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Introduction

This master�s dissertation investigates stochastic optimal control problems concern-

ing forward-backward di¤erential equations. These equations are driven by Teugels

martingales and involve a Lévy process with moments of all orders, as well as an inde-

pendent Brownian motion. Our control problem is stated as follows:

� Given a �ltered probability space (
;F ; P; (Ft)t�0) and a control u(�) valued in some

subset of Rk, we consider the following system

8>>>>>>>>>><>>>>>>>>>>:

dxu(t) = b (t; xu(t); u (t)) dt+
Xd

i=1
gi (t; xu(t); u (t)) dW i(t)

+
X1

i=1
ci (t; xu (t�) ; u(t)) dH

i(t);

dyu(t) = �f(t; xu(t); yu(t); zu(t); ru(t); u(t))dt+
Xd

i=1
zu;i(t)dW i(t)

+
X1

i=1
ru;i(t�)dH

i(t);

xu(0) = x0; y
u(T ) = h(xu(T ));

(1)

where W (�) is a d-dimensional Ft-Brownian motion. The Teugels martingales H(t) =

(H i(t))i�1 considered in this study are pairwise strongly orthonormal. These martingales

are associated with a Lévy process that possesses moments of all orders. The control

u(�) = (u(t))t�0 is adapted to a sub�ltration (Gt)t�0 of (Ft). xu(t�) = lims!t;s<t x
u(s);

t > 0 the left limit process.
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Introduction

The maps

b : [0; T ]� Rn � A! Rn; g : [0; T ]� Rn � A! Rn�d;

c : [0; T ]� Rn � A! l2(Rn); h : Rn ! Rm;

f : [0; T ]� Rn � Rm � Rm�d � Rm � A! l2(Rm);

are given deterministic functions.

� The objective is to minimize the expected cost over a class of admissible controls, char-

acterized by the following form:

J(u (�)) = E
�Z T

0

`(t; xu(t); yu(t); zu(t); ru(t); u(t))dt+ �(xu(T )) + '(yu(0))

�
; (2)

where

� : Rn ! R; ' : Rm ! R;

` : [0; T ]� Rn � Rm � Rm�d � Rm � A! R;

are deterministic functions. Several researchers have examined stochastic processes that

are in�uenced by Teugels martingales, which are associated with speci�c Lévy processes

and independent Brownian motions, see, for example ([2]), ([5]), ([3]), ([6]).

Partial information means that the information available to the controller is possibly

less than the whole information. That is, any admissible control is adapted to a sub-

�ltration (Gt)t of (Ft)t ; t � 0. This kind of problem, which has a lot of applications in

mathematical �nance and economics, arises naturally, because it may fail to obtain an

admissible control with full information in real-world applications. Meng ([3]) has in-

vestigated a maximum principle for an optimal control problem involving fully coupled

forward-backward stochastic systems under partial information. Wang et al. ([7]) es-

tablished the partial information maximum principle of optimality for SDEs. Partially

observed optimal control problems of general McKean�Vlasov di¤erential equations has

been studied by Lakhdari et al. ([1]). Necessary conditions for partially observed optimal

control of general McKean�Vlasov stochastic di¤erential equations with jumps has been

proved by Miloudi et al. ([4]).
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Introduction

This study is based on part of the work of Meherrem and Hafayed ([2]), where the authors

proved the stochastic maximum principle for optimal control of McKean-Vlasov FBSDEs

with Lévy process via the di¤erentiability with respect to probability law.

This work has three chapters.

Chapter 1 (Stochastic optimal control): This chapter is an introduction that intro-

duces the necessary tools for the second and third chapters.

Chapter 2 (Necessary conditions of optimality): The aim of this chapter is to

study the necessary conditions of optimality for partial information stochastic optimal

control problem of forward-backward di¤erential equations driven by Teugels martingales

associated with some Lévy process having moments of all orders and an independent

Brownian motion.

Chapter 3 (Su¢ cient conditions of optimality): In this chapter, we derive su¢ -

cient conditions of optimality for our control problem (1) - (2). Under some additional

assumptions, the necessary conditions studied in chapter 2 are su¢ cient conditions for

optimality.

3



Chapter 1. Stochastic optimal control

Chapter §.1
Stochastic optimal control

4



Chapter 1

Stochastic optimal control

This chapter is essentially an introduction, aiming to highlight the tools used in our

study. We provide some basic reminders regarding stochastic calculus.

1.1 Stochastic processes

Consider a probability space (
;F ; P ), where 
 is the sample space, F is the �-algebra of

events, and P is the probability measure. Let T be a non-empty index set. A stochastic

process is a collection of n-dimensional random variables fX (t) : t 2 Tg that map from

(
;F ; P ) to the set of real numbers Rn. For any w 2 
, the function t ! X (t; w) is

known as a sample path of the stochastic process.

De�nition 1.1.1 (Random variable): We call a random variable (real-valued)

X : (
;F)! (R;B (R)) ;

any measurable function, that is:

fw 2 
 : X (w) 2 Bg = fX 2 Bg 2 F ;8B 2 B (R) ;

5



Chapter 1. Stochastic optimal control

where B (R) is the Borel sigma-algebra.

De�nition 1.1.2 (Generated sigma-algebra): The sigma-algebra generated by a ran-

dom variable X de�ned on (
;F) is the set

� (X) =
�
X�1 (A) : A 2 "

	
;

where X�1 (A) = fw 2 
 : X (w) 2 Ag ; which is the smallest sigma-algebra of 
 that

"makes X measurable".

De�nition 1.1.3 (Natural �ltration): Let X = (Xt; t � 0) be a stochastic process on

the probability space (
;F ; P ). The natural �ltration of X is denoted by FX
t and is de�ned

by FX
t = �(Xs : 0 � s � t). Furthermore, the �ltration generated by X is also referred to

as FX
t .

De�nition 1.1.4 (Stochastic processes): A stochastic process de�ned on (
;F ; P )

with T as the index set and (E; �) as the state space is called a family of random variables

(Xt; t 2 T ). For every w 2 
, the mapping t 2 [0; T ]! Xt(!) is called the trajectory (or

realization) of the corresponding process X.

De�nition 1.1.5 (Brownian motion): A stochastic process (W (t) ; t � 0) is said to

be a standard Brownian motion if it satis�es the following conditions:

� P [W (0) = 0] = 1:

� For each w 2 
, the function t! W (t; w) is continuous almost surely with respect

to the probability measure P .

� For all s � t, the random variable W (t)�W (s) is normally distributed with mean

0 and variance (t� s), that is, W (t)�W (s) � N (0; t� s) :

� For any positive integer n and any non-decreasing sequence of times 0 � t0 � t1 �

::: � tn;
�
Wtn �Wtn�1 ; :::;Wt1 �Wt0 ;Wt0

�
are independents.

6



Chapter 1. Stochastic optimal control

De�nition 1.1.6 (Adapt-measurable-progressively measurable):

� A process X is measurable if the application (t; w)! Xt (w) from R+ � 
 to Rd is

measurable with respect to the tribu B (R+)
F and B
�
Rd
�
:

� A process X is adapted with respect to the �ltration fFtgt�0 if, for all t � 0, Xt is

Ft-measurable.

� A process X is progressively measurable with respect tofFtgt�0 if for all t � 0;

the application (s; w) ! Xs (w) from [0; t]� 
 to Rd is measurable with respect to

B ([0; t])
Ft and B
�
Rd
�
:

Remark 1.1.1 A progressively measurable process is measurable and adapted.

Proposition 1.1.1 If X is a stochastic process whose trajectories are right-continuous

(or left-continuous), then X is measurable and X is progressively measurable if it is also

adapted.

1.2 Conditional expectation

De�nition 1.2.1 (Conditional expectation with respect to a �-algebra): Let X

be a real-valued random variable (integrable ; i:e:; X 2 L1) de�ned on (
;F ; P ) ; and let

G be a sub-sigma-algebra of F : The conditional expectation E [X jG ] of X given G is the

unique random variable:

� G-measurable.

�
R
A
E [X jG ] dP=

R
A
X dP; 8A 2 G:

It is also the unique (up to almost sure equality) G-measurable random variable such that:

E [Y E [X jG ]] = E [XY ] ;

7



Chapter 1. Stochastic optimal control

for any bounded Y , G-measurable variable.

Proposition 1.2.1 (Properties of conditional expectation): Let (
;F ; P ) be a given

probability space, and let G be a sub-sigma-algebra of F . Let X and Y be two random

variables de�ned on (
;F ; P )

� Linearity: For any constants a and b, we have

E (aX + bY jG ) = aE (X jG ) + bE (Y jG ) :

� Monotonicity: If X and Y are random variables such that X � Y , then

E (X jG ) � E (Y jG ) :

� If X is G-measurable, then E (X jG ) = X.

� E [E [X jG ]] = E [X].

De�nition 1.2.2 (Continuous-time martingale): A process (Xt)t�0 adapted with re-

spect to a �ltration fFtgt�0 and such that for all t � 0; Xt 2 L1 is called:

� A martingale if for s � t : E [Xt jFs ] = Xs:

� A supermartingale if for s � t : E [Xt jFs ] � Xs:

� A submartingale if for s � t : E [Xt jFs ] � Xs:

� If X est une martingale E [Xt] = E [X0] ;8t:

� If (Xt; t � T ) is a martingale, the process is completely determined by its terminal

value: Xt = E [XT jFt ] : This latter property is very frequently used in �nance.

8



Chapter 1. Stochastic optimal control

Theorem 1.2.1 (Brownian martingale representation theorem): Let (Ft)0�t�T be

the natural �ltration of the Brownian motion (Wt)0�t�T : Let M be a square integrable

continuous martingale with respect to (Ft)0�t�T : Then there exists a unique predictable

process H such that:

E
�Z T

t

H2
sds

�
< +1;

for all t 2 [0; T ] and:

Mt =M0 +

Z t

0

HsdWs; P -p:s.

1.3 Lévy processes

Let
�

;F ; fFtgt�0 ; P

�
be a �ltered probability space.

De�nition 1.3.1 (Lévy process): An Ft adapted process fL (t)gt�0 = fLtgt�0 � R is

called a Lévy process if it satisties :

� L0 = 0 a.s.

� Lt is continuous in probability.

� Lt is stationary, independent increments.

Theorem 1.3.1 Let fLtg be a Lévy process. Then Lt has a càdlàg version (right continu-

ous with left limits) which is also a Lévy process.

The jump of Lt at t > 0 is de�ned by

�Lt = Lt � Lt�.

Let B0 be the family of Borel sets U � R whose closure U does not contain 0. For U 2 B0

we de�ne

N (t; U) = N (t; U; w) =
X
0�s�t

�u (�Ls) :

9



Chapter 1. Stochastic optimal control

In other words, N(t; U) is the number of jumps of size �Lt 2 U which occur before or

at time t. N(t; U) is called the Poisson random measure (or jump measure) of L(t) The

di¤erential form of this measure is written N(dt; dz).

Example 1.3.1 (Brownian motion):

Brownian motion fW (t)gt�0 has stationary and independent increments. Thus W (t) is a

Lévy process.

Example 1.3.2 (The Poisson process):

The Poisson process �(t) of intensity � > 0 is a Lévy process taking values in N [f0g and

such that

P [�(t) = n] =
(�t)n

n!
e��t; n = 0; 1; 2; ...

1.4 Itô�s process

We give a probability space (
;F ; P ) and a Brownian motionW on this space. We denote

by Ft = � (Ws, s � t) the natural �tration of the Brownian motion.

Theorem 1.4.1 (Itô�s Lemma for 1-dimensional Brownian Motion): Let Wt be a

Brownian motion on [0; T ] and suppose f(x) is a twice continuously di¤erentiable function

on R. Then for any t � T we have

f (Wt) = f (0) +
1

2

Z t

0

f 00 (Ws) ds+

Z t

0

f 0 (Ws) dWs: (1.1)

Proof. Let 0 = t0 < t1 < t2 < ::: < tn = T , be a partition of [0; t]. Clearly

f (Wt) = f (0) +

n�1X
i=0

�
f
�
Wti+1

�
� f (Wti)

�
: (1.2)

Taylor�s Theorem implies

f
�
Wti+1

�
� f (Wti) = f

0 (Wti)
�
Wti+1 �Wti

�
+
1

2
f 00 (�i)

�
Wti+1 �Wti

�2
; (1.3)

10



Chapter 1. Stochastic optimal control

for some �i 2
�
Wti+1 �Wti

�
Substituting (1:3) into (1:2) we obtain

f (Wti) = f (0) +
n�1X
i=0

f 0 (Wti)
�
Wti+1 �Wti

�
+
1

2

n�1X
i=0

f 00 (�i)
�
Wti+1 �Wti

�2
: (1.4)

If we let � := max jti+1 � tij ! 0 then it can be shown that the terms on the right-hand-

side of (1:4) converge to the corresponding terms onthe right-hand-side of (1:1) as desired.

(This should not be surprising as we know the quadratic variation of Brownian motion on

[0; t] is equal to t).

A more general version of Itô�s Lemma can be stated for Itô processes.

Theorem 1.4.2 (Itô�s Lemma for 2-dimensional Itô process): LetXt be 1-dimensional

Itô process satisfying the SDE

dXt = �tdt+ �tdWt.

If f(t:x) : [0;1)� R! R is a C1;2 function and Yt := f(t;Xt) then

dYt =
@f

@t
(t;Xt) dt+

@f

@x
(t;Xt) dXt +

1

2

@2f

@x2
(t;Xt) (dXt)

2

=

�
@f

@t
(t;Xt) +

@f

@x
(t;Xt)�t +

1

2

@2f

@x2
(t;Xt)�

2
t

�
dt+

@f

@x
(t;Xt)�tdWt.

The "Box" calculus

In the statement of Itô�s Lemma, we implicitly assumed that (dXt)
2 = �2t dt. The box

calculus is a series of simple rules for calculating such quantities. In particular, we use the

rules

dt� dt = dt� dWt = 0;

and dWt � dWt = dt;

when determining quantities such as (dWt)
2 in the statement of Itô�s Lemma above. When

we have two correlated Brownian motions, W (1)
t and W (2)

t , with correlation coe�cient �t,

then we easily obtain that dW (1)
t �dW (2)

t = �tdt. We use the box calculus for computing

11



Chapter 1. Stochastic optimal control

the quadratic variation of Itô processes.

Proposition 1.4.1 (Integration by parts formula): Let xi (t) be stochastic processes

for i = 1; 2 and t 2 [0; T ] satisfying:

8><>: dxi (t) = f (t; xi(t); v(t)) dt+ � (t; xi(t); v(t)) dW (t) ;

xi (0) = 0:

Then we get

E (x1 (T )x2 (T )) = E
�Z T

0

x1 (t) dx2 (t) +

Z T

0

x2 (t) dx1 (t)

�
+ E

�Z T

0

�| (t; x1(t); v(t))� (t; x2(t); v(t)) dt

�
.

1.5 Some classes of stochastic controls

let
�

;F ; fFtgt�0 ; P

�
be a complete �ltred probability space.

De�nition 1.5.1 (Admissible control): Ft-adapted processes v (t) with values in a

borelian A � Rn is An admissible control adapted processes

U := fv(�) : [0; T ]� 
! A : v(t) is Ft � adaptedg :

De�nition 1.5.2 (Optimal control): The goal of the optimal control problem is to

minimize a cost function J (v) over the set of admissible control U . The control u(�) is

an optimal control if

J(u(t)) � J (v(t)) ; for all v(�) 2 U :

De�nition 1.5.3 (Feedback control): v(�) is a feedback control if the control v(�) de-

pends on the state variable X (�). If FX
t the natural �ltration generated by the process X;

then v(�) is a feedback control if v(�) is FX
t -adapted.

12
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Chapter §.2
Necessary conditions of optimality
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Chapter 2

Necessary conditions of optimality

In this chapter, we are interested in the following control problem, on a given �lteredprobability space (
;F ; P; (Ft)t�0):

8>>>>>>>>>><>>>>>>>>>>:

dxu(t) = b (t; xu(t); u (t)) dt+
Xd

i=1
gi (t; xu(t); u (t)) dW i(t)

+
X1

i=1
ci (t; xu (t�) ; u(t)) dH

i(t);

dyu(t) = �f(t; xu(t); yu(t); zu(t); ru(t); u(t))dt+
Xd

i=1
zu;i(t)dW i(t)

+
X1

i=1
ru;i(t�)dH

i(t);

xu(0) = x0; y
u(T ) = h(xu(T ));

(2.1)

where W (�) is a d-dimensional Ft-Brownian motion. The Teugels martingales H(t) =

(H i(t))i�1 considered in this study are pairwise strongly orthonormal. These martingales

are associated with a Lévy process that possesses moments of all orders. The control

u(�) = (u(t))t�0 is adapted to a sub�ltration (Gt)t�0 of (Ft). xu(t�) = lims!t;s<t x
u(s);

t > 0 the left limit process.

The maps

b : [0; T ]� Rn � A! Rn; g : [0; T ]� Rn � A! Rn�d;

c : [0; T ]� Rn � A! l2(Rn); h : Rn ! Rm;

f : [0; T ]� Rn � Rm � Rm�d � Rm � A! l2(Rm);

14



Chapter 2. Necessary conditions of optimality

are given deterministic functions.

The expected cost to be minimized takes the following structure

J(u(�)) = E
�Z T

0

`(t; xu(t); yu(t); zu(t); ru(t); u(t))dt+ �(xu(T )) + '(yu(0))

�
; (2.2)

where

� : Rn ! R; ' : Rm ! R;

` : [0; T ]� Rn � Rm � Rm�d � Rm � A! R;

are deterministic functions.

2.1 Notation and formulation of the problem

Let T is a �xed terminal time and (
;F ; P; (Ft)t�0) be a �xed �ltered probability space

equiped with a P -completed right continuous �ltration on which a d-dimensional Brownian

motionW (�) = (W (t))t is de�ned. Let A be a nonempty compact convex subset of Rn and

letM (�) , f(M (t)) : t 2 [0; T ]g be a R-valued Lévy process, independent of the Brownian

motion W (�); of the form M (t) = �(t) + bt; where �(t) is a pure jump process. Suppose

that the Lévy measure � (dx) associated with the Lévy process �(t) achieve the following

conditions.

(i) There exist  > 0 such that for every � > 0 :
R
(��;�) exp ( jxj)�(dx) <1:

(ii)
R
R (1 ^ x

2)� (dx) <1:

We denoteAG ([0; T ]) the set of all admissible controls and we consider the P -augmentation

of the natural �ltration Ft denoted by
�
F (W;M)
t

�
t2[0;T ]

, which is de�ned in the following

F (W;M)
t , FW

t _ � fM (s) : 0 � s � tg _ F0;

where F (W )
t , � fW (s) : 0 � s � tg ; F0 denotes the totality of P -null sets, and F1 _ F2

denotes the �-�eld generated by F1 [ F2. Let Gt be a sub�ltration of Ft : t 2 [0; T ]:

15



Chapter 2. Necessary conditions of optimality

An admissible control is de�ned as a function u (�) : [0; T ]�
! A, which is Gt-pedictable,

E

Z T

0

ju(s)j2 ds < 1, such that the equation (2.1) has a unique solution. An admissible

control u�(�) 2 AG ([0; T ]) is called optimal if

J (u�(�)) , inf
u(:)2AG([0;T ])

J (u(�)) . (2.3)

Noting that, the jumps of xu(t) due to the in�uence of the Lévy process can be described

as power jump processes, which are de�ned by

8><>:
M(k)(t) ,

X
0<tj�t

(�M(tj))k : k > 1

M(1)(t) ,M(t),

where �M(t) ,M(t)�M(t�), andM(t�) , lims!t;s<tM(s); t > 0. Furthermore, we can

de�ne the continuous component of M(k)(t) by eliminating the discontinuities or jumps

present in M(t) :

M
(c)
(k)(t) ,M(k)(t)�

X
0<tj�t

(�M (tj))k : k > 1.

Remark 2.1.1 Let us consider the following N(k)(t) =M(k)(t)� E
�
M(k)(t)

�
: k � 1.

The jumps of xu(t); and yu(t) caused by the Lévy martingales are de�ned by

�Mx
u(t) , c(t; xu(t�); u(t))�M(t) ��My

u(t) ,
1X
i=1

ru;i(t�)�M
j(t) (respectively):

and H i(t) ,
P

1<k�i �ikNk(t), where the coe¢ cients �ik associated with the orthonor-

malization of the polynomials f1; x; x2; :::g with respect to the measure m(dx) = x2�(dx)+

g2�0 (dx). The Teugels martingales (H i(�))i�1 are pathwise strongly orthogonal and their

predictable quadratic variation processes are given by hH i(t); Hj(t)i = �ijt.

Now, we introduce the fundamental notations.

� Mn�m( R) denotes the space of n�m real matrices.

16



Chapter 2. Necessary conditions of optimality

� L2 (
;F ; P;Rn) is the Banach space of Rn-valued, square integrable random variables

on (
;F ; P ):

� l2 is the Hilbert space of real-valued sequences x = (xn)n�0 such that

kxk ,
hX1

n=1
xn

i2
<1:

� l2(Rn) is the space of Rn-valued (fn)n�1 such that

kfkl2(Rn) ,
hX1

n=1
kfnk2Rn

i 1
2
<1:

� L2F ([0; T ] ;Rn) is the Banach space of Ft-predictable processes f such that

kfkL2F ([0;T ];Rn) , E
�Z T

0

X1

n=1
kfnk2Rn dt

� 1
2

<1;

where f = ffn(t; w) : (t; w) 2 [0; T ]� 
; n = 1; :::;1g.

� M2
F([0; T ] ;Rn) is the space of all Rn-valued and Ft-adapted processes f such that

kfkM2
F ([0;T ]�
)

, E
�Z T

0

kf (t)k2Rn dt
� 1

2

<1;

where f = ff(t; w) : (t; w) 2 [0; T ]� 
g.

� S2F ([0; T ] ;Rn) is the Banach space of Ft-adapted and cadlag processes f such that

kfkS2F ([0;T ];Rn) , E(sup0�t�T kfkRn)
1
2 <1;

where f = ff(t; w) : (t; w) 2 [0; T ]� 
g.

� EGt [X] is the conditional expectation of X with respect to Gt; EGt (X) = E (X jGt ) :

17



Chapter 2. Necessary conditions of optimality

Assumptions

We will utilize the following foundational assumptions throughout our discussion.

Assumption (A1)

(i) The functions b, g, c are continuously di¤erentiable in (x; u) and f; ` are continuously

di¤erentiable in (x; y; z; r; u); bounded by C(1 + jxj+ jyj+ jzj+ jrj+ juj).

The function �; h is continuously di¤erentiable in x, and the function ' is continuously

di¤erentiable in y.

(ii) The derivatives bx, bu, gx, gu, cx, cu are bounded. The derivatives of ` with respect

to (x; y; z; r; u) are bounded by C(1 + jxj2 + jyj2 + jzj2 + jrj2 + juj2). The derivatives

�x bounded by C(1 + jxj2); and 'y is dominated by C(1 + jyj2): The terminal value

y(T ) 2 l2F ([0; T ] ;Rn) :

(iii) For all t 2 [0; T ] ; b(�; 0; 0) 2 L2F([0; T ] ;Rn); f(�; 0; 0; 0; 0; 0) 2 L2F([0; T ] ;Rn); c(�; 0; 0) 2

L2F([0; T ] ;Rn), g (�; 0; 0) 2M2
F([0; T ] ;Rn�d):

Under the above Assumption (A1), for each u(�) 2 AG([0; T ]); Eq. (2.1) admits a unique

strong solution (xu(�); yu(�); zu(�); ru(�)) 2 Rn � Rm �Mm�d (R)� l2 (Rm) such that

xu(t) = x0 +

Z t

0

b (s; xu (s) ; u (s)) ds+
dX
i=1

Z t

0

gi(s; xu(s); u(s))dW i(s)

+
1X
i=1

Z t

0

ci(t; xu(s�); u(s))dH
i(s),

yu(t) = yu(T )�
Z T

t

f(s; xu(s); yu(s); zu(s); ru(t); u(s))ds

+

dX
i=1

Z T

t

zu;i(s)dW i(s) +

1X
i=1

Z T

t

ru;i(s)dH i(s).

18



Chapter 2. Necessary conditions of optimality

Let us present the adjoint equations associated with the stochastic maximum principle for

the control problem (2.1)-(2.2).

We consider the following adjoint equations:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

d� (t) = �
(
bx (t) � (t) +

Xd

i=1
gixQ

i (t) +
1X
i=1

cix(t)G
i(t)� fx(t)K (t) + `x (t)

)
dt

+
dX
i=1

Qi(t)dW i(t) +
X1

i=1
Gi(t)dH i(t),

� (T ) = �hxx(T )K(T ) + �xx(T ).

dK (t) = [fy(t)K(t)� `y(t)] dt+
Xd

i=1
[f iz(t)Ki(t)� `iz(t)] dW i(t)

+
X1

i=1
[f ir(t)Ki(t)� `ir(t)] dH i(t),

K(0) = �'yy(0).
(2.4)

Under Assumption (A1), the FBSDE (2.4) admits a unique F-adapted solution

(� (�) ; Q (�) ; G (�) ;K(�)). The Hamiltonian function H associated with the stochastic con-

trol problem (2:1)�(2:2) de�ned as follows:

H(t; x; y; z; r; u;� (�) ; Q (�) ; G (�) ;K(�)) (2.5)

= `(t; x; y; z; r; u) + � (t) b(t; x; u) +
dX
i=1

Qi(t)gi(t; x; u)

+

1X
i=1

Gi(t)ci(t; x; u)�K(t)f(t; x; y; z; r; u),

where (� (�) ; Q (�) ; G (�) ;K(�)) solution of (2:4).

Then we can rewrite the adjoint Equation (2:4) as

8>>>>>>><>>>>>>>:

d� (t) = �Hx(t)dt+
Xd

i=1
Qi(t)dW i(t) +

X1

i=1
Gi(t)dH i(t),

� (T ) = �hxx(T )K(T ) + �xx(T )).

dK(t) = �Hy(t)dt�
Xd

i=1
Hz(t)dW

i(t)�
X1

i=1
Hr(t)dH

i(t),

K(0) = �'yy(0);

(2.6)
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Chapter 2. Necessary conditions of optimality

where H(t) = H(t; x; y; z; r; u;� (�) ; Q (�) ; G (�) ; K(�)).

Under Assumption (A1), the adjoint Equation (2:4) or (2:6) admits a unique solution.

2.2 Stochastic Maximum principle

In this section, we derive necessary conditions for the optimal control using the maximum

principle. The control system under consideration is governed by FBSDEs (Forward-

Backward Stochastic Di¤erential Equations) driven by orthogonal Teugels martingales,

which are associated with certain Lévy processes possessing moments of all orders. We

need to make the following Assumptions.

Assumption (A2)

For all 0 � t � t+� � T , i = 1; :::; k and all bounded Gt-measurable � = �(w); the control

(t) = (0; :::; 0; i(t); 0; :::0) 2 A with

i(s) = �i1[t;t+� ](s); s 2 [0; T ]; for i = 1; :::; k,

belong to AG([0; T ]): Here, 1[t;t+� ](s) is the indicator function on the set [t; t+ � ].

Assumption (A3)

For all u(�); (�) 2 AG([0; T ]) with (�) bounded, there exist � > 0 such that u(�)+�(�) 2

AG([0; T ]) for all � 2 (��; �).

Now, for a given u(�); (�) 2 AG([0; T ]) with (�) bounded, we de�ne

X1(t) = Xu�;
1 (t) :=

d

d�

�
xu

�+�(t)
�����
�=0

; (2.7)

Y1(t) = Y u
�;

1 (t) :=
d

d�

�
yu

�+�(t)
�����
�=0

;

Z1(t) = Zu
�;
1 (t) :=

d

d�

�
zu

�+�(t)
�����
�=0

;

Q1(t) = Qu
�;
1 (t) :=

d

d�

�
ru

�+�(t)
�����
�=0

;
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Chapter 2. Necessary conditions of optimality

where (xu
�+�(�); yu�+�(�); zu�+�(�); ru�+�(�)) the solution of Equation (2:1) correspond-

ing to (u� + �):

Now, we consider the following linear FBSDEs:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dX1(t) = [bx (t)X1 (t) + bu(t)(t)] dt

+
Xd

i=1
[gixX1(t) + g

j
u(t)(t)] dW

i(t)

+
X1

i=1
[cixX1(t) + c

i
u(t)(t)] dH

i(t),

dY1(t) = [fx (t)Y1 (t) + fy (t)Y1 (t) + fz (t)Y1 (t) + fu(t)(t)] dt

+
Xd

i=1
Zi1(t)dW

i(t) +
X1

i=1
Qi1(t)dH

i(t);

X1 (0) = 0; Y1(T ) = hxx(T )X1(T ).

(2.8)

Let u�(�) represent a locale minimum for te cost functional J over 2 AG([0; T ]),

indicating that, for any bounded (�) 2 AG([0; T ]); there exist � > 0 such that ((u�(�) +

�(�)) 2 AG([0; T ]) for all � 2 (��; �) and J (�) = J((u�(�) + �(�)) achieves its minimum

at � = 0
d

d�
[J (�)]

����
�=0

=
d

d�
J(u�(t) + �(t))

����
�=0

= 0; for all � 2 (��; �). (2.9)

Theorem 2.2.1 Let (x�(�); y�(�); z�(�); r�(�)) be the solution of the FBSDE (2:1) corres-

ponding to u�(�). Let Assumptions (A1),(A2) and (A3) hold. Then, there exists a unique

adapted process (�� (�) ; Q� (�) ; G� (�) ;K�(t)) solution of (2:4) such that u�(�) is a stationary

point for EGt(H) such that

EGt [Hu(t; x
�; y�; z�; r�; u�;�� (�) ; Q� (�) ; G� (�) ;K�(t))] = 0; a:e. (2.10)

In order to establish the validity of the above theorem, the following technical lemma plays

a signi�cant role in the subsequent analysis.
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Chapter 2. Necessary conditions of optimality

Lemma 2.2.1 Using Itô�s formula to ��(t)X1(t);K�(t)Y1(t) and take expectation, we get

E(��(T )X1(T )) + E(K�(T )Y1(T )) (2.11)

= �E ['yy (0)Y1 (0)]� E
Z T

0

fX1(t)`x (t) + Y1 (t) `y (t)

+ Z1 (t) `z (t) +Q1(t)r (t) + `u (t)  (t)gdt+ E
Z T

0

Hu (t)  (t) dt.

Proof. By applying Itô�s formula to ��(t)X1(t) and take expectation, we get

E(��(T )X1(T )) (2.12)

= E

Z T

0

��(t)dX1(t) + E

Z T

0

X1(t)d�
�(t)

+ E

Z T

0

Xd

i=1
Qj� (t)

�
gjx (t)X1 (t) + g

j
x (t)  (t)

�
dt

+ E

Z T

0

X1

i=1
Gj� (t)

�
cjx (t)X1 (t) + c

j
u (t)  (t)

�
dt

= I1;1 + I1;2 + I1;3 + I1;4;

where

I1;1 = E

Z T

0

��(t)dX1(t) (2.13)

= E

Z T

0

��(t) [bx (t)X1(t) + bu (t)  (t)] dt

= E

Z T

0

��(t)bx (t)X1(t)dt+ E

Z T

0

��(t)bu (t)  (t) dt.

I1;2 = E

Z T

0

X1(t)d�
�(t) = �E

Z T

0

X1(t)fbx (t) ��(t) (2.14)

+
Xd

i=1
gjx (t)Q

j� (t) +
X1

i=1
cjx (t)G

j� (t)

� fx (t)K (t) + `x (t)gdt.
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Chapter 2. Necessary conditions of optimality

Using a similar reasoning as mentioned earlier, one can demonstrate that

I1;3 = E

Z T

0

Xd

i=1
Qj� (t)

�
gjx (t)X1(t) + g

j
u (t)  (t)

�
dt (2.15)

= E

Z T

0

Xd

i=1
Qj� (t) gjx (t)X1 (t) dt

+ E

Z T

0

Xd

i=1
Qj� (t) gju (t)  (t) dt.

To obtain an estimate for I1;4, one can readily deduce using the same line of reasoning

that

I1;4 = E

Z T

0

Xd

i=1
Gj� (t)

�
cjx (t)X1 (t) + c

j
u (t)  (t)

�
dt (2.16)

= E

Z T

0

Xd

i=1
Gj� (t) cjx (t)X1 (t) dt

+ E

Z T

0

Xd

i=1
Gj� (t) cju (t)  (t) dt.

Combining (2:12) with (2:16), we get

E (��(T )X1 (T )) = E

Z T

0

��(t)bu (t)  (t) dt+ E

Z T

0

dX
j=1

Qj� (t) gju (t)  (t) dt+ (2.17)

E

Z T

0

1X
j=1

Gj� (t) cju (t)  (t) dt� E
Z T

0

X1 (t) `x (t) dt� E
Z T

0

X1 (t) fx (t)K (t) dt.

Similarly, by applying Itô�s formula to K�(t)Y1 (t) and take expectation, we obtain

E (K�(T )Y1(T )) = �E f'yy (0)Y1 (0)g (2.18)

+ E

Z T

0

fK� (t) fx (t)X1 (t)

+K� (t) fu (t)  (t)� Y1 (t) `y (t)

� Z1 (t) `z (t)�Q1 (t) `r (t)gdt.
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Chapter 2. Necessary conditions of optimality

Finally, by combining equations (2:17) and (2:18), we can successfully achieve the desired

outcome as stated in equation (2:11):

Proof of Theorem 2.2.1. From (2:9) and by di¤erentiating J (�)with respect to � at

� = 0, we get

d

d�
[J (�)]

����
�=0

(2.19)

= E

Z T

0

[`x (t)X1 (t) + `y (t)Y1 (t) + `z (t)Z1 (t) + `r (t)Q1 (t) + `u (t)  (t)]dt

+ E [�xx
� (T )X1 (T )] + E ['yy

� (0)Y1 (0)] = 0.

From (2:19) and (2:11), we obtain

E

Z T

0

"
�� (t) bu (t) +

dX
i=1

Q�i (t) giu (t) +
1X
i=1

G�i (t) ciu (t) +K (t) fu (t) + `u (t)
#
 (t) dt = 0:

From (2:5), we have

E

Z T

0

Hu (t; x
�; y�; z�; r�; u�;�� (�) ; Q� (�) ; G� (�) ;K� (t))  (t) dt = 0, (2.20)

�x t 2 [0; T ], and apply the above to  (t) = (0; :::; i (t) ; :::; 0), where i (s) = �i (s) 1[t;t+� ] (s) ;

s 2 [0; T ] ; t+ � � T and �i (s) is bounded, Gt-measurable.

Then, from (2:20), we get

E

Z t+�

t

Hui (s; x
�; y�; z�; r�; u� (s) ;�� (s) ; Q� (s) ; G� (s) ;K� (s)) �i (s) ds = 0.

Now, by di¤erentiating (2:21) with respect to � at � = 0, we obtain t 2 [0; T ]

Hui (t; x
�; y�; z�; r�; u� (t) ;�� (t) ; Q� (t) ; G� (t) ;K� (t)) �i (t) dt = 0. (2.21)
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Chapter 2. Necessary conditions of optimality

Since (2:21) remains true for all bounded Gt-measurable �i (�), we have t 2 [0; T ]

EGt [Hu (t; x
�; y�; z�; r�; u� (t) ;�� (t) ; Q� (t) ; G� (t) ;K� (t))] = 0; a:e:,

then (2:10) is ful�lled. This completes the proof of Theorem 2.2.1.
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Chapter §.3
Su¢ cient conditions of optimality
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Chapter 3

Su¢ cient conditions of optimality

Our objective is to establish su¢ cient conditions for optimal control in relation to

the control problem de�ned by equations (2.1)-(2.2). We demonstrate that, under

certain additional assumptions, the necessary conditions outlined in Theorem 2.2.1 can

serve as su¢ cient conditions for optimality. A function f : R �! Rn is convex if, for every

(x; x0) 2 R; f (x0)� f(x) > fx(x) (x0 � x) :

3.1 Additional Assumption (A4)

(i) The functional H (t; �; �; �; �; �;�� (t) ; Q� (t) ; G� (t) ;K� (:)) is convex with respect to

(x; y; z; r; u) for a. e. t 2 [0; T ], P � a. s.

H (t; x0; y0; z0; r0; u0;�� (t) ; Q� (t) ; G� (t) ;K� (�))

�H (t; x; y; z; r; u;�� (t) ; Q� (t) ; G� (t) ;K� (�))

� Hx (t; x; y; z; r; u;�
� (t) ; Q� (t) ; G� (t) ;K� (�)) (x0 � x)

+Hy (t; x; y; z; r; u;�
� (t) ; Q� (t) ; G� (t) ;K� (�)) (y0 � y)

+Hz (t; x; y; z; r; u;�
� (t) ; Q� (t) ; G� (t) ;K� (�)) (z0 � z)
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+Hr (t; x; y; z; r; u;�
� (t) ; Q� (t) ; G� (t) ;K�(�) (r0 � r)

+Hu (t; x; y; z; r; u;�
� (t) ; Q� (t) ; G� (t) ;K� (�)) (u0 � u) :

(ii) The function � (�; �) is convex with respect to (x) and the function ' (�; �) is convex

with respect to (y).

3.2 Su¢ cient conditions under partial information

Theorem 3.2.1 For any admissible control u (�) 2 AG ([0; T ]), and by Assumptions (A1)�

(A4), the following relation holds

EGt [Hu (t; x
u; yu; zu; ru; u (t) ;�u (t) ; Qu (t) ; Gu (t) ;Ku (t))] = 0 a:e:; (3.1)

then we have

inf fJ (v (�)) : v (�) 2 AG ([0; T ])g = J (u (�)) ; (3.2)

In other words, the admissible control u(�) can be considered as a partial-information

optimal control for the problem described by equations (2.1)-(2.2).

In order to establish Theorem 2.2.1, we require the following auxiliary result, which ex-

amines the duality relationships between �u (t) ; [x (t)� xu (t)], and betweenKu (t) ; [y(t)�

yu(t)]:

This lemma holds signi�cance in establishing our su¢ cient conditions for optimality.
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Lemma 3.2.1 Let (x(�); y(�); z(�); r(�)) be the solution of (2:1) corresponding to any ad-

missible control v(�).

E [�u (T ) (x (T )� xu (T ))]

= E

Z T

0

�u (t) [b (t; x (t) ; v (t))� b (t; xu (t) ; u (t))] dt

+ E

Z T

0

Hx (t) (x (t)� xu (t)) dt

+ E

Z T

0

dX
i=1

Qi;u (t)
�
gi (t; x (t) ; v (t))� gi (t; xu (t) ; u (t))

�
dt

+ E

Z T

0

1X
i=1

Gi;u (t)
�
ci (t; x (t) ; v (t))� ci (t; xu (t) ; u (t))

�
dt;

where H (t) = H (t; xu; yu; zu; ru; u (t) ;�u (t) ; Qu (t) ; Gu (t) ;Ku (t)).

Similarly,

E [Ku (T ) (y (T )� yu (T ))] (3.3)

= �E ('y (y (0)) (yu (0)� y (0)))

+ E

Z T

0

Ku (t) [f (t; x (t) ; y (t) ; z (t) ; r (t) ; v (t))

� f (t; xu (t) ; yu (t) ; zu (t) ; ru (t) ; u (t))]dt+ E
Z T

0

Hy (t) (y (t)� yu (t)) dt

+ E

Z T

0

dX
i=1

Hzi (t)
�
zi (t)� zi;u (t)

�
dt+ E

Z T

0

1X
i=1

Hri (t)
�
ri (t)� ri;u (t)

�
dt;

and

E [�u (T ) (x (T )� xu (T ))] + E [Ku (T ) (y (T )� yu (T ))] (3.4)

+ E ['y (y (0)) (y
u (0)� y (0))]

= E

Z T

0

�u (t) (b (t; x (t) ; v (t))� b (t; xu (t) ; u (t))) dt
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+

Z T

0

dX
i=1

Qu;i (t)
�
gi (t; x (t) ; v (t))� gi (t; xu (t) ; u (t))

�
dt

+ E

Z T

0

1X
i=1

Gu;i (t)
�
ci (t; x (t) ; v (t))� ci (t; xu (t) ; u (t))

�
dt

+ E

Z T

0

Ku (t) [f (t; x (t) ; y (t) ; z (t) ; r (t) ; v (t))� f (t; xu (t) ; yu (t) ; zu (t) ; ru (t) ; u (t))]dt

+ E

Z T

0

Hx (t) (x (t)� xu (t)) dt+ E
Z T

0

Hy (t) (y (t)� yu (t)) dt

+ E

Z T

0

dX
i=1

Hzi (t)
�
zi (t)� zi;u (t)

�
dt+ E

Z T

0

1X
i=1

Hri (t)
�
ri (t)� ri;u (t)

�
dt:

Proof.

First, by simple computations, we get

d (x (t)� xu (t)) = (b (t; x (t) ; v (t))� b (t; xu (t) ; u (t))) dt (3.5)

+
dX
i=1

gi (t; x (t) ; v (t))� gi (t; xu (t) ; u (t)) dW i (t)

+
1X
i=1

ci (t; x (t) ; v (t))� ci (t; xu (t) ; u (t)) dH i (t) ;

and

d (y (t)� yu (t)) = (f (t; x (t) ; y (t) ; z (t) ; r (t) ; v (t)) (3.6)

� f (t; xu (t) ; yu (t) ; zu (t) ; ru (t) ; u (t)) dt

+

dX
i=1

�
zi (t)� zi;u (t)

�
dW i (t)

+

1X
i=1

�
ri (t)� ri;u (t)

�
dH i (t) :
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E [�u (T ) (x (T )� xu (T ))] = E
Z T

0

�u (t) d (x (t)� xu (t)) (3.7)

+ E

Z T

0

(x (t)� xu (t)) d�u (t)

+ E

Z T

0

dX
i=1

Qi;u (t)
�
gi (t; x (t) ; v (t))� gi (t; xu (t) ; u (t))

�
dt

+ E

Z T

0

1X
i=1

Gi;u (t)
�
ci (t; x (t) ; v (t))� ci (t; xu (t) ; u (t))

�
dt

= I2;1 + I2;2 + I2;3 + I2;4:

From (3:5); we obtain

I2;1 = E

Z T

0

�u (t) d (x (t)� xu (t)) (3.8)

= E

Z T

0

�u (t) [b (t; x (t) ; v (t))� b (t; xu (t) ; u (t))] dt:

Similarly, by applying (2:6), we get

I2;2 = E

Z T

0

(x (t)� xu (t)) d�u (t) (3.9)

= E

Z T

0

Hx (t) (x (t)� xu (t)) dt

= E

Z T

0

Hx (t) (x (t)� xu (t)) dt:

By standard arguments, we obtain

I2;3 = E

Z T

0

dX
i=1

Qi;u (t)
�
gi (t; x (t) ; v (t))� gi (t; xu (t) ; u (t))

�
dt; (3.10)
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and

I2;4 = E

Z T

0

1X
i=1

Gi;u (t)
�
ci (t; x (t) ; v (t))� ci (t; xu (t) ; u (t))

�
dt; (3.11)

We now turn our attention to second Equation (3:3). By applying integration by parts

formula to (yu (t)� y (t))Ku (t), we get

E (Ku (T ) (yu (T )� y (T ))) = E [Ku (0) (yu (0)� y (0))] (3.12)

+ E

Z T

0

Ku (t) d (y (t)� yu (t)) + E
Z T

0

(y (t)� yu (t)) dKu (t)

+ E

Z T

0

dX
i=1

�
zi (t)� zi;u (t)

�
[Hzi (t)] dt

+ E

Z T

0

1X
i=1

�
ri (t)� ri;u (t)

�
[Hri (t)] dt

= I3;1 + I3:2 + I3;3 + I3;4 + I3:5:

Let us turn to the second term I3:2. From (3:6), we have

I3:2 = E

Z T

0

Ku (t) d (y (t)� yu (t)) (3.13)

= E

Z T

0

Ku (t) [f (t; x (t) ; y (t) ; z (t) ; r (t) ; v (t))

� f (t; xu (t) ; yu (t) ; zu (t) ; ru (t) ; u (t))]dt;

from (2:6), we obtain

I3;3 = E

Z T

0

(y (t)� yu (t)) dKu (t) = E
Z T

0

Hy (t) (y (t)� yu (t)) dt; (3.14)

I3;4 = E

Z T

0

dX
i=1

Hzi (t)
�
zi (t)� zi;u (t)

�
dt; (3.15)
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and similarly, we obtain

I3:5 = E

Z T

0

1X
i=1

Hri (t)
�
ri (t)� ri;u (t)

�
dt: (3.16)

From (2:4) and the fact that

I3;1 = E (Ku (0) (yu (0)� y (0))) (3.17)

= �E f'y (0) + yu (0)� y (0)g ;

the duality relation (3:3) follows immediately by combining (3:13)� (3:17) together with

(3:12). Finally, inequality (3:4) is ful�lled from (3:3).

Finally, The Proof of Theorem 3:2:1 is based on the convexity condition on �(�; �) and

'(�; �), Lemma 3:2:1, and by the convexity of the functional H:
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Conclusion

I n this master�s dissertation, we have discussed the necessary and su¢ cient conditions

for optimal control of FBSDEs driven by Teugels martingale associated with Lévy

processes. This kind of problem, which has a lot of applications in mathematical �nance

and economics.
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Appendix A: Abbreviations and

Notations

The di¤erent abbreviations and notations used throughout this thesis are explained below:

(
;F ; P; (Ft)t�0) Complete probability space.

FW
t Filtration generated by the Brownian motion W .

FM
t Filtration generated by the Lévy process M .

W Brownian motion.

a:e: Almost everywhere.

a:s: Almost surely.

H(t) Hamiltonian function.

SDE Stochastic di¤erential equations.

BSDE Backward stochastic di¤erential equation.

ODE Ordinary di¤erential equation.

L2 (
;F ; P;Rn) Banach space of Rn-valued, square integrable random variables.

AG ([0; T ]) Set of all admissible controls.

L2F ([0; T ] ;Rn) Banach space of Ft-predictable processes.

M2
F([0; T ] ;Rn) Space of all Rn-valued and Ft-adapted processes.

S2F ([0; T ] ;Rn) Banach space of Ft-adapted and cadlag processes.

EGt [X] Conditional expectation of X.

l2 Hilbert space of real-valued sequences.
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 الملخص

                                                                                                         

                                                                                                                

                            

This master's dissertation investigates stochastic optimal control problems concerning 

forward-backward differential equations FBSDEs. These equations are driven by Teugels 

martingales and involve a Lévy process with moments of all orders, as well as an 

independent Brownian motion. In this work, we studied the necessary and the sufficient 

conditions of optimality for partial information stochastic optimal control problem. 

 

Keywords: Forward-backward stochastic systems with levy process, optimal stochastic 

control, Teugels martingales, necessary and sufficient stochastic maximum principle. 

Ce mémoire étudie les problèmes de contrôle optimal stochastique concernant les 

équations différentielles FBSDEs. Ces équations sont pilotées par des martingales de 

Teugels et impliquent un processus de Lévy avec des moments de tous ordres, ainsi qu'un 

mouvement brownien indépendant. Dans ce travail, nous avons étudié les conditions 

nécessaires et suffisantes d'optimalité pour le problème de contrôle optimal stochastique à 

information partielle. 

Mots clés : Systèmes stochastiques avec un processus de Levy, contrôle stochastique 

optimal, martingales de Teugels, principe de maximum stochastique nécessaire et suffisant. 

 

 

 

 

 

 

 

 

 

 

 

 

مشاكل التحكم الأمثل العشوائية المتعلقة بالمعادلات التفاضلية الأمامية ب نهتمطروحة الأ في هذه

مع لحظات من  ليقي وتتضمن عملية توقيليس مارتينقال هذه المعادلات مدفوعة بواسطة. والخلفية

جميع الطلبات ، بالإضافة إلى حركة براونية مستقلة. في هذا العمل ، درسنا الشروط اللازمة 

 والكافية للأمثل لمشكلة التحكم الأمثل العشوائية للمعلومات الجزئية.

التحكم العشوائي  أنظمة الحوكمة العشوائية الأمامية و الخلفية مع عملية ليفي, ˸الكلمات المفتاحية

 الأمثل, مارتنجلات توغيلز,  مبدا الحد الأقصى الضروري و الكافي.                                        
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