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Abstract 

 
The agricultural sector is one of the major consumers of Earth’s resources. The rapid growth in demand 

for food, driven by the expanding population in the MENA area, poses significant challenges. 

However, climate change and poor soil fertility are factors that contribute to reduced crop yields. To 

address this issue, our plan is to integrate the Internet of Things (IoT) and machine learning (ML) algorithms 

to optimize fertilization management. The proposed system aims to ensure efficient fertilization planning by 

assessing soil nutrients and monitoring weather conditions in arid areas, thereby increasing productivity. 

The intelligent system will schedule fertilization based on the specific needs of the plants while considering 

weather conditions and maintaining desired soil moisture levels. 

This innovative approach holds great potential for enhancing agricultural outcomes. 

Keywords : Internet of Things (IoT), Machine learning, Fertilization management, Agriculture 4.0. 
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Résumé 

 
Le secteur agricole est l’un des principaux consommateurs des ressources de la Terre. La croissance 

rapide  de  la  demande  alimentaire,  tirée  par  l’expansion  démographique  dans  la  région  MENA,  pose  des 

défis  importants.  Cependant,  le  changement  climatique  et  la  faible  fertilité  des  sols  sont  des  facteurs  qui 

contribuent à la baisse des rendements des cultures. Pour résoudre ce problème, notre plan est d’intégrer les 

algorithmes de l’Internet des objets (IoT) et de l’apprentissage automatique (ML) pour optimiser la gestion 

de la fertilisation. 

Le  système  proposé  vise  ̀a  assurer  une  planification  efficace  de  la  fertilisation  en  ́evaluant  les  ́eléments 

nutritifs  du  sol  et  en  surveillant  les  conditions  météorologiques  dans  les  zones  arides,  augmentant  ainsi  la 

productivité. 

Le  système  intelligent  programmera  la  fertilisation  en  fonction  des  besoins  spécifiques  des  plantes  tout 

en tenant compte des conditions météorologiques et en maintenant les niveaux d’humidité du sol souhaités. 

Cette approche innovante recèle un grand potentiel pour améliorer les résultats agricoles. 

Mots  clés  :Internet  des  Objets  (IoT),l’apprentissage  automatique,Gestion  de  la  fertilisation,  Agriculture 

4.0. 
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General Introduction 

 
Context 

Concerns for food security have arisen due to the growing human population and diminishing natural 

resources. In response, efforts have been made to enhance agricultural productivity and ensure sustainabi- 

lity. The concept of smart farming utilizes the Internet of Things (IoT) and Machine Learning to enable 

data-driven agriculture, replacing traditional practices with automated management systems and advanced 

technologies. 

By integrating IoT and Information and Communication Technology (ICT), smart agriculture aims to 

optimize management models and production technologies, ultimately leading to reduced consumption of 

agricultural resources and increased production, fostering long-term sustainability. 

Problematic and objectives 

Smart and precision agriculture play a crucial role in achieving sustainable development in agriculture by 

optimizing resource utilization and increasing productivity. In this context, efficient fertilizer application is 

vital for supporting sustainable practices, as it conserves resources and prevents soil degradation. 

Inadequate nutrient management poses concerns such as low productivity and soil deterioration. However, 

traditional soil chemical analysis methods for assessing fertility levels are expensive, time-consuming, and 

complex. To address this, there is a need for user-friendly solutions that enable farmers to assess fertility 

levels easily in the context of smart agriculture. 

Fortunately, advancements in sensing and machine learning technologies offer promising opportunities to 

overcome the limitations of existing soil fertility assessment methods. 

Outline 

Our work is structured as follows : 

In the 1st chapter, we have presented the state of the art of Smart Farming. Starting by introducing 

the traditional farming concept and defining the using techniques in smart farming, such as IoT, Machine 

learning, and Deep learning. We have also discussed related work concerning this concept. 

In the 2nd chapter, we have defined the fertilization practice in agriculture as well as discussed some 

related works. 

While the 3rd chapter detailed the proposed method, and the architecture of the system and explained 

our contribution. We have presented our proposal which is an automatic fertilization system. 
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Implementation and results are discussed in the 4th chapter. We present the development tools and 

frameworks, with screenshots of the system (the web application). Then we discuss and analyze the obtained 

results. 

Lastly, Chapter 5 concludes the work and mentioned some future work. 
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Chapitre I 

 
Technics used in smart agriculture 



14  

 
 
 
 
 
 

Technics used in smart agriculture 

 
I.1 Introduction 

Agriculture has been a mainstay of human life for thousands of years. However, agricultural production 

methods have changed considerably over time. Traditional farming practices have long been manual, using 

simple tools to plow fields and cultivate crops. 

With the advent of technology, agricultural production methods have evolved, including the use of ma- 

chinery to plant and harvest crops used to monitor agricultural areas and crops, furthermore to control the 

quantities of water as well as fertilizers needed in addition to identify crops that are in line with the quality 

of the soil. 

Modern agriculture is a recent development that has been driven by the need to feed a growing world 

population while conserving natural resources and reducing environmental impact on the use of the innovative 

technologies such as artificial intelligence, the Internet of things, data collection and analysis, and the use of 

images taken by drones or satellites. 

 
I.2 Agriculture 

 
I.2.1 Definition 

Agriculture [30] comprises a range of human endeavors centered around cultivating land, rearing animals, 

and generating essential resources to fulfill human requirements for sustenance, textiles, energy, medicine, 

and various other beneficial goods. It encompasses the management of soil, water, and ecosystems, along with 

the implementation of practices that ensure their sustainable use. Additionally, agriculture encompasses the 

establishment of efficient marketing and distribution systems to facilitate the trade of agricultural products. 
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FIGURE I.1 – Traditional Farming [30] 

 

I.2.2 The purposes of agriculture 

According to [23] and [27], The purpose of agriculture may vary according to the needs and priorities of 

different communities and regions of the world. Some of the common goals of agriculture include : 

- Providing nutritious and affordable food to meet the growing needs of the global population. 

- Supporting the economic development of rural communities. 

- Protecting the environment by practicing sustainable agriculture and limiting negative impacts on 

ecosystems. 

- Reduce poverty by increasing farmers’ incomes and creating jobs in rural areas. 

- Provide sufficient, nutritious, quality food for the world’s growing population. 

- Ensure food security for all, reducing poverty and improving access to food. 

- Protect natural resources such as water, soil, and biodiversity through sustainable agriculture that does 

not compromise future generations. 

- Promote resilience and adaptation of food systems to climate change, disease and economic disruption. 

- Contribute to rural economic growth and poverty reduction by providing stable employment and income. 

It can vary according to the needs and priorities of each society. According to the FAO [FAO 2021] (Food 

and Agriculture Organization of the United Nations), the main objectives of agriculture are : 

agriculture must produce enough food to meet the needs of the population while ensuring that the food 

is safe and nutritious. 

Agriculture can provide livelihoods and employment in rural areas, thereby helping to reduce poverty. 

Agriculture can help improve infrastructure and services in rural areas, including providing health services, 

education, and access to clean water. 

agriculture must adopt sustainable practices to minimize negative impacts on soil, water,and biodiversity. 
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Agriculture can help stimulate economic growth by providing raw materials for industries, creating jobs, 

and stimulating rural development. 

 
I.2.3 Types of Agriculture 

Here are some common types of agriculture that can be found in current publications : 

Conventional agriculture : agriculture that uses traditional farming practices and chemical inputs to 

increase yields. [37] 

Organic agriculture : agriculture that focuses on the use of sustainable and environmentally friendly 

farming practices to maximize yields. [37] 

Precision agriculture :  agriculture that uses technology to optimize farming practices, including soil 

management, water management, crop management, and input management. [44] 

Urban agriculture : agriculture that takes place in urban areas to meet the growing demand for fresh, 

local food. [25] 

Regenerative agriculture : agriculture that focuses on soil restoration and regeneration of natural 

ecosystems while increasing yields. [54] 

Biodynamic agriculture : agriculture that focuses on the use of natural preparations and planetary 

calendars to regenerate soils and plants. [54] 

Agroforestry : agriculture that integrates trees into crops to improve soil quality, biodiversity and 

productivity. [48] 

Conservation agriculture : agriculture that focuses on protecting soils and natural resources by 

reducing soil disturbance and using sustainable farming practices. 

Subsistence agriculture : agriculture that provides basic food for local communities and families, 

often practiced in developing countries. [2] 

Mountain agriculture : agriculture practiced in high-altitude areas that faces challenges such as poor 

soils and extreme weather conditions. [4] 

 
I.3 Smart Agriculture 

 
I.3.1 Definition 

Smart agriculture is a holistic farming approach that leverages digital technologies to maximize crop 

yields while minimizing harm to the environment. It integrates the expertise and wisdom of farmers with 

advanced tools such as geographic information systems, climate modeling, remote sensing, and sensors to 

deliver precise data on weather conditions, soil quality, and crop health. The primary objective is to enhance 

the adaptability of farms to climate change and mitigate risks for farmers by providing real-time information 

to support well-informed decision-making. [24] 
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FIGURE I.2 – A Prototype of a Smart Farming [24] 

 
 

I.4 Smart agriculture techniques 

 
I.4.1 Internet of Things 

I.4.1.1 Definition 

 
The Internet of Things (IOT) is a network of connections and communications between computing devices, 

physical things, mechanical and digital tools, and people that allows data to be transmitted across a commu- 

nication network without requiring human-to-human or human-to-computer contact. An IOT platform may 

be applied in a variety of domain sectors, such as healthcare, transportation, agriculture, energy production 

and distribution, among others, that require objects to connect with each other through the Internet in order 

to carry out business projects intelligently and without human involvement. [5] 

 
I.4.1.2 Essentials of IoT 

 
The Internet of Things (IoT) refers to a network comprising interconnected devices capable of gathering 

and sharing data about their operations and surrounding environment. Various devices equipped with two- 

way data links, such as sensors, thermostats, cars, biometric devices, and luminaires, can be part of the IoT 

ecosystem. [8] 

The IoT system comprises three fundamental levels : the device layer, network layer, and platform layer. 

The device layer consists of the interconnected ”things” involved in the IoT. The network layer encompasses 

the necessary infrastructure for connecting devices to one another and to the platform layer. An IoT system 

comprises four essential components, as illustrated in Figure I.3. 
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FIGURE I.3 – Four Basic Components of IOT [8] 

 
Sensors/Devices : Collecting real-time data from the environment requires the use of sensors and 

devices. This data can come in various forms and complexities, ranging from basic temperature readings to 

intricate video streams. A single device may be equipped with multiple sensors that serve a broader purpose 

beyond simple sensing. Take, for instance, a smartphone, which includes diverse sensors like GPS and a 

camera. Despite having these capabilities, the smartphone itself is unable to perceive these features. 

Data Transmission : The data collected from sensors is transmitted to a cloud infrastructure for 

processing and storage. To establish the connection between the sensors and the cloud, various communication 

methods can be employed. These methods include mobile or satellite networks, Bluetooth, Wi-Fi, WAN, and 

several others. 

Data Processing : Once the data is captured and transmitted to the cloud, the software comes into 

play to process the information. This processing may involve simple tasks like monitoring temperature or 

readings from devices such as air conditioners or heaters. However, there are more challenging tasks that the 

software can handle, such as object recognition using computer vision on video streams. 

User Interface : The end-user needs to have access to the information, which can be achieved through 

methods like sending email or text notifications or setting up alerts on their mobile devices. In some cases, 

an interface that actively monitors the user’s IoT devices may be necessary. For instance, if the user has a 

camera installed in their home, they would like to access video recordings and live streams through a web 

server. [8] 

 
I.4.1.3 Internet of Things Characteristics 

 
The following are the IoT’s basic characteristics [33] : 

Interconnectivity : With the IOT, anything may be connected to the global infrastructure of information 

and communication. 

Things-related services : Under the limitations of things, such as privacy protection and semantic 
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coherence between physical things and their associated virtual things, the IOT is capable of offering things- 

related services. Both the technology in the physical world and the information world will alter in order to 

deliver thing-related services within the limitations of things. 

Heterogeneity : The IOT devices are heterogeneous since they are built on many hardware platforms 

and networks. Using multiple networks, they may communicate with other gadgets or service platforms. 

Dynamic changes : Dynamically changing states of gadgets include sleeping and waking up, being 

connected or disconnected, and their context, which includes location and speed. Also, the number of devices 

may fluctuate. 

Enormous scale : There will be many more gadgets than there are currently linked to the Internet that 

will need to be monitored and coordinated with one another. 

Safety : We must remember safety even while we profit from the IOT. We must design for safety since 

we are both the LOT’s producers and users. This covers the security of our private information as well as  

the security of our physical safety. In order to secure endpoints, networks, and the data passing across them 

all, a scalable security paradigm must be developed. 

Connectivity : Network compatibility and accessibility are made possible via connectivity. Accessibility 

involves joining a network, whereas compatibility gives everyone the same capacity to use and create data. 

 
I.4.1.4 Internet of Things Architecture 

 
Five layers make up the IOT’s core architecture. The first layer is called The Perception layer or the ‘Device 

Layer’ It consists of tangible items and sensing technology. This layer primarily deals with the identification 

and gathering of information about specific objects via sensing devices. 

The information gathered is subsequently given to the Network layer. The second layer is the Network 

layer whose duty is to safely send data from sensor devices to the Middleware layer. The third layer is the 

Middleware Layer This includes IOT devices that implement various types of services. Only other devices 

that use the same service type as the connected device can connect to it and communicate with it. This layer 

has a connection to the database and is in charge of managing the services. 

It obtains the knowledge from the Network layer adds it to the database, etc. It processes data, does 

ubiquitous computation, and then automatically decides to depend on the outcomes. The fourth layer is the 

Application Layer which manages the program globally depending on the data processed by the object in 

the Middleware layer. 

Finally, the fifth layer is the Business Layer which is in charge of managing the whole IoT system, including 

the apps and services. It bases its business models on the information obtained from the Application layer. 

This layer aids in deciding on future courses of action and corporate strategy. IoT five-layered architecture 

is shown in Figure I.4 [33]. 
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FIGURE I.4 – IOT Five-Layers Architecture [33] 

 

I.4.1.5 Internet of Smart Agriculture 

 
Greenhouses : Manage microclimates to increase the quantity and quality of fruits and vegetables 

produced there. 

Compost : To avoid fungus and other microbial pollutants, humidity and temperature levels in alfalfa, 

hay, straw, etc. are controlled. 

Animal farming and tracking : Locating and identifying animals in large stables or on open pastures, 

research on agricultural ventilation and air quality, as well as dangerous gas detection from feces. 

Offspring Care : Monitoring the offspring’s growth circumstances in animal farms to guarantee its 

survival and well-being. 

field Monitoring : By improving monitoring, acquiring correct continuing data, and managing the 

agricultural fields, including improved management of fertilizer, energy, and watering, spoilage and crop 

waste may be reduced [33]. 

 
I.4.2 Artificial Intelligence 

I.4.2.1 Definition 

 
AI encompasses a range of methods used to develop intelligent machines capable of tackling intricate 

problems and executing tasks typically associated with human intelligence. Various categories of AI systems 

exist, such as machine learning systems, artificial neural networks, expert systems, autonomous robots, and 

multi-agent systems. The overarching objective of AI is to create systems that possess not only problem- 

solving capabilities but also the capacity to learn and adapt in response to their surroundings [58]. 
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FIGURE I.5 – Connection of AI, ML, and DL [49] 

 

I.4.2.2 Applications of AI in Agriculture 

 
Artificial intelligence has a wide range of uses and is quite versatile in the agricultural sector. A great deal 

of information on temperature, precipitation, solar radiation, and wind speed is provided by agricultural fields, 

which may be evaluated to our advantage when it comes to harvesting from them. The nicest thing about 

applying artificial intelligence to agriculture is that it won’t replace farmers’ work ; instead, it will enable 

them to enhance the way they collect crops in the fields. Artificial intelligence finds extensive applications in 

the field of agriculture, some notable applications include [50] : 

Artificial Intelligence Agriculture Bots : AI-powered agricultural bots have the capability to support 

farmers in discovering more efficient harvesting techniques for various types of agricultural fields, while also 

aiding in weed control. These bots can significantly enhance agricultural operations by enabling faster and 

higher-volume crop harvesting compared to human laborers. Consequently, farmers can increase their crop 

yield within shorter timeframes. Additionally, by integrating computer vision technology, these bots can 

identify crop diseases and apply pesticides at the appropriate times, contributing to improved crop health 

and protection. 

Monitoring crop and soil health : Artificial Intelligence can be effectively harnessed to monitor and 

detect defects and nutrient deficiencies in the soil. By leveraging computer vision’s image recognition capabi- 

lities, sophisticated systems can be created to identify crop defects. Furthermore, deep learning applications 

can analyze flora patterns in agriculture, enabling a comprehensive understanding of various crop aspects, 

such as defects, plant pests, and diseases. The implementation of these AI-enabled applications facilitates a 

more precise assessment of crop health and aids in the identification of potential issues affecting plant growth 

and productivity. 

Agricultural Expert System : Expert systems are highly beneficial for farmers as they offer valuable 

guidance and expertise. By design, expert systems are equipped with a repository of expert-level knowledge 
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obtained from diverse domain specialists. This knowledge is derived from various real-world situations and 

best practices employed by experts in the field. As a result, expert systems serve as a valuable resource, 

providing farmers with accurate and insightful recommendations tailored to specific contexts and scenarios. 

Forecasted Weather data : By leveraging advanced Artificial Intelligence techniques, farmers can stay 

updated on sudden weather changes, enabling them to safeguard their crops from potential hazards. The 

system’s analysis provides valuable insights that assist farmers in taking necessary precautions (need to 

think from here). 

AI with Drones : Farmers can enhance agricultural yields and reduce costs with the assistance of 

drone technology. Prior to deployment, users can plan the drone’s route, and once in the field, the airborne 

technology can be activated to perform various tasks. This includes capturing live crop imagery data, applying 

pesticides for disease diagnosis on specific crops, and more. Drones can be programmed to perform specific 

agricultural jobs, such as regular field inspections to identify damaged or infected crops. Equipped with image 

technologies, the drone’s cameras aid in overall field management by providing insights into the crop’s water, 

fertilizer, herbicide needs, and more. Utilizing machine learning, the collected data on crop and soil conditions 

can be analyzed to optimize agricultural yield through a comprehensive understanding of crop requirements. 

Indoor Harvesting with AI : In recent times, indoor harvesting has gained popularity as a method to 

cultivate various crops in a limited space by providing artificial lighting tailored to their needs. The integration 

of Artificial Intelligence (AI) simplifies and streamlines the indoor harvesting process by analyzing all aspects 

within a controlled environment and automating the harvesting process, whether it involves hydroponics or 

aquaponics. 

 
I.4.2.3 Advantages of AI in Agriculture 

 
Artificial Intelligence (AI) offers numerous advantages across various fields, including agriculture. In the 

context of agriculture, the following benefits of AI have been discussed : 

• AI provides more efficient methods for crop production, harvesting, and market analysis, enabling 

farmers to make informed decisions about selling essential crops based on market values. 

• AI can be utilized to detect crop defects and enhance the yield of healthy crops, leading to improved 

harvest outcomes. 

• The increased utilization of AI-based technologies strengthens agricultural businesses and markets, 

allowing them to operate more efficiently. 

• AI can contribute to the improvement of crop management practices and harvesting techniques, opti- 

mizing agricultural processes. 

• AI-based solutions offer opportunities to address traditional challenges faced by farmers, such as climate 

change, pest infestations, and weed control, ultimately enhancing the productivity of food crops [50]. 
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I.4.3 Machine Learning 

Machine learning (ML) is a field of study focused on computer algorithms that have the ability to learn 

and discover patterns through data-driven approaches. The primary goal of ML is to accurately and efficiently 

predict new items. It draws upon various theories and methods from computer science, including statistics, 

probability, and optimization. As a result, the data collected for ML undergoes preprocessing and analysis 

to enhance the accuracy of the algorithms [28]. 

 
I.4.3.1 Learning Paradigms 

 
As suggested in [28], ML is well-suited for accomplishing certain types of tasks that demand specific 

learning mechanisms based on the given inputs and desired outcomes. 

FIGURE I.6 – Common learning paradigms in ML [28] 

 
Supervised learning : Supervised learning is a fundamental concept in machine learning where an 

algorithm learns to map input data to corresponding output labels based on a labeled training dataset. By 

analyzing patterns and relationships in the training data, the algorithm generalizes from known examples 

to make accurate predictions on unseen instances. It is widely used in various applications such as image 

recognition, natural language processing, and recommendation systems. The goal is to learn a mapping 

function that can predict output labels for new data points, enabling automated decision-making and pattern 

recognition based on known examples. 

Unsupervised Learning : Unsupervised learning differs from supervised learning in that the training 

samples lack labels, and predictions are made on unseen data points. This learning method is commonly 

employed in tasks such as clustering and dimensionality reduction. Clustering aims to group numerous items 
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into homogeneous subgroups or clusters, such as customer segmentation. Dimensionality reduction, on the 

other hand, focuses on reducing the complexity of an item by representing it with lower dimensions while 

retaining crucial information, such as visualizing big data. 

Reinforcement Learning : Reinforcement learning involves an iterative process where training and 

testing phases work in conjunction to achieve desired outcomes. Within a predefined set of rules, the machine 

learning algorithm interacts with the observed environment. Predictions are made in the form of actions, 

which are subsequently assessed through rewards or penalties. The effectiveness of this model depends on 

maximizing rewards and minimizing penalties. Reinforcement learning finds frequent application in real-time 

scenarios such as robot navigation, real-time decision-making, and skill acquisition [28]. 

 
I.4.4 Deep learning 

I.4.4.1 Definition 

 
Deep learning is a specific subset of machine learning that revolutionizes the process of acquiring meaning- 

ful representations from data. Unlike other approaches, deep learning emphasizes learning multiple layers of 

progressively insightful representations. The term ”deep” does not signify a deeper comprehension achieved 

through this methodology, but rather denotes the notion of sequential layers of representations. The depth of 

a model refers to the number of contributing layers in its representation of the data. Alternatively, the field 

could have been named layered representations learning or hierarchical representations learning. In contem- 

porary deep learning, models often consist of numerous successive layers, ranging from tens to hundreds, all 

of which are autonomously learned through exposure to training data. In contrast, other machine learning 

methods typically focus on learning only one or two layers of data representations, earning them the moniker 

of shallow learning [9]. 

 

Machine Learning Deep Learning 

Small amount of data is needed to provide accuracy Large amount of data is needed for training. 

It requires low system specifications. It requires high system specifications. 

The given problem is divided into multiple tasks 
and each task is solved independently. 

Finally, the results are combined. 

 
The given problem is solved fully as a node tonode problem. 

The time needed for training the model is low. The time needed for training the model is high. 

But for testing the data with the model 
the time required is high. Here, less time is needed to test the data with the model. 

TABLE I.1 – Differences between Machine Learning and Deep Learning [36] 

 

 
I.4.4.2 Common Deep Learning Algorithms 

 
Within this section, we provide a concise overview of the primary Deep Learning algorithms that are 

frequently employed [14] : 

Convolutional Neural-Network (CNN) 
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CNN is a group of deep, feed-forward artificial neural networks (ANNs) that assess visual data rather 

than recurrent ones. Neurons that make up these networks contain biases and weights that can be learned. 

Each neuron receives a few inputs before producing a dot product. A CNN takes a two-dimensional input, 

such as an image or speech signal, and uses a series of hidden layers to output characteristics. For feature 

extraction, the structure consists of convolutional and pooling layers, and both of these linked layers function 

as classifiers. Moreover, CNN may be employed in agricultural fields such as fruit counting, plant recognition, 

weed identification, crop and plant leaf disease detection, and land cover categorization. 

Recurrent Neural Networks (RNN) 

RNNs are a network of nodes that resemble neurons and are built-in steps or ”layers.” Every node has 

a directed connection or a one-side connection to every other node in the layer below it. This connection is 

used in many agricultural fields, including soil cover classification, crop yield estimation, weather prediction, 

soil moisture content estimation, and animal research, among others. RNN is ideally suited to handle time 

series data. 

Generative Adversarial Networks (GAN) 

Essentially, GANs consist of a framework made up of two competing neural network models. These 

models may be used to examine, understand, and imitate data from the training dataset. Moreover, GAN 

has frequently been used to improve datasets. These two neural networks, one of which is generating and the 

other of which is discriminative, cooperate to provide high-quality data. Although GAN is a different type of 

neural network, it has been found to be very effective in image processing. 

Long- Short Term Memory (LSTM) 

Of the several deep learning algorithms, this one is the most common. It can handle individual data points 

(such as images) as well as entire data successions (for example, voice or video). They are appropriate for 

categorizing and basing forecasts on time series data. Crop type categorization, crop yield forecasting, and 

weather forecasting are all employed in agricultural applications of LSTM. LSTM may also be used for voice 

and handwriting recognition, among other things [14]. 

 
I.4.4.3 Deep Learning in Agriculture 

 
The application of deep learning in agriculture entails utilizing machine learning algorithms to analyze 

extensive agricultural data, including aerial images, sensor readings, and weather data. Through deep learning 

models, predictions on crop yields, identification of plant diseases, and optimization of resource utilization like 

water and fertilizer can be made. Furthermore, deep learning techniques can enhance the quality of satellite 

and drone images for efficient monitoring of crop conditions [35]. 
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I.4.5 Blockchain 

I.4.5.1 Definition 

 
The term “blockchain” refers to the way BC stores transaction data in “blocks” that are linked together 

to form a “chain.” The chain grows as the number of transactions increases. Since every entry is stored as a 

block on a chain, the care you receive is added to your personal ledger. At its core, blockchain is a distributed 

system recording and storing transaction records. 

In a blockchain system, there is no central authority. Instead, transaction records are stored and distributed 

across all network participants. Rather than having a centrally located database that manages records, the 

database is distributed to the networks, and transactions are kept secure via cryptography [40]. 

 
I.4.5.2 Blockchain in agriculture 

 
Crop insurance, traceability, smart farming, the food supply chain, managing weather emergencies, and 

the exchange of agricultural goods are all improved by blockchain technology [40]. 

Traceability : The most common application of blockchain in agriculture is here. The barcode and RFID 

tracking technologies are distinct from the blockchain tracking technology. Customers can confirm the route 

taken by their goods, tracking it from farm to table, thanks to blockchain technology. It makes information 

traceable across the food supply chain, enhancing food safety. In a couple of seconds, it also offers information 

on when a commodity was picked. Since the information stored on the blockchain cannot be changed, it may 

offer trustworthy information and is unforgeable [40]. 

Crop Insurance : Food security may be threatened by weather conditions that affect agricultural pro- 

ductivity. Agricultural insurance programs are frequently used to control risks associated with the weather. 

Farmers may insure their crops and file claims for agricultural damage using smart contracts. Weather 

abnormalities can produce losses that are difficult to accurately assess, which opens the door for fraud. 

Smart contracts protect a farmer’s harvest and allow for damage claims. The damage claim can be trigge- 

red by changes in weather conditions that fulfill specific requirements using customized smart blockchain 

contracts [40]. 

Food Supply Chain : The production and distribution of products and services from suppliers to clients 

are referred to as the supply chain. To guarantee consumer loyalty and confidence, it is always practical to 

disclose information about the sources of food goods. Food sellers do not have a reliable method of confirming 

that all items were grown under the required circumstances with existing supply chains. A traceable and 

transparent system is what blockchain technology in the food supply chain aims to achieve. Using real-time 

tracking technology, blockchain technology enables the tracking of people and things across the supply chain. 

Because of this, retail behemoths like Walmart turn to blockchain to track the origins of their food supplies. 

The amount of time needed to trace the source of food has been dramatically reduced to only 2 seconds. The 

use of blockchain technology in the food supply chain is still in its infancy [40]. 
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Transactions : Blockchain technology enables direct network transactions between people and companies 

without the need for a middleman. The use of cryptocurrencies in the exchange of agricultural goods will 

significantly lower transaction costs. Each user has access to transaction data and a copy of the ledger. In 

these transaction records, the product information is tracked and documented. Agricultural producers may 

set pricing more effectively and efficiently thanks to blockchain technology. As a result, they may adjust their 

output to meet the market’s demand for their goods [40]. 

Smart Agriculture : The term ”smart agriculture” refers to the integration of cutting-edge technology 

with conventional farming in an effort to minimize labor-intensive tasks (such as the Internet of Things (IoT), 

cloud computing, global positioning system, artificial intelligence, and big data). It implies the wise use of 

natural resources and the reduction of environmental impact. Someone has claimed that : Blockchain + IoT 

= smart agriculture [40]. 
 

FIGURE I.7 – The uses of blockchain in smart agriculture [40] 

 

I.4.5.3 Benefits 

 
Blockchain technology is changing the way that the agriculture sector does business by speeding up 

transactions, assisting farmers in controlling and analyzing crops, etc. By improving an organization’s ability 

to make decisions, it is transforming the agriculture industry. 

Agricultural producers can set pricing more effectively thanks to blockchain. The use of blockchain in 

agriculture offers the potential to improve supply chain efficiency, transparency, and trust. Transparency in 

decision-making along the supply chain is made possible by the usage of data dispersed on the blockchain net- 

work. The parties concerned have access to trustworthy information, enabling improved market management 

and planning [40]. 
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I.4.6 Drone 

I.4.6.1 Definition 

 
Drones have become valuable tools in the field of agriculture, serving as unmanned aerial vehicles (UAVs) 

that gather data and carry out various agricultural tasks. These UAVs are equipped with a range of sensors, 

cameras, and other advanced technologies, enabling them to capture high-resolution images and data, as 

well as perform tasks like pesticide or fertilizer spraying. One of the primary applications of drones in 

agriculture is crop mapping and monitoring. By capturing aerial images of crop fields, drones facilitate the 

creation of detailed maps that provide valuable insights. These maps can identify potential issues such as 

nutrient deficiencies, pest infestations, or uneven crop growth. The gathered data plays a crucial role in 

making informed decisions regarding crop management, including optimal timing for planting, irrigation, 

fertilization, and harvesting [20]. 

 
I.4.6.2 Drone in soil fertility and vegetation mapping 

 
Soil degradation resulting from erosion, whether caused by wind or water flow, is a prevalent issue in 

agricultural regions. Detecting and assessing the extent of this degradation, as well as determining necessary 

corrective measures, can be a time-consuming and costly process when relying solely on human scouts in 

large farms. Aerial photography and photogrammetry offer a more accurate and efficient means of assessing 

soil erosion compared to skilled farm workers. Remotely sensed data obtained from satellites and piloted 

aircraft are often used to create land and soil maps. Through satellite imagery, areas affected by soil issues 

and erosion can be clearly identified and marked. However, in recent years, the emergence of low-flying drones 

has enabled farmers to gather valuable data about their farmland, including topography, variations in fertility, 

and the presence of gully and sheet erosion. Digital data obtained from sensors can be leveraged to develop 

precise digital elevation models, providing high-resolution imagery that accurately depicts the extent of soil 

degradation and erosion [20]. 

 
I.4.6.3 Drones in precision farming 

 
Precision Farming has garnered significant attention from farmers in various agricultural regions due to 

the numerous benefits associated with its adopted practices. Future predictions indicate that the success or 

failure of Precision Farming techniques may largely hinge upon the widespread utilization of drones to carry 

out various agronomic tasks. While farmers are already employing satellite-derived data for implementing 

variable-rate techniques, satellite-based methods lack the same level of accuracy and efficiency that unmanned 

aerial vehicles (UAVs) can offer on larger farms. As the name implies, Precision Farming relies heavily on 

precise data collection. Most soil and crop management practices are implemented based on data collected on 

the ground, through satellites, UAVs, handheld devices, sensor-equipped tractors, or stationary instruments 

strategically positioned in the field. The process of data collection for precision farming commences with the 
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analysis of yield maps from previous crops cultivated in the same area. These maps provide insights into 

variations in grain harvests in response to soil fertility and agronomic practices employed by the farmer [20]. 

 
I.4.7 Robotics 

I.4.7.1 Definition 

 
Agricultural robots or Agri-robot could be autonomous or semi-autonomous equipment used for various 

procedures during agricultural crop production. Agri-robots are used mainly in land preparation, ridging, 

making channels, spraying liquid fertilizers, spraying pesticides, sprinkling irrigation water, and most impor- 

tantly harvesting grains or picking fruits [20]. 

Robots are used when repetitive, hard labor and drudgery are essential to achieve results. In the horticul- 

tural gardens, tasks such as repetitive pruning of branches (e.g., grape vines), weeding the inter-row spaces 

among trees, spraying tree canopies with pesticides, irrigation, and fruit picking are tasks accomplished by 

driverless robots. Agri-robots are equipment that could replace human labor requirements during crop pro- 

duction or cattle ranching. Moreover, an agricultural robot comprises three fundamental components. They 

are : 

(a) a sensing system for assessing the physical and biological characteristics of agricultural fields, 

(b) a collection of decision-making tools, including a computer that utilizes programmed algorithms to 

process data acquired from sensors. 

(c) a manipulative arm or device that carries out the designated tasks in the crop field through the 

reception of electronic signals. 

 
I.4.7.2 Robots in soil management 

 
The next generation of agricultural robotics envisions the utilization of small, compact, and lightweight 

farm vehicles capable of performing tasks like tillage, intercultural activities, and other soil management 

operations. These lightweight robots effectively mitigate issues such as soil compaction. 

By employing laser technology for traction and swift movement, the frequency of tractor repairs and ad- 

justments is significantly reduced. According to [20], lightweight robots maneuver on wide, low-pressure tires, 

thereby minimizing soil compaction to the greatest extent possible. During the seeding process, robots exhibit 

precise movements guided by GPS and laser-assisted traction. They navigate exclusively along designated 

rows with optimal moisture content, thereby avoiding undue soil disruption [20]. 

 
I.4.7.3 Robots in crop production 

 
Crop production typically involves a sequence of agronomic practices aimed at improving soil conditions, 

such as plowing, cultivating, clod crushing, harrowing, and ridging. Subsequently, a set of procedures focuses 

on nurturing crops in the fields. These include precise and appropriate sowing to optimize plant density and 
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spacing, thereby maximizing root development, photosynthetic efficiency, and biomass formation. Intercultu- 

ral operations involving tools like hoes with tines are conducted periodically to loosen the soil for aeration, 

promote root growth, and apply fertilizers (top dressing) between rows or ridges. These tasks lend themselves 

well to automation through various types of robots. In fact, the tractor, which is one of the earliest and most 

successful agricultural robots, plays a crucial role in initiating crop production by performing tasks like deep 

or light plowing of the soil. 

 
I.4.7.4 Agricultural robots and their influence on human farm labor 

 
Tractors serve as essential farm vehicles capable of performing diverse functions, particularly those directly 

related to crop production in the field. Additionally, they can be employed for various other farm activities 

such as threshing, winnowing, grinding, and lift irrigation, depending on the attachments and hitches used. 

Transforming these versatile farm vehicles into autonomous robots yields significant effects on labor requi- 

rements, working hours, efficiency, and economic benefits. Consequently, the need for human labor per farm 

vehicle is drastically reduced, as well as the overall labor demand for crop cultivation. While certain as- 

pects like GPS guidance, computer decision support, and machine tracking may require skilled personnel and 

maintenance costs, the transition from manned tractors to robotic counterparts generally leads to a 1.2-fold 

increase in vehicle costs while reducing human labor needs to 5 to 20 of the original levels. Moreover, the 

utilization of robotic tractors enables the extensive extension of farm working hours, potentially doubling 

from 8 hours with manned tractors to 16 hours. It is worth noting that robotic tractors can also operate 

during nighttime. 

 
I.4.8 Precision agriculture 

I.4.8.1 Definition 

 
As per a report from the European Parliament regarding Precision agriculture and the future of farming 

in Europe, precision agriculture is described as the contemporary approach to farming management that 

utilizes digital techniques to monitor and enhance agricultural production processes [43]. 

The primary objective of precision agriculture is to optimize farm inputs, encompassing the precise ap- 

plication of fertilizers to specific areas of the field based on soil characteristics, efficient water usage, and 

accurate feeding of individual animals. This approach heavily relies on the integration of sensors, satellite 

navigation, and positioning technology. Precision farming emerged with the advent of publicly accessible GPS 

signals, which enabled its implementation [12]. 

 
I.4.8.2 Components of precision agriculture 

 
The effectiveness of precision agriculture technologies relies on the level of technology employed, necessi- 

tating the utilization of the most advanced available options. The fundamental components of technologies 
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utilized in precision agriculture can be categorized into three groups [32]. 
 
 

 

FIGURE I.8 – Basic elements of precision agriculture technologies [32] 

 
The first group comprises data collection technologies that furnish farmers with essential spatial and 

temporal data. In the second group, data processing and decision-making technologies are employed to refine 

and interpret raw data. The third group encompasses application technologies that utilize created maps and 

comments to execute planned operations within the production area. Figure I.8 provides a comprehensive 

overview of the technologies and processes associated with precision agriculture [32]. 

 

FIGURE I.9 – Technologies and processes involved in precision agriculture [32] 

 
The utilization of remote sensing satellites, a fundamental component of precision agriculture, has ex- 

perienced a recent surge in monitoring various aspects including crops, land use, vegetation indices, plant 

characteristics, diseases and pests, soil properties, fertilizer application, water status, and water resources. 

This has enabled the implementation of informed management decisions. 

Notably, both the number and imaging resolutions of these satellites have witnessed significant advance- 

ments. Figure I.9 presents a case study illustrating the application of remote sensing in agricultural monito- 

ring. 

In today’s precision agriculture applications, the integration of technologies such as artificial intelligence, 
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robotics, the Internet of Things (IoT), autonomous vehicles, drones, advanced computers, cloud computing, 

and big data has propelled the transition to the Agriculture 4.0 era. These technologies have paved the way 

for more competitive, efficient, and sustainable agricultural practices. 

They have also facilitated the instantaneous acquisition and evaluation of data in agricultural applications, 

enabling more informed decisions to enhance production quality. Figure I.10 illustrates the evolution from 

precision agriculture to Agriculture 4.0 through the incorporation of IoT. 

 

FIGURE I.10 – A case study of agricultural monitoring application with remote sensing [32] 

 
 

I.5 Difference between traditional and smart agriculture 

Traditional and modern smart farming are two distinct approaches to agriculture that differ in many 

ways. The differences are discussed below : 

 
I.5.1 Traditional 

It is based on age-old farming practices that have been passed down from generation to generation. It 

often uses manual labor methods and rudimentary tools. Crops are often planted in medium-sized fields, 

where farmers use proven seeds and crop rotation to maintain soil fertility. Yields are often limited due to 

the lack of use of modern technology. 

According to [37] and [3], the form of agriculture is still practiced in many parts of the world, it has both 

advantages and disadvantages : 

Advantages 

Knowledge and experience : Traditional farmers often have extensive knowledge of their farming 

environment and farming techniques appropriate to their local context. This experience can be passed on 

from generation to generation, helping to preserve traditional agricultural practices and maintain biodiversity 

in agricultural ecosystems. 
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FIGURE I.11 – Traditional farming and Smart farming 

 
Sustainability : Traditional agriculture can be sustainable if it is practiced in a balanced manner and in 

harmony with the environment. Traditional farmers can use farming practices such as crop rotation, use of 

compost and natural fertilizers, water conservation and crop diversification to improve soil health and reduce 

erosion. 

Social cohesion : Traditional agricultural practices can foster social cohesion and solidarity among 

farmers. Traditional farming communities can share knowledge, skills and resources to help each other with 

farming activities and solve community problems. 

Disadvantages 

Low productivity : Traditional farming may have low productivity compared to modern farming prac- 

tices. Traditional farmers may use inefficient production techniques that do not make optimal use of available 

land and resources. 

Vulnerability to climate change : Traditional agricultural practices may be vulnerable to climate 

change and extreme events such as droughts and floods. Traditional farmers may not have access to modern 

agricultural technologies to adapt to climate change and improve their resilience. 

Poverty : Traditional farmers may be more likely to live in poverty due to the low productivity of their 

agricultural activities. Traditional farmers may have difficulty accessing markets and obtaining fair prices for 

their products. 

 
I.5.2 Smart Agriculture 

Modern smart agriculture uses advanced technologies to increase yields, improve crop quality, and reduce 

losses. Farmers use precision techniques such as soil mapping, remote sensing, sensors, and data analysis to 
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optimize inputs and yields. Technologies such as hydroponics, drones, and agricultural robots are also being 

used to improve efficiency and productivity [39]. 

Advantages 

Improved agricultural productivity : Smart farming allows farmers to better understand their pro- 

duction environment and adapt their farming practices accordingly, which can increase productivity. the use 

of precision farming has increased corn yields by an average of 7.8 percent [62]. 

Reducing pesticide use : Smart farming can help farmers better monitor crop pests and diseases, which 

can reduce the need for pesticide use. using drones to monitor crops has reduced pesticide use by 30 

Improving water quality : Smart farming can help farmers better manage water use in their fields, 

which can reduce water pollution from nutrients and pesticides. using sensors to measure soil moisture and 

temperature has reduced irrigation water use by 20 

Reducing production costs : Smart agriculture can help farmers better manage resources and reduce 

production costs. using remote sensing to monitor crops optimized fertilizer use and reduced production costs 

by 11 

Disadvantages 

High costs : Adoption of smart agricultural technologies can be costly, which may limit access for small 

farmers and developing countries [15]. 

Dependence on technology : Farmers may become dependent on technology and lose their ability to 

use their own knowledge and experience to make decisions. 

Safety risks : Smart agricultural technologies such as drones, sensors, and robots can pose safety risks 

for farmers and farmworkers, especially if they are not trained in their use. 

Complexity : Smart agricultural technologies can be complex to use and maintain, requiring advanced 

technical skills and regular updates, which may limit their adoption. 

Environmental impact : smart farming may result in increased water and energy use, as well as the 

generation of e-waste, which may negatively impact the environment. 

It is important to note that these two approaches are not mutually exclusive and that farmers can use 

a combination of traditional and modern techniques to increase yields while maintaining environmental and 

social sustainability. 

 
I.6 Related works 

To achieve better results in our project, we have studied certain papers and related works that aim to 

find better results in the field of fertilization. 

The study consists of summarizing the major issues and proposed solutions related to fertilization, which 

are based on different approaches such as organic and inorganic fertilizers, foliar feeding, and fertigation. 

The reviewed works include those that have investigated the effects of fertilization on soil health and 
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crop productivity, and those that have proposed innovative fertilization strategies to improve nutrient use 

efficiency and reduce environmental impacts. 

 
I.6.1 A novel approach to optimize water and fertilizers in agriculture 

[26] discusses the potential benefits of smart farming, which is a hi-tech system that uses wireless sensor 

networks (WSN) and the Internet of Things (IoT) to automate the agriculture process. By using various 

sensors, such as those for soil moisture, temperature, and humidity, farmers can obtain information about 

the soil and make informed decisions about irrigation and fertilization. 

The proposed method uses WSN and IoT to automate the process of supplying nutrients to the soil. 

Soil moisture and humidity sensors are used to monitor soil properties, and the data is transmitted to an 

IoT server. Based on the values received, drip irrigation is turned on or off through a solenoid valve. The 

system also includes a quantitative analysis of the nutrient requirements for the plants to ensure they receive 

the proper amount of nitrogen, phosphorous, and potassium, which are essential for plant growth, fruit and 

flower development, and strong stems, the proposed system, is developed with an Arduino Uno open-source 

microcontroller board based on the Microchip ATmega328P microcontroller. 

The disadvantages to consider in this article are : 

Cost : The implementation of this system requires the use of various sensors, a microcontroller, a GSM 

module, and other components, which can add up to a significant cost. 

Maintenance : The system requires regular maintenance, such as calibrating the sensors, checking the drip 

irrigation system, and replacing components as needed. This can be time-consuming and costly. 

Complexity : The system can be complex to set up and operate, and may require technical expertise to 

troubleshoot any issues that arise. 

Limitations : The system is designed to monitor and control specific parameters such as soil moisture and 

temperature, but it may not be able to account for other factors that can affect crop growth and yield, such 

as pest infestations, soil nutrient imbalances, and weather conditions. 

Reliability : The system relies on a stable internet connection and reliable communication with the GSM 

module to send alerts to the farmer. Any disruptions or failures in these systems could result in delays in 

notifying the farmer to take action. 

 
I.6.2 Solar-powered fertigation system optimizes irrigation cycles and crop growth 

In [55], the author introduced a design and implementation of a remotely controlled solar-powered ferti- 

gation system based on a low-cost wireless sensor network (WSN). The system aims to optimize irrigation 

cycles and crop growth while reducing water and fertilizer consumption and minimizing the environmental 

impact. The system consists of three main components : the solar-powered control unit, the WSN, and the 

software platform for data acquisition and management. 
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The control unit is powered by a solar panel and consists of a microcontroller, a GSM module, a motor 

driver, and a relay. It controls the water pump and the fertilizer injector, based on the data received from the 

WSN. The WSN consists of sensor nodes that detect environmental and soil parameters such as temperature, 

humidity, and moisture. The nodes transmit the data to a coordinator node, which then sends it to the software 

platform for processing and analysis. 

The disadvantages to consider in this article are : 

Limited scope : The article focuses on a specific type of farming system, and the results may not be 

applicable to other agricultural practices. 

Limited sample size : The study was conducted in a small agricultural area, and the results may not be 

generalizable to larger regions. 

Cost : While the authors state that the WSN is low-cost, the cost may still be prohibitive for small-scale 

farmers who may not have the resources to invest in such technology. 

Technical expertise : The use of advanced technology, such as WSN and on-cloud software, requires a 

certain level of technical expertise, which may not be readily available to all farmers. 

Reliance on solar power : The system relies heavily on solar power, which may not be reliable in all regions 

or during periods of low sunlight. 

complexity : it may require some technical expertise to understand the detailed technical specifications 

and implementation of the solar-powered fertigation system. This could make it less accessible to readers 

who are not familiar with the technical aspects of wireless sensor networks and agricultural technology. 

 
I.6.3 Nitrogen fertilizer and cropping practices impact maize and soybean global 

warming potential 

The work was conducted over three consecutive years in a long-term field experiment. Three cropping 

systems were studied : maize monoculture, soybean monoculture, and maize soybean intercrop. The nitrogen 

fertilizer was applied at four rates : 0, 150, 182, and 240 kg N ha-1. The researchers measured various 

parameters, including crop yield, nitrogen uptake, and greenhouse gas emissions, to calculate the GWP of 

each cropping system [47]. 

The results showed that maize monoculture and maize-soybean intercrop systems had higher net primary 

production and lower GWP than soybean monoculture. The C sink associated with CO2 fixation by these 

crops exceeded the CO2-eq losses from direct and indirect emissions during the cropping season. The N 

fertilizer inputs to maize-soybean intercrop should not exceed 150–182 kg N ha-1 because higher N fertilizer 

rates are associated with greater GWP, relative to maize monoculture that received 240 kg N ha-1. 

Here are a few disadvantages of this article : 

Limited scope : The study was conducted on a plot scale, which means that the results may not be fully 

representative of the entire North China Plain or the different agricultural systems used in the region. 

Lack of data : The authors acknowledge that the study needs to be validated with realistic field- and 
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farm-level data that accounts for the inherent heterogeneity of agroecosystems in the North China Plain, as 

well as the different levels of mechanization, efficiencies, and economies that operate at larger scales. 

Limited analysis : The study focuses primarily on the impact of nitrogen fertilizer rates and cropping 

systems on global warming potential and does not explore other factors that could also affect greenhouse gas 

emissions, such as irrigation practices or soil management. 

Lack of comparison : Although the study compares maize-soybean intercropping with maize and soybean 

monoculture, it does not compare these systems with other cropping systems that may have lower global 

warmings potential, such as agroforestry or conservation agriculture. 

Narrow focus : The study focuses solely on global warming potential and does not consider other envi- 

ronmental impacts, such as water use, soil erosion, or biodiversity conservation. 

limitation in the generalizability of the results : the study only focused on a specific region, the North 

China Plain, and the findings may not be applicable to other regions with different climates, soil, and crop 

management practice. 

 
I.6.4 IoT-based sustainable irrigation and fertilization system 

discusses the development and implementation of this solar fertigation system that utilizes photovoltaic 

solar energy and IoT technology for precision irrigation and fertilization purposes. The system monitors 

physical parameters such as temperature, radiation, humidity, and soil moisture, and uses an agronomic 

decision support system (DSS) platform to integrate soil, weather, and plant data and sensors. The study 

evaluates the sustainable estimation of reference evapotranspiration (ETo) and irrigation scheduling in a 

Mediterranean environment. The results demonstrate that the proposed system and Hargreaves-Samani (H- 

S) equation represented a nearby correlation to the standard FAO P-M model, and the hybrid agronomic 

DSS is suitable for smart fertigation scheduling [1]. 

There are a few disadvantages of the solar fertigation system : 

Cost : While the solar fertigation system is designed to be a sustainable and cost-effective solution for 

irrigation, there may be significant upfront costs associated with the installation and setup of the system. 

This could make it difficult for small farmers or those with limited resources to implement the system. 

Technical complexity : The solar fertigation system is a sophisticated solution that requires the integration 

of various technologies, including sensors, actuators, and software. This could make it challenging for some 

farmers to operate and maintain the system without adequate training or technical support. 

Data limitations : The accuracy and effectiveness of the solar fertigation system depend heavily on the 

quality and availability of data from environmental sensors, soil moisture sensors, and other sources. If there 

are data gaps or errors, the system may not perform optimally, leading to lower crop yields and wasted 

resources. 

Limited applicability : The solar fertigation system is designed primarily for use in agricultural settings, 

and may not be suitable for other applications or contexts. This could limit its broader impact and potential 
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for adoption. 

Lack of long-term data : While the article presents promising results from initial field tests of the solar 

fertigation system, it is unclear how the system will perform over the long term. Additional research and 

monitoring will be necessary to assess the system’s durability, reliability, and ongoing impact on crop yields 

and resource use. 

potential bias and misinformation : its limited scope of application. While the solar fertigation system 

and ETo modeling approach presented in the study have shown promising results in the specific regions and 

crops tested, their effectiveness may vary in different geographical locations or with different crop types. 

Thus, further research and testing may be necessary to determine the applicability of these methods on a 

broader scale. 

 
I.6.5 IoT assisted context aware fertilizer recommendation 

Presents a machine learning-based fertilizer recommendation system that uses the Internet of Things 

(IoT) to capture real-time soil fertility data. The system takes into account the soil type, crop type, and 

soil fertility level to recommend the appropriate fertilizer. The authors propose an IoT-assisted soil fertility 

mapping approach to capture soil fertility data, which was found to be in line with standard soil chemical 

analysis [19]. 

The authors begin by discussing the challenges of traditional fertilizer recommendation methods, which 

are often based on generic guidelines that do not consider specific soil and crop conditions. They then 

introduce the proposed system, which integrates IoT devices for real-time soil fertility monitoring and data 

collection, machine learning models for fertilizer recommendation, and a user interface for farmers to access 

the recommendations. 

The authors describe the IoT devices used in the system, including soil moisture and temperature sen- 

sors, pH meters, and a microcontroller for data collection and transmission. They also discuss the data 

preprocessing steps, which involve filtering, outlier removal, and data normalization. 

They focus on the machine learning models used for fertilizer, including logistic regression, Gaussian naive 

Bayes, and support vector machines. The authors explain how these models work and how they were trained 

and evaluated using accuracy, precision, recall, and F1 score metrics. 

Also, the authors describe the experimental setup, which involved collecting soil samples from a rice field 

and analyzing them for nutrient content using standard laboratory methods. They then used the IoT devices 

to collect real-time soil fertility data over a period of two months, during which they also collected crop 

growth data. 

Then, they present the results of the soil fertility mapping, which showed that the IoT-assisted system 

was able to provide accurate and reliable soil fertility data that was in line with the laboratory analysis. The 

authors also discuss the crop growth data, which showed that the system was able to improve crop yields 

and reduce fertilizer use compared to traditional methods. 
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After that gives an evaluation of the performance of the machine learning models for fertilizer recommen- 

dation. They report the accuracy, precision, recall, and F1 score metrics for each model and present confusion 

matrices and classification reports. 

the authors conclude that the proposed system is a promising solution for context-aware fertilizer recom- 

mendation in agriculture. They recommend further research to expand the dataset and explore the use of 

deep learning models. They also acknowledge the support of the Department of Computer Science, College 

of Computing, Khon Kaen University, Thailand. Here are a few potential disadvantages of this article : 

Limited dataset : The study was conducted with a limited dataset, which may not represent the diversity 

of soil types and crop types found in different regions. Therefore, the model’s accuracy may not be applicable 

to all areas and crop types. 

Dependency on IoT infrastructure : The proposed system is dependent on IoT infrastructure for real-time 

soil fertility mapping. This infrastructure may not be available in all areas, especially in remote regions with 

limited internet connectivity. 

Cost of implementation : The implementation of the proposed system may require a significant initial 

investment, such as the installation of IoT sensors and other necessary equipment, which may not be affordable 

for small-scale farmers. 

Maintenance and updates : The system may require regular maintenance and updates to ensure accurate 

soil fertility mapping and reliable recommendations. This may require additional costs and technical expertise. 

Sustainability : The article does not discuss the long-term sustainability of the proposed system. It is 

essential to ensure that the system’s implementation does not negatively impact the environment or cause 

other unintended consequences. 

The study recommends using manual or threshold-based automatic irrigation and fertilization since it will 

guarantee data-driven farming, which will help to protect the environment and ensure the optimized use of 

water resources. This approach will result in lower operating costs, which will raise earnings. To predict when 

to irrigate, a deep learning model is used to analyze real-time information on soil moisture and soil nutrients 

collected by an ARM Cortex 4-based Arduino Nano 33 BLE sensing. Farmers receive text message alerts 

with recommendations for fertilizers to add if soil nutrient deficits are found. According to the forecasts and 

occasionally, the irrigation valve is automatically opened. This system’s successful deployment will decrease 

water and fertilizer waste while boosting productivity [31]. 

Some possible disadvantages could be : 

Limited scope : The study only focuses on one specific location, the Eastern province of Rwanda, and on 

a specific crop irrigation scheme. The results may not be generalizable to other regions or crops, and further 

research is needed to validate the model’s performance in different settings. 

Cost : The hardware components required to implement the system may be expensive, especially for 

small-scale farmers who may not have the resources to invest in such technology. 

Technical expertise : The successful deployment of the system requires technical expertise in areas such 
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as electronics, programming, and data analysis, which may be a barrier for some farmers. 

Maintenance : The system may require regular maintenance and calibration of the sensors, which could 

be time-consuming and require specialized knowledge. 

Dependence on technology : The system relies on technology, such as the Internet and the availability of 

electricity, which may not be reliable in some areas. This could limit the system’s effectiveness and accessibility 

in certain regions. 

 
I.6.6 IoT-based smart agriculture using machine learning 

The proposed system architecture comprises temperature, soil moisture, and humidity sensors and a 

Raspberry Pi, which plays a central role in the system by providing storage to the datasets and hosting a 

web server. The decision tree algorithm is applied to the datasets to predict accurate results [38]. 

There are a few limitations to consider : 

Cost : Implementing this system could require a significant investment in hardware and software compo- 

nents, as well as ongoing maintenance costs. This could make it less accessible for smaller-scale farmers who 

may not have the financial resources to invest in this technology. 

Technical expertise : Setting up and maintaining the system would require a certain level of technical 

expertise, including knowledge of programming, data analysis, and sensor calibration. This could be a barrier 

for some farmers who may not have the necessary skills or resources to manage the system on their own. 

Connectivity : The system relies on a stable internet connection to transmit data from the sensors to the 

Raspberry Pi and cloud storage. In areas with poor connectivity or unreliable internet access, the system 

may not function properly or may experience delays in transmitting data. 

Limited scope for scalability and customization : it heavily relies on the accuracy and reliability of the 

sensors used to collect the data. If the sensors malfunction or produce faulty data, the decision tree algorithm 

may provide inaccurate results, leading to incorrect watering decisions for the crops. Additionally, the cost of 

implementing this system may be a barrier for small-scale farmers who may not have the financial resources 

to purchase the necessary equipment and sensors. 

 
I.6.7 IoT-driven AI improves fertilizer recommendation model 

This paper presents a smart agriculture system based on contemporary IoT communication technology, 

AI, and Wireless Networks. The system is designed to help farmers improve crop yield competitiveness 

and sustainability, by gathering and evaluating valuable data using IoT agricultural sensors. The system 

uses deep learning algorithms (GBRT, Random Forest, CNN, LSTM, and Bi-LSTM) to provide fertilizer 

recommendations that match the opinions of agricultural experts. The proposed approach has been analyzed 

and investigated to improve crop yield as an experiment [52]. 

There are a few limitations to consider : 
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Dependency on Technology : The proposed smart agriculture system relies heavily on technology, including 

IoT sensors, wireless networks, and AI algorithms. This can make farmers overly reliant on technology, 

potentially leading to issues if the system fails or malfunctions. 

Cost : Implementing a smart agriculture system can be expensive, particularly for small-scale farmers 

who may not have the resources to invest in the required technology. The cost of purchasing and maintaining 

IoT sensors and other equipment can be a significant barrier to entry. 

Technical Expertise : To use the system effectively, farmers may require technical expertise, including 

knowledge of AI algorithms and sensor calibration. This may be a challenge for farmers who are not tech- 

savvy or have limited access to training and support. 

Data Privacy and Security : Collecting and analyzing sensitive agricultural data raises concerns about 

data privacy and security. Farmers may be hesitant to share their data with third-party systems, particularly 

if they are unsure about how the data will be used or protected. 

Limited Scope : The proposed system focuses primarily on fertilizer recommendations based on soil and 

crop data. While this is an essential aspect of agriculture, it does not address other critical areas, such as 

pest management, irrigation, and climate monitoring 

Financial and technical barrier to adoption : the potential for increased cost and complexity. Implementing 

IoT sensors, wireless networks, and AI technologies can be costly, particularly for small-scale farmers who may 

not have the financial resources to invest in such technologies. Additionally, the system may require specialized 

knowledge and technical expertise, which may not be readily available in all farming communities. 

The following tables illustrate all the previously studied works : 
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Authors Approach Techniques Services 

[Louisa et al 
2021] [26] 

- Smart farming uses WSN, and 
IoT for automated soil nutrient 
supply. 

-An algorithm   calculates   nu- 
trient application quantity. 

- Utilizing RTC for time manage- 
ment and calendar, GSM module 
for user alerts. 

-   SMS    alerts    farmers 
about fertigation and 
pesticide spraying dates, 
reducing water waste and 
human intervention. 

[Visconti et 
al 2020] [55] 

-   Remotely    managed    solar- 
powered automated fertigation 
system optimizes agricultural 
growth. 
-A low-cost wireless sensor net- 
work monitors soil and environ- 
mental parameters using a non- 
cloud software platform. 

- Wireless sensor network techno- 
logy utilizes solar power for data 
acquisition and transmission. 
- Software application optimizes 
fertigation cycles and supports 
decision-making for farmers 
using data analysis. 

- Remotely    managed 
solar-powered automated 
fertigation system opti- 
mizes crop growth. 
- Uses low-cost wireless 
sensor network, and offers 
on-cloud software for data 
analysis and decision- 
making support. 

[Yawen et al 
2018] [47] 

- Ecosystem-level C balance ap- 
proach to assess the impact of 
cropping practices and N fertili- 
zer rates on GWP. 

- Field experiments measure crop 
yields, N uptake, soil organic car- 
bon, and GHG emissions. 
- Life cycle assessment calcu- 
lates GWP, CO2-eq losses, and 
ANOVA compares practices. 

-   Supporting    decision- 
making for farmers and 
policymakers to adopt 
low-carbon agriculture 
practices. 

[Uzair et al 
2022] [1] 

- Solar-powered irrigation sys- 
tem and wireless sensor net- 
work developed for remote far- 
mer control. 

-Solar panels power system. 
- Low-power wireless communi- 
cation transmits data. 
- Remote control via mobile app. 

- Real-time monitoring, ir- 
rigation scheduling, crop 
growth optimization, re- 
mote farmer control. 

[Arfat et al 
2022] [19] 

- IoT-assisted soil fertility map- 
ping. 
- Fertilizer recommendation sys- 
tem. 

- Machine learning models : Lo- 
gistic Regression (LR), Gaussian 
Naive Bayes (GNB), and (SVM). 

- IoT-based   soil   ferti- 
lity mapping and ma- 
chine learning-based ferti- 
lizer recommendation sys- 
tem. 

[Nyakuri et 
al 2022] [31] 

- IoT and AI integration for 
smart irrigation, nutrient assess- 
ment, and data-driven farming. 

-Deep learning model predicts ir- 
rigated and recommended fertili- 
zers using Neural Network clas- 
sifier. 

- Data collection, analy- 
sis, remote monitoring, 
and recommendations for 
fertilizers using Things 
Speak, Arduino(IDE), 
and GSM/GPRS shield. 

[Kasara et al 
2020] [38] 

- Implementing an IoT-based 
system for smart agriculture, fo- 
cusing on water management. 
- Uses sensors to collect tempe- 
rature, moisture, and humidity 
data. 

- The decision tree algorithm 
processes data for crop watering 
and utilizes cloud storage for fu- 
ture reference. 

-   The    system    decides 
the watering schedule 
for crops, reducing water 
consumption and im- 
proving yield, and sends 
email alerts to farmers. 

[Swaminathan 
et al 
2022] [52] 

-    IoT     agricultural     sensors 
and deep learning algorithms 
improve fertilizer recommenda- 
tions. 

- Four prediction models : 
GBRT, Random Forest, CNN, 
LSTM, and Bi-LSTM. 
-Kisaan Sasya Application for 
nutrient management and ferti- 

lizer recommendations. 

- Providing farmers with 
data for improved crop 
yield and sustainability 
and potential for future 
integration. 

TABLE I.2 – Summary of related works based on three factors (approach, technique, and service). 
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Authors Disadvantages 

[Louisa et al 2021] [26] Cost : High, Maintenance : High, Complexity : High, Limitations : Significant, 
Reliability : Moderate 

[Visconti et al 2020] [55] Reliance on solar power : High, Technical expertise : Moderate, Limited sample 
size : Moderate, Cost : Low, Complexity : Low, Limited scope : Low 

[Yawen et al 2018] [47] Limited scope : Moderate, Lack of data : Significant, Limited analysis : Mode- 
rate, Lack of comparison : Moderate, Narrow focus : Low 

[Uzair et al 2022] [1] Cost : Moderate, Maintenance : Moderate, Complexity : Moderate, Limita- 
tions : Significant, Reliability : Moderate 

[Arfat et al 2022] [19] Cost : High, Maintenance : High, Complexity : High, Limitations : Moderate, 
Reliability : Moderate 

[Nyakuri et al 2022] [31] Overreliance on AI : Low, Data privacy and security : Moderate, Bias and 
inequity : Moderate, Lack of transparency : Moderate, Cost : Moderate, Algo- 
rithmic bias and errors : Low 

[Kasara et al 2020] [38] Limited scope : Low, Lack of data : Moderate, Limited analysis : Low, Lack of 
comparison : Low, Narrow focus : Moderate 

[Swaminathan et al 2022] 
[52] 

Cost : High, Maintenance : High, Complexity : High, Limitations : Moderate, 
Reliability : Moderate 

TABLE I.3 – Summary of the disadvantages of each related work. 

 
 

I.7 Conclusion 

In conclusion, the use of IoT with machine learning and deep learning in agriculture offers many be- 

nefits. Most notably, it allows for real-time data collection and analysis to improve crop productivity and 

sustainability, as well as water and natural resource management. 

Automating agricultural processes with this technology can also help reduce costs and increase yields 

while minimizing environmental impact. However, it is important to emphasize that this technology must 

be used responsibly and ethically, taking into account the long-term social, environmental, and economic 

impacts. 

Thus these technologies have great potential to transform agriculture and contribute to more sustainable 

food for all. 
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Fertilization 

 
II.1 Introduction 

Soil characteristics have a crucial impact on maintaining fertility in agricultural production as they enable 

crops to develop optimally through efficient root nutrition with minimal energy requirements. Nitrogen (N), 

phosphorus (P), and potassium (K) are vital fertilizers extensively used in crops to ensure an adequate 

nutrient supply and maximize production levels. However, excessive fertilizer use poses negative effects that 

risk public health and the environment. 

These effects include soil salinity, the accumulation of heavy metals, eutrophication of water bodies, 

and nitrate accumulation. Furthermore, nitrogen and sulfur-containing gases released into the air during 

fertilization can contribute to air pollution and exacerbate issues such as the greenhouse effect. 

Thus, to tackle these challenges, there is a need to anticipate the appropriate nutrient requirements for 

different crops and provide recommendations for optimal nutrient levels. The rapid advancement of technology 

has led to the emergence of new and innovative approaches to agriculture. Technologies such as the Internet 

of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have helped 

farmers and researchers optimize agricultural processes, including irrigation, pest control, and fertilization 

management, to improve crop yields. 

In this chapter, we review related work on IoT, AI, ML, and DL, focusing on their application in the ferti- 

lization process to gain insights into the latest trends and advancements in this field and made a comparison 

between the used approaches. Our analysis includes a review of articles that discuss the use of these techno- 

logies, as well as an examination of the challenges and opportunities associated with their implementation 

 
II.2 Crop cycle 

The crop cycle includes many phases starting from Soil preparation to harvesting while the main objective 

of our work is the fertilization phase, we will discuss different works that aim to tackle the issues and challenges 

of this latter as Figure II.1 shows. 
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FIGURE II.1 – Crop cycle 

 
 

II.3 Fertilization 

 
II.3.1 Definition 

Fertilization is the process of applying or adding essential nutrients to the soil or directly to plants to en- 

hance plant growth, development, and productivity. These essential nutrients, including nitrogen, phosphorus, 

potassium, and others, are necessary for the proper functioning and balanced nutrition of plants. 

Fertilization can be achieved through various methods, such as applying fertilizers to the soil, foliar 

application (spraying nutrients on the leaves), or fertigation (application of fertilizers through irrigation 

systems). Fertilization plays a crucial role in modern agriculture, ensuring that crops receive the necessary 

nutrients for optimal yield and quality, and it is vital for global food production. 

The specific type and amount of fertilizers used depend on factors like soil conditions, crop requirements, 

and environmental considerations [51]. 

 
II.3.2 Types of Chemical Fertilizers 

Chemical fertilizers are offered in three different varieties. These include fertilizers with nitrogen, phospho- 

rus, and potassium. Chemical fertilizer is made up of components like potassium, phosphorous, and nitrogen. 

These are employed to raise land productivity. [10] 
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FIGURE II.2 – Types of chemical fertilizers [10] 

 

II.3.2.1 Nitrogenous Fertilizer 

 
Nitrogen is included in this type of fertilizer as ammoniacal nitrogen, such as ammonium chloride and 

ammonium sulfate, amide nitrogen, such as urea, and nitrate-nitrogen, such as calcium ammonium nitrate, 

which contains both ammoniacal and nitrate nitrogen. The nitrogen shortage in the soil is remedied by using 

this fertilizer. The plant will benefit the most from this fertilizer. Both plants and the earth receive nutrients 

from it [10]. 

Characteristics : 

(a) Ammonium sulfate has substantially more strength than urea. 

(b) Using nitric nitrogen at the beginning of the rice plant’s reproductive phase increases its effectiveness. 

(c) The paddy plant may absorb 30–35 of the total nitrogen after the application of ammonium nitrogen. 

But the nutrient is more readily available when fertilizers are applied at a depth of 5 to 10 cm. 

(d) It is best to avoid using acid-producing fertilizers such as ammonium sulfate, urea, nitrate, and 

ammonium chloride continuously on soil that is low in calcium and acidic. Liming should be done at least 15 

days before the crop is sown. 

(e) It is water soluble and spreads out swiftly in all directions from the site of application. Application of 

nitrogen fertilizer should be done in accordance with crop needs. 

(f) During the rainy season, any nitrogenous fertilizer is equally helpful [10]. 
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II.3.2.2 Phosphorus Fertilizer 

 
Phosphorus is found in phosphorus fertilizers as accessible phosphate. This fertilizer is essential for use 

on land. When compared to nitrogen fertilizer, it requires less [10]. 

Characteristics : 

(a) The plant’s ability to absorb nutrients is increased when phosphate and nitrogen fertilizer are used 

together. 

(b) The best fertilizers for acidic soils are phosphate fertilizers like rock phosphate and basic slag. 

(c) Phosphate compost, such as superphosphate, should be put in the soil or close to the crop roots. 

(d) In soil ranging from neutral to alkaline, superphosphate should be used. 

(e) It should be buried deep in fruit plants like citrus and apple trees [10]. 

 
II.3.2.3 Potassium Fertilizer 

 
Muriate (potassium chloride) and sulfate of potash can be used to meet the potassium requirement. A 

healthy plant needs potassium sulfate to flourish. 

With the aid of potassium, plants are able to produce carbohydrates. Potash comes in two subtypes : 

non-chloride potash and chloride potash. Examples of potash in non-chloride nature and potash in chloride 

form include sulfate potash and muriate of potash, respectively [10]. 

Characteristics 

(A) It works with all types of crops. 

(b) It may be applied to a variety of soil types. 

(c) It increases plants’ capacity for resistance. 

(d) For a range of crops, including fruit trees and potatoes, potassium sulfate is preferred to potassium 

nitrate. 

(e) It is water soluble. 

(f) It breaks down into K+ ions and is ingested by the soil. Later, the plant absorbs it. 

 
II.3.2.4 Advantages of Chemical Fertilizer 

 
Chemical fertilizer is used to restore the fertility of the soil. The massive amount of crops grown throughout 

the year causes the ground to lose its fertility. When used properly, fertilizers are extremely important for 

the growth of the crop, quality criteria, and yield. They are also important for the health of the soil. By 

supplying the nutrients it requires, fertilizer improves the soil’s nature and nutrient condition. Following are 

a few interesting points : 

1. It increases plants’ capacity for resistance. 

2. Producing superior harvests. 

3. Plant growth quickens. 
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4. Chemical fertilizer provides all the nutrients that plants need in equal amounts. 

5. Chemical fertilizer is easily absorbed by soil since it is water soluble. 

6. Chemical fertilizer does not include any extraneous ingredients. 

7. Accurate measurements of plant development are made [45]. 

 

II.4 Important Nutrients in Fertilizers 

The primary macronutrients for plants, such as nitrogen, potassium, and phosphorus, as well as a variety 

of micronutrients and additions, are found in chemical fertilizers [17]. 

 
FIGURE II.3 – Important nutrients and their chemical forms [17] 

 
In addition to oxygen, carbon, and hydrogen, plants also require appropriate amounts of other nutrients. 

Primary, secondary, and micronutrients are the several types of nutrients. 



50  

II.5 Related work 
 

 
Author Year Objective Technique Dataset Results 

[ Thorat ] 
[53] 

2023 developing an intelligent 
recommendation system 
for insecticide and ferti- 
lizer selection in smart 
farming. 

Machine learning 
techniques, (Tran- 
sition Probability 
Function  with 
Convolutional 
Neural  Network 
(TPF-CNN), KNN, 
SVM, and ANN) 

Not mentio- 
ned 

TPF-CNN   showed 
the highest accu- 
racy 94ANN accu- 
racy is 74 and 62 
, SVM accuracyis78 
and 71 , and KNN 
accuracy is 75 and 
71 

[Jayashree ] 
[18] 

2022 Developing a system to 
provide accurate and effi- 
cient fertilizer recommen- 
dations based on crop pa- 
rameters. 

Machine   learning 
(Na¨ıve Bayes, Ran- 
dom Forest, and 
Decision Tree) 

Kaggle data- 
set 

RF   achieves    the 
best accuracy is 
98, Na¨ıve Bayes 
and Decision Tree 
accuracy is 85 

[Boris Kuz- 
man .et al] 
[21] 

2021 the impact of various fac- 
tors (temperature, humi- 
dity, moisture, etc.) on the 
prediction of fertilizers. 

Adaptive neuro- 
fuzzy inference 
system (ANFIS) 

Kaggle data- 
set 

Not mentioned 

[Dr.B. Rat- 
nakath et al 
] [16] 

2021 Recommending the most 
profitable crop and sug- 
gest the optimal timing for 
fertilizer application 

Machine   learning 
techniques, (Deci- 
sion Tree, Na¨ıve 
Bayes,        Support 

Vector      Machine, 
Logistic      Regres- 
sion, Random 
Forest, and XG- 
Boost). 

Not mentio- 
ned 

Accuracy,     where 
XGBoost achieves 
the best accuracy 
result 

[Devdatta 
A. Bondre , 
Mr. Santosh 
Mahagaon- 
kar] [7] 

2019 the recommendation   of 
suitable fertilizers for spe- 
cific crops. 

Machine learning : 
Support Vector 
Machine Random 
Forest 

Dataset of 44 
samples. 

For Soil Classifica- 
tion RF accuracy is 

86.35 SVM is 73.75. 
For crop yield pre- 
diction SVM accu- 
racy is 99.47, RF 
accuracy is 97.48. 

[ Rafael 
Hernández 
Moreno.et 
all] [29] 

2018 identifying    the     basic 
nutrients in the soil((N), 
(P), (K)) determining the 
required fertilizers and 
amendments for pasture 
cultivation 

MLP (Multilayer 
Perceptron)   Ar- 
tificial  Neural 
Network (ANN), 
backpropagation 
algorithm. 

Dataset of 44 
samples. 

a threshold of 0.75 
and k-fold = 3. 

[Lavanya.et 
all] [22] 

2018 to monitor and analyze 
soil nutrients 

IoT, A   Mamdani 
fuzzy inference sys- 
tem. 

Iot based 
sensors Data 
set 

Lower Cost of sen- 
sors 

TABLE II.1 – Summary of related works. 
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II.6 Conclusion 

We have studied various documents and related works aimed at achieving better results in the field of 

fertilization. 

The study involved summarizing the major issues and proposed solutions related to fertilization. Based 

on our findings, most authors have focused on predicting the optimal timing for fertilization, while others 

have investigated the effects of fertilization on soil health and crop productivity. Additionally, some works 

have proposed innovative fertilization strategies to improve nutrient use efficiency and reduce environmental 

impacts. 

However, the majority of these studies relied on machine learning algorithms applied to recommended 

datasets, with only a few utilizing datasets collected from the field through IoT sensors specific to different 

crop types. 

Based on these results, our intention in this work is to propose an automatic fertilization system based 

on real datasets collected in the field, covering various crop types. We aim to compare the results obtained 

from this approach with those achieved by applying the same machine learning and deep learning algorithms. 

By utilizing actual field data, we hope to provide valuable insights into the effectiveness and applicability of 

these algorithms in realworld fertilization practices. 
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Proposed method 

 
III.1 Introduction 

In this chapter, we will introduce the methods, tools and processes, and steps undertaken in the research. 

The research architecture is in the first term presented then the AI model training steps and lastly, the 

machine learning method used in developing the fertilization system. 

 
III.2 Remote sensing farming system 

Generally, IoT sensors demonstrate a high level of accuracy in converting input or external signals into 

scaled output values. 

The equipment associated with IoT sensors facilitates the conversion of macroscopic scale factors such as 

soil moisture, temperature, and humidity to a measurable range for electronic systems. The quality of sensors 

can be quantitatively adjusted either directly or indirectly through the use of analytical expressions or by 

responding to environmental changes. 

Nevertheless, the implementation of smart fertilization systems faces complexity due to the absence of 

models that guide practitioners in key areas, such as IoT-based fertilizer prediction systems. However, the 

adoption and deployment of this latter can be expedited by a well-designed framework that incorporates 

advanced IoT and AI techniques. The main elements of a monitoring system encompass sensing agricultural 

parameters, identifying suitable sensing locations, collecting data, routing information from agricultural fields, 

making informed decisions and controlling actions based on the sensed data, and generating visual reports 

through smart applications. Our model’s architectural framework follows the OSI Model, which divides 

communication systems into four levels of abstraction. 

The integration of IoT technology and artificial intelligence capabilities has facilitated the establishment 

of core agricultural layers, as illustrated in Figure III.1. 
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FIGURE III.1 – The architecture of the smart fertilization system 

 
 

III.3 Architecture description 

 
III.3.1 Sensing Layer 

The sensing layer forms the physical component of the system and is tasked with monitoring the farm’s 

environment and relaying information to the server. It utilizes various sensors, including a soil moisture 

sensor, humidity sensor, temperature sensor, and NPK sensor, all strategically positioned across the field. 
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These sensors are under the control of a Raspberry Pi Pico W and Arduino Uno that communicate using 

the I2C commination protocol, which serves as the central hub for data collection. 

The Raspberry Pi collects data from the sensors and efficiently forwards it to the MQTT server for further 

processing. 

 
 

 

 
 

 
FIGURE III.2 – The components of sensor layer 

 
The following are the used sensors in our model : 

Soil Moisture Sensor 

The soil moisture sensor comprises of a pair of probes employed for gauging the volumetric water content 

in the soil. By passing current through the soil, the two probes provide a resistance value that can be utilized 

to determine the moisture level. As Figure III.3 showed. 
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FIGURE III.3 – Soil Moisture Sensor [31] 

 
DHT11 

Is a humidity and temperature sensor that generates enhanced yield that is aligned. Microcontrollers like 

Arduino, Raspberry Pi, Pico W, and others can be used with DHT11. A low-effort temperature and wetness 

sensor are the DHT11. Long-term dependability and excellent, unwavering quality are provided as shown in 

Figure III.4 [46]. 

FIGURE III.4 – DHT11 Sensor [46] 
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Soil NPK Sensor 

The NPK sensor designed for soil analysis is capable of detecting the levels of nitrogen, phosphorus, and 

potassium present in the soil. It operates within a measurement range of 0-1999 mg/kg and can be powered 

within the range of 5V-30V. As shown in Figure III.5. This sensor is connected to the Arduino Uno using 

the RS485 Auto Direction Module [31]. 

Figure III.6 shows the RS485 Auto Direction Module 
 

FIGURE III.5 – Soil NPK Sensor [31] 

 
The NPK is connected to the RS485 Auto Direction Module as follows : 

VCC : Brown wire, connected to a 12V Power Supply. 

GND : Black wire, connected to the GND of Arduino. 

B Pin : Blue wire, connected to the B pin of RS485. 

A PIN : Yellow Wire, connected to the A pin of RS485. 
 

FIGURE III.6 – RS485 Auto Direction Module 
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Arduino UNO 

The Arduino ATMega328P board has 14 digital I/O pins (6 of them for PWM) and 6 analog inputs. It 

includes a 16 MHz quartz crystal, reset button, ICSP header, and power jack. It can be powered via USB, 

AC-to-DC adapter, or battery. The Arduino is an 8-bit microcontroller with low-power CMOS technology 

and enhanced RISC architecture. Figure III.7 illustrates the Arduino implementation board. 

We used the Arduino along with the Raspberry Pi Pico W to handle the Analog outputs from the NPK 

sensor with the Arduino and subsequently relay them back to the Raspberry Pi Pico W for further processing 

and analysis [34]. 

FIGURE III.7 – Arduino UNO implementation board [34] 

 
Rasbperry Pi Pico W 

The Raspberry Pi Pico, named after its compact size, is a microcontroller board presented as a small 

green printed circuit board, resembling a stick of gum in dimensions. It features GPIO pins along both of its 

longer sides, while one of the shorter ends hosts a micro-USB connector. 

The opposite end contains a set of debugging pins, which can be utilized for advanced diagnostic purposes. 

The used sensor in this work has an additional option which is Wi-Fi chip to support networking as shown 

in Figure III.8. 
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FIGURE III.8 – Raspberry Pi Pico W 

 
The connection between the Raspberry Pi Pico W and sensors is established with electricity wires, using 

the Breadboard as an intermediary linking tool. 

Figure III.9 shows the system prototype image. All the components were connected and the functionality 

of the system was tested in the Agricultural Department. [6] 
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FIGURE III.9 – System prototype [6] 

 

III.3.2 Network Layer 

Is a crucial component responsible for the seamless transmission of data from field devices to the server. 

Its primary objective is to ensure efficient and reliable communication within the system. 

To achieve this, we rely on the MQTT (Message Queuing Telemetry Transport) protocol. 

MQTT 

IBM developed MQTT (Message Queue Telemetry Transport), a lightweight messaging protocol suitable 

for IoT applications. It operates at the application layer of the OSI model in the TCP/IP protocol stack and 

has minimal overhead with a fixed 2-byte header size.MQTT is an OASIS-based standard and follows an 

asymmetric architecture [59]. 
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FIGURE III.10 – Network layer architecture including MQTT protocol 

 
• MQTT is not only suitable for IoT but also for M2M (machine-to-machine) and WSN (Wireless Sensor 

Networks). 

• It utilizes a Publish/Subscribes model, where publishers and subscribers are MQTT clients, and the 

broker serves as the MQTT server. The broker stores published topics, and subscribers subscribe to these 

topics of interest. 

• Clients can exchange messages related to the subscribed topic. 

• This protocol is advantageous when there is a need to exchange small messages with minimal bandwidth 

usage. 

• MQTT is particularly useful in wireless network scenarios with latency issues caused by limited band- 

width. 

• The establishment of an MQTT session involves four stages : connection, authentication, communica- 

tion, and termination. 

Integrating MQTT with the network layer 

The collected data from various sensors is transmitted to the server using the MQTT protocol. This 

protocol operates on a publish-subscribe model, where field devices act as publishers and the server acts as 

a subscriber. 

The server subscribes to relevant topics to receive the published data for further processing and analysis. 

MQTT messages containing the collected data are then transmitted from the field devices to an MQTT 

message broker, which acts as an intermediary. The broker forwards these messages to the server based on 

the subscribed topics, ensuring efficient message delivery. 

By leveraging the MQTT protocol and implementing a robust network layer, the smart fertilization system 
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establishes efficient and reliable communication. 

 
III.3.3 Service Layer 

This layer includes a cloud server to enhance the platform’s capabilities. One of the key functionalities 

provided by the cloud server is data storage. As the sensing layer generates large volumes of data that cannot 

be efficiently stored on a local server alone, the presence of a cloud server expands the storage capacity of 

the platform. This enables the farmer to securely store and manage the collected data in the cloud, ensuring 

its availability and accessibility from anywhere through the internet. 

Then the stored data is processed and fed to different machine-learning models Figure III.11. 

 

FIGURE III.11 – Service Layer architecture 

III.3.3.1 Data analysis 

Machine learning workflow 

The standard steps employed in any machine learning algorithm were followed during the machine learning 

process. Figure III.12 illustrates these steps. 

 
 

 

FIGURE III.12 – Machine learning steps 
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A- Data Collection 

The initial phase of the machine learning process involved data collection, where the accuracy of the 

model depended on the quality and quantity of the data gathered. The data collection period was relatively 

brief, and regular calibration of the sensors was performed to uphold data quality throughout the process. 

B- Data Pre-processing 

In preparation for training, the collected data underwent a cleaning process. Unnecessary fields were 

removed, missing values were addressed, errors were corrected, and duplicates were eliminated. Subsequently, 

the data were transformed from JSON into CSV format and uploaded onto the cloud-based machine learning 

platform. To facilitate training, the data was divided into validation sets and training sets. 

C- Model Design 

After the preprocessing stage, the machine learning model was constructed. The selected inputs for model 

training were the raw features of soil moisture, humidity, temperature, Nitrogen, Phosphorus, and Potassium. 

Several machine-learning algorithms were chosen as the training framework such as Random forests (RF), 

Gradient boosting (GB), ADA boost, and Stacking with the intended output being a prediction for the 

required values of NPK. 

D- Model Training 

Subsequently, the model underwent training, during which various ML models were tested to determine 

the optimal training algorithm. 

E- Evaluation and Optimization 

The test data was used to evaluate the performance of the model. Furthermore, we have evaluated the 

model using the real data captured from the field to prove its effectiveness. 

 
III.3.4 Application Layer 

The application layer facilitates remote management of the fertilization process through web applications. 

The application layer ensures that farmers have a seamless and intuitive interface for accessing and visualizing 

data collected from various sensors in the field and predicting the right amount of fertilizer to use. 

First, the data was captured from the sensors, then this latter have been sent and displayed in the web 

application. In addition, the farmer can predict and manage the right amount of fertilizers by entering the 

soil and weather parameters. 
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FIGURE III.13 – Application layer architecture 

 
 

III.4 Used machine learning algorithms 

 
III.4.1 Random Forest 

The random forest is a supervised learning model that comprises a large number of decision trees. These 

decision trees serve as the base classifiers within the random forest, operating together as an ensemble. 

Therefore, random forests are often referred to as Classifier Ensembles. 

Breiman and Cutler introduced the concept of random forests in 2001. One key characteristic of this 

model is that each decision tree is constructed using a randomly selected set of parameters. This randomness 

in parameter selection introduces diversity within the ensemble of base classifiers. 

Consequently, each decision tree is independent and uncorrelated with the others. The outcome of each 

decision tree is considered as a vote, and the class with the highest number of votes is chosen as the model’s 

prediction [11]. 

 
III.4.2 Gradient boosting 

XGBoost is an enhanced version of the gradient-boosting decision tree (GBDT) model, featuring boosted 

trees that encompass both regression and classification trees. The fundamental principle behind this algorithm 

is to optimize the objective function’s value. In the context of n-labeled samples with m features, the tree 

ensemble method utilizes K additive functions to make predictions for the labels. 
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In the given context, represents the space of regression trees, while q represents the structure of each tree 

having T leaves. Each f k corresponds to an individual tree structure q and its associated leaf weight w. In 

order to acquire the set of functions within the model, XGBoost aims to minimize the following regularized 

objective. 

 

 

In addition, the loss function is represented as l, and the regularized term is denoted as . The regularized 

objective in XGBoost demonstrates slight enhancements compared to the previous gradient tree-boosting 

algorithm. The prediction of the i-th instance at the t-th iteration is denoted as y l((t) ). The ensemble model 

operates more effectively in an additive fashion. Furthermore, a second-order approximation is employed to 

accelerate the optimization process. 

 

 
 

The first-order gradient statistics on the loss function are denoted as g(i ), while the second-order gradient 

statistics are represented as h(i ). Given a fixed structure q(x), the optimal weight W and its corresponding 

optimal value can be determined by assessing the split candidates. 

To efficiently identify the optimal split, the algorithm iterates through feature values in a sorted manner, 

accumulating the gradient statistics mentioned in (4). To avoid the need for a greedy enumeration of all 

potential splits, an approximate algorithm is outlined to streamline the process [60]. 

 
III.4.3 AdaBoost 

A weak learner refers to a single decision tree with limited capabilities. Researchers have explored the 

idea of combining multiple weak learners to create a strong learner. Schapire [41] proved this concept in 1990, 

laying the groundwork for the boosting algorithm, which sequentially combines multiple weak learners. 

As depicted in Equation (3), each iteration involves adding a new tree model while eliminating the weaker 

ones, thereby gradually improving the overall model performance through iterative calculations. However, 

a challenge arises after obtaining the initial basic tree model. Some samples in the dataset are correctly 

classified, while others are misclassified. 
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The AdaBoost algorithm addresses this issue by iteratively improving the classification ability through 

continuous training. The first weak classifier is obtained by training on the initial samples, and the misclas- 

sified samples are combined with the untrained data to create a new training sample. 

This process is repeated to obtain subsequent weak classifiers. By iterating this process multiple times, 

an improved and robust classifier is ultimately obtained. The AdaBoost algorithm assigns different weights 

to the samples [13] to increase the number of correct classifications. Correctly classified samples are assigned 

relatively low weights, while the weights of misclassified samples are increased. This compels the model to 

focus more on the misclassified samples [61]. 

Figure 2 illustrates the overall computation process of the AdaBoost algorithm. During the training of 

each basic tree model, the weight distribution of each sample in the dataset needs to be adjusted. As each 

training data point changes, the training results also vary, and their summation yields the final result [42] [56]. 

 

FIGURE III.14 – AdaBoost algorithm calculation process [56] 
 
 
 

 

 
In this context, the overall model is represented as Fn (x), while the overall model obtained in the previous 

round is denoted as F(n-1) (x). 

The prediction result of the i-th tree is represented as Yi, and h(Xi ) corresponds to the newly added tree. 
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III.4.4 Stacking algorithms 

Stacking, also known as ensemble learning is a technique that involves constructing a meta-classifier or 

meta-regression to combine multiple classification or regression models. 

The initial level model undergoes cross-validation training using a comprehensive training set. Subse- 

quently, the Meta-model is trained using the output from the base-level model, yielding the outcome. As 

the basic level typically consists of diverse learning algorithms, the stacking ensemble-learning algorithm is 

typically heterogeneous. Figure 5 depicts the model structure [57]. 

 

 
FIGURE III.15 – The stacking model [57] 

 
 

III.5 Conclusion 

This chapter explains the used OSI architecture for our work ; we have mentioned the different types of 

using sensors as well as the main machine learning workflow including the definition of the utilized algorithms. 

With the aim of enhancing farming practices. In the next chapter, we will discuss and results and the 

implementation of our proposal. 



68  

 
 
 
 
 

Chapitre IV 

 
Implementation and results 
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Implementation and results 

 
IV.1 Introduction 

After presenting and discussing the theory and the details about the used approaches in the previous 

chapter, we will examine the main developed idea behind this proposal as well as the obtained results. In 

this chapter, we present the used tools including the platforms used to implement our system. In addition, 

we show the obtained results. Lastly, we give some discussions and analyses of the results of the model. 

 
IV.2 Data collection 

Due to the limited time, data used for the study was collected in collaboration with the Agricultural  

Department at the University of Biskra in Algeria. The data was collected for a brief period of 2023 ; of 

interest were soil moisture data, Humidity data, NPK data, and temperature. Microsoft Excel was used to 

format the data. This data was collected from the open field of the department on different planting crops 

such as (Melon, Barley, and Beetroot). 
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FIGURE IV.1 – Real dataset file 

 
Real dataset file 

Figure IV.1 shows a simple view of the real dataset file 

 

IV.3 Software 

Google Colab 

To train a machine learning model, a substantial amount of CPU/GPU processing power is often necessary. 

That’s why we opted to utilize the Google Colab cloud platform for this purpose. Google Colab is a research 

project developed by Google to facilitate the dissemination of machine learning education and research. With 

the Google Colab service, This platform offers high performance in terms of RAM and disk space. 

FIGURE IV.2 – Google Colab 

 
Python 

To develop the machine learning model, we utilized the Python programming language. Python is a 

high-level programming language with an interpreted nature, object-oriented design, and dynamic semantics. 

Its extensive range of libraries, dynamic typing, and high-level data structures make it an ideal choice for 

programming in the domains of AI and IoT. Here are some of the crucial libraries we employed : 

• Tensorflow Keras : are used for machine/deep learning to create and train the model. 
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• Pandas : used for various data-related tasks, including data pre-processing, data analysis, and data 

analytics. 

FIGURE IV.3 – Python 

 
MicroPython 

To develop the sensor model we have used micro python which is adequate for the type of sensors. Is a 

compact version of the Python standard library that is designed to run efficiently on different microcontrollers 

used in embedded applications It includes specific libraries tailored for various functionalities. For instance, 

there are libraries for Bluetooth, machine control, and networking. 

Within the MicroPython ecosystem, the machine module is particularly noteworthy as it provides a 

collection of specialized classes and functions related to hardware interactions on embedded boards. 

FIGURE IV.4 – MicroPython 

 
 

IV.4 System interfaces 

 
IV.4.1 Dashboard 

Real-time data visualization 

Real-time visualization allows the farmer to monitor the soil parameters from the deployed sensors in 

the field. The Raspberry Pi Pico W sends sensors’ collected information through the MQTT protocol to the  

MQTTX server. When the server receives data it stores it in the databases and then the obtained file is 

converted to a CSV file. The code snippet below indicates how Pi Pico W is programmed to send the data 

to the server : 
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FIGURE IV.5 – Raspberry Pi Pico W producer code 

 
The collected data is then displayed on the dashboard. This last receives data from the field by listening 

to the MQTTX broker, then the server automatically displays and updates the data in real-time, this task 

is illustrated in the code below : 

FIGURE IV.6 – Real-time data model 

 
The web application 

• The data is visualized on the first page of the application as shown in Figure IV.7. 
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FIGURE IV.7 – Fertilization System Dashboard 

 
• Fertilizer prediction application is managed with the machine learning model where the input were 

entered by the user then the model predicts the right amount of fertilizer to be added, and finally the 

prediction is displayed in the application as shown in Figure IV.8. 

FIGURE IV.8 – Fertilizer prediction System 
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IV.5 Fertilizer prediction 

 
IV.5.1 Experimental Results for the First Dataset 

In the first step, we have built a Predictive fertilization model using the recommended Kaggle dataset of 

fertilizers. 

Three machine learning algorithms are used, such as Random Forest, Gradient Boosting (GBoost), Adap- 

tive Boosting (AdaBoost), and the Ensemble machine learning algorithms indeed the Stacking algorithm, for 

predicting the fertilizer type based on the input parameters. 

These algorithms are used to classify data and generate a confusion matrix. Additionally, precision, recall, f1-

score, average values, and accuracy percentage are provided as output at the end. The ML model will 

predict the fertilizer based on the current input. The data preprocessing workflow is demonstrated as : 

1. Data cleaning by removing the NULL values. 

2. Data visualization and correlation study as shown in Figure IV.9. 

3. Data preparation by splitting it to train and test. 
 
 

FIGURE IV.9 – The heatmap of correlation between features 

 
After training the dataset using various algorithms based on previous research, the choice of these al- 

gorithms was motivated by the fact that many researchers commonly employed simple machine learning 

techniques such as K nearest neighbor (KNN), Decision Tree Algorithm (DT), and Na ıve Bayes Algorithm. 

However, a smaller number of researchers utilized advanced techniques such as XGBoost, ensemble machine 
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learning, and stacking machine learning. The XGBoost algorithm as seen from the graph in figure8 produces 

the most accurate result, the accuracy of XGBoost is higher than the other used algorithms, and thus, the 

given data in the project will use the XGBoost algorithm for the fertilizer prediction as shown in Figure 

IV.11. 

The Gradient Boosting algorithm exhibits robustness against outliers, making it a suitable choice for 

addressing problems involving differentiable loss functions. 

This technique proves effective for both classification and regression tasks. Additionally, Gradient Boosting 

demonstrates its capability to handle heterogeneous feature datasets proficiently 

 

 
FIGURE IV.10 – The accuracy results of different algorithms 
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FIGURE IV.11 – Confusion matrix of the XGBoost algorithms 

 

IV.5.2 Experimental Results for the Collected Dataset 

As we have mentioned before that due to the lack of available datasets, we intend for this work to collect 

data from the field, in addition, to comparing the obtained results of both the first experiments and the 

second one. 

• First the data was collected and stored in the cloud. 

• Then data preprocessing is applied to the obtained dataset. 

• Afterward correlation and data visualization are performed. 

• Finally data preparation is to be fed to several networks. 

The findings of the models trained on the gathered dataset are outlined. Notably, the used machine 

learning algorithms have demonstrated superior performance in fertilizer prediction unless the AdaBoost 

algorithm compared to the results obtained before demonstrates the effectiveness of our models and the 

validity of the gathered data. 
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FIGURE IV.12 – The accuracy results of different algorithms 
 

 

 

FIGURE IV.13 – Confusion matrix of the XGBoost algorithms 

 
Due to the obtained results where the Gradient Boosting algorithm exhibits robustness and high accuracy 

values with Random Forests, we have used this latter as a saved model to build the automatic fertilization 

web application. 

This technique proves effective results for both recommended dataset and the gathered dataset. 
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IV.6 Discussion 

The show results in this chapter prove the effectiveness of our proposal where the Gradient Boosting 

algorithm results outperformed the other using machine learning algorithms in both experiments. 

Indeed the collected dataset has proven its validity in terms of results compared to the recommended 

dataset which suffers from the lack of precision, as well as the proposed application leads the farmers to 

accurate prediction of the right amount of nutrients to avoid excessive or underuse of these nutrients and to 

manage soil and weather parameters. 

 
IV.7 Conclusion 

In this chapter, we have presented the obtained results in terms of machine learning algorithms as well as 

discussed them for both experiments. In addition, an explanation of the web application with its interfaces 

is examined. To conclude the chapter we have made a discussion of the results to prove the effectiveness of 

the proposal regarding predicting fertilizers and managing soil parameters. 
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General conclusion 

 
This project presents a proposal that utilizes machine learning algorithms to recommend appropriate 

fertilizer usage. The recommendation system optimizes the results by considering various parameters. 

This model is designed to assist farmers in obtaining specific fertilizer requirements based on different 

parameters. By utilizing this proposed system, farmers can benefit from fast and accurate fertilizer recom- 

mendations in the most cost-effective manner. The research collects agricultural data from the field and 

integrates it into a real-world agricultural dataset. 

Subsequently, a machine learning model is constructed using different algorithms for fertilization predic- 

tion. The predictive model leverages real input information captured from sensors and incorporates inputs 

from the recommended dataset to achieve accurate prediction results. 

The predictive model enables the computation of optimal fertilizer application amounts for various types, 

effectively preventing environmental harm caused by excessive fertilization. 

By promoting rational and productive fertilizer usage, this model aids farmers and managers in reducing 

fertilizer pollution while simultaneously maintaining or enhancing agricultural production. The predictive mo- 

del enables the computation of optimal fertilizer application amounts for various types, effectively preventing 

environmental harm caused by excessive fertilization. 

By promoting rational and productive fertilizer usage, this model aids farmers and managers in reducing 

fertilizer pollution while simultaneously maintaining or enhancing agricultural production. As a future exten- 

sion, we aim to expand the scope of our project by developing a mobile application that incorporates image 

processing techniques. 

This application will serve as a valuable tool for farmers, enabling them to diagnose crop diseases accura- 

tely. Furthermore, we intend to incorporate other essential agricultural factors, including irrigation and pest 

management, into the application. This comprehensive approach will provide farmers with a holistic solution 

to address various challenges in crop cultivation and management. 
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