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Abstract

In today’s world, road transport is essential to our daily routines and business activi-
ties. However, the exponential growth in the number of vehicles has led to problems
such as traffic congestion and road accidents. Vehicular communication presents an in-
novative solution, envisaging a future where vehicles communicate with each other, the
road infrastructure, and even the road itself, sharing real-time data to optimize traffic
flow and enhance safety. This thesis focuses on 5G and Beyond 5G (B5G) technologies,
which promise to revolutionize Vehicle-to-Everything (V2X) communication. With the
emergence of millimeter-wave (mmWave) communication, high-speed, low-latency data
transmission is essential for vehicular networks. However, mmWave communication faces
problems with signal attenuation and interference. Our research focuses on solving these
problems using a deep learning-based approach. Three significant contributions are pro-
posed. First, we introduce a classical optimization technique, the simulated annealing
algorithm, to improve beam alignment in 5G vehicular networks. This reduces latency
and improves data transmission between millimeter-wave base stations and vehicles. Our
second contribution is a new approach involving a hybrid deep-learning model that pre-
dicts optimal beam angles. Combining a 1D CNN and a BiLSTM improves the accuracy
of the prediction and reduces errors. This approach eliminates time-consuming com-
putations and iterations critical to the success of B5G vehicular networks. The third
contribution introduces a BiLSTM-based model to select the optimal beam pair angles at
the mmWave base station (mmBS) and the moving vehicle side. This approach improves
the reliability of data transmission while minimizing the error probabilities and overheads
during beam search. This research contributes to advancing vehicular communications,
offering innovative solutions for 5G and B5G networks. We aim to enhance the efficiency,
reduce the latency, and improve the reliability of communications for connected vehicles.
This thesis explores beam alignment through classical and deep learning techniques and
presents solutions for the challenges of millimeter-wave vehicular networks. Our research
provides the foundation for the next generation of vehicular communication and its vital
role in making road transport safer and more efficient.

Keywords: Autonomous Vehicle, Internet-of-Vehicle (IoV), Vehicular Communica-
tion, 5G/B5G networks, Millimeter-Wave, Deep Learning.



Résumé

Aujourd’hui, le transport routier est essentiel à nos routines quotidiennes et à nos
activités commerciales. Cependant, la croissance exponentielle du nombre de véhicules
a entraîné des problèmes tels que la congestion du trafic et les accidents de la route.
La communication entre véhicules présente une solution innovante, envisageant un ave-
nir où les véhicules communiquent entre eux, avec l’infrastructure routière, voire avec
la route elle-même, partageant des données en temps réel pour optimiser la circulation
et renforcer la sécurité. Cette thèse se concentre sur les technologies 5G et Beyond 5G
(B5G), qui promettent de révolutionner la communication vehicle-to-everything (V2X).
Avec l’avènement de la communication à ondes millimétriques (mmWave), une transmis-
sion de données à grande vitesse et à faible latence est essentielle pour les réseaux de
véhicules. Cependant, la communication mmWave est confrontée à des problèmes d’affai-
blissement du signal et d’interférences. Notre recherche se concentre sur la résolution de
ces problèmes en utilisant une approche basée sur l’apprentissage. Trois contributions si-
gnificatives sont proposées. Tout d’abord, nous introduisons une technique d’optimisation
classique, l’algorithme du recuit simulé, pour améliorer l’alignement des faisceaux dans
les réseaux de véhicules 5G. Cela réduit la latence et améliore la transmission de données
entre les stations de base à mmWave et les véhicules. Notre deuxième contribution est une
nouvelle approche impliquant un modèle hybride d’apprentissage profond qui prédit les
angles optimaux des faisceaux. La combinaison d’un réseau de neurone convolutif 1D (1D
CNN) et d’une mémoire récurrente bidirectionnelle à long terme (BiLSTM) améliore la
précision de la prédiction et réduit les erreurs. Cette approche élimine les calculs et itéra-
tions qui prennent du temps et qui sont essentiels au succès des réseaux de véhicules B5G.
La troisième contribution propose un modèle basé sur BiLSTM pour prédire les angles
adaptés aux paires de faisceaux à la station de base à mmWave et du côté du véhicule
en mouvement. Cette approche améliore la fiabilité de la transmission de données tout
en minimisant les probabilités d’erreur et les surcharges lors de la recherche de faisceaux.
Notre objectif est d’améliorer l’efficacité, de réduire la latence et d’améliorer la fiabilité
des communications pour les véhicules connectés. Notre recherche pose les bases de la
prochaine génération de communication entre véhicules et de son rôle essentiel dans la
sécurité et l’efficacité du transport routier.

Mots Clée : Véhicule Autonome, Internet des véhicules, Communication Véhiculaire,
Réseaux 5G/B5G, Ondes Millimétriques, Apprentissage Profond.
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Chapter 1

Introduction

1.1 Context

In our modern world, road transport is like the lifeblood that supports everything we do.
It plays a massive role in our economies, accounting for around 12% of a country’s total
economic activity, and is an essential part of our daily lives. Just think: people spend
around 8% of their working day, or about two hours, traveling to and from work [14].
Nevertheless, here is the thing: Over the last fifty years, we have seen an explosion in
the number of vehicles on the road. Around 60 million cars were sold annually between
2005 and 2020 [15]. This rapid growth has created a significant problem, particularly in
our cities. It is called traffic congestion, causing all sorts of problems. All these traffic
congestion and delays prevent us from being as efficient at work. Road accidents cause
death and injury. Every year, 1.35 million people die in road accidents, and millions suffer
damages that can change their lives forever [16].

1.2 Motivation and Objectives:

In the face of the challenges posed by increasing road traffic, vehicular communication
provides a new light of hope. Vehicular communication represents a transformative tech-
nology that aims to change how vehicles interact with each other and their environment.
It is about imagining a scenario where the vehicle communicates transparently with other
vehicles, traffic lights, and even the road infrastructure. The vehicle shares real-time in-
formation about traffic conditions, road dangers, and the most efficient routes with other
vehicles. Congestions are a thing of the past as vehicles coordinate to optimize traffic
flow. Moreover, the vehicle’s safety systems are in constant communication, reducing the
risk of accidents to a minimum.

1



CHAPTER 1. INTRODUCTION

Recently, significant advances in wireless communication have facilitated the efficient
transmission of real-time data over multiple channels, including vehicle-to-pedestrian
(V2P), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and cellular network (V2N)
communications. Implementing vehicle-to-everything (V2X) communication can improve
several aspects of transport, including road safety, efficient use of roads, reduced fuel
consumption, and improved driving comfort. Today’s vehicles are increasingly equipped
with many sensors capable of observing and interpreting their environment. These sensors
provide signals that enable the vehicle to react accordingly, thus launching the first stages
of autonomous driving. However, a vehicle may need to access all the necessary infor-
mation in a dynamic environment quickly. Cooperation between vehicles via vehicular
communication is a promising way of meeting this need.

The next generation of cellular networks, namely the fifth generation (5G) and beyond
5G (B5G), promises to open up a new era of connectivity and interaction for vehicular
communication systems in this technologically advanced era. These advanced network
paradigms are ready to meet the growing demands of our connected world, designed to
respond to a wide range of vehicles while guaranteeing low latency and efficient data
rates. Integrating 5G and B5G technologies into vehicle communication systems could
transform how vehicles communicate with each other and the complex network of urban
infrastructures. This revolutionary technology, introduced by the International Telecom-
munications Union (ITU) in 2015 as 5G New Radio (NR), is the foundation for advanced
vehicular communication.

Millimeter-wave (mmWave) communication has emerged as a critical element of 5G/B5G
with the development of autonomous vehicle networks. For V2X communication, partic-
ularly in highly dynamic conditions, the enormous bandwidth of these frequencies - 30
GHz to 300 GHz - enables a fast transmission rate and low latency. Nevertheless, it is
well known that path loss due to the short propagation distance and signal attenuation
produced by surrounding static and/or dynamic barriers is the main difficulty of communi-
cation at millimeter wave frequencies. Integrating beamforming with mmWave technology
compensates for signal power losses by concentrating transmissions in specific directions,
significantly reducing interference. The result is reliable communication connections, even
in highly mobile environments, offering a significant gain in beamforming performance.
It should be noted that most studies on millimeter-wave vehicular communications in the
context of 5G/B5G networks have focused mainly on the beam alignment procedure.

Research in this field can be categorized into three main areas:

1. Beam Scanning (Extensive Search): This method thoroughly searches 360
degrees of beam directions to find the optimal pair. However, this process can be
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time-consuming and energy-intensive [17], [18].

2. Vision-Assisted Approaches: This category includes techniques that utilize data
from radar [19], Lidar [20], and cameras [21]. These vision-assisted methods, while
effective, may introduce additional costs associated with beam calculation and se-
lection.

3. Angle-of-Departure/Angle-of-Arrival Prediction: This approach relies on
contextual information, such as the positions of vehicles and base stations, to predict
optimal angles for beam alignment.

1.3 Contributions

This thesis is dedicated to advancing the vehicular communications field in the emerging
5G/B5G technology paradigm. We aim to improve the efficiency and performance of
communications for connected vehicles with three main contributions.

First, we introduce a new approach designed to tackle the complexities of beam align-
ment in 5G vehicular networks. This first contribution exploits the power of classical
optimization methods, notably the simulated annealing algorithm. We use this algorithm
as a fundamental part of our beam management solution, enabling more efficient data
transmission and reduced latency between mmBS and moving connected vehicles.

Then, to enable the ability to send data directly to a moving vehicle from an mmBS,
we propose a new technique for selecting the appropriate beam Angle of Departure (AoD).
Our proposal differs because we propose a deep learning-based hybrid beam alignment by
integrating a 1D convolutional neural network with four hidden layers based on BiLSTM.
Our proposed method makes use of mmWave channel data to maximize the received signal
strength to predict the most effective beam angle. Therefore, when 1D-CNN is combined
with BiLSTM, the prediction accuracy is much enhanced, and the probability of mis-
takes in both the predicted and actual values is significantly reduced. Our suggested
CNN-BiLSTM model does well regarding precision, speed, and efficiency. Our proposal
avoids the time-consuming computations and iterations required by conventional exhaus-
tive search and beam scanning techniques. To find the optimal beam direction for each
data transmission, these methods perform a full-circle search. This innovation is impor-
tant for vehicular networks, as it improves the signal-to-noise ratio (SINR) and received
signal strength of V2I transmissions between autonomous cars and mmBS. It also reduces
the computing power of the B5G vehicular millimetre-wave network.

Finally, in the third contribution, we propose a new beam-pair prediction approach
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based on bidirectional long-term memory (BiLSTM-BPP) for line-of-sight mmWave ve-
hicular networks. This approach aims to predict the optimal beam pairs that establish
connections between the vehicle on moving and the mmBS, specifically, the Angle of De-
parture (AoD) in Azimuth at the mmBS and the Angle of Arrival (AoA) in Azimuth at
the vehicle side. By using location information, this approach improves the reliability of
data transmission while minimizing the error probabilities and overheads associated with
beam search.

1.4 Thesis Structure

In this general introduction, we provide an overview of the motivation for this study,
highlighting the key contributions that form the core of this thesis. We also present the
structure of this thesis, which consists of seven main sections. The first part, including
this general introduction, sets the context by presenting the primary motivation and orga-
nization of the thesis. The following chapter focuses on the essential elements of connected
autonomous vehicle (CAV) networks. We explain the different types of vehicular commu-
nication and the technology behind them, and we explore mmWave technology and the
challenges faced in vehicular networks. A good understanding of these fundamentals will
form the basis of our study. In the second chapter, we propose a comprehensive taxon-
omy clarifying the evolution of vehicular networks about beam alignment. This taxonomy
classifies existing techniques, from classical optimization approaches to methods exploit-
ing deep learning capabilities. We review several related works in this area, providing
a detailed survey of this research field. Finally, we conclude this chapter by posing the
problem that will be our study’s focus. The third chapter presents the first contribution
that we have proposed based on the classical optimization method, notably the simulated
annealing algorithm. The fourth chapter details our second contribution based on a hybrid
deep-learning model to predict the best beam angle at the mmBS side for efficient com-
munication in B5G vehicular networks. Moreover, the fifth chapter introduces our third
contribution, based on the BiLSTM model, to address the challenges posed by our second
contribution. This model ensures the suitable beam pair angle prediction at the mmBS
and the vehicle side. Finally, the general conclusion summarizes the main findings and
conclusions from the previous chapters. It identifies unresolved challenges and potential
future research directions in learning-based communication in vehicular networks.
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Chapter 2

Background concepts

In recent years, the massive increase in vehicles on our roads has stimulated the rapid
development of vehicular networks. These networks represent a central element in the
structure of future intelligent transport systems (ITS), offering solutions to the critical
challenges of modern urban mobility. The heart of these networks is the innovative concept
of vehicular communication, which has the potential to revolutionize the way vehicles
interact with each other and with the surrounding infrastructure.

This chapter covers the basic concepts of connected autonomous vehicular networks,
types of vehicular communication, and technologies used in vehicular networks. Next, the
millimeter wave (mmWave) beamforming system is presented. Finally, we introduce the
challenges facing this field.

2.1 Internet of Vehicles

The Internet of Vehicles (IoV) is a subset of the Internet of Things (IoT), a global network
that interconnects and enables seamless communication between intelligent objects. It
extends these capabilities specifically to vehicles, launching the era of intelligent transport.

The concept of the IoV dates back to the end of the 20th century when it became clear
that many accidents were caused by human error at the wheel. To remedy this problem,
the idea of deploying interconnected autonomous vehicles gained ground. This paradigm
shift has led to the emergence of new concepts, such as interconnected autonomous vehi-
cles and vehicular communication systems. These innovations facilitate cooperation and
information sharing between the various nodes that comprise the modern road infrastruc-
ture, as depicted in Figure 2.1.
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Figure 2.1: Representation of Internet of Vehicles (IoV)

2.1.1 What is an autonomous vehicle?

An autonomous vehicle (AV) can make decisions and move without human intervention.
AVs are equipped with various sensors to enable intelligent and efficient navigation, allow-
ing them to avoid collisions and detect static and moving objects in their surroundings.
This enables them to operate effectively even in new or unexpected situations, includ-
ing encounters with dynamic obstacles [22]. In recent years, AVs have gained popularity
due to their potential to liberate individuals from the responsibility of driving, thereby
allowing them to utilize their time more productively. This shift also has the potential to
reduce traffic accidents by minimizing human involvement in driving, and it promises a
more enjoyable driving experience compared to conventional vehicles. The Society of Au-
tomotive Engineers (SAE) has categorized driving automation into six levels, as depicted
in Figure 2.2, ranging from Level 0 (completely manual) to Level 5 (highly automated or
fully autonomous) [23].

2.1.2 What is a Connected Vehicle?

A connected vehicle (CV) has advanced technology that enables wireless communication
and sharing safety-related messages with other devices, including infrastructure, vehicles,
and pedestrians. This communication capability allows connected vehicles to exchange
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Figure 2.2: The levels of vehicle autonomy [5]

continuous information, including transmitting their precise positions and receiving real-
time data that triggers automated responses within the vehicular environment. Conse-
quently, connected vehicles are empowered to make informed decisions, accurately deter-
mine their location around the surroundings, and enhance overall safety while driving [24].

2.1.3 Connectivity Types in IoV

In a vehicular network, the connected autonomous vehicle acts as a sensor that captures
information from its environment. It exchanges data with nodes that belong to the net-
work via various types of communication technologies. The following subsections present
the different types of vehicle communication and introduce how vehicular communication
can enhance the vehicle’s network. These connectivity types are summarized in Table 2.1.

2.1.3.1 Infrastructure-to-infrastructure (I2I)

I2I communication involves interactions between different components of the road infras-
tructure. This can include communication between roadside units (RSUs), traffic signs,
traffic lights, access points, road sensors, and cellular base stations. I2I communication is
a connective tissue that enhances the IoV infrastructure, enabling efficient coordination
and information sharing between these critical elements.
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Table 2.1: Connectivity Types in IoV

Connectivity Type Description

Vehicle-to-Vehicle (V2V) Communication between vehicles on the road

Infrastructure-to-
Infrastructure (I2I)

Communication between roadside infrastructure components

Vehicle-to-Infrastructure
(V2I)

Communication between vehicles and roadside infrastructure

Vehicle-to-People (V2P) Communication between vehicles and pedestrians or drivers

Vehicle-to-Everything
(V2X)

Comprehensive connectivity involving vehicles, infrastruc-
ture, people, and more

2.1.3.2 Vehicle-to-Everything (V2X)

This communication type establishes connections across various components of the trans-
portation ecosystem, including pedestrians, vehicles, infrastructure, and cloud environ-
ments. V2X communication catalyzes gathering more data, advancing autonomous driv-
ing technologies, and building intelligent transportation systems. It plays a pivotal role
in enabling efficient autonomous driving, enhancing transportation efficiency, reducing
pollution, lowering accident rates, and improving service quality [25]. V2X encompasses
four essential communication types, as Figure 2.3 illustrates.

2.1.3.3 Vehicle-to-Infrastructure (V2I)

V2I communication facilitates interactions between vehicles and intelligent road infras-
tructure. V2I enables vehicles to make informed decisions in complex scenarios like four-
way stops and enhances traffic efficiency by providing real-time information about road
conditions or obstacles. This communication mode relies on centralized wireless con-
trol [26].

2.1.3.4 Vehicle-to-Vehicle (V2V)

V2V communication, also known as inter-vehicle communication, is exclusive to vehicles.
Without centralized coordination, it allows direct message exchange between two vehicles
regarding speed, position, road conditions, and safety alerts. V2V communication remains
operational even if RSU stations fail or communication ranges are exceeded. It contributes
to accident reduction, route optimization, and safety awareness among nearby road users
[27].
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Figure 2.3: Types of V2X communication by IoV

2.1.3.5 Vehicle-To-Pedestrian (V2P)

V2P communication involves interactions between vehicles and non-motorized road users,
such as pedestrians and cyclists. These communications aim to minimize collision risks
between vehicles and road users using smartphones for communication. The primary goal
is to enhance overall road safety for all users.

2.1.3.6 Vehicle-To-Network (V2N)

V2N communication connects vehicles with elements of the cellular communication net-
work, typically Base Stations (BS). It is an alternative to V2I communication in areas
lacking roadside equipment (RSU). V2N facilitates information exchange between vehicles,
including data about road conditions and accidents. Additionally, V2N enables vehicle
internet access, allowing them to connect to remote services. This extends to Vehicle-
to-Cloud (V2C) communications [28], which support global road safety management and
traffic control applications.
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2.1.4 Architecture of IoV

The IoV architecture is a comprehensive framework that integrates various technologies to
achieve inter-vehicular connectivity and provide a wide range of services. These services
include applications related to road safety, roadside assistance, driving efficiency, remote
monitoring, congestion avoidance, maintenance, and system failures. The main elements
of the IoV architecture include many onboard sensors, communication infrastructures,
and vehicles. The motivation for advancing this technology is to improve road safety,
optimize traffic flow, reduce fuel consumption, and minimize travel costs.

The fundamental infrastructure required to implement and deploy autonomous con-
nected vehicles (ACVs) to support intelligent transport systems (ITS) can be described
in Figure 2.4. This architecture comprises two main types of nodes:

Figure 2.4: Representation of ITS, [6]

• Vehicles: Equipped with onboard sensors, these vehicles play a central role in
collecting and sharing data. The sensors are responsible for detecting objects and
obstacles within their range. The sensors commonly used, their field of detection,
and their typical applications are presented in Table 2.2, [6].
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• Communication infrastructure: This infrastructure, along roads, facilitates
communication between vehicles and the wider network. The architecture uses
several communication channels, including V2V, I2I, V2I, vehicle-to-person (V2P)
and V2X.

Table 2.2: On-Board Sensors: Types, Ranges, and Applications

Sensor Type Range Example Applications

Proximity Sen-
sors

5 meters Ultrasonic sensor Detects nearby obstacles,
Assists in parking

Short-range sen-
sors

30 meters Forward camera,
Backward camera,
Short-range radars

Recognizes traffic signs, De-
tects blind spots, Alerts on-
coming traffic, Assists in
lane detection

Medium-Range
Sensors

80-160 meters LiDAR, Medium-
range radars

Detects pedestrians, Aids in
collision avoidance

Long-Range
Sensors

250 meters Long-range radars Supports adaptive cruise
control, Collects informa-
tion at high speeds

The general ACV architecture comprises three layers, each dedicated to specific func-
tionalities:

• Perception layer: This fundamental layer collects raw data from the vehicle’s
environment using onboard sensors. The data collected is processed using sensor
fusion techniques to calculate local and global location parameters. This layer also
generates a map of the environment.

• Planning/processing layer: Placed above the perception layer, this layer is essen-
tial in route planning. It determines the optimal overall route based on the vehicle’s
current position, destination, and real-time road and traffic data. Using the en-
vironment map generated by the perception layer, this layer calculates trajectory
planning and tracking.

• Control layer: The control layer provides commands to control the vehicle’s actu-
ators, including the steering wheel, accelerator pedal, and brake pedal. It ensures
the vehicle operates according to the planned route and follows safety protocols.

In addition to these primary functions, the perception layer shares environmental
information with other road users, promoting cooperative driving. Decision-making is an
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essential function of the planning layer, where high-level control decisions are made, such
as controlling servo motors and actuators. The complexity of making critical decisions in
real-time requires connectivity between vehicles, infrastructure, and road users, further
underlining the importance of interconnectivity in deploying ACVs.

2.1.5 Key Technologies for IoV

Traditional methodologies that have proven effective in real-time may not be suitable for
implementing and deploying the various advanced features of ACVs. However, recent
sensors, cloud computing, and artificial intelligence innovations offer promising solutions
for developing intelligent, connected autonomous vehicles that can provide many benefits.
This sub-section explores current technologies that support the deployment of connected
autonomous vehicles in the real world.

2.1.5.1 Sensing environment

Unlike traditional vehicular networks focusing primarily on homogeneous or single-type
sensors, ACVs use a wide range of heterogeneous sensors. These sensors perform various
functions and can be classified into three categories, as shown in Figure 2.5.

• Detection sensors: These sensors are generally mounted on the vehicle and are re-
sponsible for identifying the various characteristics of the surrounding environment.
They also play a role in monitoring the internal state of the vehicle.

• Ambient sensors: Ambient sensors are designed to monitor the environment and
collect valuable data. The data collected by these sensors is forwarded to the relevant
authorities for analysis [29].

• Backscatter sensors: These are versatile and can be integrated into various ob-
jects. They provide a better perception of the surrounding environment and detect
objects like intruders and cyclists.

2.1.5.2 Data Access

ACVs generate significant data through signals emitted by sensors in, on, and around
vehicles. This data must be accessible to authorized authorities, other vehicles in the
network, and the various infrastructures in the vehicular environment to enable them
to make timely decisions. Hosting this data requires resources and high-end servers for
temporary storage and archiving.
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Figure 2.5: Intelligent sensing technology of connected autonomous vehicles [7]

Cloud computing technology has recently made it possible to meet the data access
challenge by offering on-demand virtual resources. This enables ACVs to communicate
effectively with each other, with the infrastructure, and with all elements of their environ-
ment. In addition, fog, edge, and rooftop computing technologies have emerged to support
data access, with some ACV fog nodes operating on the principles of fog computing. These
nodes provide valuable environmental information and facilitate inter- and intra-vehicular
communication. The fog nodes can further process the data collected, and analyses can
be performed on the crowd-sourced data from the ACVs. Various optimization algorithms
improve the performance of fog nodes.

2.1.5.3 Data Security and Privacy

Security is a significant concern in vehicular communication, mainly when the environment
encompasses older and autonomous vehicles. Appropriate security measures are essential
to avoid confusion. Recent developments have introduced Physical Layer Security (PLS)
as a viable alternative to traditional cryptography. Studies have shown that PLS can
improve performance in terms of privacy and enable confusion techniques between source

13



CHAPTER 2. BACKGROUND CONCEPTS

and destination. PLS can also prevent vehicles from broadcasting false data.
Blockchain techniques are increasingly being adopted in various applications to estab-

lish trust models for ACVs. These trust models typically involve additional policies and
certificates to ensure the security and confidentiality of communications.

2.1.5.4 Vehicular Communication

ACV performance highly depends on the data received from various sensors. To improve
performance, the communication bandwidth must support data rates of gigabits per sec-
ond. Millimetre-wave (mmWave) technology is used for ACVs, enabling high-performance
V2X communications.

V2V mmWave links enable vehicles to share information in real-time with neighbor-
ing vehicles in their environment. V2I mmWave links have applications in road safety,
facilitating data collection from vehicles for decision-making. ACVs also use high-speed
mmWave links to download real-time maps and dynamic environmental feeds. Continuous
communication between vehicles and their environment is essential to achieving full vehi-
cle autonomy. The following sections will provide a detailed exploration of the enabling
communication technologies for autonomous vehicle networks.

2.2 Vehicular Communication Technology

Wireless communication of sensor data plays a crucial role in extending the capabili-
ties of connected vehicles, advancing autonomous driving, and reducing reliance on hu-
man drivers. Although effective, traditional technologies such as dedicated short-range
communication (DSRC) or fourth-generation cellular connectivity (4G-LTE) often fail to
meet the high-bandwidth, low-latency requirements of V2X communication. In response
to these challenges, the evolution of vehicular communication technology has led to the
emergence of fifth-generation (5G) and beyond 5G (B5G) networks. These advanced tech-
nologies, which use mmWave communications, offer promising solutions to autonomous
vehicle networks’ high bandwidth and low latency requirements.

2.2.1 5G and Beyond 5G Technologies for Vehicular Communi-

cation

In the following subsections, we examine the evolution of vehicular communications tech-
nology, particularly the evolution of 5G and B5G networks. We discuss why mmWave
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communications in 5G and B5G networks are emerging as preferable solutions for data
exchange in autonomous vehicular networks.

2.2.1.1 5G Technology for Vehicular Communication

With the advent of fifth-generation (5G) mobile communications, vehicular networks have
taken a significant step forward, building on advances in Long Term Evolution Advanced
(LTE-A) and LTE-A Pro standards. Instead of a radical break with its predecessors,
5G seeks to create a unified vehicle network by combining various existing techniques
to improve V2X communication. A fundamental aspect contributing to the success of
5G is its ability to support a wide range of use cases within vehicle networks. This
has necessitated the early identification of three critical generic services for new scenarios:
Enhanced Mobile BroadBand (eMBB), massive Machine Type Communications (mMTC),
and Ultra-Reliable Low-Latency Communication (URLLC), as indicated by the Third
Partnership Project (3GPP) [8]. Figure 2.6 visually summarises the importance of eight
key performance indicators (KPIs) for these three core 5G services:

• eMBB is designed for bandwidth-intensive applications that often require extremely
high throughputs over stable/long connections.

• mMTC is aimed to support a high number of IoV devices. These devices, often
only active briefly to transmit short data payloads, must operate with low power
consumption while providing sensing and actuation capabilities.

• URLLC is designed for services with high availability, latency, and reliability re-
quirements, and it also deals with high mobility.

The new 5G added new techniques and features to satisfy these different requirements
for vehicular communications, which will be described briefly by following:

• Millimeter waves (mmWave): mmWaves are high-frequency radio waves in 5G
networks that provide greater bandwidth and faster data transmission. They are
particularly effective for short-range, high-speed communications in vehicular net-
works.

• Device-to-Device (D2D) communications: D2D communication allows vehi-
cles to communicate directly with each other without going through a centralized
network. This reduces latency, improves response times, and enhances safety appli-
cations in vehicular networks.
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Figure 2.6: Spydergraph of eight critical 5G capabilities for 5G core services [8]

• Beamforming: Beamforming technology focuses radio signals on specific devices
or areas of the network. By concentrating the signal, Beamforming improves signal
strength, reduces interference, and improves communication reliability.

• Massive Multi-Input-Multi-Output (MIMO): MIMO technology uses multi-
ple antennas to transmit and receive data simultaneously. It improves signal quality,
network capacity, and overall reliability in vehicular networks.

• Small cell: Small cell deployments involve placing small, low-power base stations
in urban areas. This approach extends network coverage and capacity and ensures
seamless communication in densely populated areas.

• Non-Orthogonal Multiple Access (NOMA): NOMA is a multiple access tech-
nique that allows multiple devices to share the same spectrum of resources efficiently.
It optimizes network utilization and supports a higher density of connected devices.

• Virtualization: Network Function Virtualization (NFV): NFV is a tech-
nology that virtualizes network functions, allowing them to run on a virtualized
infrastructure rather than on dedicated hardware. This improves the flexibility,
scalability, and cost-effectiveness of network management.

• Software-Defined Networking (SDN): SDN centralizes network control by sep-
arating the control plane from the data plane. It makes network management more
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flexible, allowing dynamic adjustments to meet the changing demands of vehicular
networks.

• Network Slicing: Network slicing creates virtual networks within the 5G infras-
tructure. Each network slice is customized to meet the specific requirements of
different vehicular applications, ensuring efficient resource allocation and quality of
service.

According to the Third Generation Partnership Project (3GPP), 5G networks are
divided into frequency bands, classified as FR1 (Sub-6GHz) and FR2 (mmWave). While
the Sub-6GHz band encompasses the existing LTE spectrum, the mmWave band operates
in the frequency range from 30 to 300 GHz. The shorter wavelengths of mmWave allow
for higher data transmission rates and more abundant transmission channels, reducing
network congestion. However, it is essential to recognize that mmWave signals have
limited penetration capabilities and are sensitive to obstructions such as buildings, trees,
and adverse weather conditions.

2.2.1.2 Beyond 5G (B5G) Technology for Vehicular Communication

Building on the foundations of 5G, B5G technology is emerging as the next frontier
in vehicular communications. B5G technology promises to take V2X communication to
unprecedented levels. It explores even higher frequencies, applying advanced beamforming
techniques and refining network slicing. The synergy between 5G and the unlimited
potential of B5G will revolutionize vehicular networks, paving the way for an era of
increased safety and efficiency and fully connected transport systems.

2.2.1.3 B5G Advances in Vehicular Communication

B5G technology brings several advances that should improve vehicular communications
based on mmWave. Critical differences between 5G and B5G are summarized in Table
2.3.

• Frequency range: One of the critical distinctions between 5G and B5G is their
respective frequency ranges. While 5G operates primarily in the sub-6 GHz and
mmWave frequency bands, B5G extends further into higher frequency ranges, sur-
passing traditional mmWave bands. This extension gives B5G access to much greater
spectrum resources, potentially increasing data rates and reducing latency in V2X
communications.
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• Advanced beamforming: B5G introduces advances in beamforming techniques
compared to 5G. While 5G already exploits beamforming to improve signal quality
and reduce interference, B5G goes even further. B5G’s improved beamforming
capabilities promise more precise signal control, which is particularly beneficial in
dynamic vehicular environments where maintaining reliable connections is crucial.

• Network slicing refinement: Both 5G and B5G incorporate the concept of net-
work slicing, which allows network resources to be customized for different appli-
cations. However, B5G further refines this concept. It offers more granular and
adaptive network slicing capabilities, allowing services to be tailored to the specific
needs of different vehicular applications. This refined network slicing is essential for
efficient resource allocation in vehicular communication’s complex and varied world.

• Expanding use cases: 5G initially identified three core services: eMBB, mMTC,
and URLLC. B5G builds on this foundation by expanding the range of potential use
cases in vehicular communications. This expansion reflects the increasing diversity
of applications and requirements in modern vehicle networks.

• Reduced latency: While 5G has already delivered significant improvements in
latency over previous generations, B5G aims to push this limit even further. It
seeks ultra-low latency, crucial for real-time communication in autonomous vehicles
and safety-critical applications.

• Improved reliability: B5G strongly emphasizes improving reliability, particularly
in highly mobile vehicle scenarios. It incorporates advanced techniques to ensure
robust and reliable communications, even in harsh conditions.

• Improved security: As vehicular communication becomes increasingly integrated
into safety-critical applications, security becomes even more critical. B5G intro-
duces enhanced security measures to protect against evolving threats and ensure
the integrity of communications in vehicular networks.

Table 2.3: Comparison between 5G and B5G

Aspect 5G B5G
Frequency
Bands

Operates primarily in Sub-
6GHz and mmWave bands
(FR1 and FR2).

Explores even higher-
frequency bands than
mmWave.
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Bandwidth and
Speed

Offers substantial bandwidth
and high data speeds.

Promises wider bandwidth and
faster data transmission.

Use Cases Targets eMBB, mMTC, and
URLLC.

Further refines eMBB, mMTC,
and URLLC for diverse vehic-
ular applications.

Network Slicing Introduces network slicing for
customized service delivery.

Optimizes network slicing for
precise vehicular application
requirements.

Beamforming Utilizes beamforming for direc-
tional signal transmission.

Advances beamforming tech-
niques for more precise and
adaptable connections.

Security Deploys security measures to
protect data and networks.

Requires more robust authen-
tication and encryption mech-
anisms for advanced applica-
tions.

Deployment Sta-
tus

Currently deployed and con-
tinually expanding worldwide.

Pilot projects and trials are
underway in the research and
development phase.

2.2.2 MmWave-enabled Vehicular Communication

Due to several advantages, mmWave band communication has garnered significant atten-
tion in vehicular network research. These include access to a substantial spectrum ranging
from 30 to 300 GHz, high security, low latency, and robust resistance to interference and
jamming [30]. Figure 2.7 provides a graphical representation of the mmWave frequency
band concerning other bands used for wireless communication at microwave frequencies.
Notably, these frequencies are nearly ten times larger than the 20 MHz cellular channel
employed by LTE [31].

However, it is essential to recognize that V2X communication can encounter challenges
when operating at mmWave frequencies, as indicated in Figure 2.8. These challenges
stem from the unique characteristics of signal propagation in the microwave band [32]
and include [33]:

• Higher path loss: mmWave signals experience increased path loss due to factors
such as air attenuation, tree signal absorption, and susceptibility to degradation
from rain. This leads to more significant propagation attenuation compared to
lower frequency bands.
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Figure 2.7: Graphical illustration of the mmWave frequency band’s placement relative to cel-
lular/wireless operating ranges

• Higher power consumption: Higher power consumption is necessary to maintain
a signal-to-noise ratio (SNR) equivalent to that of lower frequency bands.

• Higher penetration losses: mmWave signals can face obstacles when penetrating
walls, buildings, or other structures.

Addressing these critical transmission challenges requires high-quality directional an-
tennas and advanced signal processing techniques like Beamforming (BF).

2.2.3 Beamforming in mmWave Vehicular Communication

In mmWave frequencies, the inherent high path loss poses a significant challenge to achiev-
ing robust network performance in vehicular networks. To address this challenge, re-
searchers and academia have turned to beamforming techniques. Beamforming involves
sending a signal from a base station to a receiver in a concentrated form, ensuring that
only the intended user receives it while rejecting all other signals. This is achieved by
adjusting the phase and amplitude of individual antenna elements to focus the antenna’s
power, typically distributed in all directions (omnidirectional transmission), into a specific
direction, as illustrated in Figure 2.9.

1. Types of Beamforming Three distinct types of Beamforming have emerged in
5G networks, each characterized by its architecture and hardware implementation:

• Analog Beamforming: Analog beamforming employs a single radio fre-
quency (RF) signal and multiple phase shifters within the antenna compo-
nents, as depicted in Figure 2.10. Advanced hardware and precoding algo-
rithms regulate the phase of each element, effectively steering the beam. This
approach finds widespread use in long-range systems like radar and short-range
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Figure 2.8: mmWave vehicular communication

communication systems like mmWave communication. The advantages of ana-
log Beamforming lie in its simplicity of implementation and cost-effectiveness.
However, it comes with a limitation: an RF chain can transmit only a single
stream at a time, which limits the potential benefits of spatial multiplexing for
Beamforming and MIMO.

• Digital Beamforming: Digital Beamforming generates distinct signals for
each antenna element within the digital baseband. The number of RF chains
equals the number of antenna elements, each with its dedicated RF chain and
phase shifter, as illustrated in Figure 2.11. While digital Beamforming allows
for multiplexing strategies, it is relatively complex and cost-prohibitive, making
it more suitable for base stations rather than mobile devices.

• Hybrid Beamforming: Hybrid Beamforming aims to exploit the advantages
of both analog and digital beamformers, as shown in Figure 2.12. Baseband
digital beamformers handle some beamforming tasks in this approach, while
analog RF beamformers handle others. Typically, the number of transmitted
signals and RF channels in a beamforming antenna is much smaller than the
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Figure 2.9: Difference between the omnidirectional and directional antennas

total number of antennas, reducing hardware costs and power consumption.

2. Applications and importance Applying beamforming techniques in vehicular
mmWave communications is paramount in addressing the unique challenges posed
by 5G networks in vehicular environments. These techniques play a crucial role in
the following areas.

• Improving signal quality: Beamforming dramatically improves the sig-
nal quality and reliability of V2X communication, ensuring that critical data
and commands are accurately transmitted and received, even in highly mobile
scenarios.

• Minimized interference: By accurately directing the signal to the intended
receiver, Beamforming reduces interference from other devices and neighboring
networks, resulting in more stable, interference-free communication.

• Increased range: Beamforming extends the range of communications in
mmWave frequencies, enabling vehicles to exchange data over longer distances,
improving road safety and traffic management.

• Improving network efficiency: These techniques maximize the efficiency
of vehicular networks by optimizing data transmission, reducing energy con-
sumption, and minimizing latency.

• Enabling intelligent transport: Beamforming is a critical component
of intelligent transport systems, autonomous navigation, and the realization
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Figure 2.10: Analog beamforming structure [9]

of smart cities. It contributes to safer, more efficient, and better-connected
vehicular environments.

Beamforming, which encompasses analog, digital, and hybrid methods, has become
indispensable for vehicular mmWave communications. These techniques offer pre-
cise control of signal direction, reduced interference, and extended communications
range, making them critical to the success of 5G networks in vehicular environments.

However, deploying mmWave communications in vehicular networks comes with
challenges that must be overcome to fully exploit the potential of mmWave technol-
ogy in V2X communications.

2.2.4 Main Challenges in mmWave vehicular Communications

Implementing mmWave communication for V2X (Vehicle-to-Everything) networks poses
several significant challenges. According to [34] and [35], these challenges can be catego-
rized as follows:

2.2.4.1 Blockage effects

In vehicular environments, the propagation characteristics of mmWave are susceptible to
blockage where pedestrians, trees, or cars can block line-of-sight (LoS) beams. There is a
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Figure 2.11: Digital beamforming structure [9]

strong dependence of the network performance on the environment, such as the number of
moving vehicles, the mobility of reflectors and obstacles, the position of the RSU, or the
position of the communication device. Thus, to guarantee consistent service, examining
the traffic pattern and determining where the RSU antenna should be located and how
the beams should be distributed is necessary.

2.2.4.2 Power consumption

Due to the dramatic increase in data flow requirements, power consumption has become
a significant issue for dynamic vehicular networks. Energy efficiency (EE) in mmWave
networks can often be improved by choosing a short transmission line between TX and RX.
However, it is not clear that choosing a short line will always result in energy savings, as
mobility brings many other elements into the system, such as flow delay, dynamic topology,
frequent switching, etc. Therefore, methods that can be adapted to the system’s specific
needs are needed.

2.2.4.3 Effective Authentications

Message authentication is crucial for mmWave networks to deliver trustworthy services.
However, mobility causes frequent handover across mmWave small cells/HetNets, neces-
sitating multiple authentications between various small cells/tiers/networks, which im-
poses high communication costs and excessive delay [36]. Consequently, more effective
authentication mechanisms are needed, and numerous prototypes have been created. To
improve authentication accuracy while decreasing latency, Duan et al. [37] presented a
software-defined-networking-enabled (SDN-enabled) rapid authentication technique that
uses weighted security context transfer. In [38], we propose and investigate a cooperative
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Figure 2.12: Hybrid beamforming structure [9]

message authentication scheme for a V2X communication, where the fleet, rather than
individual vehicles, serves as the authentication units. Future attack defence and EE qual-
ity improvements may benefit from using intelligence and programmability to optimize
handover authentication further.

2.2.4.4 Beam Alignment (BA)

High-gain directional antennas are required to overcome the challenges associated with
propagation signals at mmWave frequencies. These antennas need BA from the mmWave
devices to adjust the directions of the transmit and receive angles. BA is changing the
send and receive beams to achieve optimal performance. It is an essential procedure
vehicular networks use to adapt to a changing environment. For BA existing approaches,
the most straightforward is to search for all possible antenna beams and choose the one
with the highest SNR to ensure V2X communication. However, this method is inefficient,
and the overhead grows with the number of antenna combinations (and thus the number
of antenna elements). The beam search space for a single connection with N beams per
antenna and no omnidirectional reception is N2. In the case of omnidirectional reception,
the complexity remains linear.

In summary, mmWave communication has immense potential to revolutionize vehicle
networks but faces multiple challenges. These challenges highlight the complexity of
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establishing seamless V2X communication within mmWave vehicle networks. Resolving
these issues is essential to ensure the reliability and sustainability of millimeter-wave
vehicular communications. It represents a significant step forward in improving intelligent
transport systems broadly.

In the following chapter, we will comprehensively explore proposed solutions and
emerging technologies to face the critical problems of BA in V2X communications. This
exploration will provide valuable insights into overcoming these obstacles, thereby pro-
pelling the evolution of V2X communication.
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Chapter 3

Vehicular Communication Based On
mmWave Beam Alignment: A
Literature Review

3.1 Introduction

Vehicular networks continue to develop, and the search for efficient communication and
seamless connectivity is paramount. Among this field’s many challenges and innovations,
beam alignment (BA) is emerging as a critical technology. It could revolutionize V2X
communication and pave the way for autonomous navigation. BA is the art of precisely
directing wireless signals, aligning them for optimal communication between vehicles,
infrastructure, and the environment. This technology is the basis for reliable V2X com-
munication, where a split-second connection can make the difference between a smooth
journey and a road accident.

In this chapter, we propose a comprehensive taxonomy, as depicted in Figure 3.1, to
address the evolution of vehicular networks in BA. It classifies existing techniques, ranging
from classical optimization approaches to innovative approaches exploiting the power of
deep learning.

3.2 Classical-Based Beam Alignment Approaches

This section examines classical-based BA approaches that enable V2X communication in
5G/B5G networks. Based on signal processing and optimization, the above methods have
consistently produced reliable and interference-resistant connections in the literature. We
can divide this category into traditional optimization and deep learning approaches.
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Figure 3.1: The proposed taxonomy of BA approaches for mmWave vehicular communication

3.2.1 Meta-heuristic Optimization Approaches

In vehicular communications optimization, various approaches have been explored to ad-
dress the complex challenges of improving signal quality, minimizing interference, and
extending communications range. Traditional optimization techniques have long been at
the forefront of these efforts, providing proven methods for fine-tuning parameters and
improving communication efficiency. However, as the requirements of modern vehicu-
lar networks become more complex and dynamic, new approaches inspired by nature’s
problem-solving mechanisms have gained prominence. Genetic algorithms (GA), particle
swarm optimisation (PSO) and simulated annealing techniques are the leading candi-
dates in this field. These innovative optimization strategies are inspired by biology and
collective behavior, offering unique advantages for adapting to vehicular communication
networks’ constantly changing, highly mobile environment.

3.2.1.1 Genetic Algorithms for Beam Alignments

Genetic algorithms (GAs) represent a powerful class of optimization techniques inspired
by natural selection and the principles of genetic inheritance. These algorithms have been
widely applied to solve complex problems due to their simplicity of implementation, low
operating costs, and easy parallelization.

GAs work iteratively, generating new candidate solutions (beamforming configura-
tions) and evaluating their suitability based on predefined criteria. Over successive gener-
ations, GAs select the most promising solutions, recombine their characteristics through
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crossover, and introduce diversity through mutation, thus evolving the population to-
wards increasingly efficient beamforming strategies, as shown in Figure 3.2. This ability
to adapt and explore a vast solutions space makes GAs well-suited to vehicular scenarios’
dynamic and highly mobile nature. Numerous research studies have used this method to
solve problems related to V2X communication.

Figure 3.2: Flowchart of Genetic Algorithm (GA)

In [39], the authors proposed a novel approach that uses GAs as a required opti-
mization tool to address the challenges associated with the initial access phase in 5G
millimeter-wave (mmWave) communications. The proposed method begins with utiliz-
ing GAs to optimize beamforming configurations dynamically during the initial access
process. Then, GAs adaptively adjust parameters, such as beam direction and power
allocation, to maximize the likelihood of successful communication establishment. This
intelligent optimization process considers various factors, including signal propagation
characteristics and the dynamic nature of mmWave channels. Through an iterative and
evolutionary approach, the system fine-tunes beamforming settings to locate and syn-
chronize with base stations efficiently. The simulation results show that the suggested
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approach outperforms the method discussed in the references [40], [41], [42], achieving
comparable outcomes to Exhaustive Search (ES). However, one potential limitation is
the computational complexity of using GAs for real-time optimization, which can require
substantial processing power.

On the other side, to tackle the challenge of the initial access procedure of connect-
ing a moving vehicle (VE) and a stationary base station (RSU) through bidirectional
communication, I Rasheed [43] proposed an innovative beam refinement technique for
5G mmWave Vehicle-to-everything (V2X) communications. This approach utilizes an
Improved Genetic Algorithm (IGA) to discover the optimal BA where the RSU and Ve-
hicle are equipped with multiple-input multiple-output (MIMO) antenna systems. The
IGA employed in this research incorporates crucial improvements in the selection process,
elitism, crossover operations, and mutation procedures. A series of comprehensive analy-
ses are used to evaluate the effectiveness of the proposed technology. These evaluations
include critical factors such as capacity, codebook size, probability of failure, and total
transmitted power. In particular, the study performs an extensive comparative analysis,
contrasting the proposed approach with the most advanced previous work in this domain.
The main performance metrics are closely examined, including capacity achieved, outage
probability, and total transmitted power utilization. Nevertheless, like many optimiza-
tion algorithms, GAs are sensitive to parameter tuning. Efficient parameter tuning can
be complex, and sub-optimal tuning can lead to reduced performance.

3.2.1.2 Particle Swarm Optimization for Beam Alignment

After introducing Genetic Algorithms (GAs) as one of the optimization techniques for
BA in vehicular communications, we discuss another powerful method known as Particle
Swarm Optimization (PSO). PSO is a nature-inspired optimization algorithm inspired
by the collective behavior of swarms in nature, such as flocks of birds and schools of
fish. In PSO, particles in a swarm have positions and velocities representing potential
solutions to the optimization problem. These particles iteratively adjust their positions
and velocities based on their own experience and the collective knowledge of the swarm, as
shown in Figure 3.3. This adaptive and iterative approach is used to refine beamforming
configurations, improve signal quality, reduce interference, and optimize communication
performance. The PSO technique finds applications in vehicular communication systems
because it can address the vehicular communication scenario’s dynamic and highly mobile
nature.

Various studies have effectively utilized this technique to ensure efficient vehicular com-
munications. The authors in [44] presented an innovative beamforming strategy for V2V
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Figure 3.3: Flowchart of Particle Swarm Optimization (PSO)

communications in urban intersections. The main objective is to optimize the antenna
array configuration using an algorithm based on PSO to maximize the power received
in all intersection streets. The proposed approach consistently outperforms the conven-
tional isotropic antenna scheme in various simulated scenarios, including those that have
yet to be explicitly trained. Simulation results demonstrate that beamforming extends
the achievable connectivity range by an average of approximately 14 meters in all street
directions. This extended range translates directly into improved road safety by giving
vehicles a longer awareness window, giving them the extra reaction time crucial to avoid-
ing accidents. However, further analysis of the computational complexity associated with
implementing the algorithms is required in this work. This means the proposed method
may have computational requirements that must be better understood and mitigated for
practical use.
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Although traditional optimization approaches have provided fundamental solutions
for BA in vehicular communications, they have limitations. These methods often rely on
predefined models and assumptions that may not capture the complexity of real-world
vehicle dynamics. In addition, they may struggle to adapt quickly to changing conditions,
which could undermine their effectiveness in highly mobile 5G networks.

3.2.1.3 Simulated Annealing for Beam Alignment

Another notable meta-heuristic optimization approach used in BA for vehicular com-
munications is Simulated Annealing (SA). SA is a probabilistic optimization technique
inspired by the annealing process in metallurgy. It is well-suited for addressing complex
optimization problems where finding the global optimum is challenging due to multiple
local optima. In SA, the optimization process starts with an initial solution and iterative
explores the solution space by probabilistic accepting worse solutions early in the search.
As the search progresses, the probability of taking worse solutions decreases, allowing SA
to gradually converge toward an optimal or near-optimal solution, as presented in Figure
3.4.

In vehicular communications, SA can be applied to dynamically adjust beamform-
ing configurations, optimize signal quality, and minimize interference. This adaptability
makes SA suitable for the dynamic and highly mobile nature of 5G vehicular networks.
While SA has demonstrated effectiveness in various optimization problems, its applica-
tion to BA in vehicular communications is an area of ongoing research. Researchers are
exploring how SA can be tailored to address the specific challenges posed by vehicular
networks, including rapid changes in network topology and environmental conditions.

Several research works have applied the SA algorithm in recent years. For example,
in a study by Li et al. [45], a new approach was proposed that combines the Rosenbrock
optimization algorithm with SA techniques to improve beamforming mmWave vehicular
communication systems. In this approach, the beamforming process begins with an ini-
tial set of candidate beamforming parameters generated by the Rosenbrock algorithm.
These parameters include beam direction, beam width, and transmit power settings. To
guide the optimization process, the study defines an objective function that quantifies the
quality of the communication link, considering factors such as signal strength, interfer-
ence, and other relevant parameters. SA is then introduced to refine these beamforming
parameters. SA is essential as a global optimization mechanism, effectively extending the
solution to space exploration. It makes it possible to escape local optima by occasionally
accepting parameter changes that may initially degrade the objective function. This be-
havior mirrors the annealing process in metallurgy. In addition, to improve the efficiency
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Figure 3.4: Flowchart of Simulated Annealing Algorithm (SA)

of the Rosenbrock algorithm, the study incorporates a tabu table mechanism. This table
stores previously explored solutions, thus avoiding redundant revisits and enhancing the
efficiency of the optimization process.

The proposed method has been rigorously evaluated using simulations in realistic
millimeter-wave communication scenarios. The results of these simulations highlight the
effectiveness of the tabu-table enhanced Rosenbrock algorithm, combined with simulated
annealing, in achieving accurate and efficient beamforming. In particular, its ability to
adapt to changing channel conditions and mitigate blocking effects makes it a promising
solution for optimizing millimeter-wave communication links. Nevertheless, Integrating
SA and the Tabu Table Enhanced Rosenbrock Algorithm may provide computational
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overhead.
To tackle the challenges posed by metaheuristic optimization techniques, we are turn-

ing to the promising field of machine learning. Machine learning, known for its adaptabil-
ity to complex and dynamic environments, offers a compelling alternative. The following
section will examine how machine-learning approaches provide innovative solutions to
overcome these limitations, opening up a new era of adaptive BA in vehicular communi-
cation.

3.2.2 Machine Learning-Based Optimization for Beam Alingn-

ment

Machine learning, a subset of artificial intelligence, enables computers to learn from data
and enhance their performance on specific tasks over time without explicit programming.
It revolves around the idea that machines can automatically detect patterns, make de-
cisions, and refine their behavior based on experience. Machine learning encompasses
various techniques, from supervised learning, where models are trained on labeled data,
to unsupervised learning, which uncovers hidden patterns in unstructured data, and re-
inforcement learning, which allows machines to learn through interaction with their en-
vironment. It has diverse applications, including image recognition, natural language
processing, and optimization, making it a trans-formative force across industries and do-
mains. As shown in Figure 3.5, the machine learning process can be divided into two
distinct steps. The initial step is the training phase, during which a model is built using
a subset of the available data. Then, in the evaluation phase, a battery of tests is per-
formed using a separate dataset to measure the disparities between the generated model
and real-world conditions.

In the search for precision and adaptability in BA for vehicular networks, the integra-
tion of machine learning techniques has emerged as a transformative research path. By
recognizing vehicular communication’s dynamic and the high mobility limitation imposed
on V2X scenarios, machine learning opens the way to intelligent adaptation and optimiza-
tion. These approaches exploit the power of data-driven decision-making to revolutionize
BA and ensure reliable and efficient communication in an ever-changing vehicular network
environment. These methodologies, from supervised learning to reinforcement learning,
represent a paradigm shift in the approach to BA between the base station (transmitter)
and vehicles (receiver) in 5G vehicular networks and beyond.

Several studies based on ML approaches were proposed in the literature to ensure BA
between the entities of the vehicular networks, as summarised in Table 3.1.

Asadi et al. introduced a novel online learning method called ’Fast Machine Learning’
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Figure 3.5: Process of machine Learning

(FML) to manage beams in mmWave base stations (mmBs), as described in their pub-
lication [46]. The proposed method is influenced by the classical reinforcement learning
technique known as the multi-armed bandit problem (MAB) [14]. The FML algorithm
enables mmBs to independently and efficiently select the most suitable beams, effectively
adapting to changing environmental conditions and overcoming network congestion obsta-
cles. This technological development is crucial in improving the efficiency of 5G cellular
network communications, especially in V2X communications. When used with mmWave
frequency bands, the FML method facilitates the selection of beam directions that exhibit
enhanced bandwidth performance compared to traditional approaches [47]. Nevertheless,
it is essential to note that this approach does face the challenge of longer execution times
as it adapts to varying traffic dynamics and congestion scenarios.

To address the challenges posed by mobile obstacles, also called dynamic obstacles,
in road environments, the authors of [48] introduced an effective method for achieving
rapid mmWave alignment between vehicles and infrastructure. This method relies on the
vehicle’s position and a repository of past beam data (beam history), which is stored
in a database on Roadside Units (RSUs). This historical data is employed to rank the
most promising beam direction angles. The authors of this study utilized a classification
technique based on a Learning-to-Rank (LtR) approach [49], a popular machine learning
method. Initially, the vehicle sends a training request to the RSU, including its positional
information. Subsequently, the RSU generates a list of beam pairs through LtR. Following
this, beam training is executed, guided by the historical beam data, to determine and relay

35



CHAPTER 3. VEHICULAR COMMUNICATION BASED ON MMWAVE BEAM ALIGNMENT: A
LITERATURE REVIEW

the optimal angular beam direction to the vehicle. This enables high-speed millimeter-
wave communication. It is important to note that it is recommended to incorporate
additional contextual data, such as vehicle speed and orientation, for improved system
modeling, as the LtR approach benefits from a more comprehensive set of details.

Many of the existing solutions for BA are grounded in supervised learning methods,
which require collecting all data in advance. In [50], the authors introduced a multi-armed
bandit framework to develop a real-time and efficient BA and enhancement algorithm
based on vehicle positions. In contrast to offline learning, this method allows the database
to continuously update as new observations are collected while the vehicle is in motion. In
this research, the authors combined the upper confidence bound (UCB) algorithm to select
the best beam pair and a modified version of Hierarchical Optimistic optimization (HOO)
to refine the chosen beam pair. The numerical outcomes of this study revealed that, over
time, the beamforming gain could be improved by approximately 1.5 dB compared to
previous works [51] and [52]. Nevertheless, it is worth noting that the capacity of the MAB
framework is limited when it comes to extracting and utilizing contextual information for
beam training purposes.

For V2V communication in the mmWave vehicular network, a novel approach was
introduced by the authors of [53], departing from previous works such as [54] and [55],
which were based on conventional methods of selecting an appropriate analog beam to
facilitate simultaneous V2V transmissions. In this innovative method, the authors have
exploited the power of a support vector machine (SVM) to optimize the beam selection
process to maximize the average sum rate (ASR) in V2V communication scenarios over
MmWave. According to the simulation results, this machine learning-based approach
has several advantages over traditional solutions based on channel estimation, including
reduced complexity and superior ASR performance during simultaneous V2V transmis-
sions. However, it is essential to note that the Support Vector Machine (SVM) technique
may not be the most reliable choice when dealing with large databases due to its high
computational and substantial memory requirements for managing large datasets.

In [56], the authors introduced a novel machine-learning model that significantly re-
duces search times and maintains a remarkable accuracy rate of more than 95% for BA
in mmWave networks. This new algorithm is designed to predict the optimal base station
(BS) and identify the most promising candidate beams (called "optimal beams") using
only the user’s location information, which significantly reduces the search time. Experi-
mental evaluation has shown a remarkable reduction in search space, approximately four
times for base station selection and more than ten times for beam selection. However, it
is essential to note that this study does not analyze energy consumption.
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Table 3.1: Machine Learning-Based Beam Alignment in Vehicular Networks

Study Machine
Learning
Technique

Key Contribu-
tions

Advantages Limitations

Arash et
al. [46],
2018

MAB Introduced FML
to select the
most suitable
beams

Efficient adapta-
tion to changing
conditions, en-
hanced bandwidth
performance.

Longer exe-
cution times,
especially in dy-
namic scenarios.

Vutha et
al. [48],
2017

LtR Proposed a
method for
rapid mmWave
alignment using
vehicle position
and historical
beam data.

High-speed com-
munication, LtR
approach for
ranking beam
directions.

Recommended
additional con-
textual data
for better ve-
hicular system
modeling.

Vutha et
al. [50],
2019

MAB + UCB Developed a
real-time and
efficient BA
framework.

Continuous
database up-
dates, improved
beamforming gain.

Limited ca-
pacity for
extracting and
using contextual
information.

Yang et al.
[53], 2020

SVM Optimizing
beam selec-
tion, improving
average sum
rate (ASR) in
V2V mmWave
scenarios.

Reduced complex-
ity, superior ASR
performance.

High compu-
tational and
memory require-
ments for large
datasets.

Yuqiang
et al. [56],
2021

Machine-
learning model

Reducing BA
search times
with over 95%
accuracy.

Remarkable re-
duction in search
space, especially
for base station and
beam selection.

Energy con-
sumption
analysis not
conducted.

In conclusion, machine learning techniques have become powerful tools for improving
BA in mmWave vehicular networks. These approaches have demonstrated their ability
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to reduce search times and improve alignment accuracy. However, they face challenges
regarding data requirements, adaptability to dynamic environments, and computational
complexity, particularly in resource-limited scenarios. In addition, the interpretability of
machine learning models remains an issue, limiting their transparency in decision-making
processes. We are now turning our attention to deep learning approaches to address
these challenges and fully exploit the potential of BA in mmWave vehicular networks. In
the following sections, we examine how deep learning architectures, such as deep neural
networks (DNNs), convolutional neural networks (CNNs), and recurrent neural networks
(RNNs), are giving a new form to BA, enabling more efficient and adaptive solutions in
this dynamic communication environment.

3.3 Deep learning-based Beam Alignment Approaches

Deep learning represents a new generation of innovations in mmWave BA. As a subset of
machine learning, deep learning uses multi-layer neural networks to autonomously extract
complex patterns and representations from data. This part of the thesis examines deep
learning-based alignment approaches, exploring proposed research, applications, and their
potential to develop mmWave communication in vehicular networks. These approaches
can be classified into two major categories: neural network-based and deep reinforcement
learning-based.

3.3.1 Neural Network-Based Approaches for Beam Alignment

In mmWave communications, where high-speed, low-latency data transfer is becoming
demanding for precise BA, Neural Networks (NNs) are emerging as a revolutionary force.
These neural networks, inspired by the complex workings of the human brain, offer a dis-
tinct solution to the complexities of mmWave BA procedure. Unlike conventional methods
that rely on predefined algorithms, neural networks can autonomously extract complex
patterns from data. This adaptability allows them to excel in tasks such as optimizing
beam angles, predicting ideal configurations, and dynamically monitoring changes in the
vehicular environment. NNs effectively transform BA into an intelligent, data-driven pro-
cess. They can analyze various factors, including user positions, channel conditions, and
environmental variables, enabling real-time decisions about beam selection, orientation,
and adaptation. The result is a faster and more accurate beam alignment process, which is
essential for improving the potential of in-vehicle mmWave communications, particularly
for 5G networks.

For a more comprehensive view of neural networks and their impact on vehicular
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communications, we will classify them according to their architectural designs into three
categories: DNN, CNN, and RNN. This categorization will provide a clear distinction
between the different NN structures, and we will complement this overview with overviews
of existing research in each category.

3.3.1.1 Deep Neural Network (DNN) for Beam Alignment

Deep neural networks (DNNs) have become a transformative tool for optimizing the align-
ment of communication beams in vehicular networks. DNNs are based on a fundamental
architectural element, the fully connected layer (FCL), often called the dense layer. This
fully connected layer forms the basis of many neural network architectures, including deep
neural networks, and plays a crucial role in achieving BA in vehicular communication sce-
narios.

In Figure 3.6, we can visualize the FCL as a layer with multiple neurons (circles)
where each neuron is connected to every neuron in the previous and subsequent layers.
These connections are represented by arrows, signifying the flow of information. The
FCL performs weighted summations of the inputs of the prior layer, applies an activation
function, and passes the results as output to the next layer. This dense connectivity
allows FCLs to learn complex relationships within the data. It makes them essential for
various tasks, including pattern recognition, feature extraction, and decision-making in
BA for vehicular communication.

Figure 3.6: Schematic representation of a Fully Connected Layer
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According to [57], a one-layer NN can model any relationship between input features
and output results. However, it is well known that a deeper model is more efficient than a
one-layer NN regarding the complexity required to meet a specific performance criterion.
This efficiency comes from the ability of a deeper model to deliver better results with less
complexity.

Here are some studies where the DNN architecture has been applied to ensure BA
in vehicular networks. In [58], the researchers developed a DNN using a fingerprinting
database. This database contains information about beam pairs (transmit and receive),
received signal strength (RSS), and supplementary data like vehicle location. The DNN-
based approach predicts the optimal beamforming vectors, significantly reducing the ini-
tial setup time for MmWave V2X communication. However, it is essential to note that
training this model necessitates an exhaustive fingerprint database encompassing vari-
ous traffic scenarios. Furthermore, if the environment undergoes significant changes, the
model’s performance may degrade post-training as it relies on the original database for
accurate predictions.

Additionally, Sajad et al. [59] introduced a DNN-based approach that relies on ori-
entation information. This approach incorporates details such as the AoA, AoD, and
the receiver’s position to predict a concise list of optimal beam pairs, effectively reduc-
ing the overhead associated with beam alignment. The obtained results of this approach
illustrated that employing a multi-class labelled classifier outperforms the conventional
technique in terms of both performance and accuracy [60]. Nevertheless, this approach
necessitates data for each training sample, a requirement that can be prohibitively costly
and impractical for outdoor mobile communication scenarios.

To enhance the speed and precision of the initial access (IA) process in mmWave
networks, as compared to the conventional beam sweeping (CBS) method, Tarun et al. [61]
designed a DNN for IA (DeepIA). This network was trained to select the optimal beams
for data transfer and minimize the time required for IA by evaluating RSS across various
beams. The outcomes of this study revealed that DeepIA could predict the ideal beam
with an impressive accuracy of approximately 100% in LOS communications. In contrast,
the accuracy of CBS in beam prediction dropped to around 24% under the same LOS
conditions. The RSS signals utilized as input to the DNN, which is transmitted by the
vehicle, could potentially be vulnerable to attacks during data transmission, potentially
affecting the performance of the beamforming process.

Beam management and interference coordination are two further applications for the
DNN model, both employed in dense MmWave networks. In [62], the authors introduced
an innovative model-based DNN approach to optimize critical parameters such as beam
direction, transmit power, and beam width for the position of each network node. They
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developed a beamforming technique to communicate directly between mobile users and
base stations. The results of their study demonstrated that the suggested DNN consumes
less computing time and decreases computational complexity while giving a percentage of
total throughput equivalent to previous approaches. This method may work better over
longer distances outdoors, but it is ideal for closer quarters.

3.3.1.2 Convolutional Neural Networks (CNNs) for Beam Alignment

CNNs are one of the successful Deep Learning models. It should be noted that while DNNs
excel at learning complex relationships in data and making accurate predictions, CNNs
are particularly good at extracting spatial features from multivariate datasets. CNNs are
at the forefront of mmWave communication, where precise spatial information is essential
for efficient beam selection.

CNNs use a set of filters that can be learned to analyze the spatial information con-
tained in the received signal data and extract the high-level features from the given input
raw. In addition to their spatial data expertise, CNNs can adapt to sequential data. This
is particularly useful in mmWave vehicular communication, where data is transmitted in
a time-sequential manner. Using 1D cross-correlation operations enables CNNs to handle
sequential data efficiently.

Figure 3.7: The structure of 1D CNN architecture

According to Figure 3.7, the architecture of a 1D CNN consists of several layers,
including convolutional, pooling, and fully connected layers, which we present below.
These layers work together to process spatial information sequentially, making CNNs
well-suited to beam alignment in mmWave vehicular communications.
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• Convolutional Layer: In this layer, the input feature matrix is locally convolved
using convolution kernels that have already been constructed based on the stride
value. A corresponding feature matrix is generated after the convolution opera-
tion on the input feature matrix. For the 1D CNN, the convolution kernel is one-
dimensional [63], and the convolution operation can be expressed as follows [64]:

xlk =

Nl−1∑
i=1

conv1D(wl−1
ik , Sl−1

i ) + blk (3.1)

The variables xlk and blk represent the input and bias of the kth neuron in the lth
layer. The variable wl−1

ik denotes the convolution kernel between the ith neuron in
the l − 1 layer and the kth neuron in the lth layer. The variable Sl−1

i represents the
output of the ith neuron in the l−1 layer. Nl−1 denotes the number of neurons in the
l − 1 layer. Lastly, conv1D(∗) refers to the one-dimensional convolution operation.

• Pooling Layer: The main objective of the pooling layer is to reduce network
parameters and computational complexity by changing the size of the feature matrix
while preserving the essential features. Pooling operations are mainly of two types:
average pooling and maximum pooling.

• Batch Normalization: is a critical step to normalize each layer’s input, ensuring
a consistent Gaussian distribution. This step enhances learning stability, accelerates
convergence, and mitigates issues related to vanishing gradients during training.

CNNs have performed exceptionally in various vehicular communication tasks, in-
cluding channel estimation [65], beam management [66], and millimeter-wave Channel
State Information (CSI) acquisition [67]. Table 3.2 summarises selected studies employ-
ing CNN-based architectures for BA. This table provides insights into their objectives,
methodologies, performance metrics, and limitations, shedding light on the effectiveness
and challenges of CNN-based approaches.
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Table 3.2: Summary of Proposed CNN-Based Beam Alignment Studies

Reference Objective Methodology Performance
Metrics

Limitations

Radwa et
al. [68],
2021

Improving V2X
communications
reliability

1D CNN Achievable data
rate, packet deliv-
ery ratio, packet
loss rate, and av-
erage end-to-end
delay

Limited to spe-
cific V2X scenar-
ios

Lulu et al.
[69], 2022

Adapting nar-
row mmWave
beams in real
time

CNN Alignment proba-
bility

Consider only
V2I communica-
tion

Michele
et al. [66],
2021

Establishing and
maintaining reli-
able links in dy-
namic V2I com-
munications

CNN Accuracy and La-
tency

Automated
data collection
and labelling
tools should be
developed

Peitho et
al. [65],
2019

Improving
estimation per-
formance for
5G vehicular
networks

Spatial-
Frequency CNN
and Spatial
Pilot-Reduced
CNN

Minimum mean
squared error
(MMSE)

The perfor-
mance loss and
its impact on
the quality of
the channel
estimate are not
discussed.

Ahmet et
al. [67],
2020

Improving beam
selection effi-
ciency for V2I
communications

LIDAR pre-
processing and
2D-CNN

throughput ratio
and Accuracy

It is recom-
mended to
employ data
rebalancing
techniques to
ensure that no
single vehicle’s
data dominates
the training
process.
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3.3.1.3 Reccurent Neural Networks (RNN) for Beam Alignment

Recurrent Neural Networks (RNNs) have been successfully applied in various domains,
including beam alignment in vehicular communication. RNNs have played a key role in
beam alignment, where accurate spatial information is crucial for effective communication.
RNNs excel at processing sequential data and have been used to capture the temporal
dynamics of changing radio environments in real time. However, standard RNNs often
struggle to capture long-range dependencies effectively. This limitation has led to adopt-
ing more advanced architectures, such as Long Term Memory Networks (LSTMs) and
Bidirectional LSTM Networks (BiLSTMs).

• Long Term Memory Networks (LSTMs): The LSTM network model was ini-
tially proposed and subsequently improved in [70] and [71], respectively, to address
a significant issue in recurrent neural networks (RNNs) known as gradient instabil-
ity. RNNs often suffered from the vanishing or exploding gradient problem, which
made it challenging to learn long-term dependencies effectively. LSTM introduced a
critical innovation to RNNs: the cell state. This component stores information over
time and facilitates data transfer between LSTM units, thus preventing gradient-
related issues. Figure 3.8 illustrates the architecture of an LSTM, which includes
three essential gates: the forget gate (ft), the input gate (it), and the output gate
(Ot). These gates play a crucial role in controlling the flow of information within
the cell state. At each time step t of the LSTM, a set of vectors comprising the
forget gate ft, input gate it, output gate Ot, and the hidden state ht are calculated
using the following formulas:

ft = σ(Wf .[ht−1, xt] + bf ) (3.2)

it = σ(Wi.[ht−1, xt] + bi) (3.3)

C̃t = tanh(WC .[ht−1, xt] + bc) (3.4)

Ct = ftCt−1 + itC̃t (3.5)

Ot = σ(Wo.[ht−1, xt] + bo) (3.6)
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ht = ottanhCt (3.7)

Figure 3.8: The architecture of LSTM, image source [10]

• Bidirectional LSTM (BiLSTM): consists of LSTM units organized into two
hidden layers to effectively incorporate information from past and future contexts.
This bidirectional approach enables the network to capture dependencies in both
forward and backward directions, allowing the network to capture dependencies
in both directions and then combine the results in the same output layer. It is
particularly suitable for tasks where historical and future information is crucial, as
in the beam alignment process. The hidden layer in a Bi-LSTM can be computed
using the following function [72]:

ht = σ(
t−→
h

+
t←−
h

) (3.8)
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Here, the symbol → represents the forward direction, and ← represents the back-
ward direction. The architecture of a BiLSTM is illustrated in Figure 3.9.

Figure 3.9: The architecture of BiLSTM neural network, image source [11]

The high isotropic attenuation and channel loss associated with mmWave frequen-
cies pose inherent difficulties in achieving accurate beamforming. These difficulties are
compounded in dynamic and highly mobile environments, where reliable and continuous
tracking of the base station (BS) and the vehicle on moving angles becomes challenging.
To address these challenges, the authors of [73] on beam alignment at the base station.
They introduce an adaptive method based on RNN, specifically the LSTM model, to effi-
ciently track and predict the angle of departure (AoD). In addition, they propose a refined
frame structure strategically designed to reduce the overhead of beam alignment, thereby
increasing communication rates. Through a series of numerical experiments conducted in
a complex, non-linear mobility scenario, this method demonstrates remarkable efficiency
in tracking the departure angle. It significantly increases communication rates compared
to conventional techniques such as particle filtering [74]. However, RNNs may need lots
of labeled training data to generalize, where data collection can be resource-intensive and
time-consuming in highly dynamic and vast mmWave vehicular environments.
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In conclusion, NNs have emerged as formidable tools for aligning vehicular commu-
nication beams. We have explored the power of CNNs for spatial feature extraction and
RNNs, including LSTM and BiLSTM, for processing sequential data for more dynamic
beam alignment. These methods have shown great promise for improving beam selection
accuracy, reducing latency, and adapting to changing vehicle environments. In addition
to approaches based on neural networks, another powerful paradigm is gaining ground in
vehicular communication: Deep Reinforcement Learning (DRL), which will be presented
in the following subsection.

3.3.2 Deep Reinforcement-Learning Approaches for Beam Align-

ment

Reinforcement Learning, often known as RL, is a machine learning that focuses on agents
learning how to interact with an environment to maximize a reward signal. RL functions
in a situation that involves sequential decision-making, in which an agent makes actions
in an environment to accomplish specific objectives. In mathematical terms, RL may be
represented as a Markov Decision Process (MDP), which is comprised of the following
four essential parts, as depicted in Figure 3.11:

Figure 3.10: The representation of Reinforcement Learning model

• State (S): This represents all possible environment configurations the agent can
perceive.

• Action (A): These are the choices or decisions that the agent can make while
interacting with the environment.

• Transition Function (T): This function describes how the environment evolves
from one state to another based on the agent’s actions. Given the current state and
action, it provides the probabilities of transitioning to different states.
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• Reward Function (R): This function defines the immediate feedback or reward
the agent receives after each action in a particular state. The goal of the agent is
to maximize the cumulative reward over time.

The RL agent learns a policy, a strategy that maps states to actions and tries to
choose actions that lead to the highest expected cumulative reward. Different methods
like Q-learning and policy gradients are used to train RL agents.

Deep reinforcement learning (DRL) incorporates neural networks to approximate pol-
icy or value functions [75]. These neural networks allow DRL agents to handle high-
dimensional input spaces, as presented in Figure, making them suitable for training agents
capable of learning to make decisions in complex environments, such as beam alignment
in dynamic vehicle scenarios. Notable examples of DRL algorithms include Deep Q-
Networks (DQN) [76], Proximal Policy Optimization (PPO) [77], and Trust Region Policy
Optimization (TRPO) [78].

Figure 3.11: The representation of Deep Reinforcement Learning model, captured from [12]

Due to their ability to learn optimal control policies in complex and dynamic contexts,
DRL-based techniques have recently attracted much interest in vehicular communication
systems [79]. Several applications of vehicular networks, including route planning [80],
platooning [81], and cooperative driving [82], have benefited from DRL. The optimization
of communication networks in V2V and V2X situations using beamforming has been
suggested using techniques based on DRL [83]. These approaches often use deep neural
networks (DNNs) to build approximations of the best policy for making beamforming and
resource allocation choices in real time [84].

48



CHAPTER 3. VEHICULAR COMMUNICATION BASED ON MMWAVE BEAM ALIGNMENT: A
LITERATURE REVIEW

To tackle the challenges of dynamic blockage in mmWave V2X networks, the authors
of [85] developed an online DRL framework to identify dynamic blockage during the trans-
mission phase and allow appropriate switching choices to increase system dependability.
To evaluate the effectiveness of the proposed framework, the authors performed extensive
evaluations using ray-tracing-based channel data. The simulation results are promising,
showing a 28.9% reduction in violation probability compared to conventional baseline
algorithms. However, it is recommended that this approach be extended to multi-user
scenarios rather than using the case of a single user.

In [86], the authors proposed a novel technique for blind beam alignment in mmWave
communication using deep reinforcement learning. The method relies on individual vehi-
cles’ unique radio frequency (RF) fingerprints, which are transmitted to the base station
via omnidirectional transmission. It also uses the SINR values to predict the optimal base
station for each vehicle and determine the appropriate beam-forming parameters, such as
azimuth and elevation angles, to be used. This system intelligently selects the most
suitable beam angle parameters for each transmission. In particular, this proposal has
resulted in a four-fold increase in data throughput compared with conventional methods
such as the beam scanning technique [87] or Vanilla’s Deep Deterministic Policy Gradient
(DDPG) approach described in [88]. However, this system does not consider the precise
positioning of vehicles, which could improve the accuracy of the proposed beam alignment
method.

Multiple Input Multiple Output (MIMO) is the basis of beamforming in mmWave
vehicular networks and plays a crucial role in using multiple antennas to transmit data
efficiently. However, high-speed applications over mmWave face data transmission and
latency problems. Pulok T et al. [89] present a new DRL-based approach designed for
coordinated beamforming in mmWave vehicular networks to address these challenges.
This approach involves multiple base stations collaborating to collectively serve a single
vehicle’s needs. The solution is based on a DRL model proposed to predict sub-optimal
beamforming vectors from a set of potential candidates in the beamforming codebook.
The resulting system architecture ensures reliable coverage for highly mobile mmWave
applications and minimizes training overheads and latency. This study’s numerical re-
sults demonstrate the proposed algorithm’s effectiveness, significantly improving the total
throughput capacity achievable in massive and highly mobile mmWave vehicular MIMO
scenarios while keeping training overheads and latency to a minimum. However, in real-
world scenarios, mmWave vehicular signals are susceptible to interference from other de-
vices, obstacles, and environmental conditions, impacting the performance of coordinated
beamforming systems.

In conclusion, this chapter has provided an overview of different approaches to BA in
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mmWave vehicular communication systems. We have explored the capabilities of deep
learning models, in particular, CNNs for spatial feature extraction and RNNs, including
LSTM and BiLSTM, for processing sequential data in dynamic beam alignment. While
conventional beam alignment methods have their merits, they often face limitations in
highly dynamic and unpredictable vehicular environments.

In the following chapters, we will present our proposed methods for addressing the
limitations and difficulties outlined in previous studies. Our innovative approaches rely
on classical and deep learning methods to improve beam alignment performance, thus
ensuring reliable and high-speed V2X communications in highly mobile mmWave vehicular
scenarios.
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Chapter 4

Simulated Annealing-based Beam
Management for 5G Vehicular
Networks

4.1 Introduction

Despite significant advances in fifth-generation (5G) vehicular networks, data transmission
continues to be limited by signal attenuation, mainly when vehicles are in motion. This
limitation is caused by the constraints inherent in 5G connectivity, primarily associated
with waves, which can only travel short distances and are likely to be disrupted by physical
obstacles such as buildings, trees, and walls. These obstacles block, disrupt, or weaken
certain parts of the transmitted signal.

In this chapter, we present our initial contribution to this field. We propose a new
approach based on the classical optimization method, using, in particular, the simulated
annealing algorithm for beam management in 5G vehicular networks.

Our first contribution was published in a short paper at the IEEE 22nd International
Conference on High-Performance Switching and Routing (HPSR), 2021. The published
paper is entitled Simulated annealing-based beam management for 5G vehicular networks,
1. Please visit this link for more information.

4.2 Our Proposed Method

The beam management process aims to communicate effectively between the vehicle and
the BS, allowing the two to align their antennas for high-speed, low-power transmission.

1https://ieeexplore.ieee.org/document/9481825
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However, the signal attenuation problem makes this process challenging to implement
since it is easily disrupted by environmental factors that can block the signal and swiftly
break the communication link between the BS and the linked car [90].

We propose a new model, SABM-5GVNet (Simulated Annealing-based Beam Manage-
ment for 5G Vehicular Networks), to tackle this challenge. SABM-5GVNet dynamically
identifies the best beam angle for every vehicle’s location within the communication link
between the vehicle and the BS.

Our contribution focuses on the communication scenario between a stationary mmWave
base station and moving automobiles in a 5G vehicular network, as shown in Figure 4.1.
We integrate beamforming technology (directed signal transmission) into the mmWave
base station. Our proposal enables the base station to adjust the beam direction dynam-
ically based on the connected vehicle’s location, unlike a conventional BS that transmits
and receives data using fixed beam radiation patterns.

Figure 4.1: mmWave communication in 5G vehicular network

We propose a SA algorithm to find the optimal direction beam α ∈ [0, 2π] for each
location along the vehicle’s route Pv = (Xv, Y v) ∈ R², which improves system perfor-
mance by maximizing the signal-to-interference-and-noise ratio (SINR). The proposed SA
procedure for beam angle optimization is depicted in Figure 4.2.

• First, we initiate the process by generating the initial solution, denoted by S0. At
this stage, we also set a high initial temperature represented by T = T0 (represent-
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Figure 4.2: The proposed SABM-5GVNet algorithm

ing a time-varying global parameter chosen by the user). During this phase, we
randomly introduce a search for the angular orientation α, associated with its SINR
value previously stored in a database. This search is performed for each specific
position Pv = (x, y) in the environment. The output of this step is an array of pairs:
[(p0, α0) , (p1, α1), ..., (pn, αn)].

• For each generating solution, it is necessary to:

� Using the objective function, the SINR value corresponding to each pair (pv, α)

is calculated, giving an initial energy level of E = E0. Note that the energy
level acts as the objective function in this context.

� A linear reduction rule is established using a user-specified β value: T is up-
dated as T = T − β at each iteration.
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� The suggested neighborhood function is employed to identify the neighboring
solution S ′ from the current solution S.

• During each iteration, we generate a new neighboring solution, denoted as S ′, by
introducing a random number, n, drawn from the interval [a, b] and adding it to
the angle α of the current solution, S. This process yields a new angle, α′, for S ′,
resulting in a new SINR value, f(S ′).

• We calculate the change in system energy, represented by the objective function, as
∆E = f(S ′)− f(S). Depending on the value of ∆E, we classify it into two categories:

� If ∆E > 0: indicates that the generated solution S ′ is superior to the existing
one, we accept S ′, which guarantees an improved SINR. This newly accepted
solution replaces the original S, denoted as S ← S ′.

� Conversely, if ∆E < 0, S ′ is conditionally accepted with a probability deter-
mined by the following equation 4.1. This approach makes exploring part of
the solution space possible to avoid being trapped in a local optimum.

P = e−∆E/T (4.1)

• The SA algorithm continues its iterations until it meets the specified stopping cri-
terion.

The best angle for each location will be determined when the process is finished.

4.3 Experiments and Results

This section describes the experimental research study performed to evaluate our sug-
gested SABM-5GVNeT. After that, we explain the findings obtained after comparing a
SABM-5GVNeT to the traditional scheme used to choose the beam angle.
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4.3.1 Parameter Settings and Simulation Setup

Table 4.1: Simulation parameters for SABM-5GVNeT

Parameters Value

Transmitter Power 30 dBm

Bandwidth 200 Mb/s

Carrier frequency 30 GHz

BS Antenna Model 3GPP

BS Height 10 m

BS Gain 4.97 dBm

Velocity vehicle 20 m/s

Scenario UMI

Simulated time 10 s

We have selected an Urban Micro-cell (UMi) scenario with a radius of R = 200m for our
proposal. This scenario considers a single mmWave base station (BS) operating at a carrier
frequency of f = 30GHz and a bandwidth of B = 200MHz. The BS is at coordinates
pbs = (0, 0). Communication is established between the mmWave BS and a mobile vehicle,
which initiates the starting position pvs = (+60,−20). This vehicle maintains a constant
velocity of v = 20m/s and reaches its final destination at pvf = (+60,+180). To evaluate
the effectiveness of our proposed solution in real-world scenarios, we have introduced a
residential building structure between the mmBS and the vehicle, simulating the presence
of obstacles during communication.

4.3.2 Database creation and a simulation scenario

• To initiate the experiment, we projected a transmission (Tx) beam from the mmBS
towards various vehicle locations within the environment. This beam was directed
along different angles, α ∈ [−180, 180]

• Each beam angle’s performance was determined and stored in a database by calcu-
lating the SINR of the received signal, as reported in 3GPP TR 38.900 [91].

• Then, we designed and implemented our proposed simulated annealing algorithm
in the millimeter-wave base station to autonomously determine the optimum beam
angle for each vehicle position. This algorithm selected a new beam direction at 40-
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meter intervals along the vehicle path. It should be noted that this specific spacing
between two positions was set as an empirical value.

• For our simulated annealing implementation, we defined the parameters as follows:

� The number of iterations was set to 300, constituting the termination criterion.

� The maximum temperature was set at 2000, based on empirical considerations.

� According to the proposed methodology, we allowed the selection of a sub-
optimal neighboring solution if the calculated probability, denoted by P, ex-
ceeded the threshold value of 0.8. This threshold was determined experimen-
tally.

� The β parameter, used for linear temperature reduction, was set to 50.

4.3.3 The obtained Results

After completing the initial step of SABM-5GVNet, which consists of randomly generating
the initial solution, we acquired the following initial angles for different positions of the
vehicle along its trajectory: [[pv1 = (60,−20), α1 = 53°], [pv2 = (60, 20), α2 = 88°],
[pv3 = (60, 60), α3 = 76°], [pv4 = (60, 100), α4 = 7°], [pv5 = (60, 140), α5 = -176°],
[pv6 = (60, 180), α6 = -83°]].

After this, the neighborhood function is executed. In this step, we propose to select
the neighborhood angle by incorporating a randomly generated number in the interval
[-2, +2], for example, 53° - 2 = 51°. As a result, 51° becomes the new angle for the
new solution. This process is repeated 300 times according to SABM-5GVNet. Finally,
we reach the optimal solution that ensures efficient communication and maximizes the
received signal strength between the base station and the vehicle. The optimal solution
generated by our proposed algorithm is shown in green in Figure 4.3.

4.3.3.1 Discussion of results

We performed a comparative analysis between our results and a conventional approach
to demonstrate the influence of angle optimization on 5G vehicular communication per-
formance. In the traditional method, the BS selects the beam angle based on a fixed
orientation model, as shown in the red graph in Figure 4.3. Our observations show that,
for each position, the SINR of the received signal obtained with our proposal is higher
than that of the traditional approach.

This improvement highlights the dynamic beam management capabilities of the opti-
mal solution generated by the proposed SABM-5GVNET algorithm. It ensures the quality
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Figure 4.3: Impact of angle optimization on the SINR

of non-line-of-sight (NLOS) connectivity, as the mmBS configures the beam direction at
each position in the environment by selecting the optimal angle. This strategy facilitates
rapid data transmission to the connected vehicle. Therefore, our proposal improves data
throughput and ensures low latency for data transmission between the mmBS and the
mobile vehicle in 5G networks.

4.4 Conclusion

This chapter presented a new beam management solution for 5G vehicular networks,
the Simulated Annealing-based Beam Management for 5G Vehicular Networks (SABM-
5GVNET) algorithm. First, we collected performance data for different beam angles at
different vehicle positions in the environment. Then, we used these data to determine the
optimal beam angle that maximizes the SINR for each vehicle position along its route.
The main objective of our proposal is to improve the data transmission rate and minimize
the latency between the mmBS and the connected vehicle, thereby improving the over-
all performance of the traffic flow. Our results indicate that SABM-5GVNET performs
significantly better than the traditional method regarding data transmission efficiency.
Nonetheless, our proposed simulated annealing algorithm can be computationally inten-
sive, especially when dealing with many beam angles and vehicle positions.

The next chapter presents our second contribution based on a deep-learning method for
the BA procedure. We aim to deal with the limitations of SABM-5GVNET and to improve
the 5G vehicular networks, particularly V2X communication. This new approach should
make communication more intelligent and contribute to autonomous vehicular navigation.
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A Novel mmWave Beam Alignment
Approach for Beyond 5G Autonomous
Vehicle Networks

5.1 Introduction

With the rapid evolution of vehicle networks towards B5G (Beyond 5G), the demand for
high-speed, ultra-low latency data transmission between entities in the vehicle network
has exploded. The vision of fully AV has highlighted the critical need for efficient and
continuous signal transmission.

This chapter presents our second contribution, based on a deep-learning model for B5G
vehicular communications. Autonomous vehicle navigation, which relies on a constant
stream of data to make real-time decisions, dramatically illustrates the urgency of ensuring
reliable, lightning-fast data exchange. This need goes beyond mere convenience; it has
become an imperative requirement.

Our second contribution was published in IEEE Transaction Vehicular Technology
(TVT), 2023. The published paper is entitled A Novel mmWave Beam Alignment Ap-
proach for Beyond 5G Autonomous Vehicle Networks, 1. Please visit this link for more
information.

5.2 System and Channel Model

This section comprehensively overviews the implemented mmWave system and the channel
model used.

1https://ieeexplore.ieee.org/abstract/document/10246397/
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5.2.1 System Model

This study focuses on the downlink data transmission (DL) within a B5G MIMO system
operating within the high-frequency mmWave spectrum, illustrated in Figure 5.1. In this
scenario, we have a BS, the transmitter, equipped with a uniform planar array (UPA)
consisting of Nt antennas. On the receiving end, there are k vehicles, each equipped with
a single antenna configured omnidirectionally. For tracking the location of each mobile
vehicle, we rely on GPS Cartesian coordinates, ensuring precise positioning. Simultane-
ously, we assume that the base station’s position is readily available and known to all
vehicles.

Figure 5.1: Example of beam alignment in a B5G vehicular network

5.2.2 Channel Model

Using the ray-tracing methodology, we create the mmWave channel that connects the
mmBS to the mobile vehicle at each location in the vehicular environment. This ray-
tracing tool provides the essential characteristics of the channel, including azimuth and ele-
vation departure angles, phase information, time of arrival (ToA), received signal strength,
and the number of distinct line-of-sight (LOS) and non-line-of-sight (NLOS) paths (L)
that exist between a vehicle and a BS.
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Signal propagation between a mmBS and a vehicle is defined by the channel matrix
H ∈ CNt1, which covers Lp paths. In vehicular communication scenarios, the Doppler
effect, which refers to the shift in signal frequency due to the relative motion between
the mmBS and the vehicle, is significant. We can model this phenomenon by introducing
a time-varying complex gain factor for each path in the H channel matrix. This factor
presents a time difference that depends on the signal frequency, the speed of the vehicle,
and the direction of arrival of the signal. By accounting for the Doppler effect, the result-
ing fitted channel matrix H [?] provides a more accurate representation of the channel
characteristics in vehicular communication scenarios. This can be expressed as follows:

H(t, f) =

Lp−1∑
l=0

αl(t, f)a(φAoDl , θZoDl ), (5.1)

Here, H(t, f) represents the channel matrix at time t and frequency f , while αl(t, f)

represents the complex gain factor of path l at time t and frequency f . The expression
φAoDl denotes the departure angles in azimuth (AoD), and θZoDl denotes the departure
angle at zenith (elevation) (ZoD). The orientation vector a(φAoDl , θlZoD) is an array Nt1,
responsible for steering beam direction. The beam steering includes the phase differences
of the signal coming in at each antenna, mainly determined by the azimuth angle, as
expressed by the following equation [92] :

a(φl) =
1√
Nt

[1, ej
2π
λ
d sinφl , ..., ej(Nt−1) 2π

λ
d sinφl ]T , (5.2)

The carrier wavelength, denoted by λ, and the distance between the antennas in
mmWave communication, represented by d, may be determined using the formula provided
by [93].

d = λ/2. (5.3)

In the base station, we implement analog beamforming, which employs a single shared
RF chain for Nt antennas. Each antenna branch includes a phase shifter and a power
amplifier (PA) for antenna control. The beamforming vector w, which encapsulates the
phase shifters, can be expressed as:

w = [ejβ1 , ..., ejβNt ]T , (5.4)

Here, β represents the phase corresponding to the nth phase shifter linked to the nth
antenna element.
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For each beam direction, the complex gain factor can be written as:

αl,k(t) = αl,k · ej2πfdkTst, (5.5)

fd signifies the Doppler shift frequency, while k denotes the sample index at time t, and Ts
represents the sampling interval. To incorporate the frequency index f into the complex
gain factor, we can adjust the Doppler shift frequency fd as demonstrated below:

fd =
2vr
λ
, (5.6)

Here, 2vr represents the velocity of the vehicle. Subsequently, we can formulate the
received mmWave signal yk at vehicle k as follows:

yk(t, f) = hHk (t, f)wk(f)xk(t) + nk(t, f), (5.7)

The vector hHk (t, f) ∈ CNt1 represents the channel for vehicle k at time t and frequency
f . The beam applied by the mmBS to transmit the signal to vehicle k is denoted as wk(f),
and xk(t) represents the transmitted signal from the mmBS antennas to vehicle k. The
term nk(t, f) refers to the additive white Gaussian noise (AWGN) with zero mean and
variance σ2

n,k at time t and frequency f . The optimal beam, denoted as b̂, may be formally
defined in the following manner:

b̂ = arg max
b
‖Hwb‖ , (5.8)

where H is the channel matrix and 0 ≤ b ≥ Nt − 1 is the beam index.

5.3 Our Proposed Beam Alignment Approach

In this part, we will detail the critical components of the suggested beam angle prediction
technique that we have developed and explain why a hybrid model is required to align
mmWave beams in B5G networks for AVs to navigate successfully. Figures 5.2 and 5.3
represent the three major stages of our proposed solution.

5.3.1 Data pre-processing

The initial data pre-processing phase involves collecting all the data generated during the
environmental simulation. Next, we carried out a normalization process using the z-score
method. This step was essential because the parameters involved had distinct ranges of
values with varying scales. The z-score normalization procedure transforms the feature
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Figure 5.2: The overall structure of the proposed beam alignment approach.

values into a normalized range between 0 and 1. This is done by subtracting the mean
(µ) of each feature and then dividing it by the standard deviation (σ), as shown in the
following equation:

Normalized data = (X − µ)/σ, (5.9)

Here, X represents the initial dataset, mu is the mean of the data, and sigma is the
standard deviation of the data. This process centers each feature by giving it a mean value
of 0 and a standard deviation of 1. This normalization improves the performance of our
model, speeds up data convergence, and simplifies model learning. After normalization,
the dataset is divided into training and test subsets. The training data is then divided
into training and validation datasets for model development and evaluation.

5.3.2 Training step

Our research introduces an original hybrid model that combines one-dimensional CNN and
BiLSTM architectures to determine the optimal beam angle for each vehicle’s position.
As illustrated in figure 5.4, our proposed model consists of four main layers. Table 5.1
presents a detailed analysis of the structure of the proposed model, and we will describe
each block of our model as follows:

5.3.2.1 Input layer

We have chosen five parameters of the mmWave channel as inputs to our model. These
parameters include the vehicle position coordinates (locx and locY ), the received signal
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Figure 5.3: Diagram of the proposed model
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power, the phase, and the elevation angle of the mmBS departure. To comply with the
requirements of the CNN layer, we structure the input vector in a three-dimensional
format, incorporating the number of samples, time steps, and features.

5.3.2.2 Feature extraction layers

In our feature extraction layers, we incorporated a single 1D convolution layer (Conv1D),
initiated with 128 filters, each with a size of two. To introduce non-linearity and solve
problems such as gradient vanishing and neuron death [94], we used the Rectified Linear
Unit (ReLU) activation function, represented by the equation below:

relu(x ) = max(o, x). (5.10)

By applying multiple convolution kernels to the input data, we generate a range of
convolved features that are generally more informative than the original input features.
This significantly increases the accuracy of the model in predicting angles.

After the Conv1D layer, we introduce a pooling layer, more precisely, the maximum
pooling layer. This layer has a dual purpose: it minimizes the computational complexity
of the model by reducing the Conv1D output; simultaneously, it compresses the data and
extracts the principal features.

We normalize the output data using a Batch Normalisation (BN) layer to optimize
our model further and speed up the training process. This step serves as a regularisation
strategy. In this layer, features are normalized to align their mean closer to zero and with
optimal distributions. The batch normalization process is calculated as follows:

µ =
1

Nbatch

N∑
i=0

xi, (5.11)

σ2 =
1

Nbatch

N∑
i=0

(xi − µ)2, (5.12)

x̂i =
xi − µ√
σ2 + ε

, (5.13)

yi = γx̂i + β, (5.14)

In this equation, the ith observation value in the mini-batch is represented by xi, while
yi represents the corresponding output. The size of the mini-batch is indicated by Nbatch.
In this context, µ and γ indicate the samples’ mean and standard deviation values in the
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mini-lot. Our approach incorporates a scaling parameter, γ, which is fixed as a constant
close to zero, and a bias parameter, β, to ensure numerical stability.

It is important to note that during the convolution operations, no features are lost.
This is achieved by selecting the padding type "same". It should be noted that the
feature extraction layer serves as a preliminary step in preparing the Bi-LSTM input.
Unlike traditional pre-processing methods, Conv1D, in this context, treats each feature
individually, considering its content.

5.3.2.3 Sequence Learning layers

This block of layers consists of four BiLSTM layers, three dropout layers, and a flattened
layer. BiLSTM was chosen as the beam angle prediction model because of its ability
to preserve dependency relationships in the input data, both in the forward and reverse
directions. Although it excels in prediction accuracy, it requires a more significant amount
of input data to exploit its three gates effectively and converge toward stability.

First, the normalized input data are sequentially processed by a Bidirectional Long
Short-Term Memory (BiLSTM) network, which consists of four layers. Each BiLSTM
layer has various neurons, starting with 256 neurons in the first layer, 128 neurons in
the second layer, 64 neurons in the third layer, and 32 neurons in the fourth layer. The
BiLSTM network employs two activation functions: hyperbolic tangent (tanh) and sig-
moid [95]. The forward LSTM processes the data from left to right, while the input data
is inverted and passed to the reverse LSTM, which operates from right to left. These
activations are mathematically defined as follows:

tanh(x ) = (ex − e−x)/(ex + e−x). (5.15)

σ(x ) =
1

1 + e−x
. (5.16)

After each BiLSTM layer, a dropout layer is incorporated with a probability of dropout set
at 0.4. This strategic addition mitigates overfitting and improves the model’s predictive
performance model’s predictive performance, mainly when dealing with test data.

Finally, a flattened layer transforms the output data into a one-dimensional format to
align it with the model’s requirements.

5.3.2.4 Prediction layers

The prediction layer block consists of three fully interconnected layers, ending with the
output layer comprising 64, 32, and one neuron, respectively. These fully combined layers
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perform linear transformations on the values derived from the previous block. Finally, they
predict the optimal beam departure angle (azimuth angle) of the mmBS. This prediction
allows our system to achieve precise beam alignment between the mmBS and the AV at
every position.

Table 5.1: Structure of the proposed model

Block Layer Number of neurons

Feature extraction
layers

Conv1D 128*2*1

MaxPooling 128*2

Sequence learning
layers

BiLSTM1 256

BiLSTM2 128

BiLSTM3 64

BiLSTM4 32

Flatten -

Prediction layers
FC1 64

FC2 32

FC3 1

5.3.3 Prediction step

The ability of our model to predict the optimal beam angle direction relies on minimizing
the loss function during the learning phase. Our research has shown that reducing the
loss function using mean square error (MSE) aligns with data rate optimization of V2X
transmission in millimeter-wave B5G vehicular networks. This optimization allows our
proposal to maximize the data rate transmission and reduce the overhead caused by
beam sweeping, thus reducing network congestion. In the next section, we will explore
the influence of the loss function on our proposed system’s performance, particularly its
role in beam alignment within a 5G autonomous vehicle network.

5.4 Simulation results

In this section, we evaluate the effectiveness of our model designed for beam alignment
in 5G autonomous vehicular networks. We start by describing the scenario we used and
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Figure 5.4: The proposed architecture of the proposed model for beam alignment in B5G
vehicular networks.

the dataset on which our simulations are based. We will then look at the results and
conclusions obtained from these simulations.

5.4.1 Simulation Setup

This study used the available DeepMIMO dataset [13], a well-established resource fre-
quently used in deep learning applications for massive mmWave MIMO systems. This
dataset was generated using 3D ray tracing techniques in the commercial Remcom Wire-
less Insite simulator. Our simulations focus on the "O1_60" scenario, designed for outdoor
vehicular communication, as shown in Figure 5.5.

Initially, for data collection in scenario O1_60, we ran the deepMIMO generation
scripts accessible via [96]. This process was carried out in the MATLAB environment,
following the specified parameters and system configuration, as shown in table 5.2. In
this scenario, all vehicles maintain LoS communication with the mmBS and operate at a
carrier frequency of 60 GHz.

The resulting dataset includes channel matrices calculated using formula 5.8 and beam
information about the communications between the vehicles and the mmBS. We extracted
critical features from this data to serve as input and output for the proposed model. These
characteristics include the AoD in azimuth and elevation from the mmBS, received signal
strength, path phase, signal propagation delay, and vehicle location.

As indicated in the simulation parameters in Table 5.2, we strategically positioned
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Figure 5.5: Simulation environment, [13].

four mmWave base stations (BS1, BS2, BS3, BS4) on the roadside, each at a height of 8
meters. These base stations adopted the system model described in Section 4.2.1, with
uniform planar arrays (UPAs) arranged in a 16-column, 4-row configuration. These UPAs
collectively housed M = 64 antennas, with a spacing of 0.5 meters between antennas.

The grid of vehicle positions extended from row number #1000 to row number #1650,
with each row accommodating 181 separate positions. This arrangement generated 107

vehicle positions evenly distributed along the road in the scenario. It should be noted
that the vehicles in this scenario traveled at 60 km/h, approximately equivalent to 16.67
m/s.

In our CNN-BiLSTM model, we divide the dataset into training (60%), validation
(20%) and test (20%) subsets. Before training the model, we use the z-score normalization
technique on the characteristics of the input data, including vehicle location, path phase,
received signal strength, and base station elevation angle. Next, we use the proposed
architecture.

The training process consists of training the CNN-LSTM model for 250 epochs, each
with 64 batches. We use the RMSprop optimizer with a specified learning rate of 0.0001
to facilitate training. We use Python 3.8 and the Keras libraries to implement our model,
with TensorFlow as the backend. Table 5.3 summarises the hyperparameters used in the
training process.
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Table 5.2: System hyperparameters and configuration for data generation

Parameters Values

Scenario name O1_60

Active BSs 4

Active users 1000 to 1650

BS UPA dimensions 64 antenna elements

Antenna spacing (m) 0.5

Bandwidth (GHz) 0.5

OFDM subcarriers 1024

OFDM sampling factor 1

Transmit power of BS 30dBm

Model system Intel(R) Core(TM) i7-8565U CPU

Processor @ 1.80GHz

RAM 16GB

Graphics card NVIDIA GeForce MX150

Table 5.3: CNN-BiLSTM training hyper-parameters

Parameters Values

Optimizer RMSprop

Learning rate 0.0001

Batch size 64

Dropout 0.4

Epoch 250

Data size 200.000

Data split 60:20:20

5.4.2 Evaluation Metrics

In this subsection, we present the three main regression model evaluation measures that
will be used to evaluate the communication performance of our proposed model. The
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definitions of these measures, namely MSE (Mean Squared Error), MAE (Mean Absolute
Error) and RMSE (Root Mean Squared Error), are as follows:

5.4.2.1 MSE

The Mean Squared Error (MSE) is employed as a loss function (or cost function) dur-
ing the training of our proposed deep learning model to minimize prediction errors. It
computes the average squared difference between the actual and predicted data values.

For the actual base station angle of departure value denoted as θi and its predicted
counterpart θ̂i, where ’n’ represents the total number of samples in the training set, the
MSE is determined as follows:

MSE =
1

n

n∑
1

(θi − θ̂i)2, (5.17)

5.4.2.2 RMSE

The Root Mean Squared Error (RMSE) quantifies the difference between the model’s
predicted and actual values extracted from the database. Its calculation is as follows:

RMSE =

√√√√ 1

n

n∑
1

(θi − θ̂i)2, (5.18)

5.4.2.3 MAE

The mean absolute error (MAE) signifies the absolute difference between the actual and
predicted values, and it can calculated as follows:

MAE =
1

n

n∑
1

|θi − θ̂i|. (5.19)

We implemented several traditional beamforming techniques based on regression mod-
els in our study, including K-Nearest Neighbors (KNN) [97], Support Vector Regression
(SVR) [98], CNN-LSTM [99], and Bi-LSTM [100]. These models were used to evaluate the
performance of our proposed CNN-BiLSTM model, and our model outperformed these
traditional approaches. We use mean square error (MSE), mean absolute error (MAE),
and root mean square error (RMSE) as metrics to quantify the accuracy of the regression
on the optimal beam angle. These measures are evaluated during the learning and testing
phases. Lower values of RMSE and RMSE mean better prediction accuracy, indicating
that the predicted values are closely aligned with the actual values.
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5.4.3 The Obtained Results

To demonstrate the effectiveness of our proposed hybrid solution for enhancing communi-
cation between mobile vehicles and the mmWave base station, we evaluated the training
loss (MSE) and MAE values at each epoch using the training dataset. These evaluations
were performed exclusively on the training data. As shown in Figures 5.6 and 5.7, the
curves show rapid initial convergence, with both MSE and MAE converging after a mini-
mal number of epochs. At the last epoch of the training phase, the MSE value is 0.0507,
while the MAE value is 0.2486. In particular, the validation curves for the loss function
and the MAE metric closely mirror the learning curves during convergence. This indicates
that the CNN-BiLSTM model did not suffer from overfitting.

Figure 5.6: Training and validation loss (MSE) for the proposed model.

Visualizing the projected values generated by the CNN-BiLSTM model compared with
the actual values of the test set provides a further means of evaluating the accuracy of our
approach. If we look at figure 6.5, we see a remarkable similarity between the predicted
and actual values. Based on this analysis, we can confidently state that our proposed
CNN-BiLSTM model has been effectively trained. Its results are convincing and reliable,
justifying its use to predict optimal angles in B5G vehicle networks.

These results are closely related to the choice of input data used in training the pro-
posed model. As shown in Figure 5.9, we used the Pearson correlation matrix to explain
and illustrate the linear relationships between the input and output variables. Exam-
ination of the matrix indicates that variables such as (AoDAzi, AoDElev), (AoDAzi,
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Figure 5.7: Training and validation (MAE) for the proposed model.

Power), and (AoDAzi, Locx) have exceptionally high positive correlations with each
other. On the other hand, the variables (AoDAzi, Locy) show a significant negative
correlation.

A comparative analysis was performed to validate and evaluate the performance of
the proposed CNN-BiLSTM model compared to conventional beamforming approaches.
Specifically, we conducted these experiments using the same scenario characteristics. As
shown in Figure 5.10 and summarised in Table 5.4, we present the results obtained from
the test data for each model.

First, we evaluated the beam alignment process for the beam alignment process by
using two machine learning-based methods, the K-Nearest Neighbors (KNN) regressor and
Support Vector Regression (SVR). The results indicate that the KNN model produced
values of 0.0826, 0.168, and 0.287 for MSE, MAE, and RMSE, respectively. Subsequently,
the SVR presented MSE, MAE, and RMSE values of 0.0787, 0.165 and 0.256, respectively.

In contrast, using the hybrid CNN-LSTM model, we obtained MSE, MAE, and RMSE
values of 0.0225, 0.0945, and 0.1500, respectively. In addition, applying the Bi-LSTM
model yielded values of 0.0319, 0.1716, and 0.179 for the same measures, respectively.

The results of the CNN-LSTM and Bi-LSTMmodels were so promising that we decided
to combine the CNN and Bi-LSTM models. We thus obtained the lowest possible values
for MSE, MAE, and RMSE, with values of 0.0107, 0.0765, and 0.103, respectively.

Based on the above results, our proposed hybrid model emerges as the most effective
approach for predicting the optimal departure angle based on the location of each vehicle,
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Figure 5.8: Predicted values VS the actual values.

Table 5.4: A Comparative Study of Our Proposed Model Against Traditional Beam Alignment
Solutions Using Evaluation Metrics (MSE, MAE, and RMSE)

Method Models Error metrics

MSE MAE RMSE

Cheng et. al [97] KNN Regressor 0.0826 0.168 0.287

Li et. al [98] SVR 0.0787 0.165 0.256

Liu et. al [99] CNN-LSTM 0.0225 0.0945 0.1500

Aldalbahi et. al [100] BiLSTM 0.0319 0.1716 0.179

Proposed model CNN-BiLSTM 0.0107 0.0765 0.103

outperforming conventional machine learning methods. The improvement in prediction
accuracy and overall model performance is directly reflected in lower MSE, MAE, and
RMSE values.

Based on these observations, we can confidently state that our hybrid CNN-BiLSTM
model can dynamically configure the beam angle direction and select the optimal depar-
ture angle of the millimeter-wave base station based on the vehicle position with minimum
error probability, maximum received signal strength and shortest beam search time.

In addition, it should be noted that the CNN-BiLSTM model excels in accuracy,
computational efficiency, and time complexity. Unlike conventional exhaustive search and
beam scanning techniques, which require a 360-degree search for each data transmission
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Figure 5.9: Heatmap of the Pearson correlation matrix.

to determine the ideal beam direction, our model eliminates the need for such time-
consuming calculations and iterations.

Figure 5.10: Values obtained by different regression models for the beam alignment procedure
in B5G vehicular networks.

This enhancement is significant for 5G vehicular networks, as it ensures a higher SINR
value and higher received signal power during V2I transmissions between autonomous
vehicles and millimeter-wave base stations. It also reduces the computational load within
the B5G vehicular mmWave network.
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5.4.4 Complexity analysis of CNN-BiLSTM

5.4.4.1 Analysing computational complexity

This subsection conducts a comparative analysis of the computational complexity between
our proposed beam alignment model and traditional beam search methods in vehicular
environments. Traditional exhaustive search methods examine all potential beam angles,
covering 360◦ for azimuth and elevation angles, to select the optimal beam that maximizes
received signal power or minimizes interference. However, the computational complexity
of these methods is influenced by the number of antennas and the angular resolution of the
search, leading to a computational complexity expressed as O(N2). Here, N2 represents
the total number of possible combinations of transmit and receive beams. As the number
of candidate beams increases, the complexity of exhaustive search increases quadratically,
making it impractical for densely populated vehicular environments and large antenna
arrays.

In contrast, our proposed hybrid CNN-BiLSTM beam alignment model offers signif-
icantly lower computational complexity. The 1D-CNN component of the model has a
complexity of O(N ∗ F ), where N is the number of input samples, and K is the kernel
size of the 1D-CNN filter. It is important to note that this complexity is independent of
the number of candidate beams or the angular resolution of the search.

To estimate the overall computational complexity of the proposed model, we need to
aggregate the complexities of the 1D-CNN and BiLSTM components. The complexity of
the 1D-CNN component is expressed as O(T ∗O ∗K ∗F ), where T is the number of input
channel parameters, O is the number of output features, K is the size of the convolution
kernel, and F is the number of filters in the layer. For the complexity of the BiLSTM
component, we use the following formula: O(2 ∗n ∗ snh ∗ (4 ∗ni + 4 ∗nh + 3 +no)). Here,
n indicates the number of time steps. The term snh quantifies the number of operations
required to compute the output of a single LSTM cell, where s represents the length of
the sequence, h the number of hidden units, ni the size of the input at each time step,
nh the number of hidden units in each LSTM layer, and no the size of the output at each
time step.

The BiLSTM layer comprises two LSTM layers, one processing the input sequence in
the forward direction and the other in the reverse direction. The output of each LSTM
layer is concatenated to produce the final BiLSTM output sequence, which is then sent
to a fully connected layer for further processing. As a result, the total complexity of the
proposed model can be estimated as the sum of the complexities of the 1D-CNN and
BiLSTM components, expressed as O(TOKF + 2nsnh(4ni + 4nh + 3 + no)).
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Table 5.5: Computational Complexity Analysis

Component Complexity

1D-CNN O(T ∗O ∗K ∗ F )

BiLSTM O(2 ∗ n ∗ snh ∗ (4 ∗ ni + 4 ∗ nh + 3 + no))

CNN-BiLSTM O(TOKF + 2nsnh(4ni + 4nh + 3 + no))

5.4.4.2 Analysing the complexity of time

A model’s efficiency, particularly in learning and prediction time, is intrinsically linked to
its time complexity. A model’s complexity level is crucial in its computational effective-
ness, influencing various facets of its practical applicability. When the complexity of a
model reaches a certain threshold, it can pose problems in terms of validating concepts,
improving model performance or accurately predicting the optimal beam angle.

Table 5.6 and Figure 5.11 give an overview of the learning and testing times, expressed
in seconds (s), for conventional beam alignment-based regression models and our new
CNN-BiLSTMmodel using the deepMIMO dataset. It should be noted that all benchmark
solutions employing deep learning models were run over 250 epochs.

Our results highlight that classical machine learning techniques such as SVR and KNN
have faster learning phases but more extended testing periods. This can be attributed to
the fact that these machine-learning methods rely on simple mathematical formulas and
distance calculations, unlike deep-learning approaches, which depend on complex neural
networks. , leading to faster training times. In addition, SVR and KNN operate as non-
parametric models, which avoids the need to estimate many parameters. This starkly
contrasts deep learning models such as CNN-LSTM, BiLSTM, and CNN-BiLSTM, which
contain many trainable parameters, contributing to longer training times.

Nevertheless, the testing phase for SVR and KNN exceeds that of deep learning mod-
els. This longer testing time can be attributed to the inherent nature of instance-based
machine learning algorithms, in which they must explore the dataset in detail to de-
termine the optimal prediction angle for each new vehicle position. This search can be
time-consuming, mainly when dealing with large datasets like the deepMIMO dataset.

Concerning beam alignment using deep learning techniques, it is evident that our
CNN-BiLSTM approach excels in reduced learning and testing times compared to CNN-
LSTM and BiLSTM models. This efficiency can be attributed to the architectural ad-
vantages of CNN-BiLSTM, which allow local features to be extracted in parallel by the
convolutional layers while allowing the BiLSTM layers to process these features simulta-
neously in the forward and backward directions.
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In contrast, the LSTM layers of BiLSTM and CNN-LSTM operate sequentially, in-
curring time costs at each time step. As a result, these sequential operations lengthen
learning and testing times compared with our CNN-BiLSTM architecture.

In addition, our proposed CNN-BiLSTM model takes pride in a reduced number of
trainable parameters, namely 1.65 million, compared with 2.66 million for CNN-LSTM
and 5.55 million for BiLSTM. This reduction considerably reduces the model’s compu-
tational complexity, speeding up the learning and testing phases. Our results show that
our approach achieves impressive accuracy with a reduced set of parameters, confirming
its superiority regarding prediction accuracy and computational efficiency for vehicular
networks. This combination not only improves prediction accuracy but also reduces com-
putational costs.

Table 5.6: Comparative execution time analysis of various beam alignment models using the
DeepMIMO dataset

Models Training time Testing time

KNN regressor [97] 8553.39 130.84

SVR [98] 1949.24 802.24

CNN-LSTM [99] 64230.47 35.89

BiLSTM [100] 182512.74 67.18

Proposed model 33674.46 11.67

Figure 5.11: Temporal complexity of each regression model.
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5.4.5 The expected benefits of the proposed CNN-BiLSTMmodel

5.4.5.1 Capturing Spatial and Temporal Dependencies

The CNN-BiLSTM model that has been suggested combines the advantages of both CNN
and BiLSTM layers. As a result, it can recognize both the spatial and the temporal de-
pendencies in the vehicular wireless channel. To begin, the CNN layers that are a part
of our CNN-BiLSTM model do an excellent job of capturing the spatial dependencies in
the vehicular wireless channel. These layers can automatically learn and extract spatial
features and patterns by applying convolutional filters to the Channel State Information
(CSI) matrices. Because of this spatial awareness, our model can better grasp the spatial
properties of the vehicular channel. Consequently, our model can provide more accu-
rate predictions about the best beam angles. On the other hand, methods like KNN,
SVR, BiLSTM, and CNN-LSTM may have difficulty properly using spatial information
or capturing complicated spatial correlations [101].

Furthermore, the BiLSTM layers that are included in our model make it possible
to capture temporal dependencies. This is important when considering the fluid nature
of the B5G vehicular environment. These layers can ingest information from settings
in the past as well as contexts in the future since they include recurring bidirectional
connections. Due to the presence of this feature, our model can successfully simulate
temporal dynamics and dependencies in the data. In contrast, SVR, KNN, BiLSTM, and
CNN-LSTM may need more advanced approaches to sufficiently model temporal depen-
dencies or capture long-term dependencies owing to the constraints they have in sequence
modeling [102], [103], [104]. These models may require more sophisticated techniques to
effectively model temporal or capture long-term dependencies. Our CNN-BiLSTM model
is distinguished from other approaches by its features, which lead to its better perfor-
mance in capturing both the spatial and temporal components of the vehicular wireless
channel. This performance sets it apart from other techniques.

5.4.5.2 Efficient Prediction

Our CNN-BiLSTM model uses the parallel processing capabilities of the CNN layers.
This enables fast, real-time prediction of beam alignment, which is essential in dynamic
traffic situations. Algorithms such as KNN, on the other hand, require an exhaustive
search of the entire training data set, resulting in longer prediction times. Similarly, SVR
involves the solution of a computationally demanding quadratic optimization problem. In
addition, due to their sequential structure, CNN-LSTM and BiLSTM may have a more
significant potential to increase computational complexity.
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Our CNN-BiLSTM model, which uses parallel processing, offers considerable advan-
tages in terms of speed and efficiency, making it particularly suitable for beam alignment
tasks in dynamic vehicle environments.

5.4.5.3 Improved Generalization

Our model incorporates CNN and BiLSTM layers, enabling excellent feature extraction
and modeling of complex interactions in vehicular communication. These capabilities
are made possible by merging these two types of models. This attribute enhances the
flexibility of the model and its ability to generalize successfully over a wide range of
channel conditions and traffic situations that may occur within a network of vehicles. On
the other hand, techniques such as KNN, SVR, CNN-LSTM, and Bi-LSTM may have
difficulty capturing complex patterns. They may not generalize these models to dynamic
vehicular communication scenarios successfully [105].

5.4.5.4 Robustness in the Face of Noisy Channel Conditions

Using the parallel processing capabilities of CNN layers, our CNN-BiLSTM model can
provide accurate beam alignment predictions quickly and in real-time, essential in highly
dynamic automotive situations. Methods like KNN, on the other hand, need a thorough
search of the training dataset, which increases the time it takes to make a forecast. Simi-
larly, SVR is a computationally demanding optimization issue using quadratic functions.
The sequential structure of CNN-LSTM and BiLSTMmay also be more resource-intensive.

Our CNN-BiLSTM model uses parallel processing to substantially benefit speed and
efficiency, making it ideal for beam alignment problems in dynamic vehicular environ-
ments.

5.4.5.5 Adaptability to Dynamic Vehicular Environments:

The dynamic and frequent changes seen in B5G vehicular communication scenarios are
captured by the CNN-BiLSTM model we have proposed. Our model displays extraordi-
nary flexibility to changing channel conditions, traffic patterns, and mobility situations
specifically because it incorporates spatial and temporal relationships. This flexibility
is essential in mobile situations, characterized by fast variations in the wireless channel
due to factors such as the movement of vehicles, impediments, and interference. Our
CNN-BiLSTM model, characterized by its capacity to capture and represent these dy-
namic components adequately, not only improves performance but also presents itself
as a potentially helpful option for beam alignment procedure. Because of its capacity
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to successfully deal with these dynamics, it can produce improved results, making it an
appealing option for tackling beamforming issues in vehicular communication.

5.5 Conclusion

In conclusion, this chapter presents a new approach to beam alignment, which focuses
on selecting the optimal beam angle (AoD) from the millimeter-wave base station for
efficient data transmission to moving vehicles. Our study focuses on an outdoor vehicular
communication scenario, generating the DeepMIMO dataset with specified parameters.
The proposed CNN-BiLSTM model is then trained to quickly and accurately determine
the optimal beam direction at the mmWave base station, adapting to frequent changes in
vehicle position.

The main objective of our approach is to speed up the selection of the optimal angle
in a dynamic vehicle environment, achieving lower error rates and shorter beam search
times. A comparative analysis with various machine learning algorithms, including the
KNN, SVR, Bi-LSTM, and CNN-LSTM regressors, using MSE, MAE, and RMSE mea-
surements, shows our hybrid solution’s superior accuracy and reduced computational cost.
In particular, our model achieves values of 0.0107, 0.0765, and 0.103 for these measures.

Collectively, these results highlight the potential of our hybrid solution to predict the
optimal beam angle of the mmWave base station with exceptional accuracy while reducing
computational costs. This translates into reduced beam search times and minimized
network overheads, representing a significant advance in beam alignment methods.

In the next chapter, we will focus on developing a new system that promises to revolu-
tionize beam alignment for millimeter-wave V2X data communication. This approach will
address beam alignment requirements on the mmWave base station and dynamic vehicle
sides. This new approach aims to improve vehicular communication, paving the way for
better connectivity and data transmission between vehicles and mmWave base stations.
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Chapter 6

Deep Learning-Based Beam Pair Angle
Prediction for Beyond 5G
Millimeter-Wave Vehicular
communication

6.1 Introduction

In today’s world, mmWave communication has become an essential component of Beyond
fifth-generation (B5G) systems for autonomous vehicular networks [30]. The enormous
bandwidth of these frequencies, which range from 30 GHz to 300 GHz, allows V2X com-
munication to have both a high transmission rate and low latency, which is mainly in
demand in high dynamic range situations [106]. However, it is well known that the most
significant challenge associated with communication at the millimeter wave frequency is
the path loss due to short-range propagation distance and the signal attenuation due to
surrounding static and dynamic obstacles. Many antenna components should be used
with beamforming technology to align the beams on the mmBS and the AV sides. This
will help to overcome the disadvantage. This will result in a high overall beamforming
gain and a reliable communication connection in a high mobility environment [107].

This chapter presents our third contribution, based on new deep learning to predict
the optimal beam pairs that establish connections between the vehicle on moving and the
mmBS, specifically, the AoD in Azimuth at the mmBS and the AoA in Azimuth at the
vehicle side.

Our third contribution was published in a paper at the IEEE Global Communications
Conference (GLOBECOM) in 2022. The published paper is entitled Deep Learning-Based
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Beam Pair Angle Prediction for Beyond 5G Millimeter-Wave Vehicular communication,
1. Please visit this link for more information.

6.2 System Model

This section presents the mmWave MIMO system and a channel model used in our study.
This includes aspects such as the received signal power (RSP), AoD, and AoA.

We are considering a downlink massive MIMO mmWave vehicular communication
system in which multiple mmBSs are equipped with NA := Nh

AN
v
A antennas. Here, Nh

A

arrays are arranged horizontally, and N v
A arrays are arranged vertically. A similar setup

is assumed for autonomous vehicles, equipped with MA := Mh
AM

v
A, where Mh

A arrays are
positioned horizontally, and M v

A arrays are positioned vertically. The mmBS and AV
employ antennas configured in uniform planar arrays (UPAs). At time instant k, the
signal received in the downlink, denoted as yk ∈ C, at the vehicle, is expressed as follows:

yk = fHk Hksk + zk, (6.1)

Here, fk ∈ CMA1 denotes the receive beamforming vector, k ∈ CNA1 represents the
transmit beamforming vector, H ∈ CNAMA represents the channel matrix and zn ∈ C
corresponds to the additive white Gaussian noise (AWGN) with zero mean and a variance
of σ2. In the context of mmWave vehicular networks, the mmWave MIMO channel matrix
for the transmission from the mmBS to the AV is expressed as follows:

H =

√
NAMA

L

L∑
l=1

βlαr(θl)α
H
t (ϕl), (6.2)

Here, L represents the number of multi-paths, and βl represents the complex gain
associated with the lth path. θl and ϕl represent, respectively, the AoD and the AoA for
the lth path. These angles, AoD and AoA, are in the range [-180°, 180°]. In addition, αr
and αH

t are used to denote the steering vectors at the vehicle and mmBS, respectively,
and are defined as follows:

αr(θl) =
1√
MA

[1, ej
2πd
λ
cosθl , ..., ejπ(MA−1) 2πd

λ
cosθl ]T (6.3)

αt(ϕl) =
1√
NA

[1, ej
2πd
λ
cosϕl , ..., ejπ(NA−1) 2πd

λ
cosϕl ]T (6.4)

In this context, ambda represents the wavelength of the carrier, and d represents the
1https://ieeexplore.ieee.org/document/10001428
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spacing between two consecutive antennas. In mmWave communications, this spacing is
generally configured as λ/2.

6.3 Proposed Deep Learning-Based Beam Pair Selec-

tion

We present a new beam-pair prediction approach based on bidirectional long-term memory
(BiLSTM-BPP) for LoS mmWave vehicular networks. By using location information,
this approach improves the reliability of data transmission while minimizing the error
probabilities and overheads associated with beam search. The schematic representation
of this process is shown in Figure 6.1. In the following, we describe the main steps of
the beam pair prediction approach using the proposed BiLSTM-BPP model, including
database generation, data processing, and beam pair prediction, as shown in Algorithm
18.

Figure 6.1: Deep-Learning Beam Pair Prediction scheme

6.3.1 Data Generation and Processing

Our study is based on the DeepMIMO (version 2) dataset, known for its high utility in
mmWave and Massive MIMO research applications. A 3D ray-tracing scenario simulator,
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Wireless InSite (WI), created by Remcom, manages this dataset. It should be noted that
the dataset generation follows the procedures described in Algorithm 1-Part 1. By tracing
the paths meticulously in this simulation, we obtain the complete DeepMIMO datasets.
These data sets include a multitude of essential parameters, including AoD in azimuth and
elevation, AoA in azimuth and elevation, phase, received signal strength, path loss, time
of arrival, delay spread, mmBS location, vehicle location and distance between mmBS
and vehicle.

After generating the channels in the dataset through environmental simulations, we
acquire contextual information about the channels specific to vehicular communication.
Subsequently, these features serve as inputs to our novel BiLSTM-BPP. This model is
designed to determine the optimal (AoA) and (AoD) for each vehicle position in B5G
mmWave vehicle networks.

To facilitate the training of BiLSTM-BPP, we use 60% of the dataset. This division
splits the entire database into three distinct sets: the training set, the validation set,
and the test set, according to a proportional distribution of 6:2:2. It should be noted,
however, that before introducing the data into the model, we carry out a normalization.
This step is essential because of variations in the units of the characteristics. Using Z-
Score normalization, we calculate each feature’s mean (µ) and standard deviation (σ).
We then normalize the data by subtracting the mean of each feature and dividing it by
the standard deviation, ensuring that all values fall between 0 and 1. This normalization
process is succinctly expressed as follows:

Xnorm = (X − µ)/σ, (6.5)

where X is the value of the input feature.

6.3.2 The proposed model for Beam Pair Prediction

In our study, we address the issue of beam misalignment as a regression problem and
use a supervised learning method to train our novel model. The input parameters of our
BiLSTM-BPP model include azimuthal AoD and AoA, received signal power, path loss,
vehicle location, mmBS location, and distance between mmBS and the vehicle.

Using the BiLSTM architecture, our model executes two identical computational
passes: one in the forward direction and one in the reverse direction. This dual pro-
cessing capability allows the model to retain past and future information, incorporating
complete data on the environmental context. As a result, our model can make precise
predictions about the optimal beam angle for the vehicle’s current position. This bidirec-
tional processing approach significantly improves the predictive accuracy of our model.
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Figure 6.2: The proposed BiLSTM-BPP architecture

Our proposed approach follows the procedure described in 18 and operates according
to the architecture shown in Figure 6.2. Our system aims to achieve optimal results
through multiple iterations. The architecture comprises a single input layer with nine
input features, followed by four layers of BiLSTM. These BiLSTM layers have varying
hidden layer sizes of 256, 128, 64, and 50 neurons, respectively, followed by a batch
normalization layer. The output is then flattened and passed through a fully connected
(FC) layer of 32 neurons, which uses a Rectified Linear Unit (ReLU) activation function,
where ReLU(x) = max(x, 0). This layer is followed by another FC layer with two outputs
and a linear activation function. We opted for a linear activation function because it
preserves the input values without alteration and returns the calculated values directly.
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Algorithm 1 Position and Deep-Learning Based Beam Pair Selection Approach
Part 1: DeepMIMO Dataset Generation
1. Begin by selecting the outdoor vehicular scenario.
2. Define the parameters for the DeepMIMO dataset.
while The vehicle is in motion do

3. Generate the channel matrix between the base station (BS) and the vehicle.
4. Choose the strongest communication path between the BS and the vehicle.
5. Save the relevant channel information for the selected path.

end while
Part 2: The Proposed Beam Pair Prediction Method
Input: Parameters such as AoA and AoD in elevation, Received Signal Power, Vehicle
Location, BS Location, Distance, and Path-loss.
Output: Predicted AoA and AoD in azimuth.
Initialization
1. Begin by preprocessing the input data, which includes normalization.
2. Construct the proposed model.
3. Train the proposed model using the available data.
4. Apply the trained model to testing data and evaluate its performance.
5. Generate the predicted beam pair angles (AOA/AOD).
6. Calculate the MSE to measure the dissimilarity between actual and predicted angle
values.
=0

6.4 Simulations and Numerical Results

In this section, we describe the details of our experimental setup, followed by a detailed
analysis of the results obtained in predicting beam pair angles using the proposed model.

6.4.1 Simulation Setup

To validate the proposed approach, we conducted experiments in an outdoor vehicular
communication scenario to evaluate the performance of our beam pair prediction method.
Our evaluation was based on the DeepMIMO dataset [13], which was generated using a 3D
ray-tracing simulator called Wireless InSite [108]. Specifically, we used the LOS scenario
"O1 60", operating at a frequency of 60 GHz, in which all vehicles had LoS communication
with the mmBS. Using the DeepMIMO generator script [13], we generated a substantial
dataset comprising approximately SLOS ≈ 73103 LOS samples. Table 6.1 describes the
data generation parameters. In our configuration, we chose four base stations (mmBS3,
mmBS4, mmBS5, mmBS6), each equipped with a UPA containing NA = 64 antennas.
The vehicles were equipped with a single antenna MA = 1, and their positions extended
from line #1000 to line #1500, each consisting of 181 data points.
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Table 6.1: Hyper-parameters for data-generation.

Parameters Values

Name of scenario O1_60
Active mmBS 3,4,5,6
Active users 1000 to 1500

Number of mmBS antennas (x, y, z) (1, 64, 1)
Number of vehicle antennas (x, y, z) (1, 1, 1)

Bandwidth (GHz) 0.5
Antenna spacing 0.5

Number of OFDM sub-carriers 1024
OFDM sampling factor 1

OFDM limit 64
Number of paths 1

The main objective of our model training is to minimize the loss function, which is
quantified using the root mean square error (RMSE) metric. This loss function measures
the disparity between the predicted values generated by the our model and the actual
θi values at each time step. As shown in table 6.2, we used Adam’s optimizer [109]
with a learning rate 0.0001 to facilitate this minimization process. The choice of the loss
function, MSE, is common in regression problems. Through multiple iterations and model
configurations, we have refined our approach to predict beam pair angles efficiently. In our
study, we evaluate the performance of the proposed method by quantifying the probability
of error between the expected angle values and the ground truth values. It is important
to note that minimizing the loss function (MSE) simultaneously maximizes the received
signal power, improving our approach’s overall efficiency.

Table 6.2: BiLSTM-BPP training hyper-parameters.

Parameters Values

Optimizer Adam
Learning rate 0.0001
Loss function MSE
Batch size 1024
Epoch 250

Data size 300.000
Data split 60:20:20
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6.4.2 The Obtained Results

Evaluating the performance of our proposed model during the training phase required
tracking two key metrics, namely MSE and MAE, as illustrated in Figures 6.3 and 6.4.
Over the 250 epochs, these parameters showed a clear trend. They reached a point where
the curves began to flatten and eventually converged. During this convergence, the MSE
reached a minimum value of 0.0268, while the MAE reached 0.1036. These values are
very satisfactory for a beam pair prediction model, indicating the efficiency of the model.

Furthermore, the closeness of the validation and learning curves for the MSE and
MAE is remarkable. This proximity suggests that the proposed BiLSTM-BPP model has
successfully avoided overfitting, as its performance on the unseen (validation) data closely
mirrors its performance on the training dataset.

Figure 6.3: Training and validation loss (MSE) plot

To evaluate the performance of our model, we have generated graphs that compare
the predicted angle values obtained from our proposed model with the actual angle val-
ues derived from the test dataset. Figure 6.5 provides a visual representation of these
comparisons, depicting the predicted and actual values of AoD (the top curve) and AoA
(the bottom curve). The remarkable thing about these graphs is how close the predicted
and actual values are. They are closely aligned, indicating our proposed model’s high ac-
curacy. This analysis proves that our model can predict the optimal pair of beam angles
(AoD/AoA) for different vehicle positions while maintaining a low error probability. Fur-
thermore, the effectiveness of our approach is confirmed by a comprehensive evaluation
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Figure 6.4: Training and validation MAE plot

of the regression measures, as shown below.

Figure 6.5: Comparison between the predicted and actual values for beam pair angle prediction.

The comparison results of evaluation metrics between the proposed BiLSTM-BPP
model and other regression models are presented in Table 6.3. We conducted a detailed
evaluation using five machine learning algorithms: Linear Regression, Support Vector
Regression (SVR), K-nearest neighbors (KNN) regressor, Decision tree, and Random
forest. Each model was trained with identical parameters to ensure equitable performance
evaluation in predicting beam pairs.
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The above results conclude that the proposed BiLSTM-BPP model performs better
than the traditional machine learning algorithms, demonstrating superior prediction ca-
pabilities. This superiority is apparent in the significantly lower values achieved by the
BiLSTM-BPP model in various evaluation measures, including RMSE, R-squared (R²),
MAE, MSE and median absolute error (MedAE). More specifically, the BiLSTM-BPP
model achieves values of 0.11, 0.99, 0.0816, 0.0121, and 0.06 for RMSE, R², MAE, MSE,
and MedAE, respectively.

In summary, the results of our analysis highlight the superior performance of the
proposed BiLSTM-BPP model compared to conventional machine learning techniques.
This innovative solution excels in autonomously identifying the optimal angles of the pair
of beams connecting the mmBS and the vehicle for each vehicle position. This accuracy
is crucial in maximizing the received signal strength in B5G vehicular networks, ensuring
highly efficient communication between the mmBS and the mobile vehicle. In addition,
this efficiency is achieved quickly, significantly reducing beam search time. This is in
contrast to traditional beam search methods, which often involve scanning 360° of beams
to identify the most appropriate beam angle, which is not well suited to the fast dynamics
of modern environments.

Table 6.3: Comparison of Evaluation Metrics RMSE, R-squared, MAE, MSE, MedAE for
regression models.

Models RMSE R-Squared MAE MSE MeAE

Linear regression 14.92 0.93 12.11 222.7 10.92
SVR 1.26 0.95 0.28 1.61 0.17
KNN regressor 0.44 0.97 0.19 0.59 0.14
Decision Tree 0.36 0.99 0.17 0.06 0.12
Random Forest 0.24 0.99 0.08 0.05 0.11
BiLSTM-BPP 0.11 0.99 0.0816 0.0121 0.06

6.5 Conclusion

In this chapter, we have presented a deep learning-based beam pair prediction model
called BiLSTM-BPP, which aims to reduce beam search times in B5G vehicular networks
significantly. The principle of our proposal lies in its architectural composition, which
comprises a robust set of four BiLSTM layers. This design allows us to exploit past and
future channel information, amplifying our model’s predictive capabilities. The BiLSTM-
BPP model predicts the optimal beam pair angle that aligns the beams between the mmBS
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and the vehicle, ensuring uninterrupted and reliable communication between different
vehicle positions.

A set of simulations was used to evaluate our approach empirically and obtain con-
vincing results. Indeed, our proposed model outperforms traditional machine learning
algorithms, including linear regression, SVR, KNN, decision tree, and random forest, in
a range of performance measures such as MSE, MAE, MeAE, and RMSE. These results
highlight that we have made significant progress in improving the efficiency of beam align-
ment within B5G vehicular networks, positioning our BiLSTM-BPP model as a formidable
solution for optimizing beam search processes.
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Chapter 7

Conclusion

Millimeter-wave communications are emerging as a promising solution to the increas-
ing demands for high data rates in future vehicular networks. The fundamental attributes
of millimeter-wave systems include compact wavelengths, wide bandwidth, low spatial re-
sponse, high penetration loss, susceptibility to obstacles, and the need for directional
communication. These characteristics distinguish millimeter-wave networks from tradi-
tional networks operating below 6 GHz. With the increasing amount of data sensors
generated, geographic dissemination in vehicular networks requires higher data rate links,
which can be achieved over mmWave frequencies. However, beamforming is necessary to
acquire sufficient range due to the high propagation loss imposed by these frequencies. The
characteristics of such a system compared with an omnidirectional antenna system require
different approaches. Vehicular networks are a crucial element in improving road safety
and traffic efficiency and supporting various infotainment services for the future develop-
ment of intelligent transport. Some fundamental characteristics of vehicular networks are
the high mobility of road vehicles and the heterogeneity of communication and service
types. With the evolution of vehicular networks, a new requirement for cost-effective and
durable network development has also emerged.

In this thesis, we focused on the crucial issue of beam alignment in vehicular networks
and its importance in enabling cooperative navigation through V2X communication in
5G/B5G networks. Our research has proposed and explored various innovative solutions,
including integrating deep learning techniques, to improve the performance of beam align-
ment in these networks.

Firstly, we exploited classical optimization techniques, notably the simulated annealing
algorithm, to advance beam alignment in 5G vehicular networks. The implementation
of this algorithm significantly reduced latency and improved data transmission between
millimeter-wave base stations and vehicles, resulting in uninterrupted communication.
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In our second contribution, we introduced a hybrid deep learning model, combining
a 1D convolutional neural network (CNN) with a bidirectional long-term memory net-
work (BiLSTM) to predict optimal beam angles. This integration of technologies has
considerably improved the accuracy of predictions while reducing errors. This innovative
approach eliminates the computational overhead associated with traditional methods,
ensuring efficient communication in B5G vehicle networks.

The third and final contribution explored advanced beam pair prediction using a
BiLSTM-based model. This model predicts the appropriate angles of the beam pairs,
in particular, the departure angle (AoD) in azimuth at the mmWave base station and the
arrival angle (AoA) in azimuth on the vehicle side. This has improved the reliability of
data transmission while significantly reducing the probability of error and the overheads
associated with beam searching.

In conclusion, this thesis is not the final destination but an essential step toward
realizing the full potential of V2X communication in autonomous navigation. The future
is full of opportunities, and our engagement in advancing this field will continue through
several promising directions that open up for research and development in this area. Here
are some essential perspectives:

• Mitigation of NLOS blockages: The development of advanced techniques for
mitigating non-linear blockages (NLOS) in millimeter-wave networks on board vehi-
cles is a significant prospect for the future. Innovative strategies, potentially involv-
ing machine learning algorithms and intelligent beamforming, should be explored
to predict, avoid or minimize NLOS blockages. This approach will ensure uninter-
rupted V2X communication and cooperative navigation in autonomous vehicles.

• Integration of Edge and Fog Computing: Edge and fog computing technologies
offer the ability to process data closer to the source, reducing latency and improving
real-time decision-making in autonomous vehicles. Future research should focus
on developing efficient computing solutions tailored to the specific requirements of
V2X communication. This integration will ensure fast response times and optimal
network performance for autonomous navigation.

• Security and confidentiality in V2X networks: As V2X communication be-
comes an increasingly integral part of autonomous navigation, it is essential to guar-
antee the security and confidentiality of transmission data. Future research should
focus on developing robust security mechanisms and privacy-preserving protocols
in V2X networks. Addressing issues such as authentication, data encryption, and
secure information exchange will be essential. In addition, exploring blockchain and
other emerging technologies to improve security and privacy in V2X networks is a

93



CHAPTER 7. CONCLUSION

promising avenue for future work.

• Energy-efficient V2X communication: Future studies should explore methods
of optimizing the energy consumption of the devices that make up the vehicular
environment. This includes developing energy-efficient algorithms, improving hard-
ware components, and integrating renewable energy sources for V2X communica-
tion. Energy-efficient V2X can help to reduce the carbon footprint and promote
environmentally friendly autonomous navigation systems.
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