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a b s t r a c t

This paper is concerned with necessary as well as sufficient conditions for near-optimality of controlled
jump diffusion processes. Necessary conditions for a control to be near-optimal are derived, using
Ekeland’s variational principle and some stability results on the state and adjoint processes, with respect
to the control variable. In a second step, we show that the necessary conditions for near-optimality,
are in fact sufficient for near-optimality provided some concavity conditions are fulfilled. Finally, as an
illustration some examples are solved explicitly.
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1. Introduction

Let

Ω,F , (Ft)t≤T , P


be a probability space such that F0

contains the P-null sets, FT = F and (Ft)t≤T satisfies the usual
conditions. We assume that, (Ft)t≤T is the natural filtration of a
d-dimensional standard Brownian motion B and an independent
Poisson random measure N on [0, T ] × E, where E = Rm

\

{0} for some m ≥ 1. We assume that the compensator of N
has the form µ (de, dt) = ν (de) dt , for some positive, σ -finite
Lévy measure ν on E, endowed with its Borel σ -field B (E)
satisfying


E 1 ∧ |e|2 ν (de) < ∞. Define the measure P ⊗ µ on

(Ω × [0, T ] × E,F × B ([0, T ])× B (E)) by

P ⊗ µ (G) = E
[∫∫

[0,T ]× E
1G (ω, t, e) µ (de, dt)

]
,

for G ∈ F × B ([0, T ])× B (E) ,

which is called the measure generated by µ. We writeN = N − ν
for the compensated jump martingale randommeasure of N .

We denote by

F B

t


t≤T (resp.


F N

t


t≤T ) the P-augmentation of

the natural filtration of B (resp. N). Obviously, we have

Ft = σ

[∫∫
A×(0,s]

N (de, dr) ; s ≤ t, A ∈ B (E)
]

∨σ [Bs; s ≤ t] ∨ N ,

whereN denotes the totality of ν-null sets and σ1∨σ2 denotes the
σ -field generated by σ1 ∪ σ2.
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In this paper, we discuss stochastic control models driven by a
stochastic differential equation with jumps of the form

dxt = b (t, xt , ut) dt + σ (t, xt , ut) dBt

+

∫
E
r (t, xt−, ut , e)N (dt, de) ,

xs = a.

(1.1)

The expected cost functional is given by

J (s, y, u) = E
[∫ T

s
f (t, xt , ut) dt + g (xT )

]
, for u ∈ U. (1.2)

It is well-known that the dynamic programming principle can
be extended to stochastic control problems with jumps and the
corresponding Hamilton–Jacobi–Bellman equation is a nonlinear
second order parabolic integrodifferential equation. Pham [1] has
studied a mixed optimal stopping and stochastic control of jump
diffusionprocesses byusing the viscosity solutions approach. Some
verification theorems of various types for problems governed by
these kinds of SDEs are discussed in øksendal and Sulem [2]. The
stochastic maximum principle is another powerful tool for solving
stochastic control problems. Some results that cover the controlled
jump diffusion processes are discussed; see [3–7]. The necessary
and sufficient conditions of optimality for partial information
control problems are given in [3]. In [6], the sufficient maximum
principle and the link with the dynamic programming principle
are given. The second order stochastic maximum principle for
optimal controls of nonlinear dynamics with jumps and convex
state constraints was developed via spike variation method by
Tang and Li [7], extending the Peng maximum principle [8].
These conditions are described in terms of two adjoint processes,
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which are linear backward SDEs. Such equations have important
applications in hedging problems; see [9]. See also Becherer [10]
for an application to exponential utility maximization in finance.
Existence and uniqueness of solutions of BSDEs with jumps and
nonlinear coefficients have been treated by Barles et al. [11],
Royer [12] and Tang and Li [7]. The link with integral-partial
differential equations is studied in [11]. See Bouchard and Elie [13]
for discrete time approximation of decoupled FBSDE with jumps.

In this paper, instead of optimality conditions, we are interested
in near optimal controls for systems governed by jump diffusion
processes. Indeed, optimal controls may not even exist in many
situations. This justifies the use of near optimal controls which
always exist. Moreover, since there are many more candidates for
near-optimal controls, it is possible to choose suitable ones, that
are convenient for analysis and implementation. For deterministic
control problems, the first result on necessary conditions for near-
optimality has been proved in Ekeland [14], see also Zhou [15], by
using Ekeland’s variational principle. These necessary conditions
were derived only for some near-optimal controls.

Various necessary conditions for near-optimal control problem
for systems driven by Itô SDEs with an uncontrolled diffusion
coefficient, have been established in [16,17]. These results played
an important role in the stochastic maximum principle when the
coefficients of the state dynamics and the cost functional are
nonsmooth; see [18–20].

The general case of systems driven by SDE with controlled
diffusion coefficient has been treated in [21]. See also [22] for
systems driven by FBSDE. Zhou [21], and Bahlali et al. [22] showed
that any near-optimal control (in terms of a small parameter
ε) nearly maximizes the H-function in the integral form. Under
certain concavity conditions, the near-maximum condition of the
H-function in the integral form is sufficient for near-optimality.

In the second section, we formulate the problem and give
the notations and assumptions used throughout the paper. In
Sections 3 and 4, we derive necessary as well as sufficient
conditions for near optimality respectively, which are our main
results. Finally, using these results, we solve explicitly some
examples from linear problems.

2. Assumptions and problem formulation

This section sets out the notations and assumptions used in the
sequel.

Notation. Any element x ∈ Rn will be identified to a column
vector with i-th component, and the norm |x| = |x1| + · · · + |xn|.
The scalar product of any two vectors x and y on Rn is denoted by
x · y, we denote MT the transpose of any vector or matrix M . For
a function h, we denote by hx (resp. hxx) the gradient or Jacobian
(resp. the Hessian) of hwith respect to the variable x.

Definition 2.1. Let T be a strictly positive real number andU a non
empty subset of Rn. An admissible control is defined as a function,
u : [0, T ]×Ω → U which is Borel measurable andFt-predictable,
such that, the SDE (2.1) has a unique solution, and write u ∈ U.

Let us consider the following stochastic control problem.
For u ∈ U, suppose that the state xt of a controlled jump

diffusion in Rn is described by the following stochastic differential
equation

dxt = b (t, xt , ut) dt + σ (t, xt , ut) dBt

+

∫
E
r (t, xt−, ut , e)N (dt, de) ,

xs = a

(2.1)

where (s, a) ∈ [0, T ) × Rn be given, representing the initial time
and initial state respectively, of the system. As beforeN (dt, de) =
N1 (dt, de1) , . . . ,Nl (dt, del)
T
, whereNj


dt, dej


= Nj


dt, dej


−

νj

dej

, 1 ≤ j ≤ m.

Assume that the cost functional has the form

J (s, y, u) = E
[∫ T

s
f (t, xt , ut) dt + g (xT )

]
, for u ∈ U, (2.2)

where E denotes the expectation with respect to P. Here b :

[0, T ] × Rn
× U → Rn, σ : [0, T ] × Rn

× U → Rn×d, r :

[0, T ] × Rn
× U × E → Rn×m, f : [0, T ] × Rn

× U → R and
g : Rn

→ R, are measurable functions.
The following assumptions will be in force throughout this

paper:
(H1) For each (t, x, u, e) ∈ [0, T ] × Rn

× U × E, the maps b, σ ,
and r are twice continuously differentiable in x, and there exists a
constant M > 0 such that, for h = b, σh (t, x, u)− h


t, x′, u


+ sup

e∈E

r (t, x, u, e)− r

t, x′, u, e

 ≤ M
x − x′

 , (2.3)hx (t, x, u)− hx

t, x′, u


+ sup

e∈E

rx (t, x, u, e)− rx

t, x′, u, e

 ≤ M
x − x′

 , (2.4)

|h (t, x, u)| + sup
e∈E

|r (t, x, u, e)| ≤ M (1 + |x|) . (2.5)

(H2) For each (t, x, u) ∈ [0, T ] × Rn
× U , the maps f and g are

twice continuously differentiable in x with bounded derivatives,
and there exists a constantM > 0 such thatf (t, x, u)− f


t, x′, u

+ g (x)− g

x′
 ≤ M

x − x′
 , (2.6)fx (t, x, u)− fx


t, x′, u

+ gx (x)− gx

x′
 ≤ M

x − x′
 , (2.7)

|f (t, x, u)| + |g (x)| ≤ M (1 + |x|) . (2.8)

Under the above hypothesis, the SDE (2.1) has a unique strong
solution, and by standard arguments it is easy to show that for any
p > 0,

E
[
sup

0≤t≤T
|xt |p

]
< ∞, (2.9)

and the functional J is well defined.
The objective of the exact optimality problems, is to minimize

the functional J (u) over all u ∈ U, i.e. we seek for u∗ such that
J (u∗) = infu∈U J (u). Any admissible control u∗ that achieves the
minimum is called an optimal control, and it implies an associated
optimal state evolution x∗ from (2.1), and we call (x∗, u∗) an
optimal solution. Then, since our objective in this paper is to study
near-optimality rather than exact optimality, we start with the
definition of near-optimality; see for example [21].

Definition 2.2. An admissible pair (xε, uε) parameterised by ε >
0, is called near-optimal ifJ (uε)− J


u∗
 ≤ R (ε) ,

holds for sufficiently small ε, where R is a function of ε satisfying
R (ε) → 0 as ε → 0.

The estimate R (ε) is called an error bound. If R (ε) = cεα for
some α > 0 independent of the constant c , then uε is called near-
optimal with order εα .

For any u ∈ U and the corresponding state trajectory x,
we define the first order adjoint process ψ and the second-
order adjoint process Ψ as solutions of the following two BSDEs,
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respectively

dψ (t) = −


bx (t, xt , ut)

T ψt + σx (t, xt , ut)
T φt

+

∫
E
rx (t, xt , ut , e)T γt (e) ν (de)

+ fx (t, xt , ut)

dt + φtdBt +

∫
E
γt (e)N (dt, de) ,

ψ (T ) = gx (xT ) .

(2.10)



dΨt = −

bx (t, xt , ut)

T Ψt + Ψt · bx (t, xt , ut)

+ σx (t, xt , ut)
T Ψtσx (t, xt , ut)

+ σx (t, xt , ut)
T Φt + Φt · σx (t, xt , ut)

+

∫
E
rx (t, xt , ut , e)T (Γt (e)+ Ψt) rx (t, xt , ut , e) ν (de)

+

∫
E


Γt (e) · rx (t, xt , ut , e)

+ rx (t, xt , ut , e)T Γt (e)

ν (de)


dt

+Hxx (t, xt , ut , ψt , φt , γt (e)) dt + ΦtdBt

+

∫
E
Γt (e)N (dt, de) ,

ΨT = gxx (xT ) .

(2.11)

Note that under assumptions (2.3)–(2.7), the linear BSDEs (2.10)
and (2.11) admit unique Ft-adapted solutions (ψ, φ, γ ) ∈ Rn

×

Rn×d
× Rn×m and (Ψ ,Φ,Γ ) ∈ Rn×n

×

Rn×n

d
×

Rn×n

m, with
ψ and Ψ being cadlag processes. Moreover, since the coefficients
bx, σx, rx, fx and gx are bounded by the Lipschitz constant M , we
deduce from standard arguments that, there exists a constant C ,
independent of (x, u), such that the solutions of (2.10) and (2.11)
satisfy

E
[
sup
s≤t≤T

|ψt |
2
+

∫ T

s
|φt |

2 dt

+

∫ T

s

∫
E
|γt (e)|2 ν (de) dt

]
≤ C, (2.12)

E
[
sup
s≤t≤T

|Ψt |
2
+

∫ T

s
|Φt |

2 dt

+

∫ T

s

∫
E
|Γt (e)|2 ν (de) dt

]
≤ C . (2.13)

Define the usual Hamiltonian for (t, x, u, p, q,X) ∈ [s, T ]×Rn
×

U × Rn
× Rn×d

× Rn×m, by

H (t, x, u, p, q,X) = −f (t, x, u)− pb (t, x, u)

− qσ (t, x, u)−

∫
E
X (e) r (t, x, u, e) ν (de) . (2.14)

Furthermore, we define the H-function corresponding to a
given admissible pair (y, v) as follows

H (y,v) (t, x, u) = H (t, x, u, ψt , φt , γt (e))
+ σ (t, x, u)T Ψtσ (t, yt , vt)

−
1
2
σ (t, x, u)T Ψtσ (t, x, u)

+

∫
E


r (t, x, u, e)T (Ψt + γt (e))

× r (t, yt , vt , e)−
1
2
r (t, x, u, e)T

× (Ψt + γt (e)) r (t, x, u, e)

ν (de) ,

for (t, x, u) ∈ [s, T ] × Rn
× U , where ψt , φt , γt (e), and Ψt are

determined by adjoint equations (2.10) and (2.11) corresponding
to (yt , vt).
3. Necessary conditions of near optimality

This section is devoted to the presentation of necessary
conditions for all near-optimal controls. The proof of the main
result is based on some stability results with respect to the control
variable of the state process and adjoint processes, along with
Ekeland’s variational principle. First, we endow the set of controls
with an appropriate metric

d (u, v) = P ⊗ dt {(w, t) ∈ Ω × [0, T ], v (ω, t) ≠ u (ω, t)} ,

where P ⊗ dt is the product measure of P with the Lebesgue
measure dt . It is easy to show that (U, d) is a completemetric space
(see e.g. [7]), and by assumptions (2.3)–(2.7)we can prove that J (u)
is continuous on U endowed with the metric d.

The main result of this section is stated in the following
theorem.

Theorem 3.1. For any δ ∈

0, 1

3


, there exists a constant C =

C (δ, ν (E)) > 0 such that for any ε > 0, and any ε-optimal pair
(xε, uε) for problems (2.1) and (2.2), it holds that

− Cεδ ≤ E
[∫ T

s


ψε

t ·

b

t, xεt , u


− b


t, xεt , u

ε
t


+ φεt ·


σ

t, xεt , u


− σ


t, xεt , u

ε
t


+

∫
E
γ εt (e) ·


r

t, xεt , u, e


− r


t, xεt , u

ε
t , e


× ν (de)+

f

t, xεt , u


− f


t, xεt , u

ε
t


+

1
2


σ

t, xεt , u


− σ


t, xεt , u

ε
t

T
×Ψ ε

t


σ

t, xεt , u


− σ


t, xεt , u

ε
t


+

1
2

∫
E


r

t, xεt , u, e


− r


t, xεt , u

ε
t , e
T

×

Ψ ε

t + γ εt (e)
 

r

t, xεt , u, e


− r


t, xεt , u

ε
t , e

ν (de)


dt
]
, (3.1)

where (ψε, φε, γ ε (·)) and (Ψ ε,Φε,Γ ε (·)) are the solutions
to (2.10) and (2.11) respectively, corresponding to (xε, uε).

To prove Theorem 3.1, we need some preliminary results given
in the following two lemmas.

In what follows, C represents a generic constant, which can be
different from line to line.

Lemma 3.2. Let u, u′ be two admissible controls, x, x′ are the
solutions of the state SDE (2.1) corresponding to u, u′ respectively.
Then, for any α ∈ (0, 1) and p ∈ (0, 2] satisfying αp < 1, there
is a positive constant C = C (α, p, ν (E)), such that

E
[
sup
s≤t≤r

xt − x′

t

p] ≤ Cd

u, u′

 αp
2 . (3.2)

Proof. According to Hölder’s inequality, it is sufficient to prove the
above estimate for p = 2.

First of all, using the Burkholder–Davis–Gundy inequality and
Proposition A.2 in the Appendix, we get

E
[
sup
s≤t≤r

xt − x′

t

2] ≤ CE
[∫ r

s

b (t, xt , ut)− b

t, x′

t , u
′

t

2
+
σ (t, xt , ut)− σ


t, x′

t , u
′

t

2
+

∫
E

r (t, xt , ut , e)− r

t, x′

t , u
′

t , e
2 ν (de) dt]

≤ A1 + A2,
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where

A1 = CE
[∫ r

s

 b (t, xt , ut)− b

t, xt , u′

t

2
+
σ (t, xt , ut)− σ


t, xt , u′

t

2
+ ν (E)


sup
e∈E

r (t, xt , ut , e)− r

t, xt , u′

t , e
2



× 1{ut ≠u′
t}
(t) dt



A2 = CE

∫ r

s

 b t, xt , u′

t


− b


t, x′

t , u
′

t

2
+
σ t, xt , u′

t


− σ


t, x′

t , u
′

t

2
+ ν (E)


sup
e∈E

r t, xt , u′

t , e

− r


t, x′

t , u
′

t , e
2


dt


.

Due to the linear growth of the coefficients and from the
Schwarz inequality, we get

A1 ≤ CE
[∫ r

s
(1 + |xt |)

2
1−α dt

]1−α
d

u, u′

α
.

This means that A1 ≤ C · d

u, u′

α . Since the coefficients of the
SDE (2.1) are Lipschitz with respect to the state variable, we get
A2 ≤ C · E

 r
s

xt − x′
t

2 dt and
E
[
sup
s≤t≤r

xt − x′

t

2] ≤ C
∫ r

s
E
[
sup
s≤t≤θ

xt − x′

t

2] dθ
+ d


u, u′

α 
. (3.3)

Hence (3.2) follows from the Gronwall lemma. This completes
the proof. �

The next lemma is an extension of theorem 4.1 in [21] to the
controlled jump diffusion processes. Note that, in [21] the author
considers the Brownian case only.

Lemma 3.3. For any α ∈ (0, 1) and p ∈ (1, 2) satisfying (1 + α)

p < 2, there is a positive constant C = C (α, p, ν (E)) such that

E
[ψt − ψ ′

t

p +

∫ T

s

φt − φ′

t

p dt
+

∫ T

s

∫
E

γt (e)− γ ′

t (e)
p ν (de) dt] ≤ Cd


u, u′

 αp
2 , (3.4)

E
[Ψt − Ψ ′

t

p +

∫ T

s

Φt − Φ ′

t

p dt
+

∫ T

s

∫
E

Γt (e)− Γ ′

t (e)
p ν (de) dt] ≤ Cd


u, u′

 αp
2 , (3.5)

where (ψ, φ, γ (·)) and

ψ ′, φ′, γ ′ (·)


(resp. (Ψ ,Φ,Γ (·)) and

Ψ ′,Φ ′,Γ ′ (·)

) denote the unique solutions to the first-order (resp.

second-order) adjoint equation (2.10) (resp. (2.11)), corresponding to
the admissible pair (x, u) and


x′, u′


.

Proof. Denote by (ψ t , φt , γ t(e)) = (ψt − ψ ′
t , φt − φ′

t , γt(e) −

γ ′
t (e)) the unique solution of the linear backward stochastic
differential equation

dψ (t) = −


bx (t, xt , ut)

T ψ t + σx (t, xt , ut)
T φt

+

∫
E
rx (t, xt , ut , e)T γ t (e) ν (de)

+ f (t)

dt + φtdBt +

∫
E
γ t (e)N (dt, de) ,

ψ (T ) = gx (xT )− gx

x′

T


,

(3.6)

where

f (t) =


bx (t, xt , ut)

T
− bx


t, x′

t , u
′

t

T
ψ ′

t +


σx (t, xt , ut)

T

− σx

t, x′

t , u
′

t

T
φ′

t

+

∫
E


rx (t, xt , ut , e)T − rx


t, x′

t , u
′

t , e
T

γ ′

t (e) ν (de)

+

fx (t, xt , ut)− fx


t, x′

t , u
′

t


.

Now, let Λ be a solution of the following linear stochastic
differential equation

dΛ (t) =


bx (t, xt , ut)Λt +

ψ t

p−1
sgn


ψ t


dt

+


σx (t, xt , ut)Λt +

φt

p−1
sgn


φt


dBt

×

∫
E


rx (t, xt , ut , e)Λt +

γ t (e)
p−1 sgn


γ t (e)


×N (dt, de) ,

Λ (s) = 0,

(3.7)

where sgn(a)=(sgn(a1), . . . , sgn(an)) for a vector a = (a1, . . . ,
an)T . The coefficients bx, σx and rx being bounded by the Lipschitz
constant and the fact that

E
[∫ T

s

ψ t

p−1
sgn


ψ t
2 +

φt

p−1
sgn


φt
2

+

∫
E

γ t (e)
p−1 sgn


γ t (e)

2 ν (de) dt
]
< ∞, (3.8)

imply that the linear SDE (3.7) satisfies the Itô conditions.
Therefore, it has a unique solution. Moreover, we conclude from
standard arguments, the Burkholder–Davis–Gundy inequality and
the Gronwall lemma, that

E
[
sup
s≤t≤T

|Λt |
q
]

≤ CE
[∫ T

s

 ψ t

(p−1)q
+
φt

(p−1)q

+

∫
E

γ t (e)
(p−1)q

ν (de)

dt
]

= CE
[∫ T

s

ψ t

p +
φt

p
+

∫
E

γ t (e)
p ν (de) dt

]
. (3.9)

with q ∈ (2,+∞) satisfying 1
p +

1
q = 1. In view of (2.12), it yields

E
[∫ T

s

ψ t

p +
φt

p +

∫
E

γ t (e)
p ν (de) dt

]
≤ C . (3.10)

On the other hand, by applying Ito’s formula to ψ t · Λt and
taking expectations, we obtain
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E
[∫ T

s
f (t)Λtdt +


gx (xT )− gx


x′

T


ΛT

]
= E

[∫ T

s


ψ t

ψ t

p−1
sgn


ψ t

dt + φt

φt

p−1
sgn


φt


+

∫
E
γ t (e)

γ t (e)
p−1 sgn


γ t (e)


ν (de)


dt
]
. (3.11)

First, it follows from (3.9) that

E
[∫ T

s
f (t)Λtdt +


gx (xT )− gx


x′

T


ΛT

]

≤ E
[∫ T

s

f (t)p dt] 1
p

E
[∫ T

s
|Λt |

q dt
] 1

q

+ E
gx (xT )− gx


x′

T

p 1
p E


|ΛT |

q 1
q

≤ CE
[∫ T

s

ψ t

p +
φt

p +

∫
E

γ t (e)
p ν (de) dt

] 1
q

×

E
[∫ T

s

f (t)p dt] 1
p

+ E
gx (xT )− gx


x′

T

p 1
p

 ,
according to (3.11), we get

E
[∫ T

s

ψ t

p +
φt

p +

∫
E

γ t (e)
p ν (de) dt

]
= E

[∫ T

s


ψ t

ψ t

p−1
sgn


ψ t

dt + φt

φt

p−1
sgn


φt


+

∫
E
γ t (e)

γ t (e)
p−1 sgn


γ t (e)


ν (de)


dt
]

≤ CE
[∫ T

s

ψ t

p +
φt

p +

∫
E

γ t (e)
p ν (de) dt

] 1
q

×

E
[∫ T

s

f (t)p dt] 1
p

+ E
gx (xT )− gx


x′

T

p 1
p

 .
Since 1

p +
1
q = 1, then

E
[∫ T

s

ψ t

p +
φt

p +

∫
E

γ t (e)
p ν (de) dt

]
≤ C


E
[∫ T

s

f (t)p dt]+ E
gx (xT )− gx


x′

T

p .
To derive inequality (3.4), it is sufficient to prove the following

two assertions

E
[∫ T

s

f (t)p dt] ≤ Cd

u, u′

 αp
2 . (3.12)

E
gx (xT )− gx


x′

T

p ≤ Cd

u, u′

 αp
2 . (3.13)

Let us prove the second inequality. gx being Lipschitz with
respect to the state variable combined with the fact that αp

2 <

1 −
p
2 < 1, and Lemma 3.2, lead to (3.13).
Next, by applying the Schwarz inequality, we can estimate

E

∫ T

s


∫
E


rx (t, xt , ut , e)T − rx


t, x′

t , u
′

t , e
T

× γ ′

t (e) ν (de)


p

dt


≤ B1 + B2

where

B1 = E

∫ T

s


∫
E


rx (t, xt , ut , e)T − rx


t, xt , u′

t , e
T

× γ ′

t (e) ν (de)


p

1{ut ≠u′
t}
(t) dt


,

B2 = E
[∫ T

s


sup
e∈E

rx t, xt , u′

t , e
T

− rx

t, x′

t , u
′

t , e
T p

×

∫
E
γ ′

t (e) ν (de)
p dt] .

Noting that 1 −
p
2 >

αp
2 , and d


u, u′


≤ 1, then by the fact that

rx is bounded by the Lipschitz constant togetherwith (2.12), we get

B1 ≤ CE
[∫ T

s

∫
E

γ ′

t (e)
2 ν (de) dt] p

2

d

u, u′

1− p
2

≤ Cd

u, u′

 αp
2 .

From the Lipschitz condition on the coefficients, and αp
2−p < 1,

we conclude from Lemma 3.2 and estimate (2.12) that

B2 ≤ CE

∫ T

s

∫
E
γ ′

t (e) ν (de)
2 dt

 p
2

× E
[∫ T

s

xt − x′

t

 2p
2−p dt

]1− p
2

≤ CE
[∫ T

s

∫
E

γ ′

t (e)
2 ν (de) dt] p

2 
d

u, u′

 αp
2−p
1− p

2

≤ Cd

u, u′

 αp
2 .

So that

E

∫ T

s


∫
E


rx (t, xt , ut , e)T − rx


t, x′

t , u
′

t , e
T

× γ ′

t (e) ν (de)


p

dt


≤ Cd


u, u′

 αp
2 . (3.14)

A similar argument shows that

E
[∫ T

s

bx (t, xt , ut)
T

− bx

t, x′

t , u
′

t

T
ψ ′

t

p dt]
≤ Cd


u, u′

 αp
2 , (3.15)

E
[∫ T

s

σx (t, xt , ut)
T
− σx


t, x′

t , u
′

t

T
φ′

t

p dt]
≤ Cd


u, u′

 αp
2 , (3.16)

E
[∫ T

s

fx (t, xt , ut)− fx

t, x′

t , u
′

t

p dt]
≤ Cd


u, u′

 αp
2 . (3.17)
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From (3.14)–(3.17), it is easy to see that E
 T

s

f (t)p dt ≤

Cd

u, u′

 αp
2 . �

Proof of Theorem 3.1. By using Ekeland’s variational principle
(Lemma A.1 in the Appendix), with λ = ε

2
3 , there exists an

admissible pair (xε,uε) such that

d (uε,uε) ≤ ε
2
3 , andJ (s, y;uε) ≤J (s, y; u) , for any u ∈ U, (3.18)

whereJ (s, y; u) = J (s, y; u)+ε
1
3 d (u,uε). Thismeans that (xε,uε)

is an optimal pair for system (2.1) with the new cost functionJ .
Next,weuse the spike variation technique to derive amaximum

principle for (xε,uε). We take any Borel measurable set Iθ ⊂ [s, T ],
with λ


Iθ


= θ for any θ > 0, where λ

Iθ

denote the Lebesgue

measure of the set Iθ . Let u ∈ U be fixed and define

uε,θt =

uεt if t ∈ [s, T ] \ Iθ ,
u if t ∈ Iθ .

(3.19)

The fact thatJ (s, y;uε) ≤ J s, y;uε,θ  and d
uε,uε,θ  ≤ θ ,

imply that −ε
1
3 θ ≤ J s, y;uε,θ  −J (s, y;uε). Arguing as in [7]

step 3. (page 1467), we obtain

− ε
1
3 ≤ E

[ψε
t ·

b

t,xεt , u− b


t,xεt ,uεt 

+ φεt ·

σ

t,xεt , u− σ


t,xεt ,uεt 

+

∫
E
γ εt (e) ·


r

t,xεt , u, e− r


t,xεt ,uεt , e ν (de)

+

f

t,xεt , u− f


t,xεt ,uεt 

+
1
2


σ

t,xεt , u− σ


t,xεt ,uεt T Ψ ε

t


σ

t,xεt , u

− σ

t,xεt ,uεt +

1
2

∫
E


r

t,xεt , u, e

− r

t,xεt ,uεt , eT (Ψ ε

t +γ εt (e)) r t,xεt , u, e
− r


t,xεt ,uεt , e ν (de)]. (3.20)

Now, we are going to derive an estimate for the term similar to
the left side of (3.20) with all thexεt ,uεt , etc. replaced by xεt , u

ε
t , etc.

To this end, we first estimate the following difference

E
[∫ T

s

∫
E

γ εt (e) · (r(t,xεt , u, e)− r(t,xεt ,uεt , e))
− γ εt (e) ·


r

t, xεt , u, e


− r


t, xεt , u

ε
t , e


ν (de) dt
]

≤ I1 + I2 − I3,

where

I1 = E
[∫ T

s

∫
E

γ εt (e)− γ εt (e)

· (r(t,xεt , u, e)

− r(t,xεt ,uεt , e))ν (de) dt],
I2 = E

[∫ T

s

∫
E
γ εt (e) · (r(t,xεt , u, e)

− r(t, xεt , u, e))ν (de) dt
]
,

I3 = E
[∫ T

s

∫
E
γ εt (e) · (r(t,xεt ,uεt , e)
− r(t, xεt , u
ε
t , e))ν (de) dt

]
.

For any δ ∈

0, 1

3


, let α = 3δ ∈ [0, 1) and p ∈ (1, 2) so that

(1 + α) p < 2. Take q ∈ (2,+∞) with 1
p +

1
q = 1. It holds, by

using Lemma 3.3, properties (2.3) and (2.5) that

I1 ≤ E
[∫ T

s

∫
E

γ εt (e)− γ εt (e)
p ν (de) dt] 1

p

× E
[∫ T

s


sup
e∈E

r(t,xεt , u, e)− r(t,xεt ,uεt , e)q

dt
] 1

q

× ν (E)
1
q

≤


Cd (uε,uε) αp2  1

p

CE
[∫ T

s


1 +

xεt q dt] 1
q

≤ Cε
α
3 = Cεδ.

In view of the Lipschitz condition on r , together with the
estimates (2.12) and (3.2), we get from the Schwartz inequality

I2 ≤ E
[∫ T

s

∫
E

γ εt (e)2 ν (de) dt] 1
2

× E

∫ T

s


sup
e∈E

r(t,xεt , u, e)− r(t, xεt , ut , e)
2

dt

 1
2

ν (E)
1
2

≤ CE
[∫ T

s

xεt − xεt
2 dt] 1

2

≤ C

d (uε,uε)α 1

2

≤ C

ε

2α
3

 1
2

= Cεδ.

Further,

I3 = E
[∫ T

s

∫
E
γ εt (e) ·


r(t,xεt ,uεt , e)

− r(t,xεt , uεt , e) 1{uε≠uε} (t) ν (de) dt
]

+ E
[∫ T

s

∫
E
γ εt (e) ·


r(t,xεt , uεt , e)

− r(t, xεt , u
ε
t , e)


ν (de) dt

]

≤ E
[∫ T

s

∫
E

γ εt (e)2 ν (de) dt] 1
2

× E

∫ T

s


sup
e∈E

r(t,xεt ,uεt , e)− r(t,xεt , uεt , e)2

× 1{uε≠uε} (t) dt

 1
2

ν (E)
1
2

+ CE
[∫ T

s

∫
E

γ εt (e)2 ν (de) dt] 1
2

× E
[∫ T

s

xεt − xεt
2 dt] 1

2

.
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By the Schwarz inequality, one has

E

∫ T

s


sup
e∈E

r(t,xεt ,uεt , e)− r(t,xεt , uεt , e)2

× 1{uε≠uε} (t) dt


≤ CE

[∫ T

s


1 +

xεt 4 dt] 1
2

d (uε, uε) 12 .
Thus from the first inequality in (3.18), it yields |I3| ≤ Cεδ . �

Corollary 3.4. Under the conditions of Theorem 3.1, it holds that

E
[∫ T

s
H xε ,uε t, xεt , uεt ]

≥ sup
u∈U

E
[∫ T

s
H xε ,uε t, xεt , ut


dt
]

− Cεδ.

Proof. In the spike variations technique, we can replace the point
u ∈ U by any control u ∈ U, and the subsequent argument still
goes through. So the inequality in the estimate (3.20) holds with
u ∈ U replaced by u ∈ U. �

Remark 3.5. If we assume that ε = 0, Theorem 3.1 reduces to the
maximum principle proved in [7].

4. Sufficient conditions of near optimality

In this section, we focus on proving the sufficient near-
maximum principle for a stochastic control problem in the
framework described in the last section. Such amaximumprinciple
is also studied by Zhou [21] in the continuous diffusion case.
Related earlier results for the exact optimality are [3,6].

Wewill show that, under certain concavity conditions, the near-
maximum condition of the H-function in the integral form is
sufficient for near-optimality. We assume that:
(H3) ρ, r are differentiable in u for ρ = b, σ , f , and there is a
constant C > 0, such thatρ (t, x, u)− ρ


t, x, u′

+ ρu (t, x, u)− ρu

t, x, u′


≤ C

u − u′
 , (4.1)

and
sup
e∈E

r (t, x, u, e)− r

t, x, u′, e


+
ru (t, x, u, e)− ru


t, x, u′, e

 ≤ C
u − u′

 . (4.2)
We can now state and prove the main result of this section.

Theorem 4.1. Let (xε, uε) be an admissible pair, and (ψε, φε, γ ε)
be the solution to the corresponding BSDE (2.10). Assume that
H

t, ·, ·, ψε

t , φ
ε
t , γ

ε
t (e)


is concave for a.e. t ∈ [s, T ] , P-a.s., and

g (·) is convex. If for some ε > 0

E
[∫ T

s
H xε ,uε t, xεt , uεt  dt]

≥ sup
u∈U

E
[∫ T

s
H xε ,uε t, xεt , ut


dt
]

− ε, (4.3)

then uε is a near-optimal control with order ε
1
2 , i.e.

J (uε) ≤ inf
u∈U

J (u)+ Cε
1
2 , (4.4)

where C > 0 is a constant independent of ε.

Proof. The key step in the proof is to show that Hu(t, xεt , u
ε
t , ψ

ε
t ,

φεt , γ
ε
t (e)) is very small and estimate it in terms of ε. We first fix

an ε > 0, and define a new metricd on U[s, T ], by setting
d u, u′


= E
[∫ T

s
Lε (t)

ut − u′

t

 dt] , (4.5)

where

Lε (t) = 1 +
ψε

t

+ φεt + 2
Ψ ε

t

 1 +
xεt 

+

∫
E
γ εt (e) ν (de)

 2 +
xεt  .

Obviouslyd is ametric, and it is a completemetric as aweighted
L1 norm. A simple computation shows thatE [∫ T

s
H xε ,uε t, xεt , ut


dt
]

− E
[∫ T

s
H xε ,uε t, xεt , u′

t


dt
]

≤ Cd u, u′

.

Therefore, E
 T

s H xε ,uε

t, xεt , ·


dt

is continuous on U with

respect tod. It follows from (4.3) and Ekeland’s principle that, there
exists auε ∈ U such that

d (uε, uε) ≤ ε
1
2 , (4.6)

and

E
[∫ T

s
H

t, xεt ,uεt  dt] = max

u∈U
E
[∫ T

s
H

t, xεt , u


dt
]
, (4.7)

where

H (t, x, u) = H xε ,uε (t, x, u)− ε
1
2 Lε (t)

u −uεt  . (4.8)

The integral formmaximum condition (4.7) implies a pointwise
maximum condition, namely, for a.e. t ∈ [s, T ] and P-a.s.,
H

t, xεt ,uεt  = maxu∈U H


t, xεt , u


. Recall from proposition 2.3.2

in [23] and Definition A.3 in the Appendix, that

0 ∈ ∂uH

t, xεt ,uεt  . (4.9)

By (4.8) and the fact that the generalized gradient of the sum of
two functions is contained in the sum of the generalized gradients
of the two functions, it follows from proposition 2.3.3 in [23] that

∂uH

t, xεt ,uεt  ⊂ ∂uH

xε ,uε t, xεt ,uεt +


−ε

1
2 Lε (t) , ε

1
2 Lε (t)


+ σu


t, xεt ,uεt T Ψ ε

t


σ

t, xεt , u

ε
t


− σ


t, xεt ,uεt 

+

∫
E
ru

t, xεt ,uεt , eT Ψ ε

t + γ εt (e)
 

r

t, xεt , u

ε
t , e


− r

t, xεt ,uεt , e ν (de) .

Since the Hamiltonian H is differentiable in u, we deduce from
the inclusion (4.9) that, there is

K ε (t) ∈


−ε

1
2 Lε (t) , ε

1
2 Lε (t)


,

such that

Hu

t, xεt ,uεt , ψε

t , φ
ε
t , γ

ε
t (e)


= −K ε (t)− σu


t, xεt ,uεt T

×Ψ ε
t


σ

t, xεt , u

ε
t


− σ


t, xεt ,uεt 

−

∫
E
ru

t, xεt ,uεt , eT Ψ ε

t + γ εt (e)
 

r

t, xεt , u

ε
t , e


− r

t, xεt ,uεt , eν (de) . (4.10)
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Therefore, by assumptions (4.1) and (4.2), we getHu

t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)


≤
Hu


t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)


− Hu


t, xεt ,uεt , ψε

t , φ
ε
t , γ

ε
t (e)


+ |K ε (t)| +

σu t, xεt ,uεt T
× Ψ ε (t)


σ

t, xεt , u

ε
t


− σ


t, xεt ,uεt 

+

∫
E
ru

t, xεt ,uεt , eT Ψ ε

t + γ εt (e)
 

r

t, xεt , u

ε
t , e


− r

t, xεt ,uεt , e ν (de) 

≤ CLε (t)
uεt −uεt + ε

1
2 Lε (t) . (4.11)

By the concavity of H

t, ·, ·, ψε

t , φ
ε
t , γ

ε
t (e)


, we have

H

t, xt , ut , ψ

ε
t , φ

ε
t , γ

ε
t (e)


− H


t, xεt , u

ε (t) , ψε
t , φ

ε
t , γ

ε
t (e)


≤ Hx


t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)

 
xt − xεt


+Hu


t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)

 
ut − uεt


,

for any admissible pair (x, u). Integrating this inequality with
respect to t and taking expectations we obtain from (4.5), (4.6) and
(4.11)

E
[∫ T

s


H

t, xt , ut , ψ

ε
t , φ

ε
t , γ

ε
t (e)


− H


t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)


dt
]

≤ E
[∫ T

s
Hx

t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)

 
xt − xεt


dt
]

+ Cε
1
2 . (4.12)

On the other hand, by the convexity of g , it yields

E

g (xT )− g


xεT


≥ E

gx

xεT
 

xT − xεT


= E

ψε

T


xT − xεT


. (4.13)

Thus it follows by the Ito formula applied to ψε
T


xT − xεT


,

together with (4.12) and (4.13)

E

ψε

T


xT − xεT


= E

[∫ T

s


Hx

t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)

 
xt − xεt


+ψε

t .

b (t, xt , ut)− b


t, xεt , u

ε
t


+φεt .


σ (t, xt , ut)− σ


t, xεt , u

ε
t


+

∫
E
γ εt (e) ·


r (t, xt , ut , e)− r


t, xεt , u

ε
t , e

ν (de)


dt
]

≥ E
[∫ T

s


H

t, xt , ut , ψ

ε
t , φ

ε
t , γ

ε
t (e)


− H


t, xεt , u

ε
t , ψ

ε
t , φ

ε
t , γ

ε
t (e)


+ψε

t ·

b (t, xt , ut)− b


t, xεt , u

ε
t


+φεt ·


σ (t, xt , ut)− σ


t, xεt , u

ε
t


+

∫
E
γ εt (e) ·


r (t, xt , ut , e)

− r

t, xεt , u

ε
t , e

ν (de)


dt
]

− Cε
1
2

= E
[∫ T

s


f

t, xεt , u

ε
t


− f (t, xt , ut)


dt
]

− Cε
1
2 .

This shows that J (u) ≥ J (uε)− Cε
1
2 . �

Corollary 4.2. Under the assumptions of Theorem 4.1, a sufficient
condition for an admissible pair (xε, uε) to be ε-optimal is

E
[∫ T

s
H xε ,uε t, xεt , uεt  dt]

≥ sup
u∈U

E
[∫ T

s
H xε ,uε t, xεt , ut


dt
]

−

 ε
C

2
. (4.14)

Remark 4.3. If we assume that ε = 0, Theorem 4.1 reduces to the
maximum principle proved in [6].

5. Examples

Now, two examples are given to illustrate applications of the
general results obtained. We suppose that Bt , t ∈ [0, 1], is a stan-
dard Brownianmotion andN (dt, de) for (t, e) ∈ [0, 1]×R0, where
R0 = R \ {0}, is a compensated Poisson random measure. Recall
that E

N (dt, de)2 = ν (de) dt is a finite Borel measure satisfying
R0

e2ν (de) < ∞. First of all, let us consider the following partic-
ular case of the linear quadratic model.

Example 5.1. Assume that the dynamics and the cost functional
are given bydxt = utdBt + ut

∫
R0

eN (dt, de) ,
x0 = 0,

(5.1)

J (u) = E
[∫ 1

0
−utdt +

1
2
x21

]
, for u ∈ [0, 1] . (5.2)

Let ε > 0 and (xε, uε) be an admissible pair. Then the corre-
sponding second-order adjoint equation takes the formdΨ ε

t = Φε
t dBt +

∫
R0

Γ ε
t (e)N (dt, de) ,

Ψ ε
1 = 1.

(5.3)

Eq. (5.3) has a unique solution

Ψ ε

t ,Φ
ε
t ,Γ

ε
t (e)


= (1, 0, 0).

Then for any admissible control u, the H-function reduces to

H xε ,uε t, xεt , ut


= ut


1 − φεt −

∫
R0

eγ εt (e) ν (de)


+


utuεt −

1
2
u2
t


1 +

∫
R0

e2ν (de)

. (5.4)

It is clear that the supremum is attained at ut satisfying

ut − uεt =


1 − φεt −


R0

eγ εt (e) ν (de)



1 +


R0

e2ν (de)
 , (5.5)

if the control ut in (5.5) is admissible, i.e.

uεt +


1 − φεt −


R0

eγ εt (e) ν (de)



1 +


R0

e2ν (de)
 ∈ [0, 1] . (5.6)
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Therefore, (4.3) gets the form

sup
u∈U

E
[∫ 1

0
H xε ,uε t, xεt , ut


dt
]

− E
[∫ 1

0
H xε ,uε t, xεt , uεt  dt]

=
1
2

E

∫ 1

0


1 − φεt −


R0

eγ εt (e) ν (de)
2


1 +


R0

e2ν (de)
 dt

 ≤ Cεδ. (5.7)

For example, the controls uεt =


1 +


R0

e2ν (de)
−1

− ε
1
2 ,

are candidates for near-optimality. To see this, note that the cor-
responding first-order adjoint equation isdψε

t = φεt dBt +

∫
R0

γ εt (e)N (dt, de) ,
ψε

1 = xε1.
(5.8)

It is clear that, if we choose uεt =


1 +


R0

e2ν (de)
−1

− ε
1
2

with the corresponding solution of the state process (5.1)

xεt =


1 +

∫
R0

e2ν (de)
−1

− ε
1
2


Bt +

∫
R0

eN (dt, de) ,
then, the unique solution of the first-order adjoint equation (5.8)
is explicitly given by

ψε
t =


1 +

∫
R0

e2ν (de)
−1

− ε
1
2


Bt +

∫
R0

eN (dt, de) ,
φεt =


1 +

∫
R0

e2ν (de)
−1

− ε
1
2


,

γ εt (e) =


1 +

∫
R0

e2ν (de)
−1

− ε
1
2


e.

Hence, (5.6) and (5.7) are satisfied.
Moreover, the Hamiltonian H (t, x, u, p, q, γ (e)) = u − qu −

u


R0
eγ (e) ν (de) is concave in (x, u), and the final cost is convex.

This shows that uεt =


1 +


R0

e2ν (de)
−1

− ε
1
2 satisfies the op-

timality necessary and sufficient conditions of Theorem 4.1. Then
uεt is nearly optimal with order ε

1
2 .

Example 5.2. Assume that we have a family of stochastic control
problems parameterised by ε > 0, where ε may be a parameter
representing the complexity of the cost functional

Jε (u) = E
[∫ 1

0
εg (ut) dt +

1
2
x21

]
. (5.9)

Subject to the controlled jump diffusion state process on Rdxt = utdt + utdBt + ut

∫
R0

eN (dt, de) ,
x0 = a,

(5.10)

where g (independent of ε) is a nonlinear, convex function,
satisfying 4.1. Explicit solution of problem (5.10), (5.9) may be a
difficult problem. The idea is to approximate the cost functional in
order to neglect the nonlinearity. Then by setting ε = 0 in (5.9), it
yields

J0 (u) =
1
2

E

x21

. (5.11)
First, consider the optimal control problem where the state is
described by Eq. (5.10) with a new cost function (5.11). In a
second step, we solve problem (5.10), (5.11), and obtain an
optimal solution explicitly by applying the stochastic maximum
principle [6,7]. Finally, we solve the nonlinear control problem
(5.10), (5.11) near optimally.

By a standard argument, problem (5.10), (5.11) can be
solved directly. Indeed, by applying Ito’s formula to the process

exp


t−1
1+

R0

e2ν(de)


· x2t , we get

E

x21


= E


a2 exp


−


1 +

∫
R0

e2ν (de)
−1



+ E

∫ 1

0
e(t−1)


1+

R0

e2ν(de)
−1

 xt
1 +


R0

e2ν (de)

+ ut


1 +

∫
R0

e2ν (de)

2

dt

 .
We conclude that u∗

t = −
x∗t

1+

R0

e2ν(de)
is the optimal control

in feedback form for problem (5.10), (5.11), where x∗
t denotes the

optimal state solution to (5.10) under the control u∗
t . We denote

the corresponding solution to the first and second order adjoint
equations by (ψ, φ, γ ) and (Ψ ,Φ,Γ ), respectively. By uniqueness
of the solution of BSDEs it is easy to show that (Ψt ,Φt ,Γt (e)) =

(1, 0, 0) is the only adapted solution todΨt = ΦtdBt +

∫
R0

Γt (e)N (dt, de) ,
Ψ1 = 1.

(5.12)

Then the H-function for problem (5.10), (5.11) is

H x∗,u∗

(t, x, u) = −u

ψt + φt +

∫
R0

γt (e) eν (de)


+


uu∗

t −
1
2
u2


1 +

∫
R0

e2ν (de)

. (5.13)

Since u∗ is optimal, by using the stochastic maximum principle,
we conclude that, it is necessary that u∗ maximizes theH-function
a.s., namely

−


ψt + φt +

∫
R0

γt (e) eν (de)


= 0, P-a.s, a.e.t. (5.14)

However, the Hε-function for problem (5.10) and (5.9) gets the
form

H x∗,u∗

ε (t, x, u) = −u

ψt + φt +

∫
R0

γt (e) eν (de)


+


uu∗

t −
1
2
u2


1 +

∫
R0

e2ν (de)


− εg (u) , (5.15)

the above function is maximal at uε , which satisfies uε = u∗ (t)−
εgu(uε)

1+

R0

e2ν(de)
, then this gives

max
u∈U

H x∗,u∗

ε (t, x, u)− H x∗,u∗

ε


t, x, u∗

t


= H x∗,u∗

ε (t, x, uε)− H x∗,u∗

ε


t, x, u∗

t


,

= −
1
2


uε − u∗

t

2 1 +

∫
R0

e2ν (de)


− ε

g (uε)− g


u∗

,
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=
1
2
ε2 |gu (uε)|

2
+ Cε2 |gu (uε)|

2

≤ Cε2.

Moreover, the Hamiltonian for problem (5.10), (5.9) is

H (t, x, u, ψt , φt , γt (e))

= −u

ψt + φt +

∫
R0

eγt (e) ν (de)


− εg (u) ,

= −εg (u) ,

which is concave. By Theorem4.1, this proves that, the control u∗ is
indeed a near-optimal for problem (5.10), (5.9), with an error order
of ε.

Appendix

Lemma A.1 (Ekeland’s Principle [14]). Let (S, d) be a completemetric
space and h : S → R be lower-semicontinuous and bounded from
below. For ε ≥ 0, suppose uε ∈ S satisfies h (uε) ≤ infu∈S h (u)+ ε.
Then for any λ > 0, there exists uλ ∈ S such that

ρ

uλ


≤ ρ (uε) ,

d

uλ, uε


≤ λ,

ρ

uλ


≤ ρ (u)+
ε

λ
d

u, uλ


, for all u ∈ S.

The following proposition is proved in the Appendix of [13].

Proposition A.2. Let h be a P × B (E)-measurable function such
that

E
[∫ T

0

∫
E
|h (s, e)|2 ν (de) ds

]
< ∞.

Then, for all p ≥ 2, there is a positive constant K depends only on
p, T , and ν (E) such that

E
[
sup

0≤t≤T

∫ t

0

∫
E
h (s, e)N (ds, de)p]

≤ KE
[∫ T

0

∫
E
|h (s, e)|p ν (de) ds

]
. (A.1)

Note that P defined as the σ -algebra of F -predictable subsets of
Ω × [0, T ].

Finally, we introduce Clarke’s generalized gradient.

Definition A.3 (Clarke [23]). Let Q be a convex set in Rd and let
h : Q → R be a locally Lipschitz function. The generalized gradient
of h at x̂ ∈ Q , denoted by ∂xh, is a set defined by
∂xh

x̂


=


p ∈ Rd/p · ξ ≤ lim sup

x→x̂,θ→0+

h (x + θξ)− h (x)
θ

;

for any ξ ∈ Rd, and x, x + θξ ∈ Q


.
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