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Abstract

In recent years, attention has been paid to the study of records statistics in terms

of Rényi extropy which was used widely in reliability and information studies.

In this master’s thesis, an explained representation of records statistics is ex-

pressed and some properties results are exploited in terms of continuous distri-

butions. In addition, some characterization results are explored based on the

records values, and related properties are addressed for the Rényi of record statis-

tics (ordinary record and k-records). Simplified expressions of the Rényi entropy

of records are derived which allows us to investigate monotonicity properties and

characterizations of some probability distributions. Moreover. These results are

based on applying the result obtained by Jitto Jose E. I. Abdul Sathar (2022)

[12].
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Notations and symbols

iid Independent and identically distributed

cdf Cumulative distribution function note F (.)

pdf Probability density function also density function note f (.)

h (.) Hazard or failure rate function

H (.) Cumulative hazard function

U (n) Upper record times

UX
n Upper record values

UX
n,k nth value of upper k-records

L (n) Lower record times

LX
n Lower record values

LX
n,k nth value of lower k-records

fUX
n
(x) Probability density function of nth Upper record values

fUX
m ,UX

n
(x, y) The joint probability density function of mth and nth Upper

records

fUX
n |UX

m
(y|x) The conditional probability density function of nth upper given

mth upper record
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fUX
n,k

(x) Probability density function of nth value of upper k-records

fUX
m,k,U

X
n,k

(x, y) The joint probability density function of mth and nth Upper k-

records

fUX
n,k|U

X
m,k

(y|x) The conditional probability density function of nth upper given

mth upper k record

Xi Random variables with i=1,2,...

fLX
n
(x) Probability density function of nth lower record values

fLX
m,LX

n
(x, y) The joint probability density function of mth and nth lower

records

fLX
m,LX

n
(x, y) The joint probability density function of mth and nth lower

records

fLX
n |LX

m
(y|x) The conditional probability density function of nth lower given

mth lower record

et al and others

fLX
n,k

(x) Probability density function of nth value of lower k-records

fLX
m,k,L

X
n,k

(x, y) The joint probability density function of mth and nth lower k-

records

fLX
n,k|L

X
m,k

(y|x) The conditional probability density function of nth lower given

mth lower k-record

Hα (X) Reiny entropy of X

X ≤lr Y X is smaller than Y in the likelihood ratio ordre

X ≤st Y X is smaller than Y in the usual stochastic order
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Introduction

The interest of Reliability theory has garnered significant importance in various

fields due to its practical applications and benefits specially in statistics that deals

with the analysis and interpretation of data related to reliability and information.

The concept of Shannon entropy, introduced by Shannon in 1948 [21], has been

extensively employed in the fields of reliability theory and information studies.

From an engineering standpoint, the Shannon entropy or Rènyi information may

be more suited to employ as measures to quantify the information content of an

a sample than the Fisher information, which is important in statistical inference

and information theoretic studies.

The concept of entropy is essential in record statistics as it provides insights into

the randomness and predictability of data sets. Entropy measurement allows for

the assessment of the level of uncertainty and randomness present in a given data

set. Higher entropy indicates a greater degree of randomness and unpredictability,

while lower entropy suggests a higher level of predictability within the data set.

In data compression, the objective is to minimize data redundancy and encode

it in the most efficient manner possible. By analyzing the entropy of a data set,

it becomes possible to determine which compression method is most suitable for

achieving optimal results. Understanding the entropy of the data helps in selecting
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Introduction

the appropriate compression technique that can effectively reduce the data size

while preserving its essential information.

In this master’s thesis, the Rènyi entropy is addressed in the context of record

statistics, which has witnessed a continuous rise since Chandler introduced the

theory of record statistics in 1952 [6]. It is noteworthy that certain scenarios,

such as those encountered in metrology, hydrology, seismology, and mining, involve

the observation of only record values. Consequently, numerous researchers have

dedicated their attention to the study of record values and associated statistical

properties.

Many scientists have studied the subject of entropy properties of record statistics

like Madai and Tata [14, 15] present results on the shannon information contained

in classical record values and in k-record values ,Abbasnejad and Arghami [1] have

discussed about the information contained in classical record values in detail and

have derived some important properties as well and Ahmadi and Fashandi [9]

showed that the equality of the entropy of the endpoints of record converage is

characteristic property for symmetric distribution.

The goal from this work is to highlight the most important characteristics of Rényi

entropy of k-records arising from any continuous distribution .

To achieve our objective we divided this master’s thesis in tow chapter . In the

first one, we present the classical record and the k-record from any continuous

distribution and introduce the terme of upper and lower records. Also, we extract

the record form specific continuous distribution . In the second chapter we present

the Rényi entropy of k-record which is a measure of the degree of predictability

or regularity in the data. And apply this important measure in the sense of

record statistics. We try to explain and investigate specific characterizations and

distributional properties. This study is based on analyzing and explaining the

2



Introduction

work of Jitto Jose , El Adbul sathar [12], which have studied the general concept

of Rènyi entropy in the concept of records 2022.

We are hoping that the readers of this master’s thesis find all that is useful about

record statistics and the theory of entropy.

3



Chapter 1

Record Statistics

In this chapter, we introduce the record statistics for continuous random vari-

ables. It constitutes of four sections, section 1.1 is introductive about the record

times and values, and section 1.2 we present some characterization of record statis-

tics from a sequence of continuous random variables of the ordinary (classical)

record statistics which is a special case of k-record when (k = 1), the section 1.3

we also present the characterization of k-record statistics, finally, in section 1.4 we

derive the density of lower and upper record form specific continuous distribution.

1.1 Introduction

In 1952, Chandler [6] introduced the concept of record times and values and gave

groundwork for a mathematical theory of records. For six decades beginning his

pioneering work, about 500 papers and some monographs focusing on different

aspects of the theory of records appeared. Let X1,X2,... be an infinite sequence

of independent and identically distributed iid random variables having the same
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Chapter 1. Record Statistics

distribution as the (population) random variable X, we called about Xj an upper

record value (or simply a record) if its value exceeds that of all previous obser-

vations. Thus Xj is a record if Xj > Xi for every i < j. A similar definition

pertains to the analysis of lower record values.

In statistics, a record value or record statistic is the largest or smallest value

obtained from a sequence of random variables. The theory is closely related to

that used in order statistics. Chandler defined a record as successive extremes

occurring in a sequence of independent and identically distributed (iid) random

variables. Record keeping is very important for some real-world problems related

to weather and the economy, studies, sports, etc, and record are observed such as

in metrology, hydrology, and seismology,...Prediction of the next record value is

an interesting problem in many real-life situations, For example, prediction of the

lowest share value in stock markets is essential to plan for investment strategies.

Records play an essential role in situations where observations are challenging to

acquire or when observations are prone to destruction during experimental testing.

Illustrating the statistical definition of the theory of records is best accomplished

through examples.

Let’s consider a scenario where we are conducting a sequence of product tests that

are likely to fail under stress. Our objective is to identify the minimum failure

stress of the products in a sequential manner. To illustrate this, we can denote

the strength at which a product fails as X1. We stress the first product and record

its failure stress.

As we proceed with testing subsequent products, we record the failure stress Xm

of the mth product only if it is lower than the minimum failure stress observed so

far, which is represented by min(X1, X2, ..., Xm−1) for m > 1. In other words, we

compare the failure stress of each product to the minimum failure stress observed

5



Chapter 1. Record Statistics

among the previous products. If the current product’s failure stress is lower, we

consider it as a record and record the value.

These recorded failure stresses represent the lower record values because they

are the minimum failure stresses observed at each step of the testing process.

By capturing the lower record values, we can gain insights into the minimum

stress threshold at which the products fail, helping us understand their strength

characteristics and make informed decisions in product testing and development.

1.2 Ordinary Record Statistics

Let X1, X2, . . . be a sequence of independent and identically distributed (iid)

random variables and X1,n ≤...≤ Xn,n be the corresponding order statistics where

X1,n = min {X1, X2, ..., Xn} and Xn,n = max {X1, X2, ..., Xn} .

Definition 1.2.1 the classical upper record times U (n) and upper record values

UX
n as follows:

U (1) = 1, U (n+ 1) = min{j : j ≥ U (n) , Xj ≥ UX
n }, UX

n = XU(n), n = 1, 2, ...

Definition 1.2.2 the sequences of lower record times L (n) (n ≥ 1) and lower

record values LX
n as follows :

L (1) = 1, L (n+ 1) = min{j : j ≥ L (n) , Xj ≤ LX
n }, LX

n = XL(n), n = 1, 2, ...

6



Chapter 1. Record Statistics

1.2.1 Record Probability Density Function

In this subsection, we first provide an expression of the density function of UX
n

and LX
n . In addition, we present the joint pdf of upper and lower records. Ending

it by defining the conditional pdf of the upper and the lower record.

Lemma 1.2.1 The hazard (function also known as the failure rate, hazard rate,

or force of function) h (x) is the ratio of the probability density function f (x) to

the survival function 1− F (x), given by:

h(x) =
f(x)

1− F (x)
.

The cumulative hazard function

H (x) = − log[1− F (x)]. (1.1)

Theorem 1.2.1 The pdf of UX
n is obtained to be (Arnold et al. (1998) )

fUX
n
(x) =

[H (x)]n−1

(n− 1)!
f (x) , −∞ < x < ∞, n = 1, 2, ..... (1.2)

Proof. To prove the theorem, we are going to consider exponential observations

since this distribution has the lack of memory property then the differences be-

tween successive records will be iid standard exponential random variable. Let

{X∗
j , j > 1} be a sequence of iid Exp(1) random variables, and consequently, it

follows that the nth upper record U∗
n has a gamma distribution with shape n+ 1

and rate 1.

U∗
n ∼ Gamma(n+ 1, 1), n = 1, 2, ... (1.3)

These results will be useful to obtain the distribution of the nth record corre-
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Chapter 1. Record Statistics

sponding to an iid sequence of random variables {Xj} with common continuous

cdf F .

If X has a continuous cdf F , then the cumulative hazard function has a standard

exponential distribution. we have

H (X) ≡ − log[1− F (X)].

then

X
d
= F−1(1− e−X∗

)

{X∗
j } follows standard exponential, therefore, we have:

Un
d
= F−1(1− e−U∗

n), n = 1, 2... (1.4)

Repeated integration by parts can be used to justify the following expression for

the survival function of U∗
n(a Gamma(n+ 1, 1) random variable):

P (U∗
n > x) = ex

∗
n∑

k=0

(x∗)k

(k − 1)!
, x∗ > 0.

We may then use the relation 1.4 to immediately derive the survival function of

the nth record corresponding to an iid F sequence.

P (Un > x) = 1− FUX
n
(x) = [1− F (x)]

n∑
k=0

[− log(1− F (x))]k

(k − 1)!
.

which is equivalent to:

P (Un < x) =

∫ − log (1−F (x))

0

yne−y/(n− 1)! dy

8



Chapter 1. Record Statistics

If F is absolutely continuous with corresponding probability density function pdf ,

we may differentiate either of the above expressions to obtain the pdf for UX
n . In

fact, we have:

fUX
n
(x) =

[H (x)]n

(n− 1)!
f (x) .

(for more details see Arnold et al page (31) [3])

Theorem 1.2.2 The joint pdf of UX
m and UX

n ,where 1 ≤ m ≤ n, is given by

(Arnold et al. (1998) )

fUX
m ,UX

n
(x, y) =

[H (x)]m−1

(m− 1)!

[H (y)−H (x)]n−m−1

(n−m− 1)!
h (x) f (y) , −∞ < x < y < ∞.

(1.5)

Proof. to start the prove we know that the joint pdf of a set of Exp(1) records

(U∗
0 , U

∗
1 , ..., U

∗
n) is easily written down, and since the record spacings U∗

n − U∗
n−1

are iid Exp(1). Thus, we find:

fU∗
0 ,U

∗
1 ,...,U

∗
n
(x∗

0, x
∗
1, ..., x

∗
n) = ex

∗
, 0 < x∗

0 < x∗
1 < ... < x∗

n.

Now,we apply the transformation eq.(1.4) coordinatewise to obtain the joint pdf

of the set of records U0, U1, ..., Un corresponding to an iid F sequence which is

given by

fU0,U1,...,Un (x0, x1, ..., xn) =

n∏
i=0

f(xi)

n−1∏
i=1

[1− F (xi)]

, (1.6)

= f(xn)
n−1∏
i=1

h (xi) ,−∞ < x0 < ... < xn.

9



Chapter 1. Record Statistics

The joint pdf of any pair of records Um, Un can of course be obtained from

eq.(1.6) by integration. It is perhaps easier to first find the joint distribution

for two Exp(1) records (U∗
m, U

∗
n) and then use the transformation eq.(1.4) where

m < n, since (U∗
m, U

∗
n) = (Y1, Y1 + Y2) where Y1 ∽ Gamma(m + 1, 1) and Y2

∽ Gamma(n − m, 1) are independent, we may use a simple Jacobian argument

beginning with the joint pdf of (Y1, Y2) to obtain:

fU∗
m,U∗

n
(x∗

m, x
∗
n) =

1

m! (n−m− 1)!
x∗m
m (x∗

n − x∗
m)

n−m−1 e−x∗
n , 0 < x∗

m < x∗
n < ∞.

With eq.(1.4) applied U∗
m to U∗

n, we obtain

fUm,Un (xm, xn) =
[− log (1− F (xm))]

m

m!

[
− log

(
1−F (xn)
1−F (xm)

)]
(n−m− 1)!

f (xm)h (xn)

1− F (xm)
,

−∞ < xm < xn < ∞.

Corollary 1.2.1 The conditional pdf UX
n given UX

m (1 < n < m) using eq.(1.2)

and eq.(1.5) is as follows:

fUX
n |UX

m
(y|x) =

fUX
m ,UX

n
(x, y)

fUX
m
(x)

=
[H (y)−H (x)]n−m−1

(n−m− 1)!

f (y)

1− F (x)
, x < y. (1.7)

Remark 1.2.1 The survival function of the nth upper record can be represented

as:

1− FUX
n
(x) = [1− F (x)]

n−1∑
j=0

[− log(1− F (x))]j

j!
(1.8)

Where

FUX
n
(x) =

− log(1−F (x))∫
0

un−1

(n− 1)!
e−udu, n = 1, 2, ...

10



Chapter 1. Record Statistics

The following corollary presents the pdf of lower records and the joint and condi-

tional pdf of LX
m and LX

n .

Corollary 1.2.2 We have:

• the pdf of LX
n is given by :

fLX
n
(x) =

[− logF (x)]n−1

(n− 1)!
f (x) ,−∞ < x < ∞, n = 1, 2, ... (1.9)

• The joint pdf of LX
m and LX

n ,where 1 ≤ m ≤ n, can be written as:

fLX
m,LX

n
(x, y) =

[− logF (x)]m−1

(m− 1)!

[logF (x)− logF (y)]n−m−1

(n−m− 1)!

f (x)

F (x)
f (y) ,−∞ < x < y < ∞. (1.10)

• The conditional pdf of LX
n given LX

m where 1 < m < n,can be written as:

fLX
n |LX

m
(y|x) = [logF (x)− logF (y)]n−m−1

(n−m− 1)!

f (y)

F (x)
, x < y. (1.11)

Example 1.2.1 Let’s consider the first 10 observations n = 10 from data given

by David and Nagaraja[[7]] where the data is derived from a normal distribution

for 20 observations. We have:

0.464, 0.060, 1.486, 1.022, 1.394, 0.906, 1.179, −1.501, −0.690, 1.372.

Using the definition of upper record 1.2.1, we have:

• For n = 1, the first upper record times is U (1) = 1 where the corresponding

first upper record value should be XU(1) = UX
1 = X1 = 0.464.

11
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• For n = 2, we need to find the upper record time and then we obtain the

upper record value. Therefore, we search for j that satisfies the following

U (2) = min
{
j : j ≥ U (1) , Xj ≥ UX

1

}
.

For j = 2 we have:

X2 = 0.060 < 0.464., so, X2 does not give the required results. For j = 3

we have:

X3 = 1.486 > 0.464 therefore :the corresponding second upper record value

should be U (2) = 3, XU(2) = UX
2 = X3 = 1.486.

• On the other hand, if we continue to search the upper record values for all the

reminder n we will find that XU(i) = UX
i = X3 = 1.486, ∀i = 3, 4, ..., 10.

Because X3 is the biggest value in Xj, 1 ≤ j ≤ 10,we finished at n = 2

because it reached the maximum value of the data.

Therefore, the upper record values of this data are 0.464, 1.486.

By the same procedure, the lower record values are: 0.464, 0.060, −1.501

1.3 K-Record Statistics

Definition 1.3.1 Let {Xn, n ≥ 1}be a sequence of iid random variables with cdf

F (X) and pdf f (x). Let X1,n ≤ X2,n ≤ ... ≤ Xn,n, be the order statistics of

X1, ..., Xn. Let’s define

U1,k = k

and

Un,k = min
{
j : j > Un−1,k, Xj > XUn−1,K−k+1:Un−1,k

}
,

12



Chapter 1. Record Statistics

for fixed integer k ≥ 1 and n ≥ 2. where, UX
n,k = XUn,K−k+1:Un,k

is the sequences

of upper k-record values and Un,k (n ≥ 1) is sequences of upper k-record times.

Remark 1.3.1 An analogous definition can be given respectively for lower k-

record values and lower k-record times.

L1,k = k,

and

Ln,k = min
{
j : j > Ln−1,k, Xj < XLn−1,K−k+1:Ln−1,k

}
and LX

n,k = XLn,K−k+1:Ln,k
is the sequences of lower k-record values and Ln,k

(n ≥ 1) is sequences of lower k-record times.

1.3.1 K-Record Probability Density Function

The model of k-record values is proposed at first by (Dziubdziela and Kopocinski 1976 [[8]]) .

Theorem 1.3.1 The pdf of UX
n,k is obtained to be:

fUX
n,k

(x) = kn [H (x)]n−1

(n− 1)!
[1− F (x)]k−1 f (x) , −∞ < x < ∞. (1.12)

Proof. By induction ,the densities fUX
n
(x1, ...xk) ,n = 1, 2, ..., satisfy the equa-

tions

f
UX
n
(x1, ...xk) =

 k!g
UX
n

(x1) f (x1) f (x2) ...f (xk) , x1 < x2 < ... < xk

0, otherwise

where

gUX
1
(x) = 1

13



Chapter 1. Record Statistics

gUX
n+1

(x) = k

x∫
−∞

g
UX
n

(y)
f(y)

1− F (y)
dy, n = 1, 2, ...

It is easy to verify that

gUX
n
(x) =

1

(n− 1)!
[−k log (1− F (x))]n−1 , n = 1, 2, ...

Then, we have

fUX
n,k

(x) =

∞∫
x

∞∫
x2

...

∞∫
xk−1

k!

(n− 1)!
[−k log (1− F (x))]n−1 f (x) f (x2) ...f (xk) dxk...dx2

=
k

(n− 1)!
[−k log (1− F (x))]n−1 [1− F (x)]k−1 f (x) .

Remark 1.3.2 The probability density of the record value is of the form

fUX
n,1

(x) = fUX
n
(x) =

1

(n− 1)!
[− log (1− F (x))]n−1 f (x) .

(see Karlin ([13])) .

Corollary 1.3.1 The cumulative distribution function of the k-record value is of

the form

FUX
n,k

(x) =

−k log(1−F (x))∫
0

un−1

(n− 1)!
e−udu, n = 1, 2, ...

Corollary 1.3.2 Let X be a continuous random variable. we have

• The joint pdf of UX
m,k and UX

n,k ,where 1 ≤ m ≤ n, is given by (see,Grudzien

14
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1982([11]))

fUX
m,k,U

X
n,k

(x, y) =
kn

(m− 1)! (n−m− 1)!
[H (x)]m−1[H (y)−H (x)]n−m−1

[1− F (y)]k−1 h (x) f (y) ,−∞ < x < y < ∞ (1.13)

• The conditional pdf of UX
n,k given UX

m,k (1 ≤ m ≤ n) can be written as:

fUX
m,k|U

X
n,k

(y|x) = kn−m

(n−m− 1)!
[H (y)−H (x)]n−m−1 [1− F (y)]k−1 f (y)

[1− F (x)]k
,

x < y. (1.14)

Proposition 1.3.1 An analogous pdf ’s can be given respectively for lower k-

record

• The pdf of LX
n,k is given by:

fLX
n,k

(x) = kn [− logF (x)]n−1

(n− 1)!
[F (x)]k−1 f (x) , −∞ < x < ∞. (1.15)

• The joint pdf of LX
m,k and LX

n,k ,where 1 ≤ m ≤ n, can be written as

(see,Pawlas and Szynal (1998, 2000)) [16] and [18].

fLX
m,k,L

X
n,k

(x, y) =
[− logF (x)]m−1

(m− 1)!

[logF (x)− logF (y)]n−m−1

(n−m− 1)!
[F (y)]k−1

f (x)

F (x)
f (y) ,−∞ < x < y < ∞. (1.16)

• The conditional pdf of LX
n,k given LX

m,k ,where 1 ≤ m ≤ n, can be written

15
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as:

fLX
n,k|L

X
m,k

(y|x) = kn−m

(n−m− 1)!
[logF (x)− logF (y)]n−m−1 [F (y)]k−1

f (y)

[F (x)]k
, x < y. (1.17)

Remark 1.3.3 We obtain ordinary upper/lower record values in the case of k =

1.

Example 1.3.1 For the same data in Example 1.2.1. Let X1,10 ≤ ... ≤ X10,10 be

the order statistics of X1, ..., X10 as follows :

−1.501 ≤ −0.690 ≤ 0.060 ≤ 0.464 ≤ 0.906 ≤ 1.022 ≤ 1.179 ≤ 1.372 ≤ 1.394 ≤ 1.486.

we construct upper k-records from the data where k = 2, 3, 4 as given below: Let

k = 2 and n = 1, 2, ..., 10. Using definition 1.3.1, we have :

• For n = 1 :

U1,2 = 2, UX
1,2 = XU1,2−2+1:U1,2 = X1,2 = 0.060.

• For n = 2 :

U2,2 = min
{
j : j > U2−1,2 and Xj > XU2−1,2−2+1:U2−1,2

}
= min {j : j > 2 and Xj > X1,2} . (1.18)

Now, we search the value of j that satisfies eq.(1.18). Thus, we find for
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j = 3 : U2,2 = min {j : 3 > 2 and X3 > 0.060} . Therefore,

U2,2 = 3, UX
2,2 = XU2,2−2+1:U2,2 = X2,3 = 0.464.

• For n = 3 :

U3,2 = min
{
j : j > U3−1,2 and Xj > XU3−1,2−2+1:U3−1,2

}
= min {j : j > 3 and Xj > X2,3} .

Thus, j = 4 satisfies the condition, and therefore we have:

U3,2 = 4, UX
3,2 = XU3,2−2+1:U3,2 = X3,4 = 1.022.

We continue in the same way to get the sequence of the upper 2-record which

is given as follows:

0.60, 0.464, 1.022, 1.394

As a consequence, the following table presents the upper k-record for k = 2, 3, 4.

2-records 0.60 0.464 1.022 1.394

3-records 0.60 0.464 1.022 1.179 1.372

4-records 0.60 0.464 0.906 1.022 1.179

Table 1.1: the upper k-record for k = 2, 3, 4.
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1.4 Record From Specific Continuous Distribu-

tion

In this section, we derive some record values from a specific continuous distribution

like the uniform, exponential, Weibull, and Pareto.

1.4.1 Uniform Distribution

Let X be a Uniformly distributed random variable on interval [0, θ] .with the

following cdf and pdf :

F (x) =


0 x < 0

x
θ

0 < x < θ

1 x > θ

; f (x) =

 0 x < 0

1
θ

0 < x < θ

∀k > 1 and ∀n > 2,we are going to use eq (1.12) to define the pdf of upper k

record valeus:

fUX
n,k

(x) = kn

[
− log

(
1− x

θ

)]n−1

(n− 1)!

[
1− x

θ

]k−1 1

θ

fUX
n,k

(x) =
kn

θ

[− log (θ − x) + log (θ)]n−1

(n− 1)!

[
θ − x

θ

]k−1

if k = 1 we obtain ordinary upper record values:

fUX
n
(x) =

1

θ

[− log (θ − x) + log (θ)]n−1

(n− 1)!
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We use eq (1.15) to define the pdf of lower k record values :

fLX
n,k

(x) = kn

[
− log

(
x
θ

)]n−1

(n− 1)!

[x
θ

]k−1 1

θ

fLX
n,k

(x) =
kn

θk

[
− log

(
x
θ

)]n−1

(n− 1)!
(x)k−1

if k = 1 we obtain ordinary lower record values:

fLX
n
(x) =

1

θ

[
− log

(
x
θ

)]n−1

(n− 1)!

Figure 1.1: Pdf of plots of uniform(0,2) distribution and upper and lower 3-record

for n=10
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1.4.2 Exponenntial Distribution

Let X be an Exponentially distributed random variable, with the following cdf

and pdf :

F (x) = 1− exp (−λx) , x > 0

f (x) = λ exp (−λx)

The pdf of upper k record values:

fUX
n,k

(x) = knλ exp (−λx)
[− log [1− (1− exp (−λx))]]n−1

(n− 1)!
(1− (1− exp (−λx)))k−1

= knλ exp (−λx)
[− log(exp (−λx))]n−1

(n− 1)!
exp (−λx (k − 1))

fUX
n,k

(x) = kn (λx)
n−1

(n− 1)!
λ exp (−λkx)

if k = 1 we obtain ordinary upper record values:

fUX
n
(x) =

(λx)n−1

(n− 1)!
λ exp (−λx)

The pdf of lower k record values:

fLX
n,k

(x) = λkn [− log (1− exp (−λx))]n−1

(n− 1)!
(1− exp (−λx))k−1 exp (−λx)

if k = 1 we obtain ordinary lower record values:

fLX
n
(x) = λ exp (−λx)

[− log (1− exp (−λx))]n−1

(n− 1)!
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1.4.3 Weibull Distribution

Let X be a Weibull distributed random variable, with the following cdf and pdf :

F (x) = 1− exp−λxα

f (x) = λα exp−λxα−1

By eq (1.12) the pdf of upper k record values :

fUX
n,k

(x) = knλα exp−λxα−1 [− log (1− (1− exp (−λx)))]n−1

(n− 1)!
exp−λ (k − 1)xα

fUX
n,k

(x) = knλα exp−λxα−1 [λxα]

(n− 1)!
exp−λ (k − 1)xα

if k = 1 we obtain ordinary upper record values:

fUX
n
(x) = λα exp−λxα−1 [λxα]

(n− 1)!

By eq (1.15) the pdf of lower k record values:

fLX
n,k

(x) = λknα exp−λxα−1 [− log (1− exp−λxα)]n−1

(n− 1)!
[1− exp−λxα]k−1

if k = 1 we obtain ordinary lower record values:

fLX
n
(x) = λα exp−λxα−1 [− log (1− exp−λxα)]n−1

(n− 1)!
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1.4.4 Pareto Distribution

Let X be a Pareto distributed random variable, with the following cdf and pdf :

F (x) = 1−
(
λ

x

)α

, x > 1, α > 0.

f (x) = αλαx−α−1.

By eq (1.12) the pdf of upper k record values :

fUX
n,k

(x) = kn

[
− log

[
1−

(
1−

(
λ
x

)α)]]n−1

(n− 1)!

[
1−

(
1−

(
λ

x

)α)]k−1

αλαx−α−1.

= knαλα

[
−α log

(
λ
x

)]n−1

(n− 1)!

(
λ

x

)α(k−1)

x−α−1.

if k = 1 we obtain ordinary upper record values:

fUX
n
(x) = αλαx−α−1

[
−α log

(
λ
x

)]n−1

(n− 1)!
.

By eq (1.15) the pdf of lower k record values:

fLX
n,k

(x) = kn

[
− log

(
1−

(
λ
x

)α)]n−1

(n− 1)!

[
1−

(
λ

x

)α]k−1

αλαx−α−1.

if k = 1 we obtain ordinary lower record values:

fLX
n
(x) =

[
− log

(
1−

(
λ
x

)α)]n−1

(n− 1)!
αλαx−α−1.
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Chapter 2

Entropy of K- Record Statistics

In this chapter, we start it by giving some background about entropy in section

2.1 and we present the Rényi entropy in the sense of k-records in section 2.2, 2.3.

In section 2.4, 2.5, and 2.6, we discuss some basic results and characterisations

using Rényi entropy (monotone properties and ordering).

2.1 Background

When exploring the field of reliability theory, one is inevitably confronted with

inquiries about its origins and importance. The credit for introducing the concept

of entropy in this context goes to Claud Shannon, often regarded as the father of

the mathematical theory of communication. Shannon’s groundbreaking contribu-

tion can be traced back to his influential paper titled ”A Mathematical Theory

of Communication,” which was published in the Bell System Technical Journal in

1948. This paper serves as the seminal work that initially introduced the notion

of entropy and its application within the realm of reliability theory.
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Entropy plays a crucial role in statistical inference as it provides a measure of the

uncertainty or information content within a probability distribution. In statistical

inference, the goal is to make inferences or draw conclusions about population

parameters based on observed data samples. Entropy provides a quantitative

measure of the information contained in the data, which aids in making informed

decisions and drawing reliable conclusions.

One key application of entropy in statistical inference is in estimating and com-

paring probability distributions. Entropy measures, such as Shannon entropy or

Rényi entropy, can be used to assess the diversity or complexity of distribution.

By comparing the entropies of different distributions, statisticians can evaluate

which distribution provides a better fit to the observed data.

Entropy also plays a role in model selection and hypothesis testing. When com-

paring different statistical models, entropy can help determine which model best

captures the underlying structure of the data. Models with higher entropy values

indicate a greater complexity or information content, suggesting a better fit to

the data. Entropy-based criteria, such as Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC), are commonly used for model selection.

Moreover, entropy is employed in information theory to quantify the amount of in-

formation gained or lost in statistical inference. Measures like mutual information,

which is derived from entropy, are used to assess the dependence or correlation

between variables. Mutual information helps identify relevant features or vari-

ables that contribute the most to the inference process. In summary, entropy is a

powerful tool in statistical inference that allows for quantifying uncertainty, com-

paring distributions, selecting models, and measuring information gain. It helps

statisticians make reliable inferences and draw meaningful conclusions based on

observed data. Let’s now define the entropy for a continuous random variable
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Definition 2.1.1 The Shannon entropy measure of uncertainty is inversely re-

lated to the occurrence random probability of the event.For a non-negative and

absolutely continuous random variable X with cumulative distribution function

(cdf) F (X) and density function (pdf) f (x), the Shannon entropy of X is de-

fined as

H (x) = E [− ln f (x)]

= −
∞∫
0

f (x) ln f (x) dx.

Example 2.1.1 Let X be a uniformly distributed random variable on interval

[2, 4] .then

fX (x) =


1
2
, x ∈ [2 4] .

0, otherwise.

The Shannon entropy

H (X) = −
4∫

2

1

2
ln

1

2
dx

= ln 2.

Example 2.1.2 Let X be an exponentially distributed random variable with a

hazard rate parameter λ > 0.Then

fX (x) = λ exp(−λx).

25
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The Shannon entropy

H (X) = −
∞∫
0

λe−λx ln(λe−λx)dx

= −λ

lnλ ∞∫
0

e−λxdx−
∞∫
0

xλe−λxdx


= − lnλ+ E [X]

= − lnλ+
1

λ
.

Remark 2.1.1 It is not easy to study the entropy properties of Shannon in the

sense of record statistics, this is why Rényi developed the Shannon entropy.

2.2 Rényi Entropy

In this section, we present the Rényi Entropy for a continuous random variable

and we provide some properties.

Definition 2.2.1 The information-theoretic concept of Rényi entropy (which is

a generalization of the entropy of Shannon) may play a somewhat similar role.

Rényi introduced one parameter of Shannon entropy by defining an entropy of

order α called Rényi entropy.The Rényi entropy of continuous random variable X

with pdf f (x) is defined by:

Hα (X) =
1

1− α
ln

∞∫
−∞

fα (x) dx, α > 0, (α ̸= 1) . (2.1)
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Remark 2.2.1 It can be easily shown that:

lim
α−→1

Hα (x) = H (x) .

Example 2.2.1 Let X be a uniformly distributed random variable on interval

[2, 4] The Rényi entropy

Hα (X) =
1

1− α
ln

4∫
2

1

2α
dx

=
1

1− α
ln(

1

2α
2)

= ln 2.

Example 2.2.2 Let X be an exponentially distributed random variable with a

hazard rate parameter λ > 0. The Rényi entropy

Hα (X) =
1

1− α
ln

∞∫
0

(
λe−λx

)α
dx

=
1

1− α
ln(λα 1

−αλ
)

= − ln(λ) +
1

1− α
ln (α) .

Property 2.2.1 Some important properties of Rényi entropy are as follows:

1. Hα (X) can be negative.

2. Hα (X) is invariant under a location transformation.

3. Hα (X) is not in variant under a scale transformation.

4. Any α1 < α2 we have Hα1 (X) > Hα2 (X) ,this equality come true if and

only if X is uniformly distributed.
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5. The Rényi divergence of order α between two random variables X and Y

with density function f (x) and g (y) ,respectively, given by:

Dα(f, g) =
1

α− 1

∞∫
−∞

[
f (X)

g (X)

]α−1

f (X) dx

For more details, see Golshain and Pasha and Contreras-Reyes

2.3 The Rényi Entropy of k-Record Statistics

In this section, we first provide the expression for the entropy of UX
n,k and LX

n,k.to

this end ,subststituting2.1 into 1.12 .

Theorem 2.3.1 The Rényi entropy of the nth value of the upper k-record is given

by:

Hα

(
UX
n,k

)
= Hα(U

⋆
n(k)) +

1

1− α
ln
{
E
[
fα−1

(
F−1 (1− exp (−u))

)]}
.

Proof. we have

Hα

(
UX
n,k

)
=

1

1− α
ln

∞∫
−∞

kαn [− log (1− F (x))]α(n−1)

((n− 1)!)α
[1− F (x)]α(k−1) fα (x) dx

=
1

1− α
ln

kαn

Γα (n)

∞∫
−∞

[− log (1− F (x))]α(n−1) [1− F (x)]α(k−1) fα (x) dx.
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We use the transformation u = − log (1− F (x)) Thus exp (−u) = (1− F (x)) ,

Ψ(u) = 1− exp (−u) ,we immediately have

Hα

(
UX
n,k

)
=

1

1− α
ln

kαn

Γα (n)

∞∫
0

uα(n−1) exp (−uα (k − 1)) fα−1 (Ψ (u)) exp(−u)du.

=
1

1− α
ln

kαn

Γα (n)

Γ (α (n− 1) + 1)

(α (k − 1) + 1)α(n−1)+1

∞∫
0

uα(n−1)e−uα(k−1)

fα−1 (Ψ (u)) e−udu.

Where,

• U follows gamma distribution with parameters α (n− 1)+1 and α (k − 1)+1

and we denote it by U ∼ Gamma (α (n− 1) + 1, α (k − 1) + 1).Then ,from

the Rényi entropy of UX
n,kis given by:

Hα

(
UX
n,k

)
= Hα(U

⋆
n(k)) +

1

1− α
ln
{
E
[
fα−1

(
F−1 (1− exp (−u))

)]}
.

• U⋆
n(k) denote the nth upper k-record value arising form the sequence {Xi, i > 1},

we get:

Hα(U
⋆
n(k)) =

1

1− α
ln

[
kαn

Γα (n)

Γ (α (n− 1) + 1)

(α (k − 1) + 1)α(n−1)+1

]
.

Theorem 2.3.2 The Rényi entropy of nth lower k-record value arising from any

continuous distribution can be expressed in terms of Rényi entropy of nth lower

k-record value arising from U (0, 1) .Let LX
n,k denote the lower k-record value of the
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sequence {Xi}. Then , the Rényi entropy of LX
n,k is given by:

Hα

(
LX
n,k

)
= Hα(L

⋆
n(k)) + ln

{
E
[
fα−1

(
F−1(exp (−u)

)
)
]}

.

Proof. The proof of the theorem 2.3.2 is similar to the proof of the Theorem

2.3.1.

• Where Hα

(
LX
n,k

)
denote the Rényi entropy of nth lower k-record value aris-

ing from U (0, 1) and U ∼ Gamma(α (n− 1) + 1, α (k − 1) + 1).

• Where L⋆
n(k) denote the nth lower k-record value arising form the sequence

{Xi, i > 1}, we get:

Hα(L
⋆
n(k)) =

1

1− α
ln

[
kαn

Γα (n)

Γ (α (n− 1) + 1)

(α (k − 1) + 1)α(n−1)+1

]
.

Proposition 2.3.1 The entropy of nth value of upper k-records UX
n,k and nth value

of lower k-records LX
n,k can be expressed , respectively, as

Hα

(
UX
n,k

)
= Hα(U

⋆
n(k)) +

1

1− α
ln
{
E
[
fα−1

(
F−1(1− exp (−u)

)
)
]}

.

and

Hα

(
LX
n,k

)
= Hα(L

⋆
n(k)) +

1

1− α
ln
{
E
[
fα−1

(
F−1(exp (−u)

)
)
]}

.

Remark 2.3.1 If we put k = 1, we can easily obtain the classical records from

the sequence of k-records.
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Example 2.3.1 Let {Xi, i > 1} be a sequence of iid random variables having a

common Uniformly distribution on the interval [0, θ] .Then

f
(
F−1(1− e−u

)
) = f

(
F−1

(
e−u

))
=

1

θ
, u > 0.

where

E
[
fα−1

(
F−1(1− e−u

)
)
]
=

1

θ
.

we have from Proposition 2.3.1 that the entropy of UX
n,k and LX

n,kis given by :

Hα

(
UX
n,k

)
=

1

1− α
ln

{
kαn

Γα (n)

Γ (α (n− 1) + 1)

(α (k − 1) + 1)α(n−1)+1
θ1−α

}
Hα

(
UX
n,k

)
=

1

1− α
ln

{
kαn

Γα (n)

Γ (α (n− 1) + 1)

(α (k − 1) + 1)α(n−1)+1
θ1−α

}
= Hα

(
LX
n,k

)
The following figure 2.3.1 presents the Rényi entropy for X and for the upper

k-record values, we chose 10 observations n = 10 and also k = 3, 4, 8.

31
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Figure 2.1: Rényi entropy of uniform(0,2) distribution and upper and lower k-

record for n = 10 and k = 3, 4, 8

Example 2.3.2 Let {Xi, i > 1} be a sequence of iid random variables having a

common Exponential distribution with failure rate parameter λ > 0.Then

F−1 (x) = −1

λ
log (1− x) .

f
(
F−1 (x)

)
= λ (1− x) , 0 ≤ x ≤ 1.

F−1
(
1− e−x

)
=

1

λ
x, x > 0.

Now, we have

E
[
fα−1(F−1(1− e−u))

]
=

[
α (k − 1) + 1

αk

]α(n−1)+1

λα−1.
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we have from Proposition 2.3.1 that the entropy of UX
n,k is given by:

Hα

(
UX
n,k

)
=

1

1− α
ln

{
kαn

Γα (n)

λα−1Γ (α (n− 1) + 1)

(αk)α(n−1)+1

}
.

Example 2.3.3 Let {Xi, i > 1} be a sequence of iid random variables having a

common Pareto distribution with density function given by

f (x) =
β

σ

(x
σ

)−β−1

, x > σ.

Here

F−1 (x) = σ [1− x]−
1
β .

Now, we have

E
[
f(F−1(1− e−u))

]
=

βαn

σα−1

[
α (k − 1) + 1

α (βk + 1)− 1

]α(n−1)+1

.

we have from Proposition 2.3.1 that the entropy of UX
n,k is given by:

Hα

(
UX
n,k

)
=

1

1− α
ln

{
kαn

Γα (n)

βαnΓ (α (n− 1) + 1)

σα−1 [α (βk + 1)− 1]α(n−1)+1

}
.

2.4 Some Results on Rényi Entropy of k-Record

statistics

In this section, we provide some results on the entropy of k- record statistics and

state symmetric properties between the entropy of the nth value of the upper and

the nth value of the lower form k-record.

For uniformly distributed random variable on [0, 1], we observe from the example

33
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2.3.1 that the entropy of the nth value of the upper k-record is equal to the

entropy of the nth value of the lower k-record. This leads to the question of

whether this result can be extended to a more general case. Proposition 2.4.1

provides a positive answer to this question. In order to prove Proposition 2.4.1,

we require the following Lemma 2.4.1.

Lemma 2.4.1 (Fashandi and Ahmadi, (2012)) : Let X be a random variable

with cdf F ,pdf f ,and finite mean µ. Then

f (µ+ x) = f (µ− x) .

for all x > 0 if and only if

f
(
F−1 (u)

)
= f

(
F−1 (1− u)

)
.

for all u ∈ [0, 1]

Proposition 2.4.1 If the pdf of X is symmetric about its finite mean µ ,then

Hα

(
UX
n,k

)
= Hα

(
LX
n,k

)
.

Proof. By Proposition 2.4.1 and Lemma 2.4.1,it is easy to verify that

Hα

(
UX
n,k

)
= Hα(U

⋆
n(k)) +

1

1− α
ln
{
E
[
fα−1

(
F−1(1− exp (−u)

)
)
]}

= Hα(L
⋆
n(k)) +

1

1− α
ln
{
E
[
fα−1

(
F−1(exp (−u)

)
)
]}

= Hα

(
LX
n,k

)
.
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2.5 Monotone properties of entropy Of k-record

statistic

In this section, we determine the monotonicity of Rényi entropy of the upper and

lower k-records arising from any continuous distribution. Some of these definitions

we use in proof :

Proposition 2.5.1 The random variable X is said to :

1. have increasing (decreasing) failure rate IFR (DFR) if F̄ is log-concave

(log-convex) ;

2. have increasing (decreasing) failure rate in average IFRA (DFRA) if − log F̄ (x)

is star-shaped (anti-star-shaped) ;that is, if − log F̄ (x) /x increasing (decreasing)

in x > 0;

3. be a new better (worse) than used NBU (NWU) if F̄ (x) F̄ (y) > (≤) F̄ (x+ y)

for all x, y > 0.

The relationships between them are:

IFR ⊆ IFRA ⊆ NBU

and

DFR ⊆ DFRA ⊆ NWU

For further details, see Barlow and Proschan(1981) .

Definition 2.5.1 Let X and Y be two non negative random variables with cdf F

and G and with pdf f and g respectively,then X is said to be smaller than Y
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1. In likelihood ratio order, denoted by X ≤lr Y , if f(x)
g(x)

is decreasing in x > 0.

2. In the usual stochastic order , denoted by X <st Y ,if F̄ (x) ≤ Ḡ (x) for all

x > 0, where H̄ (.) is the survival function.

It is well known that X ≤lr Y =⇒ X <st Y and X <st Y if and only if E [Φ (X)] ≤

E [Φ (Y )] for all increasing function Φ.

Definition 2.5.2 The random variable X is said to be less than or equal to the

random variable Y in Rényi entropy ordering ,denoted by X <RE Y , if Hα (X) ≤

Hα (Y ) for all α > 0.

Remark 2.5.1 we can conclude that Hα (X) ≤ Hα (Y ) for all α > 0 ,which

means that X is less uncertain that Y according to Rényi entropy.

The following theorem reveals the monotone behavior of Rényi entropy of upper

k-record.

Theorem 2.5.1 Let {Xi, i ≥ 1} be a sequence of iid random variables with a

common cdf F (x) and pdf f (x) . Let UX
n,k denote the nth upper k-record value .

f (x) is non-decreasing in x ⇒ for n > k, Hα

(
UX
n,k

)
is non-increasing in n.

Proof. see the proof of Theorem 2.1 of Abbasnejad and Arghami ([1]).

In a similar way, we can state the monotone behavior of Rényi entropy of lower

k-records as given in the following theorem.

Theorem 2.5.2 Let {Xi, i ≥ 1} be a sequence of iid random variables with a

common cdf F (x) and pdf f(x). Let LX
n,k denote the nth lower k-record value.

f(x)is non-increasing in x ⇒ for n > k,Hα

(
LX
n,k

)
is non-increasing in n
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Next, we conduct some numerical computation for the Rényi entropy of the nth

value of upper k-records for α = 2 and for different choices of n and k from

uniform U(0, 2). We have:

f(x) =
1

2
is non-decreasing in x

. Also from example 2.3.1 and the proposition 2.3.1, we have:

Hα

(
UX
n,k

)
=

1

1− α
ln

{
kαn

Γα (n)

Γ (α (n− 1) + 1)

(α (k − 1) + 1)α(n−1)+1
θ1−α

}

is decreasing in n.

These numerical values are presented in Tables 2.1

Table 2.1: Rényi entropy of the nth upper k-records value for α = 2 different
choices n and k from U(0, 2)

α = 2
k = 2 k = 3 k = 8

n = 1 0.405465108108164 0.105360515657826 -0.757685701697516
n = 2 0.523248143764548 0.433864582629862 -0.193615563412713
n = 3 0.235566071312767 0.356903541493734 -0.035010533236075
n = 4 -0.15747651679684 0.174581984699779 0.0182339812827373
n = 5 -0.599309269075879 -0.0565297362636073 0.0226883316321177
n = 6 -1.06931289832162 -0.31581233419369 -0.00102819498519845
n = 7 -1.55766566623555 -0.59344407079197 -0.043093860270711
n = 8 -2.05892183898539 -0.883979212226157 -0.0980629303921314
n = 9 -2.56974746275138 -1.1840838046765 -0.162601451529703
n = 10 -3.08795319381499 -1.49156850442446 -0.234520079964897
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2.6 Rényi entropy ordering

In this section, we will use Abbasnejad and Arghami to establish their Rényi

entropy ordering of nth upper and lower k-record value.

Theorem 2.6.1 Let X and Y be two continuous random variables with cdfs F (x)

and and pdfs f(x) and g(y) respectively. Suppose that UX
n,k and LX

n,k represents

the nth upper k record value arising from X and Y respectively.Assume that:

Λ1 =

{
u > 0,

g (G−1 (1− e−u))

f (F−1 (1− e−u))
≤ 1

}
,

Λ2 =

{
u > 0,

g (G−1 (1− e−u))

f (F−1 (1− e−u))
> 1

}

And X <RE Y . inf Λ1 ≥ supΛ2 =⇒ UX
n,k ≤RE UY

n,k, ∀n ≥ 1 and n ≥ k.

Proof. see Theorem 2.3 in Abbasnejad and Arghami ([1]) .

Theorem 2.6.2 Let X and Y be two continuous random variables with cdfs F (x)

and G(y) and pdf f(x) and g(y) respectively. Suppose:

Λ1 =

{
u > 0,

g (G−1 (e−u))

f (F−1 (e−u))
≤ 1

}
,

Λ2 =

{
u > 0,

g (G−1 (e−u))

f (F−1 (e−u))
> 1

}

And X <RE Y . inf Λ1 ≥ supΛ2 =⇒ LX
n,k ≤RE LY

n,k,∀n ≥ 1 and n ≥ k.

Example 2.6.1 Let X and Y be two random variables having a common expo-

nential distribution with different scale parameters σ and λ respectively, where

σ > λ. Then from (2.1), we get:

Hα (X) =
1

1− α
ln (α)− ln(σ).
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It can be easily verified that Hα (X) is a decreasing function of σ. Thus, we have

Hα (X) ≤ Hα (Y ) and thereby X <RE Y . We have f (F (1− e−x)) = 1
σ
e−x and

inf Λ1 = supΛ2.Hence, by Theorem 2.6.1 we get UX
n,k ≤RE UY

n,k.

Remark 2.6.1 This passage discusses the relationship between two random vari-

ables, X and Y that share an exponential distribution but have different scale

parameters.The author notes that Hα (X) ,a measure of X entropy,decreases as

σ (scale parameters ) increases. The author then concludes that X is stochasti-

cally dominated by Y (i.e,X <RE Y ) because Hα (X) ≤ Hα (Y ) . The author also

mentions that (Theorem 2.6.1) applies to X and Y because their hazard functions

are related, which further supports the conclusion that X <RE Y.

2.6.1 The effect of location-scale transformation

The location-scale transformation can affect the Rényi entropy of k-record random

variables through a rescaling of the random variable. This effect is determined by

the specific scaling factor of the transformation and is independent of any shifts

in the random variable.

Lemma 2.6.1 consider a non negative random variable X ,with pdf f and cdf F

. Let Z = aX + b be a transformation on X ,where a > 0 and b ≥ 0 are constants

.then

Hα

(
UZ
n,k

)
= Hα

(
UX
n,k

)
+ ln a, (2.2)

Where UZ
n,k and UX

n,k are the nth k-record corresponding to Z and X respectively .

Remark 2.6.2 The Rényi entropy of k-records changes due to scale, but it does

not change due to location.
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Theorem 2.6.3 Consider two absolutely continuous random variables X and Y .

Assume that UX
n,k and UY

n,k are the nth upper k-record corresponding to X and Y

respectively . Let UZ1
n,k = a1U

X
n,k + b1 and UZ2

n,k = a2U
Y
n,k + b2 ,where a1, a2 > 0 and

b1, b2 ≥ 0 are constants .Then we have

UX
n,k ≤RE UY

n,k =⇒ UZ1
n,k ≤RE UZ2

n,k, for a1 ≤ a2.

Proof. if UX
n,k ≤RE UY

n,k , then

Hα

(
UX
n,k

)
≤ Hα

(
UY
n,k

)
.

Since a1 ≤ a2 , ln a1 ≤ ln a2 . Hence,

ln a1 +Hα

(
UX
n,k

)
≤ ln a2 +Hα

(
UY
n,k

)
.

Thus from 2.2 ,we get UZ1
n,k ≤RE UZ2

n,k .

The following result removes the scale constant constraint.

Corollary 2.6.1 Consider two absolutely continuous random variables X and Y .

Assume that UX
n,k and UY

n,k are the nth upper k-record corresponding to X and Y

respectively.Let UZ1
n,k = aUX

n,k + b and UZ2
n,k = aUY

n,k + b, where a > 0 and b ≥ 0 are

constants.

UX
n,k ≤RE UY

n,k =⇒ UZ1
n,k ≤RE UZ2

n,k.
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The work discussed in this master’s thesis explains the relevance of Rényi en-

tropy while using record statistics. Understanding historical trends, patterns,

and outcomes requires the use of record statistics. They serve as a foundation for

evaluating performance and establishing benchmarks and goals. They also help

us to learn from the past, make educated decisions, and aim for continual progress

across a variety of disciplines.

Jitto Jose E. I. Abdul Sathar(2022) [12] have expressed Rényi entropy for upper

and lower records statistics arising from any continuous distribution. We have

explained this study deeply by representing the expression used to provide the

upper and lower k-record in terms of Rényi entropy of records arising from any

continuous distribution, especially uniform distribution. And we have used the

result to express the monotone behavior and ordering of Rényi entropy. In addi-

tion, we have used that representation to derive a numerical representation and

how the Rényi entropy may have a negative value.

In the end, we can say that the record statistic and theory of entropy helped us to

understand the reliability measure and its characteristics, as one of the benefits of

entropy, it can help in compressing data by identifying and removing redundancy

in the data, thus reducing the amount of storage space required and in predictive
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modeling, entropy can be used to measure the uncertainty or randomness of a

dataset, this can help in improving the accuracy of predictive models by identifying

the key variables that can impact the outcome. Also, entropy can be used to

generate random keys and passwords, which can enhance security in various ways,

for example, by making it more challenging for hackers to guess the password

.in addition, Entropy is useful in making cryptographic systems more robust by

generating unpredictable keys that cannot be deciphered by an attacker.

This does not prevent us from finding some weaknesses in entropy theory, and

we mention the following calculating the entropy of a k-record requires significant

computational power, especially when working with large and complex datasets.

This can result in slower system performance and increased processing times,

moreover to it can be influenced by the bias of the individuals collecting and

analyzing the data. This can result in incorrect or incomplete analyses if the

individuals gathering the data are not careful. Also, The entropy of a k-record

can be challenging to interpret, especially if the results are not presented in a

visually appealing way. This can lead to confusion or incorrect conclusions being

drawn from the data.

Each theory has positive and negative points that were the reason for its devel-

opment. Finally, as a future project, we propose to provide this work with a

numerical illustration in real life to observe the result that Rényi entropy can

have. in addition, we propose to study the measure of extropy discovered by Lad

et al (2015) . which is a dual theory of entropy and it has more benefits that need

to be explored.
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Abstract : 

 
In recent years, attention has been paid to the study of records statistics in terms of Rényi entropy 

which was used widely in reliability and information studies.  

In this master’s thesis, an explained representation of records statistics is expressed and some 

properties results are exploited in terms of continuous distributions of upper and lower records. 

In addition, some characterization results are explored based on the records values, and related 

properties are addressed for the Rényi of record statistics (ordinary record and k-records). 

Simplified expressions of the Rényi entropy of records are derived which allows us to investigate 

monotonicity properties and characterizations of some probability distributions. Moreover. These 

results are based on applying the result obtained by Jitto Jose E. I. Abdul Sathar (2022). 

 

 

 

Résume : 

 
Ces dernières années, l'attention a été portée sur l'étude des statistiques du record en termes 

l’entropie de Rényi qui a été largement utilisée dans les études de fiabilité et d'information.  

Dans ce mémoire, une représentation expliquée des statistiques du record est exprimée et certains 

résultats de propriétés sont exploités en termes de distributions continues pour les records 

supérieurs et inférieures. En outre, certains résultats de caractérisation sont explorés sur la base 

des valeurs des records, et les propriétés connexes sont abordées pour le Rényi entropie des 

statistiques du records (record ordinaire et k-records). Des expressions simplifiées de l'entropie 

de Rényi des records valeurs sont dérivées, ce qui nous permet d'étudier les propriétés de 

monotone et les caractérisations de certaines distributions de probabilité. De plus, ces résultats 

sont basés sur l'application du résultat de Rényi entropie du résultat obtenu par Jitto Jose E. I. 

Abdul Sathar (2022). 

 

 

 

 

 ملخص:

 
لتي استخدمت على ا  ،Rényi Entropyفي السنوات الأخيرة، تم الاهتمام بدراسة الإحصائيات القياسية )السجل( من حيث 

  .نطاق واسع في دراسات الموثوقية والمعلومات

القياسية ويتم استغلال بعض نتائج الخصائص من حيث التوزيعات  لإحصائياتفي هذه المذكرة، تم التعبير عن تمثيل موضح 

القياسية، وتم مناقشة الخصائص  الإحصائياتإلى ذلك، يتم استكشاف بعض نتائج الوصف بناءا على قيم  بالإضافة. المستمرة

. و التي تسمح لنا بدراسة خصائص الرتابة Kحصائيات العادية او المتغيرة بدلالة بالنسبة للإ Rényi Entropyذات الصلة لـ 

وذلك نتيجة لتحليل  Rényi Entropyو الترتيب و توصيفا ت التوزيعات الاحتمالية المستمرة. تستند هاته النتائج إلى تطبيق 

 . Jitto Jose E. I. Abdul Sathar (2022)النتائج المتحصلة من مقال 
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