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Abstract

In this thesis, we consider the cauchy problem for weakly coupled systems of fractional

semilinear Volterra integro differential equations of pseudo-parabolic type with a memory

term in multi-dimensional space Rn (n ≥ 1), under small initial data and the conditions

on the convolution kernel k which are weaker than the classical differential inequalities, we

establish new results for exponential decay of solutions for single equation of the systems

in the Fourier space, and we prove the global existence and uniqueness of solutions for

weakly coupled systems where data are supposed to belong to different classes of regu-

larity by introducing a set of time-weighted Sobolev spaces and applying the contracting

mapping theorem.

Keywords

parabolic equation, viscoelasticity, critical Fujita exponent, global existence, energy esti-

mate, decay estimates, exponential stability.
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Résumé
Dans cette thèse, nous considérons le problème de cauchy pour les systèmes faiblement

couplés d’équations intégro-différentielles fractionnaires semi-linéaires de type Volterra

pseudoparabolique avec un terme mémoire dans l’espace multidimensionnel Rn (n ≥ 1),

avec petites données initiales et les conditions sur le noyau de convolution k qui sont plus

faibles que les inégalités différentielles classiques, nous établissons de nouveaux résultats

pour la décroissance exponentielle des solutions pour une seule équation des systèmes

dans l’espace de Fourier, et nous prouvons l’existence globale et l’unicité des solutions

pour systèmes faiblement couplés où les données sont supposées appartenir à différentes

classes de régularité en introduisant un ensemble d’espaces de Sobolev pondérés dans le

temps et en appliquant le théorème d’application de contraction.

Mots clés équation parabolique, viscoélasticité, exposant critique de Fujita, existence

globale, estimation d’énergie, estimations de décroissance, stabilité exponentielle.
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Symbols and Abbreviations

Sets:

Rn the real Euclidean space of dimension n ≥ 1.

Functions and functions spaces:

F [f ](ξ) = f̂(ξ) := 1

(2π)
n
2

∫
Rn e

−ix.ξf(x)dx The Fourier transform of f .

F−1 Inverse of Fourier transform.

L[f ](λ) :=
∫ +∞

0
e−λtf(t)dt The laplace transform of f .

L−1 Inverse of laplace transform.

C([0, T ], X) The space of continuous functions on [0, T ] to values in X.

Lp (Rn) The space of measurable functions u on Rn such that |u|p is integrable.

Lp ([0, T ], X)
The space of measurable functions u on [0, T ] to values in X such that

||u||pX is integrable (1 ≤ p <∞) .

L∞ (Rn) The space of measurable functions u on Rn such that there exists k

such that |u(x)| ≤ k for almost every x ∈ Rn.

Wm,p (Rn) The usual Sobolev space.

Hm (Rn) Wm,2 (Rn) = {f ∈ L2 (Rn) , Dαf ∈ L2 (Rn) for all α ∈ Nn such that |α| ≤ m}.

Norms:

||u||p :=
(∫

Rn |u|
p
)1/p

for u ∈ Lp (Rn) .

||u||∞ := inf{k > 0, |u(x)| < k almost every where}, for u ∈ L∞ (Rn) .

||u||Hs =
[∫

RN (1 + |ξ|2)
s |û|2dξ

]1/2
where ξ is the Fourier transform variable of û.
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||u||Hm :=

( ∑
α≤m

(||Dαu||LP )2

) 1
2

for u ∈ Hm (Rn) . such that

Dα := ∂α

∂α1x1...∂
αN xn

, α = (α1, ..., αn) , |α| =
n∑
i=1

αi.

Mathematical operators:

∗ The convolution product.

|.| Absolute value.

∆ The classical Laplace operator: ∆u(t, x) =
n∑
i=1

∂2u
∂x2i

(t, x).

a . b i.e a ≤ Cb.such that C is a positive constant.

Finally, we denote every positive constant by the same symbol C or c without confu-

sion.
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General Introduction

The theory of parabolic integro-differential equations of Volterra type (PVIDE’s) is an

exciting branch of applied mathematics. It is a mixture of parabolic differential eqs and

integral equations and is still one of the actively developing branch of the theory of dif-

ferential equations. We cite a few monographs which are the classical source of funda-

mental facts and approaches in this field [111, 37, 71, 103, 18]. Over the last 50 years

or so the theory of PVIDE’s has been revealed as a very powerful and important tool

in the study of linear or non linear phenomena. This kind of eqs have a great impor-

tance in mathematical modelling in which many physical phenomenon and engineering

problems are governed by different types of PVIDE’s such as viscoelasticity, thermody-

namics of phase transition, image processing, control theory, theory of heat conduction

with memory, compression of viscoelastic media and in the theory of nuclear dynamics,

atomic energy, biology, bi-dimensional gravity chemistry, differential geometry, economy,

engineering techniques, fluid mechanics, information theory, Jacobi fields, medicine, pop-

ulation dynamics and many others, (see e,g [114, 145, 146] ).

In particular, there has been a great deal of interest on purely time dependent systems

with memory delay, and on reaction-diffusion systems containing terms which involve time

memory delays. Many authors have proved results on global convergence in some rather

general settings (e.g. Pozio [121] 1983; Yamada [145] 1984). In most of these works

the nonlinear term forcing is written as f
(
u(t, x),

∫ t
0
g(t, x, s, u(s, x)ds

)
, t > 0, x ∈ Ω. A

1



Chapter1.General Introduction

particular case widely encountered in various thermal problems, in which the ”hereditary”

term takes the form of a convolution with a kernel, are the equations of the type

∂tu− β4u−
∫ t

0

k (t− s)4u (s) ds = g(u) + h(t, x), in Ω× R+, (1)

supplemented with Dirichlet boundary conditions

u(x, t) = 0, on ∂Ω× R+

and by the initial condition

u(x, 0) = u0 (x) in Ω,

where Ω is a bounded domain of Rn with regular boundary occupied by a rigid heat

conductor u : Ω × R→ R is the temperature variation field relative to the equilibrium

reference value, k : R+→ R is the heat flux memory kernel, the constant β > 0 denotes the

instantaneous conductivity. A wide range of physical, chemical, and biological phenomena

in porous media are modeled by these equations that arise from various studies such as

the anomalous diffusion/transport in the heterogeneous media, the thermal conduction in

materials with memory and so on. A prototype of (1) can be derived from the following

constitutive equations due to Coleman-Gurtin thermal law’s

e(x, t) = e0 + c0T (x, t)

q(x, t) = −k0∇T (x, t)−
∫ t
−∞ k (t− s)∇T (x, s)ds

(2)

where T : Ω×R→ R is the temperature variation field relative to the equilibrium reference

value, k : R+ → R is the heat flux memory kernel, whose properties will be specified later,

and the constants e0, c0 and k0 denote the internal energy at equilibrium, the specific heat

and the instantaneous conductivity, respectively.

2



Chapter1.General Introduction

Eqs (2) together with the energy balance law of heat conduction

et +∇.q = r (3)

and with assumption that a nonlinear temperature dependent heat source r is involved,

namely,

r(x, t) = h(t, x)− g (T (t, x))

that, after substitution in (3), leads to (1).

There are considerable amount of works devoted to the mathematical analysis of model

(1) with homogeneous Dirichlet boundary condition for u. Existence, uniqueness and

stability of the linear problem case corresponding to (1) (i.e., with g ≡ 0, h ≡ 0), we

refer to (e.g., Grabmüller [67], Miller [104], Nunziato [110], Slemrod [130]). More recently,

Gentili & Giorgi [64] revised the subject on the basis of thermodynamical arguments,

and Colli, Grasselli and coworkers [30] extended such results to include phase transition

phenomena.

Existence of strong solution of the nonlinear problem has been proved by Barbu &

Malik [10], Crandall, Londen & Nohel [38], and Londen & Nohel [97], assuming nonlinear

terms of the form of maximal monotone (possibly multivalued) operators. In particular,

in [10] it is also proved the uniqueness of the solution.

It is well known that the solution of (1) in general does not exist for all times, due

to the nonlinear interaction in the model and may be blows up in a finite time, see e.g.

Messaoudi [101],[102], Tian [129] and [57]. In particular the authors studied the blow-up in

finite time with positive or negative initial energy of the solutions to the initial boundary

value problem corresponding to (1), with g(u) = |u|p−1u, p > 2. By using the convexity

method and some differential inequality techniques, they obtained the finite time blow-up

results under certain suitable conditions on g provided that the initial energy satisfies

different conditions.
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Chapter1.General Introduction

The question of global existence and large time behavior of solutions of integro-partial

differential equation arising from the theory of heat conduction with memory has inspired

a wide research, it consists in determining the asymptotic behavior of the energy E(t).

The principal object is to study its limit when tends to +∞ also to determine whether

this limit is zero, and to give in a unified way the decay rates of the energy if this limit is

zero.

Decay properties of the semigroup generated by a linear parabolic integro-differential

equation with memory functions in a Hilbert space arising from heat conduction with

memory has been studied by [22],[23],[28],[100].

Stability and boundedness results of the solutions of the homogeneous part of abstract

forms of (1) in Banach space have been investigated widely; see, for instance ([20, 22,

23, 40, 41, 20, 122, 144]) by means of representing the solution in terms of the resolvent

operator.

The existence of global and exponential attractors with some of the previously enu-

merated properties or another type of volterra integro-differential equations in a bounded

domain have been made (see [28],[27],[45],[61],[54],[66][70],[100]) and the reference therein),

where the authors adopt the theory of infinite-dimensional dynamical systems, they fol-

lowed an approach based on an idea introduced by Dafermos in his pioneering paper [43],

and then developed by several of authors in the context of dynamical systems. This idea

consists of introducing an additional variable, usually called the past history accounting

for all the past values of the unknown function, which is given by the following

ηt (x, s) =

∫ t

t−s
u (x, τ) dτ, s ≥ 0.

Then we can reformulate the original boundary and initial value problem as the following

4



Chapter1.General Introduction

integro-partial differential system in the variables (u, ηt)

 ∂tu− β4u−
∫∞

0
k (s)4ηt (x, s) ds = g(u) + h(t, x), in Ω× R+,

∂tη
t (x, s) = −∂sηt (x, s) + u in Ω× R+

(4)

with the initial and boundary values Problem (4) has been studied by many authors,

both for the sake of well-posedness and stability issues, and it is well known (see, e.g.,

[26, 55, 70]) that, for every u0 ∈ H, it possesses a unique weak solution u ∈ C([0,∞), H),

with H is a real Hilbert space (H, 〈., .〉, ||.||).

Energy decay results have already been achieved in linear viscoelasticity with memory,

both for the infinite delay [116] and for the Volterra [33] equation, under very general

assumptions on the memory kernel.

The decay of the solutions to (4) has attracted the attention of several authors in the

past years. Exponential stability has been subsequently studied in many other works (see

e.g. Refs. [7, 28, 56, 65, 105, 115]), and it is now well known that E(t) is exponentially

stable if the kernel µ satisfies the differential inequality. In [66] it is shown that, whenever

k(s) is smooth and µ(s) = −k′(s) fulfills the differential inequality

µ′(s) + δµ(s) ≤ 0, s > 0, (5)

for some positive δ, then the semigroup is exponentially stable. It is immediate to see that

(5) is equivalent to

µ(t+ s) ≤ e−δtµ(s), s > 0, t > 0. (6)

On the other hand, (6) is weakened in [26], where the assumption (first introduced in

[116])

µ(t+ s) ≤ Ce−δtµ(s), t > 0, (7)

for some C ≥ 1, δ > 0 and for a.e. s > 0, is shown to be necessary and sufficient. Since

5



Chapter1.General Introduction

(7) implies the existence of γ > 0 such that

k′(s) + γk(s) ≤ 0, (8)

for a.e. s > 0, we have a necessary condition for the exponential decay in terms of the

kernel k.

The dissipativity of (4) is witnessed by the fact that E(t) is a decreasing function. The

loss of energy is due to the presence of dissipation given by the memory term k ∗4u. This

dissipative mechanism could be reflected from the decay of solutions. For more studies

on various aspects of dissipation, we refer to [15, 17, 107]. Also, as for the study of decay

properties memory-type dissipation, we refer to [49, 53, 91, 105].

In particular E. Mainini and G. Mola [100], studied the problem (1) with g ≡ 0, h ≡ 0,

they extended the solution u to negative times by zero, and then introduced the auxiliary

past history variable ηt in which the problem reduced to the system with the history

framework (1). The authors proved exponential (resp. polynomial) decay results of the

associated semi-group for a broader class of kernels satisfying

∫ ∞
0

eδsk(s)ds <∞,
(

resp.

∫ ∞
0

(1 + s)r k(s)ds <∞, r > 0

)
. (9)

for some δ > 0. In particular, assumptions (5) and (6) recovered by condition in (9) and

there is a gap between them. A natural extension of model for heat flow in materials with

memory, is that when adding the term −β04∂tu to the Eq.(1) for some positive constant

β0, we obtain the so called nonclassical-diffusion equations with memory


∂tu− β4u− β04∂tu−

∫ t
0
k (s)4u (x, t− s) ds = g(u) + h(t, x), in Ω× R+,

u (0) = u0

u (x) |∂Ω = 0.

(10)

which contain viscosity, elasticity and pressure, that describes physical phenomena, such

6



Chapter1.General Introduction

as non-Newtonian flows, soil mechanics, and heat conduction theory (see, e.g.[138]), when

supposing that the diffusing species persist in a linear viscous fluid form, which leads to

their inclusion velocity gradient in the constitutive laws [119, 141], and this is specific

to certain classes of which we mention such as polymers and highly viscous liquids. In

addition, the convolution term takes into account the effect of the past history of u on its

future evolution, providing a more precise description of the diffusive process in certain

materials, such as high-viscosity liquids at low temperatures and polymers (see, e.g., [81]).

From the mathematical point of view, the study of qualitative properties of evolution

equations with memory damping term are also important as such systems occur in various

problems of applied science, and have attracted some of attention of many mathematicians.

Many authors have broadly studied the long-time behaviour of solutions to nonclassical

diffusion equations for both autonomous and non-autonomous cases [143, 142, 127, 4, 3,

134, 135]. Anh et al in [6] studied the existence and long-time behaviour in terms of

existence of global attractors of weak solutions to a class of the equation and the existence

of solutions and long-time behaviour of solutions to non-classical diffusion equations with

memory and their behaviour for a long time in the case of time-independent memory kernel

[5, 34]. The comprehensive time-dependent global attractor for the nonclassical diffusion

equations was investigated in [95, 99]. In Sun et al [136], the authors proved the results of

global existence and finite time blow-up for the solutions and obtained the upper bound

for the blow-up time of the semilinear problem (10) with g (u) = |u|p−2 u.

The limiting case, when k is equal to the Dirac mass at 0+ Eq. (10) reduces to the

so-called pseudo parabolic equation

∂tu− β4u− β04∂tu = g(u) + h(t, x), in Ω× R+,

which describes a variety of important physical processes, such as the seepage of homoge-

neous fluids through a fissured rock [11], the heat conduction involving two temperatures

[21], the unidirectional propagation of nonlinear, dispersive, long waves [12], two-phase

7



Chapter1.General Introduction

porous media flow models with dynamic capillarity or hysteresis [76], phase field-type

models for unsaturated porous media flows [39] and the aggregation of populations [113].

Pseudo-parabolic equations can also viewed as a Sobolev-type equation or a Sobolev-

Galpern-type equation; one can see the papers Aifantis [1]) and [98] or the book [2].

We are briefly going to mention some of them that motivate our thesis. The authors in

[128, 139] investigated the initial-boundary value problem and the Cauchy problem for the

linear pseudo-parabolic equation and established the existence and uniqueness of solutions.

After those precursory results, there are many papers (see, for example, [82, 83, 89, 123])

studied the nonlinear pseudo-parabolic equations, like semilinear pseudo-parabolic equa-

tions, quasilinear pseudo-parabolic equations, and even singular and degenerate pseudo-

parabolic equations.

8



Chapter 1

Preliminary Concepts

In this chapter, we introduce some propositions and important lemmas of functional anal-

ysis which will be needed in this study of semilinear evolution equations.

1.1 Functional spaces

1.1.1 Lebesgue spaces

Definition 1.1 Let Ω be an open, connected set (domain) in Rn and 1 ≤ p be a real

number. We denote by Lp(Ω) the class of all measurable functions u, defined on Ω for

which
∫

Ω
|u(x)|pdx <∞. Lp(Ω) is a Banach space with the norm

‖u‖Lp :=

∫
Ω

|u(x)|pdx <∞.

In particular, for p = 2, L2(Ω) is a Hilbert space with the inner product

(u, v) :=

∫
Ω

u(x)v(x)dx,

9



Chapter 2. Preliminary Concepts

and the norm

‖u‖ :=

∫
Ω

|u(x)|2dx,

for u, v ∈ L2(Ω).

For p =∞, L∞(Ω) is a Banach space with the norm

‖u‖L∞ = ess sup
x∈Ω
|u(x)|.

Theorem 1.1 (Young’s inequality) Let p, q, r ∈ [1,∞], such that

1

p
+

1

q
= 1 +

1

r
.

For f ∈ Lp (Rn) , g ∈ Lq (Rn), we have f ∗ g ∈ Lr (Rn) and

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q .

1.1.2 Spaces of test functions and distributions

Definition 1.2 Let Ω ⊂ Rn be an open, connected set and let Φ : Ω → R be a function.

Support of Φ can be defined as

supp(Φ) = {x ∈ Ω : Φ(x) 6= 0}.

Definition 1.3 Let Ω ⊂ Rn be an open, connected set. A function u : Ω → R is said to

be locally integrable if for every compact set K ⊂ Ω,

∫
K

|u(x)|dx <∞.

We denote by L1
loc(Ω) the space of locally integrable functions defined on Ω.

Definition 1.4 Let D(Ω) = C∞0 (Ω) is the space of infinitely differentiable functions with

10



Chapter 2. Preliminary Concepts

compact support. This space is also known as the space of all test functions defined on Ω.

Definition 1.5 Let x ∈ Rn with coordinates x = (x1, . . . , xn). A multi-index is an n −

tuple, α = (α1, . . . , αn) (αi ∈ N). If we set

|α| =
n∑
i=1

αi,

then

Dα =
∂|α|

∂xα1
1 . . . xαnn

,

represents the α-th order partial differentiation operator.

Definition 1.6 Let Ω ⊂ Rn, connected set. Suppose u, v ∈ L1
loc(Ω), and α is a multi-

index. We say that v is the αth-weak partial derivative of u, written

Dαu = v,

provided

∫
Ω

uDαφdx = (−1)|α|
∫

Ω

vφdx,

for all test function φ ∈ C∞0 (Ω).

Definition 1.7 A sequence of functions φm in C∞0 (Ω) is said to converge to 0 if there

exists a fixed compact set K ⊂ Ω such that supp(φm) ⊂ K for all m and φm and all its

derivatives converge uniformly to zero on K.

Definition 1.8 A linear functional T from C∞0 (Ω) to R is said to be a distribution, or

generalized function if whenever φm → 0 in C∞0 (Ω), we have T (φm)→ 0.

Definition 1.9 We denote by D′(Ω) the space of all distributions defined on the space

D (Ω).

11
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Definition 1.10 The space C([0, T ], X) consists of all continuous functions u : [0;T ] →

X such that

||u||C([0,T ],X) = max
0≤t≤T

||u(t, .)||X <∞.

Proposition 1.1 The space D (Ω) is contained in and is dense in Lp (Ω) , 1 6 p < +∞

and every convergent sequence in D converges in Lp.

Definition 1.11 If T ∈ D′(Ω) the derivative DiT, i = 1, . . . , n, of T is the distribution

on Ω defined by:

〈DiT, ϕ〉 = −〈T,Diϕ〉 , i = 1, 2, . . . , n.

If α ∈ Nn

〈DαT, ϕ〉 = (−1)|α| 〈T,Dαϕ〉 for all ϕ ∈ D(Ω).

Proposition 1.1 Let T ∈ D′ (Rn) and let ϕ and ψ belong to D (Rn).

(a) T ∗ ϕ ∈ C ∞ (Rn) and Dα(T ∗ ϕ) = (DαT ) ∗ ϕ = T ∗Dαϕ.

(b) supp(T ∗ ϕ) ⊂ suppT + suppϕ.

(c) T ∗ (ϕ ∗ ψ) = (T ∗ ϕ) ∗ ψ = (T ∗ ψ) ∗ ϕ.

1.2 Sobolev spaces

Definition 1.12 Let k be a non-negative integer and let 1 ≤ p ≤ ∞. Then we define

W k,p(Ω) to be set of all distributions u ∈ Lp(Ω) such that Dαu ∈ Lp(Ω) for |α| ≤ k. In

W k,p(Ω) , we define a norm by

||u||Wk,p =

∑
|α|≤k

||u||p
LP

1/p

if 1 ≤ p ≤ ∞,

and

||u||Wk,∞ = max
0≤|α|≤k

||Dαu||L∞ , if p =∞.

12
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For p = 2 we define an inner product by

(u, v)k :=
∑
|α|≤k

∫
Ω

Dαu(x)Dαv(x)dx.

We also use the notation Hk(Ω) for W k,2(Ω) and L2(Ω) for W 0,2(Ω).

Definition 1.13 By W k,p
0 (Ω) we denote the closure of C∞0 (Ω) in W k,p(Ω). This means

that u ∈ W k,p
0 (Ω) if and only if there exist functions um ∈ C∞0 (Ω) such that um → u ∈

W k,p
0 (Ω).

1.3 Fourier Transform

Definition 1.14 (Fourier Transform of L1-Functions)

For u ∈ L1, we may define the Fourier transform of u by the formula:

û(y) = Fu(y) =

∫
Rn
e−ix·yu(x)dx, y ∈ Rn. (1.1)

The mapping u→ û defined by (1.1) is obviously linear. From the inequality:

|û(y)| 6
∫
Rn
|u(x)|dx for all y ∈ Rn,

we deduce: if u ∈ L1, û is a bounded continuous function on Rn with ‖û‖L∞ 6 ‖u‖L1 .

Remark 1.1 We can also define the Fourier transform by the formula

Fu(y) =
1

(2π)n/2

∫
Rn
e−ix·yu(x)dx,

(then we have F−1 = F ) or again by

Fu(y) =

∫
Rn
e−2iπx·yu(x)dx.

13
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Definition 1.15 We denote by: τaf the translate of the function f of amplitude a ∈ Rn

defined by τaf(x) = f(x− a) for all x ∈ Rn, a ∈ Rn ,

and we denote by f̌ the symmetries of the function f defined by:

f̌(x) = f(−x) for all x ∈ Rn.

Again for x ∈ Rn, α ∈ N, we put xα = xα1
1 · xα2

2 . . . xαnn ; we have:

Proposition 1.2 For u, v ∈ L1, we have

(i) û = F(u) = F (ū); F(ǔ) = F(u) = û,

(ii)
∫
Rn û(x)v(x)dx =

∫
Rn u(y)v̂(y)dy,

(iii)

 τ̂au(y) = e−ia.yû(y), a ∈ Rn, y ∈ Rn,

F (e−ia·x · u) = τ−aû.

Proposition 1.2 (a) If xαu ∈ L1, |α| 6 k, then û ∈ Ck and we have Dα(û) = (−i)|α|x̂αu.

(b) If u ∈ Ck with Dβu ∈ L1 for all β ∈ Nn, |β| 6 k, then yβû ∈ L∞ and

i|β|yβû = D̂βu.

Proposition 1.3 The Fourier transform of a function of L2 will thus be a function of L2

satisfying :


(u, v) = 1

(2π)n
(û, v̂) ( Parseval’s formula) ,

‖u‖ = 1
(2π)n/2

‖û‖ (Plancherel’s formula).

Remark 1.2 The integral
∫
Rn u(x)e−ix·y dx does not have a meaning in so far as the

Lebesgue integral
∫
Rn |u(x)|dx diverges for u ∈ L2 with u /∈ L1.
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1.3.1 The Space S (Rn)

Definition 1.16 We put

S (Rn) = S =
{
u ∈ C∞ (Rn) ;∀α, β ∈ Nn, xαDβu→ 0 as |x| → +∞

}
;

S is the space of functions of class C∞ of rapid decay at infinity, which is not a normed

space, but of which the topology can be defined by the (denumerable) sequence of semi-

norms:

u→ sup
x∈Rn

∣∣xαDβu(x)
∣∣ = dα,β(u),

and we have:

 D̂αu = (iy)αû,

Dβû = (̂−ix)βu for all u ∈ S and for all α, β ∈ Nn,

and 
(u, v) = 1

(2π)n
(û, v̂) ( Parseval’s formula) ,

‖u‖ = 1
(2π)n/2

‖û‖ (Plancherel’s formula).

1.3.2 Fourier transform of tempered distributions

Definition 1.17 We say that T :S →C defines a tempered distribution if

(1) T is linear

(2) T is continuous, i.e. if ϕj → 0 as j → ∞, then the numerical sequence 〈T, ϕj〉 → 0

as j →∞.

(The bracket 〈, 〉, denotes here the duality between S ′ and S.)

Definition 1.18 The space S ′ will be furnished with the following notion of convergence:

a sequence {Tp}p∈N of tempered distributions tends to T in S ′ if, for all ϕ ∈ S, 〈Tp, ϕ〉 →

〈T, ϕ〉 in C when p→ +∞.
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Definition 1.19 (The Fourier transform for tempered distributions)

for each T ∈ S ′, the Fourier transform of T , denoted by T̂ or F(T ) will be the tempered

distribution defined by:

〈T̂, ϕ〉 = 〈T, ϕ̂〉 for all ϕ ∈ S.

Proposition 1.3 (a) The Fourier transform F and F̄ are two isomorphisms of S ′ onto

S ′.

(b) For all a ∈ Rn, we have:

 F (τaT ) = e−ia.y · F(T ),

F (e−ia.x · T ) = τ−aF(T ).

Proposition 1.4 (c) For all α, β ∈ Nn, we have

 F (DαT ) = (iy)αF(T ),

DβF(T ) = F
[
(−ix)βT

]
.

Proposition 1.4 Let m be a positive integer or zero, then:

(i) Hm (Rn) ⊂ S ′ (Rn), (the space of tempered distributions).

(ii) Hm (Rn) coincides with the space of tempered distributions u such that

(
1 + |ξ|2

)m/2
û ∈ L2 (Rn) ,

(iii) The norm ‖u‖Lm(Rn) is equivalent to

||u||Lm(Rn) =

(∫
Rn

(
1 + |ξ|2

)m |û(ξ)|2 dξ

)1/2

.

Definition 1.20 For s ∈ R, Hs (Rn) is the space of tempered distributions u, such that

(
1 + |ξ|2

)s/2 · û ∈ L2 (Rn) , ξ ∈ Rn.
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We furnish Hs (Rn) with the scalar product

(u, v)s =

∫
Rn

(
1 + |ξ|2

)s
û(ξ) · v̂(ξ)dξ,

and the associated norm is

‖u‖Hs =

(∫
Rn

(
1 + |ξ|2

)s |û(ξ)|2 dξ

)1/2

.

Remark 1.3 For s = m ∈ N, the space Hs (Rn) coincides with the space Hm (Rn).

Proposition 1.5 For each real number s, the space Hs (Rn) satisfies the following prop-

erties:

(i) Hs (Rn) is a Hilbert space.

(ii) If s1 > s2 then Hs1 (Rn) ⊂ Hs2 (Rn) and the injection is continuous.

Proposition 1.6 For all s1 > s2 > 0, we have

S (Rn) ⊂ Hs1 (Rn) ⊂ Hs2 (Rn) ⊂ · · · ⊂ H0 (Rn)

= L2 (Rn) ⊂ H−s2 (Rn) ⊂ H−s1 (Rn) ⊂ S ′ (Rn) .

Lemma 1.1 For all s ∈ R, the dual of Hs (Rn) coincides in D′ (Rn) (algebraically and

topologically) with H−s (Rn) .

1.4 Some important inequalities

1.4.1 Classical Gagliardo-Nirenberg inequality

Proposition 1.5 (See [59]) Let j,m ∈ N with j < m, and let f ∈ Cm0 . Let β = βj,m ∈[
j
m
, 1
]

with p, q, r ∈ [1,∞] satisfy

j − n

q
=
(
m− n

r

)
β − n

p
(1− β).

17
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Then, we have the following inequality:

∥∥Djf
∥∥
Lq

. ‖f‖1−β
Lp ‖D

mf‖βLr ,

provided that
(
m− n

r

)
− j /∈ N. If

(
m− n

r

)
− j ∈ N, then the classical Gagliardo-Nirenberg

inequality holds provided that β ∈
[
j
m
, 1
)
.

The proof of the classical Gagliardo-Nirenberg inequality can be found in [29, 68, 69, 72,

84, 85].

1.4.2 Fractional Gagliardo-Nirenberg inequality

Proposition 1.6 (See[75]) Let p , p0 , p1 ∈ (1,∞) and κ ∈ (0, s) with s > 0. Then, for

all f ∈ Lp0 ∩ Ḣs
p1

the following inequality holds:

‖f‖Ḣκ
p
. ‖f‖1−β

Lp0 ‖f‖
β

Ḣs
p1

,

where β = βκ,s =
(

1
p0
− 1

p
+ κ

n

)
/
(

1
p0
− 1

p1
+ s

n

)
and β ∈

[
κ
s
, 1
]
.

1.4.3 Fractional Leibniz rule

Proposition 1.7 (See [69]) Let s > 0 and 1 ≤ r ≤ ∞, 1 < p1, p2, q1, q2 ≤ ∞ satisfy the

relation

1

r
=

1

p1

+
1

p2

=
1

q1

+
1

q2

.

Then, for all f ∈ Ḣs
p1
∩ Lq1 and g ∈ Ḣs

q2
∩ Lq2 the following inequality holds:

‖fg‖Ḣs
r
. ‖f‖Ḣs

p1
‖g‖Lp2 + ‖f‖Lq1‖g‖Ḣs

q2
.

18



Chapter 2. Preliminary Concepts

1.4.4 Fractional chain rule

Proposition 1.8 (See [112]) Let s > 0, p > dse and 1 < r, r1, r2 <∞ satisfy the relation

1

r
=
p− 1

r1

+
1

r2

.

Then, for all f ∈ Ḣs
r2
∩ Lr1 the following inequality holds:

∥∥±f |f |p−1
∥∥
Ḣs
r

+ ‖|f |p‖Ḣs
r
. ‖f‖p−1

Lr1 ‖f‖Ḣs
r2
.

1.4.5 Fractional powers

Proposition 1.9 Let r ∈ (1,∞), p > 1 and s ∈ (0, p). Then, for all f ∈ Ḣs
r ∩ L∞ the

following inequality holds:

∥∥±f |f |p−1
∥∥
Ḣs
r

+ ‖|f |p‖Ḣs
r
. ‖f‖Ḣs

r
‖f‖p−1

L∞ .

Proposition 1.10 (See [125]) Let r ∈ (1,∞) and s > 0. Then, for all f, g ∈ Ḣs
r ∩ L∞

the following inequality holds:

‖fg‖Ḣs
r
. ‖f‖Ḣs

r
‖g‖L∞ + ‖f‖L∞‖g‖Ḣs

r
.

Proposition 1.11 (See [42]) Let 0 < 2s∗ < n < 2s . Then for any function f ∈ Ḣs∗∩Ḣs

one has the estimate

‖f‖L∞ ≤ ‖f‖Ḣs∗ + ‖f‖Ḣs .
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1.4.6 Gronwall’s inequality

Lemma 1.1 If the function α is non-decreasing, β is non-negative, and if f satisfies the

integral inequality

f(t) ≤ α (t) +

∫ t

0

β (s) f (s) ds, for all t ∈ [0, T ] .

Then, f(t) ≤ α (t) exp
(∫ t

0
β (s) ds

)
for all t ∈ [0, T ] .

1.4.7 Banach Contraction-Mapping Principle

Theorem 1.2 Let (X, d) be a complete metric space and G : X → X a map such that

there exists θ ∈ [0, 1) satisfying d (G(x), G(y)) ≤ θd(x, y) for all x, y ∈ X. Then, there

exists a unique x0 ∈ X such that G(x0) = x0.
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Chapter 2

Global existence and decay estimates

for the semilinear heat equation with

memory in Rn.

In this chapter we consider the initial value problem of the following semi-linear Volterra

integro-differential equations of the first order posed in the whole space Rn

 ∂tu(t, x)−∆u(t, x) + g ∗ (−∆)θu = f(u), t > 0, x ∈ Rn,

u(0, x) = u0 (x) , x ∈ Rn,
(2.1)

here u = u(t, x) is an unknown real valued function of x = (x1, ..., xn) ∈ Rn, t > 0, u0 (x)

is a given initial data and the function f is an external nonlinear force. The fractional

Laplace operator (−∆)θ may be defined through its Fourier transform F and its inverse

F−1 by

(−∆)θh(x) = F−1
(
|ξ|2θ F (h) (ξ)

)
(x) , x ∈ Rn,

or by its representation (−∆)θh(x) = C(n, θ)

∫
Rn

h(x)− h(y)

|x− y|n+2θ
dy, with 0 < θ < 1. In the

limit θ → 1 the standard Laplace operator, −∆, is recovered (see Section 4 of [50]).
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The convolution g ∗ (−∆)θu :=

∫ t

0

g(t − s)(−∆)θu(s)ds corresponds to the memory

term g, that satisfies the following assumptions :

a) The kernel g is a nonnegative summable function having the explicit form

g (t) =

∫ +∞

t

µ (s) ds,

for some (nonnegative) non-increasing piecewise absolutely continuous function µ ∈

L1 (R+) of total mass

g =

∫ ∞
0

µ(s)ds <∞.

b) Moreover, we require that

g(s) ≤ Kµ(s)

for some positive constant K and every s > 0. As shown in [25], this is equivalent

to the requirement that there exist C ≥ 1 and δ > 0 such that for any t ≥ 0 and

almost every s > 0

µ(t+ s) ≤ Ce−δtµ(s).

In particular, the kernel µ is allowed to exhibit (infinitely many) jumps. For example,

a typical kernels µ considered in the papers [25],[28],[32],[100] where the authors

assumed that the set of jump points of µ is a strictly increasing sequence {si}, with

s0 = 0, either finite (possibly reduced to s0 only) or converging to s∞ ∈ (0,∞] such

that, for all i ≥ 1, µ has jumps at s = si, and it is absolutely continuous on each

interval Ii = (si−1, si) and on the interval I∞ = (s∞,∞), unless I∞ is not defined. If

s∞ <∞, then µ may or may not have a jump at s = s∞. Thus, µ may be singular

at s = 0, and µ′ exists almost everywhere .

Assumption on f Assume that f ∈ C∞(R), and f(u) = O(|u|α) as |u| → 0, here α > αn

and αn := 1 + 2
n
, n = 1, 2, and α is assumed to be an integer for n ≥ 3.
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2.1 Mild solution formula

In this section we try to obtain the solution formula for the problem (2.1), in order to do

so, we consider the following linear problem corresponding (2.1)

 ∂tu−∆u+ g ∗ (−∆)θu = 0, t > 0, x ∈ Rn,

u(0, x) = u0 (x) , x ∈ Rn.
(2.2)

By applying Fourier transform and Laplace transform to Eq. (2.2), we obtain the

solution ū which expressed in terms of H, by ū = H(t) ∗ u0 where H is a fundamental

solution to the following problem,

 ∂tH −∆H + g ∗ (−∆)θH = 0, x ∈ Rn, t > 0,

H(0, x) = δ, x ∈ Rn.
(2.3)

Here δ is the Dirac distribution in x = 0 with respective to the spatial variables.

The Fourier transform of the fundamental solution of (2.3) is given formally through

Laplace inverse transform by

Ĥ(t, ξ) = Ĥ0 (ξ)L−1[
1

λ+ β|ξ|2 + |ξ|2θL[g]
](t, ξ). (2.4)

Lemma 2.1 The fundamental solution Ĥ(t, ξ) given by (2.4) exists.

Proof. Denote F (λ) := λ + |ξ|2 + |ξ|2θL[g](λ). To prove L−1[ 1
F (λ)

] exists, we need to

consider the zero points of F (λ). Denote λ = σ + iν, σ > − δ
C

, then L[g](λ) exists.

Assume that λ1 = σ1 + iν1 is a zero point of F (λ) and σ1 > − δ
C

, then σ1 and ν1 satisfy


<F (λ1) = σ1 + |ξ|2 + |ξ|2θ

∫ ∞
0

cos(ν1t)e
−σ1tg(t)dt = 0,

=F (λ1) = ν1 − |ξ|2θ
∫ ∞

0

sin(ν1t)e
−σ1tg(t)dt = 0.

(2.5)

In order to show that F (λ) does not vanish in the region {λ ∈ C;<(λ) ≥ ḡ}, we
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distinguish to cases

case 1 : If |ξ| < 1, we assume that σ1 ≥
√
ḡ, then

<F (λ1) = σ1 + |ξ|2 + |ξ|2θ
∫ ∞

0

e−σ1tg(t)dt

≥ σ1 + |ξ|2 − |ξ|2θḡ
∫ ∞

0

e−σ1tdt,

<F (λ1) ≥ σ1 + |ξ|2 − |ξ|2θ ḡ
σ1

,

which implies

<F (λ1) ≥ ḡ

σ1

+ |ξ|2 − |ξ|2θ ḡ
σ1

.

Consequently

<F (λ1) ≥ |ξ|2 +
ḡ

σ1

(1− |ξ|2θ) > 0.

It yields contradiction with (2.5)1. Then σ1 <
√
ḡ.

case 2 : In |ξ| ≥ 1 we assume that σ1 ≥ ḡ, then we have

<F (λ1) = σ1 + |ξ|2 − |ξ|2θ
∫ ∞

0

e−σ1tg(t)dt

≥ σ1 + |ξ|2 − |ξ|2θḡ
∫ ∞

0

e−σ1tdt

≥ σ1 + |ξ|2 − |ξ|2θ ḡ
σ1

≥ σ1 +
ḡ

σ1

|ξ|2 − |ξ|2θ ḡ
σ1

,

which gives

<F (λ1) ≥ σ1 +
ḡ

σ1

(|ξ|2 − |ξ|2θ) ≥ σ1 > 0,

which it yields a contradiction with (2.5)1. Therefore σ1 < ḡ.

Combining the two cases, we know that 1
F (λ)

is analytic in {λ ∈ C;<(λ) ≥
√
ḡ} if

|ξ| < 1 and in {λ ∈ C;<(λ) ≥ ḡ} if |ξ| ≥ 1.

Take λ = σ + iν, σ > max{<λs}, here {λs} is the set of all the singular points of F (λ),
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then we have that

L−1[
1

F (λ)
](t) =

∫ σ+i∞

σ−i∞

eλt

F (λ)
dλ =

∫ +∞

−∞
i
e(σ+iν)t

F (σ + iν)
dν

=

(∫
{ν;|ν|≤R}

+

∫
{ν;|ν|>R}

)(
i
e(σ+iν)t

F (σ + iν)
dν

)
= : J1 + J2.

The integral J1 converges, so we only need to consider J2. Notice that 1
F (λ)

= 1
λ
−

|ξ|2+|ξ|2θL[g](λ)
λF (λ)

and |L[g](λ)| ≤ C, then it is not difficult to prove that J2 converges, then

we proved that J2 converges, so far we complete the proof.

By Duhamel principle, the solution to the problem (2.1) could be expressed as following

:

u(t) = H(t) ∗ u0 +

∫ t

0

H(t− τ) ∗ f(u)(τ)dτ. (2.6)

We denote

ū(t) := H(t) ∗ u0, (2.7)

then ū(t) is the solution to the linear problem (2.3).

2.2 Decay properties of solution operators

We look at (2.1) as an ordinary differential equation in a proper Hilbert space accounting

for the past history of the variable u. Extending the solution to (2.1) for all times, by

setting u(t) = 0 when t < 0, and considering for t ≥ 0 the auxiliary variable

ηt(s, x) =

∫ t

t−s
u(r, x)dr, t ≥ 0, s > 0.

Note immediately that η0(s) = 0 for all s > 0, the integro-differential equation of problem

(2.2) reads

∂tu(t)−∆u(t) +

∫ ∞
0

µ(s) (−∆)θ ηt(s)ds = 0, t > 0. (2.8)
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The past history variable η is the unique mild solution (in the sense of [118]) of an

abstract Cauchy problem in the µ-weighted space M = L2
µ(R+, H1(Rn)), that is,

 ∂tη
t = Tηt + u(t), t > 0,

η0 = 0,
(2.9)

where, as a consequence of the basic assumption (see [70]), the linear operator T is the

infinitesimal generator of the right-translation C0-semigroup on M,defined as

Tη = −η′, with domain D(T ) = {η ∈M : η′ ∈M, η(0) = 0}.

Here the prime ”′”symbol denotes the distributional derivative with respect to the internal

variable s.

Applying the Fourier transform to (2.8) and (2.9), we obtain, for every ξ ∈ Rn, the

following system


∂tû+ |ξ|2û+ |ξ|2θ

∫ ∞
0

µ(s)η̂t(s)ds = 0, t > 0,

∂tη̂
t = T η̂t + û(t), t > 0,

û(0) = û0, η̂0 = 0,

(2.10)

in the transformed variables û(t, ξ) and η̂t(t, ξ), where now T is the infinitesimal generator

of the right-translation semigroup on L2
µ(R+;Rn), and |.| stands for the standard euclidian

norm in Rn.

The energy density function is given by

E(t, ξ) = |û(t, ξ)|2 + |ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds. (2.11)

In particular,

E(0, ξ) = |û0(ξ)|2.
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Moreover, by the Plancherel theorem, we have a relation between the energy and the

density

E(t) =

∫
Rn
E(t, ξ)dξ.

Performing standard multiplication the first equation in (2.10) by û, using the second

equation and then taking real parts, it can be seen as in [28] that the functional density

satisfies for every fixed ξ ∈ Rn the following differential equality

d

dt
E(t, ξ)+2|ξ|2|û(t, ξ)|2−|ξ|2θ

∫ ∞
0

µ′(s)|η̂t(s, ξ)|2ds+|ξ|2θ
∑
i≥1

(µ(s−i )−µ(s+
i ))|η̂t(si, ξ)|2 = 0.

(2.12)

where the sum includes the value i =∞ if s∞ <∞. We notice that

−|ξ|2θ
∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds+ |ξ|2θ
∑
i≥1

(µ(s−i )− µ(s+
i ))|η̂t(si, ξ)|2 ≥ 0.

This means that the functional density E(t, ξ) is a non-increasing function of t.

Theorem 2.1 Let µ satisfy the assumptions a), b), and let θ ∈ [0, 1]. There exists a

positive constant C > 0, such that the solution u of (2.3) satisfies the following pointwise

estimate in the Fourier space:

E(t, ξ) ≤ CE(0, ξ)e−cρ(ξ)t, for any t > 0,

with ρ(ξ) =
|ξ|2

1 + |ξ|2
.

We begin by introducing the following functionals :

Υ(t, ξ) = |ξ|2θ
∫ ∞

0

g(s)|η̂t(s, ξ)|2ds,

Θ(t, ξ) = |ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds.

27



Chapter 3. Global existence and decay estimates for the semilinear heat equation with
memory in Rn

Lemma 2.2 The functionals Υ and Θ are well defined and fulfill the following inequality

Υ(t, ξ) ≤ KΘ(t, ξ). (2.13)

Proof. Inequality (2.13) follows directly by assumption b). Moreover, by using (2.11)

we have

Θ(t, ξ) ≤ E(t, ξ) ≤ E(0, ξ) <∞,

the well-definedness of Θ is achieved whereas the one for Υ is a consequence of (2.13).

Lemma 2.3 The following differential inequality holds:

d

dt
Υ(t, ξ) +

1

2
|ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 2K2ḡ|ξ|2θ|û(t, ξ)|2, (2.14)

Proof. By means of the equation for the past history variable, a direct calculation leads

to the following differential equality for Υ(t, ξ) :

d

dt
Υ(t, ξ) + |ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds = 2<|ξ|2θ
∫ ∞

0

g(s)û(t, ξ)η̂t(s, ξ)ds. (2.15)

Concerning the right-hand side of (2.15), we have

<
∫ ∞

0

g(s)û(t, ξ)η̂t(s, ξ)ds ≤ ν(

∫ ∞
0

g(s)|η̂t(s, ξ)|ds)2 +
1

4ν
|û(t, ξ)|2,

for some ν > 0. Using assumption b) and Cauchy-Shwarz’s inequality, we get

∫ ∞
0

g(s)|η̂t(s, ξ)|ds ≤ K

∫ ∞
0

µ(s)|η̂t(s, ξ)|ds

≤ K(

∫ ∞
0

µ(s)ds)
1
2 (

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds)
1
2

≤ K
√
ḡ(

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds)
1
2 .
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Therefore

2<|ξ|2θ
∫ ∞

0

k(s)û(t, ξ)η̂t(s, ξ)ds ≤ 2νK2ḡ|ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds+
1

2ν
|ξ|2θ|û(t, ξ)|2.

(2.16)

Now, we go back to equality (2.15), we infer from (2.16)

d

dt
Υ(t, ξ) + |ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 2νK2ḡ|ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds+
1

2ν
|ξ|2θ|û(t, ξ)|2,

taking ν = 1
4K2ḡ

, we obtain the desired inequality

d

dt
Υ(t, ξ) +

1

2
|ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 2K2ḡ|ξ|2θ|û(t, ξ)|2.

Proof of Theorem2.1. We define the additional functional

L(t, ξ) = E(t, ξ) + βρ (ξ) Υ(t, ξ),

for some β > 0 and 0 ≤ ρ (ξ) ≤ 1 to be determined later.

Clearly we have L(t, ξ) ≥ E(t, ξ). On the other hand, we have

L(t, ξ) = E(t, ξ) + βρ (ξ) Υ(t, ξ)

≤ E(t, ξ) + βΥ(t, ξ)

≤ E(t, ξ) + β|ξ|2θ
∫ ∞

0

g(s)|η̂t(s, ξ)|2ds

≤ E(t, ξ) + βK|ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds

≤ (1 + βK) E(t, ξ).
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From (2.12) and (2.14), we get

d

dt
L(t, ξ) =

d

dt
E(t, ξ) + βρ (ξ)

d

dt
Υ(t, ξ)

≤ −2|ξ|2|û(t, ξ)|2 + |ξ|2θ
∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds

+βρ (ξ)

(
2K2ḡ|ξ|2θ|û(t, ξ)|2 − 1

2
|ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds
)
.

From which, it follows

d

dt
L(t, ξ) + 2|ξ|2|û(t, ξ)|2 − |ξ|2θ

∫ ∞
0

µ′(s)|η̂t(s, ξ)|2ds+
β

2
ρ (ξ) |ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds

≤ 2K2ḡβρ (ξ) |ξ|2θ|û(t, ξ)|2.

Therefore

d

dt
L(t, ξ) + 2

(
|ξ|2 −K2ḡβρ (ξ) |ξ|2θ

)
|û(t, ξ)|2 +

β

2
ρ (ξ) |ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 0.

We choose β ≤ 1/
(

1
4

+K2ḡ
)

so that 2
(
|ξ|2 −K2ḡβρ (ξ) |ξ|2θ

)
≥ ρ (ξ) β

2
. In fact by sub-

stituting ρ (ξ) = |ξ|2
1+|ξ|2 and using that |ξ|2θ

1+|ξ|2 ≤ 1, we obtain that

2
(
|ξ|2 −K2ḡβρ (ξ) |ξ|2θ

)
≥ 2

(
1−K2ḡβ

)
|ξ|2 ≥ β

2
|ξ|2 ≥ ρ (ξ)

β

2
, for any ξ ∈ Rn.

Hence, we arrive at

d

dt
L(t, ξ) +

β

2
ρ (ξ) |û(t, ξ)|2 +

β

2
ρ (ξ) |ξ|2θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 0.

From the definition of E , we obtain

d

dt
L(t, ξ) +

β

2
ρ (ξ) E(t, ξ) ≤ 0. (2.17)

30



Chapter 3. Global existence and decay estimates for the semilinear heat equation with
memory in Rn

Making use the equivalence between functionals E and L in (2.17), we infer

d

dt
L(t, ξ) +

β

2 (1 + βK)
ρ (ξ)L(t, ξ) ≤ 0,

with ρ(ξ) = |ξ|2
|ξ|2+1

. By invoking the Gronwall Lemma, we get

E(t, ξ) ≤ L(t, ξ) ≤ CE(0, ξ)e−cρ(ξ)t, (2.18)

which concludes the proof.

Now we study the decay estimates of solutions to the linear problem (2.2).

Theorem 2.2 (Energy estimate for linear problem) Let s ≥ 1 be an integer, and

θ ∈ [0, 1]. Assume that u0 ∈ Hs(Rn), and put

I0 := ||u0||Hs(Rn).

Then the solution ū to the problem (2.2) given by (2.7) satisfies

ū ∈ C0([0,+∞);Hs(Rn)),

and the following energy estimate :

||ū(t)||2Hs +

∫ t

0

||∂xū(t)||2Hs−1dτ ≤ cI2
0

Proof. From (2.17) we have that

d

dt
L(t, ξ) + cρ(ξ)E(t, ξ) ≤ 0.
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Integrate the previous inequality with respect to t and appeal to (2.18), then we obtain

E(t, ξ) + c

∫ t

0

ρ(ξ)E(τ, ξ)dτ ≤ cE(0, ξ). (2.19)

Multiply (2.19) by (1+ |ξ|2)s and integrate the resulting inequality with respect to ξ ∈ Rn,

then we have that

||ū(t)||2Hs +

∫ t

0

||∂xū(t)||2Hs−1dτ ≤ cI2
0 (2.20)

(2.20) guarantees the regularity of the solution (2.7). So far we complete the proof of

Theorem 2.2.

Lemma 2.4 The fundamental solution H(t, x) satisfies :

|Ĥ(t, ξ)| ≤ Ce−cρ(ξ)t

where ρ(ξ) = |ξ|2
1+|ξ|2 .

Proof. From the representation formula of solution to the linear problem, we have

ū(t, x) := H(t, .) ∗ u0 (x) .

Using the expression of ū in Theorem 2.1, we find

|̂̄u(t, ξ)|2 =
∣∣∣Ĥ(t, ξ)

∣∣∣2 |û0(ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2,

which gives the desired estimate.

Lemma 2.5 (Pointwise estimate) Assume ū is the solution of (2.2) and if θ ∈ [0, 1],

then it satisfies the following point-wise estimate in the Fourier space:

|̂̄u(t, ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2, (2.21)
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where ρ(ξ) = |ξ|2
1+|ξ|2 .

Proof. we have

ū(t, x) := H(t, .) ∗ u0 (x) .

Then by Fourier transform property and from Lemma 2.4, we get

|̂̄u(t, ξ)|2 = |Ĥ(t, ξ)|2|û0(ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2.

Proposition 2.1 Let s ≥ 1 be an integer and 1 ≤ p ≤ 2. Let ϕ ∈ Hs(Rn) ∩ Lp(Rn). If

θ ∈ [0, 1] then the following estimates hold :

||∂kxH(t) ∗ ϕ||L2 ≤ C(1 + t)−
n
2

( 1
p
− 1

2
)− k

2 ||ϕ||Lp + Ce−ct||∂kxϕ||L2 , (2.22)

for 0 ≤ k ≤ s.

Proof. In view of Lemma 2.5 we have that

||∂kxH(t) ∗ ϕ||2L2 ≤ C

∫
Rn
|ξ|2ke−2cρ(ξ)t|ϕ̂(ξ)|2dξ

≤ C

∫
{ξ,|ξ|≤1}

|ξ|2ke−c|ξ|2t|ϕ̂|2dξ + C

∫
{ξ,|ξ|≥1}

|ξ|2ke−2ct|ϕ̂|2dξ ≤ k1 + k2.

Assume that p′ satisfies 1
p

+ 1
p′

= 1, then by Hausdorff–Young’s inequality, we obtain

k1 ≤ C(1 + t)−n( 1
p
− 1

2
)−k||ϕ̂||2p′ ≤ C(1 + t)−n( 1

p
− 1

2
)−k||ϕ||2p.

On the other hand

k2 ≤ Ce−2ct||∂kxϕ||2L2 , for 0 ≤ k ≤ s,
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then

||∂kxH(t) ∗ ϕ||L2 ≤ C(1 + t)−
n
2

( 1
p
− 1

2
)− k

2 ||ϕ||p + Ce−ct||∂kxϕ||L2 , for 0 ≤ k ≤ s.

By using Proposition 2.1 with p = 2, we obtain the following decay estimates of ū given

by (2.7), if initial data u0 ∈ Hs(Rn).

2.3 Decay estimates for linear problem

Theorem 2.3 (Decay estimates for linear problem) Under the same assumptions as

in Theorem 2.2, the solution ū given by (2.7) satisfies the decay estimates:

||∂kx ū(t)||Hs−k ≤ cI0(1 + t)−
k
2

for 0 ≤ k ≤ s.

Also, if initial data u ∈ Hs(Rn) ∩ Lp(Rn) then by using (2.22) we have that sharp decay

estimates of the solution ū to (2.2) . Therefore the theorem 2.3 can be stated as follows.

Theorem 2.4 (Sharp decay estimates for linear problem) Let s ≥ 1 be an integer

and θ ∈ [0, 1]. Assume that u0 ∈ Hs(Rn) ∩ Lp(Rn) and put Ip := ||u0||Hs + ||u0||Lp with

1 ≤ p < 2. Then the solution ū to (2.2) given by (2.7) satisfies the following decay

estimates :

||∂kx ū(t)||Hs−k ≤ cIp(1 + t)−
n
2

( 1
p
− 1

2
)− k

2 , (2.23)

for 0 ≤ k ≤ s.

Since proof of Theorem 2.3 and Theorem 2.4 are similar, here we only prove Theorem 2.4.
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Proof. Let k ≥ 0, m ≥ 0 are an integers. In view of (2.7), by using (2.22), we have that

||∂k+m
x ū(t)||L2 ≤ C(1 + t)−

n
2

( 1
p
− 1

2
)− k

2 ||u0||Lp + Ce−ct||∂k+m
x u0||L2

≤ C(1 + t)−
n
2

( 1
p
− 1

2
)− k

2 (||u0||Lp + ||∂k+m
x u0||L2) (2.24)

for k +m ≤ s then m ≤ s− k we have that

||∂kx ū(t)||Hs−k ≤ CJp(1 + t)−
n
2

( 1
p
− 1

2
)− k

2 , for 0 ≤ k ≤ s.

Thus (2.23) is proved.

Remark 2.1 The estimates in Theorem 2.3 and Theorem 2.4 indicate that the decay

structure of solutions to the linear problem (2.2) is not of regularity-loss type.

2.4 Global existence and decay estimates for semi-

linear problem

In this section we will first introduce a set of time-weighted Sobolev spaces and employ the

contraction mapping theorem to prove the global existence and optimal decay of solution

to the semi-linear problem.

Recall Assumption of f , we know that f ∈ C∞(R\{0}), and f(u) = O(|u|α) as |u| → 0,

here α > αn and αn := 1 + 2
n
, n ≥ 1, and α is assumed to be an integer for obtain the

following result about the global existence and optimal decay estimates of solution to the

semi-linear problems (2.1).

Theorem 2.5 (existence and decay estimates for semi-linear problem) Let s be

an integer such that s ≥ [n/2] + 1 for n ≥ 1 and θ ∈ [0, 1]. Let u0 ∈ Hs(Rn) ∩ L1(Rn),

and put

I0 := ||u0||Hs + ||u0||L1 .
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If I0 is suitably small, then there exists a unique solution u(t, x) ∈ C0([0,∞);Hs(Rn)) of

(2.1) satisfying the following decay estimates:

||∂kxu(t)||Hs−k ≤ cI0(1 + t)−
n
4
− k

2 , for 0 ≤ k ≤ s. (2.25)

Proof. Let us define the following space

X := {u ∈ C([0,∞), Hs(Rn)); ||u||X <∞},

where

||u||X :=
∑
k≤s

sup
t≥0

(1 + t)
n
4

+ k
2 ||∂kxu(t)||Hs−k .

We introduce the closed ball

BR := {u ∈ X; ||u||X ≤ R}, R > 0;

Denote

Φ[u](t) := Φlin(t) +

∫ t

0

H(t− τ) ∗ f(u)(τ)dτ,

where

Φlin(t) := H(t) ∗ u0.

We have

∀v, w ∈ X, Φ[v](t)− Φ[w](t) =

∫ t

0

H(t− τ) ∗ (f(v)− f(w))(τ)dτ.

Noticing that f(v) = O(|v|α) and using Proposition 1.9 and Proposition 1.10. We have

the following inequalities for k ≥ 0
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||∂kx(f(v)− f(w))(τ)||L1 ≤ C||(v, w)(τ)||α−2
L∞

(||(v, w)(τ)||L2 ||∂kx(v − w)(τ)||L2

+||∂kx(v, w)(τ)||L2||(v − w)(τ)||L2), (2.26)

and

||∂kx(f(v)− f(w))(τ)||L2 ≤ C||(v, w)(τ)||α−2
L∞

(||(v, w)(τ)||L∞||∂kx(v − w)(τ)||L2

+||∂kx(v, w)(τ)||L2 ||(v − w)(τ)||L∞). (2.27)

Also, if v ∈ X, then the following estimate holds

||v(τ)||L∞ ≤ C||v||X(1 + τ)−
n
4 . (2.28)

In fact, by using the Gagliardo-Nirenberg inequality, we get

||v(τ)||L∞ ≤ ||v(τ)||1−λL2 ‖∂s0x v(τ)‖λL2 ,

where s0 =
[
n
2

]
+ 1, λ = n

2s0
. We have for any n ≥ 1,

||v(τ)||L2 ≤ C(1 + τ)−
n
4 ||v(τ)||X

and since s ≥ s0, we obtain

‖∂s0x v(τ)‖L2 ≤ ‖v(τ)‖Hs0 ≤ ‖v(τ)‖Hs ≤ C(1 + τ)−
n
4 ||v(τ)||X .
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Hence, we deduce

‖v(τ)‖L∞ ≤ C(1 + τ)−
n
4

(1−λ)−n
4
λ||v(τ)||X = C(1 + τ)−

n
4 ||v(τ)||X .

Now, we prove the estimate

||∂kx(Φ[v]− Φ[w])(t)||Hs−k ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X , (2.29)

for 0 ≤ k ≤ s.

Assume that k, m are non-negative integers, such that k ≤ s. By applying ∂k+m
x to

Φ[v]− Φ[w], we have that

||∂k+m
x (Φ[v]− Φ[w])(t)||L2 ≤ (

∫ t
2

0

+

∫ t

t
2

)||∂k+m
x H(t− τ) ∗ (f(v)− f(w))(τ)||L2dτ

= : I1 + I2. (2.30)

By virtue of (2.22) with p = 1, we have

I1 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− k+m

2 ||(f(v)− f(w))(τ)||L1dτ

+C

∫ t
2

0

e−c(t−τ)||∂k+m
x (f(v)− f(w))(τ)||L2dτ

= : I11 + I12. (2.31)

By using (2.26) with k = 0 and (2.28), we have that

||(f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
4

(α−1)−n
4 . (2.32)
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Since α > αn = 1 + 2
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (2.32), we have

I11 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− k+m

2 (1 + τ)−
n
4

(α−1)−n
4 dτ ||(v, w)||α−1

X ||(v − w)||X

then

I11 ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X . (2.33)

If k +m ≤ s, by virtue of (2.27) with k replaced by k +m and (2.28), it yields that

||∂k+m
x (f(v)− f(w))(τ)||L2 ≤ C||(v, w)||α−1

X ||(v − w)||X(1 + τ)−
n
2

(α−1)−n
4
− k

2 . (2.34)

By appealing to (2.34) and notice that α ≥ 2, we obtain

I12 ≤ C

∫ t
2

0

e−c(t−τ)(1 + τ)−
n
2

(α−1)−n
4
− k

2 dτ ||(v, w)||α−1
X ||(v − w)||X .

Hence

I12 ≤ Ce−ct||(v, w)||α−1
X ||v − w||X ,

Therefore by putting estimates I11 and I12 into (2.31), we get

I1 ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X + Ce−ct||(v, w)||α−1

X ||v − w||X . (2.35)

Thus

I1 ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X (2.36)

with 0 ≤ m ≤ s− k. Also by employing (2.22) with p = 1 to the term I2, we obtain

I2 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4
−m

2 ||∂kx(f(v)− f(w))(τ)||L1dτ

+C

∫ t

t
2

e−c(t−τ)||∂k+m
x (f(v)− f(w))(τ)||L2dτ

: = I21 + I22. (2.37)
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In view of (2.26) and (2.28), we have that

||∂kx(f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−2)−n
2
− k

2 , (2.38)

for 0 ≤ k ≤ s.

Since α > αn = 1 + 2
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (2.38), we have

I21 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4
−m

2 (1 + τ)−
n
2

(α−2)−n
2
− k

2 dτ ||(v, w)||α−1
X ||(v − w)||X

then

I21 ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X ,

with 0 ≤ k ≤ s. We use (2.34) to have that

I22 ≤ C

∫ t

t
2

e−c(t−τ)(1 + τ)−
n
2

(α−1)−n
4
− k

2 dτ ||(v, w)||α−1
X ||(v − w)||X .

Therefore

I22 ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X ,

with 0 ≤ m ≤ s− k. We substitute the estimates for I21 and I22 into (2.37), we infer

I2 ≤ C(1 + t)−
n
4
− k

2 ||(v, w)||α−1
X ||v − w||X , (2.39)

with 0 ≤ m ≤ s− k.

Using estimates (2.36) and (2.39) into (2.30) and take the sum with respect to m,

0 ≤ m ≤ s− k, we get the estimate (2.29). Hence, we obtain that

||Φ[v]− Φ[w]||X ≤ C||(v, w)||α−1
X ||v − w||X .

So far we proved that ||Φ[v]− Φ[w]||X ≤ C1R
α−1||v − w||X for v, w ∈ BR.
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On the other hand Φ[0](t) = Φlin(t) = ū(t) and from Theorem 2.4 we know that ||Φlin||X ≤

C2I0 if I0 suitably small. We put R = 2C2I0. Now, if I0 suitably small such that R < 1

and C1R ≤ 1
2
, then we infer that

||Φ[v]− Φ[w]||X ≤
1

2
||v − w||X .

So, it yields for v ∈ BR that

||Φ[v]||X ≤ ||Φ0||X +
1

2
||v||X ≤ C2I0 +

1

2
R = R,

i.e. Φ[v] ∈ BR. Thus v → Φ[v] is a contraction mapping on BR, which implies that there

exists a unique u ∈ BR satisfying Φ[u] = u, and it is a solution to the semi-linear problem

(2.1) satisfying the decay estimate (2.25). So we complete the proof of Theorem 2.5.

Exemple 2.1 Consider the following initial value problem

 ∂tu(t, x)−∆u(t, x) + g ∗ (−∆)1/2u = (sin t) e−u
2
u3, t > 0, x ∈ Rn,

u(0, x) = u0 (x) , x ∈ Rn,
(2.40)

here, θ = 1/2, g (t) =
∫ +∞
t

µ (s) ds where µ (t) = t−γe−βtχ(0,s0] +
+∞∑
i=1

aiχ[si−1,si] (t), with

s0 = 1, 0 ≤ γ < 1, β ≥ 0 and where {ai} is a strictly decreasing positive sequence

such that a1 ≤ e−β. Note that µ′ (t) ≤ 0 for almost everywhere t > 0, and g = g(0) =∫ 1

0
s−γe−βsds +

+∞∑
i=1

ai (si − si−1) . Now, we check that g (t) ≤ Kµ (t) holds for any t > 0
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and for some K > 0. In fact, for t < 1, we have

g (t) =

∫ +∞

t

µ (s) ds =

∫ 1

t

s−γe−βsds+
+∞∑
i=1

ai (si − si−1)

=

∫ 1

t

s−γe−βsds+

[
+∞∑
i=1

ai (si − si−1)

]
tγeβtt−γe−βt

≤ (1− t) t−γe−βt + geβt−γe−βt

≤
(
1 + geβ

)
t−γe−βt = Kµ (t) .

When t ≥ 1, there exists i0 ≥ 1 such that t ∈ [si0−1, si0 ], so we have

g (t) =

∫ +∞

t

µ (s) ds = ai0 (si0 − t) +
+∞∑

i=i0+1

ai (si − si−1)

≤ ai0

(
si0 − 1 +

g

ai0

)
= Kµ (t) .

On the other hand the function f(u) = (sin t) e−u
2
u3 ∈ C∞ (R) satisfies f(u) = O

(
|u|3
)

as u→ 0. Thus, all the assumptions in Theorem 2.5 satisfied, and, hence, the initial value

problem (2.40) has a unique global solution u(t, x) ∈ C([0,∞);Hs(Rn)), s > n/2.
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Chapter 3

Global existence and decay estimates

for the semilinear

nonclassical-diffusion equations with

memory in Rn.

In this chapter, we consider the initial value problem for the following semi-linear Volterra

integro-differential equations of the first order posed in the whole space Rn (n ≥ 1)

 ∂tu(t, x)−∆∂tu(t, x) + (−∆)θu(t, x)− g ∗∆u = f(u), t > 0, x ∈ Rn,

u(0, x) = u0 (x) , x ∈ Rn.
(3.1)

Here u = u(t, x) is an unknown real valued function of x = (x1, ..., xn) ∈ Rn, t > 0, u0 (x)

is a given initial data and the function f is an external nonlinear force. The fractional

Laplace operator (−∆)θ may be defined through its Fourier transform F and its inverse

F−1 by

(−∆)θh(x) = F−1
(
|ξ|2θ F (h) (ξ)

)
(x) , x ∈ Rn,
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or by its representation (−∆)θh(x) = C(n, θ)

∫
Rn

h(x)− h(y)

|x− y|n+2θ
dy, with 0 < θ < 1.

In the limit θ → 1 the standard Laplace operator −∆, is recovered (see Section 4 of [50]).

The convolution −g ∗∆u := −
∫ t

0

g(t − s)∆u(s)ds corresponds to the memory term,

and both g and f satisfies the same assumptions of the chapter 03.

The equation (3.1) can be viewed as an approximation of non-classical diffusion equation

∂tu(t, x)−∆∂tu(t, x) + (−∆)θu(t, x)−∆u = f(u), t > 0, x ∈ Rn, (3.2)

subject to initial conditions, when g is equal to the Dirac mass at 0+, which arises in

several diffusion processes [19],[119].

3.1 Mild solution formula

In this section, our aim is to derive the solution formula to the problem (3.1). Let H(t, x)

be a solution of the following problem,

 ∂tH (t, x)−∆∂tH (t, x) + (−∆)θH (t, x)− g ∗∆H (t, x) = 0, t > 0, x ∈ Rn,

H(0, x) = H0 (x) , x ∈ Rn.
(3.3)

We apply Fourier transform and Laplace transform to (3.3), then we have formally that

Ĥ(t, ξ) = Ĥ0L−1[
1

λ+ ( |ξ|
2θ

1+|ξ|2 ) + ( |ξ|
2

1+|ξ|2 )L[g]
](t, ξ).

Lemma 3.1 The function Ĥ(t, ξ) exists.

Proof. Denote F (λ) := λ + |ξ|2θ
1+|ξ|2 + |ξ|2

1+|ξ|2L[g]. To prove L−1[ 1
F (λ)

] exists, we need to

consider the zero points of F (λ). Denote λ = σ + iν, σ > − δ
C

, then L[g](λ) exists.
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Assume that λ1 = σ1 + iν1 is a zero point of F (λ) and σ1 > − δ
C

, then σ1 and ν1 satisfy

 <(F )(λ1) = σ1 + |ξ|2θ
1+|ξ|2 + ( |ξ|

2

1+|ξ|2 )
∫∞

0
cos(ν1t)e

−σ1tg(t)dt = 0,

=(F )(λ1) = ν1 − |ξ|2
1+|ξ|2

∫∞
0

sin(ν1t)e
−σ1tg(t)dt = 0.

(3.4)

We claim that for any ξ there exists C > 0, such that <(F )(λ) does not vanish for

<(λ) ≥ C.

case 1 : If ν1 = 0, we have =(F )(λ1) = 0. We assume that σ1 > 0, then we obtain for any

ξ ∈ Rn

<(F )(λ1) = σ1 +
|ξ|2θ

1 + |ξ|2
+
|ξ|2

1 + |ξ|2

∫ ∞
0

e−σ1tg(t)dt > 0.

Thus, it yields a contradiction with (3.4)1. Therefore σ1 ≤ 0.

Case 2 : ν1 6= 0, if |ξ| ≤ 1, we have for σ1 ≥ ḡ

<(F )(λ1) = σ1 +
|ξ|2θ

1 + |ξ|2
+
|ξ|2

1 + |ξ|2

∫ ∞
0

cos(ν1t)e
−σ1tg(t)dt

≥ σ1 +
|ξ|2θ

1 + |ξ|2
− |ξ|2

1 + |ξ|2
ḡ

∫ ∞
0

e−σ1tdt

= σ1 +
|ξ|2θ

1 + |ξ|2
− |ξ|2

1 + |ξ|2
ḡ

σ1

> 0.

Then σ1 <
ḡ
β
.

If |ξ| ≥ 1, we assume that σ1 ≥
√
ḡ. Then

<(F )(λ1) = σ1 +
|ξ|2θ

1 + |ξ|2
+
|ξ|2

1 + |ξ|2

∫ ∞
0

cos(ν1t)e
−σ1tg(t)dt

≥ σ1 +
|ξ|2θ

1 + |ξ|2
− |ξ|2

1 + |ξ|2
ḡ

∫ ∞
0

e−σ1tdt

which gives

<(F )(λ1) ≥ σ1 +
|ξ|2θ

1 + |ξ|2
− |ξ|2

1 + |ξ|2
ḡ

σ1

,
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and since σ1 ≥
√
ḡ ≥ ḡ

σ1
, we get

<(F )(λ1) ≥ ḡ

σ1

+
|ξ|2θ

1 + |ξ|2
− |ξ|2

1 + |ξ|2
ḡ

σ1

.

So, we get

<(F )(λ1) ≥ |ξ|2θ

1 + |ξ|2
+

ḡ

σ1

(1− |ξ|2

1 + |ξ|2
) > 0,

which is again a contradiction with (3.4)1. Therefore σ1 <
√
ḡ.

Combining the two cases, we know that 1
F (λ)

is analytic in {λ ∈ C;<(λ) ≥ ḡ} if |ξ| < 1

and in {λ ∈ C;<(λ) ≥
√
ḡ} if |ξ| ≥ 1. Take λ = σ + iν, σ > C ≥ max {

√
ḡ, ḡ} , therefore

{λs} is the set of all the singular points of F (λ) does not lie in <(λ) > C. Thus we have

that

L−1[
1

F (λ)
](t) =

∫ σ+i∞

σ−i∞

eλt

F (λ)
dλ =

∫ +∞

−∞
i

e(σ+iν)t

F ((σ + iν))
dν

∫
{ν;|ν|≤R}

+

∫
{ν;|ν|>R}

=: J1 + J2.

Note that the first integral converges, so we only need to consider J2.

We note that

1

F (λ)
=

1

λ
−

|ξ|2θ
1+|ξ|2 + |ξ|2

1+|ξ|2L[g](λ)

λF (λ)

and |L[g](λ)| ≤ C, so it is not difficult to prove that J2 converges, then we proved that J2

converges, So far we complete the proof.

By Duhamel principle, the solution to the problem (3.1) could be expressed as following

:

u(t) = H(t) ∗ u0 +

∫ t

0

(1−∆)−1H(t− τ) ∗ f(u(τ))dτ. (3.5)

We denote

ū(t) := H(t) ∗ u0. (3.6)

Then ū(t) is the solution to the linear problem corresponding (3.3).
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3.2 Decay Property

We look at (3.1) as an ordinary differential equation in a proper Hilbert space accounting

for the past history of the variable u. Extending the solution to (3.1) for all times, by

setting u(t) = 0 when t < 0, and considering for t ≥ 0 the auxiliary variable

ηt(s, x) =

∫ t

t−s
u(r, x)dr, t ≥ 0, s > 0.

Note immediately that η0(s) = 0 for all s > 0, the integro-differential equation of problem

(3.3) reads

∂tu+ A∂tu+ Aθu+

∫ ∞
0

µ(s)Aηt(s)ds = 0, t > 0, (3.7)

where A = −∆. The past history variable η is the unique mild solution (in the sense of

[118]) of an abstract Cauchy problem in the µ-weighted spaceM = L2
µ(R+, H1(Rn)), that

is,  ∂tη
t = Tηt + u(t), t > 0,

η0 = 0,
(3.8)

where, as a consequence of the basic assumption (see [70]), the linear operator T is the

infinitesimal generator of the right-translation C0-semigroup on M,defined as

Tη = −η′ (s) , with domain D(T ) = {η ∈M : η′ ∈M, η(0) = 0},

where the prime stands for the distributional derivative with respect to s ∈ R+, and

η(0) = lims→0 η(s) in H1 (Rn). Applying the Fourier transform to (3.7) and (3.8), we

obtain, for every ξ ∈ Rn, system


∂tû+ |ξ|2∂tû+ |ξ|2θû+ |ξ|2

∫ ∞
0

µ(s)η̂t(s)ds = 0, t > 0,

∂tη̂
t (s) = T η̂t (s) + û(t), s, t > 0,

û(0) = û0, η̂0 = 0

(3.9)
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in the transformed variables û(t, ξ) and η̂t(s, ξ), where now T is the infinitesimal generator

of the right-translation semigroup on L2
µ(R+;Rn), and |.| stands for the standard euclidian

norm in Rn.

The energy density function is given by

E(t, ξ) = (1 + |ξ|2)|û(t, ξ)|2 + |ξ|2
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds. (3.10)

In particular,

E(0, ξ) = (1 + |ξ|2)|û0(ξ)|2.

Moreover, by the Plancherel theorem, we have

E(t) =

∫
Rn
E(t, ξ)dξ.

Lemma 3.2 The energy density function E(t, ξ) satisfies for every fixed ξ ∈ Rn the dif-

ferential equality

d

dt
E(t, ξ)+2|ξ|2θ|û(t, ξ)|2−|ξ|2

∫ ∞
0

µ′(s)|η̂t(s, ξ)|2ds+|ξ|2
∑
i≥1

(µ(s−i )−µ(s+
i ))|η̂t(si, ξ)|2 = 0,

where the sum includes the value i = ∞ if s∞ < ∞. In particular, E(t, ξ) is a decreasing

function of t.

Proof. Arguing as in [117], by performing a standard multiplication in (3.9) with û and

then taking the real part of the resulting identities one has

<
(
∂tû.û

)
+ |ξ|2<

(
∂tû.û

)
+ |ξ|2θû.û+ |ξ|2<

∫ ∞
0

µ(s)η̂t(s).ûds = 0,

which is equivalent to

1

2

d

dt

∣∣û∣∣2 +
1

2

d

dt
|ξ|2

∣∣û∣∣2 + |ξ|2θ
∣∣û∣∣2 + |ξ|2<

∫ ∞
0

µ(s)η̂t(s).ûds = 0. (3.11)
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Using the second equation from (3.9) in (3.11), we get

1

2

d

dt

∣∣û∣∣2 +
1

2

d

dt
|ξ|2

∣∣û∣∣2 + |ξ|2θ
∣∣û∣∣2 + |ξ|2<

∫ ∞
0

µ(s)η̂t(s).
(
∂tη̂t (s) + ∂sη̂t (s)

)
ds = 0.

From which, we infer

1

2

d

dt

(∣∣û∣∣2 + |ξ|2
∣∣û∣∣2 + |ξ|2

∫ ∞
0

µ(s)
∣∣η̂t (s)

∣∣2 ds)+|ξ|2θ
∣∣û∣∣2 = −|ξ|2<

∫ ∞
0

µ(s)η̂t(s).∂sη̂t (s)ds.

Now, we analyze the term |ξ|2<
∫ ∞

0

µ(s)η̂t(s).∂sη̂t (s)ds, since µ contains infinitely

jumps terms

|ξ|2<
∫ ∞

0

µ(s)η̂t(s).∂sη̂t (s)ds = |ξ|2<
∫ s∞

0

µ(s)η̂t(s).∂sη̂t (s)ds+|ξ|2<
∫ S∞

s∞

µ(s)η̂t(s).∂sη̂t (s)ds,

where S∞ = sup {s ∈ R+ : µ(s) > 0}. We note that the last term is different from zero

only if s∞ < S∞.

The first term can be written as,

|ξ|2<
∫ s∞

0

µ(s)η̂t(s).∂sη̂t (s)ds =
1

2
|ξ|2 lim

N→+∞

N∑
i=1

∫ si

si−1

µ(s)
d

ds

∣∣η̂t(s)∣∣2 ds,
so, integrating by parts, we obtain

1

2
|ξ|2

N∑
i=1

∫ si

si−1

µ(s)
d

ds

∣∣η̂t(s)∣∣2 ds =
1

2
|ξ|2 lim

y→0

(
µ(y)

∣∣η̂t(y)
∣∣2 +

∫ s1

y

µ′(s)
∣∣η̂t(s)∣∣2 ds)

+
1

2
|ξ|2µ(s−1 )

∣∣η̂t(s1)
∣∣2 +

1

2
|ξ|2

N∑
i=2

[
µ(s)

∣∣η̂t(s)∣∣2]si
si−1

−1

2
|ξ|2

N∑
i=2

∫ si

si−1

µ′(s)
∣∣η̂t(s)∣∣2 ds.
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Using the fact that the norm of η̂t(0) is zero, we get

lim
y→0

µ(y)
∣∣η̂t(y)

∣∣2 ≤ lim sup
y→0

µ(y)

(∫ y

0

∣∣∣(η̂t)′ (ζ)
∣∣∣ dζ)2

≤ lim sup
y→0

(∫ y

0

√
µ(ζ)

∣∣∣(η̂t)′ (ζ)
∣∣∣ dζ)2

≤ lim sup
y→0

(
y

∫ y

0

µ(ζ)
∣∣∣(η̂t)′ (ζ)

∣∣∣2 dζ) = 0,

since (η̂t)
′ ∈ L2

µ(R+;Rn). By rearranging the terms of the series, we can then write

|ξ|2<
∫ s∞

0

µ(s)η̂t(s).∂sη̂t (s)ds = −1

2
|ξ|2

∫ s∞

0

µ′(s)
∣∣η̂t(s)∣∣2 ds

+
1

2
|ξ|2

+∞∑
i=1

µi
∣∣η̂t(si)∣∣2 +

1

2
|ξ|2 lim

s→s∞
µ(s)

∣∣η̂t(s)∣∣2 .
We see that the last expression is nonnegative and finite since the right-hand side is so.

We obtain the convergence of the integral and of the series, and consequently the existence

of the limit. In particular, since µ′(s) |η̂t(s)|2 is integrable on R+, the limit is zero if

s∞ =∞; if instead s∞ <∞, using the continuity of |η̂t(s)|2 in s∞, we find

lim
s→s∞

µ(s)
∣∣η̂t(s)∣∣2 = µ(s−∞)

∣∣η̂t(s∞)
∣∣2

when s∞ < S∞, we evaluate the remaining integral. We have,

|ξ|2<
∫ S∞

s∞

µ(s)η̂t(s).∂sη̂t (s)ds =
1

2
|ξ|2

∫ S∞

s∞

µ(s)
d

ds

∣∣η̂t(s)∣∣2 ds
= −1

2
|ξ|2

[
µ
(
s+
∞
) ∣∣η̂t(s∞)

∣∣2 − lim
y→S∞

µ(y)
∣∣η̂t(y)

∣∣2]
−1

2
|ξ|2

∫ S∞

s∞

µ′(s)
∣∣η̂t(s)∣∣2 ds,

from which we obtain that the limit in the second member exists and finite; on the other
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hand, lim
s→S∞

µ(s) = 0, and therefore,

lim
y→S∞

µ(y)
∣∣η̂t(y)

∣∣2 = lim
y→S∞

µ(y)

(∣∣η̂t(s∞)
∣∣+

∫ y

s∞

∣∣∣(η̂t)′ (s)∣∣∣ ds)2

≤ 2 lim sup
y→S∞

µ(y)
∣∣η̂t(s∞)

∣∣2 + 2 lim sup
y→S∞

(∫ S∞

s∞

χ(s∞,y)

√
µ(y)

∣∣∣(η̂t)′ (s)∣∣∣ ds)2

= 0,

where we have used the Lebesgue dominated convergence theorem to the last term. Then

put

J
[
η̂t
]

=
∑
i

µi
∣∣η̂t(si)∣∣2 ,

where µi = µ(s−i ) − µ(s+
i ) and the sum over all the values of i at the jump points si,

including s∞ if s∞ <∞, we derive the desired inequality

1

2

d

dt

((
1 + |ξ|2

) ∣∣û∣∣2 + |ξ|2
∫ ∞

0

µ(s)
∣∣η̂t (s)

∣∣2 ds)+|ξ|2θ
∣∣û∣∣2 =

1

2

∫ ∞
0

µ′(s)
∣∣η̂t (s)

∣∣2 ds−1

2
J
[
η̂t
]
≤ 0.

Theorem 3.1 (Pointwise estimates in the Fourier space) Let g satisfies the assumptions

a), b), and θ ∈ [0, 1]. Let u be the solution to the linear problem (3.9). Then its Fourier

image û verifies the pointwise estimates

E(t, ξ) ≤ CE(0, ξ)e−cρ(ξ)t,

for ξ ∈ Rn and t ≥ 0, where ρ (ξ) = |ξ|2θ

1+|ξ|2 .

We begin by introducing the following functional:

Υ(t, ξ) = |ξ|2
∫ ∞

0

g(s)|η̂t(s, ξ)|2ds.
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Lemma 3.3 The following differential inequality holds:

d

dt
Υ(t, ξ) +

1

2
|ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 2Θ2ḡ|ξ|2|û(t, ξ)|2. (3.12)

Proof. By means of the equation for the past history variable, a direct calculation leads

to the following differential equality for Υ(t, ξ) :

d

dt
Υ(t, ξ) + |ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds = 2|ξ|2<
∫ ∞

0

g(s)û(t, ξ)η̂t(s, ξ)ds. (3.13)

Concerning the right-hand side of (3.13), we have

<
∫ ∞

0

g(s)û(t, ξ)η̂t(s, ξ)ds ≤ ν(

∫ ∞
0

g(s)|η̂t(s, ξ)|ds)2 +
1

4ν
|û(t, ξ)|2,

for any ν > 0. Using assumption b) and Cauchy-Shwarz’s inequality, we get

∫ ∞
0

g(s)|η̂t(s, ξ)|ds ≤ Θ

∫ ∞
0

µ(s)|η̂t(s, ξ)|ds

≤ Θ(

∫ ∞
0

µ(s)ds)
1
2 (

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds)
1
2

= Θ
√
ḡ(

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds)
1
2 .

Therefore

2|ξ|2<
∫ ∞

0

k(s)û(t, ξ)η̂t(s, ξ)ds ≤ 2νΘ2ḡ|ξ|2
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds+
1

2ν
|ξ|2|û(t, ξ)|2. (3.14)

Now, we go back to equality (3.13), we infer from (3.14)

d

dt
Υ(t, ξ) + |ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 2νΘ2ḡ|ξ|2
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds+
1

2ν
|ξ|2|û(t, ξ)|2,
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taking ν = 1
4Θ2ḡ

, we obtain the desired inequality

d

dt
Υ(t, ξ) +

1

2
|ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 2Θ2ḡ|ξ|2|û(t, ξ)|2.

Proof of Theorem 3.1. We define the additional functional

L(t, ξ) = E(t, ξ) + βρ (ξ) Υ(t, ξ),

for some β > 0 and 0 ≤ ρ (ξ) ≤ 1 to be determined later.

Clearly we have L(t, ξ) ≥ E(t, ξ). On the other hand, we have

L(t, ξ) = E(t, ξ) + βρ (ξ) Υ(t, ξ)

≤ E(t, ξ) + βΥ(t, ξ)

≤ E(t, ξ) + β|ξ|2
∫ ∞

0

g(s)|η̂t(s, ξ)|2ds

≤ E(t, ξ) + βΘ|ξ|2
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds

≤ (1 + βΘ) E(t, ξ).

From Lemma 3.2 and (3.12), we obtain

d

dt
L(t, ξ) =

d

dt
E(t, ξ) + βρ (ξ)

d

dt
Υ(t, ξ)

≤ −2|ξ|2θ|û(t, ξ)|2 + |ξ|2
∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds

+βρ (ξ)

(
2Θ2ḡ|ξ|2θ|û(t, ξ)|2 − 1

2
|ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds
)
.
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From which, it follows

d

dt
L(t, ξ) + 2|ξ|2θ|û(t, ξ)|2 − |ξ|2

∫ ∞
0

µ′(s)|η̂t(s, ξ)|2ds +
β

2
ρ (ξ) |ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds

≤ 2Θ2ḡβρ (ξ) |ξ|2|û(t, ξ)|2.

Therefore

d

dt
L(t, ξ) + 2

(
|ξ|2θ −Θ2ḡβρ (ξ) |ξ|2

)
|û(t, ξ)|2 +

β

2
ρ (ξ) |ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 0.

Now, we choose β ≤ 1/
(

1
4

+ Θ2ḡ
)

so that 2
(
|ξ|2θ −Θ2ḡβρ (ξ) |ξ|2

)
≥ β

2
ρ (ξ) (1 + |ξ|2).

In fact by substituting ρ (ξ) = |ξ|2θ
1+|ξ|2 and using that |ξ|2

1+|ξ|2 ≤ 1, we obtain

2
(
|ξ|2θ −Θ2ḡβρ (ξ) |ξ|2

)
≥ 2

(
1−Θ2ḡβ

)
|ξ|2θ ≥ β

2
|ξ|2θ =

β

2
ρ (ξ)

(
1 + |ξ|2

)
, for any ξ ∈ Rn.

Hence we arrive at

d

dt
L(t, ξ) +

β

2
ρ (ξ)

(
1 + |ξ|2

)
|û(t, ξ)|2 +

β

2
ρ (ξ) |ξ|2

∫ ∞
0

µ(s)|η̂t(s, ξ)|2ds ≤ 0.

From the definition of E , we obtain

d

dt
L(t, ξ) +

β

2
ρ (ξ) E(t, ξ) ≤ 0. (3.15)

Making use the equivalence between functionals E and L in (3.15), we obtain

d

dt
L(t, ξ) +

β

2 (1 + βΘ)
ρ (ξ)L(t, ξ) ≤ 0, (3.16)

with ρ(ξ) = |ξ|2
|ξ|2+1

. By invoking the Gronwall Lemma, we get

E(t, ξ) ≤ L(t, ξ) ≤ CE(0, ξ)e−cρ(ξ)t, (3.17)
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which concludes the proof.

Now we study the decay estimates of solution to the linear problem (3.3).

Theorem 3.2 (Energy estimate for linear problem). Let s ≥ 1 be a real number, and

θ ∈ [0, 1]. Assume that u0 ∈ Hs(Rn), and put

I0 := ||u0||Hs(Rn).

Then the solution ū to the problem (3.3) given by (3.6) satisfies

ū ∈ C0([0,+∞);Hs(Rn)),

and the following energy estimate :

||ū(t)||2Hs +

∫ t

0

|||∇|θū(t)||2Hs−1dτ ≤ cI2
0 .

Proof. From (3.16) we have that

dL(t, ξ)

dt
+ cρ(ξ)L(t, ξ) ≤ 0.

By integrating the previous inequality with respect to t and appealing to (3.17), we obtain

E(t, ξ) +

∫ t

0

ρ(ξ)E(τ, ξ)dτ ≤ cE(0, ξ). (3.18)

Multiplying equation (3.18) by (1 + |ξ|2)s−1 and integrating the resulting inequality with

respect to ξ ∈ Rn, then we have that

||ū(t)||2Hs +

∫ t

0

|||∇|θū(t)||2Hs−1dτ ≤ cI2
0 .

The last inequality guarantees the regularity of the solution (3.6). So far we complete
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the proof of Theorem 3.2.

Lemma 3.4 (Pointwise estimate). Assume u is the solution of (3.3) and if θ ∈ [0, 1]

then it satisfies the following pointwise estimate in the Fourier space:

|û(t, ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2, (3.19)

here ρ(ξ) = |ξ|2θ
1+|ξ|2 .

Lemma 3.5 The Fourier transform of the function H(t, x) satisfies :

|Ĥ(t, ξ)| ≤ ce−cρ(ξ)t,

where ρ(ξ) = |ξ|2θ
1+|ξ|2 .

Proof. We have

ū(t) := H(t) ∗ u0,

and by the pointwise estimate we have that

|̂̄u(t, ξ)|2 = |Ĥ(t, ξ)|2|û0(ξ)|2 ≤ ce−cρ(ξ)t|û0(ξ)|2.

Then

|Ĥ(t, ξ)| ≤ ce−cρ(ξ)t.

Proposition 3.1 Let s ≥ 0 be a real number. We have

Case 1: if θ ∈ (0, 1), ϕ ∈ Hs(Rn)∩Lp(Rn), 1 ≤ p ≤ 2, then the following estimates hold:

|||∇|rH(t) ∗ ϕ||Hm ≤ C(1 + t)−
n(2−p)+2pr

4θp ||ϕ||Lp + C(1 + t)−
l

2(1−θ) ||ϕ||Hr+m+l . (3.20)
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for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s.

Case 2 : if θ = 0, ϕ ∈ Hs(Rn), then the following estimates hold :

|||∇|rH(t) ∗ ϕ||Hm ≤ Ce−ct||ϕ||Hr+m + C(1 + t)−
l
2 ||ϕ||Hr+m+l . (3.21)

for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s.

Case 3 : if θ = 1, ϕ ∈ Hs(Rn) ∩ Lp(Rn), 1 ≤ p ≤ 2, then the following estimates hold :

|||∇|rH(t) ∗ ϕ||Hm ≤ C(1 + t)−
n(2−p)+2pr

4p ||ϕ||Lp + Ce−ct||ϕ||Hr+m . (3.22)

for r ≥ 0,m ≥ 0 and r +m ≤ s.

Proof. In view of Lemma 3.5 we have that

Case 1 : if θ ∈ (0, 1)

|||∇|rH(t) ∗ ϕ||2L2 ≤ c

∫
Rn
|ξ|2re−cρ(ξ)t|ϕ̂(ξ)|2dξ

≤ c

∫
{ξ,|ξ|≤1}

|ξ|2re−
c
2
|ξ|2t|ϕ̂|2dξ + c

∫
{ξ,|ξ|≥1}

|ξ|2re−
c
2

1

|ξ|2(1−θ)
t|ϕ̂|2dξ

: = k1 + k2.

Assume that p′ satisfies 1
p

+ 1
p′

= 1, then

k1 ≤ c(1 + t)−
n(2−p)+2pr

2θp ||ϕ̂||2p′ ≤ c(1 + t)−
n(2−p)+2pr

2θp ||ϕ||2p.

On the other hand, for r replaced by r +m we have that

k2 ≤ c(1 + t)−
l

1−θ ||ϕ||2Hr+m+l ,
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for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s. Hence

|||∇|rH(t) ∗ ϕ||Hm ≤ c(1 + t)−
n(2−p)+2pr

4θp ||ϕ||p + c(1 + t)−
l

2(1−θ) ||ϕ||Hr+m+l ,

for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s.

Case 2 : if θ = 0, we have

|||∇|rH(t) ∗ ϕ||2L2 ≤ c

∫
Rn
|ξ|2re−cρ(ξ)t|ϕ̂(ξ)|2dξ

≤ c

∫
{ξ,|ξ|≤1}

|ξ|2re−
c
2
t|ϕ̂ (ξ) |2dξ + c

∫
{ξ,|ξ|≥1}

|ξ|2re−
c
2

1
|ξ|2

t|ϕ̂ (ξ) |2dξ

: = J1 + J2.

For the first term, we have

J1 ≤ ce−ct
∫
{ξ,|ξ|≤1}

|ξ|2r|ϕ̂|2dξ,

which gives

J1 ≤ ce−ct|||∇|rϕ||2L2 ,

for r replaced by r +m we have that

J1 ≤ ce−ct||ϕ||2Hr+m .

On the other hand,

J2 ≤ c(1 + t)−l||ϕ||2Hr+m+l ,

for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s. Then, we obtain

|||∇|rH(t) ∗ ϕ||Hm ≤ ce−ct||ϕ||Hr+m + c(1 + t)−
l
2 ||ϕ||Hr+m+l ,

for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s.
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Case 3 : if θ = 1, we have

|||∇|rH(t) ∗ ϕ||2L2 ≤ c

∫
Rn
|ξ|2re−cρ(ξ)t|ϕ̂(ξ)|2dξ

≤ c

∫
{ξ,|ξ|≤1}

|ξ|2re−
c
2
|ξ|2t|ϕ̂|2dξ + c

∫
{ξ,|ξ|≥1}

|ξ|2re−
c
2
t|ϕ̂|2dξ

: = J1 + J2.

Assume that p′ satisfies 1
p

+ 1
p′

= 1, then

J1 ≤ c(1 + t)−
n(2−p)+2pr

2p ||ϕ̂||2p′ ≤ c(1 + t)−
n(2−p)+2pr

2p ||ϕ||2p.

On the other hand, for r replaced by r +m we have that

J2 ≤ ce−ct||ϕ||2Hr+m ,

for r ≥ 0,m ≥ 0 and r +m ≤ s.

Therefore

|||∇|rH(t) ∗ ϕ||Hm ≤ c(1 + t)−
n(2−p)+2pr

4p ||ϕ||p + ce−ct||ϕ||Hr+m ,

for r ≥ 0,m ≥ 0 and r +m ≤ s.

3.3 Decay estimates for linear problem

Also, by using Proposition (3.1) we have that sharp decay estimates of the solution ū to

(3.3).

Denote for θ ∈ (0, 1)

σθ(r, n) = r + (1− θ)( n
2θ

+
r

θ
), n ≥ 1, (3.23)
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and

σ0(r, n) = 2r +
n

2
, n ≥ 1. (3.24)

Then the theorem can be stated as follows.

Theorem 3.3 (Sharp decay estimates for linear problem ) Let s ≥ 0 be a real number.

Set I1 := ||u0||Hs + ||u0||L1.

Case 1 : θ ∈ (0, 1). Assume that u0 ∈ Hs(Rn) ∩ L1(Rn), then the solution ū to (3.3)

given by (3.6) satisfies the following decay estimates :

|||∇|rū(t)||Hs−σθ(k,n) ≤ cI1(1 + t)−
n
4θ
− r

2θ , (3.25)

for r ≥ 0 be a real number and σθ(r, n) ≤ s.

Case 2 : θ = 0. Assume that u0 ∈ Hs(Rn), then the solution ū to (3.3) given by (3.6)

satisfies the following decay estimates :

|||∇|rū(t)||Hs−σ0(r,n) ≤ cI0(1 + t)−
n
4
− r

2 , (3.26)

for r ≥ 0 be a real number and σ0(r, n) ≤ s.

Case 3 : θ = 1. Assume that u0 ∈ Hs(Rn) ∩ L1(Rn), then the solution ū to (3.3) given

by (3.6) satisfies the following decay estimates:

|||∇|rū(t)||Hs−k ≤ cI1(1 + t)−
n
4
− r

2 , (3.27)

for r ≥ 0 be a real number and r ≤ s.

Proof. Let s ≥ 0, m ≥ 0 be real numbers.

Case 1 : if θ ∈ (0, 1). In view of (3.6), by using (3.20) with p = 1, we have that

|||∇|rū(t)||Hm ≤ c(1 + t)−
n
4θ
− r

2θ ||u0||L1 + c(1 + t)−
l

2(1−θ) ||u0||Hr+m+l , (3.28)
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for r ≥ 0,m ≥ 0, l ≥ 0 and r+m+ l ≤ s. We choose l = 2(1−θ)( n
4θ

+ r
2θ

) for r+m+ l ≤ s,

we have that

|||∇|rū(t)||Hs−σθ(r,n) ≤ cI1(1 + t)−
n
4θ
− r

2θ ,

for r ≥ 0 and σθ(r, n) ≤ s.

Thus (3.25) is proved.

Case 2 : if θ = 0. In view of (3.6), by using (3.21), we have that

|||∇|rū(t)||Hm ≤ ce−ct||u0||Hr+m + c(1 + t)−
l
2 ||u0||Hr+m+l , (3.29)

for r ≥ 0,m ≥ 0, l ≥ 0 and r +m+ l ≤ s. So by taking l = n
2

+ r in (3.29), we obtain

|||∇|rū(t)||Hm ≤ ce−ct||u0||Hs + c(1 + t)−
n
4
− r

2 ||u0||Hs .

This shows that

|||∇|rū(t)||Hs−σ0(r,n) ≤ cI0(1 + t)−
n
4
− r

2 ,

for r ≥ 0 and σ0(r, n) ≤ s. Thus (3.26) is proved.

Case 3 : if θ = 1. In view of (3.6), by using (3.22) with p = 1, we have that

|||∇|rū(t)||Hm ≤ c(1 + t)−
n
4
− r

2 ||u0||L1 + ce−ct||u0||Hr+m , (3.30)

for r ≥ 0,m ≥ 0 and r +m ≤ s.

Then

|||∇|rū(t)||Hs−r ≤ cI1(1 + t)−
n
4
− r

2 ,

for 0 ≤ r ≤ s. Thus (3.27) is proved.

Remark 3.1 The estimates in Theorem (3.3) indicate that the decay structure of solutions

to the linear problem (3.3) is of regularity-loss type.
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3.4 Global existence and decay for semi-linear prob-

lem

In this section we will first introduce a set of time-weighted Sobolev spaces and employ the

contraction mapping theorem to prove the global existence and optimal decay of solution

to the semi-linear problem.

Recall Assumption of f , we know that f ∈ C∞(R\{0}), and f(u) = O(|u|α) as |u| → 0,

here α > αn for n ≥ 1 and

αn :=

 1 + 2θ
n
, θ ∈ (0, 1),

1 + 2
n
, θ = 0, 1,

with α is assumed to be an integer for obtaining the following result about the global

existence and optimal decay estimates of solution to the semi-linear problems (3.1).

Theorem 3.4 (Existence and decay estimates for semi-linear problem). Let s > n
2

be a

real number. Let u0 ∈ Hs(Rn)∩L1(Rn). If I1 is suitably small, then there exists a unique

solution u(t, x) of (3.1) in

u ∈ C([0,∞);Hs(Rn)),

satisfying the following decay estimates :

Case 1 : θ ∈ (0, 1)

|||∇|ru(t)||Hs−σθ(r,n) ≤ cI1(1 + t)−
n
4θ
− r

2θ , (3.31)

for r ≥ 0 and σθ(r, n) ≤ s.

Case 2 : θ = 0

|||∇|ru(t)||Hs−σ0(k,n) ≤ cI1(1 + t)−
n
4
− r

2 , (3.32)

for r ≥ 0 and σ0(r, n) ≤ s
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Case 3 : θ = 1

|||∇|ru(t)||Hs−r ≤ cI1(1 + t)−
n
4
− r

2 , (3.33)

for r ≥ 0 and r ≤ s.

Proof. Define

X := {u ∈ C([0,∞), Hs(Rn)); ||u||X <∞},

here

||u||X :=



sup
t≥0
‖u (t)‖Hs + sup

{r,σθ(r,n)≤s}
sup
t≥0

(1 + t)
n
4θ

+ r
2θ |||∇|ru(t)||Hs−σθ(r,n) for θ ∈ (0, 1) ,

sup
t≥0
‖u (t)‖Hs + sup

{r,σ0(r,n)≤s}
sup
t≥0

(1 + t)
n
4

+ r
2 |||∇|ru(t)||Hs−σ0(r,n) for θ = 0,

sup
r≤s

sup
t≥0

(1 + t)
n
4

+ r
2 |||∇|ru(t)||Hs−r for θ = 1.

We denote by SR, the closed ball

SR := {u ∈ X; ||u||X ≤ R}, R > 0;

Consider the mapping

Φ[u](t) := Φ0(t) +

∫ t

0

H(t− τ) ∗ (1−∆)−1f(u)(τ)dτ,

where

Φ0(t) := H(t) ∗ u0.

First, we show that Φ is a contraction on SR. We have

∀v, w ∈ X,Φ[v](t)− Φ[w](t) =

∫ t

0

H(t− τ) ∗ (1−∆)−1(f(v)− f(w))(τ)dτ.

Noticing that f(v) = O(|v|α) and using Proposition 1.7 and Proposition 1.9, we have
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the following inequalities for a given real number r ≥ 0 :

||∂[r]
x (f(v)− f(w))(τ)||L1 ≤ C||(v, w)(τ)||α−2

L∞

(
||(v, w)(τ)||L2||∂[r]

x (v − w)(τ)||L2

+||∂[r]
x (v, w)(τ)||L2||(v − w)(τ)||L2

)
, (3.34)

|||∇|rf(v)− f(w)(τ)||L2 ≤ C||(v, w)(τ)||α−2
L∞ (||(v, w)(τ)||L∞ |||∇|r(v − w)(τ)||L2

+ |||∇|r(v, w)(τ)||L2 ||(v − w)(τ)||L∞) . (3.35)

From the Gagliardo-Nirenberg inequality, we have

||v(τ)||L∞ ≤ C||v||X(1 + τ)−dn , (3.36)

with

dn =



(1 + τ)−
n
2θ , θ ∈ (0, 1) , n = 1,

(1 + τ)−
n
4θ , θ ∈ (0, 1) , n ≥ 2,

(1 + τ)−
n
4 , θ = 1, n ≥ 1,

(1 + τ)−
n
4 , θ = 0, n ≥ 1.

Indeed, by the Gagliardo-Nirenberg inequality, we have

||v(τ)||L∞ ≤ ‖v‖1−λ
L2 ‖|∇|s0 v‖λL2 ,

here s0 = n
2

+ ε0 with ε0 ∈
(
0,
(
s+ 1

2
− 1

θ

)
θ
]

fixed and λ = n
2s0

.

When n = 1, since s ≥ 1
2θ

+ 1, we have s− σθ (0, 1) ≥ 0, thus ||v(τ)||L2 ≤ (1 + t)−
1
4θ ‖v‖X .

Similarly, since s > 1
θ
− 1

2
, we have from the choice of s0 that s − σθ (s0, 1) ≥ 0 we have

‖|∇|s0 v‖L2 ≤ (t+ 1)−
1
4θ
− s0

2θ ‖v‖X . Then dn = (1− λ) 1
4θ

+λ
(

1
4θ

+ s0
2θ

)
= 1

2θ
, it yields (3.36)

with n = 1.

When n ≥ 2, is analogous to the first case, from s ≥ n
2θ

+ 1, we get s − σθ (0, n) ≥ s0.
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Then ‖v‖L2 ≤ (t+ 1)−
n
4θ ‖v‖X and ‖|∇|s0 v‖L2 ≤ (t+ 1)−

n
4θ ‖v‖X . Consequently we obtain

dn = (1− λ) 1
4θ

+ λ
(

1
4θ

)
= 1

4θ
and ||v(τ)||L∞ ≤ (t+ 1)−

1
4θ ‖v‖X .

The case θ = 1, by a similar calculation, we have for n ≥ 1 and s ≥ s0 we have ||v(τ)||L∞ ≤

(t+ 1)−
n
4 ‖v‖X .

In fact for n ≥ 1, we have ‖v‖L2 ≤ (t+ 1)−
n
4 ‖v‖X and ‖|∇|s0 v‖L2 ≤ ‖v‖Hs0 ≤ ‖v‖Hs ≤

(t+ 1)−
n
4 ‖v‖X .

When θ = 0, for n = 1 and s ≥ 1
2
, we have s − σ0 (0, 1) ≥ 0, which implies ‖v‖L2 ≤

(t+ 1)−
1
4 ‖v‖X , and for s > 3

2
, we choose ε0 <

(
s− 3

2

)
/2 such that s − σ0 (s0, 1) ≥ 0, so

‖|∇|s0 v‖L2 ≤ (t+ 1)−
1
4
− s0

2 ‖v‖X .

For n ≥ 2 and s > n, we have s− σ0 (0, n) ≥ s0, which gives ||v(τ)||L∞ ≤ (t+ 1)−
n
4 ‖v‖X .

Step 1 : θ ∈ (0, 1)

Now we prove the estimate:

|||∇|r(Φ[v]− Φ[w])(t)||Hs−σθ(r,n) ≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X , (3.37)

with r ≥ 0 and σθ(r, n) ≤ s.

Let r ≥ 0 be a real number satisfying σθ(r, n) ≤ s, and m = s− σθ(r, n), then we have

|||∇|r(Φ[v]− Φ[w])(t)||Hs−σθ(r,n) ≤ (

∫ t
2

0

+

∫ t

t
2

)|||∇|rH(t− τ) ∗ (f(v)− f(w))(τ)||Hs−σθ(r,n)−2dτ

= : I1 + I2. (3.38)

By virtue of (3.20) with p = 1, we have

I1 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4θ
− r

2θ ||(f(v)− f(w))(τ)||L1dτ

+C

∫ t
2

0

(1 + t− τ)−
l

2(1−θ) ||(f(v)− f(w))(τ)||Hk+s−σθ(k,n)+l−2dτ

= : I11 + I12. (3.39)
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By using (3.34) with r = 0 and (3.36) ,we have that

||(f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−dn(α−2)− n

2θ . (3.40)

Since α > αn = 1 + 2θ
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (3.40), we have

I11 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4θ
− r

2θ (1 + τ)−dn(α−2)− n
2θ dτ ||(v, w)||α−1

X ||(v − w)||X ,

then

I11 ≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X . (3.41)

If r+m+ l− 2 ≤ s, taking l = 2 + (1− θ)( n
2θ

+ r
θ
) by virtue of (3.35) and (3.36), it yields

that

||(f(v)− f(w))(τ)||Hs ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−dn(α−1). (3.42)

We appeal to (3.42) and notice that α ≥ 2, then we have that

I12 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4θ
− r

2θ
− 1

1−θ (1 + τ)−dn(α−1)dτ ||(v, w)||α−1
X ||(v − w)||X .

Then, we get

I12 ≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X ,

Inserting the estimates I11 and I12 in (3.39), we obtain

I1 ≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X . (3.43)
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Also by employing (3.20) with l = 2 and p = 1 to the term I2, we have

I2 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4θ
− r−[r]

2θ ||∂[r]
x (f(v)− f(w))(τ)||L1dτ

+C

∫ t

t
2

(1 + t− τ)−
1

1−θ ||(f(v)− f(w))(τ)||Hr+s−σθ(r,n)dτ

: = I21 + I22. (3.44)

In view of (3.34) and (3.36), we have that

||∂[r]
x (f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1

X ||(v − w)||X(1 + τ)−dn(α−2)− n
2θ
− [r]

2θ , (3.45)

for σθ(r, n) ≤ s. Since α > αn = 1 + 2θ
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to

(3.45), we have

I21 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4θ
− r−[r]

2θ (1 + τ)−dn(α−2)− n
2θ
− [r]

2θ dτ ||(v, w)||α−1
X ||(v − w)||X ,

with σθ(r, n) ≤ s. Then

I21 ≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X ,

with σθ(r, n) ≤ s.

By applying (3.35) and (3.36) with r replaced by r +m we get that

||(f(v)− f(w))(τ)||Hr+s−σθ(r,n) ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−dn(α−1)− n

4θ
− r

2θ . (3.46)
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It yields that

I22 ≤ C

∫ t

t
2

(1 + t− τ)−
1

1−θ (1 + τ)−dn(α−1)− n
4θ
− r

2θ dτ ||(v, w)||α−1
X ||(v − w)||X ,

≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X .

Using the estimates for I21 and I22 in (3.44), we find

I2 ≤ C(1 + t)−
n
4θ
− r

2θ ||(v, w)||α−1
X ||v − w||X . (3.47)

Putting the estimates (3.43) and (3.47) into (3.38), then we have (3.37).

Step 2 : θ = 0

Now we prove the estimate:

|||∇|r(Φ[v]− Φ[w])(t)||Hs−σ0(r,n) ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X , (3.48)

with r ≥ 0 and σ0(r, n) ≤ s.

Let r ≥ 0 be a real number satisfying σ0(r, n) ≤ s, and m = s− σ0(r, n), then we have

|||∇|r(Φ[v]− Φ[w])(t)||Hs−σ0(r,n) ≤ (

∫ t
2

0

+

∫ t

t
2

)|||∇|rH(t− τ) ∗ (f(v)− f(w))(τ)||Hs−σ0(r,n)−2dτ

=: I1 + I2. (3.49)

By virtue of (3.21), we have

I1 ≤ C

∫ t
2

0

e−c(t−τ)||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)−2dτ

+C

∫ t
2

0

(1 + t− τ)−
l
2 ||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)+l−2dτ

= : I11 + I12. (3.50)
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By using (3.35) and (3.36), we have that

||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)−2 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−1). (3.51)

Since α > αn = 1 + 2
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (3.51), we have

I11 ≤ C

∫ t
2

0

e−c(t−τ)(1 + τ)−
n
2

(α−1)dτ ||(v, w)||α−1
X ||(v − w)||X

then

I11 ≤ Ce−ct||(v, w)||α−1
X ||v − w||X . (3.52)

If r +m+ l − 2 ≤ s, taking l = n
2

+ r + 2 by virtue of (3.35) and (3.36), it yields that

||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)+l−2 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−1). (3.53)

We appeal to (3.53) and notice that α ≥ 2, to have that

I12 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− r

2
−1(1 + τ)−

n
2

(α−1)dτ ||(v, w)||α−1
X ||(v − w)||X .

So

I12 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X .

We put the estimates for I11 and I12 in (3.50), then we obtain

I1 ≤ Ce−ct||(v, w)||α−1
X ||v − w||X + C(1 + t)−

n
4
− r

2 ||(v, w)||α−1
X ||v − w||X .

This shows that

I1 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X . (3.54)
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Also by employing (3.21), we have

I2 ≤ C

∫ t

t
2

e−c(t−τ)||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)−2dτ

+C

∫ t

t
2

(1 + t− τ)−
l
2 ||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)+l−2dτ,

: = I21 + I22. (3.55)

In view of (3.35) and (3.36), we have that

||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)−2 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−1)−n
4
− r

2 , (3.56)

for σ0(r, n) ≤ s.

Since α > αn = 1 + 2
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (3.56), we have

I21 ≤ C

∫ t

t
2

e−c(t−τ)(1 + τ)−
n
2

(α−1)−n
4
− r

2dτ ||(v, w)||α−1
X ||(v − w)||X ,

with σ0(r, n) ≤ s, then

I21 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X ,

with σ0(r, n) ≤ s.

By applying (3.35) with r replaced by r +m and (3.36) we have that

||(f(v)− f(w))(τ)||Hr+s−σ0(r,n)+l−2 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−1)−n
4
− r

2 . (3.57)

We choose l = 2 we have that

I22 ≤ C

∫ t

t
2

(1 + t− τ)−1(1 + τ)−
n
2

(α−1)−n
4
− r

2dτ ||(v, w)||α−1
X ||(v − w)||X .
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Then

I22 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X .

Inserting the estimates for I21 and I22 in (3.55), we find

I2 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X . (3.58)

We use the estimates (3.54) and (3.58) into (3.49), then we have (3.48).

Step 3 : θ = 1, we prove the estimate:

|||∇|k(Φ[v]− Φ[w])(t)||Hs−r ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X , (3.59)

with 0 ≤ r ≤ s.

Let r ≥ 0 be a real number satisfying r ≤ s, and m = s− r, then we have

|||∇|r(Φ[v]− Φ[w])(t)||Hs−r ≤ (

∫ t
2

0

+

∫ t

t
2

)|||∇|rH(t− τ) ∗ (f(v)− f(w))(τ)||Hs−r−2dτ

=: I1 + I2. (3.60)

By virtue of (3.22) with p = 1, we have

I1 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− r

2 ||(f(v)− f(w))(τ)||L1dτ

+C

∫ t
2

0

e−c(t−τ)||(f(v)− f(w))(τ)||Hs−2dτ,

= : I11 + I12. (3.61)

By using (3.34) with r = 0 and (3.36), we have that

||(f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−1). (3.62)
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Since α > αn = 1 + 2
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (3.62), we have

I11 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− r

2 (1 + τ)−
n
2

(α−1)dτ ||(v, w)||α−1
X ||(v − w)||X ,

which implies

I11 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X . (3.63)

By virtue of (3.35) and (3.36), it yields that

||(f(v)− f(w))(τ)||Hs−2 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
2

(α−1)−n
4
− r

2 . (3.64)

We appeal to (3.64) and notice that α ≥ 2, we get

I12 ≤ C

∫ t
2

0

e−c(t−τ)(1 + τ)−
n
2

(α−1)−n
4
− r

2dτ ||(v, w)||α−1
X ||(v − w)||X .

Therefore

I12 ≤ Ce−ct||(v, w)||α−1
X ||v − w||X .

Putting the estimates for I11 and I12 in (3.61), we obtain

I1 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X + Ce−ct||(v, w)||α−1

X ||v − w||X . (3.65)

Hence

I1 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X . (3.66)

Also by employing (3.22) with p = 1 to the term I2, we have

I2 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4
− r−[r]

2 ||∂[r]
x (f(v)− f(w))(τ)||L1dτ

+C

∫ t

t
2

e−c(t−τ)||(f(v)− f(w))(τ)||Hs−2dτ

: = I21 + I22. (3.67)
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In view of (3.34) and (3.36), we have that

||∂[r]
x (f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1

X ||(v − w)||X(1 + τ)−
n
2

(α−2)−n
2
− [r]

2 , (3.68)

for 0 ≤ r ≤ s.

Since α > αn = 1 + 2
n

for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (3.68), we have

I21 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4
− r−[k]

2 (1 + τ)−
n
2

(α−2)−n
2
− [r]

2 dτ ||(v, w)||α−1
X ||(v − w)||X ,

with r ≤ s. Then

I21 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X ,

with r ≤ s.

Using (3.64) we have

I22 ≤ C

∫ t

t
2

e−c(t−τ)(1 + τ)−
n
2

(α−1)−n
4
− r

2dτ ||(v, w)||α−1
X ||(v − w)||X .

This yields

I22 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X .

Using the estimates I21 and I22 in (3.67), we get

I2 ≤ C(1 + t)−
n
4
− r

2 ||(v, w)||α−1
X ||v − w||X . (3.69)

We put the estimates (3.66) and (3.69) into (3.60), then we have (3.59).

Step 4 : Combining the estimates (3.37) for θ ∈ (0, 1), (3.48) for θ = 0 and (3.59) for

θ = 1 we obtain that

||Φ[v]− Φ[w]||X ≤ C||(v, w)||α−1
X ||v − w||X .
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So far we proved that ||Φ[v]− Φ[w]||X ≤ C1R
α−1||v − w||X . if v, w ∈ SR. On the other

hand, Φ[0](t) = Φ0(t) = ū(t), and from Theorem 3.3 we know that ||Φ0||X ≤ C2I1 if I1 is

suitably small. Take R = 2C2I1. If I1 is suitably small such that R < 1 and C1R ≤ 1
2
,

then we have that

||Φ[v]− Φ[w]||X ≤
1

2
||v − w||X .

It yields that, for v ∈ SR

||Φ[v]||X ≤ ||Φ0||X +
1

2
||v||X ≤ C2I1 +

1

2
R = R,

i.e. Φ[v] ∈ SR. Thus v → Φ[v] is a contraction mapping on SR, so there exists a unique

u ∈ SR satisfying Φ[u] = u, and it is the solution to the semi-linear problem (3.1) satisfying

the decay estimate (3.31), (3.32) and (3.33). So we complete the proof of Theorem 3.4.
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Chapter 4

Global existence and decay estimates

of solutions for a system of

semi-linear heat equations with

memory involving the fractional

Laplacian.

In this chapter, we study the global existence of small data solutions to the Cauchy

problem associated to the coupled systems of semi-linear heat equations with dissipation

of memory-type


∂tu− β∆u+

∫ t

0

g(t− s)(−∆)θu(s)ds = |v|p, t > 0, x ∈ Rn,

∂tv − β∆v +

∫ t

0

g(t− s)(−∆)θv(s)ds = |u|q, t > 0, x ∈ Rn,

(u(0), v(0)) = (u0 (x) , v0 (x)), x ∈ Rn,

(4.1)

where n ≥ 1, β > 0, θ ∈ [0, 1], p > 1, q > 1. Here u, v are real-valued unknown functions,

u0 (x) , v0 (x) are the given initial data and (−∆)θ is the fractional Laplacian operator
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which is defined in the whole space Rn through the Fourier transform F and its inverse

F−1 by

(−∆)θh(x) = F−1
(
|ξ|2θ F (h) (ξ)

)
(x) , x ∈ Rn.

The function term g corresponds to the memory term, that satisfies the same assump-

tions of the chapter 03

4.0.1 Linear cauchy problem with memory-type dissipation

Now, let us consider the linear Cauchy problem with memory term, namely

 ∂tu (t, x)−∆u (t, x) + g ∗ (−∆)θu (t, x) = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn.
(4.2)

The solution of problem (4.2) given via the Laplace and Fourier inverse transforms by

u(t, x) = u0 (x) ∗H(t, x), (4.3)

such that H is the fundamental solution corresponding Cauchy problem (4.2), where

H(t, x) = F−1

(
L−1

[
1

λ+ β|ξ|2 + |ξ|2θL[g]

])
(t, x).

Therefore, from Theorem 2.1, we can easily prove the next Theorem

Theorem 4.1 Let s ≥ 0, θ ∈ [0, 1], n ≥ 1 and m ∈ [1, 2]. Assume that u0 ∈ Dsm(Rn).

Then, we have the following estimate:

|||D|su(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m ||u0||Dsm(Rn).

On the other hand, if we assume u0 ∈ L2(Rn)∩Lm(Rn) for m ∈ [1, 2], then the following
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estimate holds:

||u(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||u0||L2(Rn)∩Lm(Rn). (4.4)

Corollary 4.1 Let us consider the Cauchy problem (4.2) with θ ∈ [0, 1] and initial data

u0 is from Ḣs(Rn)∩Lm(Rn) for s ≥ 1,m ∈ [1, 2). Then, we obtain the following estimate:

|||D|su(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m ||u0||Ḣs(Rn)∩Lm(Rn).

4.1 Semi-linear Cauchy problem with memory-type

dissipation

This section is devoted to the study of global existence results for the following Cauchy

problem

 ∂tu (t, x)−∆u (t, x) + g ∗ (−∆)θu (t, x) = |u|p , t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn.
(4.5)

4.1.1 Main results

Let us now denote by pFuj

( n
m

)
to 1 +

2m

n
for n ≥ 1,m ∈ [1, 2). Then, we can

distinguish the following classification of regularity: data from Dsm with s = 1 and data

from Dsm with s > n
2
.

Theorem 4.2 Let n ≤ 4

2−m
and n <

2m

m− 1
where m ∈ (1, 2). Assume that u0 ∈

D1
m(Rn) for m ∈ (1, 2). The exponent p satisfies

p > pFuj

( n
m

)
, (4.6)
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and
2
m
≤ p <∞ if n ≤ 2,

2
m
≤ p ≤ n

n− 2
if n ≥ 3.

(4.7)

Then, there exists a small constant ε0 > 0 such that if ||u0||D1
m(Rn) ≤ ε0 then there exists

a uniquely determined globally (in time ) solution to (4.5) such that

u ∈ C([0,∞), H1(Rn)).

Moreover, the solution satisfies the estimates

||u(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||u0||D1
m(Rn),

||∇u(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2m

4m ||u0||D1
m(Rn).

Now, we are interested in the case when initial conditions having a large regularity such

that they belong to L∞(Rn).

Theorem 4.3 Let n ≥ 5 and s > n
2
. Let u0 ∈ Dsm(Rn) for m ∈ [1, 2). Let us assume the

exponent p satisfies

1 + s < p.

Then, there exists a constant ε0 > 0 such that if ||u0||Dsm ≤ ε0, then there exists a uniquely

globally in time solution to (4.5) such that

u ∈ C([0,∞), Hs(Rn)).

Moreover, the solution satisfies the estimates

‖u(t, ·)‖L2(Rn) . (1 + t)−
n(2−m)

4m ||u0||Dsm(Rn),

‖|D|su(t, ·)‖L2(Rn) . (1 + t)−
n(2−m)+2ms

4m ||u0||Dsm(Rn).
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4.1.2 Proof of Theorem 4.2

Assume first that N is an operator defined as follows:

N : u ∈ X(T )→ Nu = uln(t, x) + unl(t, x),

and we put:

uln(t, x) := H(t, x) ∗ u0(x),

unl(t, x) :=

∫ t

0

H(t− τ, x) ∗ |u(τ, x)|pdτ, fort > τ, x ∈ Rn,

such that H is the fundamental solution to the cauchy problem (4.2). Let us introduce

the solutions space X(T ) for all T > 0 by:

X(T ) = C([0, T ], H1(Rn)),

and the corresponding norm of X(T ) has the form

||u||X(T ) = sup
0≤t≤T

(
(1 + t)

n(2−m)
4m ||u(t, .)||L2(Rn) + (1 + t)

n(2−m)+2m
4m ||∇u(t, .)||L2(Rn)

)
.

We are now interested the proof of following inequalities:

||Nu||X(T ) . ||u0||Dsm(Rn) + ||u||pX(T ), (4.8)

and also, the Lipschitz condition

||Nu−Nũ||X(T ) . ||u− ũ||X(T )(||u||p−1
X(T ) + ||ũ||p−1

X(T )). (4.9)

The previous inequality (4.8) implies for fixed point u = u(t, x) and for small u0 the

following estimate

||u||X(T ) . ||u0||Dsm(Rn),
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we can find from this inequality the desired estimates for the solution. We use the explicit

formula of the norm of the solution space X(T ), we deduce

||uln||X(T ) . ||u0||Dsm(Rn).

Now, our aim is to show

||unl||X(T ) . ||u||pX(T ). (4.10)

Firstly, we present the following Lemma

Lemma 4.1 Let t > 0 and for all τ > 0, such that 0 < τ < t, and p satisfies the condition

(4.7), then we have

‖|u(τ, ·)|p‖L2(Rn) . (1 + τ)−
n
2m

p+n
4 ‖u‖pX(t), (4.11)

‖|u(τ, ·)|p‖Lm(Rn) . (1 + τ)−
n
2m

p+ n
2m ‖u‖pX(t), (4.12)

‖|u(τ, ·)|p − |ũ(τ, ·)|p‖L2(Rn) . (1 + τ)−
n
2m

p+n
4 × ‖u− ũ‖X(t)

(
‖u‖p−1

X(t) + ‖ũ‖p−1
X(t)

)
, (4.13)

moreover, we have

‖|u(τ, ·)|p − |ũ(τ, ·)|p‖Lm(Rn) . (1 + τ)−
n
2m

p+ n
2m ×‖u− ũ‖X(t)

(
‖u‖p−1

X(t) + ‖ũ‖p−1
X(t)

)
, (4.14)

Proof. We start the proof of this Lemma by the inequality (4.12). We use the

Gagliardo-Nirenberg inequality, we get

‖|u(τ, x)|p‖Lm(Rn)

=
(∫

Rn |u(τ, x)|mpdx
) 1
mp

p
= ‖u(τ, ·)‖pLmp(Rn) . ‖u(τ, ·)‖(1−θ1)p

L2(Rn) ‖|D|
su(τ, ·)‖θ1pL2(Rn) ,

noting by θ1 = n
s

(
1
2
− 1

mp

)
from [0, 1].
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From explicit formula of the norm of the space X(t), we have for 0 ≤ τ ≤ t

‖u(τ, ·)‖pLmp(Rn) . (1 + τ)(1−θ1)p(−n2 ( 1
m
− 1

2))+θ1p(−n2 ( 1
m
− 1

2)− s2) ‖u‖pX(t),

then, we deduce that,

‖u(τ, ·)‖pLmp(Rn) . (1 + τ)−
n
2m

p+ n
2m ‖u‖pX(t).

If we put m = 2, then we can deduce (4.11). On the other hand, we use the Hölder’s

inequality for 0 ≤ τ ≤ t, we obtain

‖|u(τ, x)|p − |ũ(τ, x)|p‖Lm(Rn) . ‖u(τ, ·)− ũ(τ, ·)‖Lmp(Rn)

(
‖u(τ, ·)‖p−1

Lmp(Rn) + ‖ũ(τ, ·)‖p−1
Lmp(Rn)

)
.

Next, we show that by using the explicit formula of the norm of the space X(t) and using

the Gagliardo-Nirenberg inequality to estimate the norms ‖u(τ, ·)− ũ(τ, ·)
∥∥
Lmp(Rn),

∥∥u(τ, ·)‖p−1
Lmp(Rn)

and ‖ũ(τ, ·)‖p−1
Lmp(Rn) in a similar way as (4.12) we get the desired estimates. Finally, by

setting m = 2 we conclude (4.13). We now return to the proof of Theorem 4.2.

Firstly, to prove inequality (4.10), we start by estimating ||unl||L2(Rn) and ||∇xu
nl||L2(Rn).

From definition of nonlinear part, we obtain via Theorem 4.1

||unl(t, .)||L2(Rn) .
∫ t/2

0

(1 + t− τ)−
n(2−m)

4m |||u(τ, x)|p||L2(Rn)∩Lm(Rn)dτ +

∫ t

t/2

|||u(τ, x)|p||L2(Rn)dτ

. (1 + t)−
n(2−m)

4m ||u||pX(t)

∫ t/2

0

(1 + τ)−
n(p−1)

2m dτ + (1 + t)1−n(2p−m)
4m ||u||pX(t)

. (1 + t)−
n(2−m)

4m ||u||pX(t),

such that p > pFuj(
n
m

). It follows that

||unl(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||u||pX(t). (4.15)
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Similarly, by using Corollary 4.1, with Ḣ1−H1∩Lm estimates for the integral over the

interval [0, t/2] and Ḣ1 − L2 estimates for the integral over the interval [t/2, t] to obtain

||∇unl(t, .)||L2(Rn) .
∫ t/2

0

(1 + t− τ)−
n(2−m)+2m

4m |||u(τ, x)|p||Ḣ1(Rn)∩Lm(Rn)dτ

+

∫ t

t/2

(1 + t− τ)−
1
2 |||u(τ, x)|p||L2(Rn)dτ

.
∫ t/2

0

(1 + t− τ)−
n(2−m)+2m

4m (1 + τ)−
n(p−1)

2m ||u||pX(t)dτ

+

∫ t

t/2

(1 + t− τ)−
1
2 (1 + τ)−

n(2p−m)
4m ||u||pX(t)dτ

. (1 + t)−
n(2−m)+2m

4m ||u||pX(t)

∫ t/2

0

(1 + τ)−
n(p−1)

2m dτ

+(1 + t)−
n(2p−m)

4m ||u||pX(t)

∫ t

t/2

(1 + t− τ)−
1
2dτ,

such that p > pFuj

( n
m

)
. We find

||∇unl(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2m

4m ||u||pX(t). (4.16)

Thus, by combining (4.15) with (4.16) we obtain the desired estimate (4.10). Next,

we prove the inequality (4.9) of Lipschitz condition. We suppose that u = u(t, x) and

ũ = ũ(t, x) are two elements in the space X(T ). It follows that

Nu−Nũ =

∫ t

0

H(t− τ, x) ∗ (|u(τ, x)|p − |ũ(τ, x)|p)dτ.

Finally, in a similar way to that for (4.15) and (4.16) yields

||(Nu−Nũ)(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||u− ũ||X(t)(||u||p−1
X(t) + ||ũ||p−1

X(t)),
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and also

||∇x(Nu−Nũ)(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2m

4m ||u− ũ||X(t)(||u||p−1
X(t) + ||ũ||p−1

X(t)).

In this way, the proof is completed.

4.1.3 Proof of Theorem 4.3

We start the proof by defining the Banach space X(T ) for all T > 0 by:

X(T ) = C([0, T ], Hs(Rn)),

the corresponding norm of space X(T ) is

||u||X(T ) = sup
0≤t≤T

((1 + t)
n(2−m)

4m ||u(t, .)||L2(Rn) + (1 + t)
n(2−m)+2ms

4m |||D|su(t, .)||L2(Rn)).

We devoted to estimate all norms making up the norm ||u||X(T ) which are ||unl(t, .)||L2(Rn)

and |||D|sunl(t, .)||L2(Rn).

We now return to the proof and we start by estimating |||D|sunl(t, .)||L2(Rn). Using the

definition of nonlinear part of the operator N and applying Corollary 4.1, we obtain

|||D|sunl(t, .)||L2(Rn) .
∫ t

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p||Hs(Rn)∩Lm(Rn)dτ,

.
∫ t

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p||L2(Rn)∩Lm(Rn)dτ

+

∫ t

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p||Ḣs(Rn)dτ,

≡ I1 + I2.

(4.17)

Make m = 2, for all τ ∈ [t/2, t], it follows that
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I1 .
∫ t/2

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p||L2(Rn)∩Lm(Rn)dτ

+

∫ t

t/2

(1 + t− τ)−
s
2 |||u(τ, x)|p||L2(Rn)dτ

≡ I11 + I12.

On the other hand, for m = 2, for τ ∈ [t/2, t], we get

I2 .
∫ t/2

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p||Ḣs(Rn)dτ +

∫ t

t/2

(1 + t− τ)−
s
2 |||u(τ, x)|p||Ḣs(Rn)dτ

≡ I21 + I22.

Using the fractional Gagliardo-Nirenberg inequality, we get for 0 ≤ τ ≤ t

|||u(τ, x)|p||Lm(Rn) . (1 + τ)−
n(p−1)

2m ||u||pX(t), (4.18)

such that
2
m
≤ p <∞ if n ≤ 2s,

2
m
≤ p ≤ 2n

m(n−2s)
if n > 2s.

(4.19)

Therefore

I11 .
∫ t/2

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 (1 + τ)−
n(p−1)

2m dτ ||u||pX

. (1 + t)−
n
2

( 1
m
− 1

2
)− s

2

∫ t/2

0

(1 + τ)−
n(p−1)

2m dτ ||u||pX

. (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX ,

such that p > pFuj(
n
m

). Moreover, by applying the fractional Gagliardo-Nirenberg inequal-

ity, it follows that for 0 ≤ τ ≤ t,

|||u(τ, x)|p||L2(Rn) . (1 + τ)−
n(2p−m)

4m ||u||pX(t), (4.20)
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with

1 ≤ p <∞ if n ≤ 2s,

1 ≤ p ≤ n
n−2s

if n > 2s.
(4.21)

We use both inqualities (4.18) and (4.20) into the expression of I12, it follows that

I12 .
∫ t

t/2

(1 + t− τ)−
s
2 (1 + τ)−

n(2p−m)
4m dτ ||u||pX

. (1 + t)−
n(2p−m)

4m

∫ t

t/2

(1 + t− τ)−
s
2dτ ||u||pX

. (1 + t)−
n(2p−m)

4m
− s

2
+1||u||pX ,

it is clear that for p > pFuj(
n
m

). we can deduce

I12 . (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX .

Gathering the estimates for I11 and I12, yields

I1 ≤ (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX .

On the other hand, we deal with I2. Let us start with an estimate for the term I21.

We use the fractional powers rule, we get

|||u(τ, x)|p||Ḣs(Rn) . ||u(τ, x)||p−1
L∞(Rn)||u(τ, x)||Ḣs(Rn)

Using Proposition 1.11, yields

|||u(τ, x)|p||Ḣs(Rn) .
[
||u(τ, x)||Ḣs∗ (Rn) + ||u(τ, x)||Ḣs(Rn)

]p−1

||u(τ, x)||Ḣs(Rn)

. ||u(τ, x)||p
Ḣs(Rn)

+ ||u(τ, x)||p−1

Hs∗ (Rn)
||u(τ, x)||Ḣs(Rn).
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such that s∗ < n
2
< s, by the definition of the space X(t), we have

|||u(τ, x)|p||Ḣs(Rn) .
[
(1 + τ)−

n(2−m)+2ms
4m

p + (1 + τ)−
n(2−m)+2ms∗

4m
(p−1)−n(2−m)+2ms

4m

]
||u||pX

.
[
(1 + τ)−

n(2−m)+2ms
4m

p + (1 + τ)−
n(2−m)p+2ms∗(p−1)+2ms

4m

]
||u||pX .

Thus, we get for 0 ≤ τ ≤ t

|||u(τ, x)|p||Ḣs(Rn) . (1 + τ)−
n(2−m)p+2ms∗(p−1)+2ms

4m ||u||pX . (4.22)

Therefore, the estimate of I21 is obtained as follows

I21 .
∫ t/2

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 (1 + τ)−
n(2−m)p+2ms∗(p−1)+2ms

4m dτ ||u||pX ,

such that

n(2−m)p+ 2ms∗(p− 1) + 2ms

4m
> 1.

We deduce that

I21 . (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX ,

such that

p >
2 + s∗ − s
n(2−m

2m
) + s∗

.

In a similar was as for I21, we can estimate I22. Indeed, from (4.22) we get

I22 ≡
∫ t

t/2

(1 + t− τ)−
s
2 |||u(τ, x)|p||Ḣs(Rn)dτ

.
∫ t

t/2

(1 + t− τ)−
s
2 (1 + τ)−

n(2−m)p+2ms∗(p−1)+2ms
4m ||u||pXdτ

. (1 + t)−
n(2−m)p+2ms∗(p−1)+2ms

4m ||u||pX
∫ t

t/2

(1 + t− τ)−
s
2dτ,
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since n > 4 and we have 1 < n
4
< s

2
,

I22 . (1 + t)−
n(2−m)p+2ms∗(p−1)+2ms

4m ||u||pX ,

such that n(2−m)p+2ms∗(p−1)+2ms
4m

> n
2

(
1
m
− 1

2

)
+ s

2
, we get

I22 . (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX .

We conclude that

I2 . (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX .

Consequently, we get

|||D|sunl(t, .)||L2(Rn) . (1 + t)−
n
2

( 1
m
− 1

2
)− s

2 ||u||pX . (4.23)

In a similar way, we use (4.18) and (4.20) yields

||unl(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||u||pX(t). (4.24)

We deduce from the estimates (4.23) and (4.24), the desired estimate (4.10).

Finally, we derive the Lipschitz condition. It is easy to show that

Nu−Nũ =

∫ t

0

H(t− τ, x) ∗ (|u(τ, x)|p − |ũ(τ, x)|p)dτ,

such that u = u(t, x) and ũ = ũ(t, x) are belong the function space X(T ).

Next, we have to control all norms making up ||(Nu − Nũ)(t, .)||X(t), which are

|||D|s(Nu−Nũ)(t, .)||L2(Rn) and ||Nu−Nũ||L2(Rn).

Similarly, we use the same argument as in the above, to get
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|||D|s(Nu−Nũ)(t, .)||L2(Rn) .
∫ t

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p − |ũ(τ, x)|p||Hs(Rn)∩Lm(Rn)dτ

.
∫ t

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p − |ũ(τ, x)|p||L2(Rn)∩Lm(Rn)dτ

+

∫ t

0

(1 + t− τ)−
n
2

( 1
m
− 1

2
)− s

2 |||u(τ, x)|p − |ũ(τ, x)|p||Ḣs(Rn)dτ.

(4.25)

We use the fractional powers rule and proposition 1.11 for s∗ < n
2
, we find for 0 ≤ τ ≤ t :

|||u(τ, x)|p−|ũ(τ, x)|p||Ḣs(Rn) . (1+τ)−
2np−m(p−1)+2ms∗(p−1)+2ms

4m ||u−ũ||X(t)(||u||p−1
X(t)+||ũ||

p−1
X(t)).

(4.26)

Consequently, we have

|||D|s(Nu−Nũ)(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m ||u− ũ||X(t)(||u||p−1
X(t) + ||ũ||p−1

X(t)).

Similarly, we can prove

||(Nu−Nũ)(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||u− ũ||X(t)(||u||p−1
X(t) + ||ũ||p−1

X(t)).

The proof is complete.

4.2 Global existence and decay estimates of solutions

for a weakly coupled system of semi-linear cauchy

problem with memory-type dissipation

4.2.1 Main results

In this section we apply results of the previous section to study the system of weakly

coupled cauchy problem with memory-type
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Initial data from the energy space

We start by a result of global existence with a loss of decay and the exponents p, q satisfying

the following condition :

αmax(m) = m

(
max{p; q}+ 1

pq − 1

)
<
n

2
.

We have

Theorem 4.4 Let m ∈ [1, 2), n ≤ 2m2

2−m , n < 2m
m−1

, and assume that (u0, v0) ∈ D1
m(Rn) ×

D1
m(Rn). If the exponents p and q satisfy

2

m
≤ min{p; q} < pFuj

( n
m

)
< max{p; q} <∞ if n ≤ 2,

2

m
≤ min{p; q} < pFuj

( n
m

)
< max{p; q} ≤ n

n− 2
if n ≥ 3,

(4.27)

and

αmax(m) = m

(
max{p; q}+ 1

pq − 1

)
<
n

2
. (4.28)

Then there exists a small constant ε0 such that if ||u0||D1
m(Rn) + ||v0||D1

m(Rn) ≤ ε0, then there

exists a uniquely global mild solution to (4.1) such that

(u, v) ∈ (C([0,∞), H1(Rn)))2.

Moreover, the following estimates hold

||u(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m
+[γn,m(p)]+(||u0||D1

m(Rn) + ||v0||D1
m(Rn)),

||∇xu(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2m

4m
+[γn,m(p)]+(||u0||D1

m(Rn) + ||v0||D1
m(Rn)),

||v(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m
+[γn,m(q)]+(||u0||D1

m(Rn) + ||v0||D1
m(Rn)),

||∇xv(t, .)||L2(Rn) . (1 + t)−
n(2−m)+2m

4m
+[γn,m(q)]+(||u0||D1

m(Rn) + ||v0||D1
m(Rn)).

89



Chapter 5. Global existence and decay estimates of solutions for a system of semi-linear
heat equations with memory involving the fractional Laplacian

such that

γn,m (p) = − n

2m
(p− 1) + 1 or γn,m (q) = − n

2m
(q − 1) + 1,

represents the loss of decay in comparison with the corresponding decay estimates for the

solution u or v to the linear Cauchy problem with vanishing right hand-side.

4.2.2 Initial data from Sobolev spaces

This case has been classified to benefit from embedding in L∞(Rn), where the data are

supposed to have a high regularity.

Theorem 4.5 Let n ≥ 5, let (u0, v0) ∈ Dsm(Rn)× Dsm(Rn) with m ∈ [1, 2) and s > n
2

+ 1.

Moreover, we assume for the exponents p and q the conditions

p > s and q > s,

Then, there exists a constant ε0 > 0 such that if ‖u0‖Dsm(Rn) + ‖v0‖Dsm(Rn) ≤ ε0, then there

exists a uniquely globally solution to (4.1) such that

(u, v) ∈ C ([0,∞), Hs(Rn))× C ([0,∞), Hs(Rn)) .

Moreover, the solution satisfies the estimates

‖u(t, ·)‖L2(Rn) . (1 + t)−
n(2−m)

4m

(
‖u0‖Dsm(Rn) + ‖v0‖Dsm(Rn)

)
,

|||D|su(t, ·)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m

(
‖u0‖Dsm(Rn) + ‖v0‖Dsm(Rn)

)
,

‖v(t, ·)‖L2(Rn) . (1 + t)−
n(2−m)

4m

(
‖u0‖Dsm(Rn) + ‖v0‖Dsm(Rn)

)
,

|||D|sv(t, ·)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m

(
‖u0‖Dsm(Rn) + ‖v0‖Dsm(Rn)

)
.
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4.2.3 Proof of Theorem 4.4

We define first the norm of the solution space X(T ) as follows

||(u, v)||X(T ) = sup
0≤t≤T

(M1(t, u) +M2(t, v)),

such that M1(t, u) and M2(t, v) are suitably chosen for each Theorem. Assume that N is

an operator defined by

N : (u, v) ∈ X(T )→ N(u, v) = (uln + unl, vln + vnl),

such that

uln(t, x) := H(t, x) ∗ u0(x), unl(t, x) :=

∫ t

0

H(t− τ, x) ∗ |v(τ, x)|pdτ,

vln(t, x) := H(t, x) ∗ v0(x), vnl(t, x) :=

∫ t

0

H(t− τ, x) ∗ |u(τ, x)|qdτ.

We are interested the proof of following inequalities which imply among other things

the global existence of small data solutions:

||N(u, v)||X(T ) . ||u0||Dsm(Rn) + ||v0||Dsm(Rn) + ||(u, v)||pX(T ) + ||(u, v)||qX(T ), (4.29)

||N(u, v)−N(ũ, ṽ||X(T ) . ||(u, v)− (ũ, ṽ)||X(T )

×(||(u, v)||p−1
X(T ) + ||(ũ, ṽ)||p−1

X(T ) + ||(u, v)||q−1
X(T ) + ||(ũ, ṽ)||q−1

X(T )).

(4.30)

We use explicit formula from definition of the norm of the space X(T ), we deduce

||(uln, vln)||X(T ) . ||u0||Dsm(Rn) + ||v0||Dsm(Rn).
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Next, we complete the proof of all results separately by showing the inequality

||(unl, vnl)||X(T ) . ||(u, v)||pX(T ) + ||(u, v)||qX(T ), (4.31)

then, we can find from this inequality the desired estimate (4.29). Without loss of

generality, we assume in the proof only the case p < q.

We assume p < pFuj(
n
m

) < q. Let s = 1 and the solution space

X(T ) =
(
C
(
[0, T ], H1(Rn)

))2
,

and we put

M1(t, u) = (1 + t)−γn,m(p)((1 + t)
n(2−m)

4m ||u(t, .)||L2(Rn) + (1 + t)
n(2−m)+2m

4m ||∇xu(t, .)||L2(Rn)),

with

M2(t, v) = (1 + t)
n(2−m)

4m ||v(t, .)||L2(Rn) + (1 + t)
n(2−m)+2m

4m ||∇xv(t, .)||L2(Rn).

Lemma 4.2 For 0 ≤ τ ≤ t, the following estimates

‖|v(τ, ·)|p‖L2(Rn) . (1 + τ)−
n
2m

p+n
4 ‖(u, v)‖pX(t), (4.32)

‖|v(τ, ·)|p‖Lm(Rn) . (1 + τ)−
n
2m

p+ n
2m ‖(u, v)‖pX(t), (4.33)

‖|u(τ, ·)|q‖L2(Rn) . (1 + τ)−
n
2m

q+n
4

+γn,m(p)q ‖(u, v)‖qX(t), (4.34)

‖|u(τ, ·)|q‖Lm(Rn) . (1 + τ)−
n
2m

q+ n
2m

+γn,m(p)q ‖(u, v)‖qX(t), (4.35)

‖|v(τ, ·)|p − |ṽ(τ, ·)|p‖L2(Rn) . (1 + τ)−
n
2m

p+n
4 × ‖v − ṽ‖X(t)

(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
, (4.36)

‖|v(τ, ·)|p − |ṽ(τ, ·)|p‖Lm(Rn) . (1 + τ)−
n
2m

p+ n
2m × ‖v − ṽ‖X(t)

(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
, (4.37)
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‖|u(τ, ·)|q − |ũ(τ, ·)|q‖L2(Rn) . (1 + τ)−
n
2m

q+n
4

+γn,m(p)q × ‖u− ũ‖X(t)

(
‖u‖q−1

X(t) + ‖ũ‖q−1
X(t)

)
,

(4.38)

and

‖|u(τ, ·)|q − |ũ(τ, ·)|q‖Lm(Rn) . (1 + τ)−
n
2m

q+ n
2m

+γn,m(p)q × ‖u− ũ‖X(t)

(
‖u‖q−1

X(t) + ‖ũ‖q−1
X(t)

)
,

(4.39)

hold provided that the condition (4.27) is satisfied.

We start by the proof of (4.33). We use the Gagliardo-Nirenberg inequality, we get

‖|v(τ, x)|p‖Lm(Rn) = ‖v(τ, ·)‖pLmp(Rn) . ‖v(τ, ·)‖(1−θ)p
L2(Rn) ‖|D|

sv(τ, ·)‖θpL2(Rn) ,

such that θ = n
s

(
1
2
− 1

mp

)
∈ [0, 1].

We use for 0 ≤ τ ≤ t the definition of the norm of the solution space X(t) we find

‖v(τ, ·)‖pLmp(Rn) . (1 + τ)(1−θ)p(−n2 ( 1
m
− 1

2))+θp(−n2 ( 1
m
− 1

2)− s2) ‖(u, v)‖pX(t).

Therefore

‖v(τ, ·)‖pLmp(Rn) . (1 + τ)−
n
2m

p+ n
2m ‖(u, v)‖pX(t).

Similarly, we can prove (4.35). Let m = 2 we deduce (4.32) and (4.34).

For (4.37), using the mean value theorem and Hölder’s inequality, it follows that

‖|v(τ, x)|p − |ṽ(τ, x)|p‖Lm(Rn)

. ‖v(τ, ·)− ṽ(τ, ·)‖Lmp(Rn)

(
‖v(τ, ·)‖p−1

Lmp(Rn) + ‖ṽ(τ, ·)‖p−1
Lmp(Rn)

)
.

A repeated application of the Gagliardo-Nirenberg inequality to the terms ‖v(τ, ·) −

ṽ(τ, ·)
∥∥
Lmp(Rn),

∥∥ v(τ, ·)‖p−1
Lmp(Rn) and ‖ṽ(τ, ·)‖p−1

Lmp(Rn) with an argument similar to the one

used to show estimate (4.33), we conclude (4.37), which leads to the desired estimates.

Following the same ideas we obtain (4.39). Finally, let m = 2 one may conclude (4.36)
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and (4.38).

We come back to the proof of Theorem 4.4. To prove (4.31) we have to control all

components of the norm with respect to unl = unl(t, x) and vnl = vnl(t, x). For unl we use

the estimates, which are proved in Theorem 4.1 with m = 2 for the integral over [t/2, t],

we have

||unl(t, .)||L2(Rn) .
∫ t/2

0

(1+t−τ)−
n(2−m)

4m |||v(τ, x)|p||L2(Rn)∩Lm(Rn)dτ+

∫ t

t/2

|||v(τ, x)|p||L2(Rn)dτ.

(4.40)

Inserting these estimates into (4.40), it implies

||unl(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||(u, v)||pX(t)

∫ t/2

0

(1 + τ)−
n(p−1)

2m dτ

+(1 + t)1−n(2p−m)
4m ||(u, v)||pX(t)

. (1 + t)−
n(2−m)

4m
+γn,m(p)||(u, v)||pX(t).

Then

||unl(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m
+γn,m(p)||(u, v)||pX(t). (4.41)

Similarly, we find

||∇xu
nl(t, .)||L2(Rn) . (1 + t)−

n(2−m)+2m
4m

+γn,m(p)||(u, v)||pX(t). (4.42)

For vnl we use also the estimates proved in Theorem 4.1 with m = 2 for the integral over

[t/2, t] to obtain

||vnl(t, .)||L2(Rn) .
∫ t/2

0

(1+t−τ)−
n(2−m)

4m |||u(τ, x)|q||L2(Rn)∩Lm(Rn)dτ+

∫ t

t/2

|||u(τ, x)|q||L2(Rn)dτ.
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Therefore, we get

||vnl(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||(u, v)||qX(t)

∫ t/2

0

(1 + τ)−
n(q−1)

2m
+q(γn,m(p))dτ

+(1 + t)1−n(2q−m)
4m

+q(γn,m(p))||(u, v)||qX(t)

. (1 + t)−
n(2−m)

4m ||(u, v)||qX(t),

such that −n(q−1)
2m

+ q(γn,m(p)) < −1 which is equivalent to (4.28), then, we have

||vnl(t, .)||L2(Rn) . (1 + t)−
n(2−m)

4m ||(u, v)||qX(t). (4.43)

Similarly, we prove

||∇xv
nl(t, .)||L2(Rn) . (1 + t)−

n(2−m)+2m
4m ||(u, v)||qX(t). (4.44)

By using all inequalities from (4.41) to (4.44) we have the desired inequality (4.31). The

proof (4.30) is completely analogous to the proof of (4.31) by using the same steps from

the proof of (4.9). Therefore, we complete the proof.

4.2.4 Proof of Theorem 4.5

We start the proof by defining the Banach space X(T ) for all T > 0, by :

X(T ) = C ([0, T ], Hs)× C ([0, T ], Hs) ,

the corresponding norm of space X(T ) is

‖(u, v)‖X(t) = sup
t≥0

(M1(t, u) +M2(t, v)) ,
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such that

M1(t, u) = (1 + t)
n(2−m)

4m ‖u(t, ·)‖L2(Rn) + (1 + t)
n(2−m)+2ms

4m |||D|su(t, .)||L2(Rn),

M2(t, v) = (1 + t)
n(2−m)

4m ‖v(t, ·)‖L2(Rn) + (1 + t)
n(2−m)+2ms

4m |||D|sv(t, .)||L2(Rn).

Firstly, we shall estimate all terms making up of the norm ||(unl, vnl)||X(T ). We use the

Gagliardo-Nirenberg inequality analogously to (4.18) we obtain for 0 ≤ τ ≤ t

|||v(τ, x)|p||Lm(Rn) . (1 + τ)−
n(p−1)

2m ||(u, v)||pX(t),

|||u(τ, x)|q||Lm(Rn) . (1 + τ)−
n(q−1)

2m ||(u, v)||qX(t).
(4.45)

Now, we estimate the nonlinear terms in homogeneous Sobolev spaces with high regularity.

In order to see this we use the fractional powers rule with 2s∗ < n < 2s, to obtain for

0 ≤ τ ≤ t

|||v(τ, x)|p||Ḣs(Rn) . ||v(τ, x)||p−1
L∞(Rn)||v(τ, x)||Ḣs(Rn)

.
[
||v(τ, x)||Ḣs∗ (Rn) + ||v(τ, x)||Ḣs(Rn)

]p−1

||v(τ, x)||Ḣs(Rn)

. ||v(τ, x)||p
Ḣs(Rn)

+ ||v(τ, x)||p−1

Hs∗ (Rn)
||v(τ, x)||Ḣs(Rn).

From definition of the space X(t), we have

|||v(τ, x)|p||Ḣs(Rn) .
(

(1 + τ)−
n(2−m)+2ms

4m
p + (1 + τ)−

n(2−m)+2ms∗
4m

(p−1)−n(2−m)+2ms
4m

)
‖(u, v)‖pX(t)

.
[
(1 + τ)−

n(2−m)+2ms
4m

p + (1 + τ)−
n(2−m)p+2ms∗(p−1)+2ms

4m

]
‖(u, v)‖pX(t).

Consequently, we get

|||v(τ, x)|p||Ḣs . (1 + τ)−
n(2−m)p+2ms∗(p−1)+2ms

4m ‖(u, v)‖pX(t). (4.46)
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Moreover, we repeat the same steps of (4.46), but we use the following estimates by

the fractional powers and 2s∗ < n, we get for 0 ≤ τ ≤ t

|||u(τ, x)|q||Ḣs(Rn) . ||u(τ, x)||q−1
L∞(Rn)||u(τ, x)||Ḣs(Rn)

. [||u(τ, x)||Ḣs∗ (Rn) + ||u(τ, x)||Ḣs(Rn)]
q−1||u(τ, x)||Ḣs(Rn)

. ||u(τ, x)||q
Ḣs(Rn)

+ ||u(τ, x)||q−1

Hs∗ (Rn)
||u(τ, x)||Ḣs(Rn)

. (1 + τ)−
n(2−m)+2ms

4m
q‖(u, v)‖qX(t)

+(1 + τ)−
n(2−m)+2ms∗

4m
(q−1)(1 + τ)−

n(2−m)+2ms
4m ‖(u, v)‖qX(t).

It follows that

|||u(τ, x)|q||Ḣs(Rn) .
[
(1 + τ)−

n(2−m)+2ms
4m

q + (1 + τ)−
n(2−m)q+2ms∗(q−1)+2ms

4m

]
‖(u, v)‖qX(t).

Consequently, we find

|||u(τ, x)|q||Ḣs . (1 + τ)−
n(2−m)q+2ms∗(q−1)+2ms

4m ‖(u, v)‖qX(t). (4.47)

Plugging these estimates in the inequalities derived from Corollary 4.1, we get similarly

to (4.23) and (4.24) for 0 ≤ τ ≤ t the following estimates

‖unl(t, ·)‖L2(Rn) . (1 + t)−
n(2−m)

4m ||(u, v)||pX(t),

|||D|sunl(t, ·)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m ||(u, v)||pX(t),

‖vnl(t, ·)‖L2(Rn) . (1 + t)−
n(2−m)

4m ||(u, v)||qX(t),

|||D|svnl(t, ·)||L2(Rn) . (1 + t)−
n(2−m)+2ms

4m ||(u, v)||qX(t).

This completes the proof.
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Conclusion

In this thesis, we study in one hand the decay estimates of solutions to the cauchy problem

for weakly coupled systems of fractional semilinear pseudoparabolic viscoelastic equations

of Volterra integro-differential type and we established a new decay results of the systems,

and on the other hand, the global existence and uniqueness of solutions for weakly coupled

systems is proved with conditions imposed on the parameters p and q of the systems. We

should also note the importance of studying the global existence of our problem because

it is closest to reality and considered to be a model to many problems in many areas for

example in applied sciences.

Many questions remain unresolved and deserve closer consideration, including

• The blow up case of the cauchy problem for weakly coupled systems of fractional

semilinear pseudoparabolic viscoelastic equations of Volterra integro-differential type.

• The study global existence in the case (θ = θ1 in the first equation and θ = θ2

in the second equation with θ1 6= θ2) of the cauchy problem for weakly coupled

systems of fractional semilinear pseudoparabolic viscoelastic equations of Volterra

integro-differential type.
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