
 

  

 

 

 

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE  
Ministère de l’Enseignement Supérieur et de la Recherche Scientifiq 

                                              Université Mohamed Khider – BISKRA  

Faculté des Sciences Exactes, des Sciences de la Nature et de la  vie 

 

Département d’informatique 

N° d’ordre:SIOD34/M2/2022 

           Mémoire   

           Présenté pour obtenir le diplôme de master académique en  

          Informatique 

         Systeme d’Information Optimisation Et Decision (SIOD)  

 

 

 

              Autocomment Generation from Source  

                Code using ML Techniques  

 

 

 

Par :    

DORSAF KIHAL  
 

Soutenu le 20/062023 devant le jury composé de :  

 
Aloui Imen  MCB  Président  

Tibermacine Okba  MCA  Rapporteur  

Benchaabane Mofida MMA  Examinateur  

 

Année universitaire 2022-2023  

 



 

 

Dédicace 

I dedicate this work to myself.  



 

 

Remerciement 

First of all, I would like to offer thanks to Allah for having granted us all the 

determination, and strength to carry out this modest work. I would also like 

to be infinitely grateful to my supervisor Dr.TIBERMACINE Okba for his 

advice, his patience, his availability, and his support throughout this period. 

I would like to express my gratitude to my parents Abd ELmadjid Rania ,my 

sister and my brothers Abd Raouf and Fares Seif Dine, who gave me their 

moral support and lively discussions throughout my effort, and my 

grandmother Rachida and my grandfatherAhmed Bouchouareb who always 

accompanied me with his prayers. 

We would like to express our deepest gratitude and sincere thanks to the 

members of the jury for having accepted to judge our work and to have 

enriched it. 

 

 

 

 

 

 

 



 

 

 

 

 

Abstract 

During software maintenance, developers spend a lot of time understanding 

the source code. Existing studies show that code comments help developers 

comprehend programs and reduce additional time spent on reading and 

navigating source code. Unfortunately, these comments are often 

mismatched, missing or outdated in software projects. Developers have to 

infer the functionality from the source code. This paper proposes a new 

approach to automatically generate code comments for the functional units 

of Java language, namely, Java methods. The generated comments aim to 

help developers understand the functionality of Java methods. 

Keywords: comment generation, deep learning, machine learning, LSTM, 

Code2Seq, Software Development, Java 

 

 

 



 

 

 

 

 

General Introduction 

Contexte 

Source code comments play a crucial role in software development by 

enhancing code readability, maintainability, and collaboration among 

developers. These comments provide explanations and descriptive language 

that is not executed by the program itself. They help both the original author 

and future developers understand the purpose, functionality, and logic of 

the code by providing additional details and insights. 

Generating comments within source code is a fundamental practice in 

software development. It involves adding explanatory text to clarify the 

purpose, functionality, and logic of the code. Such comments serve as 

documentation, benefiting both the original author and future developers 

who work on the codebase. Autocomment creation improves code 

readability, documentation, and relieves developers from the manual task of 

writing and maintaining comments. It also ensures consistent and 

informative code documentation. 

However, due to factors such as tight project schedules and other 

constraints, code comments are often mismatched, missing, or outdated in 

many software projects. Automatic generation of code comments can 

address these issues, saving developers time and aiding in source code 

understanding. Several approaches have been proposed to generate 

comments for methods and classes in Java, which is the most popular 

programming language in the past decade. These techniques range from 

manual crafting to leveraging Information Retrieval. In this thesis, we aim to 

develop a novel model for generating descriptive comments based on Java 

source code and Abstract Syntax Tree (AST) using NMT based techniques. A 



 

special attention is given to Code2seq and Open NMT architecture to 

develop automatic comment generator from source code. 

Objective and Research Questions: 

The objective of this master thesis is to explore the generation of comments 

from source code using Neural Machine Translation (NMT). NMT has shown 

significant advancements in natural language processing tasks and has the 

potential to create high-quality translations. By applying NMT approaches to 

generate comments from source code, we can investigate the feasibility of 

leveraging these models to automate the process and enhance the clarity 

and effectiveness of comment generation. 

The primary research question addressed in this study is as follows: 

• Research Question: How can Neural Machine Translation be leveraged 

to generate comments from Java code snippets (Java methods)? 

Manuscript organization 

This manuscript is organized into four chapters as follows: 

• Chapter 1: Neural Machine Translation: This chapter provides an 

overview of the foundational concepts and techniques of neural 

machine translation. 

• Chapter 2: Source Code Analysis and Documentation: In this chapter, 

we describe source code analysis, documentation practices, and 

explain the concept of abstract syntax tree (AST) and structure-based 

traversal. 

• Chapter 3: NMT-based Comment Generation from Source Code: The 

third chapter presents our proposed models for generating comments 

from source code and outlines the generation process. It also includes 

a discussion of related work in the field. 

• Chapter 4: Implementation, Testing, and Validation: In this chapter, we 

showcase the frameworks, tools, and libraries employed in this 

project. Additionally, we present the results of our work. 

• Conclusion: The manuscript concludes with a general summary and 

some perspectives. 
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Chapter 1 

Neural Machine Translation 

 1.1 Introduction 

Machine Translation (MT) is an important task that aims to translate natural 

language sentences using computers. The early approach to machine 

translation relies heavily on handcrafted translation rules and linguistic 

knowledge. As natural languages are inherently complex, it is difficult to 

cover all language irregularities with manual translation rules. In this 

chapter, we present an overview about Neural Machine translation (NMT), 

especially in the context of the translation of source code as a sequence of 

words to comment generation cases. Therefore, we will discuss in general 

the Recurrent Neural Networks (RNNs) which are sequence-based deep 

learning architectures. With a focus on long-short-term memory (LSTM) 

networks which deal with sequential data and time series, RNNs are ideal for 

mimicking source code’s sequential structure. 

 1.2 Machine Learning 

Artificial intelligence (AI) has a subject called machine learning that focuses 

on developing algorithms and models that let computers learn from data 



 

and get better at a particular activity. Machine learning, in other terms, is 

the act of teaching a computer system to recognize patterns and make 

choices without being expressly programmed to do so.

supervised learning, unsupervised learning, and reinforcement learning are the

three primary categories of machine learning.

In supervised learning, a model is trained on labeled data with the 

appropriate result being given for each sample of the input. By reducing the 

discrepancy between its predictions and the accurate labels in the training 

data, the model learns to map inputs to output

In unsupervised learning, a model is trained on unlabeled data and is 

required to discover patterns and structure on its own, without being given 

specific objectives. Tasks like grouping, dimensionality reduction, and 

anomaly detection require this form

A model is trained through reinforcement learning to take decisions 

based on rewards or consequences. The model develops the ability to act in 

a way that maximizes a success indicator known as a reward signal. In tasks 

like playing video games, building robots, and solving optimization issues, 

this kind of learning is employed.

Deep learning, decision trees, random forests, support vector machines, 

and a number of other subfields are examples of machine learning 

algorithms that can be further divided into subcategories. [1]

Figure 1.1: Relation between AI and ML and DL
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NMT models train on a huge quantity of bilingual data, in contrast to 

conventional rule-based or statistical machine translation techniques. 

Typically, NMT models have an encoder and a decoder, each of which is a 

neural network. The decoder receives the input sentence from the encoder 

and decodes it into a fixed-length representation. Based on the input 

representation and the previous tokens it has created, the decoder creates 

the output sentence one token at a time. 

NMT models can be trained using a variety of techniques, including 

supervised learning, unsupervised learning, and reinforcement learning. In 

supervised learning, the model is trained on pairs of source and target 

language sentences, with the goal of minimizing the difference between the 

predicted translation and the correct translation. In unsupervised learning, 

the model is trained on monolingual data in both the source and target 

languages, with the goal of learning to translate without explicit supervision. 

In reinforcement learning, the model is trained to maximize a reward signal, 

which can be thought of as a measure of translation quality. 

NMT models have been shown to be highly effective at translating 

between a wide range of language pairs, and have achieved state-of-the-art 

results on several machine translation benchmarks. Some of the advantages 

of NMT models over traditional machine translation methods include their 

ability to handle long-range dependencies between words, their ability to 

learn representations that generalize across different languages, and their 

ability to produce more fluent and naturalsounding translations.?? 

NMT models do have significant drawbacks, though, such as their high 

processing needs, propensity to create translations that are excessively 

impacted by the training data, and their inability to handle uncommon or 

uncommon terms. Addressing these drawbacks and enhancing the 

performance of NMT models across a range of translation tasks are the main 

goals of ongoing research. The process followed for NMT is depicted in 

figure 3.1. 

 

Figure 1.2: Process of Neural Machine Translation 



 

 1.4 Neural Networks 

Neural networks, often known as artificial neural networks (ANNs) is a 

machine learning algorithm . The idea of these networks has been inspired 

from the neurons in human brains that communicate with each other using 

electrical and chemical signals Which is later translated into an actions , the 

same way in neural networks . The output from the previous layer is the 

input to the next layer . In the end, the final value arrives at the output layer 

and it is taken as a prediction . In deep neural network, The more hidden 

layers, the more efficient and complex the network.[2] [3] 

 

Figure 1.3: Visualization of a neural network and deep neural network 

 1.4.1 Architecture of Neural Network 

In the 1980s, most neuron networks formed only one layer due to the cost 

of computing and the availability of data. Nowadays we can This allows us to 

have more layers hidden in our neural networks, hence the nickname deep 

learning. The different types of neuronal networks available for use They are 

also known as 

Convolutionary Neural Networks (CNNs) and Recurrent neural networks 

(RNNs). 

 1.5 Type of Neural Network 

 1.5.1 Linear Models 

Linear models are a core element of statistical machine translation.Possible 

translations x from A sentence is represented by a set of features hi(x).Each 

feature is weighted by the parameter i to get the total score.Ignore the 

exponential function we used to rotate earlier To convert a linear model to a 

log-linear model, the following formula summarizes the model. 

 

Figure 1.4: linear model scoring formula 



 

Graphically, a linear model can be represented by a network of input 

eigenvalues Nodes, arrows are weights, scores are output nodes (see Figure 

2) 

Most prominently, we use linear models to combine different 

components of a machine translation system, such as the language model, 

the phrase translation model, the reordering model, and properties such as 

the length of the sentence, or the accumulated jump distance between 

phrase translations. Training methods assign a weight value i to each such 

feature hi(x), related to their importance in contributing to scoring better 

translations higher. In statis- tical machine translation, this is called tuning. 

 1.5.2 Multiple Layers 

Neural systems adjust straight models in two critical ways. The primary is the 

utilize of multiple layers.Instead of computing the output value directly from 

the input values, a hidden layer 

The network is processed in two steps. First, a linear combination of 
weighted input node is computed to produce each hidden node value. Then a 

linear combination of weighted hidden nodes is computed to produce each 
output node value. At this point, let us present numerical documentations 

• a vector of input nodes with values x = (x1, x2, x3, ...xn) T 

• a vector of hidden nodes with values h = (h1, h2, h3, ...hm) T 

• a vector of output nodes with values y = (y1, y2, y3, ...yl) T 

•a matrix of weights connecting input nodes with hidden nodes W = wij 

•a matrix of weights connecting hidden nodes with output nodes U = uij 

 1.6 Neural Languge Models 

In order to lessen the effects of the curse of dimensionality, neural network 

language models, which are based on neural networks, can develop distributed 
representations. 

A neural language model surpasses n-gram language models in terms of 

dimensionality reduction by using distributed word representations. Several 

models based on feedforward networks, log-bilinear models, skip-gram 

models, and recurrent neural networks have been developed. Each word in 

the vocabulary is represented as a real-valued feature vector, and these 

vectors are linked together so that the cosine of the angles between these 

vectors is high for words that are semantically related. [4] 



 

 1.6.1 Feed-Forward Network 

A feedforward network is a multilayer network in which the units are 

connected with no cycles; the outputs from units in each layer are passed to 

units in the next higher layer, and no outputs are passed back to lower 

layers. 

A feed forward neural network is a type of artificial neural network in which 

there is no cycle in the connections between the nodes. A recurrent neural 

network, in which particular paths are cycled, is the reverse of a feed 

forward neural network. Since information is only processed in one 

direction, the feed forward model is the simplest type of neural network. 

Although the data may move through several hidden nodes, it always 

proceeds forward and never backward. 

 

Figure 1.5: feed forward neural network 

 1.6.2 Word Embedding 

Word embeddings, also known as word immersion, are the mapping of 

words to real-number vectors in a condensed space dimension [34], which 

may be one of the key advancements for the impressive results of deep 

learning methods on challenging natural language processing problems. The 

vectors of word inclusion represent words and their contexts; as a result, 

words with similar meanings (synonyms) or close semantic relationships will 

have more similar dives. Additionally, word inclusions must reflect the 

relationships between individual words. For instance, the word "man" 

should be written "king" just as "women" is written "queen." 

 1.6.3 Reccurent Neural Network RNN 

Recurrent neural networks (RNNs) are a form of neural network in which the 

results of one step are fed into the current stage as input. Traditional neural 

networks have inputs and outputs that are independent of one another, but 

there is a requirement to remember the previous words in situations when it 

is necessary to anticipate the next word in a phrase. As a result, RNN was 

developed, which utilized a Hidden Layer to resolve this problem. The 

Hidden state, which retains some information about a sequence, is the 

primary and most significant characteristic of RNNs. 



 

RNNs have a "memory" that retains all data related to calculations. It 

executes the same action on all of the inputs or hidden layers to generate 

the output, using the same settings for each input. In contrast to other 

neural networks, this minimizes the complexity of the parameter set. 

 

Figure 1.6: Recurrent neural networks (RNNs) 

 1.6.4 Long Short-Term Memory Models (LSTM ) 

An RNN model is a version known as long short-term memory (LSTM). A 

LSTM can handle lengthy time-series data, but an RNN can only memorize 

short-term information. In addition, lengthy sequence data present an RNN 

model with the vanishing gradient problem, which LSTM can avoid during 

training. An LSTM model has automated control over whether to keep 

important properties in the cell state or toss out unimportant ones, and it 

can recall past long-term time-series data. The input gate, forget gate, and 

output gate are the three gates that an LSTM model uses to regulate its 

characteristics. The input gate regulates how new information enters the cell 

state. 

The main components of the LSTM are its gates. There are three gates in an 

LSTM: the input gate, the forget gate, and the output gate. The input gate 

will control the inflow of new information into the cell. The forget gate will 

control the content of the memory, that is, the forget gate will decide if we 

want to forget a piece of information so we can store new information. 

The output gate will control when the information is used in the output 

from the cell. A gated recurrent unit (GRU) is a simplification of an LSTM. 

Unlike an LSTM, a GRU has just two gates. This kind of setup ultimately 

makes the execution faster as there is a lower number of weights to learn 

 1.6.5 Gated Reccurent Units 

When compared to long short term memory (LSTM), the Gated Recurrent 

Unit (GRU) is a type of recurrent neural network (RNN). GRU is quicker and 

requires less memory than LSTM, however LSTM is more accurate when 

working with datasets that contain longer sequences. 

Additionally, GRUs address the issue with vanishing gradients that affects 

regular 



 

 

Figure 1.7: Long Short-Term Memory Models 

recurrent neural networks (values used to update network weights). Grading 

may become too little to have an impact on learning if it shrinks over time as 

it back propagates, rendering the neural network untrainable. 

RNNs can basically "forget" lengthier sequences if a layer in a neural net is 

unable to learn. 

GRUs solve this problem through the use of two gates, The update gate and 

reset gate are two gates that GRUs utilize to address this issue. These gates 

may be taught to retain information from further back and determine what 

information is let through to the output. As a result, it can transfer 

important information along an event chain to improve its forecasts. 

 

Figure 1.8: Gated Recurrent Units 

 1.6.6 Deep Model 

An artificial neural network (ANN) with numerous layers in between the 

input and output layers is known as a deep model. In a deep model, 

information is transformed via a number of non-linear layers in a 

hierarchical fashion. The model may learn increasingly sophisticated 

representations of the input data by employing several layers, which can 

increase the predictability of the model. 

Deep models have grown in prominence in recent years as a result of their 

propensity to handle challenging problems including audio, picture, and 

natural language processing. Convolutional neural networks (CNNs) for 



 

image recognition and recurrent neural networks (RNNs) for sequence 

modeling are two examples of deep models. 

However, because of problems like vanishing gradients and overfitting, 

training deep models can be difficult. To assist with these issues, academics 

have created approaches including regularization, dropout, and batch 

normalization. 

 

Figure 1.9: deep neural network 

 1.7 Neural Translation Models(Tronsformer) 

The Transformer is a deep learning model that was first proposed in 2017. It 

uses a "self-attention" method that enhances neural machine translation 

(NMT) applications’ performance in comparison to the conventional 

recurrent neural network (RNN) model. As a result, training for natural 

language processing (NLP) tasks is accelerated. 

A neural network called a transformer model follows relationships in 

sequential input, such as the words in this phrase, to acquire context and 

subsequently meaning. 

Transformers use positional encoders to tag data elements coming in and 

out of the network.These tags are followed by attention units, which 

calculate a sort of algebraic map showing how each element connects to the 

others.  



 

 

Figure 1.10: The Transformer architecture The 

Transformer model, like the Sequence-to-Sequence 

(seq2seq) machine translation paradigm, is built on an 

encoder-decoder architecture.However, the Transformer 

differs from the seq2seq model in three ways: 

• Transformer Block: The recurrent layer in seq2seq is replaced by a 

Transformer Block. This block contains a multi-head attention layer 

and a network with two Position-Wise Feed-Forward network layers 



 

for the encoder. Another multi-head attention layer is used to 

compute the encoder state for the decoder. 

• Add Norm: The inputs and outputs of both the multi-head attention 

layer and the Position-Wise Feed-Forward network are processed by 

two Add Norm layers which contain a residual structure and a layer 

normalization layer. 

• Position Encoding: Since the self-attention layer does not distinguish 

the order of items in a given sequence, a positional encoding layer is 

used to add sequential information into each sequence item. 

 1.8 Transformer Functioning 

Data preparation, model training, and model prediction are the 

Transformer’s three main tasks; Data preprocessing, model training and 

model prediction. 

 1.8.1 Data Preprocessing 

The data is preprocessed using tokenizers before being fed into the 

Transformer model.Tokenization of the inputs is followed by the conversion 

of the created tokens into the token IDs required by the model.Tokenizers, 

for instance, are created for PyTorch by using the "AutoTokenizer from 

pretrained" function to: 

• Get tokenizers that correspond to pretrained models in a one-to-one 

mapping. 

• Download the token vocabulary that the model needs when using the 

model’s specific tokenizer. 

 1.8.2 Model Training 

A well-liked training technique for neural machine translation is teacher 

forcing. It cuts down on training time by using the actual output as inputs 

rather than the anticipated output from the prior timestamp. 

 1.8.3 Model Prediction 

• The encoder encodes the input sentence of the source language. 

• The decoder uses the code generated by the encoder and the start 

token () of the sentence to predict the model. 

• At each decoder time step, the predicted token from the previous time 

step is fed into the decoder as an input, in order to predict the output 



 

sequence token by token. When the end-of-sequence token () is 

predicted, the prediction of the output sequence is complete. 

 1.9 Sequence To Sequence Model (Seq2Seq) 

Sequence-to-Sequence (or Seq2Seq) is a neural net that transforms a given 
sequence of elements, such as the sequence of words in a sentence, into 

another sequence. 

Sequence transformation is the process used by Seq2seq to change one 

sequence into another. To get over the vanishing gradient issue, it uses a 

recurrent neural network (RNN), or more frequently an LSTM or GRU. The 

output from the preceding stage serves as the context for each item. One 

encoder and one decoder network make up the main parts. Each item is 

converted by the encoder into a matching hidden vector that includes both 

the object and its context. Using the previous output as the input context, 

the decoder reverses the process and produces the vector as an output item. 

Seq2Seq models are particularly good at translation, where the sequence 

of words from one language is transformed into a sequence of different 

words in another language. A popular choice for this type of model is Long-

Short-TermMemory (LSTM)-based models. With sequence-dependent data, 

the LSTM modules can give meaning to the sequence while remembering (or 

forgetting) the parts it finds important (or unimportant). Sentences, for 

example, are sequencedependent since the order of the words is crucial for 

understanding the sentence. LSTM are a natural choice for this type of data. 

Encoder and Decoder are the main components of Seq2Seq models. The 

input sequence is translated by the encoder into an n-dimensional vector in 

a higher level space. The Decoder receives this abstract vector and converts 

it into an output sequence. The output sequence might consist of symbols, 

another language, a duplicate of the input, etc. 

 

Figure 1.11: sequence to sequence architecture, Blue and green boxes are 

LSTM 

cells 



 

 1.9.1 Encoder - Decoder Architecture 

Encoder-decoder architecture is a type of neural network architecture that is 

best suited for use cases like machine translation where the input is a series 

of data and the output is another sequence of data. In other words, 

sequence-to-sequence modeling is best suited to encoder-decoder 

architecture. The initial purpose of the encoder-decoder design was to 

address the issue of machine translation, which entails translating text from 

one language to another. The major difficulty in machine translation is that it 

is challenging to directly map the input to the output since the input and 

output sequences have distinct lengths and structures. 

The input data is initially passed through an encoder network in this 

configuration. The encoder network converts the input data into a numerical 

form that extracts the crucial information. The hidden state is another name 

for the numerical representation of the input data. The decoder network is 

subsequently given with the numerical representation (hidden state). One 

output sequence element is produced by the decoder network at a time to 

produce the output. The encoder decoder architecture is shown in the 

illustration below. As seen in the image below, data sequences for both the 

input and output might have different lengths. 

RNN/LSTM used as an Encoder and a Decoder: For applications like 

machine translation, where the input and output are both collections of 

words with different lengths, this architecture can be employed. While the 

RNN/LSTM in the decoder may produce the appropriate output sequence of 

words in a different language, the RNN/LSTM in the encoder can encode the 

input sequence of words into a hidden state or numerical representation. 

The encoder-decoder architecture shown below uses RNN in both the 

encoder and the decoder networks. English words are used as the input 

sequence, and German is translated automatically. 

 

Figure 1.12: encoder-decoder- architecture 



 

 

Figure 1.13: encoder-decoder- architecture RNN 

 1.10 Conclusion 

The foundational information required to understand the ideas of neural 

machine translation, recurrent neural networks (RNNs), long short-term 

memory (LSTM) networks, and sequence-to-sequence (seq2seq) models has 

been covered in this chapter. For the upcoming investigation of comment 

creation from source code using these methodologies, it is essential to have 

a firm grasp of these ideas.  



 

Chapter 2 

Code Source Analysis and 

Documentation 

 2.1 Introduction 

AST tools and code source documentation both aid in the comprehension, 

evaluation, and advancement of software projects. Developers can 

understand and edit code with the help of documentation, while AST tools 

provide insights and capabilities for sophisticated program analysis and 

manipulation. In this chapter, we focus on Source code and especially on 

documentation source code, analysis source code, and the categories of 

comments in Java code. we talk also about the Abstract Syntax tree, AST 

tools, and AST application, we describe traversed algorithms (structure-

based traversal and graph traversal algorithm). 

 2.2 Code Source 

Source code is a text that represents the instructions that must be executed 

by a microprocessor. The source code is often materialized in the form of a 

set of text files. The source code is usually written in a programming 

language, thus enabling better human understanding. Once the source code 

is written, it generates a binary representation of a sequence of instructions 

executable by a microprocessor. for example of source code 3.1 

 



 

Figure 2.1: java code source example 

 2.2.1 Code Statement Level 

Software is a collection of programs with documentation. A program is a 

sequence of code statements. Many researchers have proposed comment-

generation methods at the code block level. We can classify it further into 

two categories. The first is the single code statement level (pseudo code 

generation), and the second, the multiple code statement level.[5] 

 2.3 Code Source Documentation 

Source code documentation is a type of technical document that is 

embedded within the source code itself. Software developers write source 

code documentation at various levels of abstraction. Developers require 

source code documents to understand the code during the maintenance 

phase. 

Code Documentation By using comments, annotations, and detailed 
justifications, the code may be documented. Future developers will benefit 

from having a better understanding of the functions and purposes of various 

code parts. 
in this section describes in a very synthesized manner the rules 

concerning the documentation of the code Programming in C++ and Java. 

This document also provides guidelines for Formatting the source code . 

 2.3.1 General Principles 

• The documentation is intended for readers and users of a program, 

not not to its author (except 6 months after writing it; the author then 

no longer remembers Good for what he did. 

• It helps the reader understand the source code and use it; it does not 

duplicate information already explicitly contained in the source code. 

• It must be clear, concise, accurate, complete, uniform and simple to 

maintain. 

• It must be done as the program is developed, otherwise it It will never 

be done (correctement). 

• It facilitates the maintenance of programs in an organization. 

programming style, which allows a person to It’s easier to get 

another’s job done. 



 

Keep in mind that documentation is a continuous operation. It’s crucial 

to update the documentation when the code changes and new features are 

introduced in order to keep it accurate and helpful. 

 

Figure 2.2: Code Source Documentation 

Software development must include code source documentation 

because it promotes better knowledge, maintainability, and developer 

cooperation. Here are some important considerations for source code 

[6]documentation: 

1. Readme Files:Include a readme file that gives a summary of the 

codebase, installation guidelines, a getting started guide, and links to 

pertinent documentation or resources at the project level. 

2. Code Dependencies:Identify the external frameworks, libraries, or 

modules that the code uses. To guarantee correct configuration and 

setup while deploying or working on the codebase, note the versions 

and dependencies. 

3. Code Style and Standards:Make that the code adheres to accepted 

best practices and coding standards. Record any departures from the 

norms and offer suggestions for bringing the code into line with the 

desired aesthetic. 

4. Documentation Format:Establish the documentation for the code’s 

format. Inline comments, a separate documentation file, or an outside 

documentation tool like Doxygen or Javadoc are all possible forms of 

documentation. 

5. Purpose and Overview:Give a brief explanation of the functionality and 

goal of the code. Describe its key characteristics, planned applications, 

and integration with the system’s general design. 



 

6. Module/Class/Function Level Documentation: Clearly describe the 

roles, inputs, outputs, and any pertinent side effects for each module, 

class, and function. Specify the desired actions and usage instructions, 

along with the parameters’ descriptions and return values. 

 2.4 Comments 

 2.4.1 Comments and Inline Documentation 

Use inline comments within the code to explain complex or non-obvious 

sections, algorithms, or decisions. Comment key variables, constants, or 

logic blocks to provide additional context. However, strive for self-

explanatory code and avoid excessive or redundant comments. 

 2.4.2 Comments Categories 

For the Java and C/C++ programming languages, we differentiate between 

seven different types of comments: 

• Copyright Comments: include information about the copyright or the 

license of the source code file. They are usually found at the beginning 

of each file. 

• Header Comments: give an overview about the functionality of the 

class and provide information about, e. g.,the class author, the revision 

number, or the peer review status. In Java, headers are found after the 

imports but before the class declaration. 

• Member Comments :describe the functionality of amethod/field, 

being located either before or in the same line as the member 

definition. They provide information for the developer and for a 

project’s API. 

• Inline Comments :describe implementation decisions within a method 

body. 

• Section Comments : address several methods/fields together 

belonging to the same functional aspect. A fictitious example looks 

like// —- Getter and Setter Methods —and is followed by numerous 

getter and setter methods. 

• Code Comments: contain commented out code which is source code 

ignored by the compiler. Often code is temporarily commented out for 

debugging purposes or for potential later reuse. 



 

• Task Comments : are a developer note containing a remaining todo, a 

note a about a bug that needs to be fixed,or a remark about an 

implementation hack. 

 2.5 Code Source Analysis 

Static code analysis, in which the source code is examined just as code and 

the program is not in use, is the same as source code analysis. This 

eliminates the requirement for developing and utilizing test cases and may 

help it avoid featurespecific issues like buttons that aren’t the color that the 

specs specify. It focuses on identifying programming errors such lines of 

code that might cause crashes that could be harmful to the program’s ability 

to run properly.[7] 

Static code analysis, sometimes referred to as code source analysis or 

source code review, is the act of looking at the source code of a software 

program to find potential problems, weaknesses, or enhancements. It entails 

examining the code’s structure, grammar, and logic without actually running 

it. 

Coding standards compliance, bug detection, and security vulnerability 

identification are all goals of code source analysis. It aids in the early 

identification of possible problems by developers, enabling them to address 

them before they become difficulties during runtime. 

 

Figure 2.3: how static analysis work 

 2.5.1 Analysis of Source code 

Various methods and instruments can be used to study the code during 

source code analysis[8], including: 



 

• Code Review: To begin, read through the source code to become 

familiar with its organization, structure, and features. Identify the key 

classes, modules, and components that make up the codebase. 

• Code Flow:Trace the execution route to analyze the code flow and find 

any potential bottlenecks, dependencies, or performance problems. 

Record the high-level overview of the code’s operation and the 

relationships between its many components. 

• Error Handling::Check the code’s handling of exceptions, errors, and 

edge situations. Any error-handling procedures that are in place 

should be documented, along with how they affect the code’s overall 

behavior. 

• Security Analysis: Examine the system for potential security flaws like 

SQL injections, cross-site scripting (XSS), or weak authentication and 

authorisation systems. Keep a record of any hazards found and make 

suggestions for improvements or mitigations. 

• Performance Analysis:Check the code for any performance issues or 

potential improvements. Record any areas where performance, 

memory consumption, or resource utilization might be improved. 

• Testing and Test Coverage:Check the code to see whether it has any 

unit tests, integration tests, or other automated tests. Examine the 

code coverage and note any testing strategy shortcomings. 

• Automated tools: specialized software tools made to check source 

code for compliance with coding standards, common programming 

errors, and security flaws. These tools use pre-established rules or 

patterns to examine the code. 

• Metrics analysis:To evaluate the quality and maintainability of the 

code, code metrics including complexity, cyclomatic complexity, 

duplication, and other software metrics are analyzed. 

Developers can find possible problems, minimize defects, increase 

security, optimize speed, and improve code quality by doing code source 

analysis. For software developers to create trustworthy and durable 

applications, this technique is crucial. 



 

 

Figure 2.4: analysis code source 

2.6 Structure and Necessary Elements for source code 

 2.6.1 Source File 

Each source file contains an entity consisting of the elements[6] The 

following: 

• Name of the program 

• A brief description 

• the authors and their registrations; 

• the date of completion of the first implementation 

• the end date of each version with authors and authors; 

• the course for which the file is developed; 

• a longer description containing: 

a- program entries and their preconditions; b- the 

outputs of the program and their post-conditions. 

• A history of changes for each version. 

 2.6.2 Method and Function 

Each method and function: 

• includes an entrance describing the processing carried out; ideally, 

describe the Pre-entry conditions and post-exit conditions; 



 

• includes, if necessary, comments in the body that explain the sections 

the complexity of the treatment; 

 2.6.3 Identifying 

• Use of Significant Identificators a- The names of classes, variables 

and constants must be accurate. b- A function or method name 

describes the treatment performed. c- Indices in an iteration can 

be simple letters. 

• Construction of identifiers 

 2.7 Abstract Syntax Tree 

The structure of a program or a piece of code is represented by an abstract 

syntax tree (AST), a data structure used in computer science and 

programming language theory. It is a generic representation of the syntax of 

the code, unrelated to any particular computer language. When a program is 

parsed, its syntactic components, such as statements, expressions, 

operators, and control flow structures, are separated from the source code 

and organized into a hierarchical structure. The standard visual 

representation of this hierarchical structure is a tree, where each node 

corresponds to a syntactic element and the edges show the connections 

between these components. 

 

Figure 2.5: Introduction to Abstract Syntax Trees 

While abstracting away elements like style, whitespace, and other non-

essential information, the AST preserves the code’s core structure and 

meaning. Compared to the raw source code, it offers a higher-level 



 

representation that is simpler to understand and manipulate. ASTs are 

frequently used in tools for code restructuring, interpreters, compilers, and 

other stages of program analysis and transformation. By navigating and 

modifying the tree nodes, they make it possible to perform actions like 

syntax checking, semantic analysis, optimization, code creation, and 

program modifications.[9] 

Tools and frameworks may support several programming languages 

without having to worry about the nuances of each language’s particular 

syntax by working with code in a language-agnostic way utilizing an AST. 

An Abstract Syntax Tree (AST) is a hierarchical representation of the 

syntactic structure of a program written in a programming language. It 

captures the structure and relationships among the various components of 

the code, 

 

Figure 2.6: Abstract Syntex Tree Example 

When a compiler or interpreter processes source code, it typically goes 

through several stages, including lexical analysis (breaking code into tokens), 

parsing (building a parse tree), and finally constructing an AST. The AST 

represents the parsed code in a more abstract and structured form, which 

makes it easier for subsequent stages of the compilation process, such as 

type checking, optimization, or code generation. 

Here are some key points about Abstract Syntax Trees: 

1. Hierarchical Structure:An AST is a structure that resembles a tree, with 

each node standing in for a particular piece of code, such as a function 

declaration, a loop statement, or an arithmetic expression. The 

layering and composition of code components are represented by the 

parent-child connections connecting the nodes. 

2. Abstracted Representation: The AST concentrates on the underlying 

structure and meaning by abstracting away some of the source code’s 



 

specifics. For instance, the AST may represent a 

explicitly describing how it is implemented or collapse many levels of 

parentheses in an arithmetic statement.

3. Language-Dependent: Because the organization of code components 

and linguistic requirements differs, every programming 

its own AST representation. The exact syntax and semantics of the 

language it represents are captured by the AST.

4. Loss of Certain Details:An AST may lose certain syntactic 

characteristics, such as formatting, comments, or original variable 

names, but it still retains the fundamental structure and meaning of 

the code. These specifics can be skipped over during parsing because 

they are frequently not necessary for later compilation steps.

5. Analysis and Transformation:ASTs are frequently used for a

compiler-related activities, including code creation, optimization, and 

analysis. Compilers may do static analysis using the AST, spot possible 

mistakes, apply optimizations, and produce effective machine code.

6. Tooling and Language Tools:Develo

refactoring tools also use ASTs. These tools make use of the AST to 

offer capabilities like automatic refactorings, code navigation, code 

recommendations, and static code analysis.

Figure 2.7: Abstract Syntex Tree Tool

There are several tools available for working with Abstract Syntax Trees 

(ASTs) in various programming languages. Here are some popular AST tools:

 2.7.1 AST Tools 

Some industrial and academic AST tools are listed bellow.

specifics. For instance, the AST may represent a loop construct without 

explicitly describing how it is implemented or collapse many levels of 

parentheses in an arithmetic statement. 

Dependent: Because the organization of code components 

and linguistic requirements differs, every programming language has 

its own AST representation. The exact syntax and semantics of the 

language it represents are captured by the AST. 

Loss of Certain Details:An AST may lose certain syntactic 

characteristics, such as formatting, comments, or original variable 

es, but it still retains the fundamental structure and meaning of 

the code. These specifics can be skipped over during parsing because 

they are frequently not necessary for later compilation steps. 

Analysis and Transformation:ASTs are frequently used for a variety of 

related activities, including code creation, optimization, and 

analysis. Compilers may do static analysis using the AST, spot possible 

mistakes, apply optimizations, and produce effective machine code. 

Tooling and Language Tools:Development tools like IDEs, linters, and 

refactoring tools also use ASTs. These tools make use of the AST to 

offer capabilities like automatic refactorings, code navigation, code 

recommendations, and static code analysis. 

 

Figure 2.7: Abstract Syntex Tree Tooling 

There are several tools available for working with Abstract Syntax Trees 

(ASTs) in various programming languages. Here are some popular AST tools:

Some industrial and academic AST tools are listed bellow. 
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pment tools like IDEs, linters, and 

refactoring tools also use ASTs. These tools make use of the AST to 

offer capabilities like automatic refactorings, code navigation, code 

There are several tools available for working with Abstract Syntax Trees 

(ASTs) in various programming languages. Here are some popular AST tools: 



 

• Tree-sitter: A parsing package called Tree-sitter produces ASTs for 

several programming languages. It offers a single API and facilitates 

effective incremental parsing. Tree-sitter is a flexible option because it 

offers bindings for several languages. 

• Esprima and Babel: Esprima is a parser for JavaScript code that creates 

ASTs. Esprima is an internal tool used by the JavaScript compiler Babel 

to create ASTs. For the analysis and manipulation of JavaScript code, 

these tools are frequently used. 

• Roslyn: Microsoft’s Roslyn platform is an open-source compiler for C 

and VB.NET. It has APIs for AST interaction, code analysis, and 

transformation. Roslyn offers comprehensive assistance for working 

with and analyzing C and VB.NET code. 

• Eclipse JDT:Java Development Tools (Eclipse JDT) are a collection of 

libraries and APIs for working with Java programming. It offers 

assistance in constructing ASTs and parsing Java source code. JDT 

offers a number of tools for examining and modifying Java code. 

• Python ast module:The ’ast’ module of Python’s standard library offers 

tools for interacting with Python ASTs. It enables the parsing of Python 

source code, the creation of ASTs, and the exploration and analysis of 

those ASTs. 

• Clang and LibTooling: The Clang frontend for the C/C++ compiler offers 

a robust framework for dealing with C/C++ code. It contains 

LibTooling, which enables the creation of unique tools for the use of 

ASTs in the analysis and transformation of C/C++ code. 

• TypeScript Compiler API: TypeScript, a superset of JavaScript, has a 

Compiler API that enables parsing TypeScript code and generating 

ASTs. The API allows working with TypeScript ASTs to perform various 

code analysis and transformation tasks. 

These are only a few illustrations of AST tools that are accessible for 

various programming languages. There may be more libraries, frameworks, 

or languagespecific tools that offer AST capabilities, depending on the 

language and particular needs. 

 2.7.2 AST Design and Construction 

• AST Nodes must hold sufficient information to recall the essential 

elements of the program fragments they represent – For example, want to 

know that node X of the AST corresponds directly to procedure Foo of the 

program • Implementation of ASTs should be decoupled from what is 



 

represented – Accessors are used to hide a nod

No single class hierarchy – Each phase may view the nodes differently

 2.7.3 Stages of Creating an AST

To transfer the code to an AST there are different stages that need to be 

done before creating an AST which are Lexical Ana

1. Lexical Analysis : In this stage, we will firstly determine each of the 

token types that make up the source code. It is also called 

Tokenization, which tokenizes the source code into smaller units.

2. Syntax Analysis : The next step

parser. This process creates the tree structure using the tokens 

produced by the lexical analyzer.

Figure 2.8: The Different stages of creating an AST.

 2.7.4 Application of Abstract Syntax Trees

Abstract Syntax Trees (ASTs) are commonly used in programming language 

theory, compilers, interpreters, and various static analysis tools. Here are a 

few application areas in which ASTs are utilized:

• Compilation :A computer language’s source code is converted into an 

executable format during the compilation phase. At the heart of this 
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• Program analysis and optimization : ASTs give the code a structured 

form that enables different analysis and optimizations. The AST may 

be examined by static analysis tools like linters and static analyzers to 

look for possible mistakes, security holes, coding style infractions, and 

other problems. Based on the knowledge obtained from the AST, 

optimizations such as dead code reduction, constant propagation, and 

loop modifications can be done. 

• Code refactoring and transformation: Code may be automatically 

refactored or transformed using ASTs. Integrated development 

environments (IDEs) and similar tools frequently use ASTs to carry out 

automatic refactorings such renaming variables, removing methods, or 

rearranging code structure. Developers can enhance the readability, 

maintainability, and general quality of their code by using AST-based 

modifications. 

• Domain-specific language implementation : ASTs offer a practical form 

for capturing the domain-specific semantics while developing domain-

specific languages. Developers can design customized languages 

targeted to certain problem areas by specifying the syntactic rules of 

the DSL, parsing the code into an AST, then interpreting or translating 

it accordingly. 

These are only a handful of applications for ASTs in programming. A 

variety of operations including analysis, transformation, and 

interpretation are made possible by ASTs, which act as an intermediary 

representation of code. 

 2.8 Graph Traversal Algorithms 

A graph’s nodes or vertices can be explored or visited using graph 

traversal methods. By starting from one node and visiting every 

accessible node, they provide systematic traversal or navigation over 

the graph. Because they make it easier to comprehend the structure 

and interactions inside the network, traversal algorithms are crucial for 

understanding and modifying graphs. Graph traversal algorithms major 

objective is to efficiently cover 



 

 

Figure 2.9: Graph Traversal Algorithm 

all of the nodes in the graph by ensuring that each node is visited 

precisely once, avoiding endless loops, and completing the graph. 

BreadthFirst Search (BFS) and Depth-First Search (DFS) are two popular 

graph traversal techniques. 

 2.8.1 Breadth-First Search (BFS) 

BFS begins at a particular source node and traverses the graph level by 

level. Prior to going on to their neighbors, it first visits all of the 

neighbors of the source node. To keep track of the nodes that need to 

be visited, 

this method employs a queue data structure. BFS ensures that nodes 

that are closer to the source node are accessed before nodes that are 

farther away. It is helpful for examining a graph breadth-first and for 

determining the shortest path between two nodes. 

 

Figure 2.10: Breadth-First Search algorithm 



 

 2.8.2 Depth-First Search (DFS) 

: 

DFS investigates the graph by delving as far as feasible down each 

branch and then turning around. It travels to one of its neighbors after 

starting from a certain source node. It then moves on to that 

neighbor’s subsequent unexplored neighbor and so forth until it comes 

to a dead end. Then it circles back to the first node and investigates a 

different unexplored neighbor. Up till all nodes have been visited, this 

procedure keeps on. DFS often keeps track of the nodes to be visited 

using a stack data structure (or recursion). It is helpful for discovering 

cycles in a graph and for exploring all potential pathways. Other 

specialized graph traversal methods exist in addition to BFS and DFS, 

such Dijkstra’s algorithm for locating the shortest path in weighted 

graphs and A* search algorithm for locating the shortest path with 

heuristic information. Based on particular issue requirements, these 

algorithms use extra factors and heuristics to enhance the traversal 

process. 

 

Figure 2.11: Depth-First Search algorithm 

 2.9 Structure Based Traversal 

The analysis and processing of tree-like structures, such as abstract 

syntax trees (ASTs) in programming languages, are done using the 

Structure-Based Traversal (SBT) technique. To carry out numerous 

tasks, like program analysis, code modification, or code generation, 

SBT tries to capture the structural relationships and attributes of 

nodes within a tree.[10] 



 

 

Figure 2.12: SBT Algorithm 

To visit and process nodes in the AST, traversal rules or patterns must 

be established as part of the SBT approach. These guidelines are based 

on the node types, parent-child relationships, sibling relationships, and 

other structural elements of the tree. SBT algorithms explore the AST 

in an organized manner by abiding by these principles, visiting nodes in 

accordance with their locations and connections within the tree. 

SBT is essential in code generation tasks, where an AST is translated 

into executable code or another representation.Code generation 

methods can either produce code based on predetermined templates 

or map the tree nodes to the relevant code constructs in the target 

programming language by traversing the AST according to predefined 

patterns. 

 



 

Figure 2.13: Example an AST to SBT 

 2.10 Conclusion 

In Conclusion, the purpose of comprehending and maintaining 

software projects, code source documentation is crucial. It gives 

details about the function, usage, and intent behind certain code 

elements. However, program analysis and modification greatly benefit 

from the use of an Abstract Syntax Tree (AST) tool. The grammar and 

semantics of the code are represented in an organized manner by AST 

tools, which improve the productivity and efficiency of software 

development. 

Chapter 3 

NMT-based Comment 

Generation from Source Code 

 3.1 Introduction 

For big software systems, the maintenance phase typically lasts longer 

than all the earlier life-cycle stages combined [2]. The maintenance 

cycle includes understanding software as a major component. In fact, 

knowing the code base takes up around 59% of the total time spent 

during the software development life cycle. This is due to project 

deadlines and time restrictions, which causes mismatched code 

comments, full omissions of comments, or failures to update 

comments of patched code in the database [11]. As a result, there has 

been extensive research on the automatic generation of comments 

given uncommented source code. Some of the early research on this 

topic conducted by [12] [13] [14] 

In this chapter, we present the essence of our work. First, we give an 

overview of related work on generating comments from source codes. 

Then we introduce our proposition by explaining, and after that, we 

will present the process we followed and provide a comprehensive 

and detailed description of our approach. 



 

 3.2 Related work 

in the literature, many notable approaches have been proposed to 

generate code comments automatically from source code. Different 

methods and techniques have been used, from clone detection to 

copy comments [6] to deep learning to forecast when new comments 

will be generated for uncommented code [11]. 

Code summarization research is a related area of study. Code summary 

aims to condense lengthy chunks of code into a manageable number 

of words. Using bidirectional LSTMs, such as in code2seq [15], which 

uses a bidirectional LSTM in conjunction with an attention mechanism 

to highlight the most crucial nodes in an abstract syntax tree (AST), 

significant progress has been made in this area. The function is then 

summarized using these ideas. 

The function is then summarized using these ideas. As a result, the 

code’s actions are briefly summarized. Of course, these summaries 

differ significantly from good comments. 

An encoder-decoder architecture often employs 2 related models. who 

initially enters an encoded state from the input sequence. The decoder 

network, which has been trained to translate its input into a desired 

target, is then given this state. Because it enables the learning of 

translations across many types of sequences, this technique is 

frequently employed in neural machine translation (NMT). 

Previous studies have demonstrated that using deep learning models 

to automatically generate code comments is a practical application 

[11] [16]. These studies train a sequence2sequence model (encoder-

decoder architecture) using syntactical information stored in an AST. 

The comment that would describe a line of code is then predicted 

from a group of comments using this model. The BLEU score is used to 

compare the performance of these models. [17] This score serves as a 

gauge for machine translation accuracy. The models in papers [11] [16] 

received BLEU-4 scores of 38% and 39 %, respectively. Because the use 

of neural networks in software engineering is a rapidly progressing 

field, the authors of the paper (code2vec) upon which deepcomm is 

based have released a new paper boasting higher accuracy (code2seq). 

To improve upon the deepcomm paper we suggest a similar 

architecture, while using code2seq. 

3.3 An approach for Comment generation from java 

source code 

in this work, we propose a comment generator model using a new 

state-ofthe-art technique that is based on code2seq model for 

comment generation from Java source code. Our proposition is based 



 

on the DeepCom [11] architecture. Instead of directly generate 

comments from the traversed AST sequences. we propose to combine 

the source code and the modified AST sequences together to generate 

the comments. We focus on replicating the code2seq model with 

added capabilities such as, predicting natural language and modified 

ASTs. 

 3.3.1 Model design 

We will employ a code to sequence model to automatically produce 

comments. It has been demonstrated that this is a successful method 

for NMT[18], code summarization[15] and comment generation [11] 

[16]. In this part, the network’s overall architecture will be covered, 

starting with a dataset analysis, followed by AST processing, input code 

encoding, and finally decoding. 

The propsoed model, shown in Figure 3.1 adopts an attention-based 

Code2Seq model to generate high-level description of code snippets. 

Compared to deepcomm, the BLEU score of Code2Seq model increases 

to 35.5on the Java corpus. In order to capture the structural information, 

AST sequences traversed by SBT are input into our model. 

Fig 3.1. provides an illustration of the general structure of the 

proposed work. Three phases are required: data processing, model 

training, and testing. We analyze and preprocess the source code we 

downloaded from GitHub into a parallel corpus of Java methods and 

the comments that go with them. The Java methods are turned into 

AST sequences via a particular traversal methodology in order to 

understand the structural information. 

The main propositions in this method are : 

– Our method uses AST sequences as an input to obtain structural 

data. We suggest a new method for analyzing ASTs called SBT, 

which provides unambiguity while expressing semantics with 

structural infor- 



 

 

Figure 3.1: General Process of the proposed approach 

mation. By better aligning source code to the natural language 

description, our model can generate comment that are more 

accurate. 

 3.3.2 Out of Vocabulary problem 

The Out of Vocabulary issue in NMT is well-known, especially when 

invented terms are employed, like in the name of variables in source 

code. This is not an issue when translating from one language to 

another if the majority of terms have been defined and trained upon 

by the model. However, because a (Bi)LSTM in a sequence2sequence 

model can only predict words it has been trained on, this issue is 

particularly common in comment creation. The way that different 

programmers name variables in their code might vary significantly, 

even within the same project [2]. A major obstacle for producing 

quality comments is presented by this. In this study, we use the AST to 

address this issue. 

 3.4 Dataset 

The comment generator model is trained on the same dataset as Hu et 

al.’s deepcom network [11] in order to compare its capabilities with 

the stateof-the-art methods. To maintain a fair test, the same data 

split as in [11] will be utilized, which is 80% train, 10% test, and 10% 

validation. The dataset contains 588,108 code-comment pairs that can 

be used for training and evaluation. Details can be found in table 3.1 

 # Methods # All tokens # All identifiers #Unique tokens #Unique identifiers 

 

 588,108 44,378,497 13,779,297 794,711 794,621 



 

Table 3.1: Statistics for code snippets in DeepComm dataset 

The 9,714 Java projects that were scraped from GitHub with the [11] 

form the basis of the dataset. 

 

Figure 3.2: A Sample from the used data 

 3.4.1 Preprocessing 

From these Java projects, we first extract the Java methods and their 

related Javadoc. Because they frequently describe the functionality of 

Java methods in accordance with Javadoc recommendations, the initial 

phrases of the Javadoc are used as the target comments. This refers to 

the person who also utilized the first sentence of a method’s Javadoc 

as a concise synopsis. The methods without Javadoc have been 

removed. Second, we remove some of the Method and Comment 

pairs gathered in the preceding stage. In this work, pairs with one-

word Javadoc descriptions are filtered out since they cannot 

adequately describe the Java method functionality. 



 

 

Figure 3.3: Preprocessing function 

Figure3.4 shows the distribution of just the comments that are less 

than 40 words in length, which will help you better understand how 

the data is organized. 

 

Figure 3.4: Distribution of comment lengths below 40 words in length 

 3.4.2 Building Vocabularies 

Java lang and NLTK each parse the source code and comments into 

tokens. After that, all tokens are made lowercase. The generic tokens 

NUM and STR are used in place of the numerals and strings during the 

training. Source code and AST sequences are limited to 200 and 500 

characters, respectively, in length. The shorter sequences are padded 

with a special symbol called PAD, and the longer sequences are divided 



 

into 500-token sequences. During training, we add the unique tokens 

START and EOS to the decoder sequences. START initiates the 

decoding process, and The EOS signifies its conclusion. The cap on 

comments is 30 characters. A unique token called UNK is used in place 

of the out-of- vocabulary tokens. 

 

Figure 3.5: Build vocabulairae function 

We then address the Out of Vocabulary problem (OOV) after analyzing 

the distribution. The OOV problem, as previously established, arises 

from an LSTM’s inability to forecast words it has never encountered 

before. This is due to the fact that variable names in code are made up 

and therefore it is irrelevant whether various words are concatenated 

 3.5 Abstract Syntax Tree 

Luckily, working with code does have some advantages. Compared to 

more traditional natural language tasks, code contains a clear 

semantic relationship between the different lines of the code. This 

relationship can be captured using Abstract Syntax Trees (AST), which 

is a tree based representation of the code, where each node is a 

statement and the connections are the relations between nodes. 

Figure 3.7 shows an example of an AST for a given function 3.5.1 



 

 3.5.1 SBT traversal 

After the AST generation, we propose a new approach to parse it using 

SBT. The goal of using SBT is to generate sequence of keywords, 

identifiers and modifiers. SBT uses brackets to present a subtree given 

a node. The procedure of SBT applied on the function 3.5.1 is listed as 

follows : 
1 
2 
3 
4 
5 
6 
7 

Listing 3.1: Java example 

– The tree structure is first represented from the root node using a 

pair of brackets, with the root node itself placed behind the right 

bracket. 

– After that, scan the root node’s subtrees and place all of its root 

nodes between brackets. 

– Recursively traverse each subtree until all nodes are traversed 

and get the final sequence 

Our Model processes each AST into a sequence following the steps 

above. For example, the AST sequence of the following Java method 

Listing 3.1 extracted from Github is shown in Figure 3.7. 

/** 
* Extracts request method name bound to request identifier 

*/ 
public String extractFor(Integer id){ 

LOG.debug("Extracting method with ID:{}", id); return requests.remove(id); 
} 



 

 

Figure 3.6: Function of the SBT 

The nodes outside of boxes are non-terminal nodes, and nodes in 

boxes signify terminal nodes. The source code’s structure information 

is specified via non-terminal nodes. Non-terminals can be of several 

types, including ExpressionStatement and ReturnStatement. The 

program text is encoded by the terminal nodes that the leaf nodes 

correspond to. A terminal node has a type as well as a value that can 

be strings, operators, variable names, etc. The terms Tnon and 

TtermVterm are used to denote non-terminal and terminal nodes, 

respectively. Types of non-terminal and terminal nodes are indicated, 

respectively, by Tnon and Tterm. TtermVterm stands for type-value 

pairs of terminal nodes that occur frequently . If TtermVterm is out-of-

vocabulary, we use its type Ttermto represent it. For example, if 

SimpleName-extractFor is out-of-vocabulary, the token will be 

replaced by SimpleName. 



 

Figure 3.7: an example of 

 3.6 Code2Seq architecture

Our model adopts Code2Seq translating source code to natural 

language. The Seq2Seq, as shown in Figure 3.8, consists a two

Long ShortTerm Memory (LSTM) to encode AST sequences, and 

another deep LSTM to dec

illustrated in the figure, the encoder receives sequences generated by 

traversing the AST of Java methods using the SBT during the training 

phase. Subsequently, the decoder is tasked with learning the string 

sequences that correspond to the comments associated with the 

methods. The encoding and decoding process are explained in the 

following subsections. 

 3.6.1 Encoding 

We’re attempting to solve a sequence

model. An encoder-decoder structure i

employed. A sequence must first be encoded before it can be 

decoded. 

The encoder is responsible for encoding every AST sequence of the 

Java method into a fixed

Figure 3.7: an example of the Java method 

Code2Seq architecture 

Our model adopts Code2Seq translating source code to natural 

language. The Seq2Seq, as shown in Figure 3.8, consists a two-layered 

Long ShortTerm Memory (LSTM) to encode AST sequences, and 

another deep LSTM to decode the target natural language. As 

illustrated in the figure, the encoder receives sequences generated by 

traversing the AST of Java methods using the SBT during the training 

phase. Subsequently, the decoder is tasked with learning the string 

at correspond to the comments associated with the 

methods. The encoding and decoding process are explained in the 

We’re attempting to solve a sequence-to-sequence problem with our 

decoder structure is an architecture that is 

employed. A sequence must first be encoded before it can be 

The encoder is responsible for encoding every AST sequence of the 

Java method into a fixed-size vector. At each time stamp t, it reads one 

 

Our model adopts Code2Seq translating source code to natural 

layered 

Long ShortTerm Memory (LSTM) to encode AST sequences, and 

ode the target natural language. As 

illustrated in the figure, the encoder receives sequences generated by 

traversing the AST of Java methods using the SBT during the training 

phase. Subsequently, the decoder is tasked with learning the string 

at correspond to the comments associated with the 

methods. The encoding and decoding process are explained in the 

sequence problem with our 

s an architecture that is 

employed. A sequence must first be encoded before it can be 

The encoder is responsible for encoding every AST sequence of the 

size vector. At each time stamp t, it reads one 



 

token of the AST sequence, then updates and records the current 

hidden state. ht=f(ht − 1,xt) and c=q(h1,...,hm) 

where c is a vector created from the sequence of the hidden states 

and ht is a hidden state at timestamp t. Our study uses LSTM as f and 

other nonlinear functions like f and q. The rule is that q(h1,...,hm)=hm. 

Attention mechanism defines individual ci for each target word yi as a 

weighted sum of all hidden states h1,..., hm rather than producing 

target words using the same context vector c (c=q(h1,...,hm)=hm).A 

graphical representation of this can be seen in ??. 

 3.6.2 Decoding 

The decoder aims to generate the target sequence y by sequentially 

predicting a word yi conditioned on the context vector c and the 

previously generated words y1,...,yi1 where y=y1,...,yn and for each 

conditional probability is modeled as 

p(yi|y1,...,yi1,x)=g(yi1,si,ci) 

where g is a LSTM that outputs the probability of yi, and si is the 

hidden state of the decoder LSTM for time stamp i. The probability is 

conditioned on a distinct context vector ci for each target word yi. And 

si is computed by 

si=f(si − 1,yi1,ci) 

and The context vector ci is computed as a weighted sum of hidden 

state hi in encoder. 



 

Figure 3.8: Graphic representation of Encoder and Decoder.

An LSTM is a network that uses a time

keeps track of what the network has seen in the past. The network can 

choose to add knowledge into the hidden state and choose to forget 

knowledge. Below is shown that 

future sequence is influenced by previous important features. Figure 

3.9 gives a graphical representation of the described LSTM, where 

small circles denote element

[19]. 

Figure 3.9: Example LSTM, operation groups are overlaid for clarity.

 

Figure 3.8: Graphic representation of Encoder and Decoder. 

LSTM is a network that uses a time-dependent hidden state (ct) that 

keeps track of what the network has seen in the past. The network can 

choose to add knowledge into the hidden state and choose to forget 

knowledge. Below is shown that ht−1 is an input. This assures that the 

future sequence is influenced by previous important features. Figure 

3.9 gives a graphical representation of the described LSTM, where 

small circles denote element-wise operations and big circles are layers 

 

STM, operation groups are overlaid for clarity. 

) that 

keeps track of what the network has seen in the past. The network can 

choose to add knowledge into the hidden state and choose to forget 

is assures that the 

future sequence is influenced by previous important features. Figure 

3.9 gives a graphical representation of the described LSTM, where 

wise operations and big circles are layers 

 



 

The value returned at time step t as the prediction is ht. In order to 

overcome problems when a sequence starts and stops, special 

characters are used. These are often denoted as < sos >and < eos >for 

start and end of sequence respectively.  



 

 

Figure 3.10: The Decoder part 

 3.7 Evaluation metrics 

We use Information Retrieval (IR) metrics and Machine Translation 

(MT) metrics to evaluate the proposed method. For IR metrics, we 

report the precision, recall, F1 of different approaches. For machine 

translation metrics, we use the BLEU to evaluate our approach. The 

definition of these metrics are introduced as follows. 



 

 3.7.1 Precision 

In statistics, precision is defined as the proportion of accurately 

predicted positive observations to all positively anticipated 

observations. In accordance with the suggested method, we calculate 

the precision According to (Denkowski and Lavie 2014). Both function 

words and words with substance are given varying weights. Typically, 

content words include details that help us understand the phrases. For 

grammar, function words are essential. In other words, content words 

provide us with the most crucial information, whereas function words 

connect those words.is computed as: Precision = TruePositive / 

(TruePositive + FalsePositive) 

 3.7.2 Recall 

Similar to precision, we calculate the weighted recall to evaluate approaches.is 

calculated as : 

Recall=Truepositive/(Truepositive+Falsenegative) 

 3.7.3 F1 

A summary measure that combines both precision and recall; it 

evaluates if an increase in precision (recall) outweighs a reduction in 

recall (precision). In many cases, High recall indicates the sacrifice of 

precision, and vice versa. is computed as : F1 = 2* Precision/ 

(Precision + Recall) 

– True Positive (TP): Correctly predicting a label. 

– True Negative (TN): Correctly predicting the other label. 

– False Positive (FP): Falsely Predicting a label. 

– False Negative (FN): Missing and incoming label. 

 



 

Figure 3.11: IR metrics function

 3.7.4 BLEU score 

The Bilingual evaluation understudy (BLEU

evaluation metric used to assess the comments produced by our 

models [17]. Using a corpus of potential translations, BLEU evaluates 

the accuracy of a translation (in our instance, from source code 

comments). It is frequently used to gauge how accurate neural 

machine translation (NMT)[20]. BLEU measures how close the output 

of the machine is to the one of a human expert. The closer they are, 

the higher the BLEU score will be [7]. The BLEU score ra

0 and 1, with 1 being perfect natural language. BLEU has shown a high 

correlation with human quality judgment [21] and is one of the most 

popular metrics to measure the quality of machine translated text.

Our final evaluation result is obtaine

scores for each of the analyzed snippets. The n

calculated by BLEU and used to generate a score using the following 

equation: 

As the reference corpus in our scenario has only one comment per 

code snippet, BP = 1. N is the maximum length of n

utilized in the comparison[17], which in our case is N=4; 

vector that adds to 1, pn 

Figure 3.12: Implementation of BLEU

Figure 3.11: IR metrics function 

 

e Bilingual evaluation understudy (BLEU-4) was the primary 

evaluation metric used to assess the comments produced by our 

models [17]. Using a corpus of potential translations, BLEU evaluates 

the accuracy of a translation (in our instance, from source code 

comments). It is frequently used to gauge how accurate neural 

machine translation (NMT)[20]. BLEU measures how close the output 

of the machine is to the one of a human expert. The closer they are, 

the higher the BLEU score will be [7]. The BLEU score ranges between 

0 and 1, with 1 being perfect natural language. BLEU has shown a high 

correlation with human quality judgment [21] and is one of the most 

popular metrics to measure the quality of machine translated text. 

Our final evaluation result is obtained as the average of the BLEU 

scores for each of the analyzed snippets. The n-gram similarity is 

calculated by BLEU and used to generate a score using the following 

! 

As the reference corpus in our scenario has only one comment per 

. N is the maximum length of n-grams being 

utilized in the comparison[17], which in our case is N=4; wn is a weight 

n is the modified n-gram precision 

Figure 3.12: Implementation of BLEU-4 calculation 
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We also measured precision, recall, and F1 score as used in [22] and 

[23] over all the sub-tokens of the target sequence, case-insensitive. 

 3.8 Conclusion 

Automatic comment generation for Java code can be very beneficial. 

Both for readability of old code, but also for better comment 

suggestions as a programmer aid. With the DeepCom as the baseline. 

In this chapter, we have presented an overview of the related work, 

introduced our proposition, and provided a detailed description of our 

approach. In the subsequent sections, we will present the results of 

our experiments and evaluate the effectiveness of our proposition. 

Chapter 4 

Implementation, Experiments 

and Results 

 4.1 Introduction 

So far, we introduced the process of generating comments from Java 

source code using an NMT-based technique. In this chapter, we 

present the technical details for implementing this process by training 

our proposed approach(Code2Seq) and also by using Open NMT, an 

open-source and extensible NMT architecture, on a subset of the 

dataset the same which used in deepcom. First, we briefly present the 

tools, languages, and programming environment used in this work. 

Second, we describe the proposed approach and the Open NMT 

architecture, training and validation phases. Finally, We conclude the 

chapter by presenting a sample of obtained results and a discussion. 



 

 4.2 Environment of Development

 4.2.1 Python 

Figure 4.1: Overleaf logo.

Python is a high-level programming language created by Guido van 

Rossum and released in 1991[24].Python has a portable 

dynamic, extensible, free, very simple syntax, code shorter than C or 

Java, multi-thread, object

Python code is simple, and it is brief without being obscure. Python is 

an effective expressive progra

 4.2.2 Google Colaboratory

Figure 4.2: Overleaf logo.

Google Colaboratory[27], often abbreviated as "Colab" is a cloud 

service, offered by Google (free), based on Jupyter Notebook and 

intended for training and research in machine lear

allows to train machine learning models directly into the cloud. So 

without having to install anything on our computer except a 

browser.This environment allows us to write and execute Python code 

in your browser, with no configuration r

easy sharing. 
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Google Colaboratory[27], often abbreviated as "Colab" is a cloud 

service, offered by Google (free), based on Jupyter Notebook and 

intended for training and research in machine learning. This platform 
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without having to install anything on our computer except a 

browser.This environment allows us to write and execute Python code 
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 4.2.3 Visual Studio Code

Figure 4.3: Visual studio logo.

Visual Studio Code is a source code editor that can be used with a 

variety of programming languages, including Java, JavaScript, Go, 

Node.js, and C++. It is based on the Electron Framework, which is used 

to develop Web applications that run on the Blink presentation engine. 

[28] 

 4.3 Tools of Devlopelment

 4.3.1 Tensorflow 

Figure 4.4: Tensorflow logo.

TensorFlow is an open-

digital computing. Its flexible architecture enables easy deployment of 

computing across a variety of platforms (CPU, GPU, TPU), and from 

desktop computers to server clusters to mobile and peripheral devices. 

Originally developed by resear

Brain team within Google’s AI organization, it has strong support for 

machine learning and deep learning, and flexible digital computation is 

used in many other scientific fields.[29]

 4.3.2 Numpy 
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source software library for high-performance 

digital computing. Its flexible architecture enables easy deployment of 

computing across a variety of platforms (CPU, GPU, TPU), and from 

desktop computers to server clusters to mobile and peripheral devices. 

Originally developed by researchers and engineers from the Google 

Brain team within Google’s AI organization, it has strong support for 

machine learning and deep learning, and flexible digital computation is 

used in many other scientific fields.[29] 
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Figure 4.5: Tensorflow logo. 

NumPy is a library for the Python programming language, adding 

support for large multidimensional matrices and matrices, as well as a 

large collection of high-level mathematical functions to run on these 

matrices.NumPy’s predecessor, Numeric, was originally created by Jim 

Hugunin with contributions from several other developers. 

In 2005, Travis Oliphant created NumPs by incorporating Numarray’s 

capabilities into Numerics, with numerous modifications.[24] 

 4.4 Experimental methodology 

This section demonstrates how the evaluation of the proposed method 

is conducted. We provide two implementations of this method; The 

first using Code2Seq architecture and the second using Open NMT 

framework. The two experiments use the deepcom dataset that we 

described in the previous chapter. In the first experiment, (Code2Seq 

based model) we used Code2Seq code to train a new model with the 

aforementioned dataset with the inclusion of the ASTs based 

sequences. This task is more challenging when generating comments 

than when predicting function names. This difficulty arises from the 

fact that comments are usually longer than function names. Also, we 

are generating natural language instead of a sequence of descriptive 

words. In the second experiment, we use a research-friendly 

framework called Open NMT. This framework enables us to test novel 

approaches effortlessly 

The results of both methods are then compared with the results of the 

DeepCom[11] as the baseline. 

(Method1 OpenNMT), it is created to be research-friendly so that 

researchers may test out novel approaches to tasks like 

summarization, language modeling, and translation. While for the 

second one For each of these 2 experiments, we calculated the BLEU 

score as a measure of the quality of the obtained results. 

 4.5 Experiments 

our experiment (Method2), we traversed the Java AST extractor used 

in Code2Seq. Instead of using the name of the examined function of 

the Java snippet. Instead of using each variable with a generic name 

and its type, we also added the actual name of the variable [30]. The 

reason behind this choice was that the name of each variable may play 

an important role in the functionality of the examined snippet. Thus, 



 

by knowing its name we will be able to generate more accurate 

comments. 

4.6 First Experiment: Code2Seq based-model 

experimentation 

The adapted Code2Seq model is illustrated in Figure 3.1. We address 

the code generator task as a machine translation problem that 

translates program code to a natural language sequences. To embed 

the structural information, Code2Seq uses AST sequences as its input. 

The AST sequences are generated by applying SBT on the AST which 

can not only express the tree structure but also keep no ambiguity. 

The proposed Code2Seq model mainly contains three components: An 

AST builder with the SBT traversal component, an attention-based 

Seq2Seq model builder, and a trained model (generated by the two 

previous components) to generate comment given a code snippets. 



 

 

Figure 4.6: The Code2seq function from the proposed model 

 4.6.1 Description 

Our model translates the source code to a high-level description at the 

method level. our method combines the source code and the AST 

sequences to generate the code comments. It learns both the lexical 

and syntactical information to generate the comments. Our framework 

consists of three stages: data processing, model training, and testing. 

 



 

Figure 4.7: 

The source code we obtained from GitHub is parsed and preprocessed 

into a parallel corpus of Java methods and their corresponding 

comments. In order to learn the structural information, the Java 

methods are converted into AST sequences by a special traversal 

approach before input into the model. With the parallel corpus of the 

source code, traversed AST sequences, and comments, we build and 

train generative neural models based on the idea of NMT. There are 

three challenges during training process: 

– How to represent ASTs to preserve the structural information 

and keep the representation unambiguous while traversing the 

ASTs? 

– How to learn both the lexical information and the syntactic 

information? 

– How to reduce the out-of-vocabulary tokens in the source code? 

 4.6.2 Training 

Code2Seq is trained on the Tensorflow framework, During training, the 

model is validated every 2,000 minibatches on the validation set by 

BLEU score which is a commonly used evaluation metric for NMT. The 

maximum number of epochs is 50. The validation set is used to 

estimate how well the model has been trained and to estimate model 

properties. Finally, the accuracy of the model on test set gives a 

realistic estimate of the performance of the model on unseen data. 

However, the validation process takes extra time. Taking time and 

model capacity into consideration, we validate every 2,000 

minibatches and select the model which performs best on the 

validation dataset as the best model. The best model is then evaluated 

on the test set by computing average BLEU scores. For 

implementation, we build our model using Tensorflow which is an 

open-source deep learning framework. The time of training lasts about 

80 hours for each model. The hyperparameters are shown as follows 

figure 4.8: 

– We use two-layered LSTMs with 256 dimensions of the hidden 

states and 128-dimensional word embeddings. 

– The learning rate was 0.01 and decayed by 0.05 every epoch. 

– We applied dropout of 0.3 and a recurrent dropout of 0.5 on the 

LSTM encoding the AST 



 

 

Figure 4.8: The Configuration file 

 4.6.3 Validation and results 

We evaluate the difference between comments generated 

automatically and those posted by humans. The average BLEU-4 scores 

of various techniques for producing comments for Java methods are 

shown in Table 4.1. 

Approaches BLEU-4 score 

DeepCom 38.17 

Our Method 38.72 

Table 4.1: Evaluation results on Java Methods 

Approaches Precision Recall F1 

our Method 46.94 27.44 34.63 

Table 4.2: Performance on Java code 

As the structural information is included, the BLEU-4 score increases 

even further. The SBT-based model is much better and is able to 

understand the semantic and syntactic information contained inside 

Java methods Our Method confirms the effectiveness of solving the 



 

problem of Out of Vocabulary in the ASTs. The results are depicted in 

Table 4.4. The results show that the proposed method is capable of 

understanding the syntactic and semantic meaning of java source 

codes and hence generates meaningful comments automatically. 

left=2cm,right=0.25cm,bottom=0.25cm,top=0.25cm 

 

 4.6.4 Discussion 

As shown in previous sections, our model can achieve promising 

performance in generating comments for Java methods. However, 

there are some other observations worth further investigation. In this 

section, we will report some observations, including: 

1. When The proposed generates comments with high BLEU score? 

2. Why there are unknown words in the generated comments? 

To analyze the reason why generates comments with high BLEU 

scores, and unknown words, The detailed steps are as below: • We 

first split the generated comments into two distinct sets, namely, the 

high BLEU score comments(more than 70%), and comments with UNK. 

In search at the Comments with a High BLEU Score we get that There 

are many comments generated by the proposed approach with high 

BLEU score and we are interested in which kinds of comments with 

high BLEU score.For example, as Case 5 in Table 4.3 shows, the 

method “sort” aims to sort an array using quick sort, our proposed 

model captures the correct functionality and generates the correct 

comment. However, deepcom ignores much important information 

and just generates one keyword “sort”. There are many Java source 

code-generated comments the same as the references. Most of these 

Java methods have clear functionality and the code conventions are 

universal. the method proposed can generate exactly correct 

comments from the source code(Case 1 in Table 4.3), which validate 

the capability of our approach to encode Java methods and decode 

comments. The comment generated by Deepcom is related to the 

source code, but it losses a lot of functionalities of Java methods. 

Investigating the Reasons for Unknown Words in Generated 

Comments that ,there are unknown words in the generated comments 

and these words have no meaning for describing the Java methods. 

Similar to the evaluation of the above discussion, we also randomly 

select 100 generated comments with unknown words.we analyze the 

accurate words that are replaced by unknown token UNK shown in 

table 

4.4. 



 

As Case 3 in Table 4.3 shows, the proposed approach fails to predict 

the token “SeparaterPainter” which is the method name defined by 

developers. Our model is not good at learning the method or 

identifiers names occurred in comments cause of Developers define 

various names while programming and most of these tokens appearing 

at most once in the comments. However, 

Samples ( 100 generated 

comments) 

 

Classname 12 

Methodename 30 

Variablename 10 

Others 50 

Table 4.4: The accurate words of the UNK words in a Sample 

we can not determine tokens of comments are identifiers from source 

code or ordinary natural language words. It is hard for the proposed 

approach to learn these user-defined tokens in comments that have 

been replaced by the unknown token UNK during data processing. 

 4.7 Second Experiment: Open NMT-based model 

We believe that building the comment generator for the Java language 

from scratch is a tedious task. Thus, we adapted the open NMT 

architecture, which is an open source platform for training translators 

between spoken languages, to build a model for generating comment 

from source code. The training process is conducted on a large subset 

of Java codes and their corresponding naturel languge comments . Full 

details are provided in the following subsections. 

 4.7.1 Open-NMT 

OpenNMT [20] is a complete library for training and deploying neural 

machine translation models. The system is the successor to seq2seq-

attn, developed at Harvard, and has been completely rewritten for 

ease of efficiency, readability, and generalizability. It includes vanilla 

NMT models along with support for attention, gating, stacking, input 

feeding, regularization, beam search and all other options necessary 

for state-of-the-art performance. The core system of OpenNMT is 

implemented using the Lua/Torch mathematical framework, allowing 

easy extension through Torch’s internal neural network components. 

Additionally, Adam Lerer from Facebook Research has extended the 



 

library to support the Python/PyTorch framework while maintaining 

the same API [20]. 

The pretraining of OpenNMT on Our dataset the same of deepcomm 

goes through several steps that starts by the configuration file after 

the partition and the preparation of the source and target files for 

both training and validation. These steps are detailed bellow. 

 4.7.2 Open NMT configuration 

For training the model, Open NMT requires a YAML configuration file, 

known as config in OpenNMT. This file defines the parameters for the 

training step. The location of the target and source data for both the 

validation and training. In addition, the file holds the following 

parameters. 

 

Figure 4.9: Configuration file for OpenNMT method 

– overwrites : if this option is set in TRUE, you can write 

overwritten during the training process. 

– data : in this part, we define the paths to the training and 

validation data files. 

– save data : it means setting the base filename and location where 

the vocabulary files and preprocessed data will be saved. 

– save model :sets the base filename and location where the 

trained model checkpoints will be saved. 



 

– save checkpoint steps : save checkpoint steps: it is a saved 

snapshot of the model at a particular moment. For example, as 

shown in Figure 4.9, we set "save checkpoint steps" to 500, which 

means that a checkpoint will be saved for every 500 training 

steps. 

– train steps and valid steps Indicates the total number of training 

and validation steps that will be performed. 

 4.7.3 Training data and code 

In this project, we utilized the same dataset of deepcomm, which 

contains Java code and there corresponding natural language 

comments, to train a model for generating comments. To effectively 

use this dataset with OpenNMT, we had to split it into six separate 

files: 

"train_source.txt,""valsource.txt,""testsource.txt,""train_target.txt,""v

altarget.txt," and "testtarget.txt." The src files hold the source Java 

code for training, validation, and testing, respectively, and the target 

files will hold the target test cases corresponding to the source Java 

code. This split is a crucial step in preparing the data for training and 

evaluation using OpenNMT. The table 4.7.3 represents the number of 

examples in the dataset for different sets: training, validation, and 

test. Each set contains a certain number of source code and target-

code pairs. 

Set Source Target 

Training 119013 119013 

Validation 20000 20000 

Test 20000 20000 

The data has been uploaded to the "content" directory in Google 

Colaboratory as per the following figure 4.10 

 

Figure 4.10: Dataset path. 



 

First, we need to install OpenNMT-py. In order to do that, we use the 

following command figure4.11 in Google Colab: 

 

Figure 4.11: The installation command . 

Next, we execute the command shown in Figure 4.12 to build the 

vocabulary using the provided configuration file. 

 

Figure 4.12: Command for building the Vocabulary. 

Samples from the vocabulary files ( source files which is the vocabulary 

of java source code and target files which is the vocabulary of 

comment generation ) are shown in the figure4.13 below : 

 



 

Figure 4.13: Example from source and target vocabulary files. 

The vocabulary files contain a list of tokens with their corresponding 

numerical representations. Once the vocabulary file is prepared, we 

move to the training step by executing the following command in 

figure4.14. 

 

Figure 4.14: Training command 

 4.7.4 Results 

After completing the training step in OpenNMT-py, we can move 

forward to the translation phase. During this phase, we will translate 

the contents of the source file Data/test-source.txt using the trained 

model. The translated output will be saved to the file named 

Data/pred_1000.txt. To perform the translation, we execute the 

following command in figure 4.15 

 

Figure 4.15: The Obtained results 

In this command, we specify the path to the trained model using the-

model option, the source file is provided with the -src option 
1 

2 

!onmt_translate -model data/run/model_step_10000.pt -src data/test-source.txt 
-output data/pred_1000.txt -gpu 0 -verbose 



 

Listing 4.1: Validation Command 

 4.8 Conclusion 

Our Work focused on replicating the code2seq model with added 

capabilities such as predicting natural language and traversed ASTs, 

From our results we see that both our methods do perform as well as 

the baseline in terms of the BLEU-4 scores. In this chapter, we describe 

our proposed model and show the obtained results also we present 

the OpenNMT approach and how does it work and show the results 

obtained by OpenNMT.  



 

General conclusion 

In this study, we have explored the concept of producing 

autocomments and investigated its potential applications and 

limitations. Through our investigation, we have observed that 

autocomments generation can be a powerful tool in multiple domains, 

including customer assistance, code documentation, social media 

interactions, and more. 

To achieve this purpose, we first offered a complete explanation of 

Neural Machine Translation in Chapter 1. We looked into the 

underlying concepts and procedures of NMT, including code-to-

sequence architectures, attention mechanisms, and training 

methodologies. This chapter established an excellent comprehension 

of NMT, developing the framework for this study. 

In Chapter 2, we focused on source code and the documentation and 

analysis source code methodologies. We described alternative 

documentation approaches and proposed the concept of Abstract 

Syntax Tree (AST) and Structure Based Traversel(SBT). Understanding 

the analysis source code and AST was essential for comprehending the 

future chapters and their contributions. 

Chapter 3 presented our proposed models and the process of 

generating comments from source code. We discussed the novel 

approaches and methodologies employed in this research. Additionally, 

we reviewed related work, highlighting existing studies and approaches 

relevant to autocomments generation from source code. This chapter 

showcased the advancements and contributions made in the field. 

In Chapter 4, we provided implementation details, experimental 

approach, and the validation methodology applied in this project. We 

addressed the frameworks, tools, and libraries utilized to design and 

execute our proposed models. In addition, we showed the results 

derived from the suggested technique and OpenNMT training 

framework with the Deepcom dataset. Results are demonstrating the 

efficacy and performance of the our approach . 

Although our study exhibited promising results in producing 

autocomment from Java source code, further refining of the NMT 

models can boost their efficiency. Future work can focus on 

researching advanced NMT architectures, including domain-specific 

information, and optimizing training procedures to increase the quality 

and accuracy of the generated auto comments. However, the 

proposed approach was much better then deepcom. With the first 

expirement as our best method, an important takeaway is that ASTs 



 

traversed generally hold the problem of Out of Vocabulary affecting 

the training process and a suitable AST generation technique. 

Nevertheless, looking at the comments generated by our best 

performing model , we see that our proposed approach is capable of 

understanding the syntactic and semantic meaning of java codes to 

generate comments automatically.ur model outperforms the state-of-

the-art approaches and achieves better results on the automatic 

measure metric named BLEU. 

In conclusion, this work seeks to contribute to the field of automatic 

comment generation by exploring the application of NMT techniques 

to generate comments from Java code snippets. The findings and 

insights gained from this research can potentially improve the 

efficiency and quality of software development processes. 
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