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Abstract

The development of the traditional electrical grid into the smart grid has lead to need
for modern energy management systems that takes into consideration the variability of
renewable energy and electrical loads that have an intermittent nature and need to be
forecasted. For this reason, artificial intelligence can play a pivotal role in the control and
monitoring of the smart grid.

This project aims to provide an Al-based solution for smart grid in order to improve
the energy cost and electricity consumption price. To achieve this aims, we propose to
develop aload forecasting method at the distribution level in order to reduce energy cost.
We propose also to develop an electricity price forecasting method at the consumption
level in order to reduce electricity consumption cost. During this study, the LSTM model
is selected as the best model for performing time-series forecasting.

In order to show the accuracy of the proposed forecasting models, a comparative study
is provided between the developed model (LSTM) and other existing methods such as

FNN and GRU. Furthermore, In order to demonstrate the e.lectiveness of the proposed
solution, simulation tests of smart grid network is carried which shows a significant gain
in terms of energy cost and electricity price.
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Résumeé

Le développement du réseau électrique traditionnel vers le réseau électrique intelligent
a conduit a la nécessité de systemes modernes de gestion de I’énergie qui prennent en
considération la variabilité des énergies renouvelables et des charges électriques qui ont un
caractére intermittent et doivent €tre prévues. Pour cette raison, 'intelligence artificielle
peut jouer un role central dans le controle et la surveillance du réseau électrique intelligent.

Ce projet vise a fournir une solution basée sur I'lA pour les réseaux intelligents afin
d’améliorer le coflit de I’énergie et le prix de la consommation d’électricité. Pour atteindre
cet objectif, nous proposons de développer une méthode de prévision de charge au niveau
de la distribution afin de réduire les colits énergétiques. Nous proposons également de
développer une méthode de prévision du prix de I’électricité au niveau de la consommation
afin de réduire le colit de la consommation d’électricité. Au cours de cette étude, le modéle

LSTM est sélectionné comme le meilleur modeéle pour edJectuer des prévisions de séries
chronologiques.

Afin de montrer la précision des modeles de prévision proposés, une étude comparative
est fournie entre le modele développé (LSTM) et d’autres méthodes existantes telles que

FNN et GRU. De plus, afin de démontrer I'efficacité de la solution proposée, des tests de
simulation de réseau intelligent sont eJectués, ce qui montre un gain significatif en termes
de colit de I’énergie et de prix de I’électricité.
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General introduction

A smart grid system refers to an advanced electrical grid that incorporates modern com-

munication, computing, and control technologies to enhance the efficiency, reliability, and
sustainability of electricity generation, transmission, distribution, and consumption. It
is an evolution of the traditional electrical grid that enables two-way flow of information
and power between utilities and consumers.

The primary goal of a smart grid system is to optimize the operation of the entire electric-
ity ecosystem, from power plants to end-users, by leveraging real-time data, automation,
and intelligent decision-making. Here are some key components and features of smart
grid systems:

+ Advanced Metering Infrastructure (AMI): Smart grid systems often involve the de-
ployment of smart meters, which provide detailed information about electricity con-
sumption at individual homes or businesses. These meters enable two-way com-
munication, allowing utilities to gather accurate real-time data and consumers to

monitor and manage their energy usage more eJectively.

- Distributed Energy Resources (DERs) Integration: Smart grid systems accommo-
date the integration of diverse distributed energy resources, such as solar panels,
wind turbines, energy storage systems, and electric vehicles. These resources can be
seamlessly connected to the grid and managed in a coordinated manner, allowing
for better utilization of renewable energy and improving grid stability.

+ Demand Response and Load Management: Smart grids facilitate demand response
programs that encourage consumers to adjust their electricity usage during periods
of high demand or supply constraints. Through pricing signals or automated control
systems, consumers can reduce or shift their electricity consumption, helping to
balance the grid and optimize its utilization.

+ Energy Management and Optimization: Smart grid systems enable advanced energy
management techniques, utilizing data analytics, machine learning, and optimiza-
tion algorithms. These tools help utilities and consumers make informed decisions

about energy production, consumption, and storage, leading to improved efficiency
and cost savings.

+ Cybersecurity and Resilience: With increased connectivity and data exchange,
smart grid systems emphasize robust cybersecurity measures to protect against po-
tential cyber threats and unauthorized access. Ensuring the resilience and reliability
of the grid infrastructure is of utmost importance to maintain a secure energy supply.

The deployment of smart grid systems o —lers numerous benefits, including reduced energy
waste, increased integration of renewable energy sources, improved outage management,
lower operational costs, and enhanced consumer engagement in energy management. By
transforming the traditional electrical grid into an intelligent and interactive network,

smart grids pave the way for a more sustainable, efficient, and reliable electricity future.
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Problem statement

The main problematic of this project is to improve energy management of smart grid at
distribution level and consumption level. Due to the intermittent nature of smart grid
that is based on renewable energy and electrical loads, a prediction method should be
used.

+ A load forecasting method should be developed in order to predict electrical loads
in order to reduce energy cost.

+ An electricity price forecasting method should be developed in order to predict
electricity price in order to reduce electricity consumption cost.

Contributions

The contributions of this project are:

+ A load forecasting method is developed based on LSTM model which is advanced
form of recurent neural networks.

+ An electricity price forecasting method is developed which is based on LSTM model
that is the best for tim-series forecasting.

+ Simulation tests are carried on a real smart grid network in order to demonstrate

the e Jectiveness of the proposed Al-based solution for energy management in smart
grid.

Thesis structure

This thesis is organized as follows:

+ Chapter 1 introduces the concepts of smart grid and energy management. In addi-
tion, chapter 1 defines the key components of the smart grid.

+ Chapter 2 provide an introduction about the artificial inteligence and its applica-
tion in smart grid. Furthermore, chapter 2 reviews some related work on artificial
intelligence in smart grid.

+ Chapter 3 designs our model for improving energy management in smart grid. Chap-
ter 2 provide mathematical formulation of smart grid in both distribution and con-
sumption level and shows the developed LSTM model for load and electricty price

forecasting.

+ Chapter 4 provide the code for developing our Al-based solution and the related
results. It provide also simulation results of smart grid after working with the
proposed LSTM model.
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1 Smart Grid concepts

Introduction

A smart grid is a modernized electrical grid that uses digital communication tech-

nology to improve the efficiency, reliability, and sustainability of electricity generation,
transmission, and distribution. It is an advanced system that integrates renewable energy
sources, energy storage, and advanced metering infrastructure to provide better control
and management of the electricity network (1) .

Smart grids enable two-way communication between electricity producers and consumers,
allowing for real-time monitoring and optimization of energy usage. This results in in-
creased energy efficiency, reduced power outages, and improved system reliability (2).
Moreover, smart grids can also support the integration of electric vehicles, which can be
used as a distributed energy resource to provide grid services such as frequency regulation,
load balancing, and peak shaving (3).

Smart grids also oer numerous benefits for utilities, such as reducing operational costs,
improving asset management, and enabling predictive maintenance (4).

Smart grids have gained widespread attention and support from governments, utilities,
and industry stakeholders worldwide. Many countries have already initiated smart grid
programs and projects to accelerate the deployment of this technology (5).

So in this chapter, we will discuss concepts related to the smart grid, its components, and
how energy is managed.

Smart Grid Composition

A smart grid is a modernized electrical grid that uses advanced technologies to efficiently
manage and optimize the generation, distribution, and consumption of electricity. The
composition of a smart grid includes several key components, including:

bus

In a smart grid, a bus is a node that connects dilerent electrical components, such as
transformers, generators, and loads, to form a power network. It acts as a central point

where multiple electrical connections converge and distribute power to dilerent parts of
the grid (6).

A node, on the other hand, is a point in the smart grid network where di lerent elec-
trical components are connected. It can be a substation, distribution automation device,
advanced meter, energy storage system, or home energy management system. Nodes can

communicate with each other and exchange information to optimize the performance of
the grid (7).

Transmission lines

Transmission lines are a critical component of the smart grid infrastructure. They are
the high-voltage power lines that carry electricity over long distances from power plants



Al-based Energy management system for smart grid network

to distribution substations, where the voltage is stepped down for distribution to homes
and businesses (8).

In a smart grid, transmission lines are equipped with sensors and monitoring devices
that enable real-time monitoring of the flow of electricity and the health of the trans-
mission infrastructure. This data is transmitted to a central control system, where it is
analyzed to optimize the flow of electricity, detect and isolate faults, and manage conges-
tion on the grid (9).

Overall, transmission lines play a crucial role in the composition of the smart grid,

enabling the reliable and efficient delivery of electricity to consumers while facilitating
the integration of renewable energy sources and other distributed energy resources.

Figure 1: Examples of a Transmission lines

Generator

A generator is a key component of the smart grid infrastructure, responsible for pro-
ducing electricity that can be distributed to homes and businesses.

In the traditional power grid, most electricity is generated at centralized power plants
and transmitted over long distances to distribution substations before being distributed
to end-users. In a smart grid, however, generators can include a variety of distributed
energy resources (DERs) that are located closer to where the electricity is needed, such
as solar panels, wind turbines, and small-scale generators (10).

The smart grid includes technologies that enable better control and integration of these

DERs into the overall grid, making it possible to more e Jlectively manage the variability
and intermittency of renewable energy sources. For example, advanced control systems
can enable generators to respond quickly to changes in energy demand and supply, while
energy storage systems can help balance the supply and demand of electricity (11).
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Overall, generators play a crucial role in the composition of the smart grid, helping to
provide a more reliable, sustainable, and cost-e ective supply of electricity to consumers.

Figure 2: Examples of a Generator

Load

Load is another important component of the smart grid infrastructure. It refers to
the amount of electricity that is consumed by homes, businesses, and other end-users
connected to the grid.

In a traditional power grid, load is typically managed through the use of centralized
power plants that generate electricity at a steady rate to meet the expected demand.
However, in a smart grid, load management is more flexible and dynamic, thanks to the
integration of advanced sensors, control systems, and communication technologies.

With these technologies, the smart grid can better monitor and respond to changes in
load, adjusting the supply of electricity to match the demand in real-time. For example,
smart meters can provide detailed information on energy consumption patterns, allowing

consumers and utilities to identify opportunities for energy savings and more efficient use
of electricity.

Load management is also important for integrating renewable energy sources, which are
often intermittent and variable in their output. By better matching the supply and de-
mand of electricity, load management technologies can help ensure that renewable energy

sources are used e lectively and efficiently (12).
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Overall, load management is a crucial part of the composition of the smart grid, helping
to ensure the reliability, efficiency, and sustainability of the electricity supply.
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Figure 3: Smart Grid Composition

Smart Grid Levels

Smart grids typically have four levels:

Generation level

The generation level of the smart grid represents the initial phase of the electricity supply
chain, wherein power is generated using diverse energy sources like coal, natural gas,
nuclear, hydro, wind, solar, and other renewables. Its fundamental objective is to produce

electricity in an efficient, cost-e Jective, and sustainable manner. The integration of smart
grid technologies holds immense potential for enhancing the generation level by facilitating

the incorporation of renewable energy sources and improving the overall efficiency of
conventional power plants.
Advanced sensors and control systems stand as prime examples of technologies that can

bolster the efficiency of power plants. By optimizing fuel consumption, reducing emissions,
and minimizing downtime, these intelligent systems enable power plants to operate more

efficiently. Through real-time monitoring and precise data analysis, smart grid technolo-

gies empower operators to make informed decisions, thereby maximizing the efficiency
of the generation process. This not only leads to cost savings but also contributes to

environmental sustainability by reducing carbon emissions.
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Moreover, smart grid technologies play a crucial role in achieving a balance between
supply and demand. Demand response programs are a prime illustration of how the smart
grid can achieve this equilibrium. These programs encourage consumers to curtail their
electricity usage during periods of peak demand. By utilizing price signals and incentives,
consumers can adjust their energy consumption habits, e Jectively reducing strain on
the grid. Consequently, this mitigates the need for costly infrastructure expansion and
promotes a more sustainable and reliable energy supply. Additionally, the integration

Figure 4: Generation level

of renewable energy sources is a key focus of the generation level in the smart grid.
The variability and intermittency of renewable sources like wind and solar power pose

challenges to grid stability. However, smart grid technologies oJer solutions to address
these challenges. Advanced forecasting models, coupled with real-time monitoring and

control systems, enable grid operators to efficiently integrate renewable energy sources
into the generation mix. By optimizing the utilization of renewable sources, the smart
grid promotes the transition to cleaner and more sustainable energy systems.

In summary, the generation level of the smart grid is the initial stage of the electricity
supply chain, encompassing the production of electricity from diverse energy sources. The

integration of smart grid technologies enables the efficient integration of renewable energy
sources, enhances the efficiency of traditional power plants, and facilitates a balanced

supply-demand relationship. By maximizing efficiency, reducing emissions, and promoting
the use of clean energy sources, the generation level of the smart grid contributes to a

more sustainable and resilient energy infrastructure.

Transmission level

The Transmission level stands as the second tier within the framework of the smart grid.

This level plays a vital role in the efficient and reliable transportation of high-voltage
electricity over long distances, spanning from the generation level to the distribution
level. It encompasses a network of high-voltage transmission lines, transformers, and
various equipment explicitly designed to transmit substantial amounts of electricity across
extensive distances.
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The integration of smart grid technologies holds the potential to enhance the performance
of the transmission level by enabling real-time monitoring and control of the transmis-
sion network. Phasor measurement units (PMUs) serve as a notable example of such
technologies. These units provide high-resolution data on the status and condition of
the transmission network, equipping utilities with valuable insights to swiftly detect and
respond to potential issues. By obtaining accurate and up-to-date information, utilities
can proactively address any anomalies or disturbances, thereby minimizing downtime and
optimizing the reliability of the transmission infrastructure.

Figure 5: Transmission level

Moreover, advanced transmission control systems play a pivotal role in optimizing the uti-
lization of the transmission network. By facilitating more efficient and reliable power flow,

these systems contribute to maximizing the capacity and e lectiveness of the transmis-
sion infrastructure. Furthermore, the integration of renewable energy sources is another

aspect that can be improved at the transmission level. The intermittent nature of renew-
able sources, such as wind and solar power, can be eectively managed through smart

grid technologies. By enabling the seamless integration of these intermittent sources, the
transmission level supports a more robust and sustainable energy mix.

Furthermore, the transmission level of the smart grid can serve as a catalyst for the
development of new transmission infrastructure. An example of such infrastructure is

high-voltage direct current (HVDC) lines. These advanced transmission lines oler en-

hanced efficiency and lower losses compared to traditional alternating current (AC) lines.
HVDC lines have the capability to transmit renewable energy generated in remote areas

to densely populated urban centers, enabling the efficient long-distance transportation of
clean energy. This infrastructure expansion is essential for unlocking the full potential of

renewable resources and supporting the transition to a greener and more decentralized
energy system.

In summary, the Transmission level within the smart grid architecture plays a critical role
in transporting high-voltage electricity over long distances. The integration of smart grid
technologies enhances this level by enabling real-time monitoring and control, optimizing
power flow, improving the integration of renewable energy sources, and facilitating the
development of new transmission infrastructure. By leveraging these advancements, the

transmission level contributes to a more resilient, efficient, and sustainable electricity
transmission network.
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Distribution level

The third level where the electricity is generated at the power plants and is transmitted
to the substations. The substations are responsible for controlling and monitoring the
distribution of power to individual consumers. Smart grid technologies can improve the
distribution level by enabling real-time monitoring and control of the distribution net-
work. For example, advanced sensors and smart meters can provide real-time data on
energy usage and grid conditions, which can help utilities detect and respond to outages
and other issues more quickly. Moreover, advanced distribution automation systems can

o TRANSFORMERS e DISTRIBUTION
SUBSTATION

Figure 6: Distribution level

help optimize the distribution network, by enabling automatic switching of power lines,
voltage regulation, and load balancing. These systems can also improve the integration
of renewable energy sources, by enabling the smooth integration of intermittent sources
such as solar and wind.

Finally, the distribution level of the smart grid can also facilitate the integration of dis-
tributed energy resources (DERs) such as rooftop solar panels, energy storage systems,
and electric vehicles. By enabling two-way communication and control between these
resources and the grid, utilities can better manage the supply and demand of electricity
and maximize the use of renewable energy sources.

Consumption level

The consumer level of the smart grid represents the portion of the electrical grid that
directly involves end-users, encompassing both households and businesses. This facet of
the grid is commonly referred to as the "smart home” or "smart building” concept, with
the primary objective of granting consumers greater control over their energy consumption
and expenses. At the heart of the consumer level lie smart meters, advanced digital devices
employed to measure and monitor the electricity usage of consumers. These cutting-edge
meters provide real-time information regarding energy consumption, equipping consumers
with valuable insights and enabling them to make informed decisions about their energy
usage. Armed with precise and up-to-date data, consumers can identify energy-intensive
activities and modify their behavior accordingly, optimizing efficiency and reducing waste.
Furthermore, smart meters facilitate remote management of electricity flow to consumers’
premises, allowing for features such as on-demand disconnection and reconnection. These

capabilities e ectively curb unnecessary energy usage, resulting in cost savings.
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Figure 7: Consumption level

In addition to smart meters, the consumer level of the smart grid incorporates a diverse
range of intelligent devices and appliances. For instance, smart thermostats empower
users to control and schedule the temperature settings of their heating and cooling sys-

tems, promoting energy efficiency. Smart lighting systems o.Jer automated lighting con-
trol and energy-efficient options, optimizing electricity usage in the realm of illumination.
Moreover, various smart appliances, such as refrigerators, washing machines, and dish-
washers, can be seamlessly integrated into the smart grid ecosystem. This integration
allows users to remotely control and schedule the operation of these appliances, thereby
enabling efficient energy usage.

Communication technologies serve as the bridge between these devices and appliances at
the consumer level and the broader smart grid. Through smartphone apps or other digital
interfaces, consumers gain the ability to monitor and manage their energy consumption
from any location. This newfound capability empowers users to adapt their energy usage
based on personal preferences, time-of-use pricing, and the overall energy demand within
the grid. As a result, consumers can reduce costs and lessen their environmental impact
by optimizing energy usage. In conclusion, the consumer level of the smart grid provides
numerous benefits to end-users. Through the utilization of smart meters, interconnected
devices, and appliances, consumers are empowered to make informed decisions, optimize
their energy usage, and actively contribute to a more sustainable and efficient electrical
grid. By fostering greater control and awareness, the consumer level of the smart grid
paves the way for a more energy-conscious society.

Smart Grid Global Architecture

There are two types of architecture for a smart network :
the first one electrical architecture :

The architecture of modern smart grids shifted from the centralised one to one that
is highly distributed. After the appearance of distributed energy sources, the smart grid

10
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network becomes more and more autonomous and self-healing, thanks to the improvement
of energy availability and reliability.

The figure shows the global architecture of the smart grid network which consists of
four level that are generation, transmission, distribution and consumption. Electricity
generation, transmission and distribution

The power generation begins at generation parks With huge power plants such as
nuclear, thermal or hydro power plants.

The power is transferred then in high voltage to transmission consumers such as large
factories. The power is then transformed in medium voltage in transmission substations
and transferred to sub-transmission consumers such as huge buildings.

The power then is transformed in Low voltage in distribution substations and trans-
ferred to Low voltage consumers such as smart homes.

Generation parks || Transmission . and, Distribution levels |1 Consumption

T?f? -
Power plant !_! | : 3
.Nuclear P 1 '—\ T -\7.
Thermal -1 By / 3 \ ®

Hydraulic , High voltage Factoris

lh\
P =
-1 Ill
=
5

— / \

Wind energy

Medium volt )
I l , € IUT voeE Huge buildings Qﬁ

Lowﬁ iévoltage

Smart homes

Control center

Figure 8: Smart Grid global architecture

and the second one physical architecture :

The Smart Grid Global Architecture is a conceptual model that describes the dilerent
components and interactions of a smart grid. It is divided into three main layers: the
layer, the communication layer, and the application layer.

11
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The physical layer is responsible for the transmission and distribution of electricity. It
includes the power generation facilities, the transmission lines, and the distribution lines.

The communication layer is responsible for the exchange of information between the

dilerent components of the smart grid. Itincludes the smart meters, the sensors, and the
communication networks.

The application layer is responsible for the use of the information that is exchanged in
the communication layer. It includes the applications that are used to manage the grid,
to control the demand for electricity, and to provide new services to customers.

The Smart Grid Global Architecture is a complex system that is still under develop-
ment. However, it has the potential to revolutionize the way that electricity is generated,
transmitted, and distributed.

Here are some of the benefits of the Smart Grid Global Architecture:

Increased efficiency: The Smart Grid Global Architecture can help to improve the
efficiency of the power grid by reducing losses and improving the reliability of the grid.

Reduced costs: The Smart Grid Global Architecture can help to reduce the costs of
electricity by making the grid more efficient and by providing new services to customers.

Increased security: The Smart Grid Global Architecture can help to improve the secu-
rity of the power grid by making it more difficult for hackers to disrupt the grid.

Increased sustainability: The Smart Grid Global Architecture can help to increase the
sustainability of the power grid by making it easier to integrate renewable energy sources
into the grid.

The Smart Grid Global Architecture is a promising technology that has the potential
to improve the efficiency, reliability, security, and sustainability of the power grid.

Control and monitoring

Control and monitoring are critical components of the smart grid infrastructure, enabling
real-time management of the flow of electricity and the health of the grid.

Control systems use advanced algorithms and models to optimize the operation of the
grid, taking into account factors such as energy demand, the availability of renewable
energy sources, and the condition of transmission and distribution infrastructure. These
systems can automatically adjust the supply and demand of electricity to maintain a sta-
ble and reliable grid, and they can also detect and isolate faults or other problems before

12
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they lead to outages or other disruptions.

Monitoring systems use a variety of sensors and communication technologies to provide
real-time data on the performance of the grid, including information on energy flows,
voltage levels, and the health of individual components such as transformers or circuit
breakers. This data is analyzed by control systems and used to inform decisions about the
operation of the grid, such as which generators to dispatch or which lines to de-energize
in the event of an outage.

Together, control and monitoring systems enable a more flexible, dynamic, and respon-
sive grid that can adapt to changes in energy demand and supply, while also providing
greater visibility and control over the health of the infrastructure. This helps to ensure
the reliability, efficiency, and resilience of the electricity supply, while also enabling the
integration of new technologies and renewable energy sources.

Energy Management

Energy management for a smart grid involves the implementation of strategies and

technologies that enable efficient and reliable distribution, monitoring, and utilization of
energy. Here are some Key aspects of energy management for a smart grid:

1-Demand Response: A smart grid should be able to balance energy demand and
supply by managing consumption during peak periods. Demand response is a key strategy
to achieve this balance, which involves incentivizing consumers to adjust their energy
consumption during peak periods.

2-Energy Storage: Energy storage systems like batteries can help to store excess energy
produced during low-demand periods and release it during peak demand periods. This
can help to balance the supply and demand of energy and increase the reliability of the
grid.

3-Distributed Energy Resources (DERs): DERs such as solar panels, wind turbines,

and microgrids can be integrated into a smart grid to increase the efficiency of energy
distribution and utilization. They can also help to reduce the dependence on centralized
power plants.

4-Advanced Metering Infrastructure (AMI): AMI allows for the collection of real-time
data on energy consumption, which can help to optimize energy management strategies

and improve the efficiency of the grid.

5-Artificial Intelligence (AI): Al can be used to analyze energy consumption data and
predict future demand, which can help to optimize energy management and reduce costs.
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Energy Management Concepts

Energy Audit: An energy audit involves a comprehensive assessment of energy con-
sumption patterns, identifying areas of energy waste, and suggesting measures for im-
provement. It helps in understanding the energy usage and finding opportunities for
energy conservation.

Energy Efficiency: Energy efficiency focuses on reducing energy consumption while
maintaining the same level of output or service. This involves implementing measures like

upgrading to energy-efficient appliances, optimizing system operations, using insulation,
and adopting energy-efficient lighting solutions.

Demand-Side Management (DSM): DSM involves strategies and techniques to influence
consumer energy usage patterns. It aims to reduce peak demand and overall energy
consumption through measures like time-of-use pricing, demand response programs, and

incentives for energy-efficient behavior.

Renewable Energy: Integrating renewable energy sources, such as solar, wind, hydro, or
geothermal power, into energy systems is a key concept in energy management. It helps
reduce reliance on fossil fuels, lowers greenhouse gas emissions, and promotes sustainable
energy generation.

Energy Monitoring and Controls: Implementing energy monitoring systems and con-
trols allows real-time tracking and analysis of energy consumption. This helps identify
areas of high energy use, detect anomalies, and optimize energy usage through data-driven
decision-making.

Energy Conservation: Energy conservation involves minimizing energy waste and un-
necessary consumption by implementing various measures, such as insulation, efficient

HVAC systems, energy-efficient building design, and behavioral changes like turning o I
lights when not in use.

Energy Management Systems (EMS): EMS refers to the use of technology and software
tools to monitor, control, and optimize energy consumption in buildings or industrial
facilities. It includes features like energy data analysis, automated controls, and reporting

functionalities to support e Jective energy management.

Life Cycle Cost Analysis (LCCA): LCCA evaluates the total cost of a system or equip-
ment over its entire life cycle, considering not just the initial investment but also opera-
tional costs, maintenance expenses, and energy consumption. It helps in making informed

decisions by considering long-term financial and energy efficiency factors.
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Energy Policy and Regulation: Energy management concepts also include understand-
ing energy policies, regulations, and standards set by governments or industry bodies.

These policies provide guidelines for energy efficiency, renewable energy integration, emis-
sions reduction, and promote sustainable energy practices.

Related Work on Energy Management

The work in (13) discusses the integration of renewable energy resources, plug-in elec-
tric vehicles, and energy storage systems into the power grid to address the global energy

crisis and promote sustainable practices. It emphasizes the need for an efficient energy
management system (EMS) to regulate the flow of energy e ectively. The paper highlights
challenges posed by the variability and volatility of renewable energy sources, uncertain-
ties associated with plug-in electric vehicles, fluctuating electricity prices, and changing
load patterns. It stresses the role of the EMS in coordinating the sharing and trading of
energy, ensuring cost-e Jective supply, and maintaining the reliability, security, and effi-
ciency of the power system.

A comprehensive analysis of the EMS framework, objectives, architecture, benefits, and
challenges is conducted. The paper explores distributed energy resources and programs
like demand response and power quality management implemented within the EMS. It
also examines uncertainty quantification methods and optimization techniques employed
to achieve various objectives under multiple constraints. The paper provides recommen-
dations for research and development to advance optimized energy management systems
applicable to di lerent domains. It serves as a valuable resource by o lering a comprehen-
sive analysis of stakeholders, distributed energy resources, programs, uncertainty quan-
tification methods, and optimization techniques.

Additionally, this paper reviews the energy management systems in the context of the
smart grid, discussing control architectures, stakeholders, uncertainties, and challenges.
It emphasizes the importance of advanced metering, communication, and the Renewable
Energy Management System (REMS). The need to address uncertainty, ensure security

and privacy, and enhance cost-e lective smart grid networks is highlighted. Overall, the
paper underscores the significance of the EMS in achieving efficient and sustainable op-

eration of the smart grid. It provides insights into various aspects of the EMS and o lers
recommendations for future research and development.

The research work in (14) introduces a novel software called cooperative energy man-
agement software (EMS) that aims to enhance the functioning of networked microgrids
(MGs). The software explicitly models the cooperative behavior of MGs, allowing them
to autonomously organize themselves into multiple stable coalitions. The primary objec-
tive of these coalitions is to facilitate efficient and cost-e Jective energy exchange among
the participating MGs. Within each coalition, multiple MGs collaborate by engaging
in energy trading with competitive pricing strategies, thus maximizing their individual
utility.

To address the energy management problem in networked MGs, we propose a coalition
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formation game between MGs. We develop a merge-and-split-based coalition formation
(MSCF) algorithm, which ensures the stability of the formed coalitions and maximizes the
profits of the MGs. Additionally, an intra-coalition energy transfer (ICET) algorithm is
designed to enable energy exchange between MGs within the same coalition, minimizing
power loss.

Through simulation experiments, we demonstrate the e Jectiveness of the proposed co-
operative energy management software. The results reveal a significant improvement in
profit maximization, exceeding 21%, and a substantial reduction in power loss, surpassing
51%. These findings highlight the considerable benefits of implementing the cooperative
energy management software in networked microgrids.

The work in (15) discusses the components of a smart home system, including hardware,
software algorithms, network connections, and sensors. It explains how these components
work together to provide various services. The development of a smart grid enables res-
idents to schedule their electricity usage and reduce costs. Energy management at the
household level considers environmental impact and supports residents’ lifestyles. This
paper examines commercial and technical reasons for managing energy at the household
level. Commercially, it allows passive residential customers to participate actively in the
energy market. Technical aspects include peak shaving, valley filling, load shifting, flexi-
ble load curves, strategic conservation, and load growth. Socio-economic impacts are also
important to consider.

It reviews the concept of energy management systems for residential customers, discussing
technological approaches and major components. Concerns and challenges associated with
smart technologies, including cost, implementation, and privacy issues, are discussed. The
paper explores electricity pricing and demand-side management for residential customers.
It highlights the inefficiency of current pricing models and introduces various pricing
models to align retail prices with wholesale prices. The goal is to incentivize users to shift
high-load appliances to o!-peak hours, reducing costs and load demand. Demand-side
management programs, including conservation, energy efficiency, and load management,

are introduced. The need for practical solutions to shift high-power appliances to o l-peak
hours is emphasized. Demand response as a means to lower electricity use during high

prices or reliability issues is discussed.

This work also presents a classification of demand response activities and favors incentive-
based programs. An algorithm is proposed to manage power-intensive loads in a house
based on peak reduction targets and user preferences. To implement demand response, a
fully automated solution called auto-DR is necessary. Home Energy Management systems
play a significant role in this regard. The paper concludes by emphasizing the importance
of home energy management systems in reducing environmental impact and supporting
human lifestyles. Technical and economic aspects are considered, and challenges are
addressed. A framework for future energy management systems is proposed.

The work in (16) presents a multi-agent based solution for smart grid to improve the
cyber-physical security. This work identifies false data injection attacks in smart grid
by performing a real-time sensitivity analysis which check for abnormalities in the smart
grid.
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Conclusion

In conclusion, smart grids represent a significant advancement in the energy sector,

o ering numerous benefits for consumers, utilities, and society as a whole. As the demand
for electricity continues to grow, the deployment of smart grids will play a vital role in
ensuring a sustainable and reliable energy supply for the future.

In order to achieve better results in terms of energy cost and energy availability, Al-
based solutions present a great potential for smart grid systems as a developped cyber-
physical system. Artificial intelligence can play a pivotal role in the smart grid at their

diJerent levels to improve the overall performance of the grid.
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2 Smart Grid and Artificial Intelligence

Introduction

The integration of Artificial Intelligence (Al) in the field of energy management has led
to significant advancements in the development of smart grids. Smart grids, as the next
generation of power systems, aim to optimize the generation, distribution, and consump-
tion of electricity by leveraging intelligent technologies. With the increasing demand for
clean and sustainable energy solutions, the application of Al in smart grids holds great
promise for revolutionizing the energy sector. This essay explores the intersection of Al
and smart grids, highlighting the benefits, challenges, and future prospects of this dynamic
combination.

Artificial Intelligence

Artificial intelligence encompasses a broad domain that encompasses multiple perspectives
and diverse definitions. In essence, it involves a range of techniques intended to create
machines capable of performing specific tasks and addressing human challenges. Artificial
intelligence can be seen as the integration of methodologies that enable the development of
machines with problem-solving abilities, designed to fulfill specific objectives. According

to Turing:“What makes it difficult to distinguish between a task performed by a human
being or a machine”.

Al has captured our imaginations and has been a topic of research since a group of
computer scientists coined the term at the Dartmouth Conferences in 1956, giving birth
to the field of Al. Throughout the years, Al has been praised as the key to a prosperous
future for our civilization, while also being dismissed as a far-fetched idea by some skeptics
in the tech industry. However, it wasn’t until 2012 that Al started to gain traction and
prove its potential. In recent years, Al has experienced a significant surge, particularly
since 2015. This can be attributed to the widespread availability of GPUs, which have
made parallel processing faster, more aJordable, and more powerful. Additionally, the
explosion of data in various forms (thanks to the Big Data movement) such as images, text,
transactions, and mapping data, combined with practically limitless storage capabilities,
has contributed to this Al revolution.

Computer scientists transitioned from a period of relative disappointment before 2012,
to a flourishing era where Al applications are now utilized by millions of people world-
wide on a daily basis. During the summer conference of 1956, the vision of Al pioneers
revolved around constructing sophisticated machines, utilizing the emerging computers
of that time, which would possess human-like intelligence. This concept, often referred
to as "General Al,” involves creating extraordinary machines that not only replicate our
senses but also possess reasoning abilities identical to our own. We have witnessed these
machines portrayed extensively in movies, both as friendly companions like C-3PO and as
formidable adversaries like The Terminator. However, General Al has remained confined
to the realms of fiction and science fiction novels for a valid reason—we have not been
able to achieve it yet, or at least not to the desired extent.
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Figure 9: Al over time

Instead, what we have been able to accomplish thus far falls under the category of
"Narrow AL” Narrow Al encompasses technologies capable of performing specific tasks
as well as, if not better than, humans. Examples of narrow Al include image classification
on platforms like Pinterest and facial recognition on Facebook.

These practical applications of Narrow Al demonstrate certain aspects of human intel-
ligence. But how does it work? Where does this intelligence originate from? This brings
us to the next concept, known as machine learning.

Machine Learning

At its core, machine learning involves the utilization of algorithms to analyze data, acquire
knowledge from it, and subsequently make determinations or predictions about various
aspects of the world. Instead of manually coding software routines with specific instruc-

tions to accomplish a particular task, machine learning takes a dilerent approach. It
involves training the machine by exposing it to extensive amounts of data and employing
algorithms that enable it to learn how to perform the given task.

The concept of machine learning originated from the minds of early Al researchers.
Throughout the years, various algorithmic approaches have been developed, including
decision tree learning, inductive logic programming, clustering, reinforcement learning,
and Bayesian networks, among others. However, none of these approaches managed to
achieve the ultimate objective of General Al, and even achieving Narrow Al remained
largely challenging with early machine learning methods.
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Deep Learning

The advent of deep learning has revolutionized the practical applications of machine
learning and has had a significant impact on the broader field of Al Deep learning ap-
proaches have enabled the breakdown of complex tasks into manageable components,
thereby making various forms of machine assistance not only feasible but also highly
probable. Driverless cars, enhanced preventive healthcare measures, and even improved
movie recommendations are already a reality or within close reach. Al is undeniably the
present and the future, and with the assistance of deep learning, it may even bring us
closer to the realm of science fiction that we have long envisioned. The idea of having a
C-3PO-like companion is enticing, while the menacing presence of a Terminator can be
set aside.

Artificial neural networks

Another algorithmic approach that emerged from the early machine learning era was
artificial neural networks, which saw varying levels of popularity over the decades. Inspired
by our understanding of the biological structure of our brains, artificial neural networks
attempt to replicate the interconnections between neurons. However, unlike biological
brains, where any neuron can connect with any other neuron within a certain physical
proximity, artificial neural networks consist of discrete layers, connections, and directions
of data flow.

For instance, in an image processing scenario, the image can be divided into multiple
tiles that serve as inputs to the first layer of the neural network. Each individual neuron
in the first layer processes the data and passes it on to the next layer. This sequential
process continues through subsequent layers until the final layer produces the desired
output.

Each neuron assigns a weight to its input, determining its relevance to the given task.

The final output is then determined by the cumulative e ect of these weightings. To
illustrate with the example of a stop sign, attributes of an image, such as its octagonal
shape, red color, letters, size, and motion, are examined by the neurons. The neural

network’s objective is to determine whether the image represents a stop sign or not. It
generates a "probability vector,” which is essentially an educated guess based on the
assigned weightings. In our example, the system might indicate an 86% probability that
the image is a stop sign, 7% probability for a speed limit sign, 5 % probability for a kite
stuck in a tree, and so on. The network architecture then provides feedback to the neural
network, indicating its accuracy.

However, it is worth noting that until recently, neural networks were largely disregarded
by the Al research community. Despite existing since the early days of Al, they demon-
strated limited success in achieving "intelligence.” One of the main challenges was the
significant computational intensity even for basic neural networks, making it impractical

to employ them. Nonetheless, a small group of researchers led by Georey Hinton at
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Figure 10: Overview of Artificial Neural Network

the University of Toronto persisted and eventually parallelized the algorithms to run on
supercomputers, proving the concept. It was with the deployment of GPUs that the true
potential of neural networks was realized.

Returning to our stop sign example, during the training phase, it is highly likely that
the network will produce numerous incorrect answers. It requires training, exposure to
hundreds of thousands or even millions of images, to precisely tune the weightings of
neuron inputs, enabling it to provide accurate responses almost every time, regardless of
fog, sunlight, or rain. At that point, the neural network has essentially taught itself to
recognize a stop sign, or in the case of Facebook, your mother’s face, or in Andrew Ng's
case, a cat, as demonstrated in his work at Google in 2012.

Today, machine learning models trained through deep learning, particularly in image
recognition tasks, can outperform humans in certain scenarios, ranging from identifying
cats to detecting indicators of cancer in blood samples or tumors in MRI scans. For
example, Google’s AlphaGo learned the game of Go by playing against itself repeatedly,
tuning its neural network through extensive self-training.

The simplest type of ANN is a perceptron. A perceptron has one input, one output,
and one weight. The output of the perceptron is calculated as follows:

X
y= WiX;i+Db (D
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where:

y is the output of the perceptron
w is the weight

x is the input

b is the bias

The perceptron can be used to classify data. For example, we can use a perceptron to
classify images of cats and dogs. We would train the perceptron on a set of images of cats
and dogs. The perceptron would learn to associate the input features (e.g., the shape of
the eyes, the length of the tail) with the output labels (cat or dog).

More complex ANNs can be created by connecting multiple perceptrons together. These
networks are called multilayer perceptrons (MLPs). MLPs can be used to solve more com-
plex problems, such as predicting the price of a stock or recognizing faces. The training
of an ANN is an iterative process. The ANN is first initialized with random weights.
Then, the ANN is presented with a set of training data. The ANN calculates its output
for each training example. The error between the ANN'’s output and the ground truth
label is then calculated. The weights of the ANN are then updated to reduce the error.
This process is repeated until the error is minimized. ANNs have been shown to be very
e ective at solving a wide variety of problems. They are used in a variety of applications,

including: Image recognition, Natural language processing, Speech recognition, Medical
diagnosis, Financial forecasting and Robotics.

ANNSs are a powerful tool that can be used to solve a wide variety of problems. How-

ever, they can be difficult to train and require a large amount of data and need huge
computational power.
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Application of Al in Smart grid

Artificial intelligence (AI) holds immense potential in the field of smart grid, an ad-
vanced electrical power system that integrates renewable energy sources, energy storage,

and intelligent control systems to enhance energy efficiency, reliability, and sustainability.
Below are some key applications of Al in the smart grid:

Demand Response: Al enables the prediction of energy demand and optimization of
power distribution to meet that demand. By employing machine learning algorithms,
smart grid systems can analyze historical usage patterns and weather forecasts to forecast
future energy demand. This predictive capability allows the grid to adjust power supply,
minimizing energy loss and preventing blackouts.

Energy Forecasting: Al plays a crucial role in forecasting energy production from re-
newable sources like solar and wind energy. By analyzing weather patterns and other
variables, machine learning algorithms can predict the amount of energy that will be
generated by these sources.

Grid Management: Al facilitates the management and optimization of the power grid.
Through Al algorithms, sensor data from smart meters, smart transformers, and other
grid components can be analyzed to identify patterns and anomalies. This information
aids in optimizing power distribution and mitigating the risk of blackouts.

Fault Detection and Diagnosis: Al assists in the detection of faults and diagnosis of
problems within the smart grid. Machine learning algorithms analyze sensor data to iden-
tify grid faults such as power outages or voltage spikes. This data enables the identification
of the root cause of the problem and facilitates necessary corrective actions.

Energy Trading: Al optimizes energy trading within the smart grid. By analyzing
market data, machine learning algorithms identify profitable trades and provide recom-

mendations to energy traders, enhancing the efficiency of energy trading operations.

In summary, Al demonstrates significant potential in leveraging smart grid technology,
enhancing its capabilities in demand response, energy forecasting, grid management, fault
detection and diagnosis, as well as energy trading.

Related Work

The work in (17) explores the role of artificial intelligence (AI) in achieving energy
sustainability in smart cities. It focuses on the use of smart metering and non-intrusive
load monitoring (NILM) to optimize energy consumption. The paper proposes a genetic
algorithm support vector machine multiple kernel learning (GA-SVM-MKL) approach for
NILM, which achieves high accuracy in appliance classification.
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The research integrates insights from Al, IoT, and big data analytics, emphasizing their
potential in addressing energy sustainability challenges. It highlights the significance
of microgrid applications and smart metering in smart grid development. The paper
calls for increased attention from stakeholders and suggests future research directions,
including the use of blockchain technology and the analysis of user behavior in smart
energy modeling.

Overall, it contributes to the understanding of energy sustainability in cities and provides
insights into utilizing Al for energy optimization in smart cities.

The research work in (18) discusses the integration of artificial intelligence (AI) in smart
cities to address various challenges. It analyzes 133 research articles published between
2014 and 2021, focusing on domains such as healthcare, education, environment, mobility,
agriculture, risk management, and security.

The findings highlight the significant impact of Al adoption in smart cities, particularly
in healthcare, mobility, privacy and security, and energy sectors. The healthcare industry
has seen a substantial increase in Al-based advancements since the COVID-19 pandemic.
The study identifies Al algorithms such as ANN, RNN/LSTM, CNN/R-CNN, DNN, and
SVM/LS-SVM as influential in smart city domains. Al o Jers benefits such as automation,
reduced errors, data-driven decision-making, and improved urban management. However,
it also presents regulatory challenges and risks, including privacy concerns and ethical
considerations.

This research emphasizes the importance of carefully addressing these challenges and risks
while integrating Al technologies in smart cities. It concludes that Al can greatly benefit
smart cities, but proper attention must be given to regulatory issues and overcoming
barriers to implementation.

The study in (19) focuses on the importance of developing Intelligent Transport Sys-
tems (ITS) in smart cities in India to address various urban challenges. Issues such as

inefficient public transport, congestion, road accidents, inadequate parking, and rising en-
ergy costs are prevalent in Indian cities. To tackle these problems, the study suggests the
adoption of Artificial Intelligence (Al) in developing smart public transport, intelligent

traffic management, smart traveler information systems, smart parking management, and
safe mobility and emergency systems.

The authors highlight the urgency of implementing Al-based ITS in smart cities to over-
come these challenges. It emphasizes the role of Al in optimizing resource utilization,

controlling operations, and improving efficiency in transportation systems. The adoption
of Al in traffic management can significantly reduce fuel consumption, travel time, stops,
and carbon emissions.

This study provides valuable insights for engineers and planners involved in developing
efficient transportation systems in smart cities in India. It underscores the need for Al

applications in various sub-systems of ITS and emphasizes the collaborative e Jorts of
transportation experts and computer engineers. Overall, the study concludes that the

adoption of Al-based ITS is crucial for the development of smart cities in India to create
accessible, safe, environmentally friendly, and efficient transport systems.
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The research in (20) focuses on the challenges and implications of incorporating artificial
intelligence (Al) in the smart energy domain, specifically in the context of renewable
energy (RE) in the European Union (EU). The study emphasizes the need to optimize
energy systems, develop customizable networks, and leverage Al and machine learning
techniques to address these challenges.

The authors highlight the significance of RE in global development, considering climate
change and resource depletion. Al presents new opportunities for organizing activities and
meeting the evolving demands of the energy sector. The aim is to improve the design,

deployment, and production of RE to overcome obstacles that a Ject the sector’s growth
and resilience.

Specific analyzed areas include the efficiency of transforming RE in the energy chain,
the structure of renewable energy sources, labor productivity in the RE sector, and its
relationship with investments. The research also explores the implications of Al adoption
for RE within the context of future smart cities research.

The main contributions of this study are the development of a framework to understand
the role of Al in the RE sector in Europe and a discussion of the implications for future
smart cities research. The research focuses on the integration of Al technology in smart
energy systems and grids, emphasizing the need for a comprehensive understanding of
computational, economic, and social aspects. It examines the implications of Al and dis-
ruptive technologies for economic models, with a particular focus on energy management
in the RE sector and the adoption of disruptive technologies.

The research also identifies potential directions for future research in this field.

Overall, the research provides insights into the potential of Al in enhancing renewable

energy efficiency, sustainability, and the development of smart energy infrastructure. The
paper concludes by summarizing key findings and suggesting directions for future research
in the field of smart cities. Despite advancements, barriers persist in the widespread imple-
mentation of RE, extending beyond technology to include policy-making. This highlights

the need for further studies and debates to address these barriers eJectively.

Conclusion

In conclusion, the integration of Artificial Intelligence (Al) in smart grids has emerged as
atransformative force in the energy sector. By harnessing the power of Al algorithms and
data analytics, smart grids have the potential to optimize energy generation, distribution,

and consumption, resulting in improved efficiency, reliability, and sustainability.

As technology continues to advance, and stakeholders collaborate to address the asso-
ciated challenges, we can expect to witness a future where Al-powered smart grids play

avital role in delivering efficient, reliable, and sustainable energy systems. By embracing
the potential of Al and smart grids, we can pave the way for a greener and smarter energy
future.
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3 System Model

Introduction

The electric power systems usually consist of three tiers, namely the generation level
(comprising large power stations like nuclear or thermal power plants), the distribution
level (including distribution substations), and the consumption level (consisting of smart
homes and buildings). Each of these levels in the smart grid is characterized by specific
voltage levels: High (75kV) for generation, Medium (30kV) for distribution, and Low
(400V) for consumption. These levels encompass various electrical devices such as gener-
ators, transformers, and electrical lines that interconnect the di.lerent components of the
smart grid. Figure 1 provides a visual representation of the smart grid levels.

In this project, we will focus on the distribution and consumption level where we imple-

ment two dierent solutions for energy management.

Electric power distribution represents the ultimate phase of delivering electricity, trans-
porting it from generation stations or transmission substations to individual end-users.
These end-users receive their power through distribution substations that link the trans-
mission system to the distribution system with the aid of transformers. Medium voltage
power is transmitted from the primary distribution lines to distribution transformers situ-
ated in close proximity to consumers. These distribution transformers reduce the medium
voltage to a suitable level for household appliances and lighting purposes. Consumers re-
ceive their power supply from these transformers via secondary distribution lines. High-
demand consumers requiring significant amounts of electricity are directly connected to
the primary distribution level or sub-transmission level.

The transition from the transmission system to the distribution system occurs within
power substations, which serve several important functions. These functions include the
use of switches and circuit breakers to disconnect the substation from the transmission
system or to disconnect distribution lines. Additionally, transformers are employed to
reduce the voltage, typically from 35 KV or higher, to distribution voltages. Primary dis-
tribution voltages, ranging from 4 to 35 kV, are primarily utilized to supply power to large
consumers. However, the majority of utility consumers are connected to a transformer
that further lowers the voltage to a lower utilization voltage.

Figure.11 shows the architecture of the proposed Al-based solution for smart grid energy
management.

Smart grid mathematical formulation : Distribution Ivevel

In this section, we will formulate the smart grid system at the distribution level.
In the nonlinear smart grid formulation, the power balance equations at bus i and time t
are given by (21)
Pg+Pg —Pp=0 (2)

Qi+ Qs — Qoi =0 (3)
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Figure 11: Architecture of the proposed solution

where the P%,, P¢; and Pj,; are the active power generation, active power from energy
storage systems and active power demand, respectively. Q%,, Q%; and Q';; are the reactive
power generation, reactive power from energy storage systems and reactive power demand,
respectively. The power loss in transmission lines is calculated as follows (21):

h i
Pi(ie)=12R = B[%lZ.J.d(i,e) (4)

27



Al-based Energy management system for smart grid network

Objective function

The standard optimal power flow minimizes the objective function f which is simply a
summation of individual polynomial cost functions of real and reactive power injections,
respectively, for each generator (21):

. . SV
minf(x) = min fo(py) + f'qy) (5)

—-,Vm,Pg,Q
mreRe =1

Optimization variables

For the standard optimal power flow problem, the optimization vector x consists of the

ny, x 1 vectors of voltage angles — and magnitudes V,, and the ng x 1 vectors of active
and reactive power injections P, and Qg of generators (21):

2 3

—

Vim
x- 9y

Qg

(6)

Constraints

The complex voltages on buses are characterised by a variable voltage magnitude V | which
is maintained within its limits as follows (21):

Vi<vi<y, (7)

The limitation on line current in transmission line 1 between buses i and j is also imposed
as follows (21):
I <1 (8)

Proposed solution in Distribution level : Load forecasting
approach

Load forecasting based on deep learning approach

Load forecasting plays a vital role in the electrical power systems domain as it enables

utility companies and grid operators to e Jectively plan and optimize their operations.
Deep learning methods have demonstrated significant potential in load forecasting due
to their ability to capture intricate patterns and dependencies present in historical load
data. Here’s a summarized overview of load forecasting using deep learning:

Data Preparation: The initial step involves gathering historical load data, typically
recorded at regular intervals (e.g., hourly or daily) over a considerable time span. Addi-
tional relevant data, such as weather conditions or holidays, may also be considered. The
data is then preprocessed to handle missing values, outliers, and normalization, ensuring
consistency and enhancing model performance.
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Model Architecture: Deep learning models like recurrent neural networks (RNNs) or
long short-term memory (LSTM) networks are commonly utilized for load forecasting.
These models are designed to capture temporal dependencies and patterns in sequential
data. Convolutional neural networks (CNNs) can also be employed to extract spatial and
temporal features from load data.

Training: The prepared data is divided into training and validation sets. The model is
then trained using the training set, where it learns the patterns and relationships present
in the historical load data. During training, the model optimizes its internal parameters
by minimizing a loss function, often a mean squared error (MSE) or mean absolute error
(MAE) between the predicted and actual load values.

Model Evaluation: Following training, the model is evaluated using the validation set to
assess its performance. Various metrics, such as root mean squared error (RMSE), mean

absolute percentage error (MAPE), or correlation coefficient, are employed to measure
the accuracy and reliability of the load forecasts.

Testing and Deployment: Once the model’s performance is deemed satisfactory based
on the evaluation results, it can be deployed to make load forecasts on new, unseen data.
The model takes historical load data as input and generates predictions for future time
intervals. These forecasts serve as valuable guidance for decision-making processes, in-
cluding load scheduling, resource allocation, and energy market operations.

Data Analysis

Electricity usage plays a crucial role in both production and everyday life, making any
factors related to human activities in these areas influential in determining the demand
for power. In this section, we examine significant factors that have a substantial impact
on power consumption. By analyzing these factors, we gain valuable insights into how
they alect load forecasting, allowing us to incorporate them electively into our Deep
Neural Network model.

The short-term load data of a specific region exhibits noticeable periodicity, primarily
driven by the regular work and lifestyle patterns of individuals. Figure.12 illustrates
the periodic variation of hourly load values from the dataset spanning 2014 to 2022.
Furthermore, Figure 12 demonstrates that the load data curves for three consecutive
weeks exhibit similar patterns that align with one another. As a result, historical load
usage data serve as reliable indicators for load prediction.

In addition, it can be seen from Figure.13 that load data curves of three consecutive weeks
shows similar patterns aligning with each other accordingly. Thus, historical load usage
data serve as robust indicators for load prediction.

The impact of weather on electricity consumption is substantial, particularly in rela-
tion to people’s work schedules. Temperature, in particular, plays a significant role, as
unfavorable temperatures often lead to higher energy usage for heating or cooling, as well
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Figure 13: Weekly periodicity (22)

as increased indoor activities. Figure.14 demonstrates a clear correlation between the
minimum daily temperature and the peak load. Additionally, other weather factors such
as humidity and wind speed could also provide valuable insights for load forecasting.

Additionally, when predicting hourly load, the hour of the day itself and the corre-
sponding day of the week are evident indicators of power consumption. Therefore, we
incorporate these types of features into our model. The maximum and minimum temper-
atures, the hour of the day, and the day of the week features are utilized as inputs for the
component of our model.
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Figure 14: Daily minimum temperature (22)

Deep Neural Network for Load Forecasting

Deep neural networks (DNNs) are a type of machine learning algorithm that can be
used for load forecasting. DNNs are able to learn complex patterns in data, and they

have been shown to be very e lective for load forecasting tasks.

A DNN is a type of artificial neural network (ANN) that has multiple layers between
the input and output layers. This allows the DNN to learn more complex patterns in the
data than a shallow ANN.

DNNs work by passing the input data through a series of layers. Each layer contains
a number of neurons, and each neuron performs a simple calculation on the data. The
output of each neuron is then passed to the next layer, and so on.

DNNs can learn complex patterns in data. This allows them to make more accurate
predictions than traditional forecasting methods. DNNs can be trained on large datasets.
This allows them to learn the patterns in load demand even if the data is noisy or incom-
plete. DNNs can be used to model both short-term and long-term load dynamics. This
makes them a versatile tool for load forecasting applications.

dilerent DNN architectures that can be used for load forecasting, and some of the
common architectures include Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Hybrid DNNs.

Convolutional Neural Networks (CNNs): CNNs are commonly used for image processing
tasks but can also be applied to sequential data like load forecasting. They excel at
learning hierarchical representations and capturing spatial or temporal patterns. In load
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forecasting, CNNs can learn to extract features from historical load data, taking into
account the temporal relationships and patterns.

Recurrent Neural Networks (RNNs): RNNs are well-suited for sequential data analysis

and can e Jectively model long-term dependencies in time series data. RNNs have recur-
rent connections that allow information to be persistently passed from one step to the
next. This makes them suitable for capturing the temporal dynamics and patterns in load
demand data.

Hybrid DNNs: Hybrid DNN architectures combine the strengths of both CNNs and
RNNs. By using a combination of convolutional and recurrent layers, these models can
capture both local and global features from load data and model short-term as well as long-

term load dynamics. Hybrid DNNs have been shown to be e Jective for load forecasting
tasks, leveraging the advantages of both CNNs and RNNs.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks consisting of neuron-like nodes
arranged in consecutive layers, resembling the structure of standard Neural Networks.
Similarly to standard Neural Networks, RNNs have input layers, hidden layers, and output
layers, with each connection between neurons having an associated trainable weight.
However, the key distinction lies in the assignment of neurons to specific time steps
within RNNs. Each neuron is allocated to a fixed time step, and the neurons in the
hidden layer are directed in a time-dependent manner. This means that each neuron in
the hidden layer is fully connected only to the neurons in the same assigned time step,
and it is connected unidirectionally to every neuron assigned to the subsequent time step.
The input and output neurons solely connect to the hidden layers associated with their
respective assigned time step.
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Figure 15: Architecture of RNN model
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Due to the hidden layer’s output from one time step being utilized as the input for the
subsequent time step, neuron activation within RNNs is computed sequentially according
to time order. At any given time step, only the neurons assigned to that particular time
step calculate their activation.

Weights : In RNNs, the input vector at time t is linked to the hidden layer neurons
of time t using a weight matrix U. The hidden layer neurons are connected to the neurons
of time t-1 and t+1 through a weight matrix W. Additionally, the hidden layer neurons
are connected to the output vector of time t via a weight matrix V. Importantly, all these
weight matrices remain constant across each time step.

Input : The vector x(t) represents the network’s input at time step t.

Hidden state : The vector h(t) signifies the hidden state at time t, serving as a form of
network memory. It is computed based on the current input and the hidden state from
the previous time step:

Output — The vector y(t) is the output of the network at time t:

Long Short Term Memory (LSTM) Neural Networks

LSTM, which stands for Long Short-Term Memory, is a type of Recurrent Neural Net-
work (RNN) that is specifically designed to handle sequential data. Its unique architecture
addresses the issue of vanishing gradients in traditional RNNs by introducing memory cells
and gates to control the flow of information.

LSTM is widely employed in deep learning due to its capability to capture long-term
dependencies in sequential data. This makes it particularly suitable for tasks like speech
recognition, language translation, and time series forecasting, where the context of earlier
data points can influence later ones.

Let’s consider an example of using an LSTM network to predict car sales. Suppose we
have access to historical data on monthly car sales over several years. Our goal is to utilize
this data to make predictions about future car sales. To achieve this, we would train an
LSTM network on the historical sales data, enabling it to forecast the next month’s sales
based on the previous months.

At each time step, the LSTM network takes the current monthly sales and the hidden
state from the previous time step as input. It processes this information through its gates,
updates its memory cells, and generates an output that predicts the next month'’s sales.
To make the task more challenging, we can incorporate additional variables, such as
average temperature and fuel prices, into the network’s input. These variables can also
impact car sales, and including them in the LSTM algorithm can enhance the accuracy
of our predictions.

LSTM possess a remarkable capacity to represent sequential information and grasp ex-
tensive relationships, rendering them exceptionally well-suited for time series forecasting
tasks such as anticipating sales figures, stock prices, and energy consumption.
Understanding LSTM Cells

The LSTM model architecture is as follows: Xt represents the input at a specific time
step, ht is the output, Ct denotes the cell state, ft represents the forget gate, it corre-

sponds to the input gate, Ot represents the output gate, and A? refers to the internal cell
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Figure 16: Architecture of LSTM model

state.

Long Short-Term Memory (LSTM) neural networks employ a set of gates to regulate the
flow of information in a sequence of data. The forget, input, and output gates act as filters
and operate as distinct neural networks within the LSTM architecture. They control how
information enters the network, is stored, and eventually released.

1. Cell state: It preserves information across the entire sequence and serves as the net-
work’s memory.

2. Forget gate: This gate determines which information from previous time steps is
relevant to retain.

3. Input gate: The input gate decides which information from the current time step
should be incorporated.

4. Output gate: This gate determines the value of the output at the current time step.
The Forget Gate

The initial phase in the architectural design involves the Forget Gate, where the LSTM
neural network assesses the relevance of elements in the cell state (long-term memory)
based on the previous hidden state and new input data.

By feeding the previous hidden state (ht-1) and the new input data (Xt) into a neural
network, a vector is produced. Each element of the vector represents a value ranging from 0
to 1, achieved through the utilization of a sigmoid activation function. The neural network
within the forget gate is trained to generate values close to O for irrelevant information
and values close to 1 for relevant information. These vector elements can be viewed as
filters that permit more information when the value approaches 1.

fr = 0(Wr.[he—1] + bys) 9)

Subsequently, these output values are multiplied element-wise with the previous cell state
(Ct-1). As a result, irrelevant portions of the cell state are down-weighted significantly,
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Figure 17: The Forget Gate

reducing their impact on subsequent steps.

In summary, the forget gate determines which components of the long-term memory
should be discarded, based on the preceding hidden state and the new input data in the
sequence.

The Input Gate

In the following phase, the input gate and the new memory network come into play.
The primary objective of this step is to determine which fresh information should be
integrated into the long-term memory (cell state) of the network, taking into account
the previous hidden state and the current input data. Both the input gate and the new
memory network function as independent neural networks, receiving identical inputs—the
previous hidden state and the current input data. It is noteworthy that these inputs are
the same inputs provided to the forget gate.

ir = 0(Wi.[he—1, X¢] + b)) (10)

The input gate is a neural network that utilizes the sigmoid activation function. It serves
as a filter to discern the valuable components within the new memory vector. By applying
the sigmoid activation, it generates a vector of values within the range of [0,1]. This
characteristic enables it to function as a filter through pointwise multiplication. Similar
to the forget gate, a low output value from the input gate indicates that the corresponding
element of the cell state should remain unaltered and not be updated.

New Memory Network

The neural network responsible for new memory generation utilizes the tanh activation
function and has been trained to produce a "new memory update vector” by combining the
previous hidden state and the current input data. This vector encapsulates information
from the input data while considering the contextual information provided by the previous
hidden state. It indicates the necessary adjustments to be made to each component of
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Figure 18: The Input Gate

the long-term memory (cell state) based on the most recent data.

Ce = tanh(We[he1, X + bo) (11)

The tanh activation function is employed due to its output values ranging from -1 to 1.
This range, including negative values, is crucial in reducing the impact of a component in
the cell state.

However, it's important to note that the new memory vector alone does not determine
the significance of retaining the new input data, necessitating the presence of an input
gate.

To update the cell state, representing the LSTM network’s long-term memory, the com-
bination of the new memory update and the input gate filter is utilized. Pointwise mul-
tiplication governs this process, ensuring that only the relevant components of the new
memory update contribute to the cell state.

Consequently, the updated cell state reflects the modified long-term memory of the net-
work. The internal state is updated accordingly, adhering to this rule:

Ce = ie.Ce + fr.Co1 (12)

The Output Gate

During the ultimate phase of an LSTM process, the determination of the new hidden
state is accomplished by considering the updated cell state, previous hidden state, and
new input data. This decision-making task is executed by the output gate.

The output gate plays a crucial role in defining the final hidden state of the LSTM net-
work. It takes the updated cell state, previous hidden state, and new input data as inputs.
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Figure 19: The Output Gate

Directly outputting the updated cell state alone would lead to excessive information dis-
closure. Hence, an output gate is employed as a filter.

The output gate functions as a neural network activated by the sigmoid function. It
acts as a filter, discerning the relevant elements within the updated cell state that should
be manifested as the new hidden state. The input for the output gate aligns with the
previous hidden state and new data, and the sigmoid activation is employed to produce
outputs ranging from 0 to 1.

0t = 0(Wo.[ht—1, Xe] + bo) (13)

The updated cell state subsequently undergoes a tanh activation to restrict its values
within the range of -1 to 1. This squished cell state is then subjected to pointwise
multiplication with the output of the output gate network. The outcome of this operation
yields the final new hidden state.

ht = ot.tanh(Ct) (14)

Similar to other neural networks, the LSTM cell employs weight matrices and biases in
conjunction with gradient-based optimization to learn its parameters. These parameters
are associated with each gate, as evident in the provided equations. Specifically, the
weight matrices are denoted as Wf, bf, Wi, bi, Wo, bo, and WC, bC, respectively.

In conclusion, the conclusive step of determining the new hidden state involves subjecting
the updated cell state to a tanh activation to compress it within the range of -1 to 1.
Subsequently, the previous hidden state and current input data are fed into a sigmoid-
activated network to generate a filter vector. This filter vector is then multiplied pointwise
with the compressed cell state to obtain the new hidden state, which serves as the output
of this stage.
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Unrolling LSTM Neural Network Model over Time

In the given architecture, the output gate represents the final stage within an LSTM
cell, constituting just a single component of the overall process. Prior to obtaining the
desired predictions from the LSTM network, several additional factors must be taken into
account.

For instance, when attempting to forecast the stock price for the following day utilizing
the past 30 days of pricing data, the steps within the LSTM cell would be reiterated
30 times. Consequently, the LSTM model would have sequentially generated 30 hidden
states to forecast the stock price for the subsequent day. LSTM operates by propagating
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Figure 20: LSTM hidden states

information recurrently, forming a chain-like structure. The control over the transfer
of the most recent cell output to the final state is achieved through the output gate.
However, it is important to note that the output of the LSTM cell represents a hidden
state and does not directly correspond to the stock price we aim to predict. To transform
this hidden state into the desired output, a linear layer is applied as the concluding stage
in the LSTM process. This linear layer step occurs only once, at the very end, and is not
depicted in LSTM cell diagrams since it occurs after the repeated steps of the LSTM cell.
The concept of unrolling LSTM models across time refers to the expansion of an LSTM
network over a sequence of time steps. During this process, the LSTM network is essen-
tially duplicated for each time step, and the outputs from one time step are used as inputs
for the subsequent time step.
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Smart grid mathematical formulation : Consumption level

The smart grid presents a complex network as a result of the intermittent nature of
energy sources and energy demands. This complexity poses a challenge in solving the
energy management problem, which is known to be NP-hard. To address these issues in
the smart grid, it is crucial to consider the implementation of a nonlinear model.

System characteristics

In this section, we will formulate the smart grid system at the consumption level.

We model the smart grid as a connected graph G = (N, L) where it is composed of a
set of network buses denoted by N = 1, 2, .., n. These buses are connected by a set of
transmission lines denoted by L =1, 2, ..., n,.

In the proposed Energy management system, each consumer is characterized by its planned
daily tasks T S;. Let TS = {T S1,T Sz, ..., T St be the set of daily tasks to be executed,
each task can be characterized by two vectors (23):

X; = [X}-, X2, ., X (15)

Y= [Pj D, ST; FT; STP; FTP; (16)
where

+ X is the power consumption profile of the electric appliance that executes the task
j where x’, is the power consumption of task j at time t.

+ Y; is the vector which characterizes the taskj.

T

- P = ! xj_ is the energy demand of the task j where the time horizon T = 24.
t=1

+ Djis the duration of the taskj.

+ [ST;, FTj] are the earliest start time and finishing time to run the task j that define
its admitted interval of execution.

+ [STPj, FTPy] is the time preferred window of the consumer to run the task j.

Let Pj; denotes the energy consumption of a consumer i for task j at time t. The total
energy consumption of a consumer i at time slot t is defined as follows:

Xk
It = t (17)

i
p=1

Consider C(19) the quadratic cost function of utility grid at time slot t. The cost function

of a consumer is defined as follows:

X
CHly=afl)2+bilt+ct (18)

t=1
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Constraints

Time constraints
Each task j of duration D; must be executed exactly once between its earliest start time
ST; and finishing time FT;. The start time t; of task j satisfies the following constraint:

ST;<t; <FT,; —D; (19)

Energy balance constraints
The energy generated at time t must be equal to the total energy consumed by satisfying:

Et—Et=0 (20)

where E! is the energy produced by the utility grid and E' is the total energy consumed.
g c

Objective function

The main objective at consumption level is to reduce electricity bill. The objective func-
tion is given as follows:

min J = t (21)

Proposed solution in Consumption level : Electriciy price
forecasting

Electricity Price forecasting based on Deep learning approach

Within this section, we provide a detailed explanation of our advanced approach, which
is based on time series forecasting solution using LSTM model. The fundamental archi-
tecture of our model is illustrated in Figure 21.
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Figure 21: Architecture of the proposed model
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Given the diverse range of input features for our load forecasting task, we employ suitable
neural network components to acquire deep representations and extract comprehensive
features from each specific input. To accomplish this, we take advantage of the rapid
advancements in Deep Learning and utilize the flexible and user-friendly Python Neural
Network Toolboxes.

Conclusion

In this chapter, we have introduced our smart grid model in both distribution and con-
sumption level by giving the related equations that model the behaviour of smart electrical
grid. In addition, we have proposed our Al-based solution that is based on time series
forecasting for electrical load in distribution level and electricity price in consumption
level. After the execution of multiple experimentations, we have identified LSTM as the
best choice fore time-series forecasting in RNN models. For this reason, we have applied
LSTM model to perform our time-series forecasting.
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4 Implementation and Results of the proposed Al-
based solution

Introduction

In this chapter, we present the tools and the results of the developed load and electricity
price forecasting that are time-series forecasting.

Load forecasting using Neural Network Toolbox

1. Used tools and programming languages :

(a) Language of Python :

Python is a high-level programming language that is widely used for various
applications, including data analysis, scientific computing, web development,
and artificial intelligence. It emphasizes code readability and simplicity, mak-
ing it accessible for both beginners and experienced programmers. Python
supports a wide range of libraries and frameworks, making it a popular choice
for diverse tasks.

Python is a popular programming language for load forecasting due to its ro-
bust data analysis capabilities, extensive libraries for machine learning and sta-

tistical modeling, flexibility in integrating di lerent components, active commu-
nity support, and ease of deployment. It provides a comprehensive ecosystem
that facilitates the entire load forecasting workflow, from data preprocessing
to model development and deployment.

oython

Programming

Figure 22: Logo of python
(b) Kaggle :

Kaggle is an online platform and community that hosts data science com-
petitions, provides datasets, and oJers a collaborative environment for data
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scientists and machine learning practitioners. It was founded in 2010 and ac-
quired by Google in 2017. Kaggle’s primary objective is to foster knowledge
sharing, encourage collaboration, and drive innovation in the field of data sci-
ence and machine learning.

Here are some reasons why you should consider using Kaggle for program-
ming in Python:

Datasets and Challenges: Kaggle provides a vast collection of datasets across
various domains, including finance, healthcare, image recognition, natural lan-
guage processing, and more. These datasets are openly available, and many
are accompanied by specific problem statements or challenges. Working on
Kaggle challenges allows you to gain hands-on experience with real-world data
and problem-solving in Python.

Learning and Collaboration: Kaggle olers a collaborative environment where
you can engage with a vibrant community of data scientists, machine learning
enthusiasts, and experts. You can participate in discussions, ask questions,
and learn from others’ approaches and solutions. This collaborative aspect
provides valuable insights, promotes knowledge sharing, and helps you enhance
your programming skills in Python.

Code Sharing and Reproducibility: Kaggle enables you to share your code,
notebooks, and solutions with others. This allows you to showcase your work,
receive feedback, and learn from alternative approaches. Moreover, by sharing
your code, you contribute to the reproducibility of research and encourage
transparency in the field of data science.

Competitions and Rankings: Kaggle hosts data science competitions where
individuals or teams can participate to solve specific challenges. Competing in
these competitions helps you sharpen your skills, explore advanced techniques,
and measure your performance against other participants. The rankings and

leaderboard system provide motivation and recognition for your e orts.

Resources and Tutorials: Kaggle o lers a wealth of resources, including tuto-
rials, code examples, and documentation. These resources cover a wide range
of topics, from beginner-level introductions to advanced machine learning algo-
rithms and techniques. You can leverage these materials to learn new concepts,

explore dilerent Python libraries, and deepen your understanding of data sci-
ence and programming.

In summary, Kaggle o lers a platform for data scientists and machine learning
practitioners to collaborate, learn, and compete. It provides access to diverse

43



Al-based Energy management system for smart grid network

datasets, facilitates code sharing and collaboration, o lers resources and tutori-
als, and promotes skill development in Python programming. Whether you are
a beginner looking to learn data science or an experienced practitioner seek-
ing to solve complex problems, Kaggle can be a valuable tool for honing your
programming skills and advancing your knowledge in Python.

L &os

Figure 23: Logo of kaggle
(c) Libraries used :

We have used a set of libraries as needed in this implementation, each one
played its role according to its competence, as shown in the following here:

i. Pandas :

Pandas simplifies many common data manipulation tasks, allowing you

to efficiently clean, transform, and analyze datasets. It is particularly
well-suited for tasks like exploratory data analysis, data preprocessing,
feature engineering, and data wrangling before feeding the data into ma-
chine learning models. Pandas’ intuitive and expressive syntax, along with
its vast array of functionalities, has made it one of the most widely used
libraries in the data science community.

ii. NumPy :

NumPy, short for Numerical Python, is a fundamental open-source Python
library for scientific computing and numerical operations. It provides sup-
port for large, multi-dimensional arrays and matrices, along with a com-
prehensive collection of mathematical functions to operate on these arrays

efficiently. NumPy serves as a foundational library for many other scientific
and data analysis libraries in the Python ecosystem.
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Figure 24: Logo of pandas

NumPy is a powerful Python library for efficient manipulation and com-
putation with large arrays and matrices. Its core ndarray object, along
with its extensive collection of mathematical functions, makes it an es-
sential tool for scientific computing, data analysis, and machine learning.
NumPy’s performance, memory efficiency, and seamless integration with

other scientific libraries contribute to its widespread use and popularity
among the Python community.

A\

NumPy

Figure 25: Logo of numpy
Matplotlib :

Matplotlib is a widely-used Python library for creating high-quality vi-
sualizations and plots. It provides a flexible and comprehensive set of tools
for generating various types of charts, graphs, and visual representations
of data. Matplotlib aims to make it easy to create publication-quality
graphics, suitable for both interactive exploration and static presentation.

Matplotlib is a powerful and flexible Python library for creating high-
quality visualizations and plots. It provides a wide range of plotting func-
tions, customizable options, and an object-oriented interface for creating
diverse visual representations of data. Whether you need basic line plots

45



Al-based Energy management system for smart grid network

or complex interactive visualizations, Matplotlib o ers the tools and flex-
ibility to meet your data visualization needs.

Figure 26: Logo of matpoltip

iv. Keras :

Keras is an open-source deep learning framework written in Python. It
provides a user-friendly and high-level interface to build, train, and deploy

neural networks. Keras is designed to be intuitive, modular, and efficient,

allowing both beginners and experienced researchers to experiment with
and implement deep learning models quickly.

Keras is a user-friendly and flexible deep learning framework that sim-
plifies the process of building and training neural networks. It provides a

high-level API, modularity, and support for di Jerent backends, making it
accessible to both beginners and advanced users. With its intuitive inter-
face and extensive documentation, Keras has become a popular choice for
rapid prototyping, research, and development of deep learning models.

. Keras

A deep learning library

Figure 27: Logo of keras
v. sklearn:

Scikit-learn, also known as sklearn, is a popular open-source machine
learning library for Python. It provides a comprehensive set of tools
and functionalities for various machine learning tasks, including classifi-
cation, regression, clustering, dimensionality reduction, and model selec-
tion. Scikit-learn is built on top of other scientific Python libraries such
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Figure 28: Logo of sklearn

as NumPy, SciPy, and Matplotlib, and is designed to be simple, efficient,
and accessible.

(d) Programming Environment :

Load forecasting is the process of predicting the electricity demand or load for a given
time period in the future. It is an important task for utilities and power system operators
to efficiently plan and manage their electricity generation and distribution. Here are the
general steps involved in load forecasting:

Data Collection:

We used the dataset of Great Britain From the following website ........... National Grid
ESO is the electricity system operator for Great Britain. They have gathered information
on the electricity demand in Great Britain since 2009. The dataset is updated twice
an hour, resulting in 48 entries per day. This makes the dataset ideal for time series
forecasting. The columns in the dataset are as follows:

SETTLEMET DAT A: date in the format dd/mm/yyyy.

SET T LEMENT PERIOD: half-hourly period for the historic outage occurred. ND
(National Demand): National Demand is the sum of metered generation, excluding gen-
eration required to meet station load, pump storage pumping, and interconnector exports.
National Demand is calculated based on National Grid ESO operational generation me-
tering. Measured in MW. TSD (Transmission System Demand): Transmission System
Demand is equal to ND plus the additional generation required to meet station load,
pump storage pumping, and interconnector exports. Measured in MW.

ENGLAND W ALES DEMAND: England and Wales Demand, similar to ND but on
an England and Wales basis. Measured in MW.

EMBEDDED WIND GENERAT ION: This is an estimate of the GB wind genera-
tion from wind farms that do not have Transmission System metering installed. These
wind farms are embedded in the distribution network and invisible to National Grid ESO.

Their e Ject is to suppress electricity demand during periods of high wind. The true out-
put of these generators is not known, so an estimate is provided based on National Grid
ESO’s best model. Measured in MW.

EMBEDDED WIND CAPACIT Y : This represents National Grid ESO’s best view of
the installed embedded wind capacity in GB. It is based on publicly available information
compiled from various sources and is not the definitive view. The capacity estimation is
consistent with the generation estimate mentioned above measured in MW.
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EMBEDDED SOLAR GENERAT ION: This is an estimate of the GB solar gen-
eration from PV panels. Similar to embedded wind generation, these solar panels are

embedded in the distribution network and invisible to National Grid ESO. Their e ect is
to suppress electricity demand during periods of high radiation. The true output of these
generators is not known, so an estimate is provided based on National Grid ESO’s best
model. Measured in MW.

EMBEDDED SOLAR CAPACIT Y : Similar to embedded wind capacity, this column
represents the installed embedded solar capacity in GB. Measured in MW.

NON BM ST OR (Non-Balancing Mechanism Short-Term Operating Reserve): For units
not included in the ND generator definition, this column represents generation or demand
reduction. Measured in MW.

PUMP ST ORAGE PUMPING: The demand due to pumping at hydro pump storage
units. The negative sign signifies pumping load.

IFA F LOW (IFA Interconnector Flow): The flow on the respective interconnector. The
negative sign signifies export power out from GB, while the positive sign signifies import
power into GB. Measured in MW.

IFA2 F LOW (IFA Interconnector Flow): The flow on the respective interconnector. The
negative sign signifies export power out from GB, while the positive sign signifies import
power into GB. Measured in MW.

MOY LE F.LOW (Moyle Interconnector Flow): The flow on the respective interconnector.
The negative sign signifies export power out from GB, while the positive sign signifies
import power into GB. Measured in MW.

EAST WEST E LOW (East West Interconnector Flow): The flow on the respective
interconnector. The negative sign signifies export power out from GB, while the positive
sign signifies import power into GB. Measured in MW.

NEMO F_.LOW (Nemo Interconnector Flow): The flow on the respective interconnector.
The negative sign signifies export power out from GB, while the positive sign signifies
import power into GB. Measured in MW.

NSL F LOW (North Sea Link Interconnector Flow): The flow on the respective inter-
connector. The negative sign signifies export power out from GB, while the positive sign
signifies import power into GB. Measured in MW.

ELCLINK ELOW: Currently not specified.”

Loading of Data set :

Here we load the dataset of electricity consumption of UK 2009-2023 into kaggle figure
30 notebook using Pandas library as shows figure 29.

import pandas as pd

Figure 29: Pandas Import

df = pd.read_csv("/kaggle/input/electricity-consumption-uk-28892022/historic_demand_2889_2823.csv", index_col=8)

Figure 30: Loading dataset to kaggle
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Data Preprocessing:

In this step, the collected data will be cleaned to eliminate any inconsistencies, errors,
or outliers that may have a negative impact on the forecasting model. Various tasks,
including data interpolation, imputation, and normalization, will be performed to ensure
data quality and consistency. so we run this code to see the all columns as shows figure
31 : The first part of dataset is shown in figure 32 The second part of dataset is shown

df . sample(n=7)

Figure 31: DataFrame : All Columns

settlement date settlement period  nd  tsd england_wales_demand _wind_ _wind_capacity |_solar_generation embedded_solar_capacity non_bm stor pump_stora
114819 2015-07-19 24 26064 26766 23382 1732 3897 5140 8741
18494 15 45155 47338 40844 491 1786 0 0
6967 13 22283 23715 19721 146 1673 0 0
84195 22101 673 2337 0 3069
66431 45 32287 33052 29223 216 2085 0 1937
98352 2014-08-09 35 20041 29936 26614 1061 3344 1640 5107
47673 2011-08-18 20 39078 40040 33374 526 1836 &3 665

Figure 32: Results : part |

in figure 33

pump_storage_pumping ifa_flow ifa2_flow britned_flow moyle flow east west flow nemo_flow nsl_flow eleclink flow is_holiday

8 1900 o 952 -87 -107 0 Mah MaN 0

12 -1428 0 0 -145 0 0 MaN MaN 0
g2 1029 o a =70 a 0 MaN MaN

73 849 0 344 -219 -245 0 NaM NaN 0

10 -4 o 534 -257 a 0 MaN MaMN 0

8 1936 0 1007 0 -387 0 MaM MaMN 0

9 173 o -452 o a 0 MaM MaMN 0

Figure 33: Results : part II

so this code rearranges the rows of the DataFrame so that they are in ascending order
based on the values in these columns "settlement date” and "settlement period” as shows
figure 34.

# Sort values by date
df.sort_values(
by=["settlement_date", "settlement_period”], inplace=True, ignore_index=True

)

Figure 34: Sorting Code
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The code df.isna().any() checks for missing values (NaN) in each column of the DataFrame
df and returns a Boolean Series indicating whether each column contains any missing
values. This code is given in figure 35 The code filters the DataFrame df to include

df.isna().any()

settlement_date

settlement_period

nd

tsd

england_wales_demand

embedded_wind_generation

embedded_wind_capacity

embedded_solar_generation

embedded_solar_capacity

non_bm_stor
_storage_pumping

ifa_flow
ifa2_flow
britned_flow

nsl_flow

dtype: bool

= h
WE C iAW iia il i
LTI S S S BT N s O O O G

Lo - VO O T T T VRN - (T

o
©S T

al

Figure 35: Nan check

only the rows where either the "eleclinkflow” or "nslflow” column contains missing values

(NaN) in figure.36 and figure.37 .

df . loc[(df["eleclink_flow"].isna()) | (df["nsl_flow"].isna())

a8 W oM o~ o

175291

175292

175293

175294

175295

settlement_date settlement_period nd

2016-12-31 44 26526
8-12-3 47 24188
5-12-3 46 235

175296 rows = 20 columns

tsd england_wales_demand embedded_wind_generation embedded_wind_capacity

33338
34072

33615

32326

3187

25428 251%
54 2414

1 23406

26224 22683

o 25765 22367

54

embedded_solar_generation embedded_solar_capacity

Figure 36: Filtering DataFrame : Results part I

non_bm_stor pump_stora

This code drops the specified columns, removes rows where the "settlementperiod” value
is greater than 48, and resets the index of the DataFrame fig 38.
In this code we want to Verify that both countries Wales and England have the same
holidays fig 39:
Having seen that the bank holidays are the same, We can proceed with this python
package to extract the bank holidays and store them in the right format.
It's worth noting that this package includes the original bank holiday and when it was
observed. We will only store the observed days as shows figure 40.
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df.loc[(df["eleclink_flow"].isna()) | (df["nsl_flew"].isna()),

+ d_wind_capacity |_solar_t |_solar_capacity
1403 a o
1403 0 0
1402 o o
1403 0 o
1403 0 o
5918 o 13032
3918 o 13052
3818 o 13052
5918 0 13052
5918 a 13032

df .drop(columns=["nsl_flow",

non_bm_stor pump_storage_pumping

0 33
0 157
0 51
0 589
0 851
0 13
0 23
o 36
0 43

ifa_flow ifaz_flow britned_flow moyle_flow east_west flow nemo_flow nsl_flow eleclink_flow is_holiday

2002
2002
2002
1772

1733

1182
157
1546

1553

a

o

a

) -1gt a

0 -160 0

) -180 a

0 -160 0

0 160 0
7 -454 =535
-268 453 -536
-297 453 -538
467 454 488
-453 -454 -381

a

0

o

NaMN

1

1

1

Figure 37: Filtering DataFrame

"eleclink_flow"], axis=1, inplace=True)

# Drop rows where settlement_period value is greater than 48
df .drop(index=df[df["settlement_period"] > 48].index, inplace=True)

df.reset_index(drop=True, inplace=True)

: Results part II

Figure 38: Settlement Period Filter Code

# Compare England’'s and Wales' bank holiday
bank_holiday_england = holidays.UK(
subdiv="England”, years=range(20089, 2024), observed=True

).items()

bank_holiday_wales = holidays.UK(
subdiv="Wales", years=range(2009, 2024), observed=True

).items()

print(bank_holiday_england == bank_holiday_wales)

True

# Create empty lists to store data

holiday_names = []
holiday_dates = []
holiday_names_observed =
holiday_dates_observed = [

[1

1

for date, name in sorted(bank_holiday_england):
holiday_dates.append(date)
holiday_names.append(name)
# Pop the previous value as observed bank holidays takes place later

if "Observed” in name:

holiday_dates_observed.pop()
holiday_names_observed.pop()

holiday_names_observed.append(name)
holiday_dates_observed.append(np.datetime64(date))

holiday_dates_observed| :5]

y.datetime64('2009-01-01"),
'20099-04-10'),
('2009-04-13'),
me64('2009-85-04"),
numpy . datetime64 (" 2009-85-25')]

Figure 39: Holiday Verification

Figure 40: Holidayes Observed Check

Once We've verified that the holidays are correctly loaded, one can compare the holiday
dates variable and the date in the dataset and store the boolean output in a new column
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as shows figure 41 :

df["is_holiday”] = df["settlement_date"].apply(
lambda x: pd.to_datetime(x) in holiday_dates_observed
)
df[“is_holiday”] = df["is_holiday”].astype(int)
df[df["is_holiday"] == 1].sample(7)
: 10_generation embedded_wind_capacity embedded_solar_generation embedded solar_capacity non_bm.stor pump_storage pumping ifa_flow ifa2_fiow britned flow moyle flow east west flow nemo_flow is_holiday

1285 1786 T 155 0 10 580 0 -467 -413 0

,
1247 €465 1080 13080 o g 1958 0 979 69 124 980 1
2344 5754 0 12916 0 1620 1304 0 3 7 432 1
1234 1753 0 a 0 2 -1523 ) 0 412 0 0 1
450 2113 0 2585 0 480 934 0 915 121 0 1
203 2313 412 2933 0 8 1068 0 458 0 302 1
952 4210 ) 8300 ] 1408 1797 0 84 178 261 1

Figure 41: Holiday check

The first step in the feature creation is to change the date format to include the hourly
values. The settlement period values refer to how many samples have been taken per
day. Given that there are 48 samples per day, each sample represents 30 minutes of the
day. Using this information together with the valuable knowledge of the StackOverflow
contributors, we managed to change the date format in figure.42:

settlement date settlement period periodhour  nd  tsd england wales demand embedded wind_generation embedded wind_capacity embedded solar_generation embedded solar_capacity non_bm_stor pump_storage pumping ifa_flow ifa2_flow brit

156729

120392

25819
132494

6082

230376

134070

Figure 42: Change the Date Format.

As can be seen, a new column called periodhour includes the hour at which the electricity
demand measurement was taken. One can now combine it with the actual date as follows
in figure.43:

Feature Selection:

So in this step the collected data will be analyzed to identify relevant features or vari-
ables that have a significant impact on electricity load. This analysis aims to uncover
factors such as time of day, day of the week, holidays, weather conditions, and other
location-specific or context-specific factors that play a crucial role in load forecasting. By
identifying these features, it becomes possible to incorporate them into the forecasting
model to improve its accuracy and reliability.
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df["settlement_date"] = pd.to_datetime(
(df["settlement_date"] + + df["period_hour"])
)

df .sample(n=5)

settlement date settlement period periodhour  nd  tsd england_wales demand embedded_wind_generation embedded_wind_capacity embedded solar_generation embedded_solar_capacity non_bm_stor pump_storage pumping ifa_flow ifa2_flow brit

33000 20144 21641 12428 1707 6527 0 13080 0 337 192 0

186971

113449 4 19:3000 32013 32615 29357

Figure 43: Check column Period Hour .

We will also explore the distribution of electricity demand with respect the dilerent
features, such as as hour, month or year. This is a great way to understand the seasonali-

ties in the time series: so in this plot it is show the Distribution of electricity consumption
with hours We can also notice the hours in which it consumes more energy 44:

Distribution of electricity consumption with hours
60000

50000

40000

Electricity demand (MwW)

1 2 3 4 5 6 7 8 90 101 1213 M5 1617 1810 20202022382H
Hour

Figure 44: Distribution of electricity consumption with hours

In this plot it is show the Distribution of electricity consumption with months We can
also note the months in which energy is consumed more in figure.45:

In this plot, the Distribution of electricity consumption within years is shown. We can
also note the years in which it consumes more energy in figure 46.
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fig, ax = plt.subplots(figsize=(15, 5)
sns.boxplot (x="month", y="tsd", data=df}

icity demand (NN)" )
ution of electricity consumption with months™);
Distribution of electricity consumption with months
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Figure 45: Distribution of electricity consumption with months

fig, ax = plt_subplotsifigsize=(15, 5))
sns.boxplot(x="year", y="tsd", data=df)

1sbel("Vea
bel("Ele

emand (NN)")
f electricity consumption with years”)

Distribution of electricity consumption with years
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Figure 46: Distribution of electricity consumption with years

Model Selection:

So in this step we have selected three models which are LSTM ,FNN and GRU I chose
these models because they are suitable for prediction based on the characteristics of the

data.
LSTM

Training - test split: the first step is to split the data. I will split the data into train,
test and hold-out set. The hold-out set will be used for independent evaluation of the
model while the model is being trained in figure.47. In order to compare the results of the

threshold_date_1 = "86-81-2819"

threshold_date_2 = "06-81-2021"

train_data = df.loc[df.index < threshold_date_1]

test_data = df.loc[(df.index >= threshold_date_1) & (df.index < threshold_date_2)]
hold_out_data = df.loc[df.index >= threshold_date_2]

Figure 47: Training :Test Split

models, we use the Mean Absolute Percentage Error, which we implemented as follows in

figure 48.
also we use root mean squared error as shown in figure.49.
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def mean_absolute_percentage_error(y_true, y_pred):
ge Error given the true and
eturn
- mape: M, alue he given predicted value

y-true, y_pred = np.array(y_true), np.array(y_pred)
mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 108
return mape

Figure 48: Mean Absolute Percentage Error

§ Dfine s netric for Kers to use a8 8 loss fmetion
def roo, ean_guuard ror(y_tr, y.pred.
retur K907t K nean(K sauare( . pred - y treg)

Figure 49: Root Mean Squared Error

The code prepares the data for training and testing a Keras machine learning model. It
splits the original dataset into training and testing subsets, selects specific features and
the target variable, scales the data, and reshapes it into the required format for input to
a Keras model in figure.50. LSTM model in figure.51.

= threshold_date_2]

8],1,1en(FEATURES

len{FEATURES)

Figure 50: Keras : Define Features and Target
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# Define & random seed for reproducibility
tf.random, set_seed(221)

# Create and compite neursl network

model = Sequential()

model.add(LSTH(256, input_shape=(X_train_keras.shape[1], X_trein_keras.shape[2])))
model.add(Dropout(B.5))

nodel.add(Dense(1))
model.compile(loss = root_mean_squared_error, optimizer="adas")

# Define callbacks
nonitor_param = root_mean_squared_error
mode="min"
early_stopping = EarlyStopping(monitor=root_mean_squared_error, patience=8, verbose=8, mode=mode)
checkpoint_zave = ModelCheckpoint(
", /models_data/sample_lstm/checkpoint”,
save_weights_only=True,
monitor=monitor_param,
mode=node,

)
reduce_1r_loss = ReducelROnPlateau(

monitor=monitor_param, factor=0.1, patience=3, verbose=8, mode=mode
)

# Fit model
history = model.fit(
X_train_keras,
y.train_keras,
epochs=108,
batch_size=144,
validation_data=(X_test_keras, y_test_keras),
callbacks=[early_stopping, checkpoint_save, reduce_lr_loss]

- 1r: 0.0018
: 0.09e3 - 1r: 2.0018
: @.0881 - 1r: 0.0210

: 0.0883 - 1r: 2.0018

Figure 51: LSTM model

Figure.52 shows the LSTM loss plot.

Loss evolution
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0.12

011

0.10
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Figure 52: Plot LSTM Loss
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Figure.53 shows the LSTM prediction.

fig, ax = plt.subplots(figsize=(13, §))
ax.plot(result_frame.index, result_frame['tsd’], "o, label="Test set”)
ax.plot(result_frame.index, result_frame['pred_lsta”] ‘o', label="Prediction’)

ax.legend(loc="center", bbox_to_anchor=(1.875, 2.5))
ax.set_tatle("Prediction on test set")

ax.set_ylabel("Energy Demand (HW)")
ax.set_xlabel("Date");

Prediction on test set

d
[y
vy
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o

¢ Tost set
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w
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Figure 53: LSTM Prediction

Figure.54 shows the code for LSTM prediction in 2 weeks.

begin = "62-81-2621"
end = "82-14-2021"

fig, ax = plt.subplots(figsize=(28, 5))

ax.plot(
result_frame. loc[(result_frame.index > begin) & (result_frame.index < end)].index,
result_frame. loc[(result_frame.index > begin) & (result_frame.index < end)]["tsd"],
ot
1abel="Test set",

)

ax.plot(
result_frame.loc[(result_frame.index > begin) & (result_frame.index < end)].index,
result_frame.loc[(result_frame.index > begin) & (result_frame.index < end)][
“pred_lstm"
1
et
label="LSTH",
)

ax.legend(loc="center", bbox_to_anchor=(1.875, 8.5))
ax.set_title("Prediction on test set - Two weeks")

ax.set_ylabel("Energy Demand (MW)")
ax.set_xlabel("Date");

Figure 54: LSTM Prediction in 2 Weeks
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Figure.55 shows the results for LSTM prediction in 2 weeks.

Prediction on test set - Two weeks

45000
; 40000
T
5

=+ Test set

5 35000 o (55
a)
3
g 30000
=
w

25000

2021-02-01 2021-02-03 221-02:05 221-02:01 2021-02-09 2121-02-11 20102-13

Date

Figure 55: Result LSTM Prediction in 2 Weeks

Figure.56 shows code for mape LSTM and rmse LSTM.

nape_Lstn = nean_absolute_percentage error(
y.test, result _frane]‘pred_Lstn’]
)

rmse.Lstn = np.sqrt{mean_squared.error(y_test, result.frane]"pred_lsta']))
print(

"Nean Ansolute Percentage Error of the LSTH model 5! %.2f" % nape_lstn
J
print(

"Root een Sauared Error of the LSTH nodel 1s: %2 K" % rnse_lstn
)

Hezn Absolute Pencentage Ermar of the LSIN madel 52 1.48
oot Mean Sauaned Ervor of the LSTH nodel ds: 2048.58 W

Figure 56: MAPE LSTM and RMSE LSTM
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Feedforward Neural Network (FNN)

FNN is a type of artificial neural network where the information flows in only one direction,
from the input layer to the output layer. Itis one of the simplest and most common neural
network architectures.

In an FNN model, the network is composed of multiple layers of interconnected artificial
neurons. The first layer is the input layer, which receives the initial data or features. The
subsequent layers are called hidden layers, and the final layer is the output layer, which
produces the network’s predictions or classifications. Each neuron in an FNN receives
inputs from the neurons in the previous layer and applies a non-linear activation function
to the weighted sum of its inputs. This activation function introduces non-linearity into
the model, allowing it to capture complex patterns and relationships in the data. FNN
models are often used for various tasks, including regression (predicting continuous values)
and classification (assigning labels to data points). They have been successfully applied
in a wide range of domains, such as image recognition, natural language processing, and
financial forecasting.

Overall, FNNs provide a foundational building block in deep learning and serve as a basis
for more complex architectures like convolutional neural networks (CNNs) and recurrent
neural networks (RNNs).

Figure.57 shows the code for FNN model.

Figure 57: FNN model

Figure.58 shows the plot of FNN loss.
Figure.59 shows the FNN prediction.
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Loss Evolution
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Figure 58: FNN Loss

fig, ax = plt.cubplots(figsize=(15, 5))
ax.plot(result_frame.index, result_frame[“tsd”], “o", label="Test set")
ax.plot(result_frame. index, result_frame["pred_fnn"], "o", label="Prediction”)

ax.legend(loc="center”, bbox_ta_anchor=(1.875, 8.5))
ax.set_title("Prediction on test set”)

ax.set_ylabel("Energy Demand (WH)")
ax.set_xlabel("Date")

Text(8.5, @, "Date’)
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Figure 59: FNN Prediction

Figure.60 shows FNN prediction in 2 weeks.
Figure.61 shows the code for mape FNN and rmse FNN.
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Prediction on test set - Two weeks
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Figure 60: FNN Prediction in 2 Weeks

Figure 61: MAPE FNN and RSME FNN

Gated Recurrent Unit (GRU)

GRU stands for, which is a type of recurrent neural network (RNN) architecture. It is
designed to address some of the limitations of traditional RNNs in capturing long-term
dependencies in sequential data.

In a GRU model, the network contains recurrent units or cells that maintain an internal
state or memory. This memory allows the network to retain information from past time
steps and use it to make predictions at the current time step. One of the key features of
a GRU cell is its ability to selectively update and reset the memory state. It achieves this
through gating mechanisms that regulate the flow of information. Specifically, a GRU
cell has two gates: an update gate and a reset gate.

The update gate determines how much of the previous memory should be retained and
how much of the new information should be added to the memory. It controls the trade-

0! between remembering past information and incorporating new information. The reset
gate, on the other hand, decides how much of the previous memory should be ignored when

computing the current state. It allows the model to selectively reset or forget information
that is no longer relevant.

By adaptively updating and resetting its memory, the GRU model can e lectively cap-
ture long-term dependencies in sequential data while mitigating the vanishing gradient
problem often encountered in traditional RNNs. GRU models have been widely used in
various natural language processing (NLP) tasks, such as machine translation, sentiment
analysis, and language generation. They have also been employed in other sequential data
domains, including speech recognition, time series analysis, and recommendation systems.

Overall, GRUs o ler a more efficient and powerful alternative to traditional RNNs, en-
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abling better modeling of sequential data and facilitating the development of more accu-
rate and robust predictive models.
Figure.62 shows the code for GRU model.

hape=(X_train_keras.shape[1], X_train_keras.shape[2])))

=root_mean_squared_error, optimizer="adam’)

Figure 62: GRU model

Figure.63 shows the plot of GRU loss.
Loss Evolution

- Training Loss
0.13 ——— Validation Loss

0.07

0 20 40 60 80 100
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Figure 63: GRU Loss

Figure.64 shows the GRU prediction.
Figure.65 shows the code for mape GRU and rmse GRU.
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fig, ax = plt.subplots(figsize=(15, 5))

ax.plot(result_frame.index, result_frame("tsd"], "o, label="Test set")
ax.plot(result_frame.index, result_frame["pred_gru’], "o°, label="Prediction”)
ax.1egend(loc="center", bbox_to_anchor=(1.875, 8.5))
ax.set_title("Prediction on test set”)
ax.set_ylabel("Energy Demand (NW)")
ax.set_xlsbel("Date")

Text(e.5, 8, ‘Date')
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Figure 64: GRU Prediction

mape_gru = mean_absolute_percentage_error(y_test, result_frame["pred_gru”])
rmse_gru = np.sqrt(mean_squared_error(y_test, result_frame["pred_gru"]))

print(“Mean Absolute Percentage Error of the GRU model is: %.2f" % mape_gru)

print("Root Mean Squared Error of the GRU model is: %.2f MW" % rmse_gru)

Mean Absolute Percentage Error of the GRU model is: 8.01
Root Mean Squared Error of the GRU model is: 2872.22 MW

® Testset
® Prediction

Figure 65: MAPE GRU and RMSE GRU

Model Evaluation: We will Evaluate the performance of the trained model using ap-
propriate evaluation metrics, such as root mean square error (RMSE), or mean absolute
percentage error (MAPE). These metrics provide insights into the accuracy and reliability

of the forecasting model in figure.66.

summary __dif

4

pd.DataFram=|(
“LSTM" 2 [mape_l1stm,
“FrMN [mapse_T+trnn,
“GRU T [mape_gru,
“Metric™: ["MAPE"™ .,

rm=c_ fnn
rmse_gru
"RMSE" ]

2
summanry_df .set_index{"Metric™

summanry_df _ stwle.fTormat{''{:_2FF+")

LSThA Frarda GRU

MNMemric
MAFPE T.A8 E=J = 201
RMMSE =740 58 18249 =ZET2 2>

Figure 66: LSTM vs FNN vs GRU

Thus, here the best model is LSTM.

rMmse__1stm]

1.
1.

dnplace=Trwus)

63



Al-based Energy management system for smart grid network

Electricity price forecasting
Modeling and evaluation

Here we transform the Electricity consumption price column of the data DataFrame into
a numpy array of float values.

4 codel.py UNREGISTERED

codel.py code2.py untitled ‘ coded.py LEIRERGS code3.py

dataset = data.Elect ty_consumption_p . . ('float32')
#Reshape the n y into a 2D array w

dataset = np. (dataset, (-1, 1))
#Create an instance of the Mi xScaler class to scale the values be noand 1

scaler ire_range=(0
#Fit the M Scaler e transfor ata and transform the va

(80%) and a test set (20%)
train_size (len(dataset) * 0.80)

test_size = (dataset) - train_size
train, test = dataset([0:train_size,:], dataset[train_size: (dataset), :]

Tab Size: 4 Python
Figure 67: Transform intp array of float
Here we convert an array of values into a dataset matrix.
% code2.py UNREGISTERED

4p codel.py code2.py untitled ‘ coded.py . naima.tex ’ code3.py

def (dataset, look_back=1):
X, ¥Y=11, 11
for i in (len(dataset)-look_back-1):
a = dataset[i: (i+look_back), 0]
X. (a)
Y. (dataset[i + look jack, 0l)
)

return np. (X), np. (Y

Spaces: 4 Python

Figure 68: Dataset matrix conversion
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Here, we reshape into X=t and Y=t+1

% code3.py UNREGISTERED

codel.py code2.py X \ untitled \ coded.py x| naima.tex > code3.py

look_back = 30

X_train, Y_train = (train, look_back)
X_test, Y_test (test, look_back)
X_train.shape

Y_train.shape

Tab Size: 4 Python
Figure 69: X and Y reshape
here we reshape input to be [samples, time steps, features]
coded.py UNREGISTERED

4)r codel.py > ‘ code2.py 4 \ untitled code4.py naima.tex X code3.py

3 t(_train np. (X_train, (X_train.shapel@], 1, X_train.shape[1]))
_test = np. (X_test, (X_test.shape[@], 1, X_test.shapel1l))
X_train.shape

Tab Size: 4 Python

Figure 70: Input reshape
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LSTM model

Here we define our LSTM model. Adding the first layer with 365 LSTM units and input

shape of the data.

4 code5.py

codel.py code2.py \ untitled ‘ coded.py code5.py naima.tex

model ()

model. (

(365|, input_shape=(X_train.shape[1], X_train.shape[2])))

# Adding a dropout layer to avoid overfitting

( (0.2))
1 unit to make
C as 1 funct 1 using Adam optimizer

or', optimizer
1 training data and using early stopping to avoi

(X_train, Y_train, epoc
callbacks=[

verfitting
20, batch_size=1240, validation_data=(X_test, Y_test),
(monitor='val_loss', patience=4)], verbose=1, shuffle

Spaces: 4

Figure 71: Defining LSTM model

Evaluation

Here we make our predictions.

o code6.py

codel.py code2.py untitled code6.py code4.py codeb5.py naima.tex

train_predict = model.
test_predict = model.
# invert predictions
train_predict = scaler.
Y_train = scaler.
test_predict = scaler.
Y_test = scaler.

(X_train)
(X_test)

(train_predict)
([Y_train])
(test_predict)
([Y_test])

Train Mean Absolute Error:',
Squared Error:',np.

(Y_train[0], train_predict[:,0]))
(Y_train[@], train_predict[:,01)))
(Y_test[0], test_predict[:,0]))
(Y_test[0], test_predictl[: ,Ol)d

(
(
('Te ean olu y
(

Test Root Mean Squared Error:',np.

Figure 72: Predictions and evaluation

Here we have the results for model loss:
And here we have the results of the prediction.

UNREGISTEREL

| code3.py

Python

UNREGISTERED

code3.py
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model loss
AR —— Train Loss
Test Loss
0.0009
0.0008
v
v
S 0.0007
0.0006 -
0.0005
0.0004
0 1 2 3 4 5 6
epochs
Figure 73: Model loss
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5 — prediction
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Time step

Figure 74: Prediction results

Energy Management simulation with Matpower package

To validate the results of the proposed Al-based solution, we perform some simulation
tests to a real smart grid network which is the IEEE 30-bus system. This system consists
of 30 nodes where we have a 6 generation nodes. This simulation is performed with
Matpower package (24).
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Energy generation cost results

Figure. 75 presents the results of generation cost after a load forecasting based on RNN,
GRU and the proposed method which is LSTM. As shows the figure, the proposed LSTM

I Bus 1
I Bus 2
[ Bus 13
Bus 22
["IBus23
[IBus27

Nodal Cost ($/MWh)

Figure 75: Energy generation cost

based load forecasting method leads to a better result in terms of energy cost which has
the least cost here.

Figure.

(energy cost §)

IS
o

(=]
o

~
o

[+2]
o

%))
(=]

Energy consumption cost results

76 presents the results of electricity consumption cost for four methods.

Without
FNN
GRU
LST™M

Time (day)

25

Figure 76: Electricity consumption cost
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Thes four methods are as follows : without performing electricity price forecast, after
an electricity price forecasting based on RNN, GRU and the proposed method which
is LSTM. As shown in figure.76, the proposed LSTM based electricity price forecasting
leads to a significant reduction in energy consumption cost when comparing with the
other methods.

Conclusion

In this chapter, we presented the results of the load time-series forecasting in distri-

bution level with the proposed LSTM method and compared it to di erent forecasting
methods such as FNN and GRU. In addition, the results of the electricity price forecasting
with LSTM are presented.

Furthermore, the smart grid simulation is carried in order demonstrate the gain of the
proposed method and compared with the other existing methods. The results show a
significant gain in terms of energy generation cost at distribution level and in terms of
electricity consumption cost at the consumption level.
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5 General conclusion

Load forecasting has gained increasing importance due to the advancement of smart
grid technology. This project focuses on predicting hourly loads and electricity price
one day in advance using Deep Learning techniques. Our approach introduces a flexible
architecture that integrates various types of input features. These inputs are processed
using LSTM model tailored to their specific characteristics. To evaluate our method, we
analyze a dataset comprising several years of hourly load data. The experimental results

demonstrate the e Jectiveness of our approach.

Forecasting electricity price is also a crucial step in residential energy management.
i.e, at consumption level, where the consumer should have a precise results to change his
electricity consumption patterns to reduce his electricity consumption cost.

Forecasting load consumption and electricity price are a complex task due to their
influence of numerous factors. Consequently, more training data is typically required
to improve performance from a data standpoint. Additionally, incorporating additional
relevant features such as hourly temperature and humidity can enhance the accuracy of
load and electricity price forecasting.

Keeping up with the rapid development of Deep Learning methods is crucial, as novel
models continue to emerge. One promising direction is the application of new mechanisms
in deep learning such as federated learning, which have achieved considerable success in
various domains. In future research, we plan to explore the potential of incorporating
federated learning mechanisms into smart grid energy management to improve the overall
performance.
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