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Abstract

In this thesis, we will explore the theory and applications of Bezier curves and

Bernstein polynomials. We will study their basic properties and explain the de-

Casteljau algorithm for Bezier curves. We will o¤er an example to illustrate

the use of Bernstein polynomials in approximation theory and how Bezier curve

approaches are used in many �elds.
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Notations and symbols

N : the set of all natural numbers

Bk;n (t) : Bernstein polynomial

k! : the factorial of the number k�
n
k

�
: binomial coe¢ cient

: = : equals by de�nition

i:e : (id est) means "that is" or "in other word"

�; � : small positive real numbers

R : the set of all real numbers

C : the set of all complex numbers

I : interval

C (t) : Bezier curve

pi : control points

d
dt

: derivative

T : a¢ ne transformation

A : a Matrix

Mn (R) : space of matrices

CH fXg : convex hull of set of points

iv



pji : De-casteljau algorithm

E3 : 3-demensional euclidien space

L : Bounded linear operator

Rn [x] : the space of polynomials

ODE : ordinary di¤erential equation

SVG : scalable vector graphics

CAD : computer aided design
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Introduction

Before the discovery of the Bezier curve, it was not possible to draw curves on a

computer. This mathematical equation led to the creation of computer software

that profoundly changed how graphic design was done. The discovery of Bez-

ier curve revolutionized various �elds, including animation, designing cars, and

robotics.

Historically, in 1960, the french engineer and one of the founders in the �eld of

engineering and physical solid modeling Pierre Bezier developed the curve named

after him (Bezier curve) while working at the automobile company known as

Renault and also used these curves to create the distinctive designs of Peugeot

and Renault cars, long long before other manufacturers used CAD.

He realized it was really hard to draw curves with computers so he decided to

come up with an algorithm, and in doing so changed the course of history.

This was an incredible achievement in the �eld of software engineering and took

polynomials to a whole new level. Mathematically, A curve is an in�nitely large

set of points. Each point has two neighbors except for endpoints.

Curves can be broadly classi�ed into three categories: explicit, implicit and

parametric curves. The latter is the subject of our study, as Bezier curves are

parametric curves that use Bernstein polynomials as their basis. Curves having

1



Introduction

a parametric form are called parametric curves. The explicit and implicit curve

representations can be used only when the function is known. A two-dimensional

parametric curve has the following form

p (t) = (f (t) ; g (t)) or p (t) = (x (t) ; y (t))

The functions f and g become the x; y coordinates of any point on the curve,

and the points are obtained when the parameter t is varied over a certain interval

[a; b], normally [0; 1]

This thesis presents a study on Bezier curves, this work is organized in the fol-

lowing way :

In the �rst chapter, we present generalities and basic concepts about Bernstein

polynomials and their properties, as well as their usefulness in approximating

continuous functions in an interval.

The second chapter is devoted to the study of Bezier curves and their properties,

derivations, as well as their geometric construction.

In the end, we provide a simple illustration of Bernstein polynomial approximation

with additional examples of Bezier curve applications in various �elds.

2



Chapter 1

Bernstein polynomials

In this chapter we will present the Bernstein polynomials thus named in the honor

of the Ukrainian mathematician Sergei Natanovich Bernstein (1880-1968).

At an early stage of our studies in the �eld of mathematics, we got acquainted

with polynomials, we probably remember them in this form below

p (t) = ant
n + an�1t

n�1 + � � �+ a1t+ a0

Which represents a polynomial as a linear combination of certain elementary poly-

nomials, i.e,1; t; t2; : : : tn:

�The set of polynomials of degree less than or equal to n forms a vector space:

polynomials can be added together, can be multiplied by a scalar, and all the

vector space properties hold.

�The set of functions f1; t; t2; : : : ; tng form a basis for this vector space �that is,

any polynomial of degree less than or equal to n can be uniquely written as a

linear combination of these functions.

There are an unlimited number of bases for the space of polynomials, including

3



Chapter 1. generalities about Bernstein polynomials

this basis, which is frequently referred to as the canonical basis.

We will talk about the Bernstein basis, one more popular base for the space of

polynomials, and go through all of its bene�cial properties.

1.1 Bernstein polynomials

De�nition 1.1.1 for n 2 N the Bernstein polynomials fBk;ngnk=0 of degree n on

[0; 1] are de�ned as

Bk;n (t) =

�
n

k

�
tk (1� t)n�k (1.1)

where �
n

k

�
=

n!

k! (n� k)!

Remark 1.1.1 The value of the Bernstein polynomials Bk;n (t) at the endpoints

of the interval [0; 1] are

B0;n (0) = 1; Bk;n (0) = 0 for k 6= 0

and

Bn;n (1) = 1; Bk;n (1) = 0 for k 6= n

To illustrate the de�nition of Bernstein polynomials, we give below the formula

of these polynomials for degree 1, 2 and 3

4



Chapter 1. generalities about Bernstein polynomials

1) The Bernstein polynomials of degree 1 are

B0;1 (t) = 1� t

B1;1 (t) = t

and can be plotted for 0 � t � 1 as

Figure 1.1: Bernsrein polynomials n=1

2) The Bernstein polynomials of degree 2 are

B0;2(t) = (1� t)2

B1;2(t) = 2t(1� t)

B2;2(t) = t
2

and can be plotted for 0 � t � 1 as

5



Chapter 1. generalities about Bernstein polynomials

Figure 1.2: Bernstein polynomials n=2

3) The Bernstein polynomials of degree 3 are

B0;3(t) = (1� t)3

B1;3(t) = 3t(1� t)2

B2;3(t) = 3t
2(1� t)

B3;3(t) = t
3

and can be plotted for 0 � t � 1 as

1.2 Properties of Bernstein polynomials

1.2.1 Recurrence

The Bernstein polynomials of degree n can be de�ned by blending together two

Bernstein polynomials of degree (n � 1). That is, the kth nth-degree Bernstein

6



Chapter 1. generalities about Bernstein polynomials

Figure 1.3: Bernstein polynomials n=3

polynomial can be written as

Bk;n(t) = (1� t)Bk;n�1(t) + tBk�1;n�1(t)

Proof. To show this, we need only use the de�nition of the Bernstein polynomials

and some simple algebra calculus.

(1� t)Bk;n�1(t) + tBk�1;n�1(t) = (1� t)
�
n� 1
k

�
tk(1� t)n�1�k

+ t

�
n� 1
k � 1

�
tk�1(1� t)n�1�(k�1)

=

�
n� 1
k

�
tk(1� t)n�k +

�
n� 1
k � 1

�
tk(1� t)n�k

=

��
n� 1
k

�
+

�
n� 1
k � 1

��
tk(1� t)n�k

7



Chapter 1. generalities about Bernstein polynomials

we simplify

�
n� 1
k

�
+

�
n� 1
k � 1

�
=

(n� 1)!
k!(n� 1� k)! +

(n� 1)!
(k � 1)!(n� 1� k + 1)!

=
(n� 1)!

k!(n� 1� k)! +
(n� 1)!

(k � 1)!(n� k)!

=
(n� k)(n� 1)!

(n� k)k!(n� k � 1)! +
k(n� 1)!

k(k � 1)!(n� k)!

=
(n� k)(n� 1)!
k!(n� k)! +

k(n� 1)!
k!(n� k)!

=
(n� k)(n� 1)! + k(n� 1)!

k!(n� k)!

=
n!

k!(n� k)! =
�
n

k

�

we arrive at

(1� t)Bk;n�1(t) + tBk�1;n�1(t) =
��
n� 1
k

�
+

�
n� 1
k � 1

��
tk(1� t)n�k

=

�
n

k

�
tk(1� t)n�k

this gives the result.

1.2.2 Partition of Unity

the sum of Bernstein polynomials is the constant 1 function,i.e, they form what

is called a partition of unity

nX
k=0

Bk;n(t) = 1

In fact by using Newton�s binomial theorem, we get

8



Chapter 1. generalities about Bernstein polynomials

1 = [(1� t) + t]n

=
nX
k=0

�
n

k

�
tk (1� t)n�k

=
nX
k=0

Bk;n(t):

1.2.3 Positivity

Bernstein polynomials are non- negative on [0; 1]

8t 2 [0; 1] ; Bk;n(t) � 0

To prove this we use the de�nition of Bernstein polynomials

Bk;n (t) =

�
n

k

�
tk (1� t)n�k

�
n
k

�
� 0 and for t 2 [0; 1] ; t � 0 and 1 � t � 0 =) tk � 0 and (1 � t)n�k � 0 so

8t 2 [0; 1] ; Bk;n(t) � 0

so the Bernstein polynomials are positive when 0 � t � 1:

1.2.4 Symmetry

if 0 � k � 1 so Bk;n(1� t) = Bn�k;n(t):

We have

8k 2 f0; :::; 1g ; Bk;n (t) =
�
n

k

�
tk (1� t)n�k

9



Chapter 1. generalities about Bernstein polynomials

so

Bk;n (1� t) =
�
n

k

�
(1� t)k [1� (1� t)]n�k

=

�
n

k

�
tn�k (1� t)k

or

�
n

k

�
=

n!

k!(n� k)!

=
n!

(n� k)! [n� (n� k)]!

=

�
n

n� k

�

from where

Bk;n(1� t) =
�

n

n� k

�
tn�k(1� t)k

= Bn�k;n(t):

1.2.5 Degree Raising

A linear combination of Bernstein polynomials of degree n can be used to express

any of the lower-degree Bernstein polynomials (degree� n). The degree (n � 1)

of Bernstein polynomial, for example, can be expressed as a linear combination

10



Chapter 1. generalities about Bernstein polynomials

of degree n Bernstein polynomials. We �rst note that

tBk;n (t) =

�
n

k

�
tk+1 (1� t)n�k

=

�
n

k

�
tk+1 (1� t)n+1�(k+1)

=

�
n
k

��
n+1
k+1

�Bk+1;n+1 (t)
=
k + 1

n+ 1
Bk+1;n+1 (t)

and

(1� t)Bk;n (t) =
�
n

k

�
tk (1� t)n�k+1

=

�
n
k

��
n+1
k

�Bk;n+1 (t)
=
n� k + 1
n+ 1

Bk;n+1 (t)

and �nally

1�
n
k

�Bk;n (t) + 1�
n
k+1

�Bk+1;n (t) = tk (1� t)n�k + ti+1 (1� t)n�(i+1)
= ti (1� t)n�k�1 ((1� t) + 1)

= tk (1� t)n�k�1

=
1�
n�1
k

�Bk;n�1 (t)
We can write every Bernstein polynomial in terms of higher degree Bernstein

polynomials using the �nal equation.

11



Chapter 1. generalities about Bernstein polynomials

That is,

Bk;n�1 (t) =

�
n� 1
k

�"
1�
n
k

�Bk;n (t) + 1�
n
k+1

�Bk+1;n (t)#

=

�
n� k
n

�
Bk;n (t) +

�
k + 1

n

�
Bk+1;n (t)

It translates a degree (n � 1) Bernstein polynomial into a linear combination

of degree n Bernstein polynomials. This can be extended to demonstrate that

any Bernstein polynomial of degree k (less than n) can be expressed as a linear

combination of Bernstein polynomials of degree n. For instance, a Bernstein

polynomial of degree (n � 2) can be expressed as a linear combination of two

Bernstein polynomials of degree (n � 1), each of which can be expressed as a

linear combination of two Bernstein polynomials of degree n, etc.

1.3 Derivation of Bernstein polynomials

Proposition 1.3.1 Derivatives of the nth-degree Bernstein polynomials are poly-

nomials of degree (n � 1). Using the de�nition of the Bernstein polynomial. We

can demonstrate that this derivative can be represented as a linear combination of

Bernstein polynomials use only its de�nition. In particular

d

dt
Bk;n(t) = n (Bk�1;n�1(t)�Bk;n�1 (t))

for 0 � k � n:

12



Chapter 1. generalities about Bernstein polynomials

Proof. This can be shown by direct di¤erentiation

d

dt
Bk;n(t) =

d

dt

�
n

k

�
tk (1� t)n�k

=
kn!

k!(n� k)!t
k�1(1� t)n�k + (n� k)n!

k!(n� k)!t
k(1� t)n�k�1

=
n(n� 1)!

(k � 1)!(n� k)!t
k�1(1� t)n�k + n(n� 1)!

k!(n� k � 1)!t
k(1� t)n�k�1

= n

�
(n� 1)!

(k � 1)!(n� 1)!t
k�1(1� t)n�k + (n� 1)!

k!(n� k � 1)!t
k(1� t)n�k�1

�
= n (Bk�1;n�1(t)�Bk;n�1 (t))

That is, the derivative of a Bernstein polynomial can be expressed as the degree

of the polynomial multiplied by the di¤erence of two Bernstein polynomials of

degree (n� 1):

1.4 The basis of Bernstein polynomials

1.4.1 converting from the Bernstein basis to the canonical

basis

Any Bernstein polynomial of degree n can be expressed in terms of the canonical

basisf1; t; t2; : : : ; tng because it serves as the basis for polynomials with degrees

less than or equal to n. The de�nition of the Bernstein polynomials and the

13



Chapter 1. generalities about Bernstein polynomials

binomial theorem can be used to directly calculate this, as follows

Bk;n (t) =

�
n

k

�
tk (1� t)n�k

=

�
n

k

�
tk
n�kX
i=0

(�1)i
�
n� k
i

�
ti

=

n�kX
i=0

(�1)i
�
n

k

��
n� k
i

�
ti+k

we put i = i� k

Bk;n (t) =
nX
i=k

(�1)i�k
�
n

k

��
n� k
i� k

�
ti

=
nX
i=k

(�1)i�k
�
n

i

��
i

k

�
ti

where we have used the binomial theorem to expand (1� t)n�k.

We use the degree elevation formulas and induction to demonstrate that each

canonical basis element may be represented as a linear combination of Bernstein

polynomials to calculate

14



Chapter 1. generalities about Bernstein polynomials

tk = t
�
tk�1

�
= t

nX
i=k�1

�
i

k�1
��

n
k�1
�Bi;n�1 (t)

=

nX
i=k

�
i�1
k�1
��

n�1
k�1
�tBi�1;n�1 (t)

=

n�1X
i=k�1

�
i

k�1
��

n
k�1
� i
n
Bi;n (t)

=
n�1X
i=k�1

�
i
k

��
n
k

�Bi;n (t)
where the induction hypothesis was used in the second step.

1.4.2 The Bernstein polynomials as a basis

Why do the Bernstein polynomials of order n form a basis for the space of poly-

nomials of degree less than or equal to n?

1) They span the space of polynomials, any polynomial of degree less than or

equal to n can be written as a linear combination of the Bernstein polyno-

mials.

This is easily seen if one realizes that the canonical basis spans the space

of polynomials and any member of the canonical basis can be written as a

linear combination of Bernstein polynomials.

2) They are linearly independent, that is, if there exist constants c0; c1; c2; : : : ; cn

so that the identity

0 = c0B0;n (t) + c1B1;n (t) + : : :+ cnBn;n (t)

15



Chapter 1. generalities about Bernstein polynomials

holds for all t, then all the ci�s must be zero.

If this were true, then we could write

0 = c0B0;n (t) + c1B1;n (t) + � � �+ cnBn;n (t)

= c0

nX
i=0

(�1)i
�
n

i

��
i

0

�
ti + c1

nX
i=1

(�1)i�1
�
n

i

��
i

1

�
ti + � � �

+ cn

nX
i=n

(�1)i�n
�
n

i

��
i

n

�
ti

= c0 +

"
1X
i=0

ci

�
n

1

��
1

1

�#
t1 + � � �+

"
nX
i=0

ci

�
n

n

��
n

n

�#
tn

Since the canonical basis is a linearly independent set, we must have that

c0 = 0

1X
i=1

ci

�
n

1

��
1

1

�
= 0

...
nX
i=0

ci

�
n

n

��
n

n

�
= 0

which implies that c0 = c1 = � � � = cn = 0 (c0 is clearly zero, substituting

this in the second equation gives c1 = 0, substituting these two into the

third equation gives c2 = 0, etc ...)

16



Chapter 1. generalities about Bernstein polynomials

1.5 AMatrix Representation for Bernstein Poly-

nomials

A matrix formulation for the Bernstein polynomials is helpful in numerous ap-

plications, represented as a linear combination of the Bernstein basis functions for

the given polynomial

B (t) = c0B0;n (t) + c1B1;n (t) + � � �+ cnBn;n (t)

It is easy to write this as a dot product of two vectors

B (t) =

�
B0;n (t) B1;n (t) � � � Bn;n (t)

�
266666664

c0

c1
...

cn

377777775
We can convert this to

B (t) =

�
1 t t2 � � � tn

�
266666666664

b0;0 0 0 � � � 0

b1;0 b1;1 0 � � � 0

b2;0 b2;1 b2;2 � � � 0

...
...

...
. . .

...

bn;0 bn;1 bn;2 � � � bn;n

377777777775

266666666664

c0

c1

c2
...

cn

377777777775
where the bi;j are the coe¢ cients of the canonical basis that are used to determine

the respective Bernstein polynomials. We note that the matrix in this case is

lower triangular.

17



Chapter 1. generalities about Bernstein polynomials

Example 1.5.1 In the quadratic case (n = 2), the matrix representation is

B (t) =

�
1 t t2

�266664
1 0 0

�2 2 0

1 �2 0

377775
266664
c0

c1

c2

377775
and in the cubic case (n = 3), the matrix representation is

B (t) =

�
1 t t2 t3

�
266666664

1 0 0 0

�3 3 0 0

3 �6 3 0

�1 3 �3 1

377777775

266666664

c0

c1

c2

c3

377777775

1.6 Approximation by Bernstein polynomials

S. Bernstein provided a beautiful proof for the Weierstrass approximation the-

orem. We will demonstrate that polynomials can uniformly approximate any

continuous function on the closed interval [0; 1]. Beginning with the fundamental

units, the Bernstein polynomials provided by the equations

Bn;k (x) =

�
n

k

�
xk (1� x)n�k ; k = 0; 1; : : : ; n

Lemma 1.6.1 we have the following formulas

nX
k=0

Bn;k (x) = 1; (1.2)

nX
k=0

kBn;k (x) = nx; (1.3)
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and
nX
k=0

k (k � 1)Bn;k (x) = n (n� 1)x2: (1.4)

Proof. the �rst formula 1.2 is just which yields (x+ 1� x)n = 1 (which we have

previously proved).

the second one ??: for k � 1; k
�
n
k

�
= n!

(k�1)!(n�k)! = n
�
n�1
k�1
�
(the statement

assumes n > 1)

so

nX
k=0

kBn;k (x) =
nX
k=0

k

�
n

k

�
xk (1� x)n�k

=
nX
k=1

k

�
n

k

�
xk (1� x)n�k

because the term for k = 0 is zero, we obtain
nX
k=0

kBn;k (x) =
nX
k=1

n

�
n� 1
k � 1

�
xk (1� x)n�k

= nx
nX
k=1

�
n� 1
k � 1

�
xk�1 (1� x)n�k

= nx (x+ 1� x)n�1 = nx

the third one 1.4: k � 2 and n � 2; k (k � 1)
�
n
k

�
= n!

(k�2)!(n�k)! = n (n� 1)
�
n�2
k�2
�

19
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so

nX
k=0

k (k � 1)Bn;k (x) =
nX
k=0

k (k � 1)
�
n

k

�
xk (1� x)n�k

=
nX
k=2

k (k � 1)
�
n

k

�
xk (1� x)n�k

because the term for k = 0; 1 is zero, we obtain
nX
k=0

k (k � 1)Bn;k (x) =
nX
k=2

n (n� 1)
�
n� 2
k � 2

�
xk (1� x)n�k

= n (n� 1)x2
nX
k=2

�
n� 2
k � 2

�
xk�2 (1� x)n�k

= n (n� 1)x2 (x+ 1� x)n�2 = n (n� 1)x2

Lemma 1.6.2 we have that

nX
k=0

k

n
Bn;k (x) = x;

and
nX
k=0

�
k

n
� x
�2
Bn;k (x) =

x (1� x)
n

:

If we consider the Bn;k (x) as probabilities assigned to the �events�k = n, the �rst

statement states that the expectation value of k = n is x and the second formula

states that the variance is x (1� x)n which is small for n large. The proof is

simple and derives from the prior lemma 1.6.1 by straightforward manipulations.

Now we are ready to state
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Theorem 1.6.1 let f be a continuous function. De�ne the polynomial

Bn (f) (x) :=
X

f

�
k

n

�
Bn;k (x) :

Then for any � > 0 there exists N such that for all n > N and all x 2 [0; 1] ;

jBn (f) (x)� f (x)j < �:

Note that the polynomial is a Riemann sum but with weights Bn;k (x) :

Proof. Since f is continuous on the closed interval, it is uniformly continuous,

i.e., for every � > 0 the exists � > 0 which depends only on � such that

jf (x)� f (t)j � �

2

whenever jx� yj < �. We may write, because of the �rst Lemma

Bn (f) (x)� f (x) =
nX
k=0

�
f

�
k

n

�
� f (x)

�
Bn;k (x) :

thus

jBn (f) (x)� f (x)j �
X

j kn�xj<�

����f �kn
�
� f (x)

����Bn;k (x)+ X
j kn�xj��

����f �kn
�
� f (x)

����Bn;k (x) :
Note that we have sued the fact that the Bernstein polynomials are non-negative.

Hence, we may estimate the right side by

jBn (f) (x)� f (x)j �
�

2

X
j kn�xj<�

Bn;k (x) + 2max jf (x)j
X

j kn�xj��
Bn;k (x)

21



Chapter 1. generalities about Bernstein polynomials

in the second term, we write

X
j kn�xj��

Bn;k (x) =
X

j kn�xj��

�� k
n
� x
��2�� k

n
� x
��2Bn;k (x) � 1

�2

X
j kn�xj��

����kn � x
����2Bn;k (x) � x (1� x)

n�2

thus, we have

jBn (f) (x)� f (x)j �
�

2
+ 2max jf (x)j x (1� x)

n�2
� �

2
+
max jf (x)j
2n�2

and choosing

n >
max jf (x)j

��2

yields the theorem.
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Bezier Curves

In this chapter, we will present the Bezier curves, which are parametric curves that

are based on a polynomial function with one parameter. They are named after

the engineer Pierre Bezier, who developed them to model the stylized shapes of

cars while working at Renault in the 1960s. Interestingly enough, they were also

independently developed by Paul De Casteljau at Citroen, likely before Bezier,

but it appears that he was not allowed to publish them.

2.1 Parametric curves

De�nition 2.1.1 Let C � R2 be some curve in the plane. A parametriza-

tion of the curve C is pair of functions f; g : I � R ! R such that C =

f(f (t) ; g (t)) =t 2 Ig. In other words, a parametric curve is a mapping from

I � R ! R2 given by the rule t ! (f (t) ; g (t)) for each t 2 I. We say that

t is parameter and that the parametric equations for the curve are x = f (t) and

y = g (t). In case I = [a; b] we say that (f (a) ; g (a)) is the initial point and

(f (b) ; g (b)) is the terminal point.
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Chapter 2. Bezier curves

2.2 Bezier Curves

De�nition 2.2.1 Given (n+ 1) control points p0; p1; : : : ; pn in space, the Bezier

curve (of degree n) de�ned from these points is the parametric curve C (t) de�ned

by

C (t) =
nX
i=0

Bi;n (t) pi 8t 2 [0; 1] :

The points (pi)i=0;:::;n are called the control points and the line segments p0p1; p1p2; : : : ; pn�1pn

form in this order called the control polygon.

Figure 2.1: Bezier curves of various degrees and their control polygons.

Linear, Quadratic, and Cubic Bezier curves, are given as follows:

1) Linear Bezier curves (n = 1) are thus given by

C (t) =

1X
i=0

Bi;1 (t) pi

= (1� t) p0 + tp1 ,for 0 � t � 1:
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2) Quadratic Bezier curves (n = 2) are given by

C (t) =
2X
i=0

Bi;2 (t) pi

= (1� t)2 p0 + 2t (1� t) p1 + t2p2 ,for 0 � t � 1:

3) Cubic Bezier curves (n = 3) are given by

C (t) =

3X
i=0

Bi;3 (t) pi

= (1� t)3 p0 + 3t (1� t)2 p1 + 3t2 (1� t) p2 + t3p3 ,for 0 � t � 1:

Figure 2.2: Linear,Quadratic and Cubic Bezier curve

2.2.1 Derivatives of a Bezier Curves

The derivative of a Bezier curve of degree n is another Bezier curve of degree

(n� 1) given by
d

dt
C (t) = n

n�1X
k=0

Bk;n�1 (t) (pk+1 � pk) ;
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More generally, derivatives of higher order are given by

dr

dtr
C (t) =

n!

(n� r)!

n�rX
k=0

Bk;n�r (t) (pk+1 � pk)r 8r � n;

This property has important consequences. In particular, the curve at extremities

is tangent to the �rst and last control points lines. This could be used to apply

Neumann boundary conditions for instance.

Proof. For the �rst derivative, we have

d

dt
C (t) =

d

dt

 
nX
k=0

Bk;n (t) pk

!

=
nX
k=0

�
dBk;n (t)

dt

�
pk

=
nX
k=0

(n (Bk�1;n�1 (t)�Bk;n�1 (t))) pk

=

 
n

nX
k=0

Bk�1;n�1 (t) pk

!
�
 
n

nX
k=0

Bk;n�1 (t) pk

!

(note that Bn�1;n�1 (t) = Bn;n�1 (t) = 0)

=

 
n
n�1X
k=0

Bk;n�1 (t) pk+1

!
�
 
n
n�1X
k=0

Bk;n�1 (t) pk

!

= n

n�1X
k=0

Bk;n�1 (t) (pk+1 � pk) :

this can be written as

d

dt
C (t) = n

n�1X
k=0

Bk;n�1 (t) pk

=
n!

(n� 1)!

n�1X
k=0

Bk;n�1 (t) pk (2.1)
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Now assume that 2.1 is true up to the order r. Let us prove it for r + 1

dr+1

dtr+1
C (t) =

d

dt

�
dr

dtr
c (t)

�
=
d

dt

 
n!

(n� r)!

 
n�rX
k=0

Bk;n�1 (t) (pk+1 � pk)r
!!

=
n!

(n� r)!

 
n�rX
k=0

d

dt
Bk;n�1 (t) (pk+1 � pk)r

!

=
n!

(n� r)!

 
n�rX
k=0

((n� r) (Bk�1;n�r�1 (t)�Bk;n�r�1 (t))) (pk+1 � pk)r+1
!

=
n!

(n� r � 1)!

 
n�rX
k=0

(Bk�1;n�r�1 (t)�Bk;n�r�1 (t)) (pk+1 � pk)r+1
!

=
n!

(n� r � 1)!

 
n�rX
k=1

(pk+1 � pk)r+1Bk�1;n�r�1 (t)�
n�r�1X
k=0

(pk+1 � pk)r+1Bk;n�r�1 (t)
!

=
n!

(n� r � 1)!

 
n�r�1X
k=0

(pk+1 � pk)r+1Bk;n�r�1 (t)�
n�r�1X
k=0

(pk+1 � pk)r+1Bk;n�r�1 (t)
!

=
n!

(n� (r + 1))!

0@n�(r+1)X
k=0

(pk+1 � pk)r+1Bk;n�(r+1) (t)

1A :
Therefore, the result is true for (r + 1).

2.3 Properties of Bezier Curves

let�s see some of the important properties of the Bezier curves

2.3.1 Interpolation at the extremities

C (0) = p0 and C (1) = pn

and that it means that the Bezier curve of degree n always starts from the �rst
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control points p0 and ends at the last control poins pn.

Proof.

C (0) =
nX
i=0

Bi;n (0) pi

=

nX
i=0

�
n

i

�
0i1n�ipi

= p0:1
�
00 = 1 by convention

�
= p0

in the same way, we have

C (1) =
nX
i=0

Bi;n (1) pi

=
nX
i=0

�
n

i

�
1i0n�ipi

= p0:1
�
00 = 1 by convention

�
= p0

2.3.2 Invariance under a¢ ne transformation

Let T be an a¢ ne transformation (for example, a rotation, re�ection, translation,

or scaling).

Then

T
 

nX
i=0

Bi;n (t) pi

!
=

nX
i=0

Bi;n (t) T (pi)

As shown, it consists in applying the A¢ ne transformation only to control points.
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Proof. Let T be an a¢ ne transformation in Rn

T (X) = AX + b with A 2Mn (R) and b 2 Rn:

The a¢ ne transformation of a Bezier curve C (t) of degree n is

T (C (t)) = T
 

nX
i=0

Bi;n (t) pi

!

= A

 
nX
i=0

Bi;n (t) pi

!
+ b

=
nX
i=0

ABi;n (t) pi +
nX
i=0

bBi;n (t)

=
nX
i=0

(Api + b)Bi;n (t)

=
nX
i=0

T (pi)Bi;n (t) :

So T (C (t)) is a Bezier curve.

2.3.3 Convex hull

This property indicates that Bezier curves always lie within the convex hull of

their control points. The convex hull of the control points is also referred to as

the convex hull of the Bezier curve

De�nition 2.3.1 Let X = fx0; x1; : : : ; xng be a set of points. the convex hull of

X denoted CH fXgde�ned by

CH fXg =
(
a0x0 + : : :+ anxn=

nX
i=0

ai = 1; ai � 0
)
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Proposition 2.3.1 All the points of the bezier curve are located inside the convex

envelope of all the control points fp0; p1; : : : ; png ie

8t 2 [0; 1] ; C (t) 2 CH fp0; p1; : : : ; png

Figure 2.3: Cubic Bézier curve, its control polygon and the convex hull

Proof. we have

C (t) =
nX
i=0

Bi;n (t) pi 8t 2 [0; 1]

as the Bernstein polynomials verify the properties (positivity and partition of

unity), then according to the de�nition of the convex envelope, we get

C (t) 2 CH fp0; p1; : : : ; png

2.3.4 Symmetry

It is clear that it does not matter if the Bezier points are labeled p0; p1; : : : ; pn or

pn; pn�1; : : : ; p0. The curves that correspond to the two di¤erent orderings look
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the same; they di¤er only in the direction in which they are traversed. Written

as a formula
nX
i=0

Bi;n (t) pi =
nX
i=0

Bi;n (1� t) pn�i

Proof. This follows from the property of symmetry of Bernstein polynomials

Bi;n (t) = Bi;n (1� t)

hence
Pn

i=0Bi;n (t) pi =
Pn

i=0Bi;n (1� t) pn�i

by reindexing, we will have

nX
i=0

Bi;n (t) pi =
nX
i=0

Bi;n (1� t) pn�i

2.4 Geometric construction of Bezier curves

At citroen,Mr.Paul De Casteljau started developing the algorithm that bears

his name in 1959. Citroen kept them very quiet and then they were released

as technical reports, prior to 1975, whenW. Bohm �rst learned of these works

and made them widely known, they were unheard of. The development of the

usage of Pierre Bezier curves would not have been possible without the aid

of this algorithm, which has been extremely helpful for computer science, which

frequently employs Bezier curves (drawing , modeling, software, etc.).
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2.4.1 The De-Casteljau Algorithm

Given: p0; p1; : : : ; pn 2 E3; t 2 R;

let

pji = (1� t) p
j�1
i + tpj�1i+1

�
j = 1; : : : ; n

i = 0; : : : ; n� j

and p0i = pi, then p
n
i is the point with parameter value t on the Bezier curve.

The formula generates a triangular set of values, for example in the cubic case

p00 p01 p02 p03

p10 p11 p12

p20 p21

p30

Figure 2.4: De-casteljau algorithm

Example 2.4.1 for example, a cubic Bezier curve has four control points p0 (1; 1) ; p1 (2; 3) ;

p2 (8; 1) and p3 (4; 7) : The point C (0; 25) is determined by applying the De-Casteljau
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algorithm with t = 0; 25. Then

p10 =
3

4
(1; 1) +

1

4
(2; 3) = (1:25; 1:5) ;

p11 =
3

4
(2; 3) +

1

4
(8; 1) = (3:5; 2:5) ;

p12 =
3

4
(8; 1) +

1

4
(4; 7) = (7; 2:5) ;

p20 =
3

4
(1:25; 1:5) +

1

4
(3:5; 2:5) = (1:8125; 1:57) ;

p21 =
3

4
(3:5; 2:5) +

1

4
(7; 2:5) = (4:375; 2:5) ;

p30 =
3

4
(1:8125; 1:57) + (4:375; 2:5) = (2:4531; 1:8025) ;

The algorithm gives the following table of points

(1; 1) (2; 3) (8; 1) (4; 7)

3
4
# . 1

4
3
4
# . 1

4
3
4
# . 1

4

(1:25; 1:5) (3:5; 2:5) (7; 2:5)

3
4
# . 1

4
3
4
# . 1

4

(1:8125; 1:57) (4:375; 2:5)

3
4
# . 1

4

(2:4531; 1:8025)

The algorithm yields C (0:25) = (2:4531; 1:8025) :

Proof. (De-casteljau algorithm)

The De-Casteljau algorithm follows from the recursion property of the Bernstein

polynomials
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Bi;n (t) = (1� t)Bi;n�1 (t) + tBi�1;n�1 (t)

then

C (t) =
nX
i=0

piBi;n (t) =

nX
i=0

pi ((1� t)Bi;n�1 (t) + tBi�1;n�1 (t))

=

nX
i=0

pi (1� t)Bi;n�1 (t) +
nX
i=0

pitBi�1;n�1 (t) :

since Bn;n�1 (t) = 0; and B�1;n�1 (t) = 0 it follows that

C (t) =
n�1X
i=0

pi (1� t)Bi;n�1 (t) +
nX
i=1

pitBi�1;n�1 (t) :

Next renumber the second summation by replacing i by i+ 1;

C (t) =
n�1X
i=0

pi (1� t)Bi;n�1 (t) +
n�1X
i=0

pi+1tBi;n�1 (t)

=
n�1X
i=0

(pi (1� t) + pi+1t)Bi;n�1 (t)

set p1i = (1� t) pi + tpi+1 = (1� t) p0i + tp0i+1 for i = 0; : : : ; n� 1, then

C (t) =
n�1X
i=0

p1iBi;n�1 (t)

the last equation expresses C (t) as a Bezier curve of degree n � 1 with control

points p10; : : : ; p
1
n�1. Applying a similar argument yields

C (t) =

n�2X
i=0

p2iBi;n�2 (t) ;
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where p2i = (1� t) p1i + tp1i+1 for i = 0; : : : ; n� 2. In general

C (t) =

n�jX
i=0

pjiBi;n�j (t) ;

where pji = (1� t) p
j
i + tp

j
i+1 for i = 0; : : : ; n� j. In particular, j = n gives

C (t) =
0X
i=0

pni Bn;n�n (t) = p
n
0 :
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Applications

3.1 Collocation method

3.1.1 General principle

In general, the collocation method�s basic tenets were used to roughly resolve

operator equations

Lu = f

entails searching for a rough solution in a �nite-dimensional subspace by limiting

the veri�cation of the equation to a small set of points known as collocation points

In actuality, we select a set of �nite-dimensional subspaces of the form Xn �

X;n � 1 which are typically L2 (G) or C (G) :

Let f�1; : : : ; �ng be a basis of Xn we are looking for a function un 2 X; of the

form
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un =
nX
j=1

cj�j (t) ; t 2 G

to determine the coe¢ cients (cj), we substitute, this function in the equation, and

we require that the equation be exact in the sense that the residual

Rn (t) = Lun � f (t)

= L
nX
j=1

cj�j (t)� f (t) ; t 2 G

=
nX
j=1

cjL(�j (t)):

Let be zero on a system of nodes t1; t2; : : : ; tn 2 G; (ie, at the collocation points).

Which leads systematically to the resolution of the linear system

nX
j=1

cj�j = f (ti) ; i = 1; 2; : : : ; n

of the form �nX = fn obviously, this system admits a unique solution if the det

is non-zero, which moreover depends on the choice of collocation points.

In the collocation method, we force the remainder Rn (tj) for the collocation

points.

3.2 Solving an ODE by Bernstein polynomials

The collocation method is a projection method that uses Bernstein polynomials

to approximate the solution of an ordinary di¤erential equation.
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3.2.1 Discretization of an ODE

In this section, we will look at the �rst and second order ordinary di¤erential

equations described by

Lu = f (t) ; t 2 [a; b] (3.1)

Where f(t) is a continuous function in [a; b] We convert this equation into a

system of linear equations. For this result, we need some basic functions to be the

ordinary di¤erential equations solution. Of fate, we choose Bernstein polynomials

as the basic functions.

Now we use the Collocation method technique. For this, we estimate the

unknown function u (t) as follows

u (t) =
nX
i=0

ciBi;n (t)

Where Bi;n (t) are Bernstein polynomials and, ci i = 0; 1; : : : ; n are unknown

parameters, to be determined, we replace in the equation 3.1, we get

L
nX
i=0

ciBi;n (t) =
nX
i=0

aiBi;n (t)

or

nX
i=0

ci [LBi;n (t)] =
nX
i=0

aiBi;n (t)

The Collocation equations are thus obtained, and we then choose a linear equation

with the unknowns (n+ 1) (ci = 0; 1; : : : ; n) for each (j = 0; 1; : : : ; n).
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Finally, a system of linear equations representing the unknowns (n+ 1) are given.

Ai;jXi = bj i; j = 0; 1; : : : ; n

where

Ai;j = LBi;n (tj)

bj =

nX
i=0

aiBi;n (tj) ; j = 0; 1; : : : ; n

xi = (ci) , i = 0; 1; : : : n

3.3 Illustration with a numerical example

Example 3.3.1 Let the equation be

�
u0 = u; t 2 [0; 1]

u (0) = 1;

The exact solution of this equation is

u (t) = exp (t) :

The solution of the system of linear equations for n = 4 yields the approximate

solution
s
u (t) of the exact solution u (t)
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ans =

t ex sol app sol error
0 1:0000 1:0074 0:0074
0:1000 1:1052 1:1128 0:0077
0:2000 1:2214 1:2297 0:0083
0:3000 1:3499 1:3590 0:0092
0:4000 1:4918 1:5020 0:0120
0:5000 1:6487 1:6600 0:0113
0:6000 1:8221 1:8346 0:0125
0:7000 2:0138 2:0275 0:0138
0:8000 2:2255 2:2407 0; 0152
0:9000 2:4596 2:4764 0:0168
1:0000 2:7183 2:7369 0:0186

Table 3.1: table of solutions
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Figure 3.1: Approximation of the equation u�=u
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3.4 Applications of Bezier Curves

Applications for Bezier curves are numerous and extremely signi�cant since they

allow visual designers and engineers to model actual objects. Let�s examine a few

of them.

3.4.1 Computer Graphics

Bezier curves enables us to model smooth curves since the curve is contained in the

convex hull created by the control points. You can then apply a¢ ne transforma-

tions to the curve, such as rotation and translation, by applying these transforms

to the control points.

Because higher-degree curves require more computation to analyze, cubic and

quadratic curves are the most frequently utilized Bezier curves. These are used

to create simple shapes.

Figure 3.2: Bezier cuves in computer graphics.
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3.4.2 Fonts

Because they had a signi�cant impact on the precision and clarity of letters, bezier

curves �rst appeared in the design world through printers.

For instance, composite Bezier curves formed of quadratic curves are used in

True Type typefaces. Other linguistic and graphic design technologies, including

PostScript, Asymptote, Metafont, and SVG, create curved shapes using composite

Bezier curves made out of cubic curves. Depending on the technology that controls

the OpenType wrapper (the encoding that instructs the system how to interpret

the font), OpenType fonts can employ cubic or quadratic curves.

Figure 3.3: Font de�nition using Bezier curves.

3.4.3 Animations

Bezier curves are used in programs like Syn�g to outline movement. The applic-

ation creates the necessary frames for the item to move along the path once the

user draws the appropriate path using Bezier curves.
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The "feel" or "physics" that motion designers and animators are after are created

in this way. The Bezier curve indicates the movement�s velocity over time in

addition to where the object goes. The designer will use a Bezier curve to smooth

the cursor trajectory and set the pace of travel if an icon needs to move from

point A to point B.

Bezier curves are frequently used in 3D animation to construct 3D routes and 2D

curves for keyframe interpolation. Bezier curves are currently extensively used in

CSS, JavaScript, JavaFX, and Flutter SDK to govern animation ease.

(1)

12:png

Figure 3.4: Animated Bezier curves.

3.4.4 Designing cars

Originally the Bezier curve was developed for geometry modeling, which, as men-

tioned earlier, Decasteljau on �rst at Citroen, and then later Pierre Bezier at

Renault con�rmed that the curve was originally developed to help in the design

of cars.
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The representation of an object by the three-dimensional space it occupies; this

generation is known as the "Constructive Solid Geometry" CSG approach. the

geometric description of a mechanical assembly that enables the modeling of ob-

jects in three dimensions. Using a bézier surface (Bezier tile) and CAD software,

the example that follows shows how to model a vehicle body in three dimensions.

Figure 3.5: Designing body of car using Bezier curves.
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Conclusion

In this thesis, we studied an important type of polynomial, namely Bernstein

polynomials, where we presented their basic properties, and then we moved on to

the study of Bezier curves, their properties, and geometric construction.

Finally, we presented a simple example of a method for solving ordinary di¤erential

equations(Collocation Method) using Bernstein polynomials, and we proved some

applications of Bezier curves in the �elds of computer design and data science.
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  الملخص

ات ب ل تطرق، سوف نمذكرة هذه ال قات منحن ة وتطب شتاين اتكث و  نظ من  حدود بر
ة مخصائصه خلال دراسة  ة دي موضح ا الأساس ات ب -خوارزم لجاو لمنحن سنقدم . اس

ً لتوضيح استخدام   ب و  اتكث مثا ة التق شتاين  نظ استخدام نتطرق ا أمثلة عن  حدود بر
د من المجالات  منح ب    العد

 

ABSTRACT 

In this thesis, we will explore the theory and applications of Bézier curves 
and Bernstein polynomials. We will study their basic properties and explain 
the de-Casteljau algorithm for Bézier curves. We will offer an example to 
illustrate the use of Bernstein polynomials in approximation theory and how 
Bézier curve approaches are used in many fields. 

 

RESUME 

Dans ce mémoire, nous explorerons la théorie et les applications des 
courbes de Bézier et les polynômes de Bernstein. Nous étudierons leurs 
propriétés de base et nous expliquerons  l'algorithme de de-Casteljau pour 
les courbes de Bézier. Nous offrirons un exemple pour illustrer l’utilisation 
des polynômes de Bernstein dans la théorie de l'approximation et comment 
les approches de courbe de Bézier sont utilisées dans de nombreux 
domaines. 
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