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Introduction

In this master dissetation, we focus on a control problem within a specific filtered

probability space (Ω,F , P, (Ft)t≥0) that involves the following equations:


dxu(t) = b(t, xu(t), Pxu(t), u(t))dt+ σ(t, xu(t), Pxu(t), u(t))dB(t),

dyu(t) = −g(t, xu(t), Pxu(t), y
u(t), Pyu(t), z

u(t), Pzu(t), u(t))dt+ zu(t)dB(t),

xu (0) = x0, y
u(T ) = h(xu(T ), Pxu(T )),

(1)

where B(·) represents a d-dimensional Ft-Brownian motion. Here, PX(t) = P ◦X−1 denotes

the law of the random variable X. The control u (·) = (u (t))t≥0 is required to take values

in a subset of R and be adapted to a subfiltration (Gt)t≥0 within (Ft) . The maps

b : [0, T ]× R×Q2(R)× A→ R,

σ : [0, T ]× R×Q2(R)× A→ R,

g : [0, T ]× R×Q2(R)× R×Q2(R)× R×Q2(R)× A→ l2(R),

and

h : R×Q2(R)→ R,

are given deterministic functions, whereQ2(R) represents the space of probability measures

µ on (R× β(R)) with finite second moment, i.e.,
∫
R |x|

2 µ(dx) < ∞, equipped with the
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Introduction

2-Wasserstein metric given by: for µ1, µ2 ∈ Q2(R),

D2 (µ1, µ2) = inf


∫
R

|x− y|2 ρ(dx, dy)

 1
2

, ρ ∈ Q2 (R) , ρ (·,R) = µ1, ρ (R, ·) = µ2

 .

The McKean-Vlasov forward-backward stochastic differential equation is a general equa-

tion where the coeffi cients depend on the probability law of the solution. It is used in

the analysis of financial optimization problems and optimal control in various fields such

as economics, finance, physics, chemistry, and game theory. In the context of interact-

ing particle systems, the equation describes the movement of particles, and the empirical

measures of these particles converge to a deterministic measure as the number of particles

increases. This measure corresponds to the probability distribution of the processes gov-

erned by the McKean-Vlasov system.

The cost function to be minimized, known as the McKean-Vlasov-type cost, is given by:

J(u(·)) = E
{∫ T

0

f(t, xu(t), Pxu(t), y
u(t), Pyu(t), z

u(t), Pzu(t), u(t))dt

+φ(xu(T ), Pxu(T )) + ϕ(yu(0), Pyu(0))
}
,

(2)

where

f : [0, T ]× R×Q2(R)× R×Q2(R)× R×Q2 (R)× A→ R,

φ : R×Q2(R)→ R, ϕ : R×Q2(R)→ R,

are deterministic functions. We remark that the cost functional (2) involves the law of the

solution in a nonlinear way.

The general maximum principle for stochastic differential equations (SDEs) has been ex-

plored byMeng and Tang ([12]). Mean-field-type SDEs, also known as McKean-Vlasov sys-

tems, have a historical background dating back to the works of Kac and McKean ([8], [10]),

who investigated stochastic systems with a large number of interacting particles. Optimal

control problems for McKean-Vlasov-type SDEs have been extensively studied by many

authors ([13, 14]). Hafayed et al. ([6]) have studied the maximum principle for McKean-
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Introduction

Vlasov forward-backward SDEs of mean-field-type. The mean-field maximum principle

for SDEs has been established by Buckdahn et al ([2]). Lasry and Lions ([9]) have intro-

duced a mathematical modeling approach for high-dimensional systems involving a large

number of particles. Buckdahn et al. ([3]) proved a Peng’s type maximum principle for

mean-field-type SDEs using second-order derivatives with respect to measures. Hafayed et

al. ([7]) investigated the singular optimal control problem for general controlled nonlinear

SDEs, where the coeffi cients depend on the solution process and its law.

Partial information refers to cases where the available information to the controller is

limited. This situation arises in real-world applications, such as mathematical finance and

economics, where obtaining full information may not be feasible. The partial information

maximum principle for SDEs has been established by Wang et al ([15]).

This study is based on part of the work of Meherrem and Hafayed ([16]), where the authors

proved the stochastic maximum principle for optimal control of McKean-Vlasov FBSDEs

with Lévy process via the differentiability with respect to probability law.

This work has three chapters.

• The first chapter is preliminary and serves to introduce the essential tools for the second

and third chapters.

• In the second chapter, we will show the existence and uniqueness of the solution to

an (SDE), (BSDE) in the case where both the drift term and the diffusion term satisfy

the Lipschitz condition in x, and linear growth and the generator satisfies the Lipschitz

condition in y, z, and the terminal value is square integrable respectively.

• In the third chapter, we prove the necessary optimality conditions, which are our main

results. The differential system is governed by general McKean—Vlasov forward-backward

stochastic differential equation (FBSDE).

3
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Introduction to stochastic calculus
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Chapter 1

Introduction to stochastic calculus

This chapter serves mainly as an introduction, aimed at highlighting the tools used in our

study, and provides some basic reminders about stochastic calculus.

1.1 Processus stochastic

Definition 1.1.1 (Random variable): A random variable X is a real-valued measurable

function defined as:

X : (Ω,F)→ (R,B (R)) ,

such that for any Borel set, B, its preimage is measurable:

{ω ∈ Ω : X (ω) ∈ B} = {X ∈ B} ∈ F ,∀B ∈ B (R) ,

where F is the sigma-algebra of measurable sets on the sample space Ω and B (R) is the

Borel sigma-algebra on the real line.

Definition 1.1.2 (Generated sigma-algebra): The sigma-algebra generated by a ran-

dom variable X defined on (Ω,F) is denoted by σ (X), and it is defined as the set of all

5



Chapter 1. Introduction to stochastic calculus

pre-images of Borel sets under X, i.e.,

σ (X) =
{
X−1 (A) : A ∈ ε

}
,

where X−1 (A) = {ω ∈ Ω : X (ω) ∈ A} for any set A in a generator ε of the Borel sigma-

algebra on the real line. This sigma-algebra is the smallest sigma-algebra on Ω that contains

all sets of the form X−1 (B) for Borel sets B, and makes X measurable.

Definition 1.1.3 (Stochastic process): A stochastic process X = (Xt)t∈T is a family

of random variables Xt indexed by a set T . Typically, T = R+ and the process is assumed

to be indexed by time t.

• If T is a finite set, the process is a random vector.

• If T = N, the process is a sequence of random variables.

• If T ⊂ Z, the process is said to be discrete.

• If T ⊂ Rd, the process is called a random field.

• For a fixed t ∈ T , ω ∈ Ω → Xt (ω) is a random variable on the probability space

(Ω,F , P ) .

• For a fixed ω ∈ Ω, t ∈ T → Xt (ω) is a real-valued function, called the trajectory of

the process.

Definition 1.1.4 (Filtration): A filtration (Ft) on a probability space (Ω,F , P ) is an

increasing family of sub-sigma-algebras of F , i.e., Fs ⊂ Ft, ∀s ≤ t.

1. The space (Ω,F , (Ft) , P ) is called a filtered space.

2. A filtration is P -complete for a probability measure P if F0 contains all events of

measure zero, i.e., N = {N ∈ F such that P (N) = 0} ⊂ F0

6



Chapter 1. Introduction to stochastic calculus

3. We say that a filtered space (Ω,F , (Ft) , P ) satisfies the usual conditions if:

• Negligible sets are contained in F0, i.e., N ⊂ F0,

• The filtration is right-continuous, i.e., Ft =
⋂
s≥t
Fs∀t.

Definition 1.1.5 (Adapted-measurable-progressively measurable)

• A process X is measurable if the application (t, w) → Xt (w) from R+ × Ω to Rd is

measurable with respect to the tribu B (R+)⊗F and B
(
Rd
)
.

• A process X is adapted with respect to the filtration {Ft}t≥0 if, for all t ≥ 0, Xt is

Ft-measurable.

• A process X is progressively measurable with respect to {Ft}t≥0 if for all t ≥ 0,

the application (s, w) → Xs (w) from [0, t] × Ω to Rd is measurable with respect to

B ([0, t])⊗Ft and B
(
Rd
)
.

Remark 1.1.1 A progressively measurable process is measurable and adapted

Proposition 1.1.1 If X is a stochastic process whose trajectories are right-continuous

(or left-continuous), then X is measurable and X is progressively measurable if it is also

adapted.

1.2 Conditional expectation

Definition 1.2.1 (Conditional expectation with respect to a σ-algebra): Let X be

a real-valued random variable (integrable , i.e., X ∈ L1) defined on (Ω,F , P ) ,and let G be

a sub-sigma-algebra of F .

The conditional expectation E [X |G ] of X quand G st l’unique variable aléatoire :

• G-measurable.

7



Chapter 1. Introduction to stochastic calculus

•
∫
A
E [X |G ] dP=

∫
A
X dP, ∀A ∈ G.

It is also the unique (up to almost sure equality) G-measurable random variable such that:

E [Y E [X |G ]] = E [XY ] ,

for any bounded Y , G-measurable variable.

Property 1.2.1 (Properties of conditional expectation):

Let (Ω,F ,P) be a given probability space, and let G be a sub-sigma-algebra of F . Let X

and Y be two random variables defined on (Ω,F ,P)

• Linearity: For any constants a and b, we have E (aX + bY |G ) = aE (X |G ) +

bE (Y |G ).

• Monotonicity: If X and Y are random variables such that X ≤ Y , then E (X |G ) ≤

E (Y |G ).

• If X is G-measurable, then E (X |G ) = X.

• E [E [X |G ]] = E [X].

1.3 Martingale

Definition 1.3.1 A stochastic process, {Yt : 0 ≤ t ≤ ∞}, is a martingale with respect to

the filtration, Ft and probability measure P , if

• EP [|Y t|] <∞ for all t ≥ 0.

• EP [Yt+s |Ft ] = Yt for all t, s ≥ 0.

Example 1.3.1 Let Bt be a Brownian motion.

Then B2
t − t, B3

t − 3tBt and exp(−λ2 t
2
) expλBt, are all martingales.

8



Chapter 1. Introduction to stochastic calculus

Definition 1.3.2 (Continuous-time martingale): A process (Xt)t≥0 adapted with re-

spect to a filtration {Ft}t≥0 and such that for all t ≥ 0, Xt ∈ L1 is called:

• A martingale if for s ≤ t : E [Xt |Fs ] = Xs,

• A supermartingale if for s ≤ t : E [Xt |Fs ] ≤ Xs,

• A submartingale if for s ≤ t : E [Xt |Fs ] ≥ Xs,

• If X est une martingale E [Xt] = E [X0] ,∀t.

• If (Xt, t ≤ T ) is a martingale, the process is completely determined by its terminal

value: Xt = E [XT |Ft ] . This latter property is very frequently used in finance.

1.4 Brownian Motion

Definition 1.4.1 (Brownian motion): A stoshastic process {Bt : 0 ≤ t ≤ ∞} is a

standard Brownian motion:

• B0 = 0.

• With probability 1, the function t→ Bt is continuous in t.

• The process {Bt}t≥0 has stationary, independent increments.

• Bt ∼ N(0, t).

Definition 1.4.2 (d-dimensional Brownian motion ) An d-dimensional Wiener pro-

cess is a vector-valued stochastic process, Bt = (B
(1)
t , ..., B

(d)
t ) is a standard d-dimensional

Brownian motion if each B(i)
t it is a standard Brownian motion and the whose components

B
(i)
t ’s are independent of each other.

9



Chapter 1. Introduction to stochastic calculus

1.5 Quadratic variation

Suppose that Bt is a real-valued stochastic process defined on a probability space (Ω,F , P )

and with time index t ranging over the non-negative real numbers, consider a partition

ofthe time interval, [0;T ] given by

0 = t0 < t1 < t2 < ... < tn = T.

Let Yt be a Brownian motion and consider the sum of squared changes

Qn (T ) :=
n∑
i=1

[
Bti −Bti−1

]2
(1.1)

Definition 1.5.1 (Quadratic variation): The quadratic variation of a stochastic pro-

cess, Yt, is the process, written as [Y ]t is equal to the limit of

Qn (T ) as ∆t := max
i

(ti − ti−1)→ 0

Remark 1.5.1 The functions with which you are normally familiar, e.g. continuous dif-

ferentiable functions, have quadratic variation equal to zero. Note that any continuous

stochastic process or function that has non-zero quadratic variation must have infinite

total variation where the total variation of a process, Yt, on [0;T ] is defined as

Total variation := lim
∆t→0

n∑
k=1

∣∣Ytk − Ytk−1

∣∣ .
This follows by observing that

n∑
k=1

(
Ytk − Ytk−1

)2 ≤
(

n∑
k=1

∣∣Ytk − Ytk−1

∣∣) max
1≤k≤n

∣∣Ytk − Ytk−1

∣∣ . (1.2)

If we now let n→∞ in (1.2) then the continuity of Yt implies the impossibility of

10



Chapter 1. Introduction to stochastic calculus

the process having finite total variation and non-zero quadratic variation.

1.5.1 Stochastic integrals

We now discuss the concept of a stochastic integral, ignoring the various technical condi-

tions that are required to make our definitions rigorous. In this section, we write Xt(ω)

instead of the usual Xt to emphasize that the quantities in question are stochastic.

Definition 1.5.2 (Stopping time): A stopping time of the filtration Ft is a random

time τ , such that the event {τ ≤ t} ∈ Ft for all t > 0.

In non-mathematical terms, we see that a stopping time is a random time whose value is

part of the information accumulated by that time.

Definition 1.5.3 (Piece-wise): We say a process ht(ω), is elementary if it is piece-

wise constant so that there exists a sequence of stopping times 0 = t0 < t1 < t2 < ... <

tn = T , and a set of Fti-measurable functions, ei(ω), such that

ht (ω) =
∑
i

ei(ω)I[ti,ti+1) (t) ,

where I[ti,ti+1)(t) = 1 if t ∈ [ti, ti+1) and 0 otherwise.

Definition 1.5.4 (Stochastic integral): A stochastic integral of an elementary func-

tion, ht(ω), with respect to a Brownian motion, Bt is defined as

∫ T

0

ht (ω) dBt (ω) :=
n−1∑
i=0

ei (ω)
(
Bti+1

(ω)−Bti (ω)
)
. (1.3)

Note that, if we interpret ht (ω) as a trading strategy and the stochastic integral as the

gains or losses from this trading strategy, then evaluating ht (ω) at the left-hand point is

equivalent to imposing the non-anticipativity of the trading strategy, a property that

we always wish to impose.

11



Chapter 1. Introduction to stochastic calculus

For a more general process, Yt (ω), we have

∫ T

0

Yt (ω) dBt (ω) := lim
n→0

∫ T

0

Y
(n)
t (ω) dBt (ω) ,

where Y (n)
t is a sequence of elementary processes that converges (in an appropriate manner)

to Yt.

Definition 1.5.5 We define the space L2[0, T ] to be the space of processes, Yt (ω) shuch

that:

E
[∫ T

0

Yt (ω)2 dt

]
<∞.

Theorem 1.5.1 (Martingale property of stochastic integrals):

The stochastic integral, Xt :=
∫ T

0
Yt (ω) dBt, is a martingale for any Yt (ω) ∈ L2[0, T ].

1.5.2 Itô’s process and stochastic differential equations

Definition 1.5.6 (Itô process): An n-dimensional Itô process, Yt, is a process of the

form

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdBs, (1.4)

where B is an m-dimensional standard Brownian motion, and b and σ are n-dimensional

and n×m-dimensional Ft-adapted processes, respectively.

We often use the notation

dXt = btdt+ σtdBt,

as shorthand for (1.4).

Definition 1.5.7 (Stochastic diferential equation): An n-dimensional stochastic difer-

ential equation (SDEs) has the form

dXt = bt (Xt, t) dt+ σt (Xt, t) dBt; X0 = 0, (1.5)

12



Chapter 1. Introduction to stochastic calculus

where as before, Bt is an m- dimensional standard Brownian motion, and b and σ are

n-dimensional and n ×m-dimensional adapted processes, respectively. Once again, (1.5)

is shorthand for

Xt = x+

∫ t

0

bs (Xs, s) ds+

∫ t

0

σs (Xs, s) dBs, (1.6)

while we do not discuss the issue here, various conditions exist to guarantee existence and

uniqueness of solutions to (1.6). A useful tool for solving SDEs is Itô’s Lemma which we

now discuss.

Theorem 1.5.2 (Itô’s formula):

Let Xt be 1-dimensional Itô process satisfying the SDEs

dXt = µtdt+ σtdBt.

If f(t.x) : [0,∞)× R× R is a C1,2 function and Yt := f(t,Xt) then

dYt =
∂f

∂t
(t,Xt) dt+

∂f

∂x
(t,Xt) dXt +

1

2

∂2f

∂x2
(t,Xt) (dXt)

2

=

(
∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt)µt +

1

2

∂2f

∂x2
(t,Xt)σ

2
t

)
dt+

∂f

∂x
(t,Xt)σtdBt.

The "Box" calculus

In the statement of Itô’s Lemma, we implicitly assumed that (dXt)
2 = σ2

t dt. The box

calculus is a series of simple rules for calculating such quantities. In particular, we use the

rules

dt× dt = dt× dBt = 0,

and dBt × dBt = dt,

when determining quantities such as (dBt)
2 in the statement of Itô’s Lemma above. Note

that these rules are consistent with Theorem (1.2.1). When we have two correlated

Brownian motions, B(1)
t and B(2)

t , with correlation coeficient, ρt, then we easily obtain

13



Chapter 1. Introduction to stochastic calculus

that dB(1)
t × dB

(2)
t = ρtdt. We use the box calculus for computing the quadratic vari-

ation of Itô processes.

1.6 Some classes of stochastic controls

let
(
Ω,F , {Ft}t≥0 , P

)
be a complete filtred probability space.

Definition 1.6.1 (Optimal control): The goal of the optimal control problem is to

minimize a cost function J (v) over the set of admissible control U . We say that the

control u(·) is an optimal control if

J(u(t)) ≤ J (v(t)) , for all v(·) ∈ U .

Definition 1.6.2 (Admissible control): Ft-adapted processes v (t) with values in a

borelian A ⊂ Rn is An admissible control adapted processes

U := {v(·) : [0, T ]× Ω→ A : v(t) is Ft − adapted} .

Definition 1.6.3 (Feedback control): We say that v(·) is a feedback control if the

control v(·) depends on the state variable X (·). If FXt the natural filtration generated by

the process X, then v(·) is a feedback control if v(·) is FXt -adapted.

1.7 Useful results

Theorem 1.7.1 (Brownian martingale representation theorem): Let (Ft)0≤t≤T be

the natural filtration of the Brownian motion (Bt)0≤t≤T . Let M be a square integrable

continuous martingale with respect to (Ft)0≤t≤T . Then there exists a unique predictable

process H such that:

E
(∫ T

t

H2
sds

)
< +∞,

14



Chapter 1. Introduction to stochastic calculus

for all ∀t ∈ [0, T ] and:

Mt = M0 +

∫ t

0

HsdBs, P − p.s.

Theorem 1.7.2 (Hôlder inequality): Let p and q be exponents in the range [1,+∞]

such that they are conjugate, i.e., 1/p + 1/q = 1. If f and g are measurable functions,

then:

‖fg‖1 ≤ ‖f‖p ‖g‖q .

In particular, the Hôlder inequality (in the case of p = 2) yields the Cauchy-Schwarz

inequality:

|(f | g)| ≤ ‖f‖2 ‖g‖2 .

Lemma 1.7.1 (Gronwall Lemma): Let f be an integrable and non-negative function

defined for t ≥ 0 and satisfying

f(t) ≤ β + c

∫ t

0

f(s)ds,

where c is a positive constant. Then we have:

f(t) ≤ β

∫ t

0

exp(cs)ds.

Lemma 1.7.2 (Burkholder-Davis-Gundy inequality): For any p > 0 there exists

positive constants cp and Cp, such that for any continuous local martingale X = (Xt) with

X(0) = 0,

cpE
[
〈X, X〉

p
2
∞

]
≤ E

[
sup
t≥0
|Xt|p

]
≤ CpE

[
〈X, X〉

p
2
∞

]
.

15



Chapter 1. Introduction to stochastic calculus

Theorem 1.7.3 (Itô’s isometry): For any Yt (ω) ∈ L2[0, T ] we have

E

[(∫ T

0

Yt (ω) dBt (ω)

)2
]

= E
[∫ T

0

Yt (ω)2 dt

]
.

Theorem 1.7.4 (Fixed-Point Theorem): Let (E, d) be a complete metric space and ϕ

: E → E be a une application contractante, i.e. Lipschitz with a contraction factor k < 1.

Then, ϕ has a unique fixed point x ∈ E such that ϕ(x) = x.

16
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Chapter 2

Existence and uniqueness solution of

SDEs and BSDEs with Lipschitz

condition

I
n this chapter, we study the existence and uniqueness of solutions for two types of

equations. Firstly, we consider Stochastic Differential Equations (SDEs) where both

the drift term and the diffusion term satisfy the Lipschitz condition and linear growth.

Secondly, we investigate Backward Stochastic Differential Equations (BSDEs) where the

generator satisfies the Lipschitz condition and the terminal value is square integrable.

2.1 Stochastic differential equations (SDE)

A stochastic differential equation (SDE) is a perturbation of the ordinary differential

equation (ODE) with a random term modeling noise around a deterministic phenomenon.

The simplest perturbation is the addition of a Brownian motion.
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Consider the following stochastic differential equation.

 dxt = b(t, x)dt+ σ(t, xt)dBt,

x0 = ξ,
(2.1)

check the following conditions

P (x0 = ξ) = 1,

P (

∫ t

0

|b(s, xs)|+ σ2(s, xs)ds <∞) = 1,

xt = ξ +

∫ t

0

b(s, xs)ds+

∫ t

0

σ(s, xs)dBs.

The problem is since stochastic differential equations are a generalization of ordinary

differential equations, to show that under certain conditions on the coeffi cients b, σ, the

differential equation has a unique solution. We assume that

|b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ k|x− y|2, (2.2)

|b(t, x)|2 + |σ(t, x)|2 ≤ k(1 + |xt|2). (2.3)

2.1.1 Existence and uniqueness result for SDE

Theorem 2.1.1 If the coeffi cients b and σ satisfy the conditions (2.2) and (2.3), then the

equation (2.1) has a unique strong solution X = (Xt)t∈[0,T ], Ft-adapted, and continuous

with initial condition X0 = ξ. Furthermore, this solution is Markovian and satisfies

E

[
sup
t∈[0,T ]

|Xt|p
]
≤M, ∀p > 1.

Where M is a constant that depends on k, p, T and ξ.

Remark 2.1.1 Noticing that the Lipschitz condition (2.2) ensures the existence and unique-

ness of the solution to the equation (2.1).

19



Chapter 2. Existence and uniqueness solution of SDEs and BSDEs with Lipschitz
condition

Remark 2.1.2 The growth condition (2.3) prevents the solution from exploding, and if

we do not have this condition, the equation (2.1) will have a unique solution only up to

the time of explosion.

Proof. Uniqueness

Let X = (Xt)t∈T and Y = (Yt)t∈T be two solutions (2.1) such that X0 = Y0 = ξ. By

applying the inequality:

(a+ b)2 ≤ 2a2 + 2b2,

and by using the formulas for Xt and Yt, we obtain:

Xt − Yt ≤ 2

∣∣∣∣∫ t

0

b (s,Xs)− b (s, Ys) ds

∣∣∣∣2 + 2

∣∣∣∣∫ t

0

σ (s,Xs)− σ (s, Ys) dBs

∣∣∣∣2 .
Taking the mathematical expectation, we obtain:

E
(
|Xt − Yt|2

)
≤ 2E

(∣∣∣∣∫ t

0

b (s,Xs)− b (s, Ys) ds

∣∣∣∣2
)

+2E

(∣∣∣∣∫ t

0

σ (s,Xs)− σ (s, Ys) dBs

∣∣∣∣2
)
.

By using the Cauchy-Schwarz and Hölder-Davis-Gundy inequalities, we obtain:

〈∫
0

g (s) dBs

〉
T

=

∫ t

0

g2 (s) ds.

E
(
|Xt − Yt|2

)
≤ 2TE

∫ T

0

|b (s,Xs)− b (s, Ys)|2 ds+ 2E
∫ T

0

|σ (s,Xs)− σ (s, Ys)|2 ds.

By applying the Lipschitz condition, we obtain:

E
(
|Xt − Yt|2

)
≤ c

∫ T

0

E |Xs − Ys|2 ds.

Where c = max (2Tk; 2k) . By applying the Chebyshev inequality, we obtain:

∀ ε > 0;
(
P |Xt − Yt|2 > ε

)
≤
E
(
|Xt − Yt|2

)
ε

→ 0.
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Therefore, for any countable set D that is everywhere dense in [0;T ], we have:

P

(
sup
t∈[0;T ]

|Xt − Yt|2 > 0

)
= 0.

Finally, the processes X and Y are continuous. We conclude that

P

(
sup
t∈[0;T ]

|Xt − Yt|2 > 0

)
= 0.

This proves the strong uniqueness of the solution.

Existence:

We demonstrate the existence of a strong solution using the method of successive approx-

imations and for this we set

Xn
t = ξ +

∫ t

0

b
(
s,Xn−1

s

)
ds+

∫ t

0

σ
(
s,Xn−1

s

)
dBs. (2.4)

We set:

Xn+1
t −Xn

t =

∫ t

0

b (s,Xn
s )− b

(
s,Xn−1

s

)
ds+

∫ t

0

σ (s,Xn
s )− σ

(
s,Xn−1

s

)
dBs.

Using the same technique as for uniqueness, we obtain

E
(∣∣Xn+1

s −Xn
s

∣∣2) ≤ c

∫ t

0

E
∣∣Xn

s −Xn−1
s

∣∣2 ds.
Where c = max (2Tk; 2k) . According to (2.2), we have

E
(∣∣X1

s −X0
s

∣∣2) ≤ 2cT
(

1 + E
∣∣X0

s

∣∣2) ,
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since

E
(∣∣X1

s −X0
s

∣∣2) ≤ 2E

(∣∣∣∣∫ t

0

b
(
s,X0

s

)
ds

∣∣∣∣2
)

+ 2E

(∣∣∣∣∫ t

0

σ
(
s,X0

s

)
dBs

∣∣∣∣2
)

≤ 2TE
∫ t

0

∣∣b (s,X0
s

)∣∣2 ds+ 2E
∫ t

0

∣∣σ (s,X0
s

)∣∣2 ds
≤ 2Tk

∫ t

0

(
1 + E

∣∣X0
s

∣∣2) ds+ 2k

∫ t

0

(
1 + E

∣∣X0
s

∣∣2) ds
≤ (2Tk + 2k)

(
1 + E

∣∣X0
s

∣∣2)T
≤ 2cT

(
1 + E

∣∣X0
s

∣∣2) .
So:

E
(∣∣X1

s −X0
s

∣∣2) ≤MT,

where M = 2c
(

1 + E |X0
s |

2
)
. By recurrence on n, it follows that

E
(∣∣Xn+1

s −Xn
s

∣∣2) ≤ (MT )n+1

(n+ 1)!
,

and we demonstrate that

E
(∣∣Xn+2

t −Xn+1
t

∣∣2) ≤ (MT )n+2

(n+ 2)!

≤ c

∫ t

0

E
∣∣Xn

s −Xn−1
s

∣∣2 ds
≤ c

∫ t

0

(Ms)n+1

(n+ 1)!
ds = c

(MT )n+2

(n+ 2)!
,
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then we obtain,

E
(
|Xm

t −Xn
t |

2) 1
2 = ‖Xm

t −Xn
t ‖L2(Ω)

=
m−1∑
k=n

∥∥Xk+1
t −Xk

t

∥∥
L2(Ω)

≤
∞∑
k=n

(
(MT )k+1

(k + 1)

) 1
2

→ 0 (n→∞) ,

When n→∞, we obtain E
(
|Xm

t −Xn
t |

2) 1
2 → 0. Therefore, we have

lim
n→+∞

E
(
|Xm

t −Xn
t |

2) 1
2 = 0. (2.5)

So Xn
t is a Cauchy sequence in L (Ω) and therefore convergent. Let Xt be its limit, that

is:

lim
n→+∞

Xn
t → Xt.

Now, the process Xn
t defined by:

Xn
t = ξ +

∫ t

0

b
(
s,Xn−1

s

)
ds+

∫ t

0

σ
(
s,Xn−1

s

)
dBs.

According to inequality (2.5) and Fatou’s lemma, we obtain

E
∫ T

0

|Xm
t −Xn

t |
2 ds ≤ lim

m→∞
supE

∫ T

0

|Xm
t −Xn

t |
2 ds→ 0.

E
(

lim
n

∫ T

0

|Xm
t −Xn

t |
2 ds

)
≤ lim

m→∞
supE

(∫ T

0

|Xm
t −Xn

t |
2 ds

)
→ 0.

Therefore,

E
(∫ T

0

|Xt −Xn
t |

2 ds

)
→ 0.
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Using Itô’s isometry,

E
∫ t

0

∣∣σ (s,Xn
s )− σ

(
s,Xn−1

s

)
dBs

∣∣2 ≤ C

∫ t

0

E
(
|Xn

s −Xs|2
)
ds→ 0,

and furthermore, ∫ t

0

σ (s,Xn
s ) dBs →

∫ t

0

σ (s,Xs) dBs.

We apply Hölder’s inequality,

E
∫ t

0

|b (s,Xn
s )− b (s,Xs)|2 ds ≤ cT

∫ t

0

E
(
|Xn

s −Xs|2
)
ds→ 0.

And by the continuity of b (t, ·) , we obtain

∫ t

0

b (s,Xn
s ) ds→

∫ t

0

b (s,Xs) ds; (n→∞) .

Passing to the limit in (2.4), we have

Xt = ξ +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs.

Thus, Xt is a solution of equation (2.1). Let’s show that

E

(
sup
t∈[0,T ]

|Xt|p
)
< M ∀p > 1.

Using the inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 and taking expectations, we have:

E
(
|Xt|2

)
≤ 3E

(
|ξ|2
)

+ 3TE
∫ t

0

|b (s,Xs)|2 ds+ 3E
∫ t

0

|σ (s,Xs)|2 ds,

According to (2.3), we have:

E
(
|Xt|2

)
≤ 3E

(
|ξ|2
)

+ 3Tk

∫ t

0

(
1 + E |Xs|2

)
ds+ 3k

∫ t

0

(
1 + E |Xs|2

)
ds.
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Let M = max (3; 3Tk; 3k) and c = max (M ; 2M), then we obtain

E
(
|Xt|2

)
≤ c

(
1 + E |ξ|2

)
+ c

∫ t

0

E
(
|Xs|2

)
ds.

Applying the Grnwall lemma, we obtain:

E
(
|Xt|2

)
≤ c

(
1 + E |ξ|2

)
exp (ct) ;∀t ∈ T.

Since E |ξ|2 <∞, we can set M = c
(
1 + E |ξ|2

)
exp (ct) . This gives us

E
(
|Xt|2

)
≤M ; ∀t ∈ T.

This implies that

E

(
sup
t∈[0,T ]

|Xt|p
)
< M.

Hence the result.

2.2 Backward stochastic differential equation (BSDE)

A backward stochastic differential equation (BSDE) is a mathematical equation that in-

volves a process evolving backward in time. It is a generalization of stochastic differential

equation (SDE) and plays a significant role in stochastic analysis, mathematical finance,

and control theory. In a standard SDE, the evolution of a process is determined by its

past and current values. In contrast, a BSDE involves the process evolving backward from

a future time to the present. This backward evolution makes BSDE particularly useful for

solving problems related to optimization, hedging, and risk management.

The general form of a BSDE is given by:
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 −dYt = f(t, Yt, Zt)dt− ZtdBt, 0 ≤ t ≤ T

YT = ξ,
(2.6)

where Y (t) is the unknown process, Z(t) is the adapted process called the control or

stochastic process, f(t, Y (t), Z(t)) is a known function, and W (t) is a standard Wiener

process or Brownian motion.

A solution to the EDSR (2.6) is a pair of processes {(Yt, Zt)}0≤t≤T that satisfies the fol-

lowing conditions:

• Y and Z are progressively measurable processes taking values in Rk and Rk×d, re-

spectively.

• P−p.s {∫ T

0

|f(s, Ys, Zs)|ds−
∫ T

0

|Zs|2ds
}
<∞;

• P−p.s, we have:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ t ≤ T.

2.2.1 Existence and uniqueness result for BSDE with Lipschitz

coeffi cients

Theorem 2.2.1 Given the preceding data ξ ∈ L2(FBT ), we further assume that:

• f is k-uniformly Lipschitz with respect to Y and Z, that is:

• ∃k > 0,∀(Y, Z) ∈ Rk × Rk×d, ∀(Y ′, Z ′) ∈ Rk × Rk×d :

|f(t, B, Y, Z)− f(t, B, Y ′, Z ′)| ≤ k(|Y − Y ′|+ |Z − Z ′|).

• |f(t, B, Y, Z)| ≤ ht(B) + λ(|Y |+ |Z|),
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• Whereht(ω) ≥ 0,∀t, B and E(
∫ T

0
h2
sds) <∞.

•

E
[
|ξ|+ |

∫ T

0

f(t, B, 0, 0)|2ds
]
<∞.

Then, the BDSR (f, ξ) has a solution.

Proof. The proof of the existence and uniqueness of solutions to backward stochastic dif-

ferential equations (BSDEs) relies on two key theorems, as well as the Lipschitz condition.

The first theorem is the fixed-point theorem, which provides a framework for establishing

the existence and uniqueness of solutions. The second theorem used is the representation

theorem for Brownian martingales. For more detailed insights and a rigorous understand-

ing of the proof, you can see ([4]) .
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Chapter §.3
Stochastic maximum principle
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Chapter 3

Stochastic maximum principle

I
n this chapter, we are interested in the following control problem, on a given filtered

probability space (Ω,F , P, (Ft)t≥0)


dxu(t) = b(t, xu(t), Pxu(t), u(t))dt+ σ(t, xu(t), Pxu(t), u(t))dB(t),

dyu(t) = −g(t, xu(t), Pxu(t), y
u(t), Pyu(t), z

u(t), Pzu(t), u(t))dt+ zu(t)dB(t),

xu (0) = x0, y
u(T ) = h(xu(T ), Pxu(T )).

(3.1)

In this context, let B(·) denote a d-dimensional Ft-Brownian motion. Here, PX(t) =

P ◦X−1 represents the probability measure of the random variable X. The control u (·) =

(u (t))t≥0 is required to take values in a subset of R and be adapted to a subfiltration

(Gt)t≥0 of (Ft). The maps

b : [0, T ]× R×Q2(R)× A→ R,

σ : [0, T ]× R×Q2(R)× A→ R,

g : [0, T ]× R×Q2(R)× R×Q2(R)× R×Q2(R)× A→ l2(R),

and

h : R×Q2(R)→ R,

are given deterministic functions. Q2(R) represents the space of all probability measures
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µ on (R× β(R)) that have finite second moments, i.e., satisfying
∫
R |x|

2 µ(dx) <∞. This

space is equipped with the 2-Wasserstein metric defined as follows: for any µ1, µ2 ∈ Q2(R),

D2 (µ1, µ2) = inf


∫
R

|x− y|2 ρ(dx, dy)

 1
2

, ρ ∈ Q2 (R) , ρ (·,R) = µ1, ρ (R, ·) = µ2

 .

The McKean-Vlasov forward-backward stochastic differential equation (3.1) is highly gen-

eral, as the coeffi cients depend on the probability law of the solution Pxu(t), Pyu(t), Pzu(t) in

a genuinely nonlinear manner within the space of probability measures.

The expected cost to be minimized over the class of admissible controls is also of McKean-

Vlasov type, which has the form

J(u(·)) = E
{∫ T

0

f(t, xu(t), Pxu(t), y
u(t), Pyu(t), z

u(t), Pzu(t), u(t))dt (3.2)

+ φ(xu(T ), Pxu(T )) + ϕ(yu(0), Pyu(0))
}
,

where f : [0, T ] × R × Q2(R) × R × Q2(R) × R × Q2(R) × A → R, φ : R × Q2(R) → R,

ϕ : R×Q2(R)→ R are deterministic functions. We remark that the cost functional (3.2)

involves the law of the solution in a nonlinear way.

3.1 Notations

Let T is a fixed terminal time and (Ω,F , P, (Ft)t≥0) be a fixed filtered probability space

equipped with a P -completed right continuous filtration on which a d-dimensional Brownian

motion B(·) = (B(t))t is defined.

We assume that Ft is P -augmentation of the natural filtration
(
F (B)
t

)
t∈[0,T ]

defined as

follows:

F (B)
t , σ {B (s) : 0 ≤ s ≤ t} ,

F0 denotes the totality of P -null sets, and F1 denotes the σ-field generated by F1, let Gt
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be a subfiltration of Ft : t ∈ [0, T ].

An admissible control is defined as a function u (·) : [0, T ]×Ω→ A, which is Gt-pedictable,

E

∫ T

0

|u(s)|2 ds < ∞, such that the equation (3.1) has a unique solution. An admissible

control u∗(·) ∈ AG ([0, T ]) is called optimal if

J (u∗(·)) , inf
u(.)∈AG([0,T ])

J (u(·)) . (3.3)

Now, we introduce the fundamental notations.

• R is the dimensional Euclidean space.

• L2(Ω,F , P,R) is the Banach space of R-valued, square integrable random variables

on (Ω,F , P ).

• l2 : denotes the hilbert space of real-valued sequences x = (xn)n≥0 such that

‖x‖ ,
[ ∞∑
n=1

xn

]2

<∞.

• l2(R) is the space of R-valued (gn)n≥1 such that

‖g‖l2(R) ,
[ ∞∑
n=1

‖gn‖2
R

] 1
2

<∞.

• L2
F ([0, T ] ;R) the Banach space of Ft-predictable processes g such that

‖g‖L2
F ([0,T ];R) , E

(∫ T

0

∞∑
n=1

‖g‖2
R dt

) 1
2

<∞,

where g = {gn(t, w) : (t, w) ∈ [0, T ]× Ω, n = 1, ...,∞} .
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• M2
F([0, T ] ;R) denotes the space of all R-valued and Ft-adapted processes such that

‖g‖M2
F ([0,T ]×Ω) , E

(∫ T

0

‖g (t)‖2
R dt

) 1
2

<∞,

where g = {g(t, w) : (t, w) ∈ [0, T ]× Ω} .

• Mn×m( R) denotes the space of n×m real matrices.

• g is a differentiable function, we denote by gx(t) = ∂
∂x
g(t,X, PX , u) its gradient with

respect to the variable x.

• EGt [X] the conditional expectation of X with respect to Gt, EGt (X) = E (X |Gt ) .

3.2 Lions differentiability

The differentiability with respect to probability measures is a powerful tool used in various

areas of mathematics, including probability theory and mathematical statistics. Its use in

proving the main result of a study is notable, and it was initially introduced by Lions. The

fundamental idea of this technique is to identify a distribution µ ∈ Q2 (R) with a random

variable X ∈ L2 (F ,R), such that µ = PX . To apply the method, it is assumed that the

probability space (Ω,F , P ) provides suffi cient richness so that for every µ ∈ Q2 (R) , there

exists a random variable X ∈ L2 (F ,R) such that µ = PX . A sub-σ field F0 ⊂ F , is

required to meet the richness assumption and must be such that the Brownian motion

B(·) is independent of F0. Furthermore, F0 must be rich enough, i.e.,

Q2 (R) , {PX : X ∈ L2 (F0,R)} .

Here, F = (Ft)t∈[0,T ] denotes the filtration generated by B (·), completed and augmented

by F0. Subsequently, for any function g : Q2 (R)→ R, we define a function g̃ : L2 (F ,R)→
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R as follows:

g̃ (X) , g(PX), X ∈ L2 (F ,R) . (3.4)

It is noteworthy that the function g̃, known as the lift of g, solely depends on the law of

X ∈ L2 (F ,R) and remains independent of the choice of representative X (refer to the

work of Buckdahn et al. ([3])).

Definition 3.2.1 A function g : Q2(R) → R is said to be differentiable at a distribution

µ0 ∈ Q2 (R) if there exists X0 ∈ L2 (F ,R) whith µ0 = PX0 such that its lift g̃ is Fréchet

differentiable at X0. More precisely, there exists a continuous linear functional Dg̃(X0) :

L2 (F ,R)→ R such that

g̃ (X0 + ξ)− g̃(X0) , 〈Dg̃(X0) · ξ〉+ o (‖ξ‖2) = Dξg(µ0) + o (‖ξ‖2) , (3.5)

where 〈·, ·〉 is the dual product on L2 (F ,R). We called Dξg(µ0) the Fréchet derivative of

g at µ0 in the direction ξ. In this case, we have

Dξg(µ0) = 〈Dg̃(X0) · ξ〉 =
d

dt
g̃ (X0 + tξ)

∣∣∣∣
t=0

with µ0 = PX0 . (3.6)

By applying Riesz Representation theorem, there is a unique random variable Θ0 ∈

L2 (F ,R) such that 〈Dg̃(X0) · ξ〉 = (Θ0 · ξ)2 = E [(Θ0 · ξ)2] where ξ ∈ L2 (F ,R) It

was shown (see the work of Buckdahn et al. ([3])) that there exists a Boral function

Φ [µ0] (·) : R → R, depending only on the law µ0 = PX0 but not on the particular choice

of the representative X0 such that

Θ0 = Φ [µ0] (X0) . (3.7)

Thus, we can write (3.5) as

g(PX)− g(PX0) = (Φ [µ0] (X0) ·X −X0)2 + o
(
‖X −X0‖2), ∀X ∈ L2 (F ,R)

)
.
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We denote

∂µg(PX0 , x) = Φ [µ0] (x) , x ∈ R.

Moreover,stop we have the following identities:

Dg̃(X0) = Θ0 = Φ [µ0] (X0) = ∂µg(PX0 , X0),

Dξg(PX0) = 〈∂µg(PX0 , X0) · ξ〉 , (3.8)

where ξ = X −X0.

For each µ ∈ Q2 (R) , ∂µg(PX , ·) = Φ [PX ] (·) is only defined in a PX(dx)− a.e.sense where

µ = PX .

Among the different notions of differentiability of a function g defined overQ2 (R) we apply

for our control problem that introduced by Lions in his lectures at Collège de France in

Paris and revised in the notes by Cardaliaguet, ([5]) we refer the reader to the work of

Buckdahn et al. ([3]) .

Definition 3.2.2 (Space of differentiable functions in Q2 (R)).

We say that the function g ∈ C1,1
b (Q2 (R)) if for all X ∈ L2 (F ,R) there exists a PX-

modification of ∂µg(PX , ·) (denoted by ∂µ g) such that ∂µg : Q2 (R) ×R → R is bounded

and Lipchitz continuous. That is, for some C > 0, it holds that

(i) |∂µg(µ, x)| ≤ C, ∀µ ∈ Q2 (R) ,∀x ∈ R;

(ii) |∂µg(µ, x)− ∂µg(µ′, x′)| ≤ C [D2 (µ, µ′) + |x− x′|] ,∀µ, µ′ ∈ Q2 (R) ,∀x, x′ ∈ R.
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Assumptions

We shall make use of the following standing assumptions on the coeffi cients.

Assumption (A1)

(i) For any t ∈ [0, T ] , ths functions b, σ are continuously differentiable in (x, µ) and g, f

are continuously differentiable in (x, y, z, u), bounded by C(1 + |x|+ |y|+ |z|+ |u|).

The function φ, h is continuously differentiable in x, and the function ϕ is continuously

differentiable in y.

(ii) The derivatives bx, bu, σx, σu are bounded.The derivatives of f with respect to (x, y, z, u)

are bounded by C(1 + |x|2 + |y|2 + |z|2 + |u|2). The derivatives φx bounded by C(1 +

|x|2), and ϕy is dominated by C(1 + |y|2). The terminal value y(T ) ∈ l2F ([0, T ] ;R) .

(iii) For all t ∈ [0, T ] , b(·, 0, 0, 0) ∈ L2
F([0, T ] ;R), g(·, 0, 0, 0, 0, 0, 0, 0) ∈ L2

F([0, T ] ;R),

σ (·, 0, 0, 0) ∈M2
F([0, T ] ;R).

Assumption (A2)

The functions b, σ, g, f, h, φ, ϕ ∈ C1,1
b (Q2 (R)) , and the derivatives ∂Pxµ b, ∂Pxµ σ,

(∂Pxµ , ∂Pyµ , ∂Pzµ )(g, f), ∂Pxµ h, ∂Pxµ φ, ∂Pyµ ϕ are bounded and Lipchitz continuous, such that, for

some C > 0, it holds that

(i)
∣∣∂Pxµ ρ (t, x, µ)

∣∣ ≤ C, and
∣∣∂Pxµ ρ (t, x, µ)− ∂Pxµ ρ (t, x′, µ′)

∣∣ ≤ C(D2(µ, µ′) + |x− x′|),

∀µ, µ′ ∈ Q2 (R) ,∀x, x′ ∈ R for ρ = b, σ;

(ii)
∣∣∂Pxµ ρ (x, µ)

∣∣ ≤ C, ∀µ ∈ Q2 (R) , ∀x ∈ R, and
∣∣∂Pxµ ρ (x, µ)− ∂Pxµ ρ (x′, µ′)

∣∣ ≤ C (D2(µ, µ′)+

|x− x′|), ∀µ, µ′ ∈ Q2

(
Rd
)
,∀x, x′ ∈ R, for ρ = Φ, h;

(iii)
∣∣∣(∂Pxµ , ∂

Py
µ , ∂Pzµ

)
ρ(t, x, µ1, y, µ2, z, µ3)

∣∣∣ ≤ C ,and

∣∣(∂Pxµ , ∂Pyµ , ∂Pzµ
)
ρ(t, x, µ1, y, µ2, z, µ3)−

(
∂Pxµ , ∂Pyµ , ∂Pzµ

)
ρ(t, x′, µ′1, y

′, µ′2, z
′, µ′3)

∣∣
≤ C(|x− x′|+ |y − y′|+ |z − z′|+ D2(µ1, µ

′
1) + D2(µ2, µ

′
2) + D2(µ3, µ

′
3)),
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∀µ1, µ
′
1 ∈ Q2 (R) ,∀µ2, µ

′
2 ∈ Q2 (R) , and∀µ3, µ

′
3 ∈ Q2 (R). In addition, ∀x, x′ ∈ R,∀y, y′ ∈

R,∀z, z′ ∈ R, and, for ρ = g, f.

Clearly, under the above Assumptions (A1) − (A2), for each u(·) ∈ AG([0, T ]), the

McKean-Vlasov—type FBSDE (3.1) admits a unique strong solution (xu(·), yu(·), zu(·)) ∈

R× R×Mm×d (R)× l2 (R) such that

xu(t) = x0 +

∫ t

0

b(s, xu(s), Pxu(s), u(s))ds+

∫ t

0

σ(s, xu(s), Pxu(s), u(s))dB(s),

yu(t) = yu(T )−
∫ T

t

g(s, xu(s), Pxu(s), y
u(s), Pyu(s), z

u(s), Pzu(s), u(s))ds

+

∫ T

t

zu(s)dB(s).

Let
(

Ω̂,F , P̂
)
represent a copy of the probability space (Ω,F , P ). For any pair of ran-

dom variables (Z, ξ) ∈ L2(F ,R) × L2(F ,R), we define
(
Ẑ, ξ̂

)
as an independent copy of

(Z, ξ) on
(

Ω̂,F , P̂
)
. We consider the product probability space

(
Ω× Ω̂,F ⊗ F , P ⊗ P̂

)
,

and we define (Ẑ, ξ̂)(w, ŵ) = (Z(ŵ), ξ(ŵ)) for any (w, ŵ) ∈ Ω × Ω̂. Similarly, we let

(û∗ (t) , x̂∗ (t) , ŷ∗ (t) , ẑ∗ (t)) be an independent copy of (u∗(t), x∗(t), y∗(t), z∗(t)), ensuring

that Px∗(t) = P̂x̂∗(t), Py∗(t) = P̂ŷ∗(t), Pz∗(t) = P̂ẑ∗(t). Expectations under the probability

measure P are denoted by Ê [·]. Let us represent by

b̂Pxµ (t) = ∂Pxµ b(t, x∗(t), Px∗(t), u
∗(t); x̂∗(t)),

b̂∗µ(t) = ∂Pxµ b(t, x̂∗(t), Px∗(t), û
∗(t);x∗(t)),

σ̂Pxµ (t) = ∂Pxµ σ(t, x∗(t), Px∗(t), u
∗(t); x̂∗(t)),

σ̂∗µ(t) = ∂Pxµ σ(t, x̂∗(t), Px∗(t), û
∗(t);x∗(t)),
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for g, f and ξ = x, y, z

ĝ
Pξ
µ (t) = ∂

Pξ
µ g(t, x∗(t), Px∗(t), y

∗(t), Py∗(t), z
∗(t), Pz∗(t), u

∗(t); ξ̂∗(t)),

ĝ
Pξ,∗
µ (t) = ∂

Pξ
µ g(t, x̂∗(t), Px∗(t), ŷ

∗(t), Py∗(t), ẑ
∗(t), Pz∗(t), u

∗(t); ξ∗(t)),

f̂
Pξ
µ (t) = ∂

Pξ
µ f(t, x∗(t), Px∗(t), y

∗(t), Py∗(t), z
∗(t), Pz∗(t), u

∗(t); ξ̂∗(t)),

f̂
Pξ,∗
µ (t) = ∂

Pξ
µ f(t, x̂∗(t), Px∗(t), ŷ

∗(t), Py∗(t), ẑ
∗(t), Pz∗(t), u

∗(t); ξ∗(t)),

and

ĥµ(t) = ∂Pxµ h
(
x∗(T ), Px∗(T ); x̂

∗(T )
)
,

ĥ∗µ(t) = ∂Pxµ h
(
x̂∗(T ), Px∗(T );x

∗(T )
)
,

φ̂µ(t) = ∂Pxµ A
(
x∗(T ), Px∗(T ); x̂

∗(T )
)
,

φ̂∗µ(t) = ∂Pxµ A
(
x̂∗(T ), Px∗(T );x

∗(T )
)
.

We denote

ϕ̂µ (t) = ∂Pyµ ϕ(y∗(0), Py∗(0); ŷ
∗(0)),

ϕ̂∗µ(T ) = ∂Pyµ ϕ(ŷ∗(0), Py∗(0); y
∗(0)).

The adjoint equations associated with the stochastic maximum principle for the control

problem (3.1)− (3.2) defined by:



dΦ (t) = −{bx(t)Φ (t) + Ê
[
∂Pxµ b(t)Φ (t)

]
+ σx(t)Q(t) + Ê

[
∂Pxµ σ(t)Q(t)

]
−gx(t)K(t)− Ê

[
∂Pxµ g(t)K(t)

]
+ fx(t) + Ê

[
∂Pxµ f(t)

]
}dt+Q(t)dB(t),

Φ (T ) = −
[
hx
(
x(T ), Px(T )

)
K(T ) + Ê

(
∂Pxµ h(x(T ), Px(T )

)
K(T ))

]
+Φx(x(T ), Px(T )) + Ê[∂Pxµ Φ(x(T ), Px(T ))].

dK (t) =
[
gy(t)K(t) + Ê

[
∂
Py
µ g(t)K(t)

]
− fy(t)− Ê(∂

Py
µ f(t))

]
dt

+
[
gz(t)K(t) + Ê

[
∂Pzµ g(t)K(t)

]
− fz(t)− Ê[∂Pzµ f(t)]

]
dB(t),

K(0) = −
[
ϕy
(
y(0), Py(0)

)
+ Ê(∂

Py
µ ϕ

(
y(0), Py(0)

)]
.

(3.9)
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The mean-field structure of equation (3.9) is apparent as it arises from the terms involving

Fréchet. However, if the coeffi cients do not explicitly depend on the law of the solution,

these terms can be simplified, reducing the equation to a standard Backward Stochastic

Differential Equation (BSDE). The well-posedness of the backward stochastic equation in

(3.9) is established by theorem 3.1 in the work of Buckdahn et al. ([1]). To be more pre-

cise, assuming Assumptions (A1) and (A2), the Forward-Backward Stochastic Differential

Equation (FBSDE) (3.9) admits a unique F-adapted solution (Φ (·) , Q (·) ,K (·)).

The Hamiltonian function H associated with the McKean-Vlasov stochastic control prob-

lem (3.1)− (3.2) is defined as follows:

H(t, x, Px, y, Py, z, Pz, u,Φ (.) , Q (.) ,K(.))

= f(t, x, Px, y, Py, z, Pz, u) + Φ (t) b(t, x, Px, u) +Q(t)σ(t, x, Px, u)

−K(t)g(t, x, Px, y, Py, z, Pz, u),

where (Φ (·) , Q (·) ,K (·)) solution of (3.9). conesquently, if we define

H(t) = H(t, x, Px, y, Py, z, Pz, u,Φ (·) , u,Q (·) ,K(·)),

then, the adjoint equation (3.9), we can express it as follows:



dΦ (t) = −[Hx(t) + Ê
[
∂Pxµ H(t)

]
]dt+Q(t)dB(t),

Φ (T ) = −[hx
(
x(T ), Px(T )

)
K(T ) + Ê

(
∂Pxµ h(x(T ), Px(T )

)
K(T ))]

+φx(x(T ), Px(T )) + Ê[∂Pxµ φ(x(T ), Px(T ))].

dK(t) = −
(
Hy(t) + Ê

[
∂
Py
µ H(t)

])
dt− (Hz(t) + Ê

[
∂Pzµ H(t)

]
)dB(t),

K(0) = −
[
ϕy
(
y(0), Py(0)

)
+ Ê(∂

Py
µ ϕ

(
y(0), Py(0)

)
)
]
.

(3.10)

Given the well-known fact and assumptions (A1) and (A2), we can state that the ad-

joint equation (3.9)or (3.10) possesses a unique solution satisfying (Φ (·) , Q (·) ,K (·)) ∈

L2
F ([0, T ] ;R)× l2F ([0, T ] ;R) .
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3.3 Necessary optimality conditions

In this section, we establish the necessary conditions for optimal control in the form of the

Pontryagin maximum principle, using Lions derivatives. The control system is governed

by McKean-Vlasov FBSDEs. In addition to the hypotheses (A1) , (A2), we introduce the

following assumptions:

Assumption (A3)

For any u(·), v(·) ∈ AG([0, T ]) with v(·) bounded, there exists a positive value δ > 0 such

that u (·) + θv (·) ∈ AG([0, T ]) for all θ ∈ (−δ, δ). Now, given a u (·) , v (·) ∈ AG([0, T ] with

v (·) bounded, we define

X1(t) = Xu∗,v
1 (t) := d

dθ

[
xu
∗+θv(t)

]∣∣∣
θ=0

,

Y1(t) = Y u∗,v
1 (t) := d

dθ

[
yu
∗+θv(t)

]∣∣
θ=0

,

Z1(t) = Zu,v
1 (t) := d

dθ

[
zu
∗+θv(t)

]∣∣
θ=0

,

where
(
xu
∗+θv(·), yu∗+θv(·), zu∗+θv(·)

)
represents the solution of Equation (3.1) correspond-

ing to (u∗ + θv). It should be noted that the process (X1(·), Y1(·), Z1(·)) satisfies the

following linear McKean-Vlasov FBSDE, known as the variational equations, which are

governed by the Brownian motion B(t):

dX1(t) =
[
bx (t)X1 (t) + Ê

(
∂Pxµ b(t)X̂1(t)

)
+ bu(t)v(t)

]
dt (3.11)

+
[
σxX1(t) + Ê

(
∂Pxµ σ(t)X̂1(t)

)
+ σu(t)v(t)

]
dB(t).

dY1(t) =
[
gx (t)X1 (t) + Ê

(
∂Pxµ g(t)X̂1(t)

)
+ gy (t)Y1 (t) + Ê

(
∂Pyµ g(t)Ŷ1(t)

)
+gz (t)Y1 (t) + Ê

(
∂Pzµ g(t)Ẑ1(t)

)
+ gu(t)v(t)

]
dt+ Z1(t)dB(t),

Y1(T ) =
[
hx
(
x(T ), Px(T )

)
+ Ê

(
∂Pxµ h(x(T ), P

x(T )

)]
X1(T ).

The main result of this section is stated in the following theorem.

Let u∗(·) be a local minimum for the cost functional J over the class of admissible controls
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AG([0, T ]). Specifically, for all bounded v(·) ∈ AG([0, T ]), there exists a positive value

δ > 0 such that ((u∗(·) + θv(·)) ∈ AG([0, T ]) for all θ ∈ (−δ, δ), and the functional

J (θ) = J((u∗(·) + θv(·)) achieves its minimum at θ = 0,

d

dθ
[J (θ)]

∣∣∣∣
θ=0

=
d

dθ
J(u∗(t) + θv(t))

∣∣∣∣
θ=0

= 0, for all θ ∈ (−δ, δ), (3.12)

Under assumptions (A1)− (A3) are satisfied, let (x∗(·), y∗(·), z∗(·)) denote the solution

of the McKean-Vlasov FBSDE (3.1) corresponding to u∗(·) on a given filtered probability

space (Ω,F , P, (Ft)t≥0). Then, there exists a unique adapted process (Φ∗ (·) , Q∗ (·) ,K∗(t))

that solves (3.9) such that u∗(.) is a stationary point for EGt(H). This implies that for

almost all t ∈ [0, T ], we have

EGt [Hu(t, x
∗, Px∗ , y

∗, Py∗ , z
∗, Pz∗ , u

∗,Φ∗ (·) , Q∗ (·) ,K∗(t))] = 0, a.e. (3.13)

In order to prove this result stated in Theorem 3.3.1, the following technical lemma will

be useful in the subsequent analysis.

Lemma 3.3.1 Applying Itô’s formula to the processes Φ∗(t)X1(t),K∗(t)Y1(t), and taking

expectations, we obtain the following expression:

(Φ∗(T )X1(T )) + E(K∗(T )Y1(T )) (3.14)

= −E
[(
ϕy
(
y (0) , Py(0)

)
+ Ê

(
∂
py∗
µ ϕ

(
y (0) , Py(0)

)))
Y1 (0)

]
− E

∫ T

0

{X1(t)
[
fx (t) + Ê

(
∂px∗µ f (t)

)]
+ Y1 (t)

[
fy (t) + Ê

(
∂
py∗
µ f (t)

)]
+ Z1 (t)

[
fz (t) + Ê

(
∂pz∗µ f (t)

)]
+ fu (t) v (t)}dt+ E

∫ T

0

Hu (t) v (t) dt.
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Proof. By applying Itô’s formula to Φ∗(t)X1(t) and take expectation, we obtain

E(Φ∗(T )X1(T )) (3.15)

= E
∫ T

0

Φ∗(t)dX1(t) + E
∫ T

0

X1(t)dΦ∗(t)

+ E
∫ T

0

Q∗ (t)
[
σx (t)X1 (t) + Ê

(
∂pxµ σ (t) X̂1 (t)

)
+ σx (t) v (t)

]
dt

= I1,1 + I1,2 + I1,3,

where

I1,1 = E
∫ T

0

Φ∗(t)dX1(t)

= E
∫ T

0

Φ∗(t)
[
bx (t)X1(t) + Ê

(
∂Pxµ b (t) X̂1 (t)

)
+ bu (t) v (t)

]
dt

= E
∫ T

0

Φ∗(t)bx (t)X1(t)dt+ E
∫ T

0
Φ∗(t)Ê

(
∂Pxµ b (t)X1(t)

)
dt

+E
∫ T

0

Φ∗(t)bu (t) v (t) dt.

By simple computations, we have

I1,2 = E
∫ T

0

X1(t)dΦ∗(t) = −E
∫ T

0

X1(t){bx (t) Φ∗(t) + Ê
(
∂Pxµ b (t)

)
Φ∗(t) (3.16)

+
(
σx (t)Q∗ (t) + Ê

(
∂Pxµ σ (t)Q∗ (t)

))
− gx (t)K (t)− Ê

(
∂Pxµ f (t)K (t)

)
+ fx (t) + Ê

(
∂Pxµ f (t)

)
}dt.

Using the same argument as before, one can demonstrate that:

I1,3 = E
∫ T

0

Q∗ (t)
[
σx (t)X1(t) + Ê

(
∂Px∗µ σ (t) X̂1 (t)

)
+ σu (t) v (t)

]
dt (3.17)

= E
∫ T

0

Q∗ (t)σx (t)X1 (t) dt+ E
∫ T

0

Q∗ (t) Ê
(
∂px∗µ σ (t) X̂1 (t)

)
dt

+ E
∫ T

0

Q∗ (t)σu (t) v (t) dt.
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Combining equations (3.15) to (3.17), we obtain the following expression:

E (Φ∗(T )X1 (T )) = E
∫ T

0

Φ∗(t)bu (t) v (t) dt+ E
∫ T

0

Q∗ (t)σu (t) v (t) dt (3.18)

− E
∫ T

0

X1 (t)
(
fx (t) + Ê

(
∂Px∗µ f (t)

))
dt

− E
∫ T

0

X1 (t)
[
gx (t)K (t)− Ê

(
∂Pxµ g (t)K (t)

)]
dt.

Similarly, by applying Itô’s formula to K∗(t)Y1 (t) and take expectation, obtain the follow-

ing expression:

E (K∗(T )Y1(T )) = −E
{(
ϕy
(
y (0) , Py(0)

))
+ Ê

(
∂px∗µ ϕ

(
y (0) , Py(0)

))
Y1 (0)

}
(3.19)

+ E
∫ T

0

{K∗ (t) gx (t)X1 (t) +K∗ (t) Ê
(
∂Pxµ g (t) X̂1 (t)

)
+K∗ (t) gu (t) v (t)− Y1 (t)

[
fy (t) + Ê

(
∂Pyµ f (t)

)]
− Z1 (t)

[
fz (t) + Ê

(
∂Pzµ f (t)

)]
dt.

Finally, the desired result (3.14) is fulfilled from combining (3.18) and (3.19).

Proof of Theorem 3.3.1. From (3.12) and by differentiating J (θ) with respect to θ at

θ = 0, we have

d

dθ
[J (θ)]

∣∣∣∣
θ=0

= E
∫ T

0

[fx (t)X1 (t) + Ê
(
∂Pxµ f (t) X̂1 (t)

)
(3.20)

+ fy (t)Y1 (t) + Ê
(
∂Pyµ f (t) Ŷ1 (t)

)
+ fz (t)Z1 (t) + Ê

(
∂Pzµ f (t) Ẑ1 (t)

)
+ fu (t) v (t)]dt

+ E
[
Φx

(
x∗ (T ) , Px∗(T )

)
X1 (T ) + Ê

(
∂Pxµ Φ

(
x∗ (T ) , Px∗(T )

)
X̂1 (t)

)]
+ E

[
ϕy
(
y∗ (0) , Py∗(0)

)
Y1 (0) + Ê

(
∂Pyµ ϕ

(
y∗ (0) , Py∗(0)

)
Ŷ1 (t)

)]
= 0.
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From (3.20) and (3.14), we obtain

E
∫ T

0

[Φ∗ (t) bu (t) +Q∗ (t)σu (t) +K (t) gu (t) + fu (t)] v (t) dt = 0.

From (3.2), we obtain

E
∫ T

0

H (t, x∗, Px∗ , y
∗, Py∗ , z

∗, Pz∗ , u
∗,Φ∗ (·) , Q∗ (·) ,K∗ (t)) v (t) dt = 0, (3.21)

Since remains true for all bounded Gt-measurable, we have t ∈ [0, T ]

EGt [Hu (t, x∗, Px∗ , y
∗, Py∗ , z

∗, Pz∗ , u
∗ (t) ,Φ∗ (t) , Q∗ (t) ,K∗ (t))] = 0 a.e.,

then (3.13) is fulfilled.
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Conclusion

I In this master dissertation, we have discussed the necessary conditions for optimal

control of general controlled McKean-Vlasov FBSDEs, via the differentiability with

respect to probability law. This kind of problem, which has a lot of applications in

mathematical finance and economics.
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Appendix A: Abbreviations and

Notations

The different abbreviations and notations used throughout this thesis are explained below:

(Ω,F , P, (Ft)t≥0) Complete probability space.

FBt Filtration generated by the Brownian motion B.

B Brownian motion.

a.e. Almost everywhere.

a.s. Almost surely.

H(t) Hamiltonian function.

SDE Stochastic differential equations.

BSDE Backward stochastic differential equation.

Q2 (R) The space of all probability measures µ on (R,B (R)).

L2 (⊗,F , P,Rn) Banach space of R-valued, square integrable random variables.

AG ([0, T ]) Set of all admissible controls.

L2
F ([0, T ] ;Rn) Banach space of Ft-predictable processes.

M2
F([0, T ] ;Rn) Space of all Rn-valued and Ft-adapted processes.

EGt [X] Conditional expectation of X.

l2 Hilbert space of real-valued sequences.

Gt a subfiltration of Ft.
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 الملخص 

تتعلق  الأولى  النتيجة   . ن مهمتي  ن  نتيجتي  عرض  هو  الاطروحة  هذه  من  الأساسي  الهدف  ان 

التفاضلية   والمعادلات  العشوائية  التفاضلية  للمعادلات  بالنسبة  الحل  ووحدانية  بوجود 

التحكم   مشكلة  تحقيق  على  تركز  الثانية  النتيجة  ية.  ن الليبشت  الحالة  ي 
فن اجعية  التر العشوائية 

ي تتضمن المعادلات التفاضلية العامة من نوع  الأمثل العشوائ
ي    McKean-Vlasovية التر

والتر

ن وحركة براونية مستقلة.   يقودها قانون معي 

Abstract 

     The main objective of this thesis is to present two important 

results. The first is the existence and uniqueness of solutions for 

(backward-forward) stochastic differential equations in the 

Lipschitz case. The second result focuses on investigating a 

stochastic optimal control problem involving general McKean-

Vlasov-type forward-backward differential equations are driven by 

a given law and an independent Brownian motion. 

 

 

 

 

 

 

Résumé 

    L'objectif principal de cette thèse est de présenter deux résultats 

importants. Le premier est l'existence et l'unicité des solutions pour 

les équations différentielles stochastiques (rétrograde) dans le cas 

de Lipschitz. Le deuxième résultat se concentre sur l'étude d'un 

problème de contrôle optimal stochastique impliquant des 

équations différentielles stochastique (rétrograde) générales de 

type McKean-Vlasov régies par une loi donnée et un mouvement 

brownien indépendant. 
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