
PEOPLE’S DECMOCRATIC REPUBLIC OF ALGERIA
Ministery of higher Education and Scientific Research

University Mohamed Khider – BISKRA
Faculty of Exact Sciences, Natural and Life Sciences

Computer science departement
Order N° : IVA09/M2/2023

Dissertation
Presented to obtain the academic master’s degree in

Computer Science
Option : Image and Artificial Life(IAL)

Distance maps bases ray casting of
volumetric images

By :
ZINEDDINE MAGHARBI

Defended in 19/06/2023 before the members of the jury composed of :

CHIGHOUB Rabiaa MCB President

BAHI Naima MCB Supervisor

BENTRAH Ahlem MCB Examiner

Academic year 2022-2023

Contents

Résumé 8

Abstract 9

General Introduction 10

1 Volume Rendering 12

1.1 Introduction . 12

1.2 Volume Rendering . 12

1.3 Volumetric data . 14

1.4 Techniques . 15

1.4.1 Direct volume rendering . 16

1.4.1.1 Maximum Intensity Projection (MIP) 18

1.4.1.2 Shear-Warp . 19

1.4.2 Indirect volume rendering . 20

1.4.2.1 Marching cubes . 22

1.5 Transfer function . 23

1.6 The Volume Rendering Integral . 25

1.7 Ray casting . 26

1.8 Volume rendering tools . 29

1.8.1 VTK (Visualization Toolkit) . 29

1.8.2 MITK (Medical Imaging Interaction Toolkit) 31

1.9 Conclusion . 32

2 Volumetric Ray casting 33

2.1 Introduction . 33

2.2 Sampling . 34

2.2.1 Irregular sampling . 35

2.2.1.1 Adaptive sampling . 36

2.2.1.2 Hierarchical sampling 37

2.3 Empty space skipping . 38

2.4 Empty space skipping acceleration . 39

2.4.1 KD-tree . 40

2.4.2 Octree . 41

2.4.3 Distance Transform Empty Space Skipping 44

2.5 Distance maps . 45

2.5.1 Signed distance field . 47

2

Contents

2.6 Chebyshev distance maps for volumetric ray casting acceleration 49

2.7 Conclusion . 50

3 Method 51

3.1 Introduction . 51

3.2 Goal and motivation . 51

3.3 System Overview . 52

3.4 Block Empty Space Skipping . 53

3.4.1 Mapping between Normalized and Unnormalized Texel Coordinates 53

3.4.2 Calculating the Number of Steps Along a Ray in Volume Sampling 56

3.4.3 Calculating the Change in Normalized Texture Coordinates (∆t) . 56

3.4.4 Calculating Normalized Texel Coordinates along a Ray 57

3.4.5 Calculating Normalised texel coordinates of the occupancy map . 57

3.4.6 Change in Unnormalized Texel Coordinates and Ray Steps in the

Occupancy Map . 58

3.5 Chebyshev Distance Empty Space Skipping 58

3.6 Conclusion . 61

4 Implementation and results 62

4.1 Introduction . 62

4.2 Implementation Overview . 62

4.3 Dataset Selection . 63

4.4 Experimental Setup . 64

4.4.1 Hardware Configuration . 64

4.4.2 Software Configuration . 64

4.4.3 Experimental Data . 64

4.5 Data and Application Interface . 65

4.6 Experimental Results . 66

4.6.1 Basic raycasting Results . 66

4.6.2 Results with Chebychev Distance Maps 70

4.7 Analyze and Discussion . 72

4.8 Conclusion . 73

General Conclusion 74

3

List of Figures

1.1 Volume rendering examples[53] . 14

1.2 Stacking 2D slices to create a 3D volume.[20] 14

1.3 Cinematically rendered images based on patient CT scans viewed using dif-

ferent presets for skin, muscle, bone, and vasculature (from left to right).[55] 15

1.4 Classification of volume visualization algorithms.[1] 16

1.5 Backward methods.[6] . 17

1.6 Forward methods.[6] . 17

1.7 Typical profiles for MIP.[68] . 18

1.8 To get the crest along a viewing ray.[68] 18

1.9 Comparisons between standard DVR (first row) and two-level volume ren-

dering (second row). (a) Two-level volume rendering allows to show blood

vessels within the head, even near the skull. (b) Using MIP for the visual-

ization of context (bones, skin), the object of interest (blood vessels plus

stenosis) becomes well visible from all viewing directions. (c) Again, MIP

proves to work fine for context visualization. .[30] 19

1.10 The shear-warp for parallel (left) and perspective (right) projections. Fig-

ure credit: P. Lacroute.[8] . 20

1.11 The shear-warp algorithm includes three conceptual steps: shear and re-

sample the volume slices, project resampled voxel scanlines onto inter-

mediate image scanlines, and warp the intermediate image into the final

image.[40] . 20

1.12 3D indirect volume rendering.[12] . 21

1.13 Comparison between direct volume rendering (A) and surface rendering

after patient modeling (B). [64] . 22

1.14 An Iso-surface surface rendering of a human skull [57] 23

1.15 Trnasfer function graph . 24

1.16 An amount of radiant energy emitted at t = d is partially absorbed along

the distance d.[28] . 25

1.17 Illustration of raycasting. A ray is cast from the viewer through a pixel on

the screen. It marches through the volume and integrates the contribution

of light, colored samples shaded by the illumination. The result is stored

in a pixel and the procedure is performed for all pixels.[46] 28

1.18 Medical images rendered with the GPU-based raycasting: a CT skull, b

MR brain, c CT jaw, and d MR cerebral blood vessel. [46] 29

4

List of Figures

1.19 Generating triangle strips from a polygonal data set. On the left, the

original laser range data is stripped; on the right, an unstructured mesh

(after decimation) is stripped. [61] . 30

1.20 MITK ReleaseNotes 2018.04.2 [2] . 32

2.1 Pipeline of raycasting calculation on GPU graphics hardware: setting cam-

era and image plane, casting ray into 3D texture volume, adding light

source and conducting trilinear interpolation based texture sampling.[70] 34

2.2 The left image illustrates a small detail of the Asian dragon model with

a sampling rate of 0.5. On the right, adaptive sampling increases the

sampling rate to 4.0 close to the isosurface. Note that except at the sil-

houettes, there is no visible difference due to the iterative refinement of

intersections.[27] . 37

2.3 Ray-casting with object-order empty space skipping. The bounding geom-

etry (black) between active and inactive blocks that determines start and

exit depths for the intersection search along rays (white) encloses the iso-

surface(yellow). Colored bricks of 2x2 blocks reference bricks in the cached

texture. White bricks are not in the cache. Actual ray termination points

are shown in yellow and red, respectively.[26] 39

2.4 An illustration of our empty-space removing method. Empty voxels are

progressively removed from the original volume with a kd-tree based spatial

partitioning scheme.[65] . 41

2.5 .A block diagram of the volume ray casting. Since transparent regions

cannot be contributed to the final image, we can accelerate the rendering

speed when the regions are quickly skipped (shaded step).[45] 42

2.6 An example of the construction of a single-level octree. For simplicity, the

volume dataset is represented as a 2D array. The volume dimension is

8×8, and the quadrant dimension is 2×2. Assume that each quadrant has

the minimum and the maximum values for representing the quadrant to

determine the transparency.[45] . 43

2.7 Since we estimate the distance from one boundary voxel to another bound-

ary voxel for skipping over a transparent octant, an intersection test al-

gorithm is required. In this figure, five mathematical computations are

required to reach a nontransparent object.[45] 43

2.8 : Illustration of one cast ray, sampling a volume with both initial and

intermediate empty space in its path. The ray is cast from left to right in

the image. Top: Uniform step length across the ray. Ray steps that are

outside of the working set are sampled just as densely as the steps inside.

Bottom: Using the distance field to accelerate the rays outside the volume.

Accelerated steps are marked with dashed radii.[56] 45

2.9 : Ray Casting [56] . 48

3.1 General Scheme of current method . 52

3.2 The Normalized Coordinate [72] . 53

3.3 Texture Mapping[54] . 54

3.4 Empty Space Skipping by Chebyshev Distance Map 58

5

List of Figures

3.5 Chebyshev Distance Empty Space Skipping (CDESS) Algorithm: Opti-

mizing Volumetric Rendering . 60

4.1 GUI . 66

4.2 rendering Human Head using only ray casting (Rendering time:5.1171s) . 67

4.3 rendering Human Abkle using only ray casting (Rendering time:2.9694) . 68

4.4 rendering Human Chest using only ray casting(Rendering time:4.1107s) . 69

4.5 Rendering Human Head using Chebyshev Distance Maps based raycasting

(Rendering time:1.5029s) . 70

4.6 Rendering Human Ankle using Chebyshev Distance Maps based ray cast-

ing (Rendering time = 1.1495s) . 71

4.7 Rendering Human Chest using Chebyshev Distance Maps based ray casting

(Rendering time: 1.9244s) . 72

4.8 Execution time comparison between raycasting with Chebyshev Distance

maps and Raycasting only . 72

6

List of Tables

4.1 Dataset Information . 65

7

Résumé

Le rendu volumique est une technique essentielle en infographie qui permet la visualisa-

tion de jeux de données tridimensionnels (3D). Cet article présente un aperçu du rendu

volumique et du raycasting, mettant en évidence l’intégration des cartes de distance de

Chebyshev dans le processus.

Le rendu volumique consiste à générer des images en 2D à partir de données volumétriques,

telles que des scans médicaux ou des simulations scientifiques. Le raycasting est un al-

gorithme couramment utilisé dans le rendu volumique, qui trace des rayons à travers

le volume pour déterminer la contribution de chaque voxel à l’image finale. En combi-

nant cette technique avec les cartes de distance de Chebyshev, nous pouvons obtenir une

précision accrue dans la visualisation volumique.

Les cartes de distance de Chebyshev fournissent une mesure de la distance basée sur

la différence maximale dans n’importe quelle dimension entre deux points de l’espace.

Dans le rendu volumique, les cartes de distance de Chebyshev sont utilisées pour calculer

les fonctions de transfert d’opacité et de couleur, permettant une représentation plus

précise des structures complexes et des frontières à l’intérieur du volume. Cette approche

permet une meilleure visualisation de caractéristiques telles que les frontières d’organes,

les structures vasculaires et les détails anatomiques.

8

Abstract

Volume rendering is a vital technique in computer graphics that allows the visualization of

three-dimensional (3D) data sets. This article presents an overview of volume rendering

and raycasting, highlighting the integration of Chebyshev distance maps in the process.

Volume rendering involves generating 2D images from volumetric data, such as med-

ical scans or scientific simulations. Raycasting is a commonly used algorithm in volume

rendering that traces rays through the volume to determine the contribution of each voxel

to the final image. By combining this technique with Chebyshev distance maps, we can

achieve enhanced accuracy in volume visualization.

Chebyshev distance maps provide a measure of distance based on the maximum dif-

ference in any dimension between two points in space. In volume rendering, Chebyshev

distance maps are used to calculate the opacity and color transfer functions, enabling a

more accurate representation of complex structures and boundaries within the volume.

This approach allows for better visualization of features like organ boundaries, vascular

structures, and anatomical details.

9

General Introduction

Volume rendering plays [19] a critical role in various scientific domains, enabling the vi-

sualization and analysis of three-dimensional data. It has proven indispensable in fields

such as medical imaging, computational fluid dynamics, and materials science, where

understanding volumetric structures is essential for accurate diagnosis, simulation, and

research. Two primary methods used in volume rendering are direct and indirect ren-

dering [[5], [58]]. Indirect volume rendering is a technique for generating geometric rep-

resentations from volumetric data. Like in the Marching Cubes algorithm, we extract

polygonal surfaces from the volume, enabling the visualization of complex structures.

Direct volume rendering techniques, such as raycasting, involve casting rays through the

volume and computing the color and opacity of each ray based on the properties of the

underlying data.

However, the efficient rendering of volumetric datasets poses several challenges that

need to be addressed. One significant challenge is sampling, as the volume may contain a

vast number of data points, making it impractical to render every point. Various sampling

strategies[[37], [13]], including regular sampling, Regular sampling can lead to aliasing

artifacts and may not capture fine details accurately. Irregular sampling techniques, such

as adaptive and hierarchical sampling, aim to improve efficiency by selectively sampling

regions of interest, but they can introduce complexity in determining the optimal sampling

rate and may still miss important features. These strategies require careful parameter

tuning and can be computationally expensive.

So, the second critical aspect is acceleration, as rendering large volumes in real time

requires efficient algorithms and data structures. Acceleration techniques [[69],[45]], such

as spatial partitioning structures like KD-trees and octrees, enable faster ray traversal by

organizing the volume data in a hierarchical manner. These structures facilitate efficient

intersection tests and enable faster empty space skipping, reducing the computational

overhead.

The main idea behind distance maps is to represent the distance from each point in

a volumetric dataset to the nearest surface. Distance maps provide valuable information

about the spatial relationship between the volume and the surfaces within it. By calcu-

lating and utilizing distance maps, it becomes possible to efficiently skip empty spaces

during rendering, thereby reducing the computational cost. This approach enables faster

and more efficient volume rendering by focusing only on relevant regions and bypassing

empty or non-contributing regions. Distance maps are commonly used in techniques such

as empty space skipping and can significantly enhance the rendering process.

In the context of this project, the focus is on accelerating direct volume rendering

using a specific acceleration technique called Chebyshev Distance empty space skipping.

This technique leverages the Chebyshev Distance, which represents the distance between

10

List of Tables

a ray and the nearest occupied block in the volume. By efficiently estimating this distance

and utilizing it to skip multiple empty blocks along a ray, unnecessary computations can

be avoided, leading to significant performance improvements.

The main objective of this project is to develop and evaluate an efficient approach

for accelerating volumetric raycasting using Chebyshev Distance empty space skipping.

By incorporating this technique into the rendering pipeline, the goal is to enhance the

rendering performance for large-scale volumetric datasets while maintaining high-quality

visual results.

The manuscript is structured to provide a comprehensive understanding of the re-

search conducted. It consists of different chapters covering concepts and foundations,

including an introduction to volume rendering, volumetric data representation, various

rendering techniques, and volume rendering tools. The subsequent chapters delve into

the details of volumetric raycasting, including sampling strategies, empty space skipping

techniques, such as KD-trees and octrees, also the used Chebyshev distance empty space

skipping approach. The implementation details, experimental setup, dataset selection,

and results are described in the chapter on implementation and results. Finally, the

general conclusion summarizes the findings discusses their implications, and highlights

potential future directions for enhancing the efficiency of volumetric raycasting using

Chebyshev Distance empty space skipping.

11

Chapter 1

Volume Rendering

1.1 Introduction

This chapter aims to provide readers with a comprehensive introduction to volume

rendering[19], a powerful computer graphics technique. The primary objective is to fa-

miliarize readers with the multitude of methods employed in volume rendering and offer

an in-depth description of one of the most widely acclaimed techniques: ray casting.

By exploring the concepts and foundations of volume rendering, the different techniques

utilized in volume rendering are extensively examined and classified into two categories:

direct volume rendering and indirect volume rendering[67].

Within the realm of direct volume rendering, the chapter focuses on two prominent

techniques: Maximum Intensity Projection (MIP) and Shear-Warp[68],[32].

The chapter also introduces the widely used Marching Cubes algorithm[50],[48] as a

representative technique for indirect volume rendering.

To aid in the understanding and visualization of volumetric data, the chapter explores

the concept of transfer functions[47].

Furthermore, the chapter introduces the Volume Rendering Integral[28], a fundamen-

tal concept that underlies many volume rendering algorithms.

Ray casting[59] is presented as a key technique in volume rendering, wherein rays

are cast through the volume to calculate color and opacity at each sample point. This

approach allows for the creation of high-quality renderings with diverse lighting effects

and material properties.

Finally, the chapter presents popular volume rendering tools, including VTK and

MITK[4],[3].

1.2 Volume Rendering

Each pixel on our display displays represents a unit area in a two-dimensional array. Each

cubic element that makes up a volume is a three-dimensional array that represents a single

unit of space. Volume elements, often known as voxels, are individual components of a

three-dimensional space. The value at that location is a number assigned to each point

in a volume. A scalar field on the volume is the term used to describe the grouping of all

these values.[22] A level surface is the collection of all points in the volume that have a

specific scalar value. Scalar fields are displayed by a method called volume rendering.

12

Chapter 1. Volume Rendering

It is a technique for displaying a set of three-dimensional data. Using volume rendering

techniques, a data set’s internal details are projected onto a display screen. Interior data

values along the ray path from each screen pixel are analyzed and encoded for display.

Depending on the application, the data are encoded differently for presentation. For

instance, seismic data is frequently evaluated to determine the highest and lowest values

along each ray. The values can then be color-coded to indicate the interval’s breadth and

the lowest value. For tissue and bone layers in medical applications, the data values are

opacity factors in the range of 0 to 1. Layers of bone are totally opaque, while the tissue

is somewhat transparent.[23, 59]

Voxels serve as representations for several physical properties such as density, temper-

ature, velocity, and pressure. The volume records can be used to extract other measures

like area and volume.[14, 35] Medical imaging (such as computed tomography, magnetic

resonance imaging, and ultrasonography), biology (such as confocal microscopy), geo-

physics (such as seismic measurements from oil and gas exploration), industry (such as

finite element models), molecular systems (such as electron density maps), meteorology

(such as stormy (prediction), computational fluid dynamics (such as water flow), compu-

tational chemistry (such as new materials), and digital signs are examples of applications

of volume visualization (e.g., CSG)[14]

Large 3D datasets are produced via numerical simulations and sampling techniques

such as MRI, CT, PET, ultrasonic imaging, confocal microscopy, supercomputer simu-

lations, geometric models, laser scanners, depth images calculated by stereo disparity,

satellite imaging, and sonar.

By applying sampling techniques, 3D scientific data can be produced in a number of

areas. Volumetric data from biomedical scanners are normally presented as 2D slices of a

standard, Cartesian grid, with minor variations occasionally. Uneven grids are a common

result of supercomputer and Finite Element Method (FEM) simulations. A series of ran-

domly aligned, fan-shaped slices that make up partially organized point samples make up

an ultrasonic scan’s raw output. These scanners produce a series of 2D slices, which are

then combined to create a 3D volume model. Imaging devices can record a great deal of

information necessary for scientific research thanks to their millimeter-scale resolution.[31]

To understand the data being represented, it is frequently required to observe the

dataset from continuously shifting angles. The most important need is real-time inter-

action, which is preferable even if it is depicted in a somewhat less realistic manner.

The following justifications justify the necessity of a real-time rendering system: Volume

rendering is a group of techniques used in computer graphics and scientific visualization

to project a 3D data set into a 2D space using discrete samples. A collection of 2D slice

images from an MRI, CT, or Micro CT scanner is an illustration of a 3D data set. For

instance, a volume rendering technique can be used to create 3D volume-rendered images

from a collection of 2D slice photographs of a human brain

13

Chapter 1. Volume Rendering

Figure 1.1: Volume rendering examples[53]

Also, it makes it possible for users to see three-dimensional scalar fields. Each industry

that generates 3D data sets for analysis, such as physics, medicine, disaster preparedness,

and more, should be aware of this.[19, 31].

Normally, users take these slices at regular intervals and with a regular quantity of

image pixels, such as one slice per millimeter. In a regular volumetric grid, each voxel or

volume element is sampled to gather volumetric data, which is then used to generate a

single representative value for that region.[19]

Figure 1.2: Stacking 2D slices to create a 3D volume.[20]

1.3 Volumetric data

Data that depicts a three-dimensional region or volume in detail is referred to as volu-

metric data. This kind of information is frequently employed in scientific and engineering

disciplines including computer graphics, meteorology, geology, and medical imaging.

Volumetric information may be gathered from a variety of imaging techniques, in-

cluding computed tomography (CT) scans, magnetic resonance imaging (MRI), and ul-

trasound. These scans provide a number of two-dimensional pictures or slices that may

be assembled to depict the scanned item or body part in three dimensions.

Simulations in other disciplines, like fluid dynamics or weather modeling, can provide

volumetric data. The features of a volume, like its temperature, pressure, or velocity, are

described by the vast volumes of data produced by these simulations.

For presenting volumetric data, a three-dimensional grid or matrix is commonly used,

with each point on the grid denoting a particular position in the volume and including

14

Chapter 1. Volume Rendering

details about that site’s characteristics. It is possible to display this data in order to pro-

vide accurate and instructive representations of the volume using a variety of approaches,

including volume rendering, surface extraction, and isosurface rendering.[11]

Figure 1.3: Cinematically rendered images based on patient CT scans viewed using dif-

ferent presets for skin, muscle, bone, and vasculature (from left to right).[55]

1.4 Techniques

For the past 20 years, the most active sector of scientific visualization research has been

volume visualization. Techniques for volume visualization must provide efficient data

processing, comprehensible data representations, and fairly speedy rendering in order to

be effective. Scientific users must be able to alter the settings and see the outcome right

away. Few modern systems can perform at this level, thus researchers are still exploring

a variety of novel approaches to efficiently employ volume visualization.

The various rendering techniques differ in a number of areas that may be used to

classify them in depth in different ways[15, 25, 32]. Based on the area of the volume

raster set that they produce, two distinct ways are used to visualize volumes coarsely.

There are various volume rendering methods, and choosing the best one depends on

a number of variables. The four types of 3D volume rendering techniques include ray

marching or casting, resampling or shear-warping, texture slicing, and splatting. Here,

there are two main approaches:

• Surface rendering (or indirect volume rendering).

• Volume rendering (or direct volume rendering).

15

Chapter 1. Volume Rendering

Figure 1.4: Classification of volume visualization algorithms.[1]

1.4.1 Direct volume rendering

A method for visualizing a three-dimensional volume of data is volume rendering, com-

monly referred to as direct volume rendering. It is often used in scientific visualiza-

tion, medical imaging, and other disciplines that need the analysis and viewing of three-

dimensional data.

The main goal of volume rendering is to mimic how light interacts with a volume of

data in three dimensions. This entails determining how these qualities vary along rays

thrown across the volume after giving optical properties to the data, such as opacity and

color. A combination of these rays creates the final picture, which shows the volume’s

interior structure.

1. The volume rendering method begins with gathering the three-dimensional data

volume that has to be shown. Scientific simulations, other data sources, or imaging

techniques used in medicine, such as CT or MRI, can all be used to obtain this

information.

2. Pre-processing may be required to make the data appropriate for rendering once it

has been acquired. In order to reduce background noise or isolate particular char-

acteristics within the volume, this may include using various approaches including

filtering or segmentation.

3. The transfer function converts the optical characteristics of the data to color and

opacity values, making it a crucial stage in the volume rendering process. This

feature may be customized by the user to draw attention to particular aspects of

interest in the volume.[16]

4. The optical properties at each point along the beam are then calculated after casting

rays through the data volume. Finding the ray and volume intersection point is the

first step in doing this. or future society at large, or for evidence-based education

methodologies.

5. Compositing: The final image is created by combining the optical parameters that

have been determined along each ray. This entails employing a process known as

alpha blending to composite the color and opacity values along each ray.

The visual representation of the three-dimensional volume of data that emerges from

the volume rendering process may be interactively examined and evaluated. Users may

16

Chapter 1. Volume Rendering

learn more about the internal structure of the data by using various transfer functions to

highlight various structures or characteristics within the volume.[42]

A 3D representation of volume data may be immediately obtained using the Direct

Volume Rendering (DVR) concept. The data is thought to be represented via a semi-

transparent light-emitting material. Therefore, gaseous phenomena can also be simulated.

DVR strategies are founded on principles of physics (emission, absorption, dispersal).

The volume data is used in its entirety, allowing us to view the volume’s inner struc-

tures. Each sample value must have an opacity and a color mapping in order for a direct

volume renderer to work[44]. This is accomplished via a ”transfer function,” which may

be a straightforward ramp, a broken-down linear function, or a random table. when

changed to an RGBA(red, green, blue, alpha) value, projection of the composite RGBA

results onto the relevant frame buffer pixel.

The rendering method will determine how this is accomplished. These methods can

be mixed and matched. The aligned slices in the off-screen buffer, for instance, may

be drawn using texturing hardware in a shear warp implementation. With DVR, both

forward and backward techniques are available. Algorithms for image space and picture

order are used in backward approaches. They are executed pixel by pixel. An example

that will be covered in more depth below is ray casting. application of object space/object

order techniques. The cells are projected onto the picture as these algorithms are run

voxel by voxel. Examples of this method include cutting, shearing, and splatting.[6]

Figure 1.5: Backward methods.[6]

Figure 1.6: Forward methods.[6]

There are several types of direct volume rendering techniques:[10]

17

Chapter 1. Volume Rendering

1.4.1.1 Maximum Intensity Projection (MIP)

A common method for converting volumetric data into 2D pictures or movies is called

maximum intensity projection (MIP). This method allows viewers to visualize the most

noticeable aspects of the information, such bones or blood veins, which makes it partic-

ularly helpful in scientific visualization and medical imaging.

The MIP method selects the greatest intensity value encountered along each ray after

projecting rays across the 3D data. The pixel in the 2D picture that represents the ray’s

terminus is then colored using this highest intensity value. In other words, MIP decides

which voxel along each ray is the brightest and shows that one as the final image.

Let’s look at a straightforward example of a 3D dataset with a sphere to better grasp

the MIP procedure. The resultant image would display the sphere’s borders when viewed

in 2D using MIP since the sphere’s surface would be represented by the brightest voxels

on each ray.

MIP is superior to other volume rendering methods in a number of ways. It can render

enormous datasets in real-time or very close to real-time due to its first advantage: pro-

cessing efficiency. Second, it creates pictures that resemble those from traditional X-rays,

making it simple to use and intuitive. Third, it is helpful for determining the dataset’s

standout characteristics, which makes it especially helpful for scientific visualization and

medical imaging[30, 68].

Figure 1.7: Typical profiles for MIP.[68]

Figure 1.8: To get the crest along a viewing ray.[68]

18

Chapter 1. Volume Rendering

Figure 1.9: Comparisons between standard DVR (first row) and two-level volume ren-

dering (second row). (a) Two-level volume rendering allows to show blood vessels within

the head, even near the skull. (b) Using MIP for the visualization of context (bones,

skin), the object of interest (blood vessels plus stenosis) becomes well visible from all

viewing directions. (c) Again, MIP proves to work fine for context visualization. .[30]

With this approach, the maximum intensity value along each ray is shown, producing

a picture that highlights the brightest characteristics in the data set.

1.4.1.2 Shear-Warp

By projecting 3D volumetric data onto a 2D viewing plane, the direct volume rendering

technique known as shear warp makes it possible to visualize 3D volumetric data. This

method has been extensively utilized in scientific visualization and medical imaging, where

it is especially beneficial for real-time rendering of big datasets.

Shearing and warping are the first two phases of the shear warp algorithm. The 3D

dataset is changed in the shearing stage by using a shear transformation along one of the

three axes. The dataset is deformed by the shearing procedure, but it also lines up the

dataset’s axis with the viewing plane.

After the dataset has been sheared, a perspective projection is used to warp it onto

the 2D viewing plane. In a manner similar to how a camera takes a picture, the projection

translates the 3D data onto the 2D plane. To create a high-quality, realistic image, the

projected image is next produced utilizing customary graphics methods like shading and

texture mapping.

Shear warp has a lot of benefits, including speed. The method may be used on current

graphics hardware, such as graphics processing units (GPUs), for real-time rendering

because it is highly parallelizable. Shear warp is advantageous for applications that call

for the presentation of intricate, volumetric data since it can handle huge datasets as

well.

There have been various suggested shear warp variants to alleviate some of these

constraints. In order to dynamically change the amount of shear applied to the dataset

based on the local curvature of the dataset, adaptive shear warp algorithms, for instance,

have been developed. For particular kinds of datasets and applications, several variants,

19

Chapter 1. Volume Rendering

such as object-order shear warp and view-order shear warp, have been created to increase

the technique’s accuracy and effectiveness.

As a direct volume rendering method, shear warp enables the presentation of 3D

volumetric data by projecting it onto a 2D viewing plane. The method is effective for

real-time rendering of complicated, volumetric data since it is highly parallelizable and

capable of handling enormous datasets. Shear warp, nevertheless, has significant draw-

backs and could generate aberrations that could skew the final image’s accuracy. Shear

warp has undergone a number of modifications to overcome these issues and enhance the

technique’s accuracy and effectiveness for particular datasets and applications[8, 40].

Figure 1.10: The shear-warp for parallel (left) and perspective (right) projections. Figure

credit: P. Lacroute.[8]

Figure 1.11: The shear-warp algorithm includes three conceptual steps: shear and resam-

ple the volume slices, project resampled voxel scanlines onto intermediate image scanlines,

and warp the intermediate image into the final image.[40]

1.4.2 Indirect volume rendering

By modeling how light interacts with the material, the computer graphics approach known

as indirect volume rendering visualizes data in a volume. This method depicts the lighting

and scattering effects of the volume rather than just the volume’s surface. Both scientific

visualization and medical imaging make extensive use of them.

20

Chapter 1. Volume Rendering

In order to draw indirect volumes, the volume data must first be imported and con-

verted into a format that can be rendered. The material’s illumination and scattering

characteristics are then modeled using methods like ray tracing or Monte Carlo simula-

tion. Lastly, to display the simulated data, a picture is created using methods like ray

casting.

Figure 1.12: 3D indirect volume rendering.[12]

Indirect volume rendering has a number of benefits over conventional visualization

methods, including the ability to show intricate interior structures and give a more re-

alistic depiction of the volume’s physical characteristics. Nevertheless, it could require

a lot of computer work, and the produced pictures might be challenging to understand

without the right visualization methods.[50]

A 2D projection of a 3D discretely sampled data set is displayed using the indirect

volume rendering method in scientific visualization and computer graphics. It is based on

a polygonal surface description of the relevant bodily cavities that creates triangle facets

using the equipotential surface of volume data [67]. Compared to direct volume rendering,

indirect volume rendering provides a number of benefits, such as quicker rendering times

and more control over the final image[58].

The method they create the 2D representation of a 3D data set is the primary distinc-

tion between direct and indirect volume rendering. Using methods like volume raycasting

or ray marching, direct volume rendering is a computationally demanding job that maps

voxels directly onto pixels of a 2D picture plane[67]. When using the equipotential surface

of volume data, indirect volume rendering creates triangular facets based on a polygonal

surface representation of the corresponding body cavities. Direct volume rendering is

inferior to indirect volume rendering in a number of ways, including rendering times and

final picture control[58]

21

Chapter 1. Volume Rendering

Figure 1.13: Comparison between direct volume rendering (A) and surface rendering after

patient modeling (B). [64]

It is also helpful for applications like architectural visualization, medical imaging, and

special effects in movies and video games since it can create very realistic pictures with

intricate lighting and shading effects. To get the required results, IVR, however, may be

computationally costly and necessitates careful parameter optimization.

There are several types of indirect volume rendering techniques, including[49]:

1.4.2.1 Marching cubes

The objective of the surface rendering (SR), indirect volume rendering, and iso-surfacing

approaches is to produce a surface with constant density from a 3D dataset. The cal-

culation complexity will be reduced as a result. Various techniques, including contour

tracing, marching cubes [48], and marching tetrahedra, were developed for this technique.

The marching cubes algorithm’s stages will be more thoroughly detailed in the next

section [63].

Marching Cubes (MC): According to the original dataset’s Iso-surface, Marching

Cubes (MC) comes the closest . It uses triangular meshes to approximate surfaces. By

using linear interpolation along cell edges, the surfaces are discovered. Following that,

the standard vectors are

employed as the Iso-surface’s gradients. In a nutshell, the marching cubes approach

produces a surface using 3D datasets. The stages below outline this procedure in detail[51]:

1. Read into memory the first four slices.

2. Use four neighbors from the first slice and four neighbors from the second slice to

build a cube.

3. Use the cube’s eight density values to compare and create an index for the cube.

the surface constant at its vertices.

4. Search a predetermined table’s index to find the list of edges.

5. By linear interpolation, locate the intersection of the surface and the edges using

the densities at each edge vertex.

22

Chapter 1. Volume Rendering

6. Employing central differences, calculate a unit normal for each cube vertex. Put

the normal into interpolation at each triangle vertex.

7. Vertex normals and triangular vertices should be output.

The biggest disadvantage of this method is as follows: The approach uses a large

number of geometric primitives, therefore producing a high-quality picture of the 3D

data demands a significant amount of processing. On the other hand, a dataset collection

containing less data

See Figure 1.14., details will result in rendering that is less accurate and of lower

quality.

Figure 1.14: An Iso-surface surface rendering of a human skull [57]

1.5 Transfer function

Transforming one set of data into another via a mathematical function is the idea behind a

transfer function. The mapping of scalar values of volumetric data to colors and opacities

for rendering in computer graphics and visualization is done using transfer functions.

A transfer function in volume rendering is a tool that enables users to define the

rendering of the volumetric data. It specifically converts scalar numbers to a palette

of colors and opacities that may be used to visualize the data. If the volumetric data,

for instance, indicates density, a transfer function may be used to translate low-density

values to transparent or bright colors and high-density values to opaque or dark hues.

23

Chapter 1. Volume Rendering

Figure 1.15: Trnasfer function graph

Different methods, such as color maps or transfer function curves, can be used to

build and modify transfer functions. In contrast, to transfer function curves, which let

users construct a personalized mapping between scalar values and colors or opacity, color

maps are predetermined sets of colors that are given to scalar values.

The data visualization can be significantly impacted by the transfer function’s design.

Important characteristics of the volumetric data can be highlighted by a well-designed

transfer function, whereas critical information might be obscured or hidden by a badly

constructed transfer function. Transfer functions are thus a crucial component of volume

rendering for the visualization and analysis of challenging 3D information.[47]

Transfer functions play a crucial role in volume rendering because they enable the

logical and informative presentation of challenging 3D information. Transfer functions

are crucial for the following reasons[47]:

• Enhances Visualization: Transfer functions convert scalar values into colors and

opacities, making it possible to visualize volumetric data more effectively. Transfer

functions can highlight hidden aspects and patterns in the data that might not be

obvious from just looking at the raw scalar values by translating distinct scalar

ranges to different colors and opacities.

• Transfer functions are quite adaptable, enabling customers to adjust the depiction

to meet their own requirements. Users may easily evaluate the data and draw

conclusions by highlighting particular data points or removing distracting noise by

modifying the transfer function.

• Interactive interfaces are offered by several volume rendering programs, allowing for

real-time transfer function modification. Finding the best transfer function for the

data is made simpler since users may try out several mappings and see the effects

right away in the display.

• Transfer functions have several uses, notably in engineering, science, and medicine.

Transfer functions are crucial tools for research and decision-making in these do-

mains because they offer a powerful way to visualize complicated volumetric data.

24

Chapter 1. Volume Rendering

In conclusion, transfer functions are essential to volume rendering for improving visuals,

offering flexibility, enabling interactivity, and servicing numerous applications. Making

sense of complicated 3D information and coming to wise judgments would be far more

difficult without transfer functions.

1.6 The Volume Rendering Integral

Every physically-based volume rendering algorithm evaluates the volume rendering in-

tegral in one way or the other, even if viewing rays are not employed explicitly by the

algorithm. The most basic, but also the most flexible, volume rendering algorithm is ray

casting, which is introduced in Section 1.7. It might be considered the “most direct”

numerical method for evaluating this integral. More details are covered later on, but for

this section, it suffices to view ray casting as a process that, for each pixel in the image

to render casts a single ray from the eye through the pixel’s center into the volume, and

integrates the optical properties obtained from the encountered volume densities along

the ray.

Note that this general description assumes both the volume and the mapping to opti-

cal properties to be continuous. In practice, of course, the volume data are discrete, and

the evaluation of the integral is approximated numerically. In combination with several

additional simplifications, the integral is usually substituted by a Riemann sum. We

denote a ray cast into the volume by x(t) and parameterize it by the distance t from the

eye. The scalar value corresponding to a position along the ray is denoted by s(x(t)).

If we employ the emission-absorption model, the volume rendering equation integrates

absorption coefficients κ(s) (accounting for the absorption of light), and emissive colors

c(s) (accounting for radiant energy actively emitted) along a ray. To keep the equations

simple, we denote emission c and absorption coefficients κ as a function of the eye dis-

tance t instead of the scalar value s:[28]

c(t) := c(s(x(t))) κ(t) := κ(s(x(t))) (1)

Figure 1.16 illustrates the idea of emission and absorption. An amount of radiant en-

ergy, which is emitted at a distance t = d along the viewing ray is continuously absorbed

along the distance d until it reaches the eye. This means that only a portion c′ of the

original radiant energy c emitted

Figure 1.16: An amount of radiant energy emitted at t = d is partially absorbed along

the distance d.[28]

25

Chapter 1. Volume Rendering

at t = d will eventually reach the eye. If there is a constant absorption κ = const

along the ray, c′ amounts to

c′ = c · e−κd (2)

However, if the absorption k is not constant along the ray, but itself dependent on

the position, the amount of radiant energy c′ reaching the eye must be computed by

integrating the absorption coefficient along the distance d:

c′ = c · e−
∫ d
0 k(t̂)dt̂ (3)

The integral over the absorption coefficients in the exponent,

τ (d1, d2) =

∫ d2

d1

κ(t̂)dt̂ (4)

is also called the optical depth. In this simple example, however, the light was only

emitted at a single point along the ray. If we want to determine the total amount of

radiant energy C reaching the eye from this direction, we must take into account the

emitted radiant energy from all possible positions t along the ray:

C =

∫ ∞

0

c(t) · e−τ(0,t)dt (5)

In practice, this integral is evaluated numerically through either front-to-back or back-

to-front compositing (i.e., alpha blending) of samples along the ray, which is most easily

illustrated in the method of ray casting. Ray casting usually employs front-to-back com-

positing.

1.7 Ray casting

Ray casting [43] is an image-order direct volume rendering algorithm, which uses straight-

forward numerical evaluation of the volume rendering integral (Equation 5). For each

pixel of the image, a single ray2 is cast into the scene. At equispaced intervals along

the ray, the discrete volume data are resampled, usually using tri-linear interpolation as

a reconstruction filter. That is, for each resampling location, the scalar values of eight

neighboring voxels are weighted according to their distance to the actual location for

which a data value is needed. After resampling, the scalar data value is mapped to opti-

cal properties via a lookup table, which yields an RGBA quadruplet that subsumes the

corresponding emission and absorption coefficients [43] for this location. The solution of

the volume rendering integral is then approximated via alpha blending in either front-to-

back or back-to-front order, where usually the former is used in ray casting. The optical

depth T (Equation ??), which is the cumulative absorption up to a certain position x(t)

along the ray, can be approximated by a Riemann sum[28].

τ(0, t) ≈ τ̃(0, t) =

⌊t/∆t⌋∑
i=0

κ(i ·∆t)∆t (6)

26

Chapter 1. Volume Rendering

with Delta-t denoting the distance between successive resampling locations. The

summation in the exponent can immediately be substituted by a multiplication of expo-

nentiation terms:

e−τ̄(0,t) =

⌊t/∆t⌋∏
i=0

e−κ(i·∆t)∆t (7)

Now, we can introduce the opacity A, which is well-known from traditional alpha

blending, by defining

Ai = 1− e−κ(i·∆t)∆t (8)

and rewriting Equation 7 as:

e−τ̄(0,t) =

⌊t/d⌋∏
i=0

(1− Aj) (9)

This allows the opacity Ai to be used as an approximation for the absorption of the

i-th ray segment, instead of absorption at a single point. Similarly, the emitted color of

the i-th ray segment can be approximated by:

Ci = c(i ·∆t)∆t (10)

Having approximated both the emissions and absorptions along a ray, we can now

state the approximate evaluation of the volume rendering integral as: (denoting the

number of samples by:

n = ⌊T/δt⌋

C̃ =
n∑

i=0

Ci

i−1∏
j=0

(1− Ai) (11)

Equation 11 can be evaluated iteratively by performing alpha blending in either front-

to-back or back-to-front order

Ray casting is a technique used in computer graphics to create a 2D representation of a

3D scene. Using this method, rays from the observer’s viewpoint or a camera are projected

onto the 3D world through each pixel of a 2D picture plane. The method calculates the

hue and brightness of each pixel on the picture plane by determining where the rays meet

with objects in the scene. The first step in the ray-casting process is determining the

picture plane and the observer’s perspective. The next step is to project a ray from the

perspective across each pixel on the picture plane. The technique then runs intersection

checks between the rays and objects present in the scene to determine the location of

the intersection. Ultimately, the intensity and color of the pixel are determined by the

characteristics of the crossed objects, such as their lighting, texture, and color. Although

this technique necessitates performing numerous intersection tests for each pixel on the

27

Chapter 1. Volume Rendering

image plane, it is highly effective for rendering intricate scenes with realistic shading and

lighting effects. Ray casting finds its applications in various fields, including video games,

virtual reality, and architectural visualization.

The use of ray casting in the context of volume rendering is similar to that of ray

tracing in surface-based computer graphics, but unlike ray tracing, volume rendering

only uses primary rays without taking into account secondary rays related to shadows,

reflections, or refraction. Ray casting is an image-order technique that is well-suited to

this task as there are no surfaces to be rendered; instead, the volume must be carefully

traversed in small steps with a light source.

[60]

Figure 1.17: Illustration of raycasting. A ray is cast from the viewer through a pixel

on the screen. It marches through the volume and integrates the contribution of light,

colored samples shaded by the illumination. The result is stored in a pixel and the

procedure is performed for all pixels.[46]

For creating 3D pictures from 2D medical images, such as CT (Computed Tomogra-

phy) and MRI (Magnetic Resonance Imaging) scans, ray casting is a common approach.

These are a few typical methods for ray casting in medical imaging:[21]

By projecting rays over a 3D volume of data collected from the medical scan, the vol-

ume rendering approach produces a 3D picture. The viewer’s perspective causes the rays

to be cast, and the characteristics of the voxels (volume elements) along its path define

each ray’s hue and intensity. After sampling the voxels, the colors and ray intensities are

combined to create the final image.

Maximum Intensity Projection (MIP): This method is used to draw attention to the

areas of a medical picture that have the most intensity. In order for it to operate, rays

are projected through the 3D volume and the greatest intensity value along each ray is

chosen. A 2D projection of the 3D volume that highlights the areas of greatest intensity

is the resultant picture.[21]

Use the surface rendering technique to create a 3D representation of an object’s sur-

face. It works by tracking rays from the viewpoint of the observer and determining where

they intersect the surface of the item. A 3D depiction of the object’s surface is shown in

the final image.

With the ray casting approach, the various components of the 3D volume are given

28

Chapter 1. Volume Rendering

separate colors and opacities using a transfer function. The transfer function, which

transforms voxel values into colors and opacities, enables the presentation of intriguing

structures inside the medical scan.[37]

Figure 1.18: Medical images rendered with the GPU-based raycasting: a CT skull, b MR

brain, c CT jaw, and d MR cerebral blood vessel. [46]

Overall, ray-casting methods are crucial for medical imaging because they make it

possible to produce 3D representations that can help with disease diagnosis and therapy.

1.8 Volume rendering tools

VTK (Visualization Toolkit) and MITK (Medical Imaging Interaction Toolkit) are two

popular open-source software libraries used for volume rendering and visualization. VTK

is a versatile library developed by Kitware, providing a wide range of rendering techniques

and advanced features for scientific and medical visualization. MITK, built on top of

VTK, is specifically designed for medical imaging applications, offering a user-friendly

interface and specialized tools for medical image processing and analysis. Both VTK and

MITK are widely used in the medical and scientific communities due to their flexibility

and active developer communities.

1.8.1 VTK (Visualization Toolkit)

For 3D computer graphics, image processing, and visualization, there is the Visualization

Toolkit (VTK), an open-source software program. It was first created by the GE Corpo-

rate Research and Development Center in 1993, and it is currently being maintained by

Kitware, a software provider that specializes in open-source solutions.[61]

29

Chapter 1. Volume Rendering

VTK is intended to be a strong and adaptable tool for developing representations of

difficult scientific data. It offers a large selection of data processing and visualization

methods in addition to a complete set of software tools for building unique visuals. Key

ideas guiding VTK include the following:[61, 62]

• Data Model: With VTK’s data model, users may represent intricate data structures

like meshes, pictures, and volumes. The data model is made up of hierarchically ar-

ranged data elements. Each data item has a unique collection of features, including

colors and opacities.

• The VTK rendering pipeline consists of a series of data processing and visualization

phases that take input data and turn it into a visual representation. Data sources,

filters, mappers, actors, and renderers are all components of the pipeline. Data

sources provide the pipeline with input data, filters change the data, mappers turn

the data into primitives for rendering graphics, actors specify how the primitives

should be produced, and renderers show the visuals on the screen.

• Visualization Algorithms: The visualization toolkit (VTK) comes with a significant

range of data processing and visualization techniques, such as filters for smoothing,

decimation, and interpolation, as well as algorithms for volume rendering, isosurface

extraction, and streamlines. To produce unique visuals, a variety of combinations

of these algorithms can be used.

• VTK is meant to be extremely extendable. The system’s capability may be in-

creased by users by adding new data items, filters, mappers, actors, and renderers.

Users of VTK may generate unique visualizations by writing short scripts in script-

ing languages like Python thanks to this functionality.

Figure 1.19: Generating triangle strips from a polygonal data set. On the left, the original

laser range data is stripped; on the right, an unstructured mesh (after decimation) is

stripped. [61]

In general, VTK offers a strong and adaptable tool for producing representations of

challenging scientific data. Researchers and developers working on a variety of scientific

subjects frequently use it because of its broad collection of data processing and visual-

ization methods, extensibility, and support for scripting languages.

30

Chapter 1. Volume Rendering

1.8.2 MITK (Medical Imaging Interaction Toolkit)

Medical Imaging Interaction Toolkit, sometimes known as MITK, is a potent open-source

software toolkit created to make it easier to create unique medical imaging applications.

The main goal of MITK is to offer a collection of tools and frameworks that enable

programmers to create interactive medical imaging applications for a variety of uses,

including image processing and segmentation, visualization, and registration.

A graphical user interface framework included in the C++ based software package

known as MITK makes it simple and quick for programmers to construct interactive

applications. A collection of pre-built modules for doing activities related to medical

imaging are also included in the software package. These modules include those for

segmenting MRI pictures, registering PET and CT images and visualizing 3D medical

data.

The global medical imaging community, including researchers, doctors, and develop-

ers, favors MITK because of its versatility. It has shown to be very helpful in medical

imaging research due to its capacity to ease the implementation of fresh algorithms and

methods for analyzing and presenting medical pictures.

The modular design of MITK and its open-source status add to its adaptability and

extensibility. The program may be expanded and modified by developers to meet unique

needs, making it an excellent option for a variety of medical imaging applications. Fur-

thermore, MITK’s open-source nature guarantees that a thriving community of program-

mers and users continuously updates and enhances the software.[3]

MITK’s use and development are motivated by a number of fundamental principles.

These core concepts include:[3]

• Open-source: MITK is an open-source software toolkit, which entails that anybody

is allowed to use, alter, and distribute its source code. This open-source nature

invites developers to participate in cooperation and make improvements to the

toolkit.

• Modularity: The functionality of MITK is separated into separate components or

modules due to the design’s modularity. The toolkit is adaptable and effective

because of its modularity, which enables developers to pick and choose only the

components they want.

• Extensibility: MITK is created to be extendable, allowing programmers to add new

modules or change existing ones to suit their unique requirements. This flexibility

makes sure that the toolkit may change with the times and continue to be useful.

• User-centered design: MITK attempts to deliver a user-friendly interface and intu-

itive processes since it was created with the end user in mind. This user-centered

design encourages usability and makes sure that a variety of users may access the

toolkit.

• Focused on medical imaging: Because MITK was created expressly for use in medi-

cal imaging applications, it has functionality that is adapted to the special require-

ments of those working in the field. The toolkit is very relevant and efficient for

the purpose it is meant for thanks to this concentration.

31

Chapter 1. Volume Rendering

Figure 1.20: MITK ReleaseNotes 2018.04.2 [2]

1.9 Conclusion

The concepts and foundations of volume rendering provide a solid understanding of this

essential technique for visualizing volumetric data. We have explored various aspects of

volume rendering, starting with an introduction that highlights its significance in gener-

ating 2D images from 3D data. The discussion encompassed volumetric data, including

different types and their representation.

Techniques in volume rendering were examined, covering both direct and indirect

approaches. Direct volume rendering techniques, such as Maximum Intensity Projection

(MIP) and Shear-Warp, enable the generation of visualizations that emphasize the most

prominent features within the volume. On the other hand, indirect volume rendering

techniques, such as Marching Cubes, focus on extracting surfaces from the volumetric

data.

The transfer function, a critical component in volume rendering, was discussed as

a means to map scalar values to visual attributes, enabling the depiction of various

properties within the volume. The Volume Rendering Integral, based on the concept of

ray casting, allows for the calculation of pixel values by integrating along the ray path.

Furthermore, we explored volume rendering tools that facilitate the implementation

and utilization of these techniques. VTK (Visualization Toolkit) and MITK (Medical

Imaging Interaction Toolkit) were highlighted as prominent tools that offer comprehensive

capabilities for volume rendering.

32

Chapter 2

Volumetric Ray casting

2.1 Introduction

volumetric ray casting is a powerful technique used in volume rendering to generate

three-dimensional visualizations from volumetric datasets. Volumetric ray casting offers

a versatile and efficient approach to accurately capture the intricate details and structures

within volumetric data, enabling researchers and professionals to gain valuable insights

and make informed decisions.

begins with an examination of the sampling process in volumetric ray casting. Sam-

pling involves casting rays through the volume and gathering information along their

paths to determine the properties of the volume at specific points. Within the realm of

sampling[38],[37], we delve into irregular sampling techniques, including adaptive sam-

pling and hierarchical sampling. These techniques aim to optimize the sampling process

by adapting the sampling density based on the local features of the volume or by utilizing

a hierarchical structure to efficiently sample the volume.

Next, the discussion moves on to the concept of empty space skipping[29],[66], a

fundamental aspect of volumetric ray casting. Empty space skipping techniques exploit

the sparsity of the volume data to accelerate the rendering process by efficiently skipping

empty regions that do not contribute to the final image. This section explores various

empty space skipping methods and their advantages in terms of computational efficiency

and reduction of unnecessary computations.

To further enhance the acceleration of empty space skipping, the chapter explores

two popular data structures: KD-tree and Octree[69],[45]. These hierarchical structures

partition the volume into smaller regions, allowing for efficient traversal and identification

of empty regions. Additionally, we delve into Distance Transform Empty Space Skipping,

a technique that employs distance maps to accelerate the empty space skipping process

by efficiently computing distances to the nearest object surfaces.

distance maps[18], specifically focusing on the concept of signed distance fields. Signed

distance fields provide a compact representation of the distance from each voxel in the

volume to the nearest surface, enabling efficient and accurate calculations during the

ray-casting process.

Furthermore, the chapter introduces the application of Chebyshev distance maps[17]

for volumetric ray casting acceleration. Chebyshev distance maps leverage the Chebyshev

distance metric to estimate the maximum distance to the nearest surface, enabling faster

33

Chapter 2. Volumetric Ray casting

identification of empty regions and reducing the number of ray-object intersection tests.

2.2 Sampling

Ray casting, sampling, and integration are three processes in the volumetric ray casting

sampling process. Ray casting entails following a ray from the camera through the volume

to where it escapes at the rear of the volume. The beam travels via voxels, or sample

sites in the volume, which are utilized to sample the data, along the route.

Calculating the data values at the sample sites is a stage in the sampling process.

To estimate the data values between sample sites in medical imaging, interpolation tech-

niques like trilinear or tri-cubic interpolation may be used. The data may be directly

accessible at the sample points in scientific simulations.

In order to determine the color and opacity of the pixel, the sampled values along the

ray are combined in the integration stage. Techniques like compositing, which adds up

the contributions of each sample point along the ray depending on its opacity, or shading,

which employs lighting models to determine the final color of the pixel, are used to do

this.

The sampling method, which dictates the arrangement and spacing of the sample

points along the ray, as well as the sampling density, which affects the accuracy and

smoothness of the final picture, are a few of the variables to take into account while

sampling in volumetric ray casting. Adaptive sampling methods may occasionally be

used to improve sampling density and lessen picture artifacts.

In terms of volumetric ray casting, sampling is an important stage since it affects

the precision and quality of the final image. From volumetric data, high-quality and

aesthetically pleasing pictures may be generated using the right sampling procedures and

methodologies

.[38]

Figure 2.1: Pipeline of raycasting calculation on GPU graphics hardware: setting camera

and image plane, casting ray into 3D texture volume, adding light source and conducting

trilinear interpolation based texture sampling.[70]

In volumetric ray casting, a variety of sampling methods may be applied to extract

34

Chapter 2. Volumetric Ray casting

samples from the 3D volume data. Several of the typical sampling methods for volumetric

ray casting are listed below[41]:

2.2.1 Irregular sampling

Irregular sampling[13] is a method used in computer graphics and visualization to mini-

mize the number of samples necessary in the rendering process. In volumetric raycasting,

irregular sampling is very essential since it may considerably lower the computing com-

plexity of the operation while improving the speed and accuracy of the final image.

One of the key advantages of irregular sampling is that it allows for selective sampling

of regions of interest in the volume. This is especially advantageous when working with big

and complicated volumes, where uniform sampling can be wasteful and time-consuming.

Instead, irregular sampling approaches try to decrease the number of samples necessary

while keeping the general structure and features of the volume.

Adaptive sampling is one way to irregular sampling that samples parts of the volume

based on their value to the final image. Heuristics are usually used by adaptive sampling

algorithms to identify which portions of the volume to sample at increasing resolution.

High gradients or rapid changes in intensity, for example, are likely to necessitate greater

resolution sampling to accurately capture surface features. Adaptive sampling algorithms

may also employ error estimation techniques to assess the difference between the current

image approximation and the final picture, and selectively enhance the resolution in

locations with large errors.

Adaptive sampling, which chooses which volumetric sections to sample depending on

their significance to the final image, is one method for dealing with irregular sampling.

Heuristics are frequently used by adaptive sampling algorithms to choose which parts

of the volume to sample at increasing resolution. For instance, better resolution sam-

pling is likely needed to adequately capture the surface characteristics in areas with steep

gradients or abrupt changes in intensity. In order to boost the resolution in areas with

significant errors, adaptive sampling algorithms may also employ error estimation tech-

niques to estimate the error between the current approximation of the picture and the

final image.

Other irregular sampling approaches can be employed to increase the efficiency and

accuracy of the rendering process in addition to adaptive and hierarchical sampling. Use

empty space skipping, for instance, to swiftly go past areas of the volume that are devoid

of shape. As a result, the rendering process may use much less samples. Additionally,

you may utilize distance maps to only selectively sample the parts of the volume that are

closest to the surface. This can further cut down on the number of samples needed for

rendering, especially in areas of the volume with little geometry.

Despite the benefits of irregular sampling, there are some drawbacks and difficulties

with the method as well. One drawback is that, as compared to conventional uniform

sampling methods, irregular sampling algorithms might be more complex to develop. If

not done properly, they may potentially add artifacts or faults to the final image. The

portions of the volume to sample at greater resolution may also need to be determined

in a pre-processing phase for some irregular sampling approaches, which might increase

computing costs.

The use of irregular sampling methods in volumetric raycasting is crucial because

35

Chapter 2. Volumetric Ray casting

they enable rendering operations to use fewer samples while maintaining the volume’s

general structure and fine details. The two most popular irregular sampling methods

are adaptive and hierarchical sampling, however there are other methods that may be

utilized to increase rendering accuracy and efficiency, including empty space skipping and

distance maps. Although irregular sampling methods can be more difficult to execute

than typical uniform sampling methods, they can greatly lower the computing complexity

of the process and allow for the real-time rendering of intricate and realistic 3D pictures.

2.2.1.1 Adaptive sampling

To modify the sample rate dependent on the complexity of the data characteristics,

adaptive sampling is a technique used in volume rendering. By adjusting the sample

rate to the areas of the data that demand more or less information, it tries to provide

photographs of greater quality while requiring less computing work.

The conventional method of sampling is creating a regular grid structure out of the

volume data and computing the color and opacity values at regularly spaced sample

points. However, this approach can result in artifacts like the staircase effect, where the

regular grid structure is not aligned with the features in the volume data and can be

computationally expensive, especially in areas of data with high detail.

By carefully changing the sampling rate depending on the complexity of the data

attributes, adaptive sampling overcomes these problems. More detailed data regions are

sampled more frequently, whilst less detailed data regions are sampled less frequently.

As a consequence, there are fewer artifacts and lower processing expenses for the pho-

tographs, which are of greater quality.

Different strategies can be used to implement adaptive sampling. One method is

to describe the volume data using a hierarchical data structure, such as an octree or a

binary tree. Recursively breaking the volume data into smaller sections until each region

has a specific amount of voxels allows for the construction of the tree structure. The

sample rate may then be deliberately increased or decreased depending on the size and

complexity of the areas using the tree structure.

Utilizing the technique known as gradient-based adaptive sampling is an additional

strategy. This method calculates the complexity of the data features by estimating the

gradient magnitude of the volume data. greater gradient magnitude portions of the data

are thought to be more complicated and are sampled at a greater pace, whereas lower

gradient magnitude regions of the data are thought to be less complex and are sampled

at a lower rate.

Utilizing the technique known as error-based adaptive sampling is a third strategy.

This method calculates the difference in inaccuracy between the displayed and intended

images and modifies the sample rate accordingly. Regions of the data that are more

responsible for the mistake are sampled more frequently, while those that are less respon-

sible for the error are sampled less frequently.

The quality and effectiveness of volume rendering may be greatly enhanced by adap-

tive sampling. It is not without its restrictions, though. The adaptive sampling pro-

cedure itself may be computationally costly, particularly when employing sophisticated

data structures, gradient-based, or error-based methods. Another drawback is that, if

36

Chapter 2. Volumetric Ray casting

not performed appropriately, adaptive sampling might generate its own artifacts, like

blurring or ghosting.[27]

Figure 2.2: The left image illustrates a small detail of the Asian dragon model with a

sampling rate of 0.5. On the right, adaptive sampling increases the sampling rate to 4.0

close to the isosurface. Note that except at the silhouettes, there is no visible difference

due to the iterative refinement of intersections.[27]

adaptive sampling is a method used in volume rendering to modify the sample rate

according to the complexity of the data characteristics. By carefully adjusting the sample

rate in data locations that call for more or less information, it can provide pictures of

greater quality at a cheaper computing cost. Hierarchical data structures, gradient-based

approaches, and error-based techniques are just a few of the many ways that adaptive

sampling may be applied. The production of high-quality photographs, however, necessi-

tates careful consideration of the constraints and potential artifacts of adaptive sampling.

2.2.1.2 Hierarchical sampling

In computer graphics and visualization, a method called hierarchical sampling is employed

to increase the effectiveness and precision of volumetric rendering. The volume is divided

into nested sub-volumes, with each sub-volume being sampled at a different resolution,

with the closest sub-volumes near the camera receiving the greatest resolution and the

farthest sub-volumes receiving lower resolutions.

The key benefit of hierarchical sampling is that it may drastically cut down on the

number of samples needed during rendering while still maintaining the fine details and

volumetric structure. When generating big and complicated volumes, this is especially

helpful because uniform sampling may be time- and resource-intensive. Hierarchical

sampling can lessen the computational complexity of the rendering process and increase

the speed and accuracy of the final image by choosing sampling locations of interest at

greater resolution and lowering the sample rate in more distant parts.

Octree-based sampling, which requires partitioning the volume into a hierarchical

octree structure, is one method of employing hierarchical sampling. First, the volume

is divided into eight equal subvolumes, and then each of those subvolumes is further

divided into eight subvolumes, and so on. The sub-volumes that are nearest to the

camera receive the greatest resolution sampling, while those that are farther away receive

lesser resolutions. By sampling distant sub-volumes at a lesser resolution while keeping

37

Chapter 2. Volumetric Ray casting

the features of nearby sub-volumes at a greater resolution, this method minimizes the

number of samples needed.

Mipmapping, a distinct method of hierarchical sampling, entails making a number of

pre-filtered pictures of the volume at various resolutions. For the sub-volumes that are

nearest to the camera, the highest quality picture is used, while lower resolution photos

are used for sub-volumes that are farther away. The precision of the resulting picture can

be increased by combining mipmapping with additional sampling methods like trilinear

interpolation.

Multiresolution modeling, which involves modeling the volume at many levels of detail,

is a method linked to hierarchical sampling. Wavelet transformations and multigrid

approaches, which enable the volume to be represented at many degrees of detail, can be

used to create multiresolution models. When generating volumes that are highly detailed

in some areas but uniform in others, this method can be quite helpful.

Hierarchical sampling can be used to increase the quality of the final image in addition

to lowering the number of samples needed. Hierarchical sampling can better capture

surface features and lessen aliasing problems by choosing sampling locations of interest

at higher resolution. By lowering the quantity of rays that must be tracked through

the volume, hierarchical sampling can also increase the effectiveness of other rendering

techniques like ray marching or ray casting.

Hierarchical sampling provides benefits, but it also has certain drawbacks and dif-

ficulties. Choosing the right amount of information for each sub-volume is one of the

challenges. The best settings may need to be determined via some trial and error since

this necessitates balancing the trade-off between accuracy and processing efficiency. If

performed incorrectly, hierarchical sampling can also result in artifacts or flaws in the

final picture, such as discontinuities at the borders between sub-volumes or blurring of

features in areas where the resolution abruptly changes.

In volumetric rendering, hierarchical sampling is a crucial approach that may greatly

increase the process’ accuracy and efficiency. Hierarchical sampling techniques include

octree-based sampling, mipmapping, and multiresolution modeling. Hierarchical sam-

pling can decrease the computational complexity of the rendering process and enhance

the speed and quality of the final image by choosing sampling locations of interest at

greater resolution and lowering the sample rate in more distant regions. Although hierar-

chical sampling has significant drawbacks, it is nonetheless a vital method for producing

intricate and realistic 3D pictures in real time[73].

2.3 Empty space skipping

Adaptive sampling, which dynamically modifies sample rate based on scene complex-

ity and current rendering algorithm performance, may also be used in conjunction with

empty space skipping. Developers may build rendering systems that effectively analyze

massive amounts of data and provide high-quality representations in real-time by com-

bining adaptive sampling with Empty space skipping.

38

Chapter 2. Volumetric Ray casting

Figure 2.3: Ray-casting with object-order empty space skipping. The bounding geometry

(black) between active and inactive blocks that determines start and exit depths for the

intersection search along rays (white) encloses the isosurface(yellow). Colored bricks of

2x2 blocks reference bricks in the cached texture. White bricks are not in the cache.

Actual ray termination points are shown in yellow and red, respectively.[26]

To increase the effectiveness of the rendering process, volumetric ray casting employs

the empty space skipping approach. It operates by ignoring areas of void in the volume,

which minimizes the number of voxels that must be examined for ray crossings. In

situations with big volumes or complicated geometries, this can considerably speed up

rendering.

The method used to achieve the empty space skipping approach looks for intersections

between the ray and the volume data. The method determines if the ray crosses over an

empty area or collides with a volume voxel. The method stops the ray early and returns

a default color value if the ray crosses across empty space. The method keeps casting the

ray and accumulating color and opacity data until the ray departs the volume or reaches

a maximum depth if the ray meets with a voxel.

By minimizing the amount of voxels that must be assessed during the sampling pro-

cess, empty space skipping is a crucial approach that may considerably enhance the

performance of volumetric rendering.

The empty space skipping approach has the potential to significantly improve the effi-

ciency of volumetric ray casting overall. To ensure that important details are not missed

throughout the rendering process, it calls for precise control.[66]

2.4 Empty space skipping acceleration

The application of Empty space skipping acceleration techniques increases the effective-

ness and speed of Empty space skipping by reducing the number of voxels that need to

be examined for intersections with the ray by skipping over areas of unoccupied space in

the volume. When great performance is necessary, like in real-time visualization applica-

tions or scientific simulations, these approaches are very crucial. To further enhance the

rendering process, other acceleration techniques can be utilized in concert with Empty

39

Chapter 2. Volumetric Ray casting

space skipping.

2.4.1 KD-tree

Often employed in computer graphics, the KD-tree[33] data structure divides 3D space

into smaller areas to provide effective spatial indexing and data access. The method

of empty space skipping, which is used to speed up ray casting and enhance rendering

efficiency, is one way that KD-tree is utilized in computer graphics.

Ray casting uses the empty space skipping approach to bypass areas of space that are

devoid of any objects, hence minimizing the number of ray-object intersection checks that

must be run. In order to identify which areas of the scene are empty and which are not,

the scene is first divided into smaller regions using the empty space skipping technique.

One such spatial data structure that is frequently utilized in empty space skipping is

the KD-tree. The fundamental procedure for constructing a KD-tree includes recursively

splitting the space into two areas along an axis-aligned plane, keeping doing so until

each region is vacant or just partially occupied. As a result, a binary tree structure is

produced, with each node denoting an area of space and two child nodes denoting the

subregions that were produced as a result of the partitioning.

When performing empty space skipping with a KD-tree, the rays are cast through the

tree in a similar way to ray casting. However, instead of testing for intersections with

objects at each node, the algorithm checks whether the node represents an empty region

of space. If the node is empty, the algorithm skips over the region and moves on to the

next node. If the node is not empty, the algorithm continues to traverse down the tree

and test for intersections with objects as usual.

When it comes to empty space skipping, KD-tree has a number of benefits. To swiftly

determine whether a region of space is empty or not, fast spatial indexing and data access

are essential, which KD-tree enables. As a result, there may be a large decrease in the

number of intersection tests required, which will speed up rendering.

KD-tree also has the benefit of enabling adaptive sampling and level-of-detail render-

ing. The regions of space that are most important to the viewing direction may be found

by moving through the tree, at which point the sample rate can be changed. The sample

is concentrated on the key elements of the picture, allowing for quicker rendering and

improved image quality.

Further enhancing rendering performance is possible by combining KD-tree with ad-

ditional acceleration methods as bounding volume hierarchies (BVHs). For instance, a

hybrid approach combining the KD-tree and the BVH may be used to swiftly go through

empty space and then carry out intersection tests with objects that are most likely to be

struck by the rays.

An effective data structure that is frequently used in computer graphics to speed up

ray casting and enhance rendering efficiency is the KD-tree. Faster intersection test-

ing and shorter rendering times are made possible by its effective division of space into

smaller parts and ability to spot unoccupied areas. KD-tree is anticipated to be a key

component in the development of the next rendering algorithms and software because of

the growing need for realistic and high-quality visuals across a variety of sectors.

40

Chapter 2. Volumetric Ray casting

The location of points or objects inside a space is utilized to divide it into smaller

areas using a KD-tree data structure. A KD-tree is used in the context of Empty space

skipping to organize the volume data into a hierarchical structure that can be quickly

browsed to identify and skip over empty space.

Recursively splitting the volume data along the axis with the highest variance results

in the construction of the KD-tree. As a consequence, a tree structure is created, with

each node denoting a splitting of the volume data into two areas based on a dividing

plane. The tree may be effectively navigated by first determining which area of the

volume data the ray interacts with, and then recursively exploring the appropriate child

nodes until empty space is skipped over and a non-empty region is identified.

Since a KD-tree enables quick detection and skipping over of empty space, using one

in ESS can significantly enhance rendering speed. The method can rapidly decide which

sections of the volume data need to be assessed and which may be passed over altogether

by moving through the tree in a depth-first fashion.[69]

Figure 2.4: An illustration of our empty-space removing method. Empty voxels are

progressively removed from the original volume with a kd-tree based spatial partitioning

scheme.[65]

2.4.2 Octree

This approach focuses on casting volume rays while avoiding transparent zones. Volume

ray casting is depicted in a block diagram in Figure 2.5 . An object boundary must first be

swiftly reached by a method by skipping through transparent regions. Even when sample

points are situated in a transparent area, color and opacity values are always generated in

the traditional volume ray casting approach. However, empty-space jumping techniques

are now frequently employed since this is ineffective. Second, the ray computes a precise

scalar value by determining if the current sample point is transparent or not using a

resampling filter.

The process then calculates a color value for the sample point by assessing gradient

vectors in the surrounding eight voxels of a cell if it is determined that the sample point

is not transparent. These steps are repeated for each sample point until the early ray

termination technique causes the cumulative opacity to equal 1.0 .[45]

41

Chapter 2. Volumetric Ray casting

Figure 2.5: .A block diagram of the volume ray casting. Since transparent regions cannot

be contributed to the final image, we can accelerate the rendering speed when the regions

are quickly skipped (shaded step).[45]

Since transparent sections don’t add anything to the final image, we may speed up

the volume ray casting pipeline to minimize the rendering time.

Because it requires little preprocessing and is independent of the opacity transfer

function, the octree is one of the data structures that may pass through transparent

regions.

A data structure called an octree is made up of several octants produced during the

preprocessing phase. The transparency determination value(s) for each octant include

the lowest and maximum ranges for each octant.

Up until it reaches the root node, the child node repeatedly forms a single parent

node. Since rays jump over octants when the octants are assumed to be transparent by

the transparency determination value(s), an octree-based technique can efficiently skip

over transparent regions. demonstrates how to build a single-level octree from a volume

dataset in Figure 2.6.

Following the discharge of a ray from each pixel, an octant’s transparency determina-

tion value or values are referred to in order to decide whether to skip over the octant or

not. The ray leaps across the octant when the value(s) are constrained to a transparent

range (i.e., the present octant is a transparent octant).

Because we need to know the separation between two border voxels in this instance,

intersection test techniques between the ray and the octant are utilized. But this calcu-

lation has an impact

rendering period. Additionally, the algorithm slows down rendering speed if there are

a lot of transparent octants 2.8.

This process is repeated until the beam encounters an opaque octant. Conventional

volume ray casting is used when the leaf node’s transparency determination values are

contained inside the nontransparent range[45].

42

Chapter 2. Volumetric Ray casting

Figure 2.6: An example of the construction of a single-level octree. For simplicity, the

volume dataset is represented as a 2D array. The volume dimension is 8×8, and the

quadrant dimension is 2×2. Assume that each quadrant has the minimum and the

maximum values for representing the quadrant to determine the transparency.[45]

Figure 2.7: Since we estimate the distance from one boundary voxel to another boundary

voxel for skipping over a transparent octant, an intersection test algorithm is required.

In this figure, five mathematical computations are required to reach a nontransparent

object.[45]

Algorithms for volumetric rendering may be made faster and more efficient overall by

using Empty space-skipping acceleration methods. Developers may build robust render-

ing systems that quickly handle huge amounts of data and provide high-quality visuals

in real-time by integrating Empty space skipping with KD-tree or octree methods.

43

Chapter 2. Volumetric Ray casting

2.4.3 Distance Transform Empty Space Skipping

The Distance Transform Empty Space Skipping (DT-ESS) technique is used in image

processing and computer vision to quickly determine an image’s distance transform. The

distance transform of an image shows how far away each pixel is from the closest boundary

or item in the image. Numerous applications, including image segmentation, pattern

recognition, and form analysis, employ it.

The DT-ESS method is a development of the conventional distance transform algo-

rithm, which calculates the distance transform of an image by repeatedly scanning it from

top to bottom and left to right and calculating the distance between each pixel and the

closest border pixel. Particularly for huge photos, this technique can be labor-intensive

and sluggish.[9]

By avoiding voids in the picture during the computation of the distance transform,

DT-ESS solves this problem. The technique begins by locating empty areas in the picture,

or areas of the image where no object or border pixels are present. The distance transform

computation is therefore bypassed across these places, making the technique quicker and

more effective.[56]

Several stages may be separated out of the DT-ESS algorithm:

1. Recognizing empty spaces: The initial stage is to recognize empty spaces in the

image. By scanning the image and locating areas devoid of any object or border

pixels, this is accomplished.

2. Making a skip map: To store the regions that will be skipped during the computa-

tion of the distance transform, a skip map is made. The input picture’s dimensions

are used to create a binary image called a skip map, where each pixel is assigned a

value of 1 if it represents an empty space and a value of 0 otherwise.

3. Initialization of the distance transform: Each pixel that corresponds to an item or

boundary is initialized with a big value in the distance transform. Initialized with

a value of 0, pixels that represent empty spaces are initialized.

4. The DT-ESS algorithm’s forward pass scans the picture from left to right and top

to bottom while calculating the distance between each pixel and its closest neighbor

that is not in a skipped zone. The pixel is designated as skipped and its value is

set to the maximum value if the closest neighbor is in a skipped zone.

5. Backward pass: During the backward pass, the picture is scanned from bottom to

top and right to left, and the distance between each pixel and its closest neighbor

that is not in a skipped zone is calculated for each pixel. The pixel is designated

as skipped and its value is set to the maximum value if the closest neighbor is in a

skipped zone.

6. Update of the distance transform values for pixels indicated as skipped during the

forward and backward passes is the last stage in the distance transform process.

By scanning the skip map and calculating the distance between each skipped pixel

and its closest non-skip neighbor, the updated values are calculated.

44

Chapter 2. Volumetric Ray casting

Figure 2.8: : Illustration of one cast ray, sampling a volume with both initial and inter-

mediate empty space in its path. The ray is cast from left to right in the image. Top:

Uniform step length across the ray. Ray steps that are outside of the working set are

sampled just as densely as the steps inside. Bottom: Using the distance field to accelerate

the rays outside the volume. Accelerated steps are marked with dashed radii.[56]

When compared to the traditional distance transform technique, the DT-ESS algo-

rithm provides a number of benefits. First of all, it requires less computations since it

bypasses empty areas, making it more efficient. Secondly, it is more accurate since it

avoids misleadingly assigning a distance value to pixels in empty regions. Last but not

least, it is more adaptable since it can be used with pictures of any size and shape and

can manage complicated shapes and limits.

The Distance Transform Empty Space Skipping (DT-ESS) technique is a potent tool

used in computer vision and image processing to quickly compute the distance transform

of an image. The approach is quicker, more precise, and more adaptable than the tradi-

tional distance transform algorithm since it skips over blank areas in the picture during

computation. Every image processing or computer vision professional should have access

to DT-ESS due to its wide range of applications in fields including geology, robotics, and

medical imaging.

2.5 Distance maps

The computational difficulty of tracking rays across the volume and figuring out how

they interact with the volumetric data is one of the main difficulties in volumetric ray

casting. Volumetric ray casting distance maps are one of the acceleration solutions that

researchers have created to overcome this problem.

Distance maps are scalar fields that depict the separation between each point in space

and the closest surface or volumetric data boundary. Several algorithms, including the

45

Chapter 2. Volumetric Ray casting

signed distance function and the fast marching method, can be used to calculate them.

Distance maps may be used in the context of volumetric ray casting to speed up the ray

casting process by offering a rapid way to identify the closest surface or boundary to a

certain point on the ray.

The following are the fundamental procedures for utilizing volumetric ray casting to

create a distance map[52]:

1. Creating a mesh or sample grid that covers the amount of data to be displayed.

The final image must have a degree of detail that can be captured by this grid or

mesh.

2. casting rays using a technique like the signed distance function or the fast marching

approach from each point on the grid or mesh to the closest surface in the scene.

The signed distance function determines whether a location is within or outside of

a surface and the distance to the closest surface. Distance maps may be computed

quickly using the fast marching method, a numerical approach for solving partial

differential equations.

3. Keeping track of the distance that each ray covers and store the information in

a scalar field that corresponds to the distance map. Numerous data structures,

including octree, and kd-tree, are capable of storing this scalar field.

4. An optional approach is to smooth or filter the distance map afterward to enhance

its quality. Consequently, the distance map may experience less noise and artifacts.

5. Using the distance map to speed up ray casting during rendering. Find the closest

surface for each ray by using a distance map query, then begin casting the beam

from there. In addition to improving the final image’s quality, this can dramatically

lower the amount of calculations required to produce the picture.

Distance maps have the benefit of being computed offline and saved for later use, which

can reduce rendering computation time. Distance maps can also be utilized to speed up

tasks other than ray casting, such as collision detection or path planning.

The fundamental distance map approach may be modified in a number of ways to

enhance its effectiveness and precision. The distance map might be stored, for instance,

in hierarchical data structures like octree or kd-tree, which can minimize memory needs

and speed up queries. By altering the distance map’s sample density or level of detail

depending on the complexity of the scene, adaptive sampling or level of detail may also

be utilized to increase performance and accuracy.[24]

A potent method for speeding up the rendering of 3D volumetric data is the use of

volumetric ray-casting distance maps. Distance maps may greatly reduce the computa-

tional complexity of ray tracing and enhance the quality of the final image by computing

and storing a scalar field that indicates the distance to the closest surface beforehand.

46

Chapter 2. Volumetric Ray casting

2.5.1 Signed distance field

When representing shapes and objects as continuous scalar functions in computer graphics

and computer vision, signed distance fields (SDFs)[34] are a potent tool. Contrary to

conventional surface representations like polygon meshes or voxel grids, SDFs offer a

fluid and effective method for representing complicated structures with precise surface

and interior information.

A scalar function known as an SDF assigns a signed distance value—which represents

the distance to the closest surface or object—to each point in space. It may be determined

if a point is inside or outside of an item by the sign of the distance measurement. Points

on an object’s surface have a distance value of zero. So, an SDF offers a signed map of

the object’s spatial location.

Over alternative surface representations, SDFs provide a number of advantages. The

first benefit is that SDFs offer a simple means of combining surface and interior data.

The normal vector, curvature, and shape derivatives may all be obtained from SDFs by

utilizing the distance values as a function of space. This continuous and differentiable

information on the shape is made possible by the use of distance values. Due to the

need for precise and effective shape information, SDFs are particularly advantageous for

applications like collision detection, ray casting, and pathfinding.

Second, SDFs may express complicated forms using only a few parameters. Without

the need for many discrete samples or polygons, SDFs may capture the object’s underlying

geometry and topology by representing the form as a function. For real-time applications

where memory and processing limits are crucial, such games and simulations, this makes

SDFs very helpful.

Last but not least, SDFs may be calculated and handled effectively utilizing a number

of approaches, including signed distance functions, implicit surface representations, and

level set methods. These methods enable efficient computing of operations such as union,

intersection, and difference between SDFs as well as shape attributes such as distance,

intersection, and blending.

For different forms and objects, SDFs may be computed using a variety of techniques.

The SDF may be calculated analytically for basic geometric primitives like spheres, cylin-

ders, and cubes by using their implicit equations. SDFs may be calculated for more com-

plicated forms using sampling techniques like voxelization, meshing, or ray casting, and

they can subsequently be transformed into a continuous scalar function using methods

like the Euclidean distance transform or the Fast Marching Method.

SDFs are employed in applications involving medical imaging. SDFs can be utilized in

medical imaging to accurately segment and analyze pictures by representing the surfaces

of bodily organs and structures.

The segmentation of the liver and other organs in CT and MRI images is one frequent

use of SDFs in medical imaging. The borders of the liver and other organs may be

represented using SDFs, enabling precise and effective segmentation of these structures

from the surrounding tissue.

In computer graphics and computer vision, signed distance fields are a potent tool

that offers a fluid and effective approach to represent complicated shapes and objects

as continuous scalar functions. Smooth interpolation, effective representation, and quick

calculation are just a few benefits that SDFs have over conventional surface representa-

47

Chapter 2. Volumetric Ray casting

tions. They are widely used in collision detection, graphics, pathfinding, and other areas.

SDFs are expected to be used more often in the future as new methods for calculating

and manipulating them emerge.[36]

Figure 2.9: : Ray Casting [56]

Figure 2.9 illustrates how a signed distance field provides a natural way to do adaptive

sampling, simply by following the sampled value to advance the sample position. As the

sample position approaches the surface, the sampled value will automatically decrease

in its magnitude because it is a signed distance to the surface. This greatly simplifies

and optimizes the search algorithm. Moreover, searching for ray surface intersections is

aggressively parallelizable.

If a ray does not hit a bounding box, then it is not processed further. Otherwise,

the block origin can be computed from the intersection given the spatial regularity of

the sparse data structure. The block origin can then be used to locate the small dense

volume managed by the block in the sparse data structure. After that, we start from the

entry point of the ray into the block and use trilinear interpolation to sample the small

dense volume and to advance the sample position by the sampled value. If the sample

value falls within a small threshold distance from the level set, the ray is considered to

hit the surface and the sample position is taken as the intersection Sometimes, the signed

distance field is not accurate and gives two adjacent sample values of different signs.

In this case, we use linear interpolation of the two sample positions to get an estimate

of the ray surface intersection. When the intersection is found, we determine the surface

normal for rendering by using finite differences to evaluate the gradient. While an imple-

mentation of the sparse data structure might provide a coherent interface for querying

sample values, we explicitly avoid using such a feature because a ray can require several

samples inside a block and each sample might require an expensive traversal of the tree

48

Chapter 2. Volumetric Ray casting

structure. Working on the dense volume directly, however, gives us the ability to locate

necessary values very quickly.

Most rays hit the surface soon after they start out from the initial intersections because

the sparse data structure only stores blocks within a narrow band of the level set. There

are rays, however, that do not hit the surface before entering a non-existing block. In

this case, we use a ray voxel scanline traversal algorithm [7], as shown in Figure 2.9 b

to quickly enumerate the blocks that the ray will traverse in increasing distance order.

For each enumerated block, its existence is checked in the sparse data structure. If it

exists, a ray bounding box intersection is computed and the search restarts, otherwise,

we continue enumeration until the ray exits the volume.[71]

2.6 Chebyshev distance maps for volumetric ray

casting acceleration

This section examines and the use of Chebyshev distance maps for volumetric ray casting

acceleration.We point out both their benefits and drawbacks and draw linkages between

the examined material and the strategy.

Visualizing volumetric images, which are composed of three-dimensional grids of scalar

values called voxels, is a common practice known as volume rendering. Volume ray casting

is a well-liked method for volume rendering that combines the results into a framebuffer

by assigning each voxel a color and an opacity [Kruger and Westermann, 2003[39]].

Empty space skipping is one of the methods that have been devised to get over

the computational difficulty of volume rendering. The goal of these methods is to locate

opaque or transparent voxels that can be rendered without, hence enhancing performance.

This objective has been attained through a variety of strategies, such as Early Ray

Termination (ERT) and Empty Space Skipping (ESS).

Within this Context, Chebyshev distance maps are used for effective empty space

skipping as one of the major improvements in volume rendering techniques. The Cheby-

shev distance between each voxel and the closest occupied region within the volume is

shown on Chebyshev distance maps. With the use of this distance map, rendering can

be sped up by effectively skipping transparent or empty areas during volume ray casting.

Due to the fact that it takes into consideration the greatest amount of absolute dif-

ferences between related voxel positions across all dimensions, the Chebyshev distance

metric is especially well-suited for this use. No matter where a voxel is located in three-

dimensional space, the algorithm can detect its proximity to the nearest inhabited region

by calculating the Chebyshev distance.

Empty space skipping approaches can use Chebyshev distance maps to determine if

a specific ray or voxel crosses with an inhabited zone or can be safely skipped. Utilizing

the data offered by the distance maps allows for the reduction of pointless computations

and texture samples, leading to appreciable performance gains.

Chebyshev distance maps provide several benefits for volume rendering empty space

skipping. They first accurately and dependably depict how close each voxel is to the

closest occupied area. This enables more accurate identification of transparent or empty

sections, resulting in more effective skipping and lessening of the overall computing load.

Additionally, Chebyshev distance maps can be efficiently created and are rather easy

49

Chapter 2. Volumetric Ray casting

to compute. The method of creating a distance map is moving across the volume and

figuring out the Chebyshev distance for each voxel based on where it is in relation to the

closest occupied area. Then, for reference during the rendering process, this data is saved

in a different map or data structure.

However, it is crucial to take into account the restrictions and difficulties related to

employing Chebyshev distance maps for ESS. The volume’s resolution and the sample

density applied to create the maps have an impact on how well the distance computations

are performed. The distance maps may need to be updated often in some situations, es-

pecially when dealing with volumes that are very complicated or change dynamically, to

ensure accurate skipping decisions[17].

Despite these difficulties, using Chebyshev distance maps has demonstrated a great

deal of promise in terms of enhancing the effectiveness and performance of empty space

skipping in volume rendering [17]. By utilizing this method, rendering algorithms may

decide which regions to skip with greater knowledge, resulting in quicker rendering times

without sacrificing visual quality.

2.7 Conclusion

the exploration of volumetric ray casting techniques has provided valuable insights into

the advancements and optimizations in volumetric rendering. We have examined vari-

ous aspects, including sampling methods, empty space skipping, acceleration structures,

distance maps, and the use of Chebyshev distance maps for acceleration.

Sampling plays a critical role in discretizing volumetric data, and we have explored

different approaches such as irregular sampling, adaptive sampling, and hierarchical sam-

pling. These methods enable more efficient representation of volumetric data and improve

rendering performance.

Empty space skipping techniques, including KD-trees and octrees, have been exam-

ined for their ability to accelerate ray casting by efficiently skipping empty regions. These

acceleration structures optimize the rendering process, resulting in faster and more effi-

cient visualization.

Distance maps, particularly signed distance fields, provide valuable information about

the distance to the nearest surface and enhance surface extraction and ray casting. Their

integration improves the accuracy and realism of volumetric rendering.

50

Chapter 3

Method

3.1 Introduction

In the real of volume rendering, achieving efficient rendering performance is of paramount

importance. To address this challenge, this chapter presents to enhance the speed of

volume rendering by effectively skipping empty blocks and leveraging Chebyshev distance

maps[17].

By intelligently sampling the occupancy map and identifying empty or occupied

blocks, unnecessary computations within empty regions can be avoided, resulting in sig-

nificant performance improvements.

To overcome the limitations of the simple Empty Space Skipping approach, the Cheby-

shev Distance Empty Space Skipping method is introduced. This technique utilizes the

concept of Chebyshev distance, which measures the maximum difference between two

points along any dimension. By calculating and storing Chebyshev distances in a ded-

icated distance map derived from the occupancy map, multiple blocks can be skipped

with a single texture sample leading to accelerated rendering speed.

3.2 Goal and motivation

The goal of this chapter is to present an approach[17] enhancing the performance and

efficiency of volume rendering techniques through the introduction of advanced optimiza-

tion methods. The motivation behind this work stems from the ever-increasing demand

for real-time and interactive rendering of volumetric data in various domains, such as

medical imaging, scientific visualization, and computer graphics.

Traditional volume rendering techniques can be computationally expensive, especially

when dealing with large datasets and complex scenes. This often results in significant

rendering times, limiting the interactivity and responsiveness of the visualization process.

The main objective of this project is to develop a technique for effectively skipping

empty blocks within the occupancy map during volume ray casting. By identifying and

avoiding unnecessary computations within empty regions, rendering performance can be

significantly improved. Also, we use Chebyshev distance maps to enable the skipping of

multiple blocks with a single texture sample. This approach aims to reduce the number of

texture samples required, thereby optimizing memory usage and reducing computational

51

Chapter 3. Method

overhead.

3.3 System Overview

Figure 3.1: General Scheme of current method

Our overall plan’s main elements are as follows:

Data Representation A three-dimensional depiction of a physical item or phe-

nomenon (as a set of 2D images) is referred to as volume data. It is made up of a

collection of data (such as intensity or color) that are described in a regular grid layout

and are often derived from simulations or medical imaging devices.

Each voxel in the three-dimensional grid or lattice used to represent the volumet-

ric data provides details about the characteristics or attributes of the relevant volume

element.

The volumetric data is used to create the occupancy map, which indicates whether a

block is empty or not. This map acts as a manual for effective sampling during rendering.

Block Empty Space Skipping Block Empty Space Skipping is the first optimization

method used. This method entails splitting the volume into blocks and identifying each

block’s status as empty or not empty using the occupancy map.

Empty blocks are skipped during the volume ray casting process, minimizing pointless

computations and enhancing rendering speed.

The blocks’ empty or non-empty status is determined using the normalized texel co-

ordinates of the occupancy map, enabling effective skipping of vacant regions.

Chebyshev Distance Empty Space SkippingWe present the Chebyshev Distance

Empty-Space-Skipping method to further improve the skipping efficiency.

Chebyshev distance maps allow us to calculate the maximum number of blocks along

each dimension that can be skipped before coming to an occupied block.

This method minimizes the number of samples needed and optimizes memory use by

allowing numerous blocks to be skipped with a single texture sample.

GPU Acceleration Our overall plan makes use of the contemporary programmable

GPUs’ processing capacity to quicken the rendering process.

To effectively analyze and depict the volumetric data, GPU-accelerated algorithms

and methods are used.

52

Chapter 3. Method

3.4 Block Empty Space Skipping

3.4.1 Mapping between Normalized and Unnormalized Texel

Coordinates

The goal of the ”Mapping between Normalized and Unnormalized Texel Coordinates”

step is to establish a relationship between the normalized and unnormalized texel coor-

dinates used in volume rendering. First, we explain the difference between the two kinds

of texel coordinates:

Normalized Texel Coordinates: Positions within the texture’s three-dimensional

space are indicated by values between 0 and 1 known as normalized texel coordinates.

They are normalized in proportion to the texture’s dimensions, where the minimum

coordinate along each axis is (0, 0, 0) and the maximum coordinate along each axis is

(1, 1, 1). These coordinates are frequently utilized in interpolation to determine a texel’s

color or value based on its surrounding texels. No matter the resolution or size of the

texture 3D, normalized texel coordinates offer a consistent and standardized manner to

access texels.

Figure 3.2: The Normalized Coordinate [72]

Unnormalized Texel Coordinates: Integer values that exactly match the texel

indices within the texture 3D are known as unnormalized texel coordinates. They are

created by multiplying the normalized texel coordinates by the texture’s dimensions. Un-

normalized coordinates offer a direct mapping to the texture 3D’s texels, making direct

texel indexing and quick memory access possible. When conducting procedures that

involve specific texels or getting voxel information from the volume data, or in other cir-

cumstances where exact access to individual texels is necessary, they are especially helpful.

53

Chapter 3. Method

Figure 3.3: Texture Mapping[54]

The mapping step serves several important purposes:

Accurate Sampling The mapping ensures that texels within the occupancy map

are sampled accurately based on their corresponding positions in the original volumetric

image. By establishing a clear relationship between the normalized and unnormalized

texel coordinates, the section enables precise sampling of texels, which is crucial for

generating an accurate representation of the volume data.

Interpolation Interpolation is a key technique used in volume rendering to estimate

values between texels and create smooth transitions. The mapping between normal-

ized and unnormalized texel coordinates facilitates proper interpolation between texels,

ensuring that the rendered volume appears visually coherent and realistic.

Consistent Rendering The mapping helps maintain consistency in the rendering

process by providing a standardized coordinate system. This allows for consistent access

and interpretation of texels within the occupancy map, regardless of the original volumet-

ric image’s dimensions or the specific rendering algorithm used. Consistency in rendering

54

Chapter 3. Method

is essential for producing reliable and predictable results.

Memory Utilization The mapping between normalized and unnormalized texel co-

ordinates also contributes to efficient memory utilization. By using a normalized coordi-

nate system, the occupancy map can represent the empty or non-empty status of larger

blocks within the volume using significantly less memory compared to the original vol-

umetric image. This reduction in memory requirements is particularly beneficial when

using larger block sizes, resulting in more efficient storage and processing of the volume

data.

Texture 3D Three-dimensional textures, which are a type of data structure for stor-

ing and accessing volumetric data, are referred to as ”texture 3D.” The occupancy map

is displayed as a 3D texture throughout this section. It is a three-dimensional grid of

texels, where each texel corresponds to a voxel in the volume data and provides details

on its occupancy state (empty or not empty).

The action of transferring 3D volume data to a 3D texture. It entails converting the

volumetric image into a format appropriate for fast rendering and storage, frequently

utilizing a method like block-based representation or occupancy maps.

The terms ”normalized” and ”unnormalized” texel coordinates in the context of vol-

ume rendering relate to various coordinate systems used to access texels within a 3D

texture (also known as a texture 3D) representing the volume data.

To make sure that volume rendering is accurate and consistent, a mapping between

normalized and unnormalized texel coordinates is developed. The fast sampling, inter-

polation, and display of the volume data are made possible by the smooth transitions

between the two coordinate systems. Depending on the unique needs of the rendering

algorithm and the actions being taken with the texture 3D, one coordinate system may

be chosen over another.

The given equation establishes a relationship between normalized texel coordinates

(t) and unnormalized texel coordinates (u) in a 3D texture. Here are the key details:

Dimensions: The dimensions of the 3D texture are represented by [width, height,

depth], denoted as d = [width, height, depth].

Normalized Texel Coordinates (t): These coordinates have values ranging from 0.0 to

1.0 for each dimension.

Unnormalized Texel Coordinates (u): These coordinates have values ranging from 0.0

to the corresponding dimension value (width, height, or depth).

Mapping Equation: The equation

u = d · t (12)

represents the mapping between the two coordinate systems.

To convert a normalized texel coordinate (t) to an unnormalized texel coordinate

(u) using this equation, you need to multiply each component of t by the corresponding

dimension of d. This multiplication results in the corresponding unnormalized texel

coordinate, u.

55

Chapter 3. Method

3.4.2 Calculating the Number of Steps Along a Ray in Volume

Sampling

Calculating the number of steps along a ray in volume sampling:

The equation :

n = ⌜−−→max(d) · ∥tback − tfront∥ · f⌝ (13)

allows us to determine the number of steps (n) required for sampling voxel colors and

transparencies along a ray intersecting a volume. Here’s a breakdown of the variables

and terms involved:

n: This represents the number of steps along the ray, determining the sampling density

or resolution.

max(d): It corresponds to the maximum dimension (width, height, or depth) of the

volume, indicating the largest value among its dimensions.

∥tback− tfront∥: This denotes the Euclidean distance between the t-back and t-front

points along the ray, representing the length of the ray segment within the volume.

f : It is a scaling factor or parameter used to adjust the sampling density, allowing

control over the number of samples taken along the ray.

By combining these elements, the equation calculates the necessary number of steps

(n) to sample voxel properties along the intersecting ray within the volume. To compute

n using the equation:

Determine the maximum dimension (max(d)) of the volume.

Calculate the Euclidean distance ∥tback− tfront∥ between the tback and tfront points along

the ray.

Multiply max(d), ∥tback − tfront∥, and f .

Round down or take the floor of the result to obtain the integer value of n.

It’s important to note that the equation assumes equidistant sampling, where the ray

is divided into n equal segments to sample voxel properties. The value of n influences the

level of detail or accuracy in the sampled information along the ray.

3.4.3 Calculating the Change in Normalized Texture Coordi-

nates (∆t)

In the given equation

∆t =
tback − tfront

n− 1
(14)

∆t represents the change in normalized texture coordinates between each sample point

along the ray. Here’s what we need to know:

∆t: It signifies the step size or increment in the normalized texture coordinates be-

tween consecutive sample points.

t-back: This refers to the normalized texture coordinate corresponding to the back

intersection point of the ray with the volume.

t-front: This represents the normalized texture coordinate corresponding to the front

intersection point of the ray with the volume.

56

Chapter 3. Method

n: It denotes the number of steps or samples along the ray, determining the sampling

density or resolution.

To calculate ∆t using the equation (14)

tFront ← value of tFront

tBack ← value of tBack

n← value of n

difference← tBack − tFront
∆t← difference

n−1

return ∆t

By using this ∆t, you can determine the increment in normalized texture coordinates

required to move from one sample point to the next along the ray.

3.4.4 Calculating Normalized Texel Coordinates along a Ray

The equation

ti = tfront + i ·∆t (15)

you can use it to calculate the normalized texel coordinates (ti) at the ith point along

the ray within the volume. Here’s what you need to know:

ti: It represents the normalized texel coordinates at the ith point along the ray,

indicating the texel’s position in normalized texture coordinates.

t-front: This corresponds to the normalized texture coordinate at the front intersection

point of the ray with the volume.

∆t: It signifies the change in normalized texture coordinates between each sample

point along the ray, representing the step size or increment.

i: It is the index or number of the point along the ray, determining the position of

the texel along the ray.

By following these steps, you can determine the normalized texel coordinates at each

point along the ray within the volume.

3.4.5 Calculating Normalised texel coordinates of the occupancy

map

tM =
d

B · dM

t (16)

allows you to calculate the normalized texel coordinates (tM) of the occupancy map:

tM: It represents the normalized texel coordinates of the occupancy map, indicating

the position of the occupancy map texel in normalized coordinates.

d: It denotes the dimensions of the original volumetric image, given as [width, height,

depth].

B: This is the block size, typically 4 or larger.

dM: It signifies the dimensions of the occupancy map, given as ⌊d/B⌋, (floor division),
representing the number of blocks in each dimension of the volume.

57

Chapter 3. Method

To calculate tM using the equation, we divide each dimension of d by (B · dM) to

obtain the scaling factor for each dimension. Multiply the scaling factor by the original

normalized texel coordinates (t) to obtain tM. We can determine the normalized texel

coordinates of the occupancy map. The occupancy map provides a memory-efficient rep-

resentation of the volume, storing information about the empty or non-empty status of

blocks within the volume. This optimizes memory usage and rendering performance by

reducing the required memory compared to storing the entire volumetric image.

3.4.6 Change in Unnormalized Texel Coordinates and Ray

Steps in the Occupancy Map

The equation

∆uM = dM · tM =
d

B
∆t (17)

describes the change in unnormalized texel coordinates of the occupancy map per step.

This equation is derived from the relationship between the unnormalized texel coordinates

(uM), the voxel size (dM), and the normalized texel coordinates (tM). The voxel size is

scaled by the ratio of the total volume size (d) to the number of blocks (B), resulting in
d
B
. The change in normalized texel coordinates per step (∆t) is multiplied by this scaled

voxel size to obtain the change in unnormalized texel coordinates (∆uM).

This relationship follows from the equation u = d · t, which relates the unnormalized

texel coordinate (u) to the total distance (d) and the normalized texel coordinate (t).

Additionally, the equation tM = d
B·dM

t defines the normalized texel coordinates (tM) in

terms of the voxel size and the total distance.

The number of ray steps required to move from one voxel to the next along a specific

dimension (j) can be derived geometrically based on these equations. This calculation

allows for accurate traversal of the occupancy map in the volume rendering process,

ensuring proper sampling and rendering of the volume data.

3.5 Chebyshev Distance Empty Space Skipping

Figure 3.4: Empty Space Skipping by Chebyshev Distance Map

58

Chapter 3. Method

On GPUs, bypassing empty blocks in the volume can increase the efficiency of volume

ray casting. One block could only be skipped per sample of the occupancy map using the

straightforward empty space skipping (ESS) method that was covered in the preceding

section. In this section, we present the Chebyshev distance ESS algorithm that tackles

the performance drawback of the straightforward ESS strategy.

The largest difference between two places along any dimension is known as the Cheby-

shev distance. We may calculate the number of blocks that can be skipped along each

dimension before arriving at an occupied block by calculating the Chebyshev distance

between a block and the closest occupied block. Using a GPU-accelerated modification

of Saito and Toriwaki’s method, we compute and store these distances in a distance map

that is derived from the occupancy map. A block that is occupied has a distance of 0.

To calculate the number of steps required to move to a block D blocks away on

dimension i, we use the equation:

∆ij =

{(
1 +

⌊
uMj

⌋
− uMj

)
∆u−1

Mj
if ∆uMj

> 0(⌊
uMj

⌋
− uMj

)
∆u−1

Mj
otherwise.

(21)

We then obtain the actual number of steps using the equation:

∆i = max
(−−→
min⌜(step(−∆uM) + sign(∆uM) ·D + rM) ·∆uM−1⌝, 1

)
(22)

By replacing the previous equation with this new equation, the raycaster can skip

multiple blocks with just a single sample of the distance map. Notably, the utilization

of Chebyshev distances for GPU-accelerated ray casting builds upon the work of Sramek

and Kaufman, offering improved efficiency and the ability to resume traversal in empty

space within and behind objects. The distance map is maintained at a lower resolution

than the volume, resulting in performance enhancements and reduced memory overhead.

When using volume ray casting on GPUs, the Chebyshev distance ESS technique offers

an improved method for empty space skipping. Chebyshev distances and a distance map

created from the occupancy map allow for the effective skipping of numerous blocks with

a single texture sample. This method boosts efficiency, uses less memory, and enables

traversal to continue in void areas. The Chebyshev distance ESS algorithm provides a

more effective and efficient method for volume ray casting on contemporary programmable

GPUs by overcoming the drawbacks of the standard ESS methodology.

59

Chapter 3. Method

Figure 3.5: Chebyshev Distance Empty Space Skipping (CDESS) Algorithm: Optimizing

Volumetric Rendering

Comparing the Chebyshev Distance Empty Space Skipping (CDESS) approach to

the Block Empty Space Skipping (BESS) method, this methodology aims to optimize

the rendering performance of volumetric data. The occupancy map, a downsampled

representation of the volumetric data, is the first thing the algorithm determines. These

dimensions are calculated by dividing the volumetric picture dimensions by the block size

(B), which results in the formula

dM =

⌊
d

B

⌋
(23)

where d stands for the volumetric image dimensions. A new 3D texture is made

specifically to store the occupancy map after taking into account its dimensions, ensuring

effective storage and retrieval of occupancy data.

The method then generates occupancy values for each texel on the map in order to

fill it with useful data. In this generation process, the occupancy status of each block is

determined by examining the voxel values or other pertinent volumetric data properties.

Blocks that are vacant are given a specific value that shows their status as vacant, and

blocks that are occupied are given a value that indicates their occupancy.

After being determined, the occupancy values are applied to the appropriate texels

in the occupancy map texture. This procedure makes sure that the occupancy data is

precisely saved in the texture so that it may be quickly and effectively accessed throughout

the rendering process.

The approach transfers the normalized texel coordinates (t) used for sampling the

volumetric picture to the equivalent texel coordinates (tM) in the occupancy map in

order to efficiently skip vacant blocks. The formula 16, Is used to create this mapping.

The algorithm guarantees that the sampling points line up with the proper texels in the

occupancy map by using this mapping, which makes traversing and bypassing empty

blocks easier.

The next step is to determine the step sizes (i) for sampling along each of the oc-

cupancy map’s dimensions (X, Y, Z). These step sizes are established using a predeter-

mined sampling factor and the Chebyshev distance metric. The direction in which the

occupancy map will be traversed is then determined by finding the minimum step size

(min(iX, iY, iZ)) among the three dimensions.

60

Chapter 3. Method

The algorithm iterates across the occupancy map, incrementing the sampling position

based on the step size and direction once the sample point and step sizes have been de-

termined. As the algorithm develops, this procedure enables empty blocks to be skipped.

The algorithm switches to the conventional volume ray casting procedure when an occu-

pied block is found, sampling the volumetric picture and computing the output voxel’s

final color and transparency values using methods like trilinear interpolation.

Until the full volume is drawn, this iterative process of bypassing empty blocks and

executing volume ray casting continues. Due to the effective use of the Chebyshev dis-

tance measure, the occupancy map and volumetric picture are traversed according to

the computed step sizes, bypassing numerous blocks in each sample. By lessening the

computing effort needed for rendering volumetric data, this improvement dramatically

increases rendering performance.

As shown by the equation 16 and the use of the Chebyshev distance metric, the

integration of Chebyshev distance empty space skipping into the CDESS algorithm allows

for the skipping of multiple blocks per sample, which leads to faster rendering times and

more effective use of computing resources when compared to the BESS technique.

3.6 Conclusion

In this chapter, we presented a method for efficient volume ray casting, focusing on block

empty space skipping and the utilization of Chebyshev distance empty space skipping.

Our goal was to improve the rendering performance of volumetric data visualization by

optimizing the ray casting process and reducing the number of unnecessary computations,

we aimed to enhance the overall rendering speed and enable real-time exploration of com-

plex volumetric data. By considering the Chebyshev distance between blocks, it becomes

possible to skip multiple blocks in a single sample, further improving the efficiency of

volume ray casting.

61

Chapter 4

Implementation and results

4.1 Introduction

The implementation of a software tool for volumetric picture rendering using raycasting

and distance mapping methods is the focus of this project. The main objective is to

develop an interactive visualization tool that allows users to explore and understand

volumetric data in a simple and effective manner. To achieve this goal, the project utilizes

the features of the PyQt5 and VTK libraries, implementing the solution in Python.

In this project, dataset selection is a critical stage, as it forms the basis for rendering

and visualization. The chosen dataset should be representative of the target domain and

should include discrete anatomical or structural features with a range of intensity values.

Factors such as complexity, data size, availability of ground truth or reference data, and

compatibility with the VTK library and DICOM format are taken into account during

the dataset selection process.

4.2 Implementation Overview

The project implementation comprised the creation of a software tool for volumetric

picture rendering using raycasting and distance mapping methods. The main goal is to

develop an interactive visualization tool that enables users to explore and understand

volumetric data simply and effectively.

Utilizing the features of the PyQt5 and VTK libraries, the implementation was carried

out using the Python programming language. The graphical user interface (GUI) was

created with ease thanks to PyQt5, which offered a solid platform for GUI development.

The main library used to manage volumetric data and run computations for raycasting

and distance mapping was called VTK (Visualization Toolkit).

The implemented code adhered to a modular and object-oriented design to guarantee

maintainability and scalability. User interface elements, data loading and preprocess-

ing modules, rendering components, and interaction handlers were some of its essential

components. These elements combined to provide a complete and simple user experience.

The capabilities of VTK’s volumetric rendering were heavily utilized. For effective

raycasting rendering, the solution used the vtkGPUVolumeRayCastMapper class. To

produce high-quality renderings, this class used a variety of sampling techniques, includ-

62

Chapter 4. Implementation and results

ing trilinear interpolation and adaptive sampling. These methods guaranteed precise

volumetric data representation and seamless changes in intensity values.

Distance maps were essential in the implementation for accelerating the raycasting

process. Both Euclidean and Chebyshev distance maps were used, and Chebyshev dis-

tance maps were implemented using the methods covered in the approach chapter. The

Euclidean distance maps were created by determining the distance between each voxel

in the volume and a reference point using the vtkImageEuclideanDistance filter. The

rendering performance was enhanced by the effective skipping of voids during raycasting

made possible by these distance maps.

The depiction of volumetric data was made possible by the implementation’s combined

use of distance maps and the raycasting technique. The databases allowed for interactive

exploration and comprehension of complex structures. The combination of PyQt5 and

VTK libraries offered a strong platform for the smooth integration of rendering activities

with GUI elements, improving the overall user experience.

We will go into more detail about the implementation in the following sections, cov-

ering topics like dataset selection, GUI design, data loading and preprocessing, camera

setup, and visualization techniques used. We will assess the implementation’s success

and the results obtained after a thorough examination of the findings.

Given the updates you provided regarding the application of Euclidean and Chebyshev

distance maps as well as the implementation of Chebyshev distance maps based on the

techniques covered in the approach chapter, we will highlight the use of various distance

map techniques to speed up rendering with raycasting in the relevant sections.

4.3 Dataset Selection

A critical stage in carrying out the project is choosing a suitable dataset. The chosen

dataset should sufficiently represent the target domain since it will act as the basis for

rendering and visualization.

The dataset selection procedure for this project includes locating and gathering vol-

umetric data that is pertinent to the application domain. Datasets with comprehensive

anatomical or scientific information, such as those from medical CT or MRI scans, scien-

tific simulations, or industrial scans, were the main focus.

The complexity and amount of the data, the availability of ground truth or reference

data for validation, and the compatibility with the VTK library and DICOM format

were all taken into account when choosing the dataset. A popular standard for stor-

ing and transferring medical pictures, DICOM (Digital Imaging and Communications in

Medicine) is a good option for smooth integration with VTK.

The data collection method required getting the dataset in DICOM format after a

suitable dataset had been found. This often involved gaining access to a database or

obtaining information from scientific or medical organizations that make anonymized

datasets available for research.

The chosen dataset should include discrete anatomical or structural features and a

range of intensity values. This guarantees that the fundamental information included in

the volumetric data can be successfully captured and represented by the visualization

techniques, such as ray casting and distance mapping.

63

Chapter 4. Implementation and results

The technical requirements and relevance to the project’s goals were taken into ac-

count during the dataset selection process. The implementation can successfully demon-

strate the capabilities of the built visualization tool by selecting an acceptable dataset.

The particular processes necessary to load and preprocess the chosen dataset will be

covered in detail in the sections that follow, ensuring that it is prepared for rendering and

visualization. In the later stages of implementation, the dataset selection is crucial since it

allows the application to demonstrate its functionality on meaningful and representative

data.

This section emphasizes the significance of choosing a suitable dataset and establishes

the framework for the upcoming phases in data loading and preprocessing by giving a

more thorough explanation of the dataset selection procedure.

4.4 Experimental Setup

Evaluation of the performance and efficacy of the adopted strategy heavily relies on the

experimental arrangement. It entails specifying the hardware and software setups utilized

for the visualization tool’s testing and validation.

4.4.1 Hardware Configuration

The computational resources used to operate the implemented software application are

included in the hardware configuration. It contains information about the computer

system’s specifications, including the processor, memory (RAM), and graphics card. The

speed and responsiveness of the visualization tool are directly influenced by the computing

power of the hardware.

A powerful computer system was used for this project to enable the effective and

efficient implementation of the adopted strategy. The system was made up of a multi-

core CPU with enough memory to fulfill volumetric data processing and storage needs.

To achieve real-time interactive visualization, a potent graphics card that can support

complex rendering techniques was also used.

4.4.2 Software Configuration

An integrated development environment (IDE) that enables Python development made up

the development environment. To create, test, and debug the code, tools like PyCharm,

Visual Studio Code, or Jupyter Notebook were employed.

The implementation largely depended on the PyQt5 library to provide the graphical

user interface (GUI) in terms of libraries and frameworks. A complete collection of tools

and widgets are available in PyQt5 for creating interactive desktop apps. For processing

the volumetric data, computing ray casting, and distance maps, and allowing enhanced

visualization features, the VTK library was used.

4.4.3 Experimental Data

A set of experimental data was chosen in order to assess the method that was put into

practice. This information included volumetric datasets from pertinent fields including

64

Chapter 4. Implementation and results

industrial scanning, scientific simulations, and medical imaging. To fully assess the capa-

bilities of the visualization tool, the data should reflect a variety of structures, intensities,

and complexity.

Medical CT or MRI scans that have been anonymized, volumetric datasets produced

by scientific simulations, or actual volumetric scans from industrial operations may all

be utilized as the experimental data for the assessment phase. The primary data for the

experimental setup is the dataset chosen in the ”Dataset Selection” stage (Section 4.3).

The experimental setup provides a defined and controlled environment for assessing

the performance and capabilities of the implemented visualization tool by specifying

the hardware and software specifications and choosing suitable experimental data. The

outcomes achieved throughout the assessment phase may be compared and analyzed on

the basis of this information.

The procedures specifically followed to apply the implemented technique to the exper-

imental data will be covered in detail in the parts that follow, along with the outcomes.

The experimental design lays the groundwork for the analysis and discussion that follow

the results.

4.5 Data and Application Interface

The implemented code was run on the chosen DICOM dataset, and its effectiveness was

evaluated using the specified evaluation criteria.

We have used three different datasets: D1(Head), D2(Ankle), and D3 (Chest). The

following table gives each dataset its resolution, and the number of 2d images that con-

tain the number of voxels obtained after 3D reconstruction.

Table 4.1: Dataset Information

Dataset Resolution (X, Y) Number of slices 2D Voxels Number

D1 (512, 512) 234 61,341,696

D2 (512, 512) 150 39,321,600

D3 (512, 512) 197 51,642,368

You can load the DICOM images series by clicking the buttons ”Ray casting render-

ing”.

65

Chapter 4. Implementation and results

Figure 4.1: GUI

4.6 Experimental Results

The outcomes illustrated the code’s capacity to produce interactive volumetric visualiza-

tions. It was possible to visualize and analyze the produced volumes in great detail since

they provided accurate and slick representations of the underlying data.

4.6.1 Basic raycasting Results

We start with presenting results obtained by applying raycasting without using distance

maps. Different transfer functions are applied by adjusting: Opacity, color, or both.

66

Chapter 4. Implementation and results

Figure 4.2: rendering Human Head using only ray casting (Rendering time:5.1171s)

67

Chapter 4. Implementation and results

Figure 4.3: rendering Human Abkle using only ray casting (Rendering time:2.9694)

68

Chapter 4. Implementation and results

Figure 4.4: rendering Human Chest using only ray casting(Rendering time:4.1107s)

69

Chapter 4. Implementation and results

4.6.2 Results with Chebychev Distance Maps

Figure 4.5: Rendering Human Head using Chebyshev Distance Maps based raycasting

(Rendering time:1.5029s)

70

Chapter 4. Implementation and results

Figure 4.6: Rendering Human Ankle using Chebyshev Distance Maps based ray casting

(Rendering time = 1.1495s)

71

Chapter 4. Implementation and results

Figure 4.7: Rendering Human Chest using Chebyshev Distance Maps based ray casting

(Rendering time: 1.9244s)

4.7 Analyze and Discussion

Figure 4.8: Execution time comparison between raycasting with Chebyshev Distance

maps and Raycasting only

72

Chapter 4. Implementation and results

The analysis reveals that utilizing Chebyshev Distance Maps leads to faster computa-

tions compared to raycasting-only methods. By incorporating Chebyshev Distance Maps,

which involve ray-casting techniques, the computational efficiency surpasses that of the

raycasting-only approach. This highlights the superior performance achieved by employ-

ing Chebyshev Distance Maps for computational tasks. The method’s ability to optimize

and streamline calculations, leveraging the power of Chebyshev Distance Maps, results in

expedited solutions and improved execution speed. Embracing Chebyshev Distance Maps

showcases the relentless pursuit of efficiency and progress in the realm of computational

science, offering enhanced productivity and the potential for advancements in scientific

and technological endeavors.

4.8 Conclusion

This project successfully implemented a software tool for volumetric picture rendering

using raycasting and distance mapping methods. The utilization of PyQt5 and VTK

libraries, along with a modular and object-oriented design, enabled the development

of an interactive visualization tool that simplifies the exploration and understanding of

volumetric data.

The dataset selection process ensured the choice of appropriate volumetric data that

represents the target domain, considering factors such as complexity, data size, availability

of ground truth or reference data, and compatibility with VTK and DICOM format.

This allowed the visualization tool to demonstrate its capabilities on meaningful and

representative data.

The experimental setup, comprising the hardware and software configurations, pro-

vided a controlled environment for testing and validating the visualization tool. A pow-

erful computer system and the use of PyQt5 and VTK libraries ensured efficient imple-

mentation and real-time interactive visualization.

73

General Conclusion

In this project, we demonstrated an implementation that uses raycasting rendering meth-

ods along with Euclidean and Chebyshev distance maps to produce effective and excellent

volumetric visuals. The used Chebychev Distance maps-based method was designed to

hasten the rendering process and enhance the visual fidelity of volumetric images. We

efficiently bypassed empty spots and enhanced the sampling process by combining the

two distance map algorithms, lowering computing costs and increasing volume render-

ing efficiency. We were able to leverage raycasting techniques to speed up the rendering

process. We eliminated unnecessary computations and increased performance by taking

advantage of the unique properties of the Chebyshev distance.

In the theoretical section of the method chapter,

Chapter 1 provided an overview of the key concepts and foundations of volume render-

ing. It explained the importance of visualizing volumetric data and discusses the process

of generating 2D images from 3D volumetric data. The chapter covered different types

of volumetric data, volume rendering techniques (direct and indirect), transfer functions,

and popular volume rendering tools.

Chapter 2 focused on volumetric ray casting and explores various aspects of this tech-

nique. It discussed sampling methods, which aim to capture the details of the volumetric

data. The chapter also covered empty space skipping, an efficient technique for bypassing

empty regions during the ray-casting process. It further examined acceleration techniques

and distance maps, which provide valuable information about the distances from voxels

to surfaces within the volume.

Chapter 3 presented the developed method for efficient volume ray casting. It intro-

duced the Block Empty Space Skipping (Block ESS) method and the Chebyshev Distance

Empty Space Skipping technique.

Lastly, Chapter 4 focused on the implementation details and results of the efficient

volume ray casting method. It described the experimental setup, including hardware and

software configurations, and discussed the criteria used for dataset selection. The chap-

ter presents the experimental results achieved through the utilization of the Block ESS

method and the integration of the Chebyshev Distance Empty Space Skipping technique.

Further research can be done to determine the best way to use GPU resources and

sophisticated sampling techniques, which could speed up and improve rendering even

further. Furthermore, combining several distance map methods and examining alternate

volume rendering algorithms may result in representations that are even more precise

and lifelike.

74

Bibliography

[1] Advances in discrete geometry applied to the extraction of planes and surfaces

from 3D volumes. PhD thesis, 2000. URL http://e-learning.byclb.com/

Chapter-5-Classification-of-Volume-Rendering-Algorithms.

[2] Nvidia annotation plugin., 2019. URL https://www.mitk.org/wiki/

NvidiaAnnotationPlugin.

[3] Medical imaging interaction toolkit., 2022. URL https://docs.mitk.org/2022.

10/.

[4] Esalm Adel. Visualization toolkit (vtk). URL https://sbme-tutorials.github.

io/2019/CG/presentations/8_week8/#21.

[5] B Afeez Mayowa, B Lateef Adebayo, and Taofikat Abidemi A Maxwell Obubu.

Visualization of voxel volume emission and absorption of light in medical biology.

curr tre biosta & biometr 1 (3)-2019. CTBB. MS. ID, 114, .

[6] B Afeez Mayowa, B Lateef Adebayo, and Taofikat Abidemi A Maxwell Obubu.

Visualization of voxel volume emission and absorption of light in medical biology.

curr tre biosta & biometr 1 (3)-2019. CTBB. MS. ID, 114, .

[7] John Amanatides, Andrew Woo, et al. A fast voxel traversal algorithm for ray

tracing. In Eurographics, volume 87, pages 3–10, 1987.

[8] Brett Beeson, David G Barnes, and Paul D Bourke. A distributed data implemen-

tation of the perspective shear-warp volume rendering algorithm for visualisation of

large astronomical cubes. Publications of the Astronomical Society of Australia, 20

(3):300–313, 2003.

[9] Gunilla Borgefors. Distance transformations in digital images. Computer vision,

graphics, and image processing, 34(3):344–371, 1986.

[10] Christian Boucheny, Georges-Pierre Bonneau, Jacques Droulez, Guillaume Thibault,

and Stéphane Ploix. A perceptive evaluation of volume rendering techniques. ACM

Transactions on Applied Perception (TAP), 5(4):1–24, 2009.

[11] Stefan Bruckner and M Eduard Groller. Exploded views for volume data. IEEE

transactions on visualization and computer graphics, 12(5):1077–1084, 2006.

[12] Mario Ciampi, Luigi Gallo, and Giuseppe De Pietro. Mito: An advanced toolkit for

medical imaging processing and visualization, 07 2018.

75

http://e-learning.byclb.com/Chapter-5-Classification-of-Volume-Rendering-Algorithms
http://e-learning.byclb.com/Chapter-5-Classification-of-Volume-Rendering-Algorithms
https://www.mitk.org/wiki/NvidiaAnnotationPlugin
https://www.mitk.org/wiki/NvidiaAnnotationPlugin
https://docs.mitk.org/2022.10/.
https://docs.mitk.org/2022.10/.
https://sbme-tutorials.github.io/2019/CG/presentations/8_week8/#21.
https://sbme-tutorials.github.io/2019/CG/presentations/8_week8/#21.

Bibliography

[13] John Congote, Luis Kabongo, Aitor Moreno, Alvaro Segura, Andoni Beristain, Jorge

Posada, Oscar Ruiz, et al. Volume ray casting in webgl. Computer Graphics, pages

157–178, 2012.

[14] Joseph M Cooke, Michael J Zyda, David R Pratt, and Robert B McGhee. Npsnet:

Flight simulation dynamic modeling using quaternions. Presence: Teleoperators &

Virtual Environments, 1(4):404–420, 1992.

[15] F Dachille. Volume visualization algorithms and architectures. Research Proficiency

Examination, SUNY at Stony Brook, 1997.

[16] Francisco de Moura Pinto and Carla MDS Freitas. Design of multi-dimensional

transfer functions using dimensional reduction. In Proceedings of the 9th Joint Eu-

rographics/IEEE VGTC conference on Visualization, pages 131–138, 2007.

[17] Lachlan Deakin and Mark Knackstedt. Accelerated volume rendering with chebyshev

distance maps. In SIGGRAPH Asia 2019 Technical Briefs, pages 25–28. 2019.

[18] Lachlan J Deakin and Mark A Knackstedt. Efficient ray casting of volumetric images

using distance maps for empty space skipping. Computational Visual Media, 6:53–63,

2020.

[19] Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. ACM

Siggraph Computer Graphics, 22(4):65–74, 1988.

[20] Oscar Figueiredo. Advances in discrete geometry applied to the extraction of planes

and surfaces from 3D volumes. PhD thesis, Verlag nicht ermittelbar, 1999.

[21] Charles Florin, Romain Moreau-Gobard, and JimWilliams. Automatic heart periph-

eral vessels segmentation based on a normal mip ray casting technique. In Medical

Image Computing and Computer-Assisted Intervention–MICCAI 2004: 7th Interna-

tional Conference, Saint-Malo, France, September 26-29, 2004. Proceedings, Part I

7, pages 483–490. Springer, 2004.

[22] James D Foley, Foley Dan Van, Andries Van Dam, Steven K Feiner, and John F

Hughes. Computer graphics: principles and practice, volume 12110. Addison-Wesley

Professional, 1996.

[23] Joseph L Gabbard, J Edward Swan, and Deborah Hix. The effects of text draw-

ing styles, background textures, and natural lighting on text legibility in outdoor

augmented reality. Presence, 15(1):16–32, 2006.

[24] Sarah FF Gibson. Using distance maps for accurate surface representation in sampled

volumes. In Proceedings of the 1998 IEEE symposium on Volume visualization, pages

23–30, 1998.

[25] Thomas Günther, Christoph Poliwoda, Christof Reinhart, Jürgen Hesser, Reinhard

Männer, H-P Meinzer, and H-J Baur. Virim: A massively parallel processor for

real-time volume visualization in medicine. Computers & Graphics, 19(5):705–710,

1995.

76

Bibliography

[26] Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja Bühler, and Markus H

Gross. Real-time ray-casting and advanced shading of discrete isosurfaces. In Com-

puter graphics forum, volume 24, pages 303–312. Citeseer, 2005.

[27] Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja Bühler, and Markus H

Gross. Real-time ray-casting and advanced shading of discrete isosurfaces. In Com-

puter graphics forum, volume 24, pages 303–312. Citeseer, 2005.

[28] Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo Ropinski. Ad-

vanced illumination techniques for gpu volume raycasting. In ACM Siggraph Asia

2008 Courses, pages 1–166. 2008.

[29] Markus Hadwiger, Ali K. Al-Awami, Johanna Beyer, Marco Agus, and Hanspeter

Pfister. Sparseleap: Efficient empty space skipping for large-scale volume rendering.

IEEE Transactions on Visualization and Computer Graphics (Proceedings IEEE Sci-

entific Visualization 2017), 24(1):974–983, 2018.

[30] Helwig Hauser, Lukas Mroz, G Italo Bischi, and M Eduard Groller. Two-level volume

rendering. IEEE transactions on visualization and computer graphics, 7(3):242–252,

2001.

[31] Jürgen Hesser, Reinhard Manner, Günter Knittel, Wolfgang Straßer, Hanspeter Pfis-

ter, and Arie Kaufman. Three architectures for volume rendering. In Computer

Graphics Forum, volume 14, pages 111–122. Wiley Online Library, 1995.

[32] Jürgen Hesser, Reinhard Manner, Günter Knittel, Wolfgang Straßer, Hanspeter Pfis-

ter, and Arie Kaufman. Three architectures for volume rendering. In Computer

Graphics Forum, volume 14, pages 111–122. Wiley Online Library, 1995.

[33] Denis Horvat and B Zalik. Ray-casting point-in-polyhedron test. Proceedings of the

CESCG, 2012.

[34] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Differentiable

rendering of signed distance fields for 3d shape optimization. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1251–

1261, 2020.

[35] Mark W Jones. The production of volume data from triangular meshes using vox-

elisation. In Computer Graphics Forum, volume 15, pages 311–318. Wiley Online

Library, 1996.

[36] Srinivas Kaza et al. Differentiable volume rendering using signed distance functions.

PhD thesis, Massachusetts Institute of Technology, 2019.

[37] Aaron Knoll, Younis Hijazi, Rolf Westerteiger, Mathias Schott, Charles Hansen, and

Hans Hagen. Volume ray casting with peak finding and differential sampling. IEEE

Transactions on Visualization and Computer Graphics, 15(6):1571–1578, 2009.

[38] Aaron Knoll, Younis Hijazi, Rolf Westerteiger, Mathias Schott, Charles Hansen, and

Hans Hagen. Volume ray casting with peak finding and differential sampling. IEEE

Transactions on Visualization and Computer Graphics, 15(6):1571–1578, 2009.

77

Bibliography

[39] Jens Kruger and Rüdiger Westermann. Acceleration techniques for gpu-based volume

rendering. In IEEE Visualization, 2003. VIS 2003., pages 287–292. IEEE, 2003.

[40] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factor-

ization of the viewing transformation. In Proceedings of the 21st annual conference

on Computer graphics and interactive techniques, pages 451–458, 1994.

[41] Byeonghun Lee, Jihye Yun, Jinwook Seo, Byonghyo Shim, Yeong-Gil Shin, and Bo-

hyoung Kim. Fast high-quality volume ray casting with virtual samplings. IEEE

Transactions on visualization and computer graphics, 16(6):1525–1532, 2010.

[42] Marc Levoy. Display of surfaces from volume data. IEEE Computer graphics and

Applications, 8(3):29–37, 1988.

[43] Marc Levoy. Display of surfaces from volume data. IEEE Computer graphics and

Applications, 8(3):29–37, 1988.

[44] Marc Levoy. A hybrid ray tracer for rendering polygon and volume data. IEEE

Computer graphics and Applications, 10(2):33–40, 1990.

[45] Sukhyun Lim and Byeong-Seok Shin. A distance template for octree traversal in

cpu-based volume ray casting. The Visual Computer, 24:229–237, 2008.

[46] Patric Ljung. Efficient methods for direct volume rendering of large data sets. 03

2023.

[47] Patric Ljung, Jens Krüger, Eduard Groller, Markus Hadwiger, Charles D Hansen,

and Anders Ynnerman. State of the art in transfer functions for direct volume

rendering. In Computer Graphics Forum, volume 35, pages 669–691. Wiley Online

Library, 2016.

[48] WE Lorensen and HE Cline. Marching cubes: a high resolution 3d surface construc-

tion algorithm. siggraph comput. graph. 21 (4), 163–169 (1987).

[49] Dening Luo. Interactive volume illumination of slice-based ray casting. arXiv

preprint arXiv:2008.06134, 2020.

[50] Amr S Mady and Samir Abou El-Seoud. An overview of volume rendering techniques

for medical imaging. 2020.

[51] Amr S Mady and Samir Abou El-Seoud. An overview of volume rendering techniques

for medical imaging. 2020.

[52] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, and Klaus Hinrichs.

Voreen: A rapid-prototyping environment for ray-casting-based volume visualiza-

tions. IEEE Computer Graphics and Applications, 29(6):6–13, 2009.

[53] NEUBIAS. Volume rendering examples., 2019. URL https://neubias.github.

io/training-resources/volume_viewer/index.html.

78

https://neubias.github.io/training-resources/volume_viewer/index.html
https://neubias.github.io/training-resources/volume_viewer/index.html

Bibliography

[54] NEUBIAS. Texture coordinate interpretation, 2019. URL https://microsoft.

github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#3.3.3%

20Texture%20Coordinate%20Interpretation.

[55] Dr. Savvas Nicolaou. cinematic rendering., 2019. URL https://www.auntminnie.

com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=126659.

[56] Tobias Nilsson. Optimization methods for direct volume rendering on the client side

web, 2019.

[57] Christian John Noon. A volume rendering engine for desktops, laptops, mobile de-

vices and immersive virtual reality systems using GPU-based volume raycasting. Iowa

State University, 2012.

[58] Bernhard Preim and Dirk Bartz. Chapter 07 - indirect volume visualization. In

Bernhard Preim and Dirk Bartz, editors, Visualization in Medicine, The Mor-

gan Kaufmann Series in Computer Graphics, pages 155–182. Morgan Kaufmann,

Burlington, 2007. isbn:978-0-12-370596-9. doi:https://doi.org/10.1016/

B978-012370596-9/50010-9. URL https://www.sciencedirect.com/science/

article/pii/B9780123705969500109.

[59] Harvey Ray, Hanspeter Pfister, Deborah Silver, and Todd A Cook. Ray casting archi-

tectures for volume visualization. IEEE Transactions on Visualization and Computer

Graphics, 5(3):210–223, 1999.

[60] Scott D Roth. Ray casting for modeling solids. Computer graphics and image

processing, 18(2):109–144, 1982.

[61] W Schroeder, K Martin, and B Lorensen. The visualization toolkit, 4th edn. kitware.

New York, 2006.

[62] William J Schroeder, Lisa Sobierajski Avila, and William Hoffman. Visualizing with

vtk: a tutorial. IEEE Computer graphics and applications, 20(5):20–27, 2000.

[63] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume

rendering. ACM Siggraph Computer Graphics, 24(5):63–70, 1990.

[64] Luc Soler, Stéphane Nicolau, Patrick Pessaux, Didier Mutter, and Jacques

Marescaux. Real-time 3d image reconstruction guidance in liver resection surgery.

Hepatobiliary surgery and nutrition, 3:73–81, 04 2014. doi:10.3978/j.issn.

2304-3881.2014.02.03.

[65] Vincent Vidal, Xing Mei, and Philippe Decaudin. Simple empty-space removal for

interactive volume rendering. Journal of Graphics Tools, 13(2):21–36, 2008.

[66] Yinong Wang, Weibei Dou, and Jean-Marc Constans. Accelerating volume ray cast-

ing by empty space skipping used for computer-aided therapy. pages 661–667, 07

2012. isbn:978-1-4673-0173-2. doi:10.1109/ICALIP.2012.6376699.

79

https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#3.3.3%20Texture%20Coordinate%20Interpretation
https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#3.3.3%20Texture%20Coordinate%20Interpretation
https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#3.3.3%20Texture%20Coordinate%20Interpretation
https://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=126659
https://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=126659
https://isbnsearch.org/isbn/978-0-12-370596-9
https://doi.org/https://doi.org/10.1016/B978-012370596-9/50010-9
https://doi.org/https://doi.org/10.1016/B978-012370596-9/50010-9
https://www.sciencedirect.com/science/article/pii/B9780123705969500109
https://www.sciencedirect.com/science/article/pii/B9780123705969500109
https://doi.org/10.3978/j.issn.2304-3881.2014.02.03
https://doi.org/10.3978/j.issn.2304-3881.2014.02.03
https://isbnsearch.org/isbn/978-1-4673-0173-2
https://doi.org/10.1109/ICALIP.2012.6376699

Bibliography

[67] Chaoqing Xu, Guodao Sun, and Ronghua Liang. A survey of volume visualization

techniques for feature enhancement. Visual Informatics, 5(3):70–81, 2021. ISSN

2468-502X. doi:https://doi.org/10.1016/j.visinf.2021.08.001. URL https:

//www.sciencedirect.com/science/article/pii/S2468502X21000358.

[68] Ling Yang, Feng Ling, Ni-Ni Rao, and Zhong-Ke Wang. A new algorithm of maxi-

mum intensity projection based on context-preserving illustrative volume rendering

model. In 2010 3rd International Congress on Image and Signal Processing, vol-

ume 5, pages 2381–2386. IEEE, 2010.

[69] Stefan Zellmann, Jürgen P Schulze, Ulrich Lang, H Childs, and F Cucchietti. Rapid

kd tree construction for sparse volume data. In EGPGV@ EuroVis, pages 69–77,

2018.

[70] Qi Zhang. Medical data visual synchronization and information interaction using

internet-based graphics rendering and message-oriented streaming. Informatics in

Medicine Unlocked, 17:100253, 2019.

[71] Meng Zhu, Donald House, and Mark Carlson. Ray casting sparse level sets. In

Proceedings of the Digital Production Symposium, pages 67–72, 2012.

[72] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face alignment in full pose

range: A 3d total solution. IEEE transactions on pattern analysis and machine

intelligence, 41(1):78–92, 2017.

[73] Karel J Zuiderveld, Anton HJ Koning, and Max A Viergever. Acceleration of ray-

casting using 3-d distance transforms. In Visualization in Biomedical Computing’92,

volume 1808, pages 324–335. SPIE, 1992.

80

https://doi.org/https://doi.org/10.1016/j.visinf.2021.08.001
https://www.sciencedirect.com/science/article/pii/S2468502X21000358
https://www.sciencedirect.com/science/article/pii/S2468502X21000358

	 Résumé
	 Abstract
	 General Introduction
	Volume Rendering
	Introduction
	Volume Rendering
	Volumetric data
	Techniques
	Direct volume rendering
	Maximum Intensity Projection (MIP)
	Shear-Warp

	Indirect volume rendering
	Marching cubes

	Transfer function
	 The Volume Rendering Integral
	Ray casting
	Volume rendering tools
	VTK (Visualization Toolkit)
	MITK (Medical Imaging Interaction Toolkit)

	Conclusion

	Volumetric Ray casting
	Introduction
	Sampling
	Irregular sampling
	Adaptive sampling
	Hierarchical sampling

	Empty space skipping
	Empty space skipping acceleration
	KD-tree
	Octree
	Distance Transform Empty Space Skipping

	Distance maps
	Signed distance field

	 Chebyshev distance maps for volumetric ray casting acceleration
	Conclusion

	Method
	Introduction
	 Goal and motivation
	System Overview
	 Block Empty Space Skipping
	Mapping between Normalized and Unnormalized Texel Coordinates
	Calculating the Number of Steps Along a Ray in Volume Sampling
	Calculating the Change in Normalized Texture Coordinates (t)
	Calculating Normalized Texel Coordinates along a Ray
	Calculating Normalised texel coordinates of the occupancy map
	 Change in Unnormalized Texel Coordinates and Ray Steps in the Occupancy Map

	Chebyshev Distance Empty Space Skipping
	Conclusion

	Implementation and results
	Introduction
	Implementation Overview
	Dataset Selection
	Experimental Setup
	Hardware Configuration
	Software Configuration
	Experimental Data

	Data and Application Interface
	Experimental Results
	Basic raycasting Results
	Results with Chebychev Distance Maps

	Analyze and Discussion
	Conclusion

	 General Conclusion

