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Introduction

Stochastic impulse control has gained signi�cant attention in research due to

its broad applications in various areas. A system involving impulse control

has been studied in [3], [9] and [10]. The stochastic control problems have two

primary methods for solving them, which are the stochastic maximum principle

and dynamic programming principle. The former is a stochastic generaliza-

tion of the Pontryagin maximum principle. Typically, the preferred method for

investigating the optimal impulse control problem is through the dynamic pro-

gramming principle. The results demonstrate that the value function resolves

certain quasi-variational inequalities. The optimal impulse moments may be

determined by a veri�cation theorem, such as Korn [5]. Numerous authors

have investigated singular control problems. Cadenillas and Haussmann [2]

derived the stochastic maximum principle of singular control, which examines

linear dynamics and convex value function. This paper assume that the sin-

gular control terms are a process of bounded variation. Nonetheless, impulse

control is a piecewise process that may not always be increasing. Wu and

Zhang [9] suggested a piecewise impulse control process that is not increasing

for a forward-backward system. Stochastic systems in the studies mentioned

above are represented by stochastic di¤erential equations. Nevertheless, there

are also some cases where the system is reliant on the expected value of the

system.

Mean-�eld models illustrate the intricate responses of particles within a me-
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Introduction

dium. Nevertheless, for a typical mean-�eld controlled jump-di¤usion, where

the con�guration is non-Markovian, the characteristic of Hamilton-Jacobi-

Belman equations relies on the law of iterated expectations on value function.

In this scenario, the principle of dynamic programming may not generally be

applicable. The stochastic maximum principle presents a good perspective

for resolving such problem. Lasry and Lions [6] �rst introduced the mean-

�eld model in physics and statistical mechanics and demonstrated that the

mean-�eld system could be decomposed into a sequence of nonlinear equa-

tions. Mean-�eld type problems are utilized in Andersson and Djehiche [1]

demonstrated that the relevant principles of backward stochastic di¤erential

equations could be utilized as a basis for resolving the optimal control of mean-

�eld type problems. Shen and Siu [8] examined the maximum principle for a

jump-di¤usion mean-�eld model.

In [3], conditions for near-optimal in mean-�eld control models involving con-

tinuous and impulse control were investigated. The authors formulated an

inequality equation using spike variation technique to obtain the absolutely

continuous part of the near-optimal while the near-optimal impulse controls

were derived through convex perturbation. We establish a necessary and su¢ -

cient stochastic maximum principle using the duality and the convex analysis.

In this memory the dynamics of the controlled system is driven by

8>>>><>>>>:
dX(t) = b(t;X(t); E[X(t)]; u(t)dt+ �(t;X(t); E[(X(t)]; u(t)dB(t)

+ C(t)d�(t)

X(0) = X0

where �(t) =
P

i�0 �i1[�i;T ] is a piecewise consumption process. f�ig is a �xed

sequence of increasing Ft-stopping time. Each �i is an F�i-measurable random

variable.

The goal of the controller is to minimize the expected cost function, which
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Introduction

relies on the control inputs to the system

J(u(�); �(�))

= E

"Z T

0

f(t;X(t); E[X(t)]; u(t))dt+ g(X(T ); E[X(T )]) +
X
i�0

l (�i; �i)

#
:

In this memory, we examine a stochastic optimal control problem in which

the governed state process is characterized by a di¤usion mean-�eld model

involving impulse controls. Furthermore, the existence and uniqueness of the

solution to this equation have also been studied. These �ndings are then

applied to the continuous-time Markowitz�s mean-variance portfolio selection

model incorporating a piecewise consumption process.

The remaining sections of the memory are structured as follows. Chapter 1 is

a recall on the stochastic calculation. Chapter 2 presents the the existence and

uniqueness of solutions with respect to stochastic di¤erential equations (SDEs)

of mean-�eld involving impulse control. In Chapter 3, we discuss the stochastic

maximum principle for the optimal control problem and a veri�cation theorem

and our results are applied to a Markowitz�s mean-variance portfolio selection

model.
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Chapter 1

Recall on the stochastic

calculation

In this introductory chapter, we give some basic de�nitions and the more often

elementary, concerning the results of stochastic calculation. We limit ourselves

to what is strictly necessary for the following chapters.

1.1 Stochastic processes

De�nition 1.1.1 (Stochastic processes) A stochastic process is a collec-

tion of random variables X = fX(t); t 2 T g de�ned on a probability space

(
;F ;P) and assuming valeus in Rn

Remark 1.1.1 1. We often interpret t as time.

2. If the index set T is countable set, we call X a discrete-time stochastic

process, and if T is a continuous, we call it a continuous-time stochastic

process.

3. The index set T is usually the hal�ine [0;1),

4



Chapter 1 : Recall on the stochastic calculation

4. For each t in the index set T , X(t) is a random variable.

! �! X(t; !); ! 2 
:

5. If we �x ! 2 
, X(!) is a function

t �! X(t; !); t 2 T :

which is called a path of X(t).

De�nition 1.1.2 (Modi�cation of process) We say that a stochastic pro-

cess (X(t))t2T is a modi�cation of another process (Y (t))t2T if

P (X(t) = Y (t)) = 1; 8 t 2 T :

De�nition 1.1.3 (Indistinguishable processes) We say that two stochastic

processes (X(t))t2T and (Y (t))t2T are indistinguishable if

P (X(t) = Y (t);8 t 2 T ) :

Remark 1.1.2 If two stochastic processes (X(t))t2T and (Y (t))t2T are in-

distinguishable, then they are modi�cations of each other.But Conversely not

always true

De�nition 1.1.4 (Measurable stochastic process) a stochastic process X =

fX(t); t 2 T g is measurable if the mapping X : [0; T ]�
! Rn is (B ([0; T ])
F ;B)

measurable.

5



Chapter 1 : Recall on the stochastic calculation

De�nition 1.1.5 (Filtration) A �ltration is a family of �-algebras (Ft)t2R+

de�ned on a probability space (
;F ;P), such that Fs � Ft � F for all 0 � s �

t, where F is the �-algebra of all events in 
. And we call (
;F ; (Ft)t2R+ ;P)

a �ltered probability space.

Intuitively, the �ltration represents the increasing amount of information avail-

able to an observer as time passes, with Ft being the set of events that the

observer can distinguish up to time t.

Remark 1.1.3 1. A �ltration F = (Ft)t2R+ is right continuous if \�>0Ft+� =

Ft for all t � 0

2. A �ltration F = (Ft)t2R+ is complete if each Ft contains every nigligible

set.

3. A �ltration that is right continuous and complete is said to satisfy the

usual conditions.

De�nition 1.1.6 (Adapted stochastic process) We say that a stochastic

process X = fX(t); t 2 T g is adapted to a �ltration F = (Ft)t2R+ if X(t) is

Ft-measurable for each t

Remark 1.1.4 1. The collection of �-algebras fG(t)gt�0 where

G(t) = � fX(s) : 0 � s � tg

for all t � 0 we call it the natural �ltration of a stochastic process X =

fX(t); t 2 T g

2. We de�ne the minimal augmented �ltration generated by X = fX(t); t 2 T g

to be the smallest �ltration that is right continuous and complete and with

respect to which the process X = fX(t); t 2 T g is adapted

6
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De�nition 1.1.7 (Stopping time) A stopping time � with respect to a continuous-

time stochastic process (X(t))t2T is a random variable � : 
 ! [0;+1] such

that for all t 2 T , the event f� � tg = f! 2 
 : �(!) � tg 2 Ft

If � is a stopping time. The �-algebraF� = fA 2 F ; A \ f� � tg 2 Ft; 8t 2 T g

is called the �-algebra of events prior to T

1.1.1 Brownian Motion

De�nition 1.1.8 (Standard Brownian Motion) The Standard Brownian

Motion, also known as Wiener process, is a stochastic process B(t)t�0 with

independent and identically distributed increments such that:

1. B(0) = 0 almost surely.

2. For all 0 � s < t, the increment B(t)�B(s) is normally distributed with

mean 0 and variance t� s, (i.e., B(t)�B(s) � N (0; t� s)).

3. The sample paths of B(t) are almost surely continuous.

Remark 1.1.5 1. We call B = (B(1); B(2); : : : ; B(d)) a d-dimensional Brownian

motion if B(i) are independent standard Brownian motions , for i =

1; 2; : : : ; d.

2. The �ltration fFt); t � 0g generated by a Brownian motion B is de�ned

as follows : Ft = � (B(s) : s � t) ; t � 0, and we call it the natural

�ltration of B or Brownian �ltration.

1.1.2 Martingales

De�nition 1.1.9 (Martingale) A continuous time martingale is a stochastic

process X = fX(t); t � 0g that satis�es the following conditions:

7



Chapter 1 : Recall on the stochastic calculation

(i) X(t) is adapted to a �ltration F = fFt; t � 0g, (i.e., X(t) is measurable

with respect to Ft for all t � 0).

(ii) X(t) is integrable for all t � 0, (i.e., E[jX(t)j] <1 for all t � 0).

(iii) For all 0 � s � t, E[X(t)jFs] = X(s) almost surely.

Remark 1.1.6 1. X is submartingale (resp supermartingale) if it sat-

is�es (i), (ii) and if moreover for all s; t � 0 such that s < t, we have

E (X(t) j Fs) � X(t) (resp E (X(t) j Fs) � X(t))

2. X is a martingale if it is submartingale and supermartingale at the same

time

3. if X is martingale then E (X(t)) = E (X(0)) for all t 2 T

Proposition 1.1.1 if B is a Brownian motion then B,
�
(B(t))2 � t

�
t2T andn

exp
�
�B(t)� �2t

2

�o
are martingales. Reciprocally if X is a continuous pro-

cess such that X and
�
(X(t))2 � t

	
t�0 are martingales, X is a Brownian motion

De�nition 1.1.10 (Local Martingale) A stochastic process fM(t)gt2R+ ad-

apted caglad ( right-continuous with left limits ), is a local martingale if there

exists an increasing sequence of stopping times (�n) such that �n ! +1 as

n!1 and M(t ^ �n) is a martingale for all n.

A positive local martingale is a supermartingale. A locally uniformly integrable

martingale is a martingale.

De�nition 1.1.11 (Semimartingale) A semimartingale is a cadlag adapted

process X admitting a decomposition of the form:

X = A+M (1.1)

8



Chapter 1 : Recall on the stochastic calculation

where M is a cadlag local martingale null at 0 and A is an adapted process of

�nite variation and null at 0.

A continuous semimartingale is a semimartingale such that in the decompos-

ition (1.1), M and A are continuous. Such a decomposition where M and A

are continuous is unique.

1.2 Stochastic integration and Itô�s formula

In this section, T is a positive real number, and we are seeking to de�ne the

integral

I (�) =

Z T

0

�(t) dB(t) (1.2)

Where (�(t))t�0 is any process and (B(t))t�0 is a Brownian motion. The prob-

lem is to give meaning to the di¤erential element dW (s) since the function

s! W (s) is not di¤erentiable.

1.2.1 Wiener integral

Let

L2 ([0; T ] ;R) =
�
� : [0; T ]! R such that,

Z T

0

j�(s)j2 ds <1
�
:

TheWiener integral is an integral of the form (1.2) with � being a deterministic

function, meaning it does not depend on the random w.

If �n is a deterministic step function of the form

�n(t) =

pnX
i=1

�i (t)1ht(n)i ;t
(n)
i+1

i;

where pn 2 N, the �i are real numbers, and
n
t
(n)
i

o
is an increasing sequence

9
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in T = [0; T ]. The Wiener integral is de�ned as

I (�n) =

Z T

0

�n(s) dB(t) =

pnX
i=1

�i (B(ti+1)�B(ti)) :

Due to the Gaussian nature of Brownian motion and the independence of its

increments, the random variable I(�n) is a Gaussian variable with zero mean

and variance

V ar (I (�n)) =

pnX
i=1

�2iV ar (W (ti+1)�W (ti))

=

pnX
i=1

�2i (ti+1 � ti)

=

Z T

0

(�n(s))2 ds

Remark 1.2.1 We notice that � ! I(�) is a linear function. Moreover, if f

and g are two step functions, we have

E [I (f) I (g)] =
Z T

0

f (s) g (s) ds

Then we speak of the isometry property of the Wiener integral. Now let � 2

L2([0; T ] ;R). Therefore, there exists a sequence of step functions f�n; n � 0g

that converges in L2([0; T ] ;R) to �. According to the previous paragraph, we

can construct the Wiener integrals I(�n), which are centered Gaussians that

form a Cauchy sequence by isometry. Since the space L2([0; T ];R) is complete,

this sequence converges to a Gaussian random variable denoted by I(�). It can

be shown that the limit does not depend on the choice of the sequence �n; n � 0.

I(�) is called the Wiener integral of � with respect to (B(t))t2R.

10



Chapter 1 : Recall on the stochastic calculation

1.2.2 The stochastic integral or Itô�s integral

We now aim to de�ne the integral (1.2), and the construction of I (�) is done

through discretization, as in the case of the Wiener integral.

First, let us consider the step processes of the form

�n(t) =

pnX
i=0

�i1ht(n)i ;t
(n)
i+1

i (t) ; (1.3)

where pn 2 N,
n
t
(n)
i

o
is an increasing sequence in T = [0; T ], and �i 2

L2 (
;Fti ;P) for all i = 0; � � � ; pn. We de�ne I (�n) as

I (�n) =

pnX
i=1

�i (B(ti+1)�B(ti))

It can be veri�ed that

E [I (�n)] = 0; and V ar (I (�n)) = E
�Z T

0

(�n(s))2 ds

�

Let H be the space of caglad (i.e., left-continuous and right-limited), Ft-

adapted processes � such that

k�k2 = E
�Z T

0

j�(s)j2 ds
�
<1

We can de�ne I(�) for any � 2 H. We approximate � by a sequence of step

processes given by (1.3), and the limit is in L2(
; [0; T ]). The integral I(�) is

then de�ned as lim
n!+1

I(�n), where

E [I (�)] = 0

11



Chapter 1 : Recall on the stochastic calculation

and

V ar (I (�)) = E
�Z T

0

�2(s)ds

�

De�nition 1.2.1 (Itô Process) A real-valued process X = (X(t))t2T is an

Itô process if P:p:s

X(t) = X(0) +

Z t

0

b(s)ds+

Z t

0

�(s)dB(s); 8 0 � t � T (1.4)

Where X(0) is F0-measurable, b and � are two progressively measurable pro-

cesses satisfying the conditions P.a.s

Z T

0

jb(s)j ds <1 and
Z T

0

j�(s)j2 ds <1;

In other words, b 2 L1loc(F) and � 2 L2loc(F).

The coe¢ cient b is the drift or derivative and � is the di¤usion coe¢ cient.

Proposition 1.2.1 (Integration by parts) If X and Y are two Itô pro-

cesses,

X(t) = X(0) +

Z t

0

b1(s)ds+

Z t

0

�1(s)dB(s);

Y (t) = Y (0) +

Z t

0

b2(s)ds+

Z t

0

�2(s)dBs;

then,

X(t)Y (t) = X(0)Y (0) +

Z t

0

X(s)dY (s) +

Z t

0

Y (s)dX(s) + hX; Y it

such that,

hX; Y it =
Z t

0

�1(s)�2(s)ds; and dX(t) = b(t)dt+ �(t)dB(t):

12
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Theorem 1.2.1 (Itô�s formula) Let b 2 L1loc(F); � 2 L2loc(F) and let X be

an Itô process de�ned as in (1.4), let hX(t)i :=
Z t

0

j�(s)j2 ds.

Let f 2 C1;2 (T � R;R), then

df (t;X(t)) = @tf (t;X(t)) dt+ @xf (t;X(t)) dX(t) +
1

2
@xxf (t;X(t)) d hXit

=

�
@tf + @xfb(t) +

1

2
@xxf j�(t)j2

�
(t;X(t)) dt

+ @xf (t;X(t))�(t)dB(t):

Or alternatively, in integral form

f (t;X(t)) = f (0; X(0)) +

Z t

0

�
@tf + @xfb(t) +

1

2
@xxf j�(t)j2

�
(s;X(s))ds

+

Z t

0

@xf (s;X(s))�(s)dB(s):

We �nish this paragraph by extending the previous formula to the case of a

d-dimensional Brownian motion.

Theorem 1.2.2 Let B =
�
B1; � � � ; Bd

�>
be an BM d-dimensional,

bi 2 L1loc(F); �i;j 2 L2loc(F); 1 � i � n; 1 � j � d

We denote b = (b1; � � � ; bn)> and � := (�i;j)1�i�n;1�j�d, which take values in

Rn and Rn�d respectively. Let X = (X1; � � � ; Xn) be an Itô�s process taking

values in Rn such that

dX i(t) := bi(t)dt+

dX
j=1

�i;j(t)dBj(t); i = 1; � � � ; n:

13



Chapter 2

Existence and uniqueness of the

solution of the stochastic

deferential equation

2.1 Di¤usion mean-�eld SDE involving impulse

control

We choose T > 0 and represent T = [0; T ]; R� = R � f0g and B (R�) as

the Borel �-�eld generated by open subsets of R�, where the closure of such

subsets does not include the point 0. Let (
;F ;F;P) be a �ltered probab-

ility space satisfying the usual conditions, i.e., the right-continuity and the

P-completeness of the �ltration F := fFt j t 2 T g. F is the right-continuous,

P-complete, natural �ltration generated by Brownian motion. We assume that

FT = F for convenience.

� S2 (T ;Rn) : The space of Rn-valued F-adapted càdlàg processes fX(t) :

t 2 [0; T ]g such that E
�
sup0�t�T jX2(t)j

�
<1:

14



Chapter 2 : Existence and uniqueness of the solution of the stochastic
deferential equation

� L2 (FT ;Rn) : The space of all the FT -measurable random variables X :


 �! Rn such that E [jX(t)j2] <1:

� L2�
�
T ;Rn�d

�
: The space of all Rn�d-value F-progressively measurable

processes fv(t) : t 2 [0; T ]g such that E
hR T
0
e��tjv(t)j2dt

i
<1;8� > 0:

� L2
�
T ;Rn�d

�
: The space of all Rn�d-value F-progressively measurable

processes fv(t) : t 2 [0; T ]g such that E
hR T
0
jv(t)j2dt

i
<1.

� L1 (
;Ft;P;Rn�m) : The space of Rn�m-value Ft-measurable bounded

processes.

I (T ;Rn) : The class of processes �(�) =
P

i�0 �i1[�i;T ] such that each �i is

Rn-valued F�i measurable random variable, E
�P1

i=0 j�ij
2� < 1. Assuming

�i !1 implies that at most �nitely many impulses may occur on T .

M2
�
T ;Rn � Rn�d

�
= S2

�
T ;Rk

�
� L2

�
T ;Rk�d

�
:

In the remaining part of this chapter, we present certain conditions that are

necessary for the existence and uniqueness of a solution to a di¤usion mean-

�eld stochastic di¤erential equation with impulse control. b; � are mappings

measurable with respect to Ft.

Assumption H1 b; � are Lipschitz with respect to x; �x and exhibit linear

growth in (x; �x), i.e., 9 c > 0 such that

jb (t; x1; �x1)� b (t; x2; �x2)j+j� (t; x1; �x1)� � (t; x2; �x2)j � c (jx1 � x2j+ j�x1 � �x2j) ;

and

jb(t; x; �x)j+ j�(t; x; �x)j � c(1 + jxj+ j�xj):

15



Chapter 2 : Existence and uniqueness of the solution of the stochastic
deferential equation

Given the following stochastic di¤erential equation:

8><>: dX(t) = b(t;X(t);E[X(t)])dt+ �(t;X(t);E[(X(t)])dB(t) + C(t)d�(t)

X(0) = X0

(2.1)

Here b; � are F-measurable functions satisfying

b : 
� [0; T ]� Rn � Rn ! Rn; � : 
� [0; T ]� Rn � Rn ! Rn�d;

C : 
� [0; T ]! Rn�m:

B(t) = (B1(t); B2(t); � � � ; Bd(t)) is d-dimensional standard Brownian motion.

Lemma 2.1.1 Let C(�) 2 L1 (
;Ft;P;Rn�m) be continuous. Under Assump-

tion H1 the SDE(2:1) has a unique solution X(�) 2 S2 (T ;Rn)

Proof. If we assume that �(�) � 0 for all t 2 [0; T ], the equation (2.1)

transforms into a classical SDE without impulses, and the result remains valid

based on the di¤usion theory (see [7]).

Let

h(t) =

Z t

0

C(s)d�(s) =
X
�i�t

C (�i) �i; Y (t) = X(t)� h(t);

eb(t;X(t);E[X(t)]) = b(t;X(t) + h(t);E[X(t) + h(t)]);

e�(t;X(t);E[X(t)]) = �(t;X(t) + h(t);E[X(t) + h(t)]):

Then we have8><>: dY (t) = eb(t; Y (t);E[Y (t)])dt+ e�(t; Y (t);E[Y (t)])dB(t);
Y (0) = X0:

(2.2)

It is easy to verify that eb; e� satisfy Assumption H1.
16
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deferential equation

Step 1 For arbitrary y(�) 2 L2 (T ;Rn), consider the following SDE

dY (t) = eb(t; Y (t);E[y(t)])dt+ e�(t; Y (t);E[y(t)])dB(t): (2.3)

The existence and uniqueness of the solution of SDE (2.3) are provided by

Theorem 1:19 in [6].

Step 2We construct a mapping from SDE (2.3) into itself, i.e., l(y(�))! Y (�)

and l is a contractive mapping. Indeed, for any y1(�); y2(�) 2 L2 (T ;Rn) ; Y1(�) =

l (y1(�)) ; Y2(�) = l (y2(�)) ; by(�) = y1(�) � y2(�); bY (�) = Y1(�) � Y2(�). Applying

Itô�s formula to e��tjbY (t)j2, yielding
e��tjbY (t)j2 = Z t

0

e��sbY T(s)dY (s) +
1

2

Z t

0

e��sTr
�bY T(s)bY T(s)

�
ds

+

Z t

0

e��sbY T(s)
���eb (s; Y1(s);E [y1(s)])�eb (s; Y2(s);E [y2(s)])��� ds

+

Z t

0

e��s je� (s; Y1(s);E [y1(s)])� e� (s; Y2(s);E [y2(s)])j2 ds;
taking the mathematical expectation of both sides of the equation obtained,

the result follows from Lipschitz condition

E
h
e��tjbY (t)j2i+ E �Z t

0

�e��sjbY (s)j2� ds
=2E

�Z t

0

e��sbY T(s)
���eb (s; Y1(s);E [y1(s)])�eb (s; Y2(s);E [y2(s)])��� ds�

+ E
�Z t

0

e��s je� (s; Y1(s);E [y1(s)])� e� (s; Y2(s);E [y2(s)])j2 ds�
�
�
6c2 + 1

�
E
�Z t

0

e��sjbY (s)j2ds�+ 6c2E �Z t

0

e��sjby(s)j2ds� :
We get

�
� � 6c2 � 1

�
E
�Z T

0

e��sjbY (s)j2ds� � 6c2E �Z T

0

e��sjby(s)j2ds� :

17
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deferential equation

Let � be 18c2 + 1. We have

E
�Z T

0

e��sjbY (s)j2ds� � 6c2

� � 6c2 + 1E
�Z T

0

e��sjby(s)j2ds� ;
since 6c2

��6c2+1 < 1, l is a contractive mapping in L
2
� (T ;Rn). We de�ne L�[0; T ]

as the Banach space L�[0; T ] = L2� (T ;Rn), with the normE
hR T
0
e��tjv(t)j2dt

i
.

Since 0 < T < 1, all the norms j � jL� [0;T ] with di¤erent � are equivalent. By

applying the �xed-point theorem, the mapping has a unique �xed point Y (�) =

l(Y (�)). The existence and uniqueness of the solution of SDE (2.3) imply the

existence and uniqueness of the solution of SDE (2.2). Since Y (t) = X(t)�h(t)

is invertible, SDE (2.1) has a unique solution.

Step 3 Using Cauchy-Schwartz inequality, we have the following inequality

E

"
sup
0�t�T

����Z t

0

b(s;X(s);E[X(s)])ds
����2
#
� T E

�Z T

0

jb(s;X(s);E[X(s)])j2 ds
�
:

Using Doob martingale inequality, Itô�s isometry and Burkhölder-Davis-Gundy

inequality, we obtain the following results respectively

E

"
sup
0�t�T

����Z t

0

�(s;X(s);E[X(s)])dB(s)
����2
#

� 4E
"����Z T

0

�(s;X(s);E[X(s)])dB(s)
����2
#
;

= 4E
�Z T

0

j�(s;X(s);E[X(s)])j2 ds
�
:

18
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deferential equation

The result follows from Lipschitz condition and Jensen�s inequality

E
�Z T

0

jb(s;X(s);E[X(s)])j2 ds
�
+ E

�Z T

0

j�(s;X(s);E[X(s)])j2 ds
�

�cE
�Z T

0

jX(s)j2ds
�
+ cE

�Z T

0

jb(s; 0; 0)j2ds
�
+ cE

�Z T

0

j�(s; 0; 0)j2
�
;

+E
X
�i�T

[C (�i) �i]
2

)
<1;

Then

E
�
sup
0�t�T

jX(t)j2
�
� L

(
E

"
sup
0�t�T

����Z t

0

b(s;X(s);E[X(s)])ds
����2
#

+ E

"
sup
0�t�T

����Z t

0

�(s;X(s);E[X(s)])dB(s)
����2
#

+E

"
sup
0�t�T

����Z t

0

C(s)d�(s)

����2 + E [X0]
2

#)
;

�L
�
E jX0j2 + TE

�Z T

0

jb(s;X(s);E[X(s)])j2ds
�

+ 4E
�Z T

0

j�(s;X(s);E[X(s)])j2ds
�
+E

X
�i�T

[C (�i) �i]
2

)
;

� L

�
E jX0j2 + E

�Z T

0

�
jX(s)j2 + jb(s; 0; 0)j2 + j�(s; 0; 0)j2

�
ds

�
;

where L is a constant which will change from line to line. We obtain X(�) 2

S2 (T ;Rn).

Assumption H2

H2:1 : �(�; 0; 0; 0; 0; 0; 0) 2 L2 (F ; Rn)

H2:2 : � is uniformly Lipschitz, i.e., 9c > 0 such that 8t; �1 = (y1; z1; v1) ;

�2 = (y2; z2; v2) ; ��1 = (�y1; �z1; �v1) ; ��2 = (�y2; �z2; �v2),

j� (t; �1; ��1)� � (t; �2; ��2)j � c (jy1 � y2j+ jz1 � z2j+ jv1 � v2j� + j�y1 � �y2j

+ j�z1 � �z2j+ j�v1 � �v2j�).

Lemma 2.1.2 Under Assumption H2, the given BSDE (2.4) has a unique
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solution (Y (�); Z(�)) 2M2
�
T ; Rn �Rn�d

�
.

8><>: dY (t) = ��(t; Y (t); Z(t); E[Y (t)]; E[Z(t)])dt+ Z(t)dB(t) + C(t)d�(t)

Y (T ) = �

(2.4)

where � is a square-integrable and FT -measurable random variable.

Proof. Lemma (2.1.2) can be proved by the �xed-point theorem.

Let 8><>: d ~Y (t) = e�(t; ~Y (t); Z(t); E[ ~Y (t)]; E[Z(t)])dt+ Z(t)dB(t)

~Y (T ) = � � h(T ):
(2.5)

where h(t) =
R t
0
C(s)d�(s) =

P
�i�tC (�i) �i;

eY (t) = Y (t)� h(t); and

e�(t; Y (t); Z(t); E[Y (t)]; E[Z(t)]) = �(t; Y (t)+h(t); Z(t); E[Y (t)+h(t)]; E[Z(t)])

According to Theorem 3:1 in [6], the mean-�eld BSDE (2.5) has a unique solu-

tion. We note that ~Y (t) = Y (t)�h(t) is an invertible function. Consequently,

we obtain the solution (Y (�); Z(�)) 2 M2
�
T ; Rn �Rn�d

�
:
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Chapter 3

The stochastic maximum

principle for an impulsive

optimal control problem

3.1 Stochastic maximum principle

We refer to the following problem as an optimal control problem of a di¤usion

mean-�eld model with impulse control. The state process X(�) := fX(t) : t 2

[0; T ]g is described by a di¤usion mean-�eld stochastic di¤erential equation

with impulse control

8>>>><>>>>:
dX(t) = b(t;X(t);E[X(t)]; u(t))dt+ �(t;X(t);E[X(t)]; u(t))dB(t)

+ C(t)d�(t)

X(0) = X0:

(3.1)
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control problem

The goal of the controller is to minimize the expected cost function, which is

determined by the control inputs to the system

J(u(�); �(�)) (3.2)

= E

"Z T

0

f(t;X(t);E[X(t)]; u(t))dt+ g(X(T );E[X(T )]) +
X
i�0

l (�i; �i)

#
:

Here f : [0; T ] � Rn � Rn � U ! R; g : Rn � Rn ! R; l : [0; T ] � U ! R.

Suppose that the controller aims to minimize the cost functional J by selecting

an appropriate admissible control (u(�); �(�)) such that

J(u(�); �(�))) = inf
(v;�)2A

J(v(�); �(�));

where A = U �I is called an admissible control set. u : T �
! U is de�ned

within a non-empty, closed, and convex set U , (U : A non-empty convex set of

Rn). We require that the control process fu(t) j t 2 T g is F-predictable and

has right limits.

Assumption H3

H3:1 : b; � are continuously di¤erentiable, Lipschitz in (x; �x; u), and exhibit a

linear growth in (x; �x; u), i.e., for any (x; �x1; u1) ; (x2; �x2; u2), 9 c such that:

jb (t; x1; �x1; u1)� b (t; x2; �x2; u2)j+ j� (t; x1; �x1; u1)� � (t; x2; �x2; u2)j

� c (jx1 � x2j+ j�x1 � �x2j+ ju1 � u2j) ;

and

jb(t; x; �x; u)j+ j�(t; x; �x; u)j � c(1 + jxj+ j�xj+ juj):

H3:2 : l is continuously di¤erentiable in � and l(�; �) � c(1 + j�j).

The objective of the rest of this section is to present the stochastic maximum
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principle for an optimal control problem of di¤usion mean-�eld model involving

impulse control. Since A is convex, a convex perturbation technique will be

used to establish a necessary condition for the above optimal control problem.

We will provide a veri�cation theorem for the necessary condition.

Lemma 3.1.1 Under Condition H3, the mean-�eld SDE (3.1) has a unique

solution X(�) 2 S2 (T ;Rn).

Proof. The result follows from Lemma (2.1.1)

The Hamiltonian function is de�ned as follows H : 
 � T � Rn � Rn � U �

Rn � Rn�d ! R

H(t; x; �x; u; p; q) = f(t; x; �x; u) + bT(t; x; �x; u)p+ tr
�
�T(t; x; �x; u)q

�
: (3.3)

Assumption H4

H4:1 : f; b; � are continuously di¤erentiable in (x; �x; u); g is continuously di¤er-

entiable in (x; �x), while l is continuously di¤erentiable in �.

H4:2 : The derivative of b and � are bounded. The derivative of f , g and l are

bounded by C(1+ jxj+ j�xj+ juj), C(1+ jxj+ j�xj) and C(1+ j�j), respectively.

We denote  (t) =  (t:X(t);E[X(t)]; u(t)), for  = b; �; bx; b�x; bu; �x; ��x; �u; f ,

fx; fu; H(t) = H(t; x; �x; u; p; q; r). We introduce the adjoint equation

8><>: dp(t) = � (rxH(t) + E [r�xH(t)]) dt+ q(t)dB(t);

p(T ) = rxg(X(T );E[X(T )]) + E [r�xg(X(T );E[X(T )])] :
(3.4)

It is evident that (3.4) has a unique solution (p(�); q(�)) 2

M2
�
T ;Rn � Rn�d

�
under Assumption H4.

Let
�
u(�); �(�) =

P
i�0 �i1[�i;T ]

�
be the optimal control for the considered stochastic

optimal control problem. The control
�
v(�); �(�) =

P
i�0 �i1[�i;T ]

�
ensures u(�)+

v(�) 2 U ; �(�) + �(�) 2 I. due to the convexity of U and I. By selecting an
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arbitrary " > 0, u"(�) = u(�) + "v(�) 2 U and �"(�) = �(�) + "�(�) 2 I. X"(�)

represents the corresponding trajectory of (u"(�); �"(�)). We introduce the fol-

lowing variational equation:

8>>>>>>><>>>>>>>:

dX1(t)T =
�
X1(t)Tbx(t) + E

�
X1(t)T

�
b�x(t) + v(t)Tbu(t)

�
dt

+
�
X1(t)T�x(t) + E

�
X1(t)T

�
��x(t) + v(t)T�u(t)

�
dB(t)

+ C(t)d�(t);

X1(0) = 0:

(3.5)

By Assumption H4, Equation (3.5) has a unique solution. Denote eX(t) =
X"(t)�X(t)

"
�X1(t).

Lemma 3.1.2

lim
"!0

sup
0�t�T

E
h
j eX(t)j2i = 0:

Proof. Since eX(t) is independent of the impulse term, the corresponding
result follows from Lemma 4:3 in [8].

Since (u(�); �(�)) is an optimal control, it is clear that

"�1 [J (u"(�); �"(�))� J(u(�); �(�))] � 0:

We �nd the following variational inequality.

Lemma 3.1.3 Suppose (u(�); �(�)) is an optimal control, then

E
�
X1(T )T (rxg(X(T );E[X(T )]) + E [r�xg(X(T );E[X(T )])]) +

Z T

0

�
X1(t)Tfx(t)

+E
�
X1(t)T

�
f�x(t) + fu(t)v(t)

�
dt+

X
i�0

l� (�i; �i) �i

#
� 0
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Proof. From Lemma (3.1.2), it is straightforward to observe that as "! 0,

"�1E

"X
i�0

l (�i; �
"
i )� l (�i; �i)

#

=E

"X
i�0

Z 1

0

l� (�i; �i + "��i)

#
�id�! E

"X
i�0

l� (�i; �i) �i

#
;

also we have

"�1E
�Z T

0

(f (t;X"(t);E [X"(t)] ; u"(t))� f(t;X(t);E[X(t)]; u(t))) dt
�

=E
�Z T

0

Z 1

0

n
(X"(t)�X(t))T

"
fx

�
t;X(t) + �"

�
~X(t) +X1(t)

�
;E[X(t)]; u(t)

�
+ (E[X"(t)]�E[X(t)])T

"
f�x

�
t;X(t); E

h
X(t) + �"

� eX(t) +X1(t)
�i
; u(t)

�
+fu(t;X(t);E[X(t)]; u(t) + �"v(t))v(t)g d�dt]

! E
�Z T

0

�
X1(t)Tfx(t) + E

�
X1(t)T

�
f�x(t) + fu(t)v(t)

�
dt

�
;

and

"�1E
�
g (X"(T );E [X"(T )])� g

�
X(T );E [X(T )]

��
= E

h
(X"(t)�X(t))T

"
gx(X(T ); E[X(T )]) +

(EX"(t)�E[X(t)])T
"

i
gx(T;X(T ))

i
!EX1(T )Tgx(X(T );E[X(T )] + E [gx(X(T );E[X(T )])]
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Due to the optimality of (u(�); �(�)), we conclude that

0 �"�1 [J (u"(�); �"(�))� J(u(�); �(�))]

="�1E

"Z T

0

f (t;X"(t);E [X"(t)] ; u"(t)) dt+ g (X"(T );E [X"(T )]) +
X
i�0

l (�i; �
"
i )

#

� "�1E

"Z T

0

f(t;X(t);E[X(t)]; u(t))dt+ g(X(T );E[X(T )]) +
X
i�0

l (�i; �i)

#

!E
�
X1(T )T (rxg(X(T );E[X(T )]) + E [r�xg(X(T );E[X(T )])])

+

Z T

0

�
X1(t)Tfx(t) + E

�
X1(t)T

�
f�x(t) + fu(t)v(t)

�
dt+

X
i�0

l� (�i; �i) �i

#

The proof is complete.

Theorem 3.1.1 Under Assumptions H1;H2;H3;H4; (u(�); �(�)) is an optimal

control; (p(�), q(�)) is the solution of (3.4) and X(�) is the corresponding tra-

jectory. Then 8v 2 U ; � 2 I,

ruH(t;X(t);E[X(t)]; u(t); p(t); q(t))(v � u(t))T � 0; a.e. t 2 T ;P� a.s.

(3.6)

E

"X
i�0
[l� (�i; �i) + p (�i)C (�i)]10��i�T (�i � �i)

#
� 0 (3.7)

Proof. Applying Itô�s formula to p(t)TX1(t) and combining with Lemma
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(3.1.3), we obtain

E
�
X1(T )Tp(T )�X1(0)Tp(0)

�
= E

�Z T

0

X1(t)T [�rxH(t;X(t);E[X(t)]; u(t); p(t); q(t)

+E [r�xH(t;X(t);E[X(t)]; u(t); p(t); q(t))])] dt

+ p(t)
��
X1(t)Tbx(t) + E

�
X1(t)T

�
b�x(t) + v(t)Tbu(t)

�
dt+ C(t)d�(t)

	
+ q(t)

�
X1(t)T�x(t) + E

�
X1(t)T

�
��x(t) + v(t)T�u(t)

�
dt

=

�Z T

0

�
ruH(t;X(t);E[X(t)]; u(t); p(t); q(t))v(t)�X1(t)Tfx(t)� E

�
X1(t)T

�
f�x(t)

�fu(t)v(t)] dt+
X
i�0

p (�i)C (�i) �i

#
�

Adding the identical term

E

"Z T

0

�
X1(t)Tfx(t) + E

�
X1(t)T

�
f�x(t) + fu(t)v(t)

�
dt+

X
i�0

l� (�i; �i) �i

#

to both sides and utilizing Lemma (3.1.3), we obtain

E
�Z T

0

ruH(t;X(t);E[X(t)]; u(t); p(t); q(t))v(t)dt

+
X
i�0
[p (�i)C (�i) + l� (�i; �i)]1f0��i�Tg�i

#
� 0

By the freedom of choice for v(�) and �i; i = 1; 2; � � � , we can set v(�) � 0 and

�i � 0 to obtain

E
�Z T

0

ruH(t;X(t);E[X(t)]; u(t); p(t); q(t))(ev(t)� u(t))dt

�
� 0 (3.8)

for all ev(�) 2 U , and
E

"X
i�0
[p (�i)C (�i) + l� (�i; �i)]1f0��i�Tg (�i � �i)

#
� 0
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for all �(�) =
P

i�0 �i1[�i;T ] 2 I. Next we refer to [9] for the proof. For v 2 U ,

de�ned by Bv the set of (t; !) 2 [0; T ]� 
 such that

ruH(t;X(t);E[X(t)]; u(t); p(t); q(t))(v(t)� u(t))dt < 0:

Obviously, for each t 2 [0; T ]; Bv
t 2 Ft. Let us consider ev 2 U de�ned by

ev(t; !) =
8>><>>:
v; if (t; !) 2 Bv;

u(t; !); otherwise.

If (Leb
 P) (Bv) > 0, then it follows that

E
�Z T

0

ruH(t;X(t);E[X(t)]; u(t); p(t); q(t))(ev(t)� u(t))dt

�
< 0;

which contradicts (3.8). Hence, we conclude that (Leb
P) (Bv) = 0, and the

statements (3.6), (3.7) remain valid.

Theorem 3.1.2 Under Assumptions H1;H2;H3, we assume that l; g;H are

convex with respect to �; (x; �x) and (x; �x; u), respectively. X(�) is the corres-

ponding trajectory of (u(�); �(�)) 2 A and (p(�); q(�)) is a unique solution of

(3.4). If (3.6), (3.7) are satis�ed, then (u(�); �(�)) is an optimal control pro-

cess.

Proof. For any (v(�); �(�)) 2 U�I; Xv(�) denotes the corresponding trajectory

of (v(�); �(�)). Consider J(v(�); �(�))�J(u(�); �(�)), by the convexity of g(�); l(�),
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we obtain.

J(v(�); �(�))� J(u(�); �(�))

= E
�Z T

0

f (t;Xv(t);E [Xv(t)] ; v(t))� f(t;X(t);E[X(t)]; u(t))dt

+g (Xv(T );E [Xv(T )])� g(X(T );E[X(T )]) +
X
i�0
(l (�i; �i)� l (�i; �i))

#

� E
�Z T

0

f (t;Xv(t);E [Xv(t)] ; v(t))� f(t;X(t);E[X(t)]; u(t))dt

+(Xv(T )�X(T ))T (rxg(X(T );E[X(T )]) + E [r�xg(X(T );E[X(T )])])

+
X
i�0

l� (�i; �i) (�i � �i)

#

= E
�Z T

0

[f (t;Xv(t);E [Xv(t)] ; v(t))� f(t;X(t);E[X(t)]; u(t))] dt

+(Xv(T )�X(T ))T p(T ) +
X
i�0

l� (�i; �i) (�i � �i)

#
:

Applying Itô�s formula to (Xv(T )�X(T ))T p(T ), along with the de�nition of

H(�), the convexity of H(�) and (3.7), we obtain.

J(v(�); �(�))� J(u(�); �(�))

�E
�Z T

0

fH (t;Xv(t);E [Xv(t)] ; v(t); p(t); q(t); r(t))

�H(t;X(t);E[X(t)]; u(t); p(t); q(t); r(t)))

� (Xv(t)�X(t))T (rxH(t;X(t);E[X(t)]; u(t); p(t); q(t); r(t))

+E [r�xH(t;X(t);E[X(t)]; u(t); p(t); q(t); r(t))])g dt

+
X
i�0
[l� (�i; �i) + p (�i)C (�i)] (�i � �i)

#
� 0:

So (u(�); �(�)) is an optimal control.
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3.2 Application

Suppose we have two types of securities in the market for potential investment

options. A risk-free asset (e.g., a bond), whose price S0(t) at time t is provided

by 8><>: dS0(t) = �(t)S0(t)dt

S0(0) = S0:

A risky security (e.g., a stock), whose value S(t) at time t is determined by

8><>: dS(t) = S(t) [�(t)dt+ �(t)dB(t)]

S(0) = S

where �(t) � �(t) and � : [0; T ]! R. The wealthy dynamics follows

8><>: dX(t) = (�(t)(X(t)� u(t)) + u(t)�(t))dt+ u(t)�(t)dB(t)� d�(t);

X(0) = �:

u(�) is a portfolio strategy of agent and X(t) = Xu(t) is the total wealth

of the agent at time t corresponding to investment strategy u(�): �(t) =P
i�0 �i1[�i;T ] is a piecewise consumption process.

The investor chooses an investment strategy and a consumption strategy to

minimize the variation and maximize the expected function. The cost func-

tional is given by

J(u(�); �(�)) = a

2
Var[X(T )]� E[X(T )] + E

"
S

2

X
0��i�T

�2i +

Z T

0

1

2
Q(t)u2(t)dt

#
;
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where a is a constant, Q(�) is a deterministic function.

J(u(�); �(�))

= E

"Z T

0

1

2
Q(t)u2(t)dt+

ha
2
X2(T )�X(T )

i
� a

2
[E[X(T )]]2 +

S

2

X
0��i�T

�2i

#
:

As we can see from (3.2), g(x; �x) = a
2
x2�x�a

2
�x2; l (�i; �i) =

S
2
�2i and f(t; x; �x; u) =

1
2
Q(t)u2(t).

g is not convex in �x, but we have the following corollary.

Corollary 3.2.1 If the convex condition is satis�ed in expected sense, i.e., the

following inequality holds, for any X1; X2 2 L2 (FT ;Rn) ;

E [g (X1;E [X1])� g (X2;E [X2])]

� E
��
X1 �XT

2

�
frxg (X1;E [X1]) +r�xg (X1;E [X1])g

�
;

the maximum principle is still valid.

Proof. This proof can refer to Corollary 4:1 in [8].

De�ne the Hamiltonian equation:

H(t; x; u; p; q; r) = [�(t)(x� u) + u�(t)]p+ u�(t)q +
1

2
Q(t)u2

The associated adjoint equation is as follows

8><>: dp(t) = ��(t)p(t)dt+ q(t)dB(t)

p(T ) = aX(T )� 1� aE[X(T )]
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Then, according to (3.1.1) and Corollary (3.2.1) we have

u(t) = � [�(t)� �(t)]p(t) + �(t)q(t)

Q(t)
; (3.9)

�(t) =
1

S

X
0��i�T

p (�i) : (3.10)
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Conclusion

In this memory, we focused on investigating di¤usion mean-�eld stochastic

di¤erential equations with impulse control. Our primary objective was to

establish the existence and uniqueness of solutions for these equations.

Additionally, we expanded our exploration to encompass the examination of

maximum principles and a veri�cation theorem, which are fundamental con-

cepts in control theory. By formulating a necessary maximum principle, we

identi�ed the crucial conditions that must be met for optimal control in both

continuous and impulse control settings.

Building upon our theoretical framework, we then addressed a mean-variance

portfolio selection problem, we were able to tackle this practical problem and

o¤er a comprehensive solution. Our �ndings provided a robust and reliable

approach to selecting portfolios that strike a balance between expected re-

turns and risk, taking into account the mean and variance of the portfolio�s

performance.
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Abstract
In this work, We have established a stochastic maximum principle con-
trolling a mean-field model that is governed by an Itô process and utilizes
both continuous and impulse control. Additionally, we demonstrate the
existence and uniqueness of the solution to a diffusion mean-field stochas-
tic differential equation that incorporates impulsive control. Concerning
its practical implementation, we successfully tackle a problem related to
selecting a portfolio with the aim of optimizing the balance between
average returns and variance.

ملخص
يتو إ عملية إلى مستند متوسطي نموذج في للتحكم عشوائي حدي مبدأ بتطوير قمنا العمل، هذا في
ووحدانية وجود بإثبات نقوم ذلك، إلى بالإضافة المتقطع. والتحكم المستمر التحكم من كل ويستخدم
معالجة بنجاح تم العملي، بتطبيقه يتعلق فيما المتقطع. التحكم تتضمن عشوائية تفاضلية لمعادلة الحل

والتشتت. العائدات متوسط بين التوازن تحقيق بغرض استثمار يقة طر باختيار تتعلق مشكلة

Résumé
Dans cette étude, nous avons établi un principe maximum stochastique
pour contrôler un modèle de champ moyen qui est régi par un processus
d’Itô et utilise à la fois un contrôle continu et impulsif. De plus, nous
démontrons l’existence et l’unicité de la solution à une équation différen-
tielle stochastique de diffusion de champ moyen qui intègre un contrôle
impulsif. En ce qui concerne sa mise en œuvre pratique, nous résolvons
avec succès un problème lié à la sélection d’un portefeuille dans le but
d’optimiser l’équilibre entre les rendements moyens et la variance.
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