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a b s t r a c t

We consider control problems for systems governed by a nonlinear forward backward stochastic differen-
tial equation (FBSDE). We establish necessary as well as sufficient conditions for near optimality, satisfied
by all near optimal controls. These conditions are described by two adjoint processes, corresponding to
the forward and backward components and a nearly maximum condition on the Hamiltonian. The proof
of the main result is based on Ekeland’s variational principle and some estimates on the state and the
adjoint processes with respect to the control variable. As is well known, optimal controls may fail to exist
even in simple cases. This justifies the use of near optimal controls, which exist under minimal assump-
tions and are sufficient in most practical cases. Moreover, since there are many nearly optimal controls,
it is possible to choose suitable ones, that are convenient for implementation.
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1. Introduction

Since the work of Pardoux & Peng [1], the theory of backward
stochastic differential equations (BSDEs) has found important ap-
plications and has become a powerful tool in many fields, such as
mathematical finance, optimal control, stochastic games, partial
differential equations and homogenization, see [2,3]. Therefore, it
is natural to investigate control problems for systems governed by
this kind of stochastic equations. Stochastic control problems for
systems driven by FBSDEs or BSDEs have been studied bymany au-
thors, see e.g. [4–7] and the references therein. These papers have
been devoted to various forms of the stochastic maximum prin-
ciple, for systems of BSDEs and FBSDEs. As is well known, optimal
controls may fail to exist even in simple cases. This justifies the use
of near optimal controls, which exist under minimal assumptions
and are sufficient inmost practical cases. Moreover, since there are
many nearly optimal controls, it is possible to choose suitable ones
that are convenient for analysis and implementation.
Our goal in this paper is to study near optimal, rather than

optimal controls for systems driven by FBSDEs. More precisely,
we establish necessary as well as sufficient conditions of near-
optimality. These conditions are described in terms of two adjoint
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processes, corresponding to the forward and backward compo-
nents and a nearly maximum condition on the hamiltonian. In a
second step, we prove that under additional concavity conditions,
these necessary conditions of near-optimality are also sufficient.
Our main result is based on Ekeland’s variational principal and
some estimates on the state and the adjoint processes.
Let us recall that many works have been devoted to the prob-

lem of near-optimality. In deterministic control problems, driven
by ordinary differential equations, the first result on necessary con-
ditions for near optimality has been proved by Ekeland [8], see
also [9]. Near optimal control problems for systems driven by Itô
stochastic differential equationswith an uncontrolled diffusion co-
efficient, have been investigated in [10–12]. The general case of
systems driven by SDE with controlled diffusion coefficient has
been treated by Zhou [13], where necessary as well as sufficient
conditions are established, for all nearly optimal controls. See also
[9].
The paper is organised as follows. The assumptions, notations

and some basic definitions are given in Section 2. In Sections 3 and
4, we establish necessary as well as sufficient conditions of near
optimality.

2. Statement of the problem

Let (Ω,F , P) be a probability space, equipped with a filtration
(Ft), satisfying the usual conditions, on which a Rd-valued stan-
dard BrownianmotionW (.) is defined.We assume that (Ft) is the
P-augmentation of the natural filtration ofW (.).
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We consider a stochastic control problem, where the control
domain need not be convex and the system is governed by a for-
ward–backward stochastic differential equation (FBSDE in short)
of the type
dx (t) = f (t, x (t) , u (t)) dt + σ (t, x (t)) dWt ,
x (0) = x0,
dy (t) = g (t, x (t) , y (t) , z (t) , u (t)) dt + z (t) dWt ,
y (T ) = h (x (T )) ,

where f , σ , g and h are given maps. The control variable u = (ut)
is an Ft-adapted process with values in some set U of Rk. We de-
note byUad the set of all admissible controls. The expected cost on
the time interval [0, T ] is

J (u (.)) = Eϕ (y (0)) ,

and the value function is defined as follows :

V = inf
u(.)∈Uad[0,T ]

J (u (.)) .

Since the objective of this paper is to study near-optimal rather
than optimal controls of the system, we give the precise definition
of near-optimality as given in Zhou [13]. For a given ε > 0, uε (.) is
called ε-optimal if

|J (uε (.))− V | ≤ r(ε),

holds for sufficiently small ε, where r is a function of ε satisfying
r (ε)→ 0 as ε → 0. The estimate r (ε) is called an error bound. If
r (ε) = Cεδ for some δ > 0 independent of the constant C , then
uε (.) is called near-optimal with order εδ.
Throughout this paper we assume the following

f : [0, T ]× Rn × Rk → Rn,
σ : [0, T ]× Rn → L

(
Rd,Rn

)
,

g : [0, T ]× Rn × Rm ×L
(
Rd,Rm

)
× Rk → Rm,

h : Rn → Rm.
ϕ : Rm → R.

(H1): f , g, σ , h, ϕ are continuous in [0, T ] × Rn × Rm ×
L
(
Rd,Rm

)
× Rk, and continuously differentiable with respect to

(x, y, z).
(H2): The derivatives of f , g, σ , h, ϕ with respect to x, y, z are

bounded and there is a constant C > 0 such that g is bounded by
C (1+ |x| + |y|) .
(H3): There is a constant C > 0 and β ∈ [0, 1] such that∣∣fx (t, x, u)− fx (t, x́, u)∣∣+ ∣∣σx (t, x)− σx (t, x́)∣∣
+
∣∣hx (x)− hx (x́)∣∣ ≤ C ∣∣x− x́∣∣β ,∣∣ρ (t, x, y, z, u)− ρ (t, x́, ý, ź, u)∣∣

≤ C
(∣∣x− x́∣∣β + ∣∣y− ý∣∣β + ∣∣z − ź∣∣β) for ρ = gx, gy, gz .

Under assumptions (H1) and (H2), there is a unique triple

(x (.) , y (.) , z (.)) ∈ L2F
(
0, T ,Rn

)
× L2F

(
0, T ,Rm

)
× L2F

(
0, T ,L

(
Rd,Rm

))
,

which solves (E), where L2F (0, T ,R
n) denotes the Hilbert space of

Ft-adapted processes X such that E
∫ T
0 |X (s)|

2 ds < +∞.
For any u (.) ∈ Uad with its corresponding state trajectory

(x (.) , y (.) , z (.)), we introduce the adjoint equations and the
Hamiltonian function for our problem. The adjoint equations are
defined by
−dΨ (t) =

(
f ∗x Ψ (t)+ g

∗

x Q (t)+ σ
∗

x K (t)
)
dt − K (t) dWt ,

Ψ (T ) = −h∗x (x (T ))Q (T ) ,
−dQ (t) = g∗yQ (t) dt + g

∗

z Q (t) dWt ,
Q (0) = −ϕy (y (0)) ,

(2.1)
and the Hamiltonian function
H : [0, T ]× Rn × Rm ×L

(
Rd,Rm

)
× Rk × Rn × Rm

×L
(
Rd,Rn

)
→ Rn

is given by
H (t, x, y, z, u,Ψ ,Q , K)
:= − 〈Ψ , f (t, x, u)〉 − 〈Q , g (t, x, y, z, u)〉 − 〈K , σ (t, x)〉 .
The adjoint equations can be rewritten in terms of the deriva-

tives of the Hamiltonian as
dΨ (t) = Hx (t, x (t) , y (t) , z (t) , u (t) ,Ψ (t) ,Q (t) , K (t)) dt
+ K (t) dWt ,

Ψ (T ) = −h∗x (x (T ))Q (T ) ,
dQ (t) = Hy (t, x (t) , y (t) , z (t) , u (t) ,Ψ (t) ,Q (t) , K (t)) dt
+Hz (t, x (t) , y (t) , z (t) , u (t) ,Ψ (t) ,Q (t) , K (t)) dWt ,

Q (0) = −ϕy (y (0)) .

Note that the couple (Ψ , K) is the adjoint process correspond-
ing to the forward component x(.) and Q (.) is the adjoint pro-
cess corresponding to the backward component (y(.), z(.)). It is
a well known fact that under assumptions (H1), (H2), the back-
ward adjoint equation admits one and only one Ft-adapted so-
lution (Ψ , K) ∈ L2F (0, T ,R

n) × L2F
(
0, T ,L

(
Rd,Rn

))
and the

forward adjoint equation admits one and only one Ft-adapted
solution Q ∈ L2F (0, T ,R

m). Moreover, since fx, σx, gx, gy, gz are
bounded by, there exists a constant C1 > 0, independent of
(x (.) , y (.) , z (.) , u (.)), such that the solutions of adjoint equa-
tions satisfy the following estimate:

E( sup
0≤t≤T

|Ψ (t)|2)+ E( sup
0≤t≤T

|Q (t)|2)+ E
∫ T

0
|K (s)|2 ds ≤ C1. (2.2)

Let us recall Ekeland’s variational principle, which will be used
in the sequel.

Lemma 1 (Ekeland [8]). Let (V , d) be a complete metric space and
f : V → R ∪ {+∞} be a lower semicontinuous function, bounded
from below. If for each ε > 0, there exists uε ∈ V such that f (uε) ≤
infu∈V f (u)+ ε. Then for any δ > 0, there exists uδ ∈ V such that

(i) f
(
uδ
)
≤ f (uε) ,

(ii) d
(
uδ, uε

)
≤ δ,

(iii) f
(
uδ
)
≤ f (u)+

ε

δ
d
(
u, uδ

)
, for all u ∈ V .

For u, v inUad, we define
d (u, v) = dt ⊗ P {(t, ω) ∈ [0, T ]×Ω : u (t, ω) 6= v (t, ω)} , (2.3)
where dt ⊗ P is the product measure of the Lebesgue measure dt
with the probability measure P . It is well known that (Uad, d) is a
complete metric space (see [11,13]).

3. Necessary conditions of near-optimality

In this section we derive necessary conditions for a control to
be near-optimal. This is the main result of this paper.

Theorem 2. For any γ ∈
[
0, 13

)
, there exist a constant C1 = C1

(γ ) > 0 such that for any ε > 0 and any ε-optimal control uε , it
holds that

E
∫ T

0
{Ψ ε (t) [f (t, xε (t) , u)− f (t, xε (t) , uε (t))]

+Q ε (t) [g (t, λε (t) , u)− g (t, λε (t) , uε (t))]} dt

≥ −C1εγ , for all u ∈ U, (3.1)

whereλε (.) := (xε (.) , yε (.) , zε (.)) denotes the solution of the state
equation and (Ψ ε (t) , K ε (t) ,Q ε (t)) is the solution of the adjoint
equation, corresponding to uε.
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Corollary 3. Under the conditions of Theorem 2, it holds that

E
∫ T

0
H (t, λε (t) , uε (t) ,Λε (t)) dt

≥ E
∫ T

0
H (t, λε (t) , u (t) ,Λε (t)) dt − C1εγ ,

for all u ∈ Uad (3.2)

where Λε(t) = (Ψ ε(t), K ε(t),Q ε (t)) and λε(t) := (xε(t), yε(t),
zε(t)).

To prove Theorem 2 and Corollary 3, we need the following
auxiliary results on the stability of the state and adjoint processes
with respect to the control variable.

Lemma 4. For any 0 < α < 1 and 0 < p ≤ 2, there is a constant
C1 = C1 (α, p) > 0, such that for any u (.) , ú (.) ∈ Uad, along with
the corresponding trajectories λ (.) := (x (.) , y (.) , z (.)) , λ́ (.) :=(
x́ (.) , ý (.) , ź (.)

)
, it holds that

E
[
sup
0≤t≤T

∣∣x (t)− x́ (t)∣∣p] ≤ C1d (u (.) , ú (.)) αp2 , (3.3)

sup
0≤t≤T

E
∣∣y (t)− ý (t)∣∣p + E ∫ T

0

∣∣z (t)− ź (t)∣∣p ds
≤ C1d

(
u (.) , ú (.)

) αp
2 . (3.4)

Proof. The proof of (3.3) can be found in [13] Lemma 2.1. We need
only treat (3.4). First we assume p = 2. Squaring both sides of

−
(
y (t)− ý (t)

)
−

∫ T

t

(
z (s)− ź (s)

)
dWs

= −
(
h (x (T ))− h

(
x́ (T )

))
+

∫ T

t

(
g (s, λ (s) , u (s))− g

(
s, λ́ (s) , ú (s)

))
ds

and using the fact that

E
[
y (t)− ý (t)

∫ T

t

(
z (s)− ź (s)

)
dWs

]
= 0,

we get

E
∣∣y (t)− ý (t)∣∣2 + E ∫ T

t

∣∣z (s)− ź (s)∣∣2 ds
≤ C2E

∣∣h (x (T ))− h (x́ (T ))∣∣2
+ C2E

{∫ T

t

∣∣∣g (s, λ (s) , u (s))− g (s, λ́ (s) , ú (s))∣∣∣ ds}2 . (3.5)
Let us estimate the first term in the right hand side of (3.5)

E
∣∣h (x (T ))− h (x́ (T ))∣∣2
≤ CE

∣∣x (T )− x́ (T )∣∣2 ≤ C3d (u (.) , ú (.))α . (3.6)

Now let us turn to the second term of (3.5)

E
{∫ T

t

∣∣∣g (s, λ (s) , u (s))− g (s, λ́ (s) , ú (s))∣∣∣ ds}2
≤ E

{∫ T

t

∣∣∣g (s, λ (s) , u (s))− g (s, λ́ (s) , u (s))∣∣∣ ds
+

∫ T

t

∣∣∣g (s, λ́ (s) , u (s))− g (s, λ́ (s) , ú (s))∣∣∣
× χu(s)6=ú(s) (s) ds
}2
,

≤ C4E
{∫ T

t

∣∣∣g (s, λ (s) , u (s))− g (s, λ́ (s) , u (s))∣∣∣ ds}2
+ C4E

∫ T

t

∣∣∣g (s, λ́ (s) , u (s))− g (s, λ́ (s) , ú (s))∣∣∣2
×χu(s)6=ú(s) (s) ds.

Taking q́ = 1
1−α > 1 and ṕ =

1
α
> 1 such that 1ṕ +

1
q́ = 1 and

applying Hölder’s inequality, we obtain

E
{∫ T

t

∣∣∣g (s, λ́ (s) , u (s))− g (s, λ́ (s) , ú (s))∣∣∣2 χu(s)6=ú(s) (s) ds}
≤

{
E
∫ T

t

∣∣∣g (s, λ́ (s) , u (s))− g (s, λ́ (s) , ú (s))∣∣∣ 2
1−α
ds
}1−α

×

{
E
∫ T

t
χu(s)6=ú(s) (s) ds

}α
×

{
1+ E

(
sup
s∈[t,T ]

∣∣x́ (s)∣∣ 2
1−α

)
+ E

(
sup
s∈[t,T ]

∣∣ý (s)∣∣ 2
1−α

)}1−α
×

{
E
∫ T

t
χu(s)6=ú(s) (s) ds

}α
≤ C5d

(
u (.) , ú (.)

)α
. (3.7)

Then

E
{∫ T

t

∣∣∣g (s, λ (s) , u (s))− g (s, λ́ (s) , u (s))∣∣∣ ds}2
≤ C6TE

∫ T

t

∣∣x (s)− x́ (s)∣∣2 ds+ C6TE ∫ T

t

∣∣y (s)− ý (s)∣∣2 ds
+ C6 (T − t) E

∫ T

t

∣∣z (s)− ź (s)∣∣2 ds. (3.8)

By (3.6)–(3.8) we obtain

E
∣∣y (t)− ý (t)∣∣2 + E ∫ T

t

∣∣z (s)− ź (s)∣∣2 ds
≤ C7d

(
u (.) , ú (.)

)α
+ C6TE

∫ T

t

∣∣y (s)− ý (s)∣∣2 ds
+ C6 (T − t) E

∫ T

t

∣∣z (s)− ź (s)∣∣2 ds.
For every δ, such that T − t = δ, we obtain by choosing δ = 1

2C8
,

E
∣∣y (t)− ý (t)∣∣2 + 1

2
E
∫ T

T−δ

∣∣z (s)− ź (s)∣∣2 ds
≤ C9d

(
u (.) , ú (.)

)α
+ C9E

∫ T

T−δ

∣∣y (s)− ý (s)∣∣2 ds.
Applying Gronwall’s inequality, we obtain

E
∣∣y (t)− ý (t)∣∣2 + 1

2
E
∫ T

t

∣∣z (s)− ź (s)∣∣2 ds
≤ C10d

(
u (.) , ú (.)

)α
, t ∈ [T − δ, T ] .

Similarly we get

E
∣∣y (t)− ý (t)∣∣2 + E ∫ T−δ

t

∣∣z (s)− ź (s)∣∣2 ds
≤ C10d

(
u (.) , ú (.)

)α
, t ∈ [T − 2δ, T − δ] .
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After a finite number of iterations, we obtain the desired result.
Now assume 0 < p < 2. Then (3.4) follows immediately from
Holder’s inequality. This completes the proof of Lemma 4. �

The following lemma gives the continuity of the solutions to the
adjoint equationswith respect to the control variable. It plays a key
role in proving the necessary condition.

Lemma 5. For any 0 < α < 1 and 1 < p < 2 satisfying
(1+ αβ) p < 2, there is a constant C1 = C1 (α, β, p) > 0
such that for any u (.) , ú (.) ∈ Uad, along with the corresponding
trajectories (x (.) , y (.) , z (.)) ,

(
x́ (.) , ý (.) , ź (.)

)
and the solutions

(Ψ (.) ,Q (.) , K (.)) ,
(
Ψ́ (.) , Q́ (.) , Ḱ (.)

)
of the corresponding ad-

joint equations, it hold that

E
∫ T

0

{∣∣∣Ψ (t)− Ψ́ (t)∣∣∣p + ∣∣∣K (t)− Ḱ (t)∣∣∣p} dt
≤ C1d

(
u (.) , ú (.)

) αβp
2 , (3.9)

and

E
∫ T

0

∣∣∣Q (t)− Q́ (t)∣∣∣p dt ≤ C1d (u (.) , ú (.)) αβp2 . (3.10)

Proof. We proceed to prove (3.10) then (3.9). First, note that
Q̄ (t) = Q (t)− Q́ (t) satisfies the following SDE{
dQ̄ (t) =

{
gyQ̄ (t)+ Gy (t)

}
dt +

{
gz Q̄ (t)+ Gz (t)

}
dWt

Q̄ (0) = −
{
ϕy (y (0))− ϕy

(
ý (0)

)}
,

(3.11)

in which

Gy (t) =
{
gy (t, λ (t) , u (t))− gy

(
t, λ́ (t) , u (t)

)}
Q́ (t) ,

Gz (t) =
{
gz (t, λ (t) , u (t))− gz

(
t, λ́ (t) , u (t)

)}
Q́ (t) .

First we assume p = 2. Since we have

−Q̄ (t) =
{
ϕy (y (0))− ϕy

(
ý (0)

)}
+

∫ t

0

{
gyQ̄ (s)+ Gy (s)

}
ds

+

∫ t

0

{
gz Q̄ (s)+ Gz (s)

}
dWs,

then by squaring both sides of the above equality, taking the ex-
pectation and using the fact that gy, gz are bounded by C , we get

E
∣∣Q̄ (t)∣∣2 ≤ C2 {E ∣∣y (0)− ý (0)∣∣2 + E ∫ T

0

∣∣Q̄ (s)∣∣2 ds
+ E

∫ T

0

{∣∣Gy (s)∣∣2 + |Gz (s)|2} ds} .
Then by Gronwall’s lemma it holds that

E
∣∣Q̄ (t)∣∣2 ≤ C3 {E ∣∣y (0)− ý (0)∣∣2

+ E
∫ T

0

{∣∣Gy (s)∣∣2 + |Gz (s)|2} ds} .
We shall estimate the right hand side of above inequality. From
Lemma 5, we have

E
∣∣y (0)− ý (0)∣∣2 ≤ C4d (u (.) , ú (.))α .
Then

E
∫ T

0

∣∣Gy (s)∣∣2 ds
≤ C5E

∫ T

0

∣∣∣gy (s, λ (s) , u (s))− gy (s, λ́ (s) , u (s))∣∣∣2 ∣∣∣Q́ (s)∣∣∣2 dt
+ C5E

∫ T

0

∣∣∣gy (s, λ́ (s) , u (s))− gy (s, λ́ (s) , ú (s))∣∣∣2
×

∣∣∣Q́ (s)∣∣∣2 dt,
≤ C5E

∫ T

0

{
χu(s)6=ú(s) (s)

∣∣∣Q́ (s)∣∣∣2 + ∣∣x (s)− x́ (s)∣∣2β ∣∣∣Q́ (s)∣∣∣2
+
∣∣y (s)− ý (s)∣∣2β ∣∣∣Q́ (s)∣∣∣2 + ∣∣z (s)− ź (s)∣∣2β ∣∣∣Q́ (s)∣∣∣2} ds,

By Hölder’s inequality, we obtain

E
∫ T

0

∣∣Gy (s)∣∣2 ds
≤ C6

{
E
∫ T

0

∣∣∣Q́ (s)∣∣∣ 2
1−αβ

ds
}1−αβ

d
(
u (.) , ú (.)

)αβ
,

+ C6

{
E
∫ T

0

∣∣∣Q́ (s)∣∣∣ 2
1−β
ds
}1−β {

E
∫ T

0

∣∣x (s)− x́ (s)∣∣2 ds}β

+ C6

E
∫ T

0

∣∣∣Q́ (s)∣∣∣ 2
1−β

ds


1−β {

E
∫ T

0

∣∣y (s)− ý (s)∣∣2 ds}β

+ C6

{
E
∫ T

0

∣∣∣Q́ (s)∣∣∣ 2
1−β
ds
}1−β {

E
∫ T

0

∣∣z (s)− ź (s)∣∣2 ds}β .
From Lemma 5 and using the fact that E sup0≤t≤T

∣∣∣Q́ (t)∣∣∣p <∞
for any p, it can easily checked that

E
∫ T

0

∣∣Gy (s)∣∣2 ds = E ∫ T

0

∣∣gy (s, λ (s) , u (s))
− gy

(
s, λ́ (s) , ú (s)

)∣∣∣2 ∣∣∣Q́ (s)∣∣∣2 ds,
≤ C7d

(
u (.) , ú (.)

)αβ
.

It follows easily by the same arguments that

E
∫ T

0
|Gz (s)|2 ds ≤ C8d

(
u (.) , ú (.)

)αβ
.

So

E
∣∣Q̄ (t)∣∣2 ≤ C9d (u (.) , ú (.))αβ .
Now assume 0 < p < 2. Then by Hölder’s inequality we obtain the
inequality (3.10)
Now, let us prove (3.9). Noting that (Ψ̄ (t), K̄(t)) ≡ (Ψ (t) −

Ψ́ (t), K(t)− Ḱ(t)) satisfies the following BSDE:
dΨ̄ (t)−

{(
f ∗x (t, x (t) , u (t)) Ψ̄ (t)+ σ

∗

x (t, x (t)) K̄ (t)
)

+ F (t)} dt + K̄ (t) dWt ,
Ψ̄ (T ) = −

{
h∗x (x (T ))Q (T )− h

∗

x

(
x́ (T )

)
Q́ (T )

}
,

where

F (t) =
{
f ∗x (t, x (t) , u (t))− f

∗

x

(
t, x́ (t) , ú (t)

)}
Ψ́ (t)

+ g∗x (t, λ (t) , u (t))Q (t)− g
∗

x

(
t, λ́ (t) , ú (t)

)
Q́ (t)

+
{
σ ∗x (t, x (t))− σ

∗

x

(
t, x́ (t)

)}
Ḱ (t) .
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Let η be the solution of the following linear SDE:
dη (t) =

{
fx (t, x (t) , u (t)) η (t)+

∣∣Ψ̄ (t)∣∣p−1 sgn (Ψ̄ (t))} dt
+

{
σx (t, x (t)) η (t)+

∣∣K̄ (t)∣∣p−1 sgn (K̄ (t))} dWt ,
η (0) = 0,

where sgn (a) ≡
(
sgn

(
a1
)
, . . . , sgn (an)

)∗ for any vector a ≡(
a1, . . . , an

)∗. Note that the existence and uniqueness of solutions
to the above equation are verified by assumptions (H1), (H2) and
the fact that

E
∫ T

0

{∣∣∣∣∣Ψ̄ (t)∣∣p−1 sgn (Ψ̄ (t))∣∣∣2 + ∣∣∣∣∣K̄ (t)∣∣p−1 sgn (K̄ (t))∣∣∣2} dt
< +∞.

Let q > 2 such that 1p +
1
q = 1,we have

E sup
0≤t≤T

|η (t)|q ≤ C2E
∫ T

0

{∣∣Ψ̄ (t)∣∣pq−q + ∣∣K̄ (t)∣∣pq−q} dt
≤ C2E

∫ T

0

{∣∣Ψ̄ (t)∣∣p + ∣∣K̄ (t)∣∣p} dt. (3.12)

Note that the right hand side term of (3.12) is bounded due to (2.2).
On the other hand, applying Ito’s formula to Ψ̄ (t) ·η (t) and taking
expectations, we obtain

E
∫ T

0

{
Ψ̄ (t) ·

[∣∣Ψ̄ (t)∣∣p−1 sgn (Ψ̄ (t))]
+ K̄ (t) ·

[∣∣K̄ (t)∣∣p−1 sgn (K̄ (t))]} dt
= E

{∫ T

0
[F (t) · η (t)] dt

+

[
h∗x (x (T ))Q (T )− h

∗

x

(
x́ (T )

)
Q́ (T )

]
· η (T )

}

≤

{
E
∫ T

0
|F (t)|p dt

} 1
p
{
E
∫ T

0
|η (t)|q dt

} 1
q

+

{
E
∣∣∣h∗x (x (T ))Q (T )− h∗x (x́ (T )) Q́ (T )∣∣∣p} 1p {E |η (T )|q} 1q

≤ C3

{
E
∫ T

0

[∣∣Ψ̄ (t)∣∣p + ∣∣K̄ (t)∣∣p] dt} 1q

[
E
∫ T

0
|F (t)|p dt

] 1
p

+

[
E
∣∣∣h∗x (x (T ))Q (T )− h∗x (x́ (T )) Q́ (T )∣∣∣p] 1p

}
,

Thus

E
∫ T

0

{∣∣Ψ̄ (t)∣∣p + ∣∣K̄ (t)∣∣p} dt ≤ C4 {E ∫ T

0
|F (t)|p dt

+ E
∣∣∣h∗x (x (T ))Q (T )− h∗x (x́ (T )) Q́ (T )∣∣∣p} . (3.13)

We proceed to estimate the second term in the right hand side of
(3.13). First,

E
∣∣∣h∗x (x (T ))Q (T )− h∗x (x́ (T )) Q́ (T )∣∣∣p
= E

∣∣{hx (x (T ))− hx (x́ (T ))}∗ Q (T )− h∗x (x́ (T )) Q̄ (T )∣∣p
≤ C5E

{
|Q (T )|2

} p
2

{
E
∣∣hx (x (T ))− hx (x́ (T ))∣∣ 2p2−p}1− p2

+ C5E
∣∣Q̄ (T )∣∣p
≤ C6

{
E
∣∣x (T )− x́ (T )∣∣ 2βp2−p} 2−p2 + C5E ∣∣Q̄ (T )∣∣p .

Using Lemma 5 and (3.10) it is easy to see that

E
∣∣∣h∗x (x (T ))Q (T )− h∗x (x́ (T )) Q́ (T )∣∣∣p
≤ C7d

(
u (.) , ú (.)

) αβp
2 . (3.14)

Next, we proceed to estimate the first term in the right side of
(3.13). First

E
∫ T

0

∣∣∣g∗x (t, λ (t) , u (t))Q (t)− g∗x (t, λ́ (t) , ú (t)) Q́ (t)∣∣∣p dt
≤ C8E

∫ T

0

∣∣∣g∗x (t, λ (t) , u (t))− g∗x (t, λ́ (t) , ú (t))∣∣∣p
× |Q (t)|p dt + C8E

∫ T

0

∣∣∣g∗x (t, λ́ (t) , ú (t))∣∣∣p ∣∣Q̄ (t)∣∣p dt.
(3.15)

We estimate now the right hand side of (3.15). Using similar argu-
ments to estimate the term E

∫ T
0

∣∣Gy (s)∣∣p ds, we get
E
∫ T

0

∣∣∣g∗x (t, λ (t) , u (t))− g∗x (t, λ́ (t) , ú (t))∣∣∣p |Q (t)|p dt
≤ C9d

(
u (.) , ú (.)

) αβp
2 . (3.16)

Then by (3.10) and using the fact that gx is bounded, we obtain

E
∫ T

0

∣∣∣g∗x (t, λ́ (t) , ú (t))∣∣∣p ∣∣Q̄ (t)∣∣p dt
≤ C10d

(
u (.) , ú (.)

) αβp
2 . (3.17)

From (3.16) and (3.17) we conclude

E
∫ T

0

∣∣∣g∗x (t, λ (t) , u (t))Q (t)− g∗x (t, λ́ (t) , ú (t)) Q́ (t)∣∣∣p dt
≤ C11d

(
u (.) , ú (.)

) αβp
2 . (3.18)

Using similar arguments developed above,we can easily prove that

E
∫ T

0

∣∣f ∗x (t, x (t) , u (t))− f ∗x (t, x́ (t) , ú (t))∣∣p ∣∣∣Ψ́ (t)∣∣∣p dt
≤ C12d

(
u (.) , ú (.)

) αβp
2 . (3.19)

and

E
∫ T

0

∣∣σ ∗x (t, x (t))− σ ∗x (t, x́ (t))∣∣p ∣∣∣Ḱ (t)∣∣∣p dt
≤ C13d

(
u (.) , ú (.)

) αβp
2 . (3.20)

It follows from (3.18)–(3.20) that

E
∫ T

0
|F (t)|p dt ≤ C14d

(
u (.) , ú (.)

) αβp
2 . (3.21)

The desired result (3.9) follows immediately from (3.14) and (3.21)
This completes the proof of Lemma 5. �

Proof of Theorem 2. By assumptions (H1), (H2), it is easy to see
that J (u (.)) is continuous onUad endowedwith themetric defined
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by (2.3). Applying Ekeland’s variational principle with δ = ε
2
3 ,

there is an admissible control ũε (.) such that

d
(
uε (.) , ũε (.)

)
≤ ε

2
3 ,

J̃
(
ũε (.)

)
≤ J̃ (u (.)) for any u (.) ∈ Uad,

where

J̃ (u (.)) = J (u (.))+ ε
1
3 d
(
u (.) , ũε (.)

)
.

This means that ũε (.) is optimal for the system with the new cost
function J̃ . Let t0 ∈ [0, T ) and u ∈ U be fixed. For any θ > 0, define
the spike variation uθ ∈ Uad [0, T ] of ũε:

uθ (t) =
{
u t ∈ [t0, t0 + θ ]
ũε (t) , otherwise.

Let us denote λ̃ε (.) :=
(
x̃ε (.) , ỹε (.) , z̃ε (.)

)
. The fact that

J̃
(
ũε (.)

)
≤ J̃

(
uθ (.)

)
and

d
(
uθ (.) , ũε (.)

)
≤ θ,

imply that

J
(
uθ (.)

)
− J

(
ũε (.)

)
≥ −ε

1
3 θ. (3.22)

Arguing as in [6], Theorem 1, the left hand side of inequality (3.22)
is equal to

E
∫ t0+θ

t0

{
Ψ̃ ε (t)

[
f
(
t, x̃ε (t) , u

)
− f

(
t, x̃ε (t) , ũε (t)

)]
+ Q̃ ε (t)

[
g
(
t, λ̃ε (t) , u

)
− g

(
t, λ̃ε (t) , ũε (t)

)]}
dt.

Dividing (3.22) by θ and sending θ to 0, we conclude that

E
{
Ψ̃ ε (t)

[
f
(
t, x̃ε (t) , u

)
− f

(
t, x̃ε (t) , ũε (t)

)]
+ Q̃ ε (t)

[
g
(
t, λ̃ε (t) , u

)
− g

(
t, λ̃ε (t) , ũε (t)

)]}
dt

≥ −ε
1
3 . (3.23)

To prove (3.1), it remains to estimate the following difference

E
∫ T

0
Q̃ ε (t)

[
g
(
t, λ̃ε (t) , u

)
− g

(
t, λ̃ε (t) , ũε (t)

)]
dt

− E
∫ T

0
Q ε (t) [g (t, λε (t) , u)− g (t, λε (t) , uε (t))] dt

= E
∫ T

0

{
Q̃ ε (t)− Q ε (t)

} {
g
(
t, λ̃ε (t) , u

)
− g

(
t, λ̃ε (t) , ũε (t)

)}
dt

+ E
∫ T

0
Q ε (t)

{
g
(
t, λ̃ε (t) , u

)
− g (t, λε (t) , u)

}
dt

− E
∫ T

0
Q ε (t)

{
g
(
t, λ̃ε (t) , ũε (t)

)
− g (t, λε (t) , uε (t))

}
dt

= I1 + I2 + I3.

For any γ ∈
[
0, 13

)
, let αβ = 3γ ∈ [0, 1). Then, in view of

Lemma 5, we have

I1 ≤
{
E
∫ T

0

∣∣∣Q̃ ε (t)− Q ε (t)∣∣∣2 dt} 12
×

{
E
∫ T

0

∣∣∣g (t, λ̃ε (t) , u)− g (t, λ̃ε (t) , ũε (t))∣∣∣2 dt} 12
≤ C2
{
d
(
uε (.) , ũε (.)

)αβ} 12
× C3

{
E
∫ T

0

(
1+

∣∣x̃ε (t)∣∣2 + ∣∣ỹε (t)∣∣2) ds} 12
≤ C4

{
ε
2αβ
3

} 1
2
= C4εγ .

Next, by using Lemma 5, we get

I2 ≤
{
E
∫ T

0
|Q ε (t)|2 dt

} 1
2

×

{
E
∫ T

0

∣∣∣g (t, λ̃ε (t) , u)− g (t, λε (t) , u)∣∣∣2 dt} 12
≤ C4

{
E
∫ T

0

∣∣x̃ε (t)− xε (t)∣∣2 dt + E ∫ T

0

∣∣ỹε (t)− yε (t)∣∣2 dt
+ E

∫ T

0

∣∣z̃ε (t)− zε (t)∣∣2 dt} 12
≤ C5

{
d
(
uε (.) , ũε (.)

)αβ} 12
≤ C5

{
ε
2αβ
3

} 1
2
= C5εγ .

Further, fix p ∈ (1, 2) so that (1+ αβ) p < 2. and taking q ∈
(2,+∞)with 1p +

1
q = 1, it holds by using Lemma 5, that

I3 = −E
∫ T

0
Q ε (t)

{
g
(
t, λ̃ε (t) , ũε (t)

)
− g (t, λε (t) , uε (t))} dt

= −E
∫ T

0
Q ε (t)

{
g
(
t, λ̃ε (t) , ũε (t)

)
− g

(
t, λ̃ε (t) , uε (t)

)}
dt,−E

∫ T

0
Q ε (t)

×

{
g
(
t, λ̃ε (t) , uε (t)

)
− g (t, λε (t) , uε (t))

}
dt

≤

{
E
∫ T

0
|Q ε (t)|q dt

} 1
q
{
E
∫ T

0

∣∣∣g (t, λ̃ε (t) , ũε (t))
− g

(
t, λ̃ε (t) , uε (t)

)∣∣∣p χũε(t)6=uε(t) (t) dt} 1p + C5εγ .
By Hölder’s inequality, one has

E
∫ T

0

∣∣∣g (t, λ̃ε (t) , ũε (t))− g (t, λ̃ε (t) , uε (t))∣∣∣p
×χũε(t)6=uε(t) (t) dt

≤

{
E
∫ T

0

∣∣∣g (t, λ̃ε (t) , ũε (t))− g (t, λ̃ε (t) , uε (t))∣∣∣2 dt} p2
×

{
E
∫ T

0
χũε(t)6=uε(t) (t) dt

}1− p2
,

≤ C6d
(
uε (.) , ũε (.)

)1− p2 ,
≤ C6d

(
uε (.) , ũε (.)

) αβp
2 .

Therefore{
E
∫ T

0

∣∣∣g (t, λ̃ε (t) , ũε (t))− g (t, λ̃ε (t) , uε (t))∣∣∣p
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×χũε(t)6=uε(t) (t) dt
} 1
p

≤ C6d
(
uε (.) , ũε (.)

) αβ
2

≤ C6ε
αβ
3 = C6εγ .

Thus, we have proved that

E
∫ T

0
Q̃ ε (t)

[
g
(
t, λ̃ε (t) , u

)
− g

(
t, λ̃ε (t) , ũε (t)

)]
dt

− E
∫ T

0
Q ε (t) [g (t, λε (t) , u)− g (t, λε (t) , uε (t))] dt

≤ C7εγ . (3.24)

Similarly, we obtain

E
∫ T

0

{
Ψ̃ ε (t)

[
f
(
t, x̃ε (t) , u

)
− f

(
t, x̃ε (t) , ũε (t)

)]
− Ψ ε (t) [f (t, xε (t) , u)− f (t, xε (t) , uε (t))]

}
dt

≤ C8εγ . (3.25)

Finally inequality (3.1) follows from combining (3.24) and (3.25).
�

Proof of Corollary 3. In the definition of the perturbed control
uθ (.), the point u ∈ U may be replaced by any admissible control
u (.) ∈ Uad, and the subsequent argument still goes through. So
(3.1) holds for any u (.) ∈ Uad. �

4. Sufficient conditions of near-optimality

In this section, we will prove that under additional hypothesis,
the near-maximum condition on the Hamiltonian function is a
sufficient condition for near-optimality. First, we restrict ourselves
to the one dimensional case n = m = d = 1 and we assume that:
(H4): ρ is differentiable in u for ρ = f , σ , g , and there is a

constant C > 0 such that:∣∣ρ (t, x, u)− ρ (t, x, ú)∣∣+ ∣∣ρu (t, x, u)− ρu (t, x, ú)∣∣
≤ C

∣∣u− ú∣∣ , for ρ = f , σ∣∣g (t, x, y, z, u)− g (t, x, y, z, ú)∣∣
+
∣∣gu (t, x, y, z, u)− gu (t, x, y, z, ú)∣∣ ≤ C ∣∣u− ú∣∣ .

(4.1)

Theorem 6. Let (λε (.) , uε (.)) be near-optimal solution of (E),
and Λε (.) := (Ψ ε (.) , K ε (.) ,Q ε (.)) are the solutions of the
adjoint equations, corresponding to (λε (.) , uε (.)). Assume that
H (t, ., ., ., .,Λε (t)) is concave for a.e. t ∈ [0, T ] , P − a.s., h (.) is
concave, ϕ (.) is convex and decreasing. If for some ε > 0,

E
∫ T

0
H (t, λε (t) , uε (t) ,Λε (t)) dt

≥ sup
u(.)∈Uad[0,T ]

E
∫ T

0
H (t, λε (t) , u (t) ,Λε (t)) dt − εγ (4.2)

then

J (uε (.)) ≤ inf
u(.)∈Uad[0,T ]

J (u (.))+ C1ε
1
2 , (4.3)

where C1 > 0 is a constant, which is independent from ε.

Proof. Let us fix ε > 0 and define a newmetric d̃ onUad as follows

d̃ (u (.) , uε (.)) = E
∫ T

0
νε (t) |u (t)− uε (t)| dt, (4.4)

where
νε (t) = 1+ |Ψ ε (t)| + |Q ε (t)| ≥ 1. (4.5)

Define a functionalB onUad [0, T ] by:

B (u (.)) = E
∫ T

0
H (t, λε (t) , u (t) ,Λε (t)) dt.

A simple computation shows that∣∣B (u (.))−B
(
ú (.)

)∣∣ ≤ CE ∫ T

0
νε (t) |u (t)− uε (t)| dt,

which implies thatB is continuous onUad with respect to d̃.
By (4.2) and Ekeland’s lemma, there exists ũε (.) ∈ Uad [0, T ]

such that

d̃
(
uε (.) , ũε (.)

)
≤ ε

and

E
∫ T

0
H̃
(
t, λε (t) , ũε (t)

)
dt

= max
u(.)∈Uad[0,T ]

E
∫ T

0
H̃ (t, λε (t) , u (t)) dt (4.6)

where

H̃ (t, λε (t) , u (t))

= H (t, λε (t) , u (t) ,Λε (t))− ε
1
2 νε (t)

∣∣u (t)− ũε (t)∣∣ . (4.7)

By standard arguments, it can be proved that the integral max-
imum condition (4.7) implies a pointwise maximum condition,
namely for a.e. t ∈ [0, T ], and P − a.s.,

H̃
(
t, λε (t) , ũε (t)

)
= max

u∈U
H̃ (t, λε (t) , u) . (4.8)

Using assumption (H4)we can prove that

Hu
(
t, λε (t) , ũε (t) ,Λε (t)

)
≤ C3νε (t)

∣∣uε (t)− ũε (t)∣∣+ ε 12 νε (t) . (4.9)

By the concavity of H (t, ., ., ., .,Ψ ε (t) ,Q ε (t) , K ε (t)) ,we have

H (t, λ (t) , u (t) ,Λε (t))− H (t, λε (t) , uε (t) ,Λε (t))
≤ Hx (t, λε (t) , uε (t) ,Λε (t)) (x (t)− xε (t))
≤ Hy (t, λε (t) , uε (t) ,Λε (t)) (y (t)− yε (t))
+Hz (t, λε (t) , uε (t) ,Λε (t)) (z (t)− zε (t))

+Hu (t, λε (t) , uε (t) ,Λε (t)) (u (t)− uε (t)) . (4.10)

By integrating both sides and noting (4.1) and (4.9) we obtain

E
∫ T

0

{
H (t, λ (t) , u (t) ,Λε (t))− H (t, λ

ε (t) , uε (t) ,Λε (t))
}
dt

≤ E
∫ T

0
Hx (t, λε (t) , uε (t) ,Λε (t)) (x (t)− xε (t)) dt

+ E
∫ T

0
Hy (t, λε (t) , uε (t) ,Λε (t)) (y (t)− yε (t)) dt

× E
∫ T

0
Hz (t, λε (t) , uε (t) ,Λε (t)) (z (t)− zε (t)) dt

+ C5ε
1
2 . (4.11)

On the other hand, by applying Ito’s formula respectively to Ψ ε

(t) (x (t)− xε (t)) and Q ε (t) (y (t)− yε (t)), and by taking expec-
tations, we obtain

E [Ψ ε (T ) (x (T )− xε (T ))]+ E [Q ε (T ) (y (T )− yε (T ))]
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− E [Q ε (0) (y (0)− yε (0))]

= E
∫ T

0
Hx (t, λε (t) , uε (t) ,Λε (t)) (x (t)− xε (t)) dt

+ E
∫ T

0
Hy (t, λε (t) , uε (t) ,Λε (t)) (y (t)− yε (t)) dt

+ E
∫ T

0
Hz (t, λε (t) , uε (t) ,Λε (t)) (z (t)− zε (t)) dt

+ E
∫ T

0
Ψ ε (t) [f (t, x (t) , u (t))− f (t, xε (t) , uε (t))] dt

+ E
∫ T

0
Q ε (t) [g (t, λ (t) , u (t))− g (t, λε (t) , uε (t))] dt

+ E
∫ T

0
K ε (t) [σ (t, x (t))− σ (t, xε (t))] dt. (4.12)

Combining (4.11) and (4.12) we obtain

−E [Q ε (T ) hx (xε (T )) (x (T )− xε (T ))]+ EQ ε (T ) (h (x (T ))
− h (xε (T )))+ E

[
ϕy (yε (0)) (y (0)− yε (0))

]
≥ −Cε

1
2 .

Using the facts that h (.) is concave andϕ (.) is convex and decreas-
ing, we obtain

J (uε (.)) ≤ J (u (.))+ C1ε
1
2 .

Since u (.) is arbitrary, the desired result follows. �

Remark 7. When ε = 0, Theorem 2 reduces to the stochastic
maximum principal developed in [6].
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