most popular
programming language in the past decade. These techniques range from
manual crafting to leveraging Information Retrieval. In this thesis, we aim to
develop a novel model for generating descriptive comments based on Java
source code and Abstract Syntax Tree (AST) using NMT based techniques. A

special attention is given to Code2seq and Open NMT architecture to
develop automatic comment generator from source code.

Objective and Research Questions:

The objective of this master thesis is to explore the generation of comments
from source code using Neural Machine Translation (NMT). NMT has shown
significant advancements in natural language processing tasks and has the
potential to create high-quality translations. By applying NMT approaches to
generate comments from source code, we can investigate the feasibility of
leveraging these models to automate the process and enhance the clarity
and effectiveness of comment generation.
The primary research question addressed in this study is as follows:

e Research Question: How can Neural Machine Translation be leveraged
to generate comments from Java code snippets (Java methods)?

Manuscript organization

This manuscript is organized into four chapters as follows:

e Chapter 1: Neural Machine Translation: This chapter provides an
overview of the foundational concepts and techniques of neural
machine translation.

e Chapter 2: Source Code Analysis and Documentation: In this chapter,
we describe source code analysis, documentation practices, and
explain the concept of abstract syntax tree (AST) and structure-based
traversal.

e Chapter 3: NMT-based Comment Generation from Source Code: The
third chapter presents our proposed models for generating comments
from source code and outlines the generation process. It also includes
a discussion of related work in the field.

¢ Chapter 4: Implementation, Testing, and Validation: In this chapter, we
showcase the frameworks, tools, and libraries employed in this
project. Additionally, we present the results of our work.

e Conclusion: The manuscript concludes with a general summary and
some perspectives.

Contents

(CT= oY TR g N o Te (UL AT o PP PSPPSR 5
1 Neural Maching Translationcooeeo i e e e s e e s sae e e 11
L2 INErOAUCTION ettt ettt sab e e ab e e e b bt e e bt e e et b e e eabbeeeabeeeeabeeeeabeeseabeesanneesans 11
1.2 MACIINE LEAINING e ieiirieeeei ettt et e e e e e e e e sabb e e e e e e e e eeseaabbaereeesessessssbssaeeeeeeessassssrareaaeeesennn 11
1.3 Neural Maching Translationoc.eoieiieie e s e 12
1.4 NEUFAl NETWOIKS. ...ttt ettt e s et et e s bt s b e e s b e e s et e seesan e e neeenneeneenanean 14
1.4.1 Architecture of NeUral NETWOIK.........couiiiiiiiiiiie et e 14
1.5 Type Of NEUFal NETWOIK ...oviiiiiiiiee st e e s s e e s s e e e e ssbaeee s sabeeeessnnne 14
1.5.1 LIN@AI MOTEIS ...t sttt et st e bt e et e sse e s e e ne e eaneenneenareas 14
T A\ L] L4 o] (I I 1 V=T RSP PPTR 15
1.6 NEUTral LANGUEE MOEIS.....ciiiiiieiiiiiieeiec ettt eeeirre e e e e e e et eabb e e e e e e e s sesssbasaeeeeeesssessssreneaaeeesennn 15
1.6.1 Feed-FOrward NETWOIKoo ittt sabee s eaeee e 16
SN AV Lo Y o I X 41 o T=To [o 11 oY - U UPPPPPRRNt 16
1.6.3 Reccurent Neural NetWork RNIN......coc.eiiiiiiiie et 16
1.6.4 Long Short-Term Memory MoOdels (LSTIM) .uuueeeeiei ittt eee e e eesnbreeee e e e e e e sessreeeeeeeeesean 17
1.6.5 Gated RECCUIENT UNITS ...eeiiiiiiiiiie i s 17
N SN S B LT=T o I 1Y/ LYo =] RO UPPRPPPPPNt 18
1.7 Neural Translation Models(TroNSTOIMET)ccocuiiiiieceee et e e e e e e e e e e areeeeeaes 19
1.8 TranSTOrmMEr FUNCHIONING . ..cviiiiiiiciiieeiiec ettt e e ee st e e e e e e e ses bt areeeeeeeessesnsbaeeaeseesenns 21
R T R D 1 T o (=T o] o Tol =11 | o =SSR 21
ST AV, Lo Yo =] B N = 11 113V =R PP T PPTU 21

R T IR 1Y, Fo Yo =Y W A =Yo [Toi oY o HNUUTTT PRI 21

1.9 Sequence To SequENCE MOE! (SEU2SEQ) ..uverririrririiiieeeiieesieeesteeesreeeriteeestaeeesaeesreeesseeensseeensseesnns 22

1.9.1 Encoder - Decoder ArChit@CtUIE........c.eiiuiiiieee e s 23
00 O I T o Tl [V o T o T PP PSSR TRPPRP 24
2 Code Source Analysis and DOCUMENTATIONuiiiiiiiiiieiiiiiiee et e e s sre e s seaeeeesennne 25
P20 R [0 oo [F ot { [o] o TR OO P TR PROPPPTRPI 25
P O eTo [T o TU T ol TSP TR PPROTI 25
2.2.1 Code STAatemMENT LEVE ...t 26
2.3 Code Source DOCUMENTALIONuiiiiiiiiiiiiciee e s s 26
P T A CT=Y =T - | o T ol o] 1= P UPPRPPPPPNt 26
2.4 COMMEBNTS ..ttt sttt e e e s e s bbb e et e e e e s s s e s aa et e e e s s sesans s b b aeeeeeesssannsreneneeeessans 28
2.4.1 Comments and INline DOCUMENTATION ..c...eoviiiiiiieerie e 28
P A 0o a1 0 aU=T 0L R O 1 (=Y = (0] =3RRIt 28
2.5 COUR SOUICE ANGIYSIS..cuurrireeiieeiiiiititeeee e eecir et e e ereebr e e e e e s sesesbbaaaeeeeeeeesasbsbaaeeeeeessessnsrrnsaeeeesennn 29
2.5.1 ANQlYSiS Of SOUICE COURciiiiiiiiiiiiiiie et e e e s saee e e s s aa e e e e s sbaeeeesaaeeeesnsseeeeennns 29
2.6 Structure and Necessary Elements for SOUrce COdeuummiiiiiiiiiiiiiiiiieee e 31
2.6.1 SOUICE FilB ...ttt st et s e e bt e s s e e bt e st e e b e e s e e b e e saneeneeenneenns 31
2.6.2 Method and FUNCHIONocueiiiiiiieeeee ettt se e sare e sne e ssne e e 31
D T B (o 1] o L 1 A VALV TR OP PP 32
2.7 ADSErACT SYNTAX TrOE . iiiiiiiiiei ettt ettt ettt e st e e st e e s s bt e e e s s baee e e s abteeessateeesenasaeeeenaseeessnnsreeesannne 32
2.7 0 AST TOOIS ettt ettt ettt et e sa e e s bt e ea b e e b e e ea b e e bt e eabe e bt e e abe e ebeeeabe e bt e eabeeeneeenreennes 34
2.7.2 AST DesigN and CONSEIUCTION ..vvvvivieiiiiiiiietieiteriereereerereeererrerrerreererteerereeeeererresrerreererreerer.... 35
2.7.3 Stages Of CrEating @N ASTiiiiiiiciiieiiee ettt e ee e e e e e e sesebbarreeeeeeeesesssbaeseeeesssesssrsreneeeessenn 36
2.7.4 Application Of ADSEract SYNTAX TIEESccoveiicrriieiiee ettt e e eecbrrr e e e e e e esestbrraereeeeessesssreaeeeeeeesens 36
2.8 Graph Traversal AlGOMTNMS.uiii et e e s st e e s s sbae e e s sabaeeessbeaeesnnes 37
2.8.1 Breadth-First SEArch (BFS).......uuei oottt ettt e ettt e e e et e e e e e ar e e e e e anaeeeeeaaeeeeeennreeeeennes 38
2.8.2 DEPLN-FIrst SEAICN (DFS) cueviiiiiiiiiiieeiet ettt eeecrere e e e e e esabbar e e e e e e e eessabbbaeeeeeeessesnsbrneeeseesennn 39
2.9 STructure Based Traversalooceoieeieeeie ettt sttt e r et nr e sn e e ene 39
P20 (0 o] o Tl [V 1Y [o ISP PRSP 41
3 NMT-based Comment Generation from SoUrce Code........cocuiiiiiiiiiiiiiiiniieeeieeeee et 41

% A 1] oo Yo [Lot Ao Y FUURT OO PR 41

I =Y Y =To IV Lo Y o ST PP 42

3.3 An approach for Comment generation from java SOUICE COUEccovvviuirirrieiieeiiiirireeee e 42
e 1 o Yo 1=T e [Ty P-4 s T RSO RRRROPP 43
3.3.2 Out of VOCabulary problem s ee e 44
D T | = L =1 PO PP OPPPPP 44
R I S =T o] o Yol XY | ST 45
3.4.2 BUIIAING VOCADUIGIIES ...ttt e e ee s e e e e s e e eesssabareereeeeeesesnsreneeeas 46
3.5 ADSErACE SYNTAX TrE.c.ciiiiiciiteeeiee e ecctreee e eeset e e e e e ees bt bb e et eeeeeeaassaraaeeeeseseessssbaraereeeesssenssrenneens 47
R T] 2 I = V=] T | PP ST P TR PPPOUPRRPP 48
RN N ®e o [P Ao I [o 11 (=T (U PR 50
I 701 = o Yo T ¥ =N 50
ST 1T oo Yo 1 =N 51
3.7 EVAlUATION METIICS cnetieieeiiieiee ettt s it st e sttt e sa e e b e s st e ne e saneeanee s e e eseesaneenneenas 54
R o =T 1Y (o] o PP PSP PP UPT P OPPPPP 55
37 2 RECAII ettt et e e h bt e e b bt e e bt e e e bt e e eabeeennreesnree s 55
TR 3 St TSP P PSP SR PROPTRPRUPPT 55
R A = T]l = PPN 56
IR o] o [ol [0 o o RSP R PSP SRR OPTRPRUPPTOt 57
4 Implementation, EXperiments and RESUIESccuuiiiiiiiiiieieiiiee sttt 57
o R oY {0 To [0 4T o F PSP P P PPPTRUPRRO 57
4.2 ENVIronmMeNnt Of DEVEIOPIMENTuvvviiiiiiiicirieiiee ettt ee s e e e s e esebbrareeeeeeessesssbseeeeseeesesasrens 58
e N V1 o T o TSROSOt 58
4.2.2 GOOEIE COlabOratory c.cccioi it e e ee s e e e e e e e e s eabsaeereeeeessesssbaaeeeseeseesassses 58
4.2.3 ViSUQl STUAIO COU....coiiiiiiiiiiiiieee ettt ettt e sttt e st e e e bt e e s bt e e sabeeeeabeessnneesnees 59
v/ B Ko To o) dl D 1=1Y] FoT o= [o =T o | AU PPRR 59
A.3. 1 TENSOITIOW ..ttt ettt e h et s b et st e s b e e st e e st e st e e s eesaneenseesaneenneeens 59
N T \ V¥ oY«) S 59
4.4 EXperimental MeEthOdOIOZYt e e ee bbb e e e e e e e e sesbbbeaeeeeeessesnnssnes 60
N o o 1<) 4 1 =10 | £ O O P PP U PP PP PPPPPPPPPPPPN 60

4.6 First Experiment: Code2Seq based-model experimentation..........cccceeeeeeciiiiiiiee e, 61

L ST R D L1 g o] {0] F U O PO U PP UPPPPPPPPPPPPPN 62

I I = Y1 1 S 63
A.6.3 Validation @0 FESUIES .. .cieiiiiieiiiieeee ettt et ettt ettt e e e sttt ttteresaareseeeeeeesssaassssessesessssnnssesesseessnnnnnnns 64
L S S T Yol U 1Y) [0 o N 65

List of Figures

1.1 Relation between Aland MLand DL 13
1.2 Process of Neural Machine Translation — 15
1.3 Visualization of a neural network and deep neural network 15
14 linear model scoringformula.................... 16
1.5 feed forward neural network 18
1.6 Recurrent neural networks (RNNs) 19
1.7 Long Short-Term Memory Models 20
1.8 Gated Recurrent Units L. 20
1.9 deepneuralnetwork ... 21
1.10 The Transformer architecture ~ 23
1.11 sequence to sequence architecture, Blue and green boxes are LSTM
cells 26
1.12 encoder-decoder- architecture ~ 27
1.13 encoder-decoder- architecture RNN ~ 27
2.1 javacodesourceexample 30
2.2 Code Source Documentation — 31
2.3 how staticanalysiswork L 34
2.4 analysiscode source L. 36
2.5 Introduction to Abstract Syntax Trees ~ 38
2.6 Abstract Syntex Tree Example 39
2.7 Abstract Syntex Tree Tooling 40
2.8 The Different stages of creatingan AST. 42
2.9 Graph Traversal Algorithm 44
2.10 Breadth-First Search algorithm 45
2.11 Depth-First Search algorithm, 46
2.12 SBT Algorithm . 47
2.13 Example an ASTto SBT i 48
3.1 General Process of the proposed approach............. 52
3.2 A Sample fromtheuseddata.................... 53

3.3 Preprocessing function Ll 54

3.4 Distribution of comment lengths below 40 words in length

3.5 Build vocabulairae function.....................

3.6 FunctionoftheSBT.........................

3.7 an example of theJavamethod
3.8 Graphic representation of Encoder and Decoder...........

3.9 Example LSTM, operation groups are overlaid for clarity.
3.10 The Decoder part .. e

3.11 IR metrics function ...

3.12 Implementation of BLEU-4 calculation

4.1 Overleaflogo. ...

4.2 Overleaflogo. ...

4.3 Visual studiologo. ...

4.4 Tensorflowlogo. ...

45 Tensorflowlogo.

4.6 The Code2seq function from the proposed model
A7 e

4.8 The Configurationfile L

Chapter 1

Neural Machine Translation

1.1 Introduction

Machine Translation (MT) is an important task that aims to translate natural
language sentences using computers. The early approach to machine
translation relies heavily on handcrafted translation rules and linguistic
knowledge. As natural languages are inherently complex, it is difficult to
cover all language irregularities with manual translation rules. In this
chapter, we present an overview about Neural Machine translation (NMT),
especially in the context of the translation of source code as a sequence of
words to comment generation cases. Therefore, we will discuss in general
the Recurrent Neural Networks (RNNs) which are sequence-based deep
learning architectures. With a focus on long-short-term memory (LSTM)
networks which deal with sequential data and time series, RNNs are ideal for
mimicking source code’s sequential structure.

1.2 Machine Learning

Artificial intelligence (Al) has a subject called machine learning that focuses
on developing algorithms and models that let computers learn from data

54
55
57
58
60
61
62
64
65

67

67
68
68
69
71
72
73

and get better at a particular activity. Machine learning, in other terms, is
the act of teaching a computer system to recognize patterns and make
choices without being expressly programmed to do so.

supervised learning, unsupervised learning, and reinforcement learning are the
three primary categories of machine learning.

In supervised learning, a model is trained on labeled data with the
appropriate result being given for each sample of the input. By reducing the
discrepancy between its predictions and the accurate labels in the training
data, the model learns to map inputs to outputs.

In unsupervised learning, a model is trained on unlabeled data and is
required to discover patterns and structure on its own, without being given
specific objectives. Tasks like grouping, dimensionality reduction, and
anomaly detection require this form of learning.1.1

A model is trained through reinforcement learning to take decisions
based on rewards or consequences. The model develops the ability to act in
a way that maximizes a success indicator known as a reward signal. In tasks
like playing video games, building robots, and solving optimization issues,
this kind of learning is employed.

Deep learning, decision trees, random forests, support vector machines,
and a number of other subfields are examples of machine learning
algorithms that can be further divided into subcategories. [1]

)

Intelligenc? Artificielle

Machine Learning

Figure 1.1: Relation between Al and ML and DL

1.3 Neural Machine Translation

Neural machine translation (NMT) is a type of machine translation that uses
artificial neural networks to translate text from one language to another.

NMT models train on a huge quantity of bilingual data, in contrast to
conventional rule-based or statistical machine translation techniques.

Typically, NMT models have an encoder and a decoder, each of which is a
neural network. The decoder receives the input sentence from the encoder
and decodes it into a fixed-length representation. Based on the input
representation and the previous tokens it has created, the decoder creates
the output sentence one token at a time.

NMT models can be trained using a variety of techniques, including
supervised learning, unsupervised learning, and reinforcement learning. In
supervised learning, the model is trained on pairs of source and target
language sentences, with the goal of minimizing the difference between the
predicted translation and the correct translation. In unsupervised learning,
the model is trained on monolingual data in both the source and target
languages, with the goal of learning to translate without explicit supervision.
In reinforcement learning, the model is trained to maximize a reward signal,
which can be thought of as a measure of translation quality.

NMT models have been shown to be highly effective at translating
between a wide range of language pairs, and have achieved state-of-the-art
results on several machine translation benchmarks. Some of the advantages
of NMT models over traditional machine translation methods include their
ability to handle long-range dependencies between words, their ability to
learn representations that generalize across different languages, and their
ability to produce more fluent and naturalsounding translations.??

NMT models do have significant drawbacks, though, such as their high
processing needs, propensity to create translations that are excessively
impacted by the training data, and their inability to handle uncommon or
uncommon terms. Addressing these drawbacks and enhancing the
performance of NMT models across a range of translation tasks are the main
goals of ongoing research. The process followed for NMT is depicted in
figure 3.1.

[y

Figure 1.2: Process of Neural Machine Translation

1.4 Neural Networks

Neural networks, often known as artificial neural networks (ANNs) is a
machine learning algorithm . The idea of these networks has been inspired
from the neurons in human brains that communicate with each other using
electrical and chemical signals Which is later translated into an actions , the
same way in neural networks . The output from the previous layer is the
input to the next layer . In the end, the final value arrives at the output layer
and it is taken as a prediction . In deep neural network, The more hidden
layers, the more efficient and complex the network.[2] [3]

Artificial Neural Network Deep Neural Network

.‘—‘—‘.
LA ®—
@

Figure 1.3: Visualization of a neural network and deep neural network

1.4.1 Architecture of Neural Network

In the 1980s, most neuron networks formed only one layer due to the cost
of computing and the availability of data. Nowadays we can This allows us to
have more layers hidden in our neural networks, hence the nickname deep
learning. The different types of neuronal networks available for use They are
also known as

Convolutionary Neural Networks (CNNs) and Recurrent neural networks
(RNNSs).

1.5 Type of Neural Network

1.5.1 Linear Models

Linear models are a core element of statistical machine translation.Possible
translations x from A sentence is represented by a set of features hi(x).Each
feature is weighted by the parameter i to get the total score.lgnore the
exponential function we used to rotate earlier To convert a linear model to a
log-linear model, the following formula summarizes the model.

score(A, r) = Z Aj hji(x)
J

Figure 1.4: linear model scoring formula

Graphically, a linear model can be represented by a network of input
eigenvalues Nodes, arrows are weights, scores are output nodes (see Figure
2)

Most prominently, we use linear models to combine different
components of a machine translation system, such as the language model,
the phrase translation model, the reordering model, and properties such as
the length of the sentence, or the accumulated jump distance between
phrase translations. Training methods assign a weight value i to each such
feature hi(x), related to their importance in contributing to scoring better
translations higher. In statis- tical machine translation, this is called tuning.

1.5.2 Multiple Layers

Neural systems adjust straight models in two critical ways. The primary is the
utilize of multiple layers.Instead of computing the output value directly from
the input values, a hidden layer

The network is processed in two steps. First, a linear combination of
weighted input node is computed to produce each hidden node value. Then a
linear combination of weighted hidden nodes is computed to produce each
output node value. At this point, let us present numerical documentations

¢ a vector of input nodes with values x = (x1, x2, x3, ..xn) T

¢ a vector of hidden nodes with values h = (h1, h2, h3, ..hm) T

* a vector of output nodes with valuesy = (y1,vy2,vy3, ..yl) T

*a matrix of weights connecting input nodes with hidden nodes W = wij

*a matrix of weights connecting hidden nodes with output nodes U = uij

1.6 Neural Languge Models

In order to lessen the effects of the curse of dimensionality, neural network
language models, which are based on neural networks, can develop distributed
representations.

A neural language model surpasses n-gram language models in terms of
dimensionality reduction by using distributed word representations. Several
models based on feedforward networks, log-bilinear models, skip-gram
models, and recurrent neural networks have been developed. Each word in
the vocabulary is represented as a real-valued feature vector, and these
vectors are linked together so that the cosine of the angles between these
vectors is high for words that are semantically related. [4]

1.6.1 Feed-Forward Network

A feedforward network is a multilayer network in which the units are
connected with no cycles; the outputs from units in each layer are passed to
units in the next higher layer, and no outputs are passed back to lower
layers.

A feed forward neural network is a type of artificial neural network in which
there is no cycle in the connections between the nodes. A recurrent neural
network, in which particular paths are cycled, is the reverse of a feed
forward neural network. Since information is only processed in one
direction, the feed forward model is the simplest type of neural network.
Although the data may move through several hidden nodes, it always
proceeds forward and never backward.

Hidden
Input layer
layer

Output
layer

Inputs
Outputs

Figure 1.5: feed forward neural network

1.6.2 Word Embedding

Word embeddings, also known as word immersion, are the mapping of
words to real-number vectors in a condensed space dimension [34], which
may be one of the key advancements for the impressive results of deep
learning methods on challenging natural language processing problems. The
vectors of word inclusion represent words and their contexts; as a result,
words with similar meanings (synonyms) or close semantic relationships will
have more similar dives. Additionally, word inclusions must reflect the
relationships between individual words. For instance, the word "man"
should be written "king" just as "women" is written "queen."

1.6.3 Reccurent Neural Network RNN

Recurrent neural networks (RNNs) are a form of neural network in which the
results of one step are fed into the current stage as input. Traditional neural
networks have inputs and outputs that are independent of one another, but
there is a requirement to remember the previous words in situations when it
is necessary to anticipate the next word in a phrase. As a result, RNN was
developed, which utilized a Hidden Layer to resolve this problem. The
Hidden state, which retains some information about a sequence, is the
primary and most significant characteristic of RNNs.

RNNs have a "memory" that retains all data related to calculations. It
executes the same action on all of the inputs or hidden layers to generate
the output, using the same settings for each input. In contrast to other
neural networks, this minimizes the complexity of the parameter set.

J.ﬁ\ 7’?\ Sirmplified prosentation

&/ a0

Gy f“.:."‘--M--”:{ ‘:"'—— InputLayers Mdken ik CutputLaper

g /o 7N LTS A iy & i

o OO 0—0—0-
Ty ._.':,r..,).;_ 78 — autput
7 i 4

o Y A i A
R
CO‘ \“\,.!/ _i..‘f Crtpit Laer

gt Ly Hirdrder Lawérs

Figure 1.6: Recurrent neural networks (RNNs)

1.6.4 Long Short-Term Memory Models (LSTM)

An RNN model is a version known as long short-term memory (LSTM). A
LSTM can handle lengthy time-series data, but an RNN can only memorize
short-term information. In addition, lengthy sequence data present an RNN
model with the vanishing gradient problem, which LSTM can avoid during
training. An LSTM model has automated control over whether to keep
important properties in the cell state or toss out unimportant ones, and it
can recall past long-term time-series data. The input gate, forget gate, and
output gate are the three gates that an LSTM model uses to regulate its
characteristics. The input gate regulates how new information enters the cell
state.

The main components of the LSTM are its gates. There are three gates in an
LSTM: the input gate, the forget gate, and the output gate. The input gate
will control the inflow of new information into the cell. The forget gate will
control the content of the memory, that is, the forget gate will decide if we
want to forget a piece of information so we can store new information.

The output gate will control when the information is used in the output
from the cell. A gated recurrent unit (GRU) is a simplification of an LSTM.
Unlike an LSTM, a GRU has just two gates. This kind of setup ultimately
makes the execution faster as there is a lower number of weights to learn

1.6.5 Gated Reccurent Units

When compared to long short term memory (LSTM), the Gated Recurrent
Unit (GRU) is a type of recurrent neural network (RNN). GRU is quicker and
requires less memory than LSTM, however LSTM is more accurate when
working with datasets that contain longer sequences.

Additionally, GRUs address the issue with vanishing gradients that affects
regular

Cy
X
tanh

N .
ftT i Py Ot 1
o

tanh o h

Figure 1.7: Long Short-Term Memory Models

recurrent neural networks (values used to update network weights). Grading
may become too little to have an impact on learning if it shrinks over time as
it back propagates, rendering the neural network untrainable.

RNNs can basically "forget" lengthier sequences if a layer in a neural net is
unable to learn.

GRUs solve this problem through the use of two gates, The update gate and
reset gate are two gates that GRUs utilize to address this issue. These gates
may be taught to retain information from further back and determine what
information is let through to the output. As a result, it can transfer
important information along an event chain to improve its forecasts.

et e Ty y = o :_ll--|-:'\l'.| 1 |r-|-E||_||

i
o

h, =tanh (W, + U (e o a1))

fig = = o (W, + Uihg)

=11 —z 1+ :l.jr,

Figure 1.8: Gated Recurrent Units

1.6.6 Deep Model

An artificial neural network (ANN) with numerous layers in between the
input and output layers is known as a deep model. In a deep model,
information is transformed via a number of non-linear layers in a
hierarchical fashion. The model may learn increasingly sophisticated
representations of the input data by employing several layers, which can
increase the predictability of the model.

Deep models have grown in prominence in recent years as a result of their
propensity to handle challenging problems including audio, picture, and
natural language processing. Convolutional neural networks (CNNs) for

image recognition and recurrent neural networks (RNNs) for sequence
modeling are two examples of deep models.

However, because of problems like vanishing gradients and overfitting,
training deep models can be difficult. To assist with these issues, academics
have created approaches including regularization, dropout, and batch

normalization.
Input layer Hidden layer Output layer

Figure 1.9: deep neural network

1.7 Neural Translation Models(Tronsformer)

The Transformer is a deep learning model that was first proposed in 2017. It
uses a "self-attention" method that enhances neural machine translation
(NMT) applications’ performance in comparison to the conventional
recurrent neural network (RNN) model. As a result, training for natural
language processing (NLP) tasks is accelerated.

A neural network called a transformer model follows relationships in
sequential input, such as the words in this phrase, to acquire context and
subsequently meaning.

Transformers use positional encoders to tag data elements coming in and
out of the network.These tags are followed by attention units, which
calculate a sort of algebraic map showing how each element connects to the
others.

Output

Proba}'bilities
| Softmax |}
| Linear |}

L

g N\
| Add & Norm Je=~

7

N ~—>| Add & Norm)

Feed
Forward
[Add EJ N e
A orm
[At &- e] Multi-Head
Feed Attention
Forward | 7) N x

)

~

| Add & Norm Je—

Masked
Multi-Head Multi-Head
Attention Attention
- /U —_——
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1.10: The Transformer architecture The
Transformer model, like the Sequence-to-Sequence
(seq2seq) machine translation paradigm, is built on an
encoder-decoder architecture.However, the Transformer
differs from the seq2seq model in three ways:

e Transformer Block: The recurrent layer in seg2seq is replaced by a
Transformer Block. This block contains a multi-head attention layer
and a network with two Position-Wise Feed-Forward network layers

for the encoder. Another multi-head attention layer is used to
compute the encoder state for the decoder.

e Add Norm: The inputs and outputs of both the multi-head attention
layer and the Position-Wise Feed-Forward network are processed by
two Add Norm layers which contain a residual structure and a layer
normalization layer.

¢ Position Encoding: Since the self-attention layer does not distinguish
the order of items in a given sequence, a positional encoding layer is
used to add sequential information into each sequence item.

1.8 Transformer Functioning

Data preparation, model training, and model prediction are the
Transformer’s three main tasks; Data preprocessing, model training and
model prediction.

1.8.1 Data Preprocessing

The data is preprocessed using tokenizers before being fed into the
Transformer model.Tokenization of the inputs is followed by the conversion
of the created tokens into the token IDs required by the model.Tokenizers,
for instance, are created for PyTorch by using the "AutoTokenizer from
pretrained" function to:

* Get tokenizers that correspond to pretrained models in a one-to-one

mapping.

¢ Download the token vocabulary that the model needs when using the
model’s specific tokenizer.

1.8.2 Model Training

A well-liked training technique for neural machine translation is teacher
forcing. It cuts down on training time by using the actual output as inputs
rather than the anticipated output from the prior timestamp.

1.8.3 Model Prediction
¢ The encoder encodes the input sentence of the source language.

e The decoder uses the code generated by the encoder and the start
token () of the sentence to predict the model.

¢ At each decoder time step, the predicted token from the previous time
step is fed into the decoder as an input, in order to predict the output

sequence token by token. When the end-of-sequence token () is
predicted, the prediction of the output sequence is complete.

1.9 Sequence To Sequence Model (Seq2Seq)

Sequence-to-Sequence (or Seq2Seq) is a neural net that transforms a given
sequence of elements, such as the sequence of words in a sentence, into
another sequence.

Sequence transformation is the process used by Seqg2seq to change one
sequence into another. To get over the vanishing gradient issue, it uses a
recurrent neural network (RNN), or more frequently an LSTM or GRU. The
output from the preceding stage serves as the context for each item. One
encoder and one decoder network make up the main parts. Each item is
converted by the encoder into a matching hidden vector that includes both
the object and its context. Using the previous output as the input context,
the decoder reverses the process and produces the vector as an output item.

Seq2Seq models are particularly good at translation, where the sequence
of words from one language is transformed into a sequence of different
words in another language. A popular choice for this type of model is Long-
Short-TermMemory (LSTM)-based models. With sequence-dependent data,
the LSTM modules can give meaning to the sequence while remembering (or
forgetting) the parts it finds important (or unimportant). Sentences, for
example, are sequencedependent since the order of the words is crucial for
understanding the sentence. LSTM are a natural choice for this type of data.

Encoder and Decoder are the main components of Seq2Seq models. The
input sequence is translated by the encoder into an n-dimensional vector in
a higher level space. The Decoder receives this abstract vector and converts
it into an output sequence. The output sequence might consist of symbols,
another language, a duplicate of the input, etc.

EMCODER Renly
Vo5, wihat’s e
e o =
[.g
hrg Pl Fraa tomarsowy |
Ineeming Email DECODER

Figure 1.11: sequence to sequence architecture, Blue and green boxes are
LSTM
cells

1.9.1 Encoder - Decoder Architecture

Encoder-decoder architecture is a type of neural network architecture that is
best suited for use cases like machine translation where the input is a series
of data and the output is another sequence of data. In other words,
sequence-to-sequence modeling is best suited to encoder-decoder
architecture. The initial purpose of the encoder-decoder design was to
address the issue of machine translation, which entails translating text from
one language to another. The major difficulty in machine translation is that it
is challenging to directly map the input to the output since the input and
output sequences have distinct lengths and structures.

The input data is initially passed through an encoder network in this
configuration. The encoder network converts the input data into a numerical
form that extracts the crucial information. The hidden state is another name
for the numerical representation of the input data. The decoder network is
subsequently given with the numerical representation (hidden state). One
output sequence element is produced by the decoder network at a time to
produce the output. The encoder decoder architecture is shown in the
illustration below. As seen in the image below, data sequences for both the
input and output might have different lengths.

RNN/LSTM used as an Encoder and a Decoder: For applications like
machine translation, where the input and output are both collections of
words with different lengths, this architecture can be employed. While the
RNN/LSTM in the decoder may produce the appropriate output sequence of
words in a different language, the RNN/LSTM in the encoder can encode the
input sequence of words into a hidden state or numerical representation.
The encoder-decoder architecture shown below uses RNN in both the
encoder and the decoder networks. English words are used as the input
sequence, and German is translated automatically.

rk :

Figure 1.12: encoder-decoder- architecture

 Transformer
¥ sind
¥ grossartig

}!

Figure 1.13: encoder-decoder- architecture RNN

1.10 Conclusion

The foundational information required to understand the ideas of neural
machine translation, recurrent neural networks (RNNs), long short-term
memory (LSTM) networks, and sequence-to-sequence (seg2seq) models has
been covered in this chapter. For the upcoming investigation of comment
creation from source code using these methodologies, it is essential to have
a firm grasp of these ideas.

Chapter 2

Code Source Analysis and
Documentation

2.1 Introduction

AST tools and code source documentation both aid in the comprehension,
evaluation, and advancement of software projects. Developers can
understand and edit code with the help of documentation, while AST tools
provide insights and capabilities for sophisticated program analysis and
manipulation. In this chapter, we focus on Source code and especially on
documentation source code, analysis source code, and the categories of
comments in Java code. we talk also about the Abstract Syntax tree, AST
tools, and AST application, we describe traversed algorithms (structure-
based traversal and graph traversal algorithm).

2.2 Code Source

Source code is a text that represents the instructions that must be executed
by a microprocessor. The source code is often materialized in the form of a
set of text files. The source code is usually written in a programming
language, thus enabling better human understanding. Once the source code
is written, it generates a binary representation of a sequence of instructions
executable by a microprocessor. for example of source code 3.1

fadbiage EeRlAlBLSEs |
bepsict java-util Bmossratiomn
impart qevi.util Yecksrc:

ElapL Cunbsmsy |
privabae Jtzing nime
PELYRDE o LOEENEnLals _I.'.'I"-'.::: = == YerloriRenlal>1)

pablic Customer (GECing mamm) |

NS © i

Fiblic Flzing quilcoric iMovle acivia)

pental pearal OoE Benial fnes Eearla(=®, Movis, FEW mELEASE 19)
Mowim = = yanbal, mowim;
subizn Sdvlo. gelTilbleq] ;

gebliz wadd sddRenibal (Rastal argl |
_bezlale.pddElesenl Loy @

mebkliz Strimy gueMamm () |
Solurh | sdmi

Figure 2.1: java code source example

2.2.1 Code Statement Level

Software is a collection of programs with documentation. A program is a
sequence of code statements. Many researchers have proposed comment-
generation methods at the code block level. We can classify it further into
two categories. The first is the single code statement level (pseudo code
generation), and the second, the multiple code statement level.[5]

2.3 Code Source Documentation

Source code documentation is a type of technical document that is
embedded within the source code itself. Software developers write source
code documentation at various levels of abstraction. Developers require
source code documents to understand the code during the maintenance
phase.

Code Documentation By using comments, annotations, and detailed
justifications, the code may be documented. Future developers will benefit
from having a better understanding of the functions and purposes of various
code parts.

in this section describes in a very synthesized manner the rules
concerning the documentation of the code Programming in C++ and Java.
This document also provides guidelines for Formatting the source code.

2.3.1 General Principles

e The documentation is intended for readers and users of a program,
not not to its author (except 6 months after writing it; the author then
no longer remembers Good for what he did.

¢ |t helps the reader understand the source code and use it; it does not
duplicate information already explicitly contained in the source code.

¢ |t must be clear, concise, accurate, complete, uniform and simple to
maintain.

* It must be done as the program is developed, otherwise it It will never
be done (correctement).

e |t facilitates the maintenance of programs in an organization.
programming style, which allows a person to It's easier to get
another’s job done.

Keep in mind that documentation is a continuous operation. It’s crucial
to update the documentation when the code changes and new features are
introduced in order to keep it accurate and helpful.

commands documentation

function prototype

Figure 2.2: Code Source Documentation

Software development must include code source documentation
because it promotes better knowledge, maintainability, and developer
cooperation. Here are some important considerations for source code
[6]documentation:

1.

Readme Files:Include a readme file that gives a summary of the
codebase, installation guidelines, a getting started guide, and links to
pertinent documentation or resources at the project level.

. Code Dependencies:ldentify the external frameworks, libraries, or

modules that the code uses. To guarantee correct configuration and
setup while deploying or working on the codebase, note the versions
and dependencies.

. Code Style and Standards:Make that the code adheres to accepted

best practices and coding standards. Record any departures from the
norms and offer suggestions for bringing the code into line with the
desired aesthetic.

Documentation Format:Establish the documentation for the code’s
format. Inline comments, a separate documentation file, or an outside
documentation tool like Doxygen or Javadoc are all possible forms of
documentation.

Purpose and Overview:Give a brief explanation of the functionality and
goal of the code. Describe its key characteristics, planned applications,
and integration with the system’s general design.

6. Module/Class/Function Level Documentation: Clearly describe the
roles, inputs, outputs, and any pertinent side effects for each module,
class, and function. Specify the desired actions and usage instructions,
along with the parameters’ descriptions and return values.

2.4 Comments

2.4.1 Comments and Inline Documentation

Use inline comments within the code to explain complex or non-obvious
sections, algorithms, or decisions. Comment key variables, constants, or
logic blocks to provide additional context. However, strive for self-
explanatory code and avoid excessive or redundant comments.

2.4.2 Comments Categories

For the Java and C/C++ programming languages, we differentiate between
seven different types of comments:

e Copyright Comments: include information about the copyright or the
license of the source code file. They are usually found at the beginning
of each file.

e Header Comments: give an overview about the functionality of the
class and provide information about, e. g.,the class author, the revision
number, or the peer review status. In Java, headers are found after the
imports but before the class declaration.

e Member Comments :describe the functionality of amethod/field,
being located either before or in the same line as the member
definition. They provide information for the developer and for a
project’s API.

¢ Inline Comments :describe implementation decisions within a method
body.

e Section Comments : address several methods/fields together
belonging to the same functional aspect. A fictitious example looks
like// —- Getter and Setter Methods —and is followed by numerous
getter and setter methods.

e Code Comments: contain commented out code which is source code
ignored by the compiler. Often code is temporarily commented out for
debugging purposes or for potential later reuse.

e Task Comments : are a developer note containing a remaining todo, a
note a about a bug that needs to be fixed,or a remark about an
implementation hack.

2.5 Code Source Analysis

Static code analysis, in which the source code is examined just as code and
the program is not in use, is the same as source code analysis. This
eliminates the requirement for developing and utilizing test cases and may
help it avoid featurespecific issues like buttons that aren’t the color that the
specs specify. It focuses on identifying programming errors such lines of
code that might cause crashes that could be harmful to the program’s ability
to run properly.[7]

Static code analysis, sometimes referred to as code source analysis or
source code review, is the act of looking at the source code of a software
program to find potential problems, weaknesses, or enhancements. It entails
examining the code’s structure, grammar, and logic without actually running
it.

Coding standards compliance, bug detection, and security vulnerability
identification are all goals of code source analysis. It aids in the early
identification of possible problems by developers, enabling them to address
them before they become difficulties during runtime.

Intarmedin

e M| i isn y Eons ArdNik :
Lo Edtraction ‘ i * Jrail s * il
I._"\u'_'ll
-_ __I-"ll"'-__ -
o ~
bl Dalabascfym D! Babln AT Syitan T 1a37) Camtot Rowdioh 1I050) Calldresh
S | Taal] -:'\— u E ﬁ
-..:... '-_. s & i ';‘Fl_é
= s thelad 3 ¥ b
T (1Y T
v
i

Figure 2.3: how static analysis work

2.5.1 Analysis of Source code

Various methods and instruments can be used to study the code during
source code analysis[8], including:

e Code Review: To begin, read through the source code to become
familiar with its organization, structure, and features. ldentify the key
classes, modules, and components that make up the codebase.

e Code Flow:Trace the execution route to analyze the code flow and find
any potential bottlenecks, dependencies, or performance problems.
Record the high-level overview of the code’s operation and the
relationships between its many components.

¢ Error Handling::Check the code’s handling of exceptions, errors, and
edge situations. Any error-handling procedures that are in place
should be documented, along with how they affect the code’s overall
behavior.

e Security Analysis: Examine the system for potential security flaws like
SQL injections, cross-site scripting (XSS), or weak authentication and
authorisation systems. Keep a record of any hazards found and make
suggestions for improvements or mitigations.

¢ Performance Analysis:Check the code for any performance issues or
potential improvements. Record any areas where performance,
memory consumption, or resource utilization might be improved.

e Testing and Test Coverage:Check the code to see whether it has any
unit tests, integration tests, or other automated tests. Examine the
code coverage and note any testing strategy shortcomings.

e Automated tools: specialized software tools made to check source
code for compliance with coding standards, common programming
errors, and security flaws. These tools use pre-established rules or
patterns to examine the code.

* Metrics analysis:To evaluate the quality and maintainability of the
code, code metrics including complexity, cyclomatic complexity,
duplication, and other software metrics are analyzed.

Developers can find possible problems, minimize defects, increase
security, optimize speed, and improve code quality by doing code source
analysis. For software developers to create trustworthy and durable
applications, this technique is crucial.

vl

|_

L -

Figure 2.4: analysis code source

2.6 Structure and Necessary Elements for source code

2.6.1 Source File

Each source file contains an entity consisting of the elements[6] The
following:

¢ Name of the program

¢ A brief description

¢ the authors and their registrations;

¢ the date of completion of the first implementation

¢ the end date of each version with authors and authors;
¢ the course for which the file is developed;

¢ alonger description containing:
a- program entries and their preconditions; b- the

outputs of the program and their post-conditions.

¢ A history of changes for each version.

2.6.2 Method and Function

Each method and function:

e includes an entrance describing the processing carried out; ideally,
describe the Pre-entry conditions and post-exit conditions;

¢ includes, if necessary, comments in the body that explain the sections
the complexity of the treatment;

2.6.3 Identifying

¢ Use of Significant Identificators a- The names of classes, variables
and constants must be accurate. b- A function or method name
describes the treatment performed. c- Indices in an iteration can

be simple letters.

e Construction of identifiers

2.7 Abstract Syntax Tree

The structure of a program or a piece of code is represented by an abstract
syntax tree (AST), a data structure used in computer science and
programming language theory. It is a generic representation of the syntax of
the code, unrelated to any particular computer language. When a program is
parsed, its syntactic components, such as statements, expressions,
operators, and control flow structures, are separated from the source code
and organized into a hierarchical structure. The standard visual
representation of this hierarchical structure is a tree, where each node
corresponds to a syntactic element and the edges show the connections
between these components.

riek

Lextcul 0f shm) o Eﬁﬁﬂ

Mﬂl‘ﬁlﬁ\ B 1' | Gmemhm
s e f. @\

tohers ‘ST

input

Figure 2.5: Introduction to Abstract Syntax Trees

While abstracting away elements like style, whitespace, and other non-
essential information, the AST preserves the code’s core structure and
meaning. Compared to the raw source code, it offers a higher-level

representation that is simpler to understand and manipulate. ASTs are
frequently used in tools for code restructuring, interpreters, compilers, and
other stages of program analysis and transformation. By navigating and
modifying the tree nodes, they make it possible to perform actions like
syntax checking, semantic analysis, optimization, code creation, and
program modifications.[9]

Tools and frameworks may support several programming languages
without having to worry about the nuances of each language’s particular
syntax by working with code in a language-agnostic way utilizing an AST.

An Abstract Syntax Tree (AST) is a hierarchical representation of the
syntactic structure of a program written in a programming language. It
captures the structure and relationships among the various components of
the code,

Figure 2.6: Abstract Syntex Tree Example

When a compiler or interpreter processes source code, it typically goes
through several stages, including lexical analysis (breaking code into tokens),
parsing (building a parse tree), and finally constructing an AST. The AST
represents the parsed code in a more abstract and structured form, which
makes it easier for subsequent stages of the compilation process, such as
type checking, optimization, or code generation.

Here are some key points about Abstract Syntax Trees:

1. Hierarchical Structure:An AST is a structure that resembles a tree, with
each node standing in for a particular piece of code, such as a function
declaration, a loop statement, or an arithmetic expression. The
layering and composition of code components are represented by the
parent-child connections connecting the nodes.

2. Abstracted Representation: The AST concentrates on the underlying
structure and meaning by abstracting away some of the source code’s

specifics. For instance, the AST may represent a loop construct without
explicitly describing how it is implemented or collapse many levels of
parentheses in an arithmetic statement.

3. Language-Dependent: Because the organization of code components
and linguistic requirements differs, every programming language has
its own AST representation. The exact syntax and semantics of the
language it represents are captured by the AST.

4. Loss of Certain Details:An AST may lose certain syntactic
characteristics, such as formatting, comments, or original variable
names, but it still retains the fundamental structure and meaning of
the code. These specifics can be skipped over during parsing because
they are frequently not necessary for later compilation steps.

5. Analysis and Transformation:ASTs are frequently used for a variety of
compiler-related activities, including code creation, optimization, and
analysis. Compilers may do static analysis using the AST, spot possible
mistakes, apply optimizations, and produce effective machine code.

6. Tooling and Language Tools:Development tools like IDEs, linters, and
refactoring tools also use ASTs. These tools make use of the AST to
offer capabilities like automatic refactorings, code navigation, code
recommendations, and static code analysis.

Parser

(Syntax Analysis)

e
.
A4

/ N\

\
- —
v
=
E ’ ExpressionStatement
‘helloWorld" A
v

Tokens 7 N

Figure 2.7: Abstract Syntex Tree Tooling

There are several tools available for working with Abstract Syntax Trees
(ASTs) in various programming languages. Here are some popular AST tools:

2.7.1 AST Tools

Some industrial and academic AST tools are listed bellow.

e Tree-sitter: A parsing package called Tree-sitter produces ASTs for
several programming languages. It offers a single APl and facilitates
effective incremental parsing. Tree-sitter is a flexible option because it
offers bindings for several languages.

e Esprima and Babel: Esprima is a parser for JavaScript code that creates
ASTs. Esprima is an internal tool used by the JavaScript compiler Babel
to create ASTs. For the analysis and manipulation of JavaScript code,
these tools are frequently used.

¢ Roslyn: Microsoft’s Roslyn platform is an open-source compiler for C
and VB.NET. It has APIs for AST interaction, code analysis, and
transformation. Roslyn offers comprehensive assistance for working
with and analyzing C and VB.NET code.

e Eclipse JDT:Java Development Tools (Eclipse JDT) are a collection of
libraries and APIs for working with Java programming. It offers
assistance in constructing ASTs and parsing Java source code. JDT
offers a number of tools for examining and modifying Java code.

¢ Python ast module:The ‘ast’ module of Python’s standard library offers
tools for interacting with Python ASTs. It enables the parsing of Python
source code, the creation of ASTs, and the exploration and analysis of
those ASTs.

e Clang and LibTooling: The Clang frontend for the C/C++ compiler offers
a robust framework for dealing with C/C++ code. It contains
LibTooling, which enables the creation of unique tools for the use of
ASTs in the analysis and transformation of C/C++ code.

e TypeScript Compiler API: TypeScript, a superset of JavaScript, has a
Compiler APl that enables parsing TypeScript code and generating
ASTs. The API allows working with TypeScript ASTs to perform various
code analysis and transformation tasks.

These are only a few illustrations of AST tools that are accessible for
various programming languages. There may be more libraries, frameworks,
or languagespecific tools that offer AST capabilities, depending on the
language and particular needs.

2.7.2 AST Design and Construction

e AST Nodes must hold sufficient information to recall the essential
elements of the program fragments they represent — For example, want to
know that node X of the AST corresponds directly to procedure Foo of the
program e Implementation of ASTs should be decoupled from what is

represented — Accessors are used to hide a node’s internal representation e
No single class hierarchy — Each phase may view the nodes differently

2.7.3 Stages of Creating an AST

To transfer the code to an AST there are different stages that need to be
done before creating an AST which are Lexical Analysis and Syntax Analysis.

1. Lexical Analysis : In this stage, we will firstly determine each of the
token types that make up the source code. It is also called
Tokenization, which tokenizes the source code into smaller units.

2. Syntax Analysis : The next step is syntax analysis, also known as a
parser. This process creates the tree structure using the tokens
produced by the lexical analyzer.

Lexica Sy
anall;.zer anal;;er — AST

Figure 2.8: The Different stages of creating an AST.

2.7.4 Application of Abstract Syntax Trees

Abstract Syntax Trees (ASTs) are commonly used in programming language
theory, compilers, interpreters, and various static analysis tools. Here are a
few application areas in which ASTs are utilized:

e Compilation :A computer language’s source code is converted into an
executable format during the compilation phase. At the heart of this
shift are ASTs. An AST, which encapsulates the structure and semantics
of the code, is created by parsing the source code. Then, further steps
like optimization, code creation, and linking make use of the AST.

e Interpretation : In interpreted languages, an interpreter immediately
processes the AST to carry out the program rather than converting
source code into machine code. The program may be run step-by-step
because the interpreter moves through the AST and carries out the
tasks listed by each node.

* Program analysis and optimization : ASTs give the code a structured
form that enables different analysis and optimizations. The AST may
be examined by static analysis tools like linters and static analyzers to
look for possible mistakes, security holes, coding style infractions, and
other problems. Based on the knowledge obtained from the AST,
optimizations such as dead code reduction, constant propagation, and
loop modifications can be done.

e Code refactoring and transformation: Code may be automatically
refactored or transformed using ASTs. Integrated development
environments (IDEs) and similar tools frequently use ASTs to carry out
automatic refactorings such renaming variables, removing methods, or
rearranging code structure. Developers can enhance the readability,
maintainability, and general quality of their code by using AST-based
modifications.

e Domain-specific language implementation : ASTs offer a practical form
for capturing the domain-specific semantics while developing domain-
specific languages. Developers can design customized languages
targeted to certain problem areas by specifying the syntactic rules of
the DSL, parsing the code into an AST, then interpreting or translating
it accordingly.

These are only a handful of applications for ASTs in programming. A
variety of operations including analysis, transformation, and
interpretation are made possible by ASTs, which act as an intermediary
representation of code.

2.8 Graph Traversal Algorithms

A graph’s nodes or vertices can be explored or visited using graph
traversal methods. By starting from one node and visiting every
accessible node, they provide systematic traversal or navigation over
the graph. Because they make it easier to comprehend the structure
and interactions inside the network, traversal algorithms are crucial for
understanding and modifying graphs. Graph traversal algorithms major
objective is to efficiently cover

static void graphTraverse(Graph G) {
int v:
for (v=0; v<G.nodeCount(); wv++) {
G.setValue(v, null); // Initialize
}
for (v=0; v<G.nodeCount(); v+t+) {
if (G.getValue(v) != VISITED) {
doTraversal(G, v);

Figure 2.9: Graph Traversal Algorithm

all of the nodes in the graph by ensuring that each node is visited
precisely once, avoiding endless loops, and completing the graph.
BreadthFirst Search (BFS) and Depth-First Search (DFS) are two popular
graph traversal techniques.

2.8.1 Breadth-First Search (BFS)

BFS begins at a particular source node and traverses the graph level by
level. Prior to going on to their neighbors, it first visits all of the
neighbors of the source node. To keep track of the nodes that need to
be visited,

this method employs a queue data structure. BFS ensures that nodes
that are closer to the source node are accessed before nodes that are
farther away. It is helpful for examining a graph breadth-first and for
determining the shortest path between two nodes.

statiec void BFS(Graph G, int wv) {
Loueue Q0 = new LQueue(G.nodeCount()};
Q.enqueuea(w);
G.setValue(v, VISITED);
while (Q.length() > 0) { /7 Precess each vertex on Q
v = (Integer)Q.degueue();
PreVisit (G, v);

int[] nList = G.neighbors(wv);
for {(int i=0; i< nList.length; i++) {
if (G.getValue(nList[i]) != VISITED) { // Put neighbors con @
G.setValue(nList[i], VISITED);

Q.enqueue(nList[i]);
¥
h

PostVisit(G, v);

Figure 2.10: Breadth-First Search algorithm

2.8.2 Depth-First Search (DFS)

DFS investigates the graph by delving as far as feasible down each
branch and then turning around. It travels to one of its neighbors after
starting from a certain source node. It then moves on to that
neighbor’s subsequent unexplored neighbor and so forth until it comes
to a dead end. Then it circles back to the first node and investigates a
different unexplored neighbor. Up till all nodes have been visited, this
procedure keeps on. DFS often keeps track of the nodes to be visited
using a stack data structure (or recursion). It is helpful for discovering
cycles in a graph and for exploring all potential pathways. Other
specialized graph traversal methods exist in addition to BFS and DFS,
such Dijkstra’s algorithm for locating the shortest path in weighted
graphs and A* search algorithm for locating the shortest path with
heuristic information. Based on particular issue requirements, these
algorithms use extra factors and heuristics to enhance the traversal
process.

static void DFS(Graph G, int v) {
PreVisit(G, v);
G.setValue(v, VISITED);
int[] nList = G.neighbors(v);
for (int i=0; i< nList.length; i++) {
if (G.getValue(nList[i]) != VISITED) {
DFS(G, nList[i]);

}

PostVisit(G, v);

Figure 2.11: Depth-First Search algorithm

2.9 Structure Based Traversal

The analysis and processing of tree-like structures, such as abstract
syntax trees (ASTs) in programming languages, are done using the
Structure-Based Traversal (SBT) technique. To carry out numerous
tasks, like program analysis, code modification, or code generation,
SBT tries to capture the structural relationships and attributes of
nodes within a tree.[10]

Algorithm 1 Structure-based traversal,

I procedure SBT(r) & Traverse a free from root r

Looseg @ & seq is the sequence of a tree affer fraversal

L iflrhasChild then

4 seq < (r)r » Add brackets for terminal nodes

5 else

o seq < r & Add left bracket for non-terminal nodes

7 for ¢ in childs do

§: seq + seq + SBT(¢)

0: end for

10; seq < seq+)r - Add right bracket for non-terminal nodes after traversing all
their children

1 endif

12 return seq
13: end procedure

Figure 2.12: SBT Algorithm

To visit and process nodes in the AST, traversal rules or patterns must
be established as part of the SBT approach. These guidelines are based
on the node types, parent-child relationships, sibling relationships, and
other structural elements of the tree. SBT algorithms explore the AST
in an organized manner by abiding by these principles, visiting nodes in
accordance with their locations and connections within the tree.

SBT is essential in code generation tasks, where an AST is translated
into executable code or another representation.Code generation
methods can either produce code based on predetermined templates
or map the tree nodes to the relevant code constructs in the target
programming language by traversing the AST according to predefined
patterns.

Iree strcium

SBRT

R TEIE AT TR E L] AFEI LI

Figure 2.13: Example an AST to SBT

2.10 Conclusion

In Conclusion, the purpose of comprehending and maintaining
software projects, code source documentation is crucial. It gives
details about the function, usage, and intent behind certain code
elements. However, program analysis and modification greatly benefit
from the use of an Abstract Syntax Tree (AST) tool. The grammar and
semantics of the code are represented in an organized manner by AST
tools, which improve the productivity and efficiency of software
development.

Chapter 3

NMT-based Comment
Generation from Source Code

3.1 Introduction

For big software systems, the maintenance phase typically lasts longer
than all the earlier life-cycle stages combined [2]. The maintenance
cycle includes understanding software as a major component. In fact,
knowing the code base takes up around 59% of the total time spent
during the software development life cycle. This is due to project
deadlines and time restrictions, which causes mismatched code
comments, full omissions of comments, or failures to update
comments of patched code in the database [11]. As a result, there has
been extensive research on the automatic generation of comments
given uncommented source code. Some of the early research on this
topic conducted by [12] [13] [14]

In this chapter, we present the essence of our work. First, we give an
overview of related work on generating comments from source codes.
Then we introduce our proposition by explaining, and after that, we
will present the process we followed and provide a comprehensive
and detailed description of our approach.

3.2 Related work

in the literature, many notable approaches have been proposed to
generate code comments automatically from source code. Different
methods and techniques have been used, from clone detection to
copy comments [6] to deep learning to forecast when new comments
will be generated for uncommented code [11].

Code summarization research is a related area of study. Code summary
aims to condense lengthy chunks of code into a manageable number
of words. Using bidirectional LSTMs, such as in code2seq [15], which
uses a bidirectional LSTM in conjunction with an attention mechanism
to highlight the most crucial nodes in an abstract syntax tree (AST),
significant progress has been made in this area. The function is then
summarized using these ideas.

The function is then summarized using these ideas. As a result, the
code’s actions are briefly summarized. Of course, these summaries
differ significantly from good comments.

An encoder-decoder architecture often employs 2 related models. who
initially enters an encoded state from the input sequence. The decoder
network, which has been trained to translate its input into a desired
target, is then given this state. Because it enables the learning of
translations across many types of sequences, this technique is
frequently employed in neural machine translation (NMT).

Previous studies have demonstrated that using deep learning models
to automatically generate code comments is a practical application
[11] [16]. These studies train a sequence2sequence model (encoder-
decoder architecture) using syntactical information stored in an AST.
The comment that would describe a line of code is then predicted
from a group of comments using this model. The BLEU score is used to
compare the performance of these models. [17] This score serves as a
gauge for machine translation accuracy. The models in papers [11] [16]
received BLEU-4 scores of 38% and 39 %, respectively. Because the use
of neural networks in software engineering is a rapidly progressing
field, the authors of the paper (code2vec) upon which deepcomm is
based have released a new paper boasting higher accuracy (code2seq).
To improve upon the deepcomm paper we suggest a similar
architecture, while using code2seq.

3.3 An approach for Comment generation from java
source code

in this work, we propose a comment generator model using a new
state-ofthe-art technique that is based on code2seq model for
comment generation from Java source code. Our proposition is based

on the DeepCom [11] architecture. Instead of directly generate
comments from the traversed AST sequences. we propose to combine
the source code and the modified AST sequences together to generate
the comments. We focus on replicating the code2seq model with
added capabilities such as, predicting natural language and modified
ASTs.

3.3.1 Model design

We will employ a code to sequence model to automatically produce
comments. It has been demonstrated that this is a successful method
for NMT[18], code summarization[15] and comment generation [11]
[16]. In this part, the network’s overall architecture will be covered,
starting with a dataset analysis, followed by AST processing, input code
encoding, and finally decoding.

The propsoed model, shown in Figure 3.1 adopts an attention-based
Code2Seq model to generate high-level description of code snippets.
Compared to deepcomm, the BLEU score of Code2Seq model increases
to 35.50n the Java corpus. In order to capture the structural information,
AST sequences traversed by SBT are input into our model.

Fig 3.1. provides an illustration of the general structure of the
proposed work. Three phases are required: data processing, model
training, and testing. We analyze and preprocess the source code we
downloaded from GitHub into a parallel corpus of Java methods and
the comments that go with them. The Java methods are turned into
AST sequences via a particular traversal methodology in order to
understand the structural information.

The main propositions in this method are :

— Our method uses AST sequences as an input to obtain structural
data. We suggest a new method for analyzing ASTs called SBT,
which provides unambiguity while expressing semantics with
structural infor-

Wil Lanpuisge Annofations

Caniliz Ml

l

|
i
— Tralndng
|
i

Cle Summary

. Code summurirndion with
e traimed model

a Dals Processing b Trabilieg o sequrince-b-seqienee il

Figure 3.1: General Process of the proposed approach

mation. By better aligning source code to the natural language
description, our model can generate comment that are more
accurate.

3.3.2 Out of Vocabulary problem

The Out of Vocabulary issue in NMT is well-known, especially when
invented terms are employed, like in the name of variables in source
code. This is not an issue when translating from one language to
another if the majority of terms have been defined and trained upon
by the model. However, because a (Bi)LSTM in a sequence2sequence
model can only predict words it has been trained on, this issue is
particularly common in comment creation. The way that different
programmers name variables in their code might vary significantly,
even within the same project [2]. A major obstacle for producing
guality comments is presented by this. In this study, we use the AST to
address this issue.

3.4 Dataset

The comment generator model is trained on the same dataset as Hu et
al.’s deepcom network [11] in order to compare its capabilities with
the stateof-the-art methods. To maintain a fair test, the same data
split as in [11] will be utilized, which is 80% train, 10% test, and 10%
validation. The dataset contains 588,108 code-comment pairs that can
be used for training and evaluation. Details can be found in table 3.1

Methods # All tokens # All identifiers #Unique tokens #Unique identifiers

588,108 44,378,497 13,779,297 794,711 794,621

Table 3.1: Statistics for code snippets in DeepComm dataset

The 9,714 Java projects that were scraped from GitHub with the [11]
form the basis of the dataset.

{} train.json X

protected void tearDown(){\n}\n", "n1": "Tears down the fixture, for example, close a netwark connection. This methot

‘@nownFailure(\'"Fixed on DonutBurger, Wrong Exception thrown\") public veid test unwrap_ByteBuffer$ByteBuffer 02{){\r
{"code" ic static CstFloat make{int bits){\n return new CstFloat(bits);\n}\n", ‘"Makes an instance for the given ve
{"code" ic long size(){\n long size=@;\n if (parsedGeneExpressions null) parseGenes();\n for (int i=8; i < parsec
{"code" ic void increment(View view){\n if (guantity 1e0) {\n return;\n }\n quantity=quantity + 1;\n displayQuz
{"code" ic void trimToSize(){\n ++modCount;\n if (size < elementData.length) {\n elementData=Arrays.copyOf(elementDz
{"code" SyncvalueResponseMessage(SyncValueResponseMessage other){\n __isset _bitfield=other.__isset bitfield;\n if (c
{"code" void clearParsers(){\n if (parserManager != null} {\n parserManager.clearParsers();\n Fnhn", 1 "Ren
{"code" verride public void run(){\n while (doWork} {\n deliverLock();\n while (tomLayer.isRetrievingState(}) {\n
{"cade" private byte[l calculateUvalue(byte[] generalKey,bytell firstDocIdvalue,int revision) throws GeneralSecurityExceptior
{"code" private void assign({HashMap<String,DBIDs> labelMap,String label,DBIDRef id){\n if (labelMap.containsKey(label)) {\n
{"code": “private void showFeedback(String message){\n if (myHost != null) {\n myHost.showFeedback(message);\n H\n else {\
{"code": "public CDeleteAction(final BackEndDebuggerProvider debuggerProvider,final int[] rows){\n super(rows.length =1 7 \"
{"cade" ic Yaml(BaseConstructor constructor,Representer representer,DumperOptions dumperOptions,Resolver resolver){\n it

{"code" ic void testHitEndAfterFind(){\n hitEndTest(true, \"#81.8\",\"r({ege)|{geg)):x\" ,\"reg ;false}j\n hitEndTest(

{"code" ic void add(Individual individual){\n individuals.add{individual);\n}n", "nl dds a single individual."}
{"code" ic boolean removeSession{Ignitelluid sesld}{\n GridTaskSessionImpl esMap.get(sesId);\n assert ses == null |
{"code" ic static Bitmap loadBitmapOptimized(Uri uri,Context context,int limit) throws ImageLoadException {\n return loz
{"code" protected BasePeriod(long duration){\n super();\n iType=PeriodType.standard();\n int[] values=ISOChronology.getIns
{"code" ic FlatBufferBuilder(){\n this(1824);\n}\n", "n 'Start with a buffer of 1KiB, then grow as required."}
{"code" ic PbrpcConnectionException(String argd,Throwable argl){\n super({arg®,argl);\n}n", ": "Creates a new instanc
{"code" ic void uninstallUI{JComponent a){\n for [int ; 1< uis.size(); i+) {\n ((ComponentUI)(uis.elementAt{i)))
{"code" ic static void shutdown(){\n if (instance != null} {\n instance.save(};\n Rnln aves the configur
{"code" boolean GE(Word w2){\n return value.GE{w2.value);\n¥\n", "nl": “Greater-than or egual comparison"}
{"code" c static UnionCoder of({List<Coder<?>> elementCoders){\n return new UnionCoder(elementCoders);\n}n", Bui
{"cade" void testFileDeletion{) throws Exception {\n File testDir=createTestDir(\"testFileDeletion\") String prei
{"code" boolean isOnClasspath{String classpath){\n return this.classpath.equals(classpath);\nhn" 'Evaluates i
{"code": "protected void source(String ceylon){\n String providerPreSrc=\"provider/\" + ceylon + \"_pre.ceylon\";\n String pr
{"code": "public PerformanceMonitor(){\n initComponents{);\n if (Display.getInstance().getCurrent{} != null) {\n refreshFr
{"code": "@DSGenerator(tool_name=\"Doppelganger\",tool_version=\"Z2.8\",generated_on=\"2014-89-03 15:01:15.190 -848@\", hash_oric
'‘@DSComment (\"From safe class list\") @SSafe(DSCat.SAFE_LIST) @DSGenerator{tool_name=\"Doppelganger\",tool_versioi

Figure 3.2: A Sample from the used data

3.4.1 Preprocessing

From these Java projects, we first extract the Java methods and their
related Javadoc. Because they frequently describe the functionality of
Java methods in accordance with Javadoc recommendations, the initial
phrases of the Javadoc are used as the target comments. This refers to
the person who also utilized the first sentence of a method’s Javadoc
as a concise synopsis. The methods without Javadoc have been
removed. Second, we remove some of the Method and Comment
pairs gathered in the preceding stage. In this work, pairs with one-
word Javadoc descriptions are filtered out since they cannot
adequately describe the Java method functionality.

Fava_fites creator.py >

nt_in_txtfile{to_write path, comment):
comment. txT,

t_replacements(to_write_path, code, comment):

code)

o_write
ode_in_javafile(to_write _pat

Figure 3.3: Preprocessing function

Figure3.4 shows the distribution of just the comments that are less
than 40 words in length, which will help you better understand how
the data is organized.

40000

35000 4

30000 4

25000 4

20000 4

Count

15000

10000 4

5000

0 5 15 20 25 30 35 40
Waords in comment

Figure 3.4: Distribution of comment lengths below 40 words in length

3.4.2 Building Vocabularies

Java lang and NLTK each parse the source code and comments into
tokens. After that, all tokens are made lowercase. The generic tokens
NUM and STR are used in place of the numerals and strings during the
training. Source code and AST sequences are limited to 200 and 500
characters, respectively, in length. The shorter sequences are padded
with a special symbol called PAD, and the longer sequences are divided

into 500-token sequences. During training, we add the unique tokens
START and EOS to the decoder sequences. START initiates the
decoding process, and The EOS signifies its conclusion. The cap on
comments is 30 characters. A unique token called UNK is used in place
of the out-of- vocabulary tokens.

f normalize word(word):
stripped = re.sub(r'[~a-zA-Z]1', '', word)
pped) == 8:
rn ward. lower(}

rn stripped. lower(}

d_histogram(path, max_size=hone}:

in file.readlines():
parts = line.split(' '}
if len{parts) = 2:
continue
histogram[parts[8]] = int(parts[1])
sorted_histogram = [(k, histogramik]} for k in sorted(histogram, key=histogram.get, reverse=True)
return dict(sorted_histogram[:max_size])

load_vocab_from_dict{word _to_count, add values=[], max_size=None):
word_to_index, index_to word = {}, {}
current_ =8
add_values:
ndex [value] = current_index
index_to_word[current_index] = value
current_index += 1
sorted_counts = [(k, word_to_countlk]l) for k in sorted{word to_count, key=word tn count.net reverse= 1
limited_sorte ict(sorted_counts[:max_sizel)
limited_sorted.items():
word _to_index[word] = current_index Search Marketplace
index_to_word[current_index] = word
current_index += 1

The Marketplace has extensions tha

Figure 3.5: Build vocabulairae function

We then address the Out of Vocabulary problem (OOV) after analyzing
the distribution. The OOV problem, as previously established, arises
from an LSTM'’s inability to forecast words it has never encountered
before. This is due to the fact that variable names in code are made up
and therefore it is irrelevant whether various words are concatenated

3.5 Abstract Syntax Tree

Luckily, working with code does have some advantages. Compared to
more traditional natural language tasks, code contains a clear
semantic relationship between the different lines of the code. This
relationship can be captured using Abstract Syntax Trees (AST), which
is a tree based representation of the code, where each node is a
statement and the connections are the relations between nodes.
Figure 3.7 shows an example of an AST for a given function 3.5.1

N o s W N e

3.5.1 SBT traversal

After the AST generation, we propose a new approach to parse it using
SBT. The goal of using SBT is to generate sequence of keywords,
identifiers and modifiers. SBT uses brackets to present a subtree given
a node. The procedure of SBT applied on the function 3.5.1 is listed as

/**
* Extracts request method name bound to request identifier
*/
public String extractFor(Integer id){
LOG.debug("Extracting method with ID:{}", id); return requests.remove(id);

follows :

Listing 3.1: Java example

— The tree structure is first represented from the root node using a
pair of brackets, with the root node itself placed behind the right
bracket.

— After that, scan the root node’s subtrees and place all of its root
nodes between brackets.

— Recursively traverse each subtree until all nodes are traversed
and get the final sequence

Our Model processes each AST into a sequence following the steps
above. For example, the AST sequence of the following Java method
Listing 3.1 extracted from Github is shown in Figure 3.7.

» ast_traversal.py X

openi

Figure 3.6: Function of the SBT

The nodes outside of boxes are non-terminal nodes, and nodes in
boxes signify terminal nodes. The source code’s structure information
is specified via non-terminal nodes. Non-terminals can be of several
types, including ExpressionStatement and ReturnStatement. The
program text is encoded by the terminal nodes that the leaf nodes
correspond to. A terminal node has a type as well as a value that can
be strings, operators, variable names, etc. The terms Tp,on and
TermViwerm are used to denote non-terminal and terminal nodes,
respectively. Types of non-terminal and terminal nodes are indicated,
respectively, by Thon and Twerm. TiermVwerm stands for type-value
pairs of terminal nodes that occur frequently . If TrermV:erm is out-of-
vocabulary, we use its type T:ermto represent it. For example, if
SimpleName-extractFor is out-of-vocabulary, the token will be
replaced by SimpleName.

1§ Methocd D larations
P Modifler_pablic) Modifler public
' | SimpleType
| Semmplehame Sirmg | Smplifame Siring
1 Slenple Type
I_L:WT ‘ f.‘vl.lli‘l;ll\“.::ni:"::lhltlnhIILII

- Sunglevaniah el wrancn

MethodDeckanazion

—! Wadifier {ublic) | !

= Sirmple Type i
| SimuplePamse Intiper | SimpleMemé e

J SmpleType

| Simmplekame_id | Simplame id

-1 ﬁ(vné|f5,,m,|m_.;h_,w ‘) Singlbariabe Declarion
v 1 Bleck
{ Sipichime (i) o | ExpressanStaemen

— Bl | | Wethod bvocation

 FxpressiSatenen _&BT P, : [Simplehiame LOKG) Simaplhane LG

| Simppehame debug | Simple Neme debig
{SampleName_ExmactingmetsoduhiD:|])
SimpkeName Extrachngmihodwath]D: ||

—:_I‘\m{\k“""\‘ml:!:ll‘i‘ip} [Smplehare ul § SiempheName i
| Methad Invocatian

=1 Samplizharne {dehuy) :

——— N | | T
—Huw‘;,'um:unm|l-\r.rm.|um meghod with 10 :II U RenimS el
_(S Ny {id) { Meshod Invocasan
‘ T | Sampichame roquest) SimpleName roguest
.. ! | SimplcMame remove) SimpleName remov
L Methodlnvocation i | wimplehame o b Simplehane (d
— SaimpleNami (rogeed) | Method Invocation

SimpleType

Methedlrvocation

— ReiwnStalernst

A i) RefumStatemenl
— SerleNarre {remone| ' Bk
1 ShompleNarme 1) i | SimpleName evtractfar) SimplaName extractFor

1 § MethadDeclamtion

B L i s i e i i i e i i gk el

o S Name {eximeFarn

Figure 3.7: an example of the Java method

3.6 Code2Seq architecture

Our model adopts Code2Seq translating source code to natural
language. The Seq2Seq, as shown in Figure 3.8, consists a two-layered
Long ShortTerm Memory (LSTM) to encode AST sequences, and
another deep LSTM to decode the target natural language. As
illustrated in the figure, the encoder receives sequences generated by
traversing the AST of Java methods using the SBT during the training
phase. Subsequently, the decoder is tasked with learning the string
sequences that correspond to the comments associated with the
methods. The encoding and decoding process are explained in the
following subsections.

3.6.1 Encoding

We're attempting to solve a sequence-to-sequence problem with our
model. An encoder-decoder structure is an architecture that is
employed. A sequence must first be encoded before it can be
decoded.

The encoder is responsible for encoding every AST sequence of the
Java method into a fixed-size vector. At each time stamp t, it reads one

token of the AST sequence, then updates and records the current
hidden state. hi=flh: - 1,x:) and c=q(hu,...,hm)

where ¢ is a vector created from the sequence of the hidden states
and h¢is a hidden state at timestamp t. Our study uses LSTM as f and
other nonlinear functions like f and g. The rule is that g(h1,...,hAm)=hm.
Attention mechanism defines individual c;for each target word y;as a
weighted sum of all hidden states hl,..., hn rather than producing
target words using the same context vector c¢ (c=q(hu,...,hm)=hm).A
graphical representation of this can be seen in ??.

3.6.2 Decoding

The decoder aims to generate the target sequence y by sequentially
predicting a word y; conditioned on the context vector ¢ and the
previously generated words yi,....yil where y=y1,...,y» and for each
conditional probability is modeled as

pWily,...yil,x)=g(yil,sici)
where g is a LSTM that outputs the probability of y;, and s;is the
hidden state of the decoder LSTM for time stamp i. The probability is

conditioned on a distinct context vector c;for each target word y;. And
siis computed by

si=flsi— 1,yil,ci)

and The context vector ciis computed as a weighted sum of hidden
state hiin encoder.

Decoder

Extracts request method

(v) () ()

=
e il
e e

|
1
1
H
=GO> | Extracts
1
|
I
|

request identificr
{ Attention
& /T @D
) Ge) (e
{ Method { Method
Declaration ' Declaration
Encoder

Figure 3.8: Graphic representation of Encoder and Decoder.

An LSTM is a network that uses a time-dependent hidden state (c;) that
keeps track of what the network has seen in the past. The network can
choose to add knowledge into the hidden state and choose to forget
knowledge. Below is shown that he1is an input. This assures that the
future sequence is influenced by previous important features. Figure
3.9 gives a graphical representation of the described LSTM, where

small circles denote element-wise operations and big circles are layers
[19].

............................

Add new
knowledge

.................

' :

1 : Generate :

1 rediction

; L tanh):
L) 1

I ‘

knowledge :

Figure 3.9: Example LSTM, operation groups are overlaid for clarity.

The value returned at time step t as the prediction is h:. In order to
overcome problems when a sequence starts and stops, special
characters are used. These are often denoted as < sos >and < eos >for
start and end of sequence respectively.

num_contexts_per_example = tf.count_nonzero(valid mask, axis=-1)

start Till = tf.fill([batch sim="
self.targ (function) MultiRNNCell: Any

decoder_cell = tf.nn.rnn_cell.MultiRNNCell([

tf.nn.ran_cell.LSTMCell{self.config.DECODER SIZE! for i pe(self.config.NUM_DECODER_LAYERS
1)
contexts_sum = tf.reduce_sum{batched contexts % tf.expand dims(valid mask, -1),

axis=1) 7 . i
contexts _average = tf.divide{contexts_sum, tf.to_float(tf.expand_dims(num_contexts_per_ example, =1)])
fake_encoder_state = le{tf.nn.rnn_cell.LSTM5tateTuplelcontexts_average, contexts_average)
self.config.NUM_DECODER_LAYERS))

projection_layer = tf.layers.Dense(self.target_vocab_size, use_bias=F:
if is_evaluating and self.config.BEAM WIDTH > @:

batched contexts = tf.contrib.segZseq.tile batch({batched contexts, multiplier=self.config.BEAM WIDTH)

num_contexts per example = tf.contrib.seq2seq.tile_batch{num_contexts_per_example,

multiplier=self.config.BEAM_WIDTH)

attention_mechanism = tf.contrib.seq2seq.LuongAttention(

num_units=self.config.DECODER_SIZE,

memory=batched_contexts
)

should save alignment history = is_evaluating d self.config.BEAM WIDTH ==

decoder_cell = tf.contrib.seq2seqg.AttentionWrapper(decoder_cell, attention_mechanism,
attention_layer_size=self.config.DECODER_SIZE,
alignment_history=should_save_alignment_history)

if is_evaluating:
if self.config.BEAM WIDTH > 8:
decoder_initial_state = decoder_cell.zero state(dtype=tf.float3z,
batch_size=batch_size * self.config.BEAM_WIDTH)
decoder_initial_state = decoder_initial state.clone(
cell_state=tf.contrib.seg2seq.tile_batch(fake_encoder_state, multiplier=self.config.BEAM WIDTH})
decoder = tf.contrib.seq2seq.Beam5earchDecoder(
cell=decoder_cell,
embedding=target_words_vocab,
start tokens=start fill,
end_token=self.target_to_index[Common.PAD],
initial state=decoder_initial state,
beam width=self.config.BEAM_WIDTH,
output_layer=projection_layer,

Figure 3.10: The Decoder part

3.7 Evaluation metrics

We use Information Retrieval (IR) metrics and Machine Translation
(MT) metrics to evaluate the proposed method. For IR metrics, we
report the precision, recall, F1 of different approaches. For machine
translation metrics, we use the BLEU to evaluate our approach. The
definition of these metrics are introduced as follows.

3.7.1 Precision

In statistics, precision is defined as the proportion of accurately
predicted positive observations to all positively anticipated
observations. In accordance with the suggested method, we calculate
the precision According to (Denkowski and Lavie 2014). Both function
words and words with substance are given varying weights. Typically,
content words include details that help us understand the phrases. For
grammar, function words are essential. In other words, content words
provide us with the most crucial information, whereas function words
connect those words.is computed as: Precision = TruePositive [
(TruePositive + FalsePositive)

3.7.2 Recall

Similar to precision, we calculate the weighted recall to evaluate approaches.is
calculated as :

Recall=Truepositive/(Truepositive+Falsenegative)

3.7.3 F1

A summary measure that combines both precision and recall; it
evaluates if an increase in precision (recall) outweighs a reduction in
recall (precision). In many cases, High recall indicates the sacrifice of
precision, and vice versa. is computed as : F1 = 2* Precision/
(Precision + Recall)

True Positive (TP): Correctly predicting a label.

True Negative (TN): Correctly predicting the other label.

False Positive (FP): Falsely Predicting a label.

False Negative (FN): Missing and incoming label.

lef calculate results(true positive, false positive, false negative):
if true positive + false positive = 8:
precision = true_positive f (true positive + fTalse positive)
else:
precision = @
if true positive + false_negative > B:
recall = true_positive / (true_positive + false_negative)
recall = @
if precision + recall > 8:
fl = 2 % precision * recall / (precision + recall)

fl=90
return precision, recall, f1

Figure 3.11: IR metrics function

3.7.4 BLEU score

The Bilingual evaluation understudy (BLEU-4) was the primary
evaluation metric used to assess the comments produced by our
models [17]. Using a corpus of potential translations, BLEU evaluates
the accuracy of a translation (in our instance, from source code to
comments). It is frequently used to gauge how accurate neural
machine translation (NMT)[20]. BLEU measures how close the output
of the machine is to the one of a human expert. The closer they are,
the higher the BLEU score will be [7]. The BLEU score ranges between
0 and 1, with 1 being perfect natural language. BLEU has shown a high
correlation with human quality judgment [21] and is one of the most
popular metrics to measure the quality of machine translated text.

Our final evaluation result is obtained as the average of the BLEU
scores for each of the analyzed snippets. The n-gram similarity is
calculated by BLEU and used to generate a score using the following

equation:
N

BLEU = BP - exp <Z wy, log py,

n=I1 |

As the reference corpus in our scenario has only one comment per
code snippet, BP = 1. N is the maximum length of n-grams being
utilized in the comparison[17], which in our case is N=4; wyis a weight
vector that adds to 1, p»is the modified n-gram precision

f compute_bleu{ref file name, predicted file name}:
with open{predicted file name) as predicted file:
pipe = subprocess, Popen([' "seripts/multi=bl srl", ref_file_
stdout=sys.stdout, stderr=s stderr)
pipe.communicatel)

ref_file = 'output
pred_file = "outputs/1s

compute_bleu{ref_file, pred_file)

Figure 3.12: Implementation of BLEU-4 calculation

We also measured precision, recall, and F1 score as used in [22] and
[23] over all the sub-tokens of the target sequence, case-insensitive.

3.8 Conclusion

Automatic comment generation for Java code can be very beneficial.
Both for readability of old code, but also for better comment
suggestions as a programmer aid. With the DeepCom as the baseline.
In this chapter, we have presented an overview of the related work,
introduced our proposition, and provided a detailed description of our
approach. In the subsequent sections, we will present the results of
our experiments and evaluate the effectiveness of our proposition.

Chapter 4

Implementation, Experiments
and Results

4.1 Introduction

So far, we introduced the process of generating comments from Java
source code using an NMT-based technique. In this chapter, we
present the technical details for implementing this process by training
our proposed approach(Code2Seq) and also by using Open NMT, an
open-source and extensible NMT architecture, on a subset of the
dataset the same which used in deepcom. First, we briefly present the
tools, languages, and programming environment used in this work.
Second, we describe the proposed approach and the Open NMT
architecture, training and validation phases. Finally, We conclude the
chapter by presenting a sample of obtained results and a discussion.

4.2 Environment of Development

4.2.1 Python

Figure 4.1: Overleaf logo.

Python is a high-level programming language created by Guido van
Rossum and released in 1991[24].Python has a portable type system,
dynamic, extensible, free, very simple syntax, code shorter than C or
Java, multi-thread, object-oriented, scalable [25],Reading and writing
Python code is simple, and it is brief without being obscure. Python is
an effective expressive programming language [26]

4.2.2 Google Colaboratory

Figure 4.2: Overleaf logo.

Google Colaboratory[27], often abbreviated as "Colab" is a cloud
service, offered by Google (free), based on Jupyter Notebook and
intended for training and research in machine learning. This platform
allows to train machine learning models directly into the cloud. So
without having to install anything on our computer except a
browser.This environment allows us to write and execute Python code
in your browser, with no configuration required, free access to GPUs,
easy sharing.

4.2.3 Visual Studio Code

Figure 4.3: Visual studio logo.

Visual Studio Code is a source code editor that can be used with a
variety of programming languages, including Java, JavaScript, Go,
Node.js, and C++. It is based on the Electron Framework, which is used

to develop Web applications that run on the Blink presentation engine.
[28]

4.3 Tools of Devlopelment

4.3.1 Tensorflow

L

Tensorflow

Figure 4.4: Tensorflow logo.

TensorFlow is an open-source software library for high-performance
digital computing. Its flexible architecture enables easy deployment of
computing across a variety of platforms (CPU, GPU, TPU), and from
desktop computers to server clusters to mobile and peripheral devices.
Originally developed by researchers and engineers from the Google
Brain team within Google’s Al organization, it has strong support for
machine learning and deep learning, and flexible digital computation is
used in many other scientific fields.[29]

4.3.2 Numpy

NumPy

Figure 4.5: Tensorflow logo.

NumPy is a library for the Python programming language, adding
support for large multidimensional matrices and matrices, as well as a
large collection of high-level mathematical functions to run on these
matrices.NumPy’s predecessor, Numeric, was originally created by Jim
Hugunin with contributions from several other developers.

In 2005, Travis Oliphant created NumPs by incorporating Numarray’s
capabilities into Numerics, with numerous modifications.[24]

4.4 Experimental methodology

This section demonstrates how the evaluation of the proposed method
is conducted. We provide two implementations of this method; The
first using Code2Seq architecture and the second using Open NMT
framework. The two experiments use the deepcom dataset that we
described in the previous chapter. In the first experiment, (Code2Seq
based model) we used Code2Seq code to train a new model with the
aforementioned dataset with the inclusion of the ASTs based
sequences. This task is more challenging when generating comments
than when predicting function names. This difficulty arises from the
fact that comments are usually longer than function names. Also, we
are generating natural language instead of a sequence of descriptive
words. In the second experiment, we use a research-friendly
framework called Open NMT. This framework enables us to test novel
approaches effortlessly

The results of both methods are then compared with the results of the
DeepCom([11] as the baseline.

(Method1l OpenNMT), it is created to be research-friendly so that
researchers may test out novel approaches to tasks like
summarization, language modeling, and translation. While for the
second one For each of these 2 experiments, we calculated the BLEU
score as a measure of the quality of the obtained results.

4.5 Experiments

our experiment (Method2), we traversed the Java AST extractor used
in Code2Seq. Instead of using the name of the examined function of
the Java snippet. Instead of using each variable with a generic name
and its type, we also added the actual name of the variable [30]. The
reason behind this choice was that the name of each variable may play
an important role in the functionality of the examined snippet. Thus,

by knowing its name we will be able to generate more accurate
comments.

4.6 First Experiment: Code2Seq based-model
experimentation

The adapted Code2Seq model is illustrated in Figure 3.1. We address
the code generator task as a machine translation problem that
translates program code to a natural language sequences. To embed
the structural information, Code2Seq uses AST sequences as its input.
The AST sequences are generated by applying SBT on the AST which
can not only express the tree structure but also keep no ambiguity.
The proposed Code2Seq model mainly contains three components: An
AST builder with the SBT traversal component, an attention-based
Seg2Seqg model builder, and a trained model (generated by the two
previous components) to generate comment given a code snippets.

¥ codeZseq.py X

if __name = '
parser = Argum
parser.add_argumen
(method) def add_argument(
*name_or_Tflags: str,
action: _ActionStr | Typel[Action] = ...,
nargs: | _NArgsStr | _SUPPRESS_T = ...
PALSE s const: Any = ...,
default: Any = ...,
PGSl type: ((str) _T@add_argument) | FileType = ..
choices: Iterable[T@add_argument] | Mone = ...
PRALSE s required:
help: st
metava

parser. dacts
parser.

parser.

version:
args = sckbowa s

f args.debug:
config = Config.get_debug_config(args)

config = Config.get_default_config{args)

model =1{config)
print(odel')
TRAIN PATH:
model.train()
if config.TEST_PATH and not args.data_path:
results, precision, recall, fl1 = model.evaluate()
' + striresults))
'+ striprecision) + ', T t: ' # strirecall) + '
if args.predict:
print("U on L
predictor (config, model)
predictor.predict()
if args.release and args.load_path:
mode L. evaluate(release=True)
model.close _session()

Figure 4.6: The Code2seq function from the proposed model

4.6.1 Description

Our model translates the source code to a high-level description at the
method level. our method combines the source code and the AST
sequences to generate the code comments. It learns both the lexical
and syntactical information to generate the comments. Our framework
consists of three stages: data processing, model training, and testing.

Extract the ASTs Use the exiracted
from the code ASTs to train the
snippets-comment maode]
pairs

Test the frained modsl
on the test data

Figure 4.7:

The source code we obtained from GitHub is parsed and preprocessed
into a parallel corpus of Java methods and their corresponding
comments. In order to learn the structural information, the Java
methods are converted into AST sequences by a special traversal
approach before input into the model. With the parallel corpus of the
source code, traversed AST sequences, and comments, we build and
train generative neural models based on the idea of NMT. There are
three challenges during training process:

— How to represent ASTs to preserve the structural information
and keep the representation unambiguous while traversing the
ASTs?

— How to learn both the lexical information and the syntactic
information?

— How to reduce the out-of-vocabulary tokens in the source code?

4.6.2 Training

Code2Seq is trained on the Tensorflow framework, During training, the
model is validated every 2,000 minibatches on the validation set by
BLEU score which is a commonly used evaluation metric for NMT. The
maximum number of epochs is 50. The validation set is used to
estimate how well the model has been trained and to estimate model
properties. Finally, the accuracy of the model on test set gives a
realistic estimate of the performance of the model on unseen data.
However, the validation process takes extra time. Taking time and
model capacity into consideration, we validate every 2,000
minibatches and select the model which performs best on the
validation dataset as the best model. The best model is then evaluated
on the test set by computing average BLEU scores. For
implementation, we build our model using Tensorflow which is an
open-source deep learning framework. The time of training lasts about
80 hours for each model. The hyperparameters are shown as follows
figure 4.8:

— We use two-layered LSTMs with 256 dimensions of the hidden
states and 128-dimensional word embeddings.

— The learning rate was 0.01 and decayed by 0.05 every epoch.

— We applied dropout of 0.3 and a recurrent dropout of 0.5 on the
LSTM encoding the AST

» config.py X

config =

config.NUM_EPOCHS = 3008
config.SAVE _EVERY EPOCHS = 1
config.PATIENCE = 18

config.BATCH SIZE = 64
config.TEST BATCH SIZE = 64
config.READER_NUM_PARALLEL BATCHES = 1
config.SHUFFLE_BUFFER_SIZE = 1@eoa
config.C5V_BUFFER SIZE = 100 * 1024 * 1024
config.MAX_CONTEXTS = 208
config.SUBTOKENS_VOCAB MAX SIZE = 190000
config.TARGET VOCAB_MAX SIZE = 27000
config.EMBEDDINGS SIZE = 128
config.RNN_SIZE = 128 % 2
config.DECODER_SIZE = 3208
config.NUM_DECODER LAYERS = 1
config.MAX PATH LENGTH = 8 + 1
config.MAX_NAME PARTS = 5
config.MAX_TARGET PARTS = 6
config.EMBEDDINGS DROPOUT_KEEP_PROB = @.75
config.RNN_DROPOUT_KEEP_PROB = 8.5
config.BIRNN = Tr

config.RANDOM _CONTEXTS = True
config.BEAM WIDTH =

config.USE MOMENTUM =

return config

ef take model_hyperparams_from(self, otherConfig):
self.EMBEDDINGS_SIZE = otherConfig.EMBEDDINGS SIZE
self.RNN_SIZE = otherConfig.RNN_SIZE
self.DECODER_SIZE = otherConfig.DECODER SIZE
self.NUM_DECODER_LAYERS = otherConfig.NUM_DECODER_LAYERS
NN = otherConfig.BIRNN
NUM_CONTEXTS <= @:
self.DATA NUM_CONTEXTS = otherConfig.DATA_NUM_CONTEXTS

2 __init (self, args):
self.NUM_EPOCHS = @
self.SAVE_EVERY_EPOCHS =
self.PATIENCE = @
self.BATCH SIZE = @
self.TEST _BATCH SIZE = @
<alf_RFANFR MIM PARAIIFI RATCHFS = @

Figure 4.8: The Configuration file

4.6.3 Validation and results

We evaluate the difference between comments generated
automatically and those posted by humans. The average BLEU-4 scores
of various techniques for producing comments for Java methods are
shown in Table 4.1.

Approaches BLEU-4 score
DeepCom 38.17

Our Method 38.72
Table 4.1: Evaluation results on Java Methods

Approaches Precision Recall F1

our Method 46.94 27.44 34.63
Table 4.2: Performance on Java code

As the structural information is included, the BLEU-4 score increases
even further. The SBT-based model is much better and is able to
understand the semantic and syntactic information contained inside
Java methods Our Method confirms the effectiveness of solving the

problem of Out of Vocabulary in the ASTs. The results are depicted in
Table 4.4. The results show that the proposed method is capable of
understanding the syntactic and semantic meaning of java source
codes and hence generates meaningful comments automatically.

left=2cm,right=0.25cm,bottom=0.25cm,top=0.25cm

4.6.4 Discussion

As shown in previous sections, our model can achieve promising
performance in generating comments for Java methods. However,
there are some other observations worth further investigation. In this
section, we will report some observations, including:

1. When The proposed generates comments with high BLEU score?

2. Why there are unknown words in the generated comments?

To analyze the reason why generates comments with high BLEU
scores, and unknown words, The detailed steps are as below: ¢ We
first split the generated comments into two distinct sets, namely, the
high BLEU score comments(more than 70%), and comments with UNK.
In search at the Comments with a High BLEU Score we get that There
are many comments generated by the proposed approach with high
BLEU score and we are interested in which kinds of comments with
high BLEU score.For example, as Case 5 in Table 4.3 shows, the
method “sort” aims to sort an array using quick sort, our proposed
model captures the correct functionality and generates the correct
comment. However, deepcom ignores much important information
and just generates one keyword “sort”. There are many Java source
code-generated comments the same as the references. Most of these
Java methods have clear functionality and the code conventions are
universal. the method proposed can generate exactly correct
comments from the source code(Case 1 in Table 4.3), which validate
the capability of our approach to encode Java methods and decode
comments. The comment generated by Deepcom is related to the
source code, but it losses a lot of functionalities of Java methods.
Investigating the Reasons for Unknown Words in Generated
Comments that ,there are unknown words in the generated comments
and these words have no meaning for describing the Java methods.
Similar to the evaluation of the above discussion, we also randomly
select 100 generated comments with unknown words.we analyze the
accurate words that are replaced by unknown token UNK shown in
table

4.4,

As Case 3 in Table 4.3 shows, the proposed approach fails to predict
the token “SeparaterPainter” which is the method name defined by
developers. Our model is not good at learning the method or
identifiers names occurred in comments cause of Developers define
various names while programming and most of these tokens appearing
at most once in the comments. However,

Samples (100 generated

comments)
Classname 12
Methodename 30
Variablename 10

Others 50
Table 4.4: The accurate words of the UNK words in a Sample

we can not determine tokens of comments are identifiers from source
code or ordinary natural language words. It is hard for the proposed
approach to learn these user-defined tokens in comments that have
been replaced by the unknown token UNK during data processing.

4.7 Second Experiment: Open NMT-based model

We believe that building the comment generator for the Java language
from scratch is a tedious task. Thus, we adapted the open NMT
architecture, which is an open source platform for training translators
between spoken languages, to build a model for generating comment
from source code. The training process is conducted on a large subset
of Java codes and their corresponding naturel languge comments . Full
details are provided in the following subsections.

4.7.1 Open-NMT

OpenNMT [20] is a complete library for training and deploying neural
machine translation models. The system is the successor to seqg2seq-
attn, developed at Harvard, and has been completely rewritten for
ease of efficiency, readability, and generalizability. It includes vanilla
NMT models along with support for attention, gating, stacking, input
feeding, regularization, beam search and all other options necessary
for state-of-the-art performance. The core system of OpenNMT is
implemented using the Lua/Torch mathematical framework, allowing
easy extension through Torch’s internal neural network components.
Additionally, Adam Lerer from Facebook Research has extended the

library to support the Python/PyTorch framework while maintaining
the same API [20].

The pretraining of OpenNMT on Our dataset the same of deepcomm
goes through several steps that starts by the configuration file after
the partition and the preparation of the source and target files for
both training and validation. These steps are detailed bellow.

4.7.2 Open NMT configuration

For training the model, Open NMT requires a YAML configuration file,
known as config in OpenNMT. This file defines the parameters for the
training step. The location of the target and source data for both the
validation and training. In addition, the file holds the following

parameters.

3 ## Where the samples will be written

4 save_data:

5 ## Where the voccb[s) w'LU. be written

6 src_vocab: v

7 tgt_vocab: exa t

8 # Prevent overwriting 'EXL}"'LI"Q files in the folder
9 overwrite:

ie

11 # Corpus opts:

12 data:

13 corpus_1:

14 path_src: N o 5 2
15 path_tgt: taftra target. txt
16 valid:

17 path_src:

18 path_tgt:

19

20

21

22 # Vocabulary files that were just created
23 src_vocab: 1

24 tgt_vocab:

25

26 # Train on a single GPU

27 world_size:

28 gpu_ranks: [0]

29

30

31 # Where to save the checkpoints
32 save_model:

33 save_checkpoint_steps:

34 test_steps:

35 valid_steps: 1

Figure 4.9: Configuration file for OpenNMT method
— overwrites : if this option is set in TRUE, you can write
overwritten during the training process.

— data : in this part, we define the paths to the training and
validation data files.

— save data : it means setting the base filename and location where
the vocabulary files and preprocessed data will be saved.

— save model :sets the base filename and location where the
trained model checkpoints will be saved.

— save checkpoint steps : save checkpoint steps: it is a saved
snapshot of the model at a particular moment. For example, as
shown in Figure 4.9, we set "save checkpoint steps" to 500, which
means that a checkpoint will be saved for every 500 training
steps.

— train steps and valid steps Indicates the total number of training
and validation steps that will be performed.

4.7.3 Training data and code

In this project, we utilized the same dataset of deepcomm, which
contains Java code and there corresponding natural language
comments, to train a model for generating comments. To effectively
use this dataset with OpenNMT, we had to split it into six separate
files:
"train_source.txt,""valsource.txt,""testsource.txt,""train_target.txt,""v
altarget.txt," and "testtarget.txt." The src files hold the source Java
code for training, validation, and testing, respectively, and the target
files will hold the target test cases corresponding to the source Java
code. This split is a crucial step in preparing the data for training and
evaluation using OpenNMT. The table 4.7.3 represents the number of
examples in the dataset for different sets: training, validation, and
test. Each set contains a certain number of source code and target-
code pairs.

nmn nn nn

Set Source Target

Training 119013 119013
Validation 20000 20000
Test 20000 20000

The data has been uploaded to the "content" directory in Google
Colaboratory as per the following figure 4.10

« [@ content
~ [data
+ [m run :
B configuryami

=

B test-source.txt
B test-target.ixt
B train_source.txt
B train_target.txt
B val-source.txt
B val-target.txt

Figure 4.10: Dataset path.

First, we need to install OpenNMT-py. In order to do that, we use the
following command figure4.11 in Google Colab:

Ipip install OpenlMT-py

Figure 4.11: The installation command .

Next, we execute the command shown in Figure 4.12 to build the
vocabulary using the provided configuration file

[1 'onmt build vocab -config data/configur.yaml -n sample 18800

Corpus corpus 1's weight should be given. We default it to 1 for you.
[2023-86-16 1B:59:49,816 INFO] Counter vocab from 10800 samples.

[2023-06-10 18:59:49,816 INFO] Build vocab on 10000 transformed examples/corpus.
[2023-086-10 18:59:50,063 INFO] Counters src: 18986

[2023-06-10 18:59:50,064 INFO] Counters tgt: 4839

Figure 4.12: Command for building the Vocabulary.

Samples from the vocabulary files (source files which is the vocabulary
of java source code and target files which is the vocabulary of
comment generation) are shown in the figure4.13 below :

b § 50831
2 56831
3; 35800
4. 33867
5 o 20452
6 { 19182
73 19182
8 = 14869
9 public 7691
10 get 7599
11 return 7150
12 num_ 7140
13 string 7095
14 str_ 7033
15 if 6040

16 new 5481
17 int 4994
18 null 4725

19 exception 4055
20 void 3699
21 [3655
22] 3655
23 < 3645
24 1 3607
25 > 3376
26 this 3372
27 + 3140
28 name 3019
29 m 2767
30 set 2700
31 value 2514
32 == 2387
33 bool_ 2359
34 boolean 2267

35 final 2261

U B W N

< O

O o

—
W s W N O

~] O

. 8365

the 7995

a 4825

to 2580
of 2285
this 1454
and 1373
is 1142
for 1128
an 1080
returns 1044
with 1011
in 997
new 986
from 920

) given 908

if 887
creates 811
that 728
specified 685
method 618
object 579
value 528

by 478
string 448
instance 430

Figure 4.13: Example from source and target vocabulary files.

The vocabulary files contain a list of tokens with their corresponding
numerical representations. Once the vocabulary file is prepared, we
move to the training step by executing the following command in
figure4.14.

o ionmt_train -config Data/config.yaml

Figure 4.14: Training command

4.7.4 Results

After completing the training step in OpenNMT-py, we can move
forward to the translation phase. During this phase, we will translate
the contents of the source file Data/test-source.txt using the trained
model. The translated output will be saved to the file named
Data/pred_1000.txt. To perform the translation, we execute the

following command in figure 4.15

Streaming output truncated to the last 5000 lines.

SENT 19@81: ['public', 'void', 'drag', '<unk>', ‘end', '(', 'drag', 'source', '<unk>', ‘'event', ‘'<unk>', ')', '{', '}']
PRED 19881: called when the mouse is moved .

PRED SCORE: -0.9569

[2823-06-10 208:18:84,253 INFO]

SENT 19882: [*public', ‘char', ‘reverse’', 'map‘', '(*, ‘short', "<unk=*, *id', *)*', “{*, *for*, *(', 'dint!, '1'; '=*, ‘<unk>', ';', 'i'
PRED 19882: returns the character at the specified index .

PRED SCORE: -8.3219

[2623-P6-10 208:18:84,253 INFO]

SENT 19883: ['protected', ‘synchronized', ‘'void', ‘enqueue‘', 'key', ‘events', '(', 'long’', ‘after', ',', ‘'component', '<unk>', *focused
PRED 19€63: this method is called by the <unk> when it is executed .

PRED SCORE: -1.045@

[2823-06-16 28:18:84,253 INFO]

SENT 19884: [*public';, ‘veid!, ‘print';, ‘=unle*, (', *}'; 4, ‘=, ‘<unk='; 'lock, ‘ot fleck'; *A', *)'. *3's *fort, (', '‘final’
PRED 19@64: flushes the output .

PRED SCORE: -0.9826

[2023-86-10 28:18:84,253 INFO]

SENT 19885: ['private‘', ‘'boolean’, ‘<unk=>', ‘'<unk>', ‘required', ‘(*, ')*, *{', *fimal', ‘'int', ‘<unk=', ‘<unk=", ‘o', ‘'<unk>', ‘<unk>',

PRED 196€85: gets the value of the <unk> property .
PRED SCORE: -0.39480

[2823-86-10 208:18:84,254 INFO]

SENT 19886: ['public', ‘static’, ‘'byte*, ‘[*, ']*, ‘to', ‘primitive', ‘(', 'byte*, *[*, *1', ‘array', "), *{', *if*, *(*, ‘array', '=’

Figure 4.15: The Obtained results

In this command, we specify the path to the trained model using the-

lonmt_translate -model data/run/model_step_10000.pt -src data/test-source.txt
-output data/pred_1000.txt -gpu 0 -verbose

model option, the source file is provided with the -src option

)

'<unk:

<

al

Listing 4.1: Validation Command

4.8 Conclusion

Our Work focused on replicating the code2seq model with added
capabilities such as predicting natural language and traversed ASTs,
From our results we see that both our methods do perform as well as
the baseline in terms of the BLEU-4 scores. In this chapter, we describe
our proposed model and show the obtained results also we present
the OpenNMT approach and how does it work and show the results
obtained by OpenNMT.

General conclusion

In this study, we have explored the concept of producing
autocomments and investigated its potential applications and
limitations. Through our investigation, we have observed that
autocomments generation can be a powerful tool in multiple domains,
including customer assistance, code documentation, social media
interactions, and more.

To achieve this purpose, we first offered a complete explanation of
Neural Machine Translation in Chapter 1. We looked into the
underlying concepts and procedures of NMT, including code-to-
sequence architectures, attention mechanisms, and training
methodologies. This chapter established an excellent comprehension
of NMT, developing the framework for this study.

In Chapter 2, we focused on source code and the documentation and
analysis source code methodologies. We described alternative
documentation approaches and proposed the concept of Abstract
Syntax Tree (AST) and Structure Based Traversel(SBT). Understanding
the analysis source code and AST was essential for comprehending the
future chapters and their contributions.

Chapter 3 presented our proposed models and the process of
generating comments from source code. We discussed the novel
approaches and methodologies employed in this research. Additionally,
we reviewed related work, highlighting existing studies and approaches
relevant to autocomments generation from source code. This chapter
showcased the advancements and contributions made in the field.

In Chapter 4, we provided implementation details, experimental
approach, and the validation methodology applied in this project. We
addressed the frameworks, tools, and libraries utilized to design and
execute our proposed models. In addition, we showed the results
derived from the suggested technique and OpenNMT training
framework with the Deepcom dataset. Results are demonstrating the
efficacy and performance of the our approach .

Although our study exhibited promising results in producing
autocomment from Java source code, further refining of the NMT
models can boost their efficiency. Future work can focus on
researching advanced NMT architectures, including domain-specific
information, and optimizing training procedures to increase the quality
and accuracy of the generated auto comments. However, the
proposed approach was much better then deepcom. With the first
expirement as our best method, an important takeaway is that ASTs

traversed generally hold the problem of Out of Vocabulary affecting
the training process and a suitable AST generation technique.
Nevertheless, looking at the comments generated by our best
performing model , we see that our proposed approach is capable of
understanding the syntactic and semantic meaning of java codes to
generate comments automatically.ur model outperforms the state-of-
the-art approaches and achieves better results on the automatic
measure metric named BLEU.

In conclusion, this work seeks to contribute to the field of automatic
comment generation by exploring the application of NMT techniques
to generate comments from Java code snippets. The findings and
insights gained from this research can potentially improve the
efficiency and quality of software development processes.

Bibliography

[1] Rene Y Choi, Aaron S Coyner, Jayashree Kalpathy-Cramer,
Michael F Chiang, and J Peter Campbell. Introduction to machine
learning, neural networks, and deep learning. Translational Vision
Science & Technology, 9(2):14-14, 2020.

[2] Krishan K Aggarwal, Yogesh Singh, and Jitender Kumar Chhabra.
An integrated measure of software maintainability. In Annual
Reliability and Maintainability Symposium. 2002 Proceedings
(Cat. No. 02CH37318), pages 235-241. IEEE, 2002.

[3] C.C. Aggarwal. Neural Networks and Deep Learning: A Textbook.
Springer International Publishing, 2018.

[4] S Zargar. Introduction to sequence learning models: Rnn, Istm,
gru. no. April, 2021.

[5] Jingwen Wang, Wenhao Jiang, Lin Ma, Wei Liu, and Yong Xu.
Bidirectional attentive fusion with context gating for dense video
captioning. CoRR, abs/1804.00100, 2018.

[6] Edmund Wong, Taiyue Liu, and Lin Tan. Clocom: Mining existing
source code for automatic comment generation. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 380—389. IEEE, 2015.

[7] Kishore Papineni Salim Roukos Todd Ward and John Henderson
Florence Reeder. Corpus-based comprehensive and diagnostic mt
evaluation: Initial arabic, chinese, french, and spanish results.
2002.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Sarkar. Implementing code source methods and fonction
engineering for text data: The skip-gram model - kdnuggets, n.d.

Alex Graves. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur
Panesar-Walawege. A systematic review of the application and
empirical investigation of search-based test case generation. |EEE
Transactions on Software Engineering, 36(6):742-762, 2009.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment
generation. In Proceedings of the 26th Conference on Program
Comprehension, pages 200-210. ACM, 2018.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and
K Vijay-Shanker. Towards automatically generating summary
comments for java methods. In Proceedings of the IEEE/ACM
international conference on Automated software engineering,
pages 43-52. ACM, 2010.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker.
Automatically detecting and describing high level actions within
methods. In Proceedings of the 33rd International Conference on
Software Engineering, pages 101-110. ACM, 2011.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Generating
parameter comments and integrating with method summaries. In
2011 |EEE 19th International Conference on Program
Comprehension, pages 71-80. IEEE, 2011.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code.
In arXiv preprint arXiv:1808.01400, 2018.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment
generation with hybrid lexical and syntactical information.
Empirical Software Engineering, Jun 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.
Bleu: A method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ‘02, pages 311-318, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics.

An Nguyen Le, Ander Martinez, Akifumi Yoshimoto, and Yuiji
Matsumoto. Improving sequence to sequence neural machine
translation by utilizing syntactic dependency information. In

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Proceedings of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 21—
29, Taipei, Taiwan, November 2017. Asian Federation of Natural
Language Processing.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and
Alexander M Rush. Opennmt: Open-source toolkit for neural
machine translation. arXiv preprint arXiv:1701.02810, 2017.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn.
Reevaluation the role of bleu in machine translation research. In
11th Conference of the European Chapter of the Association for
Computational Linguistics, 2006.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A
convolutional attention network for extreme summarization of
source code. In International Conference on Machine Learning,
pages 2091-2100, 2016.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
code2vec: Learning distributed representations of code.
Proceedings of the ACM on Programming Languages, 3(POPL):40,
2019.

resentation du language python,. http://www.linux-
center.org/articles/ 9812/python.html, page 36, 2020.

Guido Van Rossum and Fred L Drake Jr. Python tutorial, volume
620. Centrum voor Wiskunde en Informatica Amsterdam, The
Netherlands, 1995.

Mark Summerfield. Programming in Python 3: a complete
introduction to the Python Ianguage. Addison-Wesley
Professional, 2010.

Ekaba Bisong and Ekaba Bisong. Google colaboratory. Building
machine learning and deep learning models on google cloud
platform: a comprehensive guide for beginners, pages 59-64,
20109.

Murad Khan, Bilal Jan, and Haleem and Farman. Visual studio
code free software directory. Free Software Foundation, page 42,
2017.

[29]

[30]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: a system for large-scale
machine learning. In Osdi, volume 16, pages 265-283. Savannah,
GA, USA, 2016.

Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqgiu Huang.
Augmenting java method comments generation with context
information based on neural networks. Journal of Systems and
Software, 156:328 — 340, 2019.

	General Introduction
	Neural Machine Translation
	 1.1 Introduction
	 1.2 Machine Learning
	 1.3 Neural Machine Translation
	 1.4 Neural Networks
	 1.4.1 Architecture of Neural Network

	 1.5 Type of Neural Network
	 1.5.1 Linear Models
	 1.5.2 Multiple Layers

	 1.6 Neural Languge Models
	 1.6.1 Feed-Forward Network
	 1.6.2 Word Embedding
	 1.6.3 Reccurent Neural Network RNN
	 1.6.4 Long Short-Term Memory Models (LSTM)
	 1.6.5 Gated Reccurent Units
	 1.6.6 Deep Model

	 1.7 Neural Translation Models(Tronsformer)
	 1.8 Transformer Functioning
	 1.8.1 Data Preprocessing
	 1.8.2 Model Training
	 1.8.3 Model Prediction

	 1.9 Sequence To Sequence Model (Seq2Seq)
	 1.9.1 Encoder - Decoder Architecture

	 1.10 Conclusion

	Code Source Analysis and Documentation
	 2.1 Introduction
	 2.2 Code Source
	 2.2.1 Code Statement Level

	 2.3 Code Source Documentation
	 2.3.1 General Principles

	 2.4 Comments
	 2.4.1 Comments and Inline Documentation
	 2.4.2 Comments Categories

	 2.5 Code Source Analysis
	 2.5.1 Analysis of Source code

	2.6 Structure and Necessary Elements for source code
	 2.6.1 Source File
	 2.6.2 Method and Function
	 2.6.3 Identifying

	 2.7 Abstract Syntax Tree
	 2.7.1 AST Tools
	 2.7.2 AST Design and Construction
	 2.7.3 Stages of Creating an AST
	 2.7.4 Application of Abstract Syntax Trees

	 2.8 Graph Traversal Algorithms
	 2.8.1 Breadth-First Search (BFS)
	 2.8.2 Depth-First Search (DFS)

	 2.9 Structure Based Traversal
	 2.10 Conclusion

	NMT-based Comment Generation from Source Code
	 3.1 Introduction
	 3.2 Related work
	3.3 An approach for Comment generation from java source code
	 3.3.1 Model design
	 3.3.2 Out of Vocabulary problem

	 3.4 Dataset
	 3.4.1 Preprocessing
	 3.4.2 Building Vocabularies

	 3.5 Abstract Syntax Tree
	 3.5.1 SBT traversal

	 3.6 Code2Seq architecture
	 3.6.1 Encoding
	 3.6.2 Decoding

	 3.7 Evaluation metrics
	 3.7.1 Precision
	 3.7.2 Recall
	 3.7.3 F1
	 3.7.4 BLEU score

	 3.8 Conclusion

	Implementation, Experiments and Results
	 4.1 Introduction
	 4.2 Environment of Development
	 4.2.1 Python
	 4.2.2 Google Colaboratory
	 4.2.3 Visual Studio Code

	 4.3 Tools of Devlopelment
	 4.3.1 Tensorflow
	 4.3.2 Numpy

	 4.4 Experimental methodology
	 4.5 Experiments
	4.6 First Experiment: Code2Seq based-model experimentation
	 4.6.1 Description
	 4.6.2 Training
	 4.6.3 Validation and results
	 4.6.4 Discussion
	 4.7.1 Open-NMT
	 4.7.2 Open NMT configuration
	 4.7.3 Training data and code
	 4.7.4 Results

