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Abstract

In this thesis, we will explore the theory and applications of Bezier curves and
Bernstein polynomials. We will study their basic properties and explain the de-
Casteljau algorithm for Bezier curves. We will offer an example to illustrate
the use of Bernstein polynomials in approximation theory and how Bezier curve

approaches are used in many fields.
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Notations and symbols

M, (R)
CH{X}

the set of all natural numbers
Bernstein polynomial

the factorial of the number k
binomial coefficient

equals by definition

(id est) means "that is" or "in other word"
small positive real numbers
the set of all real numbers

the set of all complex numbers
interval

Bezier curve

control points

derivative

affine transformation

a Matrix

space of matrices

convex hull of set of points
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De-casteljau algorithm
3-demensional euclidien space
Bounded linear operator

the space of polynomials
ordinary differential equation
scalable vector graphics

computer aided design
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Introduction

Before the discovery of the Bezier curve, it was not possible to draw curves on a
computer. This mathematical equation led to the creation of computer software
that profoundly changed how graphic design was done. The discovery of Bez-
ier curve revolutionized various fields, including animation, designing cars, and

robotics.

Historically, in 1960, the french engineer and one of the founders in the field of
engineering and physical solid modeling Pierre Bezier developed the curve named
after him (Bezier curve) while working at the automobile company known as
Renault and also used these curves to create the distinctive designs of Peugeot

and Renault cars, long long before other manufacturers used CAD.

He realized it was really hard to draw curves with computers so he decided to

come up with an algorithm, and in doing so changed the course of history.

This was an incredible achievement in the field of software engineering and took
polynomials to a whole new level. Mathematically, A curve is an infinitely large

set of points. Each point has two neighbors except for endpoints.

Curves can be broadly classified into three categories: explicit, implicit and
parametric curves. The latter is the subject of our study, as Bezier curves are

parametric curves that use Bernstein polynomials as their basis. Curves having
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a parametric form are called parametric curves. The explicit and implicit curve
representations can be used only when the function is known. A two-dimensional

parametric curve has the following form

The functions f and g become the z,y coordinates of any point on the curve,
and the points are obtained when the parameter ¢ is varied over a certain interval
[a, b], normally [0, 1]

This thesis presents a study on Bezier curves, this work is organized in the fol-
lowing way :

In the first chapter, we present generalities and basic concepts about Bernstein
polynomials and their properties, as well as their usefulness in approximating

continuous functions in an interval.

The second chapter is devoted to the study of Bezier curves and their properties,
derivations, as well as their geometric construction.
In the end, we provide a simple illustration of Bernstein polynomial approximation

with additional examples of Bezier curve applications in various fields.



Chapter 1

Bernstein polynomials

In this chapter we will present the Bernstein polynomials thus named in the honor

of the Ukrainian mathematician Sergei Natanovich Bernstein (1880-1968).

At an early stage of our studies in the field of mathematics, we got acquainted

with polynomials, we probably remember them in this form below
p(t) = ant™ +ap, 1 t" P+ +art +ag

Which represents a polynomial as a linear combination of certain elementary poly-
nomials, i.e,1,¢,t2, ... 1",
—The set of polynomials of degree less than or equal to n forms a vector space:

polynomials can be added together, can be multiplied by a scalar, and all the

vector space properties hold.

~The set of functions {1,¢,2,...,¢"} form a basis for this vector space — that is,
any polynomial of degree less than or equal to n can be uniquely written as a

linear combination of these functions.

There are an unlimited number of bases for the space of polynomials, including
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this basis, which is frequently referred to as the canonical basis.

We will talk about the Bernstein basis, one more popular base for the space of

polynomials, and go through all of its beneficial properties.

1.1 Bernstein polynomials

Definition 1.1.1 for n € N the Bernstein polynomials {Bkm}zzo of degree n on
[0,1] are defined as

By () = (Z) th(1— )" (1.1)

(V)

Remark 1.1.1 The value of the Bernstein polynomials By, (t) at the endpoints

where

of the interval [0,1] are

BO,n (O) = 17 Bk,n (0) =0 fO’f’ k % 0

and

Bun (1) =1, Bin (1) =0 for k #n

To illustrate the definition of Bernstein polynomials, we give below the formula

of these polynomials for degree 1, 2 and 3
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1) The Bernstein polynomials of degree 1 are

Boi1(t)=1—t

By (t)=t

and can be plotted for 0 <¢ <1 as

Bl Ll B

— Ul,_l(f)

Figure 1.1: Bernsrein polynomials n=1

2) The Bernstein polynomials of degree 2 are

and can be plotted for 0 < ¢ <1 as
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Boao(t) —T 1 Baa(t)
Bia(t) ——,
t
0 1

Figure 1.2: Bernstein polynomials n=2

3) The Bernstein polynomials of degree 3 are

Bos(t) = (1 - t)°
By s(t) = 3t(1 —t)?
Bos(t) = 3t*(1 — t)

Bss(t) =13

and can be plotted for 0 < ¢ <1 as

1.2 Properties of Bernstein polynomials

1.2.1 Recurrence

The Bernstein polynomials of degree n can be defined by blending together two

Bernstein polynomials of degree (n — 1). That is, the kth nth-degree Bernstein
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Bn‘_g(f) — — B.%,_S{f)
By 3(t) — — Bagslt)
f
-—

Figure 1.3: Bernstein polynomials n=3

polynomial can be written as

Bin(t) = (1 — ) By (t) + t By (t)

Proof. To show this, we need only use the definition of the Bernstein polynomials

and some simple algebra calculus.

k

n—1\ ;4 —1—(k—1
t th=1(1 — ¢)n 1)
n (k_l) a-1

(1 = )Brn1(t) +tBy_101(t) = (1 1) (n - 1)t"”(1 —t)niok
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we simplify

(n;) * (Z:i) - k:!(T(zn—_llz!k;)! T 1)!((2:11)i Y

(n—1)! (n—1)!
S kln—1—-k)!  (k—1D!(n—k)
(n—Fk)(n—1)! k(n — 1)!

SRR =k =1 k=Dl — k)
_(n=k)(n—-1)!  k(n-—1)
 kl(n— k) kl(n — k)!
_(n=k)n—-1)+Ek(n—-1)

El(n — k)!

~ w5~ (1)

we arrive at

(1= t)Brp1(t) + tBp_1n1(t)

(7)Y
<Z> (1 — )nk

this gives the result. m

1.2.2 Partition of Unity

the sum of Bernstein polynomials is the constant 1 function,i.e, they form what

is called a partition of unity

> Bia(t) =1
k=0

In fact by using Newton’s binomial theorem, we get
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1.2.3 Positivity

Bernstein polynomials are non- negative on [0, 1]
Vt € [0,1], Bg,(t) >0
To prove this we use the definition of Bernstein polynomials

Bin (t) = (Z) £ (1 — )"

(}) >0andfort € [0,1],t >0and 1 —t > 0= t">0and (1—#)"* > 0so

YVt € [0, 1] , Bkm(t) >0

so the Bernstein polynomials are positive when 0 < ¢ < 1.

1.2.4 Symmetry

if 0 S k S 1 so Bk’n(l - t) = Bn—k,n(t)‘

We have
VEk €{0,...,1}, By, (¢)

(Z) (1 — )"



Chapter 1. generalities about Bernstein polynomials

Bin(1=1) = (Z) (1= —@-p""
oo
(Z) B Ac!(nnl k)!
~ (k) [nn!— (n—&)]!
-(.24)
from where

1.2.5 Degree Raising

A linear combination of Bernstein polynomials of degree n can be used to express
any of the lower-degree Bernstein polynomials (degree< n). The degree (n — 1)

of Bernstein polynomial, for example, can be expressed as a linear combination

10
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of degree n Bernstein polynomials. We first note that

<)tk+1 B n+1—(k+1)

tBk n

= (n+1) i Brriny (1)

k41
k+1
- n+ 1 k+1,n+1 (t)
and
ny\ n—k+1
(1 —1) By (1) = (/{;)t (1—1)
- (n+1) k,n+1
k
n—k+1
R k1 (1)
and finally
1 1 k n—=k i+1 n—(i+1)
By, (t) + Bit1, (t) =t"(1—1) +t7 (1 —1)

(;) )
=t 1—-t)""" (1 —t)+1)
=1 -t
1
= iy Brn-1 ()
(")
We can write every Bernstein polynomial in terms of higher degree Bernstein

polynomials using the final equation.

11
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That is,

1 1
By (t) + 75~ Brrin (t)]

(6] ()
_ (” - k) Bun (t) + <$> Bii1 (1)

It translates a degree (n — 1) Bernstein polynomial into a linear combination
of degree n Bernstein polynomials. This can be extended to demonstrate that
any Bernstein polynomial of degree k (less than n) can be expressed as a linear
combination of Bernstein polynomials of degree n. For instance, a Bernstein
polynomial of degree (n — 2) can be expressed as a linear combination of two
Bernstein polynomials of degree (n — 1), each of which can be expressed as a

linear combination of two Bernstein polynomials of degree n, etc.

1.3 Derivation of Bernstein polynomials

Proposition 1.3.1 Derivatives of the nth-degree Bernstein polynomials are poly-
nomials of degree (n — 1). Using the definition of the Bernstein polynomial. We
can demonstrate that this derivative can be represented as a linear combination of

Bernstein polynomials use only its definition. In particular

d

EBkm(t) =n (Bk—l,n—l(t) - Bk,n—l (t))

for 0 <k <n.

12
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Proof. This can be shown by direct differentiation

d d (n\ . n—
G = 5 ()ra-o
kn! b1 ek n—k)n! . n—k—1
“ Wm0 +l§:!(n—)k:)!t =9
n(n —1)! . n— n(n —1)! n—k—1
= 0 o

That is, the derivative of a Bernstein polynomial can be expressed as the degree
of the polynomial multiplied by the difference of two Bernstein polynomials of

degree (n —1).

1.4 The basis of Bernstein polynomials

1.4.1 converting from the Bernstein basis to the canonical

basis

Any Bernstein polynomial of degree n can be expressed in terms of the canonical
basis{1,,12,...,t"} because it serves as the basis for polynomials with degrees

less than or equal to m. The definition of the Bernstein polynomials and the

13
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binomial theorem can be used to directly calculate this, as follows

weputi=1i—k

where we have used the binomial theorem to expand (1 — t)nfk.

We use the degree elevation formulas and induction to demonstrate that each
canonical basis element may be represented as a linear combination of Bernstein

polynomials to calculate

14
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tk —¢ (tk—l)
i )

n

i=k—1 (k—l)

Bin-1(t)

where the induction hypothesis was used in the second step.

1.4.2 The Bernstein polynomials as a basis

Why do the Bernstein polynomials of order n form a basis for the space of poly-

nomials of degree less than or equal to n?

1) They span the space of polynomials, any polynomial of degree less than or
equal to n can be written as a linear combination of the Bernstein polyno-

mials.

This is easily seen if one realizes that the canonical basis spans the space
of polynomials and any member of the canonical basis can be written as a

linear combination of Bernstein polynomials.

2) They are linearly independent, that is, if there exist constants ¢y, ¢, ca, . .., ¢,

so that the identity

0 = COBO,n (t) + ClBl,n (t) 4+ ...+ Canm (t)

15
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holds for all ¢, then all the ¢;’s must be zero.

If this were true, then we could write

O:COBOn()+ClBln t)_l' -+ nn(t)

S ()0 ()0
a0 () ()
() ()] [0

Since the canonical basis is a linearly independent set, we must have that

=co+ et

COIO

>a(})(1) o

which implies that ¢g = ¢; = -+ = ¢, = 0 (¢ is clearly zero, substituting
this in the second equation gives c; = 0, substituting these two into the

third equation gives ¢, = 0, etc ...)

16
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1.5 A Matrix Representation for Bernstein Poly-

nomials

A matrix formulation for the Bernstein polynomials is helpful in numerous ap-
plications, represented as a linear combination of the Bernstein basis functions for
the given polynomial

B (t) = coBon (t) +c1Bin (t) + - + ¢ Bun (1)

It is easy to write this as a dot product of two vectors

Co
C1
B (t) = BO,n (t> Bl,n (t) e Bn,n (t)
Cn
We can convert this to
bo 0 0 0 0 Co
bl 0 b171 0 0 C1
B(t) = [1 t ot tn} bao b21 bao -+ O Co
_bn,O bn,l bn,Q e bn,n_ _Cn_

where the b; ; are the coefficients of the canonical basis that are used to determine
the respective Bernstein polynomials. We note that the matrix in this case is

lower triangular.

17
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Example 1.5.1 In the quadratic case (n = 2), the matrix representation is

1 0 0 Co
B(t) = {1 t t2] 2 2 0| |g
1 -2 0} |e

and in the cubic case (n = 3), the matrix representation is

1 0 0 0f |

-3 3 0 O c1
B(t) = [1 L ts]
3 -6 3 0 Co

-1 3 =3 1§ |c3

1.6 Approximation by Bernstein polynomials

S. Bernstein provided a beautiful proof for the Weierstrass approximation the-
orem. We will demonstrate that polynomials can uniformly approximate any
continuous function on the closed interval [0, 1]. Beginning with the fundamental

units, the Bernstein polynomials provided by the equations

Bk (z) = (Z)xk(l—x)nk,kzo,l,...,n

Lemma 1.6.1 we have the following formulas

> Bui(z) =1, (1.2)

Z kB (v) = nz, (1.3)

18
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and
n

k(k—1)B,(z) =n(n—1)2% (1.4)

k=0
Proof. the first formula[l.2]is just which yields (z 4+ 1 — )" = 1 (which we have
previously proved).

the second one 77: for £ > 1, /{;(Z) = WM = n(Zj) (the statement

assumes n > 1)

SO
n n n .
> kB (x) = Zk<k>xk (1—z)""
k=0 k=0
=N "k <Z) o (1= z)"
k=1
because the term for k£ = 0 is zero, we obtain
n n o 1
Smin= £
k=0 k=1 B
. - n — 1 k1 n—k
an(k_1>x (1—2x)
k=1
=nx(z+1—2)""" =nz
the third one k>2andn>2, k(k—1)(}) = W{n_k), =n(n-1) (72

19
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SO

because the term for £ = 0,1 is zero, we obtain

D k(k=1) Bue(e) =3 n(n-1) (Z:§>xk(1—m)n_k

k=2
n

—n(n—1)2° kz; <Z - §>xk2 (1 ot

-2 2

=nn—-1)2*@x+1-2)""=nn-1x

Lemma 1.6.2 we have that

and

If we consider the B, j (v) as probabilities assigned to the ’events’ k = n, the first
statement states that the expectation value of £ = n is = and the second formula
states that the variance is z (1 — z)n which is small for n large. The proof is
simple and derives from the prior lemma by straightforward manipulations.

Now we are ready to state

20
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Theorem 1.6.1 let f be a continuous function. Define the polynomial

-y <§) Bux ().

Then for any € > 0 there exists N such that for allm > N and all x € [0,1],
1B (f) () = f ()] <e.

Note that the polynomial is a Riemann sum but with weights By, () .

Proof. Since f is continuous on the closed interval, it is uniformly continuous,

i.e., for every € > 0 the exists 6 > 0 which depends only on ¢ such that

=
~—~
&

|

—
=
=
IA

N

whenever |z — y| < 6. We may write, because of the first Lemma

thus

Bo(f) @) —f@)< Y

|%—x|<5

Note that we have sued the fact that the Bernstein polynomials are non-negative.

Hence, we may estimate the right side by

B, (f) (z) - g 3" B (@) +2max|f (@)] Y Bul(e

’kfm|<6 |Zf:v‘26

21
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in the second term, we write

E_g 1 k
[E=sls s s [ s
thus, we have
€ x(l—2x) € max|f(x)]
|Bn(f)($)—f($)|§§+2maxlf(x)| — §§+ s

and choosing

yields the theorem. m

22



Chapter 2

Bezier Curves

In this chapter, we will present the Bezier curves, which are parametric curves that
are based on a polynomial function with one parameter. They are named after
the engineer Pierre Bezier, who developed them to model the stylized shapes of
cars while working at Renault in the 1960s. Interestingly enough, they were also
independently developed by Paul De Casteljau at Citroen, likely before Bezier,

but it appears that he was not allowed to publish them.

2.1 Parametric curves

Definition 2.1.1 Let C C R? be some curve in the plane. A parametriza-
tion of the curve C is pair of functions f,g : I C R — R such that C =
{(f(t),g(t))/t € I}. In other words, a parametric curve is a mapping from
I C R — R? given by the rule t — (f (t),g(t)) for each t € I. We say that
t is parameter and that the parametric equations for the curve are v = f (t) and
y = g(t). In case I = |a,b] we say that (f (a),g(a)) is the initial point and

(f(b),g (b)) is the terminal point.

23



Chapter 2. Bezier curves

2.2 Bezier Curves

Definition 2.2.1 Given (n + 1) control points pg,p1,--.,Dn in space, the Bezier
curve (of degree n) defined from these points is the parametric curve C (t) defined
by
C(t)=> Bin(t)p; Vte[0,1].
i=0

The points (p;) i—0....n are called the control points and the line segments pop1, p1ps, . . .

form in this order called the control polygon.

P B &S
- S
O i v %
§ Bt e B L~ . P
— P. \ St 0% 1
\ -
\ 2 T ) O p
\ £ \ ! § \
\ \ . }
\ : “ .
ol LI ~ f !
] T 7 '
l| [N} hd [}
¥ W B ~
\ \ - v \G/ L
3‘] I'l N P °
|
P |
b
!
I

Figure 2.1: Bezier curves of various degrees and their control polygons.

Linear, Quadratic, and Cubic Bezier curves, are given as follows:

1) Linear Bezier curves (n = 1) are thus given by

={1—t)po+tpy dor0<t<I1.

24
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Chapter 2. Bezier curves

2) Quadratic Bezier curves (n = 2) are given by

= (1=t po+2t(1—t)py +1t?py, for0<t<1.

3) Cubic Bezier curves (n = 3) are given by

= (1=t po+3t(1—t)°pr+32(1—t)py+t°ps  for 0 <t <1.

Figure 2.2: Linear,Quadratic and Cubic Bezier curve

2.2.1 Derivatives of a Bezier Curves

The derivative of a Bezier curve of degree n is another Bezier curve of degree

(n — 1) given by

d n—1
EC (t)=n kZ:O Bipn—1(t) (Pr+1 — pr) 5

25
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More generally, derivatives of higher order are given by

dr n!
S = — — " <
dtTC (1) =) kgo Bin—r (t) (D41 —pi)"  Vr <mn,

This property has important consequences. In particular, the curve at extremities
is tangent to the first and last control points lines. This could be used to apply

Neumann boundary conditions for instance.

Proof. For the first derivative, we have

= (n i: Bk,n—l (t) pk+1> - (n i: Bk,n—l (t) pk)

n—1
— "Z Bin—1(t) (Prs1 — Pr) -
k=0

this can be written as

d n—1
EC (t) = nz Bin-1(t) pr
k=0
U B 2.1
= m 2 kn—1 (t) Pk ( . )
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Now assume that @ is true up to the order r. Let us prove it for r + 1
dr+1 d dr
dtr+1c(t> =7 <@C(t)>
d n| n—r
_ — - B B
dt ((n—r)! (22: k1 () (Pra1 — p)" ))

— G T i (Z_: %Bk,n 1 (t) (e — pe)" )

= —n' (Z (77/ — T) (Bk—l,nfrfl (t) - Bk,nfrfl (t))> (pk+1 o pk)r+1>

(n—r)! —
3 B (t)— B t)) —pp)
TL o 1 k—1n—r—1 ) kn—r—1 ( (pk—l—l pk)
:o
—r n—r—1
h—r=1) <Z Pret = P) " Bectmero1 () = Y (e — i)™ Bineroa (t)>
k=1 k=0
n—r—1 n—r—1
—r=1) < (Prsr — ) Brnr a1 ( Z (Prs1 — 2)" ! Brnra (t)>
k=0 —0

n—(r+1)
= Z (Prt1 — pr)" 1 Bin—r41) ()
k=0

Therefore, the result is true for (r + 1).

2.3 Properties of Bezier Curves

let’s see some of the important properties of the Bezier curves

2.3.1 Interpolation at the extremities
C(0) =po and C (1) = p,

and that it means that the Bezier curve of degree n always starts from the first

27
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control points py and ends at the last control poins p,,.

Proof.

Il
Il 3 |l
o
R
. 3
N——
-
—_
7
:5@.

I
3 |
o
R
<. 3
N——
=
=
i
:@@.

2.3.2 Invariance under affine transformation

Let 7 be an affine transformation (for example, a rotation, reflection, translation,

or scaling).

Then
T (Z Bin (t) ]%:) = Z Bin (1) T (p:)
=0 i=0
As shown, it consists in applying the Affine transformation only to control points.
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Proof. Let 7 be an affine transformation in R”

T(X)=AX+b  with AeM,(R) and beR"

The affine transformation of a Bezier curve C (t) of degree n is

TCWH)=T (io Bin (t) m)
—A (i Bin (t) pi> +5b
— zn: ABi, (t) pi + Zn: bBiy (1)
- i@ (Api +b) B (t)

= Z T (pi) Bin (t).
i=0
So 7 (C'(t)) is a Bezier curve. m

2.3.3 Convex hull

This property indicates that Bezier curves always lie within the convex hull of
their control points. The convex hull of the control points is also referred to as

the convex hull of the Bezier curve

Definition 2.3.1 Let X = {xg,x1,...,2,} be a set of points. the convex hull of

X denoted CH {X }defined by

CH{X} = {a0x0+...+an:tn/2ai: 1,6Li ZO}

=0
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Proposition 2.3.1 All the points of the bezier curve are located inside the convex

envelope of all the control points {po, p1,...,Pn} i€

vt € [0,1],C (t) € CH{po,p1,---,pn}

Figure 2.3: Cubic Bézier curve, its control polygon and the convex hull

Proof. we have

C)=)_ Bin)p  ¥te[0,1]

as the Bernstein polynomials verify the properties (positivity and partition of

unity), then according to the definition of the convex envelope, we get

C(t) € OH{p()uplu s 7pn}

2.3.4 Symmetry

It is clear that it does not matter if the Bezier points are labeled pg, p1, ..., p, or

DPnsPn—1,---,Po- The curves that correspond to the two different orderings look
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the same; they differ only in the direction in which they are traversed. Written

as a formula
Z Bin () pi = Z Bin (1 —1) pa—i
i=0 i=0

Proof. This follows from the property of symmetry of Bernstein polynomials

henCGZ?:O Bi,n (t) pi = Z?:O Bi,n (1 — t) Pn—i

by reindexing, we will have

Z Bin (t)pi = Z Bin (1 =1)pn
i—0 ,

2.4 Geometric construction of Bezier curves

At citroen, Mr.Paul De Casteljau started developing the algorithm that bears
his name in 1959. Citroen kept them very quiet and then they were released
as technical reports, prior to 1975, when W. Bohm first learned of these works
and made them widely known, they were unheard of. The development of the
usage of Pierre Bezier curves would not have been possible without the aid
of this algorithm, which has been extremely helpful for computer science, which

frequently employs Bezier curves (drawing , modeling, software, etc.).
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2.4.1 The De-Casteljau Algorithm

Given: po,p1,...,pn € B2, t € R,
let
; ; ; =1,...,n
I — (1 —t¢ ]‘,1 t .71 J ) )
plz ( )pl +plj+1 7::07.,.777/_‘].

and p? = p;, then p? is the point with parameter value ¢ on the Bezier curve.

The formula generates a triangular set of values, for example in the cubic case

Po P1 P2 D3
1,1
bo P1 P2
2
by D1
3
Do
P1
1
/D\ —~__P1
/ T
- 2
// 2 & % HRPO
A Bn : \
T e, T \
pil];/:,"'/// Po P
P s
b T
o ,/"/ \\ \\
A5 R el |
// \\ t[{l}g

Figure 2.4: De-casteljau algorithm

Example 2.4.1 for ezample, a cubic Bezier curve has four control points py (1,1) ,p1 (2,3),

P2 (8,1) andp3 (4,7) . The point C (0, 25) is determined by applying the De-Casteljau
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algorithm with t = 0,25. Then

Ph= (L1 + 5 (2,8) = (125,15),

= %(2,3) + }l (8,1) = (3.5,2.5),

Py = %(8,1) + }l (4,7) = (7,2.5),

= % (1.25,1.5) + i (3.5,2.5) = (1.8125,1.57),

Pl = % (3.5,2.5) + }1 (7,2.5) = (4.375,2.5),

e = % (1.8125,1.57) + (4.375,2.5) = (2.4531,1.8025)

The algorithm gives the following table of points

(1,1) (2,3) 81) (47
21 /i SRS B SV
(1.25,1.5) (3.5,2.5) (7,2.5)
TR I TS
(1.8125,1.57)  (4.375,2.5)
TS

(2.4531,1.8025)

The algorithm yields C (0.25) = (2.4531,1.8025) .

Proof. (De-casteljau algorithm)

The De-Casteljau algorithm follows from the recursion property of the Bernstein

polynomials
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By (t) = (1 —t) Binoy (£) + tBi_yns (1)

then

C(t) = 3 piBin () = 3 pi (1= ) Bioos (1) + Bi11 (1)

= Zpi (1=1)Bin-1(t) + ZpitBi—l,n—l ().
i=0 i=0

since By, ,—1 (t) =0, and B_;,_; (t) = 0 it follows that

n—1 n
Ct)=> pi(1=t)Bin1 () + Y pitBiia 1 (t).
1=0 =1

Next renumber the second summation by replacing ¢ by ¢ + 1,

n—1 n—1
C(t) = Zpi (1—1%) Bin1(t) + ZpiJrltBi,nfl (t)
i=0 i=0

= i(pl (1 —=1t) + pipat)Bin-1 (t)

=0

set py = (L —t)p; +tpis1 = (L —8) p? +tpY, fori=0,...,n—1, then

n—1
C(t)=> pBin()
1=0

the last equation expresses C'(t) as a Bezier curve of degree n — 1 with control

points py, ..., pL_;. Applying a similar argument yields
n—2
C(t)=> piBina(l),
i=0

34



Chapter 2. Bezier curves

where p? = (1 —t)p} +tp,, for i =0,...,n — 2. In general

n—j

C(t) =) pBinj (1),

=0

where p{ =(1- t)p{ + tpf:Jrl fori =0,...,n—j. In particular, j = n gives

0
C(t) = Zp?Bn,nfn (t) =pg-
1=0
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Applications

3.1 Collocation method

3.1.1 General principle

In general, the collocation method’s basic tenets were used to roughly resolve

operator equations

Lu=f

entails searching for a rough solution in a finite-dimensional subspace by limiting

the verification of the equation to a small set of points known as collocation points

In actuality, we select a set of finite-dimensional subspaces of the form X, C
X,n > 1 which are typically L? (G) or C'(G).
Let {¢1,...,¢,} be a basis of X,, we are looking for a function u, € X, of the

form
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Uy = chqu (t) ,ted
j=1

to determine the coefficients (c;), we substitute, this function in the equation, and

we require that the equation be exact in the sense that the residual

Ry (t) = Lun — f (1)

— £ e F() e

= > eiLlo; ().

Let be zero on a system of nodes t1,ts,...,t, € G, (ie, at the collocation points).

Which leads systematically to the resolution of the linear system

d g =f(t), i=12...,n
j=1
of the form ¢, X = f, obviously, this system admits a unique solution if the det

is non-zero, which moreover depends on the choice of collocation points.

In the collocation method, we force the remainder R, (¢;) for the collocation

points.

3.2 Solving an ODE by Bernstein polynomials

The collocation method is a projection method that uses Bernstein polynomials

to approximate the solution of an ordinary differential equation.
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3.2.1 Discretization of an ODE

In this section, we will look at the first and second order ordinary differential

equations described by

Lu=f(t), tela,b (3.1)

Where f(t) is a continuous function in [a;b] We convert this equation into a
system of linear equations. For this result, we need some basic functions to be the
ordinary differential equations solution. Of fate, we choose Bernstein polynomials

as the basic functions.

Now we use the Collocation method technique. For this, we estimate the

unknown function u (t) as follows

u(t) = Z ¢;Bin (t)

Where B, (t) are Bernstein polynomials and, ¢; ¢ = 0,1,...,n are unknown

parameters, to be determined, we replace in the equation we get

n

L zn: CiBi,n (t) = Z aiBm (t)
=0

1=0
or

n n

D GlLBin ()] = a;iBin (t)

i=0 i=0
The Collocation equations are thus obtained, and we then choose a linear equation

with the unknowns (n +1) (¢; =0,1,...,n) for each (j =0,1,...,n).
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Finally, a system of linear equations representing the unknowns (n + 1) are given.

Az,]Xz:b] i,j:O,l,...,n

where

bj = ZaiBi,n (t;) J=0,1,....n
1=0
x = (¢) 1=0,1,...n

3.3 Illustration with a numerical example

Example 3.3.1 Let the equation be

The exact solution of this equation is
u(t) =exp(t).

The solution of the system of linear equations for n = 4 yields the approximate

solution u (t) of the exact solution w (t)
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ans =

the st

t

0

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

ex sol
1.0000
1.1052
1.2214
1.3499
1.4918
1.6487
1.8221
2.0138
2.2255
2.4596
2.7183

app sol
1.0074
1.1128
1.2297
1.3590
1.5020
1.6600
1.8346
2.0275
2.2407
2.4764
2.7369

€error
0.0074
0.0077
0.0083
0.0092
0.0120
0.0113
0.0125
0.0138
0,0152
0.0168
0.0186

Table 3.1: table of solutions

Figure 3.1: Approximation of the equation u’=u
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3.4 Applications of Bezier Curves

Applications for Bezier curves are numerous and extremely significant since they
allow visual designers and engineers to model actual objects. Let’s examine a few

of them.

3.4.1 Computer Graphics

Bezier curves enables us to model smooth curves since the curve is contained in the
convex hull created by the control points. You can then apply affine transforma-
tions to the curve, such as rotation and translation, by applying these transforms
to the control points.

Because higher-degree curves require more computation to analyze, cubic and

quadratic curves are the most frequently utilized Bezier curves. These are used

to create simple shapes.

Figure 3.2: Bezier cuves in computer graphics.
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3.4.2 Fonts

Because they had a significant impact on the precision and clarity of letters, bezier

curves first appeared in the design world through printers.

For instance, composite Bezier curves formed of quadratic curves are used in
True Type typefaces. Other linguistic and graphic design technologies, including
PostScript, Asymptote, Metafont, and SVG, create curved shapes using composite
Bezier curves made out of cubic curves. Depending on the technology that controls
the OpenType wrapper (the encoding that instructs the system how to interpret

the font), OpenType fonts can employ cubic or quadratic curves.

Figure 3.3: Font definition using Bezier curves.

3.4.3 Animations

Bezier curves are used in programs like Synfig to outline movement. The applic-
ation creates the necessary frames for the item to move along the path once the

user draws the appropriate path using Bezier curves.
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The "feel" or "physics" that motion designers and animators are after are created
in this way. The Bezier curve indicates the movement’s velocity over time in
addition to where the object goes. The designer will use a Bezier curve to smooth
the cursor trajectory and set the pace of travel if an icon needs to move from

point A to point B.

Bezier curves are frequently used in 3D animation to construct 3D routes and 2D
curves for keyframe interpolation. Bezier curves are currently extensively used in

CSS, JavaScript, JavaFX, and Flutter SDK to govern animation ease.

(1)

e

1=0.7TE =035 =075

12.png

Figure 3.4: Animated Bezier curves.

3.4.4 Designing cars

Originally the Bezier curve was developed for geometry modeling, which, as men-
tioned earlier, Decasteljau on first at Citroen, and then later Pierre Bezier at
Renault confirmed that the curve was originally developed to help in the design

of cars.
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Chapter 3. Applications

The representation of an object by the three-dimensional space it occupies; this
generation is known as the "Constructive Solid Geometry" CSG approach. the
geometric description of a mechanical assembly that enables the modeling of ob-
jects in three dimensions. Using a bézier surface (Bezier tile) and CAD software,

the example that follows shows how to model a vehicle body in three dimensions.

Figure 3.5: Designing body of car using Bezier curves.
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Conclusion

In this thesis, we studied an important type of polynomial, namely Bernstein
polynomials, where we presented their basic properties, and then we moved on to

the study of Bezier curves, their properties, and geometric construction.

Finally, we presented a simple example of a method for solving ordinary differential
equations(Collocation Method) using Bernstein polynomials, and we proved some

applications of Bezier curves in the fields of computer design and data science.
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ABSTRACT

In this thesis, we will explore the theory and applications of Bézier curves
and Bernstein polynomials. We will study their basic properties and explain
the de-Casteljau algorithm for Bézier curves. We will offer an example to
illustrate the use of Bernstein polynomials in approximation theory and how
Bézier curve approaches are used in many fields.

RESUME

Dans ce mémoire, nous explorerons la théorie et les applications des
courbes de Bézier et les polynémes de Bernstein. Nous étudierons leurs
propriétés de base et nous expliquerons 1'algorithme de de-Casteljau pour
les courbes de Bézier. Nous offrirons un exemple pour illustrer I'utilisation
des polynémes de Bernstein dans la théorie de 1'approximation et comment
les approches de courbe de Bézier sont utilisées dans de nombreux
domaines.
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