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Introduction

Dynamical systems have received great attention because of their wide applications in

the real world in various fields. These systems can range from simple models of physical

systems, such as the motion of a pendulum, to more complex models of biological, chemical,

and ecological systems.

One of the fundamental concepts in the study of dynamical systems is attractors. The

study of attractors in dynamical systems has a long and rich history, dating back to the

early 20th century. Attractors were initially studied in the context of simple linear systems,

and they were found to exhibit stable, predictable behavior.

In the latter half of the 20th century, researchers began to study more complex nonlinear

systems, and they discovered that these systems could exhibit much more complex and

interesting behavior. The most prominent of which is the Lorenz system proposed by him

in 1963, which opened the door to the study of chaotic systems. We can classify chaotic

attractors into two categories: self-excited attractors and hidden attractors.

Self-excited attractors were first discovered in the 1970s by the mathematician Ana-

toliy Zhabotinsky, who was studying a chemical reaction system known as the Belousov-

Zhabotinsky reaction. Zhabotinsky observed that the system exhibited spontaneous oscil-

lations, which he hypothesized were due to the presence of a self-excited attractor. This

was a surprising result, as self-excited attractors were not thought to exist in chemical

systems at the time.

In the 1990s, researchers began to study the phenomenon of hidden attractors. Hidden
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Introduction

attractors were discovered in a variety of nonlinear systems, including electronic circuits,

biological models, and mechanical systems.

The study of self-excited and hidden attractors has since become an active and rapidly

evolving field of research, with applications in a wide range of areas, including chaos-based

cryptography and secure communications.

We will divide our work into three chapters. The first chapter summarizes general

concepts about dynamic systems, such as types of dynamic systems, stability, bifurcations,

and flows, and then we will define attractors and chaos as a prelude to the second chapter.

The subject’s main focus is in the second chapter, in which we will address the definition

and examples of each of the self-excited and hidden attractors. We will also introduce the

analytical-numerical procedure for hidden attractors localization, we will support it with

a numerical example titled "Hidden Attractor Localization in Chua’s System".

One of the popular applications of our topic is cryptography, which is a new application

under development. That is why, in chapter three we will highlight the applications of

attraction analysis in the field of cryptography.

We will study the sensitivity of the initial values and parameters of the three-dimensional

system known as the multi-attribute chaotic system (MACS), we will use this system to

generate PRNG, and we will finally check its effectiveness if it passes all the statistical

tests.
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Chapter 1

Dynamical Systems and Chaos

1.1 Dynamical System

Dynamical systems are our models of reality; they are how we describe the world around us,

especially how things change and coevolve in time, so dynamical systems are fundamentally

linked to time and how systems change in time.

They are our models for the evolving world around us, so they describes the rich behavior

of maxing fluids; and how we build models that we would use to design rockets and land

them; we use dynamical systems to understand the brain disease networks; and social

networks.

1.2 Definition of Dynamical System

Definition 1.2.1 A dynamical system is a mathematical formalization for any fixed rule

which describes the dependence of the position of a point in some ambient space on a

parameter.[3]

Let x = x (t) ∈ Rn and t ∈ I ⊆ R.

The dynamic system is usually written in the following form

3



Chapter 1. Dynamical Systems and Chaos

dx

dt
= f(x, t, µ), (1.1)

where f (x, t, µ) is suffi ciently smooth function defined on some subset Rn×R×Rm. The

variable t is interpreted as time, and the function f (x, t, µ) is generally nonlinear. The

variable µ is vector of parameters.

1.3 Classification of Dynamical Systems

Dynamical system can be:

1. Discrete Dynamical System: The rule is applied at discrete times (the natural

numbers N or the integers Z). The system is typically specified by a set of equations,

such as difference equations (or maps). In this case, the dynamical system can be

solved by iterative calculation.

In other words

xn+1 = f(xn) = f(f(xn−1)) = · · ·

In the form

xn+1 = f(xn) = f 2(xn−1) = · · ·

2. Continuous Dynamical System: Is essentially the limit of discrete systems with

smaller and smaller updating times [1] (t ∈ I ⊆ R) , it is represented by differential

equations.

The continuous system written as

dx

dt
= ẋ = f(x, t), x ∈ Rn, t ∈ R.

4



Chapter 1. Dynamical Systems and Chaos

3. Linear Dynamical System: The function f must satisfy two properties: additivity

(f (x+ y) = f (x) + f (y)) and homogeneity (f(ax) = af (x)).

4. Nonlinear Dynamical System: Is described by a nonlinear function. It does not

satisfy the previous basic properties. Nonlinear systems are harder to solve than

linear systems. They are important in describing phenomena; examples include

physical science, biology , ecology, and chemistry.

5. Deterministic Dynamical System: Is one which behavior is entirely predictable

(its entire future course and its entire past are uniquely determined by its state at

the present time).[6]

6. Stochastic Dynamical System: Is one in which behavior cannot be entirely pre-

dicted; it’s also called non deterministic.

There is another type called a semi-deterministic dynamical system (determined but

not uniquely).

7. Autonomous Dynamical System: The right-hand side of the equation (1.1) is

explicitly time independent, for example

αẋ+ βx = 0, α, β > 0.

8. Nonautonomous Dynamical System: The right-hand side of the equation (1.1)

is explicitly time dependent, for example

αẋ+ βx = f cos(ωt), α, β > 0,

where f is amplitude of driving force, and ω is frequency of driving force.

5



Chapter 1. Dynamical Systems and Chaos

Either Or
Discrete continuous
Linear Nonlinear
Deterministic Stochastic
Autonomous Nonautonomous

Table 1.1: Classification of Dynamical Systems

Remark 1.3.1 We will take care of our studies with continuous, deterministic and non-

linear dynamical systems.

1.4 Examples of Dynamical Systems

• Ordinary Differential Equations: This is the general form of the ordinary differential

equation

ẋ = f(x, t)

ẋ =
tx2

3
= f(x, t), is non-autonomous

ẋ =
x

3
= f(x), is autonomous

• The free pendulum: The pendulum is usually subject to gravity, with an acceleration

g. The gravitational force is pointing vertically downward with strength mg and has

a component −mg sinϕ along the circle described by the point mass. Here ϕ is the

deflection, the distance of the point mass from the "rest position"(ϕ = 0), measured

along the circle of all its possible positions, then is lϕ.

So, the equation of motion of the pendulum is:

ϕ
′′
= −g

l
sinϕ.

This means that the evolutions are given by the functions t 7→ ϕ (t) that satisfy the

6
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equation of motion of the pendulum.[2]

1.5 Flows

Consider the dynamical system:

ẋ = f(x, t) x ∈ U ⊆ Rn, t ∈ I ⊆ R. (1.2)

The flow of (1.2) is defined by φt (x) : U → Rn, where φt (x) = φ(t,x) is a smooth vector

function of x ∈ U ⊆ Rnand t ∈ I ⊆ R satisfying the equation:

d

dt
φt (x) = f(φt (x) , t),

for all t such that the solution through x exists and φ(0,x) = x.[6]

1.6 Equilibrium Point

The equilibrium points of a system play an important role in describing the properties of

the system, they are also known as a critical point, a fixed point, or a stationary point.

1.6.1 Equilibrium Points of Continuous Dynamical System:

A point is an equilibrium point of the flow generated by an autonomous system

ẋ = f(x),x ∈ Rn if and only if φ(t,x) = x for all t ∈ R. Consequently, in a continuous

system, this gives ẋ = 0⇒ f(x) = 0.

For nonautonomous systems equilibrium point can be defined for a fixed time interval.

Flows on a line may have no fixed points (ẋ = 4), only one fixed point (ẋ = x+ 3), finite

number of fixed points(ẋ = x2− 1, two fixed points), or an infinite number of fixed points

(ẋ = sinx).[6]

7
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1.6.2 Fixed Points of Discrete Dynamical System:

Consider a discrete dynamical system

xk+1 = f(xk), k ∈ Z,

a is called fixed point if:

a = f(a).

For example:

xk+1 = rxk, k ∈ Z,

to find the fixed points we solve the following equation:

a = ra,

a(1− r) = 0, r 6= 1 a = 0 (only one fixed point)

r = 1 0× a = 0 (infinite number of fixed points)

1.7 The Stability

The question of stability is significant because a real-world system is constantly subject

to small perturbations. Stability means that the system does not change too much un-

der small perturbations. Therefore, a steady state observed in a realistic system must

correspond to a stable fixed point.

1.7.1 Stability in the sense of Lyapunov:

A fixed point, say x0 is said to be stable in the sense of Lyapunov if for a given ε > 0, there

exists a δ > 0 depending upon ε such that for all t > t0, ‖x(t)− x0(t)‖ < ε, whenever

8
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‖x(t0)− x0(t0)‖ < δ, where ‖.‖ : Rn → R denotes the norm of a vector in Rn. Otherwise,

the fixed point is called unstable.

1.7.2 The asymptotically stability

x0 is said to be asymptotically stable in the sense of Lyapunov if it is Lyapunov stable

and limt→∞ ‖x(t)− x0(t)‖ = 0.

1.7.3 The exponentially stability

x0 is said to be exponentially stable in the sense of Lyapunov if it is asymptotically stable

and there exist α, β > 0, ‖x(t)− x0(t)‖ ≤ α ‖x(t0)− x0(t0)‖ e−βt, for all t ≥ 0.

1.8 Theory of Bifurcations

The name "bifurcation" was first introduced by the French mathematician Henri Poincaré

in 1885. Bifurcation theory is a useful and widely studied subfield of dynamical systems

[1]

In dynamical systems, a bifurcation occurs when a small smooth change made to the

parameter values of a system causes a sudden "qualitative" or topological change in its

behavior.

The study of bifurcation is concerned with how structural change occurs when the para-

meter(s) are changing. The point at which bifurcation occurs is known as the bifurcation

point. The diagram of the parameter values versus the fixed points of the system is known

as the bifurcation diagram. It’s very useful in understanding the dynamical behavior of a

system.

Bifurcations associated with a single parameter are called 1-codimension bifurcations, and

bifurcations associated with two parameters are known as 2-codiemension bifurcations.[6]

9



Chapter 1. Dynamical Systems and Chaos

1.9 Attractors

Now we turn to an important part of dynamical systems, the "attractor".

In 1963, Edward Lorenz studied and simplified a remarkable system of three differential

equations, which represented a flow in three-dimensional space:


dx
dt
= a(y − x),

dy
dt
= x(b− z)− y,

dz
dt
= xy − cz.

The divergence of the flow has a constant negative value, so that any volume shrinks

exponentially with time. Moreover, there exists a bounded region in R into which every

trajectory becomes eventually trapped. Therefore, all trajectories tend to a set of measure

zero, called attractors.

At first, the Lorenz system was used to treat weather prediction phenomena, and it was

developed later by Lanford (1975) and Pomeau (1976), and it has become widely used and

has many applications in reality.

Definition 1.9.1 Attractors are portions or subsets of the phase space of a dynamical sys-

tem towards which the system tends to evolve towards it, whatever it’s starting conditions.

1.9.1 Types of Attractors

There are three states of attractors:

Fixed-point Attractor

A fixed point attractor is the simplest state of an attractor. This attractor is represented

by a particular point in phase space.

A fixed point attractor is classified as a regular attractor, and it corresponds to a very

limited range of possible behaviors of the system.

10
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Periodic Attractor

Also called a limit cycle attractor, it consists of a periodic movement between two or more

values.

Moreover, periodic attractor is also classified as a regular attractor. Compared to the fixed

point attractor, it represents more possibilities for the behavior of the system.

Strange Attractor

The term strange attractor was coined by David Ruelle and Floris Takens in 1971 in their

article entitled "On the Nature of Turbulence" (to describe the attractor resulting from a

series of bifurcations of a system describing fluid flow).

Strange attractors are more complicated than others, we have now moved on to the chaotic

attractors.

Strange attractors are complex geometric shapes that characterize the evolution of chaotic

systems. After a period of time, all points in the phase space (which belong to the basin

of attraction to the attractor) give trajectories that tend to form the strange attractor.

The strange attractor has the following properties:

1. It shows sensitivity to initial conditions.

2. The dimensions of the attractor are fractal, not integer.

1.10 Chaos

Back to meteorologist Edward Lorenz, who first described the chaotic motion in at-

mospheric flows in the year 1963. When plotting the solution structure in a three-

dimensional Euclidean space, we see that it resembles the surface of two wings of a but-

terfly, known as a strange attractor with fractional dimension.

11



Chapter 1. Dynamical Systems and Chaos

The sensitive dependence of dynamical evolution on an infinitesimal change of initial

conditions is called "the butterfly effect". In 1972, Lorenz wondered about the butterfly

effect: "Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?", and he

said that it was diffi cult to predict the long-range climate conditions correctly. Then he

summed up the concept of chaos with the following statement: "Chaos: When the present

determines the future, but the approximate present does not approximately determine the

future.".

Chaotic nonlinear dynamics is of great importance in the current era, as it has wide

applications in computer science, physics, chemistry, biology, and industry.... Chaos theory

received great attention in the twentieth century. Scientists at the time defined it as

follows: "Chaos is the unpredictability".
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Figure 1.1: Chaotic Attractor of Lorenz
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Definition 1.10.1 There is still no valid definition of chaos, but we can say that it is the

study of systems that have a very complex evolution.

1.10.1 Characteristics of Chaos

Among the most important characteristics of chaos are the following:

1. The nonlinearity: A chaotic system is a nonlinear dynamical system. The system

is linear, it cannot be chaotic.

2. The sensitivity to the initial conditions: A small change in the initial conditions

of a system can lead to radically different behavior in its final state.

3. The unpredictable: This is due to sensitivity to initial conditions.

4. Strange attractor: We defined it earlier.

5. The determinism: Although the time evolution obeys strict deterministic laws,

the system seems to behave according to its own free will.[6]

6. The Fractal Structure: There are connections with chaos and fractal objects.

13



Chapter 2

Self Excited and Hidden Attractors

The theory of nonlinear dynamical systems is one of the fastest growing branches of applied

mathematics. After Lorenz proposed the first simple three-dimensional chaotic system,

chaos theory categorized itself as an important branch of nonlinear dynamics, it has a

broad range of applications in chemistry, ecology, secure communication systems, image

and sound encryption, etc.

We can classify chaotic attractors into two categories: self-excited attractors and hidden

attractors.

In April 1992, a fighter jet crashed while descending. The cause of the crash was a flight

control software error that failed to prevent a pilot-induced oscillation. Despite the fact

that the pilot was not injured, a crash like this revealed the fundamental requirement to

investigate such peculiar oscillations in the aircraft’s control system. Such attractors are

generally known as hidden attractors.

In 2010, the two scientists Kuznetsov and Leonov presented their research on finding a

chaotic hidden attractor in a generalized circle of Chua (for the first time), followed by

the discovery of a chaotic hidden attractor in a classical circle of Chua in 2011 (by the

scientist Leonov’s). Hidden attractants were later found in Lorenz type systems, chaotic

flows, and others.

14



Chapitre 2. Self Excited and Hidden Attractors

So what is the definition of both self-excited and hidden attractants? And how are hidden

attractants found?

2.1 Self-Excited Attractors

Definition 2.1.1 An attractor is called a self-excited attractor if its basin of attraction

intersects with any open neighborhood of an unstable equilibrium point.[13]

Self-excited attractors can be localized numerically by a standard computational proce-

dure, in which, after a transient process, a trajectory started from a point of unstable

manifold in the neighborhood of equilibrium, reaches an attractor and identifies it.

Consider classical examples of visualization of self-excited oscillations:

Example 2.1.1 [Rayleigh’s string oscillator]

In 1990, Rayleigh discovered that in a two-dimensional nonlinear dynamical system can

arise undamped vibrations without external periodic action (limit cycles).

Consider the localization of the limit cycle in the Rayleigh system

ẍ− (a− bẋ2)ẋ+ x = 0,

for a = 1, b = 0.1, a limit cycle is localized by two trajectories, attracting to the limit cycle.

Example 2.1.2 [Lorenz system]

Consider Lorenz system 
dx
dt
= a(y − x),

dy
dt
= x(b− z)− y,

dz
dt
= xy − cz.

For classical parameters a = 10, b = 8
3
, c = 28, the Lorenz attractor is self-excited with

respect to all three equilibria and could have been found using the standard computational

procedure.

15



Chapitre 2. Self Excited and Hidden Attractors

2.2 Hidden Attractors

Definition 2.2.1 Hidden attractors have a basin of attraction that does not intersect with

any open neighborhoods of equilibria.[11]

Remark 2.2.1 From a computational point of view, hidden attractors can be classified

into three categories: hidden attractors with stable equilibrium points, hidden attractors

with no equilibrium points, and hidden attractors with infinitely many equilibrium points.

2.2.1 Analytical—numerical procedure for hidden attractors lo-

calization

The following stages are a description of the algorithm used to detect hidden attractors

in Leonov’s works:

Step 1

Consider the system
dx

dt
=Mx+ qψ(rTx),x ∈ Rn, (2.1)

where M is a constant n × n-matrix, q, r are constant n-dimensional vectors, ψ(σ) is a

piecewise-continuous scalar function, and ψ(0) = 0.

Step 2

Define a coeffi cient of harmonic linearization h in such a way that the matrix (suppose

that such h exists)

M0 =M + hqrT , (2.2)

has a pair of purely imaginary eigenvalues ±ι̇ω0(ω0 > 0) and the rest of its eigenvalues

16



Chapitre 2. Self Excited and Hidden Attractors

have negative real parts. Then system (2.1) can be rewritten as

dx

dt
=M0x+ qϕ(rTx), (2.3)

where ϕ(σ) = ψ(σ)− hσ.

Step 3

Introduce a finite sequence of functions ϕ0(σ), ϕ1(σ), . . . , ϕm(σ) in such a way that the

graphs of neighboring functions ϕj(σ) and ϕj+1(σ) slightly differ from one another

(j = 0, . . . ,m− 1), the function ϕ0(σ) is small, and ϕm(σ) = ϕ(σ).

Taking into account the smallness of the function ϕ0(σ) we can use and justify mathemat-

ically strictly the method of harmonic linearization (the describing function method) for

the system
dx

dt
=M0x+ qϕ0(rTx), (2.4)

and determine a stable nontrivial periodic solution x0(t). Then for the localization of an

attractor of the original system (2.3) we shall numerically follow the transformation of

this periodic solution with increasing j. All the points of this stable periodic solution are

located in the domain of attraction of the stable periodic solution x1(t) of the system

dx

dt
=M0x+ qϕj(rTx), (2.5)

with j = 1, or when passing from (2.4) to system (2.5) with j = 1, we observe the

instability bifurcation destroying periodic solution. It is possible to find x1(t) numerically

in the first case, starting a trajectory of system (2.5) with j = 1 from the initial point

x0(0).

Starting from the initial point, after the transient process, the computational procedure

reaches the periodic solution x1(t) and computes it (here it should be considered a suffi -
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ciently large computational interval [0, T ]).

After the computation of x1(t) it is possible to obtain a periodic trajectory x2(t) of system

(2.5) with j = 2 starting from the initial point x2(0) = x1(T ).

Proceeding this procedure and computing xj(t), using the trajectories of system(2.5) with

the initial data xj(0) = xj−1(T ). Or observe, at a certain step, the instability bifurcation

destroying the periodic solution.

It turns out that for system (2.4) with such function ϕ0(σ), it is possible to justify rigor-

ously the method of harmonic linearization and to determine the initial conditions under

which system (2.4) has a stable periodic solution that is close to the harmonic one.

Step 4 (System reduction)

To define the initial point x0(0) of starting periodic solution, the system (2.4) with the

nonlinearity ϕ0(σ) is transformed by a linear nonsingular transformation x = HY to the

form

ẏ1 = −ω0y2 + v1ϕ
0(y1 + uT3 Y3), (2.6)

ẏ2 = ω0y1 + v2ϕ
0(y1 + uT3 Y3),

Ẏ3 = A3Y3 + V3ϕ
0(y1 + uT3 Y3).

Here y1, y2 are scalars, Y3 is (n− 2)-dimensional vector; V3 and u3 are (n− 2)-dimensional

vectors, v1 and v2 are real numbers; A3 is an ((n − 2) × (n − 2))- matrix, all eigenvalues

of which have negative real parts. Without loss of generality, it can be assumed that for

the matrix A3 there exists a positive number d > 0 such that

Y T
3 (A3 + AT3 )Y3 ≤ −2d |Y3|

2 , ∀Y3 ∈ Rn−2. (2.7)
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Let us present a transfer function of system(2.4)

W1(p) = rT (M0 − pI)−1q =
ηp+ θ

p2 + ω20
+
R(p)

Q(p)
, (2.8)

and the transfer function of system (2.6):

W2(p) =
−v1p+ v2ω0
p2 + ω20

+ uT3 (A3 − pI)−1V3. (2.9)

Here η and θ are certain real numbers, Q(p) is a stable polynomial of degree (n− 2), R(p)

is a polynomial of degree smaller than (n− 2). Suppose, the polynomials Q(p) and R(p)

have no common roots.

From the equivalence of systems (2.4) and (2.6), it follows that the transfer functions of

these systems coincide.

This implies the following relations

η = −v1,

θ = v2ω0,

uT3 V3 + v1 = rT q,

R(p)

Q(p)
= uT3 (A3 − pI)−1V3.
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Step 5 (Poincaré map for harmonic linearization in the noncritical case)

Consider system (2.6) with nonlinearity ϕ0(σ) = εϕ(σ) (ε is classical small positive para-

meter)

ẏ1 = −ω0y2 + v1εϕ(y1 + uT3 Y3), (2.10)

ẏ2 = ω0y1 + v2εϕ(y1 + uT3 Y3),

Ẏ3 = A3Y3 + V3εϕ(y1 + uT3 Y3),

where ϕ(σ) is a piecewise-differentiable function with discontinuity points υi.

Introduce the following description function

φ(a) =

∫ 2π/ω0

0

ϕ(cos(ω0t)a cos(ω0t)dt. (2.11)

The existence of a derivative of the describing function results in the following:

Theorem 2.2.1 [8]Suppose that there exists a number a0 > 0, a0 6= |υi| such that the

conditions

φ(a0) = 0, v1
dφ(a)

da

∣∣∣∣
a=a0

< 0

are satisfied. Then for suffi ciently small ε > 0 system (2.10) has a periodic solution of the

form

y1(t) = cos(ω0t)y1(0) +O(ε),

y2(t) = sin(ω0t)y1(0) +O(ε), t ∈ [0, T ]

Y3(t) = exp(A3t)Y3(0) +On−2(ε),
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with the initial data

y1(0) = a0 +O(ε),

y2(0) = 0,

Y3(0) = On−2(ε),

and with the period

T =
2π

ω0
+O(ε).

Here On−2(ε) is an (n− 2)-dimensional vector such that its components are O(ε).

Corollary 2.2.1 [8]Suppose that there exists a number a0 > 0, a0 6= |υi| such that the

conditions

φ(a0) = 0, η
dφ(a)

da

∣∣∣∣
a=a0

> 0 (because η = −v1)

are satisfied. Then, for a suffi ciently small ε > 0 system (2.4) with transfer function (2.8)

and the nonlinearity ϕ0(σ) = εϕ(σ) has a T -periodic solution such that

rTx(t) = a0 cos(ω0t) +O(ε),

T =
2π

ω0
+O(ε).

The previous theorem describes the procedure of the search for stable periodic solutions

by the standard describing function method.
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2.2.2 Hidden Attractor Localization in Chua’s System

Consider the following smooth Chua’s system


ẋ = α(y − x)− αf(x),

ẏ = x− y + z,

ż = −(βy + γz),

here the function

f(x) = m1x+ (m0 −m1)sat(x), sat(x) =
1

2
(|x+ 1| − |x− 1|),

f(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|),

is called Chua’s diode; it describes a nonlinear element of system.

m0,m1, α, β, γ are parameters of the classical Chua’s system.

Write Chua’s system in the form (2.1)

dx

dt
=Mx+ qψ(rTx),x ∈ R3, (2.12)

Here

M =


−α(m1 + 1) α 0

1 −1 1

0 −β −γ

 ,

q =


−α

0

0

 , r =


1

0

0

 ,

ψ(σ) = (m0 −m1)sat(σ).
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Introduce a coeffi cient h and a small parameter ε, and represent system (2.12) as

dx

dt
=M0x+ qεϕ(rTx), (2.13)

where

M0 =M + hqrT

=


−α(m1 + 1) α 0

1 −1 1

0 −β −γ

+ h


−α

0

0


(
1 0 0

)

=


−α(m1 + 1) α 0

1 −1 1

0 −β −γ

+ h


−α 0 0

0 0 0

0 0 0



=


−α(m1 + 1 + h) α 0

1 −1 1

0 −β −γ

 ,

and

λM0
1,2 = ±ι̇ω0, λM0

3 = −d,

ϕ(σ) = ψ(σ)− hσ = (m0 −m1)sat(σ)− hσ.

Using a nonsingular linear transformation x = HY, it is possible to transform system

(2.13) into the form
dY

dt
= AY + V εϕ(uTY ), (2.14)
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where

A =


0 −ω0 0

ω0 0 0

0 0 −d

 , V =


v1

v2

1

 , u =


1

0

−`

 .

The transfer function WA(p) of system (2.14) can be represented as

WA(p) =
−v1p+ v2ω0
p2 + ω20

+
`

p+ d
.

Then, using the equality of transfer functions

WA(p) = rT (M0 − pI)−1q

of system (2.13) and system (2.14), one can obtain

h =
−α(m1 +m1γ + γ) + ω20 − γ − β

α(1 + γ)
, (2.15)

d =
α + ω20 − β + 1 + γ + γ2

1 + γ
,

` =
α(γ + β − (1 + γ)d+ d2)

ω20 + d2
,

v1 =
α(γ + β − ω20 − (1 + γ)d)

ω20 + d2
,

v2 =
α((1 + γ − d)ω20 + (γ + β)d)

ω0(ω20 + d2)
.

Since system (2.13) transforms into system (2.14) by nonsingular linear conversion

x = HY , therefore, the matrix H satisfies the following equations

A = H−1M0H, V = H−1q, uT = rTH. (2.16)
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Having solved these matrix equations, one can obtain the transformation matrix

H =


s11 s12 s13

s21 s22 s23

s31 s32 s33

 ,

where

s11 = 1, s12 = 0, s13 = −`,

s21 = m1 + 1 + h, s22 = −
ω0
α
,

s23 = −
`(α(m1 + 1 + h)− d)

α
,

s31 =
α(m1 + h)− ω20

α
,

s32 = −
α(β + γ)(m1 + h) + αβ − γω20

αω0
,

s33 = `
α(m1 + h)(d− 1) + d(1 + α− d)

α
.

For small enough ε one can obtain the initial data

x(0) = HY (0) = H


a0

0

0

 =


a0s11

a0s21

a0s31

 .

For the determination of initial data of starting solution for multistage procedure, one can

obtain

x(0) = a0, y(0) = a0(m1 + 1 + h), z(0) = a0
α(m1 + h)− ω20

α
. (2.17)
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Consider system (2.13) with the parameters

α = 8.4562, (2.18)

β = 12.0732,

γ = 0.0052,

m0 = −0.1768,

m1 = −1.1468.

Now let us apply the above procedure of hidden attractors localization to Chua’s sys-

tem (2.12) with parameters (2.18). For this purpose, compute a coeffi cient of harmonic

linearization and a starting frequency:

h = 0.2098, ω0 = 2.0392.

Then, compute solutions of system (2.13) with nonlinearity εϕ(x) = ε(ψ(x) − h(x)),

sequentially increasing ε from the value ε1 = 0.1 to ε10 = 1 with step 0.1.

By (2.15) and (2.17), the initial data can be obtained

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705,

for the first step of multistage procedure.

For ε1 = 0.1 after the transient process, the computational procedure arrives at a periodic

solution close to the harmonic one. Further, with increasing parameter ε this periodic

solution close to the harmonic one is transformed into a chaotic attractor.

Additionally, the set a hidden is calculated for the original Chua’s system (2.12) using
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Figure 2.1: ALGORITHM FOR LOCALIZING CHUA ATTRACTORS

numerical methods and the sequential transformation xj(t) with increasing parameter εj

(figure 2.1).

The behavior of system trajectories in a neighborhood of equilibria is shown in figure (2.2).

Here M st
1 ,M

st
2 are are stable manifolds, M

unSt
1 ,MunSt

2 are unstable manifolds, F0 is stable

zero equilibrium, S1, S2 are two symmetric saddles, Ahidden is a hidden chaotic attractor

(in green).
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Figure 2.2: Equilibria, saddles manifolds, hidden attractor localization.
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Chapter 3

Application:Chaos-Based

Cryptographic

Researchers have focused a lot of effort on the localization and analysis of attractors in

dynamical systems due to their wide possible application in various fields like cryptography,

encryption, brain dynamics, the financial market, and many more.

In this chapter, we will highlight the applications of attraction analysis in the field of

cryptography.

It has been observed in many recent studies that numerous properties of chaotic systems

are similar to their counterparts in traditional cryptography. However, the sensitivity of

the initial values and parameters of the chaotic systems used in cryptographic applications

greatly influences the security levels of cryptographic schemes. Complex chaotic behaviors

and high sensitivity to both initial values and parameters are characteristics of chaotic

systems with coexisting attractors. These systems would therefore be appropriate for

cryptography applications.

We now introduce a new simple 3D chaotic system, named the multi-attribute chaotic

system (MACS).
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Mathematically, it is defined as


dx
dt
= −y,

dy
dt
= x+ δyz,

dz
dt
= σ |f(x)| − by2 − az − µ,

(3.1)

where x, y and z are the state variables, and a, b, δ, σ, µ are the constant parameters of the

system, and |f(x)| is given by either |cos(x)| or |sin(x)| (nonlinear controller).

The system is rotationally symmetric under the transformation (x, y, z) −→ (−x,−y, z).

• Case 1 a, b, δ, σ > 0, µ = 0 and |f(x)| = |cos(x)| .

The equilibria can be obtained by solving the equations:


−y = 0,

x+ δyz = 0,

σ |cos(x)| − by2 − az = 0.

(3.2)

From the equations (3.2), case 1 of MACS has only one equilibrium with the following

form:

Eq1(0, 0,
σ

a
).

Type of system: Self-excited attractor with one unstable hyperbolic equilibrium.

• Case 2 b, δ, σ > 0, a = µ = 0 and |f(x)| = |cos(x)| .

The equilibria can be obtained by solving the equations:


−y = 0,

x+ δyz = 0,

σ |cos(x)| − by2 = 0.

(3.3)
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Figure 3.1: Two coexisting attractors of case 1

The last equation of system (3.3) is inconsistent since σ > 0. Thus, there is no

equilibrium in system (3.3).

Type of system: Hidden attractor with no equilibrium.

• Case 3 b, σ, µ > 0, a = δ > 0 and |f(x)| = |sin(x)| .

The equilibria can be obtained by solving the equations:


−y = 0,

x+ δyz = 0,

σ |sin(x)| − by2 − δz − µ = 0.

(3.4)

From the equations (3.4), one can observe that case 3 of MACS has only one equi-

librium

Eq2(0, 0,
−µ
δ
).

Type of system: Hidden attractor with one stable equilibrium.
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Figure 3.2: Three coexisting attractors of case 1

3.1 Various kinds of multistability behaviors

Multistability (coexisting) attractors basically mean that a system has two or more solu-

tions simultaneously under the same set of parameters and different initial values.

Extremely multistability behaviors of self-excited and hidden attractors of the MACS are

investigated using numerical simulations.[11]

We summarize the cases in the following table(3.1).

It can be inferred from the analysis above that the MACS is highly sensitive to initial values

and parameters because we can observe the attractive and interesting multisubstance

phenomenon of the three cases of the MACS.

3.2 Chaos-based PRNG

3.2.1 What is the PRNG?

A pseudo-random number generator (PRNG) is an algorithm that generates a sequence of

numbers that appear to be random but are actually generated by a deterministic process.

PRNG uses a deterministic algorithm to generate a sequence of numbers that has statistical

32



Chapitre 3.Application:Chaos-Based Cryptographic

­10 ­5 0 5 10­8

­6

­4

­2

0

2

4

6

8

x

y

A5

­10 ­5 0 5 10­10

­5

0

5

10

15

y

z

A6

Figure 3.3: Three coexisting attractors of case 1
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Figure 3.4: Four coexisting attractors of case 2

properties that are similar to true random numbers.

The need for a pseudo-random number generator arises in many cryptographic appli-

cations; for example, common cryptosystems employ keys, auxiliary quantities used in

generating digital signatures, and data hiding. If a chaotic system possesses certain char-

acteristics, such as high sensitivity to initial values and parameters, good complexity

performance, and high randomness, it can provide a good PRNG.

We noted above the high sensitivity of the MACS by producing various types of coex-

isting attractors by changing its initial values. Such systems might be inappropriate for
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Figure 3.5: Two coexisting chaotic attractors of case 3

cryptographic applications if the PRNG generates from regions of coexisting chaotic with

periodic attractors. It follows that we must identify the initial values and parameters that

demonstrate coexisting chaotic attractors.

As an example, this section discusses how to construct a PRNG based on Case 2 of MACS.

3.2.2 Lyapunov exponents and Kaplan-Yorke dimension

To generate PRNG from case 2 of MACS, we need to determine the parameters that

show coexisting chaotic attractors. We chose δ = 1.2, which produces chaotic behavior for

the given four initial values. However, to examine the broad range of initial values, the

behavior case 2 versus varying one and two of initial values are investigated. The Largest

Lyapunov exponents (LLE) and Kaplan-Yorke dimension versus varying one of the initial

values between −5 and 5 are determined.

The LLE-based contour plots are also shown in the reference [11], where two of the initial

values are simultaneously changing in the range of [−5, 5] with a step size of 0.1, while the

other initial value is fixed at 1.

These two results indicate that case 2 shows fractional dimension chaotic or coexisting

chaotic attractors when one or even two of the initial values vary in the range of [−5, 5].
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Name Parameters Initial values Attractor type Figure
Case 1 b = 0.47 (2,−2,−1) (blue) limit cycle 3.1

(0.5,−2, 0) (green) S-E C attractor
(1.8, 0.3, 0) (red) S-E C attractor

Case 1 b = 1.4 (−1.8, 0.3, 0) (black) S-E C attractor 3.2
(0.5,−2, 0) (green) limit cycle
(2,−2,−1) (blue) limit cycle

Case 1 b = 1.93 (1.8, 0.3, 0) (red) limit cycle 3.3
(0.5,−2, 0) (green) limit cycle
(1.8, 0.3, 0) (blue) H C attractor

Case 2 δ = 1.82 (−1.8, 0.3, 0) (red) H C attractor 3.4
(5, 0,−5) (black) H C attractor
(5, 3,−3) (green) H C attractor

Case 3 b = 0.3 (1,−1, 1) (green) H C attractor 3.5
(1,−1,−4) (black) H C attractor

Table 3.1: Details of the attractors shown in figs

3.2.3 Sample Entropy

There are numerous measures that can be used to quantify the complexity of a dynamical

system, such as Sample Entropy, Approximate Entropy, and Multiscale Entropy. We select

Sample Entropy (SamEn) because it has excellent properties of simplicity, robustness, and

fast calculation.

The Sample Entropy (SampEn) algorithm is a statistical method used for measuring the

complexity of a time-series signal.

Suppose that the time series (yi, i = 0, · · · , N−1) with a length of N. Here is the algorithm

for computing the SampEn:

1) Phase-space reconstruction: for a given embedding dimension n and time delay τ , the

reconstruction sequences are provided by

Yi = {yi, yi+τ , · · · , yi+(n−1)τ}, yi ∈ Rn,

where i = 1, · · · , N − n+ τ.
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2) Counting the vector pairs: let Bi be the number of vector Yj , such that

d(Yi, Yj) ≤ s, i 6= j,

where s is the tolerance parameter, and d(Yi, Yj) is defined by

d(Yi, Yj) = max{|y(i+ k)− y(j + k)| : 0 ≤ k ≤ n− 1}.

3) Calculating probability: according to the obtained number of vector pairs, we can

obtain

Cn
i (s) =

Bi

N−(n−1)τ
,

then calculate the probability by

φn(s) =

∑
N−(n−1)τ
i=1 ln(Cn

i (s))

[N−(n−1)τ ]
.

4) Calculating SamEn: we can obtain φn+1(s) by repeating the above steps, then SamEn

is given by

SamEn(n, s,N) = φn(s)− φn+1(s).

In our study, we fix n = 2, τ = 1 and s = 0.2× SD (SD is times standard deviation).

SamEn of case 2 with one of the initial values between −5 and 5 is determined.

The SamEn of case 2 is also shown in the reference [11], where two of the initial values

vary in the range of [−5, 0] and [0, 5] with a step size of 0.03.

The generation procedures of the PRNG are shown in figure(3.6), where a new algorithm

based on case 2 is proposed. Reference [11] shows that the highest standards of statistical

packages were used, which is NIST-800-22, and our PRNGs were able to pass all statistical

tests.
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Figure 3.6: The flowchart of generating PRNG
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Conclusion

This work has been divided into three chapters. In the first chapter, we introduced

concepts about dynamical systems and their studies, we discussed the definition of dy-

namical system and its types, then we presented definitions of basic concepts in the study

of dynamical systems: flows, equilibrium points, stability, and bifurcations. We also made

it clear that the three-dimensional nonlinear systems would be highlighted. At the last

step, we defined the concepts of attractors and chaos as a prelude to the second chapter.

In the second chapter, which was titled "Self Excited and Hidden Attractors", we de-

fined each of the self-excited and hidden attractors. Then, in five steps, we introduced the

analytical-numerical procedure for hidden attractors localization. To explain the previous

steps, we chose Chua’s system as an applied example. Moving on to the real side, in

chapter three we introduced one of the most important applications of self-excited and

hidden attractors, which is cryptography. We introduced a three-dimensional system with

parameters; after studying it, the system showed sensitivity to initial values and parame-

ters, and it was chosen to generate PRNG. This chapter was provided with figures and

diagrams, and the system proved its effectiveness by passing all the statistical tests.

While self-excited and hidden attractors have some limitations, their many positive points

and applications make them a fascinating and important topic in dynamical systems the-

ory. As a student studying self-excited and hidden attractors, I can share my future goals

and aspirations for research in this field. I aspire to make new discoveries about the

behavior of these systems as well as new applications in other fields.
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Annex A: Programs in MATLAB

3.3 Lorenz System

sigma = 10;

beta = 8/3;

rho = 28;

x0 = [1;1;1];

tspan = [0,100];

dt = 0.01;

f=@(t,x) [sigma*(x(2)-x(1));...

x(1)*(rho-x(3))-x(2);...

x(1)*x(2)-beta*x(3)];

[t,x] = ode45(f,tspan,x0);

figure;

plot3(x(:,1),x(:,2),x(:,3),’b’,’LineWidth’,1);

xlabel(’x’); ylabel(’y’); zlabel(’z’);

title(’Numerical localization of chaotic attractor in Lorenz system’);

3.4 MACS System

a=0.5;

b=.47
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Annex A : Programs in MATLAB.

sigma = 17;

rho = .63;

u=0;

x01 = [2;-2;-1];

tspan = [0,200];

dt = 0.0001;

f=@(t,x) [-x(2);...

x(1)+rho*x(2)*x(3);...

sigma*abs(cos(x(1)))-b*x(2)^2-a*x(3)-u];

[t,x1] = ode45(f,tspan,x01);

x02 = [0.5;-2;0];

[t,x2] = ode45(f,tspan,x02);

subplot(1,2,1)

plot(x1(:,1),x1(:,2),’b’,’LineWidth’,1);xlabel(’x’); ylabel(’y’);

hold on

plot(x2(:,1),x2(:,2),’g’,’LineWidth’,1);

xlabel(’x’); ylabel(’y’);

subplot(1,2,2)

plot(x1(:,2),x1(:,3),’b’,’LineWidth’,1);

xlabel(’y’); ylabel(’z’);

hold on

plot(x2(:,2),x2(:,3),’g’,’LineWidth’,1);

xlabel(’y’); ylabel(’z’);

%This algorithm is for A1 and A2, and the rest is done in the same way.
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Annex B: Abbreviations and

Notation

Rn The set of real numbers power n.

R The set of real numbers.

Z The set of integers.

N The set of natural numbers.

S-E C Self-excited chaotic.

H C Hidden chaotic.
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 الملخص

 

There is still no valid definition of chaos, but we can say that it is the study of systems that have 

had a very complex evolution. Chaotic attractors are classified into two types: self-excited 

attractors and hidden attractors. We presented the objective of this Master's Thesis in three 

chapters: the first chapter summarizes definitions about dynamical systems; the second chapter 

provides definitions about self-excited attractors and hidden attractors; we introduced the 

analytical-numerical procedure for hidden attractors localization; the last chapter is interesting, 

that presents an important application that falls under the title "Chaos-Based Cryptographic", we 

have already proven the success of this cryptographic application. 

Keywords: Dynamic systems, chaos, self-excited attractors, hidden attractors, cryptographic. 

Il n'y a toujours pas de définition valable du chaos, mais on peut dire que c'est l'étude de 

systèmes qui ont eu une évolution très complexe. Les attracteurs chaotiques sont classés en deux 

types : les attracteurs auto-excités et les attracteurs cachés. Pour atteindre notre objectif, le 

mémoire est divisé en trois chapitres : le premier chapitre résume les notions de base sur les 

systèmes dynamiques ; le deuxième chapitre fournit des définitions sur les attracteurs auto-

excités et les attracteurs cachés et la différence entre eux; nous avons introduit la procédure 

analytique-numérique pour la localisation des attracteurs cachés ; le dernier chapitre est  

intéressant qui présente une application importante qui relève du titre "Chaos-Based 

Cryptographic", et nous avons déjà prouvé le succès de cet application de chiffrement.  

Les mots clés : Les systèmes dynamiques, chaos, les attracteurs auto-excités, les attracteurs 

cachés, chiffrement. 

لا يوجد حتى الآن تعريف دليك للفوضى،  لكن يمكننا المول إنها دراسة الأنظمة التي كان لها تطور معمد للغاية. تصنف 

المخفية. للوصول الى الهدف لسمنا هذه المذكرة الى   الفوضوية إلى فئتين: الجاذبات ذاتية الإثارة والجاذبات الجاذبات

ثلاثة فصول: الفصل الأول يلخص المفاهيم الاساسية  حول الأنظمة الديناميكية. يمدم الفصل الثاني تعريفات حول 

مخفية؛  الجاذبات  ذاتية الاثارة والجاذبات المخفية و الفرق بينهما. لدمنا طريمة تحليلية و عددية لتحديد الجاذبات ال

والفصل الأخير هو فصل مثير للاهتمام يمدم تطبيماً مهمًا يندرج تحت عنوان "التشفير المائم على الفوضى"، ولد أثبتنا 

 بالفعل نجاح تطبيك التشفير هذا.

 المخفية، التشفير. الأنظمة الديناميكية، الفوضى، الجاذبات ذاتية الإثارة، الجاذبات : الكلمات المفتاحية
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