

Université Mohamed Khider de Biskra Faculté des sciences et de la technologie Génie mécanique

MÉMOIRE DE MASTER

Domaine : Sciences et Techniques Filière : Génie Mécanique

Spécialité: Énergétique

Réf.:

Présenté et soutenu par : Messaoudi Raid et Rezgui Laid

Le: 13 juin 2024

Titre

Etude de l'influence de la température de combustion sur les organes de la chambre de combustion du moteur diesel 1.6 HDI

		Jury:	
Dr. Benmachich Massoud	MCB	Université de Biskra	Présidant
Dr. Benarfaoui Arfaoui	MCB	Université de Biskra	Rapporteur
Dr. Guerbaai Saleh	MCB	Université de Biskra	Examinateur

Année universitaire: 2023 - 2024

Remerciements

Je remercie tout d'abord Allah qui est toujours m'aide et me donne la patience et le courage durant ces langues années d'étude.

Je tiens à remercier particulièrement Monsieur **Dr.Arfaoui**benarfaoui, mon encadreur, pour avoir accepté de diriger ce travail,
l'expression de mon profond et sincère remerciement, pour ses efforts,
ses critiques constructives et sa confiance et pour m'avoir ouvert les
portes pour ses conseils et encouragements durant cette difficile
période de recherche.

Je remercie également membres de jury qui m'ont fait l'honneur de bien vouloir examiner travail.

Enfin, nous remercions également ma famille respective et mes amies, je n'aurais jamais pu réaliser ce travail sans votre soutien.

Mes sincères remerciements à tous

Dédicace

Je dédie ce travail à tous ceux que j'aime et j'estime en particulier :

A mes parents Layeche et khalida qui m'ont toujours soutenue

A mes frères

A ma sœur

A tous mes chers amis

Ainsi que pour tous mes amis et mes collègues

Dédicace

Ce modeste travail est dédié :

Aux êtres les plus chers de ma vie, mon père ABdelkamel et ma mère Naziha

qui ont été les bougies allumant mon chemin vers la réussite; qui m'ont tout donnés, leurs amours, leurs sacrifices pour que je puisse suivre mes études dans des bonnes conditions et qui ne cessent pas de m'encourager et de veiller pour mon bien.

A mon frères

Ames sœur

A tous mes chers amis

Ainsi que pour tous mes amis et mes collègues

SOMMAIRE

Table de matières

INTRODUCTION GÉNÉRALE	0
CHAPITRE <u>I</u> ETUDE TRANSFERT DE CHALEUR) L
I.1. INTRODUCTION	1
I.2 DÉFINITION	
I.2.1 CHAMP DE TEMPERATURE	2
I.2.2 GRADIENT DE TEMPERATURE	
I.3 DIFFÉRENTS MODES DE TRANSFERT DE CHALEUR	
I.3.1 TRANSFERT PAR CONDUCTION: I.3.2 TRANSFERT PAR CONVECTION:	
I.3.2.1 Régime d'écoulement :	<i>7</i>
I.3.2.2 Calcul du coefficient d'échange par convection h :	
I.3.3 TRANSFERT PAR RAYONNEMENT:	11
CHAPITRE IIDÉTERMINATION DE LA TEMPÉRATUR	E
MAXIMALE DE LA CHAMBRE DE COMBUSTION	
II.1. MOTEURS A COMBUSTION INTERNE:	13
II.2.ETUDE THERMODYNAMIQUE	13
II.2.1.LE CHOIX DES VALEURS CARACTERISANT DU MOTEUR:	
II.2.1.1.Données relatives au moteur diesel 1.6HDI	13
F-COEFFICIENT DE BALAYAGE DE LA CHAMBRE DE COMBUSTION:	14
G-COEFFICIENT DE BALAYAGE DE LA CHALEUR SPÉCIFIQUE \(\lambda_t\) EN	
FONCTION DE a:	
K-COEFFICIENT D'UTILISATION DELA CHALEURAU POINTB:	14
II.2.2.ETABLISSEMENT DU DIAGRAMME REEL D'UN MOTEUR A QUATRE TEMPS	
II.2.2.1.Admission	
A) DETERMINATION DE LA QUANTITE THEORIQUE DE L'AIR NECESSAI POUR UNE COMBUSTION COMPLETE D'UN KG DE COMBUSTIBLE:	
II.2.2.2.Compression:	
II.2.2.3.Combustion et détente:	
CHAPITRE IIIDESSIN ET SIMULATION LA CHAMBRE	DE
COMBUSTION AVEC SOLIDWORKS ET ANSYS	-
III. INTRODUCTION	20
III 1DDÉSENTATION DES DÉSII TATS	

SOMMAIRE

III.1.1.LA TEMPERATURE AU SIEN DU PISTON	41
III.1.2 RESULTATS THERMIQUE TEMPERATURE MAX ET MIN	42
III.2.LES DÉFORMATION THERMIQUE	43
III.3.LES CONTRAINTE THERMIQUE	43
III .4 TABLEAU DE RÉSULTATS	44
CHAPITRE IV DISCUSSION DES RÉSULTATS	
IV.1.LES RÉPARTITIONS DE LA TEMPÉRATURE :	45
IV.2.LES CONTRAINTES THERMIQUES :	45
IV.3.LES DÉFORMATION THERMIQUES :	46
CONCLUSION GÉNÉRALE	48
BIBLIOGRAPHIE	50

TABLE DES TABLEUX

Liste des Tableaux

Tableau (I.2) : les valeurs de la conductivité thermique λ de certains matériaux.	
Tableau récapitulatif : Chargements thermiques (les conditions aux limites)	39
Le tableau II-1	27
Le tableau II-2	27
Le tableau II-3	28
III.1.2 Résultats thermique température max et min	42
III .4 Tableau de résultat	44

TABLE DES FIGURES

Liste des Figures

Figure I.1 Illustration des différents types de transferts thermiques [3].	
Figure I.2. Isotherme et gradient thermique [4].	
Figure I.3. Transfert par conduction	04
Figure I.4. Transfert par convection [10].	07
Figure I.5 : écoulement d'un fluide en régime laminaire [12].	08
Figure I.6. Écoulement d'un fluide en régime turbulent [13].	08
Figure II.1 la courbe d'admission	18
Figure II.2 la courbe de compression	20
Figure III.1.piston 207 1,6 Hdi	32
Figure III.2. Autre face de piston 207 1,6 Hdi	33
Figure III.3 dimension du piston	33
Figure III.4 dimension du piston	34
Figure III.5 dimension du piston	34
Figure III.6 Les charge thermique sur les différentes faces du piston	35
Figure III.7 choix de l'étude	35
Figure III.8 choix de matériaux	36
Figure III.9 Importation de la géométrie	37
Figure III.10.Les isothermes au sein du piston en (Kelvin)	41
figure III.11 illustre la valeur max et la valeur min des réparations de température	42
Figure III.12.La déformation thermique	43
Figure III.13.les valeurs de déformation à certaine place	43
Figure III.14.Les contrainte	44
Figure III.15. Autre face de la contrainte	44

Liste des abréviations

Lettres latines:

 P_0 : Pression ambiante

T₀:Température ambiante

Pr:Pression des gaz résiduels

 T_r :Température des gaz résiduels

 n_1 :L'exposant poly tropique Phase de compression

n₂:L'exposant poly tropique Phase de détente

 ΔT : Augmentation de température du fluide moteur admis par le Contact avec les parois

Ta:Température de fin d'admission

 T_z :La température maximale

Pa:Pression atmosphérique

K:Conductivité thermique

H:Coefficient d'échange thermique

M :L'exposant poly tropique de la détente des gaz résiduels pendant La Phase d'admission

ma:Masse de l'air

m_c:Masse du carburant

mae: Masse de l'air effective

 m_{ce} : Masse du carburant effective

M: Quantité des gaz

 M_0 : La quantité théorique de l'air

*M*₁: La quantité réelle de l'air admise dans le cylindre

M₂: La quantité de gaz brulé

LISTE DES ABREVIATIONS

 ΔM : Variation des volumes âpres la combustion V_0 : Le volume occupé par l'air aspire *V_h*: La cylindrée unitaire de moteur C_p :La chaleur spécifique de l'air frais C_p ': La chaleur spécifique du mélange(air+gaz résiduelles) C_p : La chaleur spécifique des gaz résiduels Q:La quantité de chaleur transférée Q_h :Le pouvoir calorifique du combustible U:L'énergie interne d'un K Mole R:Rayon de la manivelle P_{ci} : Pouvoir calorifique inférieur Pcs:Pouvoir calorifique supérieur PCS_m:Pouvoir calorifique supérieur massique PCl_m: Pouvoir calorifique inférieur massique Symbole grecs α: Coefficient d'excès d'air β th: Coefficient de variation du volume après la combustion β : Coefficient de variation réelle β_z : Coefficient de variation au point Z ε: Taux de compression η_{v} : Coefficient d'admission(de remplissage)

 y_r : Coefficient de gaz résiduels

£: Rapport volumétrique(compression)

LISTE DES ABREVIATIONS

- £z: Coefficient d'utilisation de la chaleur au point Z
- \pounds_b : Coefficient d'utilisation de la chaleur au point B
- λ : Coefficient de construction de la bielle
- λ₁:Coefficient d'admission supplémentaire
- λ_2 : Coefficient de balayage de chambre de combustion
- λt : Coefficient de correction de la chaleur spécifique
- φ : La richesse

Constantes

- σ : Constante de STEAFANBOLZMAN
- ε S: Constante(pour le gas-oil)

Introduction générale

Introduction générale

La combustion dans les moteurs à combustion interne permet la production d'un travail mécanique en produisant l'énergie mécanique qui fait fonctionner les pièces mobiles et d'un autre coté elle dégage de l'énergie calorifique qui provoque la déformation des pièces mécaniques, qu'elles soient fixes ou mobiles. Le piston étant l'élément qui transmet les efforts mécaniques et thermiques qui en résultent, il peut être considéré comme la pièce la plus vulnérable du moteur et sa structure est le siège des contraintes thermiques qui résultent des flux thermiques résultant de cette combustion.

Notre travail consiste à étudier l'influence de la température due à la combustion sur la structure du piston d'un moteur diesel Peugeot 1.6 HDI.

L'utilisation des logiciels SolidWorks et Ansys nous a permis de dessiner la forme géométrique du piston, malgré sa complexité, puis la détermination de la répartition de la température au sein du piston, c'est-à-dire les lignes isothermes. Ces dernières nous ont conduit à évaluer les contraintes et déformations thermiques qui ne peuvent être déterminées que par ces outils numériques avancée.

Notre travail se compose de 4 chapitres, dans le premier nous avons une étude de transfert de chaleur, dans le deuxième chapitre nous avons la détermination de la température maximal de la combustion moteur, dans le troisième chapitre nous avons une dessin et simulation la chambre de combustion avec SolidWorks et ANSYS, Et enfin la discussion de résultants avec un conclusion générale.

I.1. Introduction

Le système avec la température la plus élevée compense le système avec la température la plus basse lorsque deux systèmes sont à des températures différentes. Il y a eu un échange thermique ou transfert thermique entre ces deux systèmes. Ce processus se produit dans des contextes variés, industriels (moteurs thermiques voire électriques, chaudières centrales électriques à gaz alimentées au fioul, etc.) et domestiques (systèmes de chauffage domestique). Un transfert d'énergie se traduit par un flux de chaleur, ou un mouvement d'énergie depuis le plus chaud vers un environnement plus froid. Comme on le verra dans la suite, le flux de chaleur dont la densité locale est notée ϕ est un flux vectoriel, indiquant qu'un flux de chaleur est caractérisé à la fois par sa direction et son intensité. Elle est définie en chaque endroit de l'espace et s'exprime en termes de densité surfacique de pompage (W/m^2). Le transfert de chaleur par conduction, rayonnement et convection sont les trois principales voies [1].

Le transfert de chaleur peut être défini comme la transmission de l'énergie d'une région à une autre sous l'influence d'une différence de température. Il est régi par une combinaison de lois physiques.

Il existe trois modes de transmission de chaleur [2]:

- Conduction ;
- Convection;
- Rayonnement.

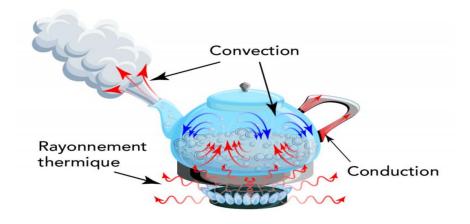
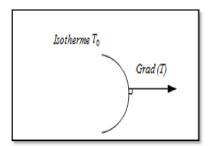


Figure I.1 Illustration des différents types de transferts thermiques[3].

I.2 Définition


I.2.1 Champ de température

L'évolution de la température dans l'espace et dans le temps permet de déterminer les transferts d'énergie : T est égal à f (x, y, z, t). Une échelle connue sous le nom de « champ de température » représente la température instantanée en tout point de l'espace. Nous distinguerons deux cas :

- Champ de température indépendant du temps : le régime est dit permanent ou stationnaire ;
- Evolution du champ de température avec le temps : le régime est dit variable ou instationnaire.

I.2.2 Gradient de température

Tous les points de l'espace ayant la même température se réunissent pour former une surface appelée isotherme de surface. Le long de la normale à la surface isotherme est la plus grande variation de température par unité de longueur. Cette variation se distingue par le gradient de température :

Figure I.2.Isotherme et gradient thermique[4].

$$\overrightarrow{grad}(T) = \overrightarrow{n} \frac{\partial T}{\partial n}$$
 (I.1)

Avec:

 \vec{n} : Vecteur unitaire de la normale.

 $\frac{\partial T}{\partial n}$: Dérivée de la température le long de la normale.

I.2.3 Le flux de chaleur :

Un gradient de température qui passe des températures élevées aux températures basses provoque une fuite de chaleur. La densité du flux de chaleur est la quantité de chaleur transférée par unité de temps et par unité d'air à la surface isotherme :

$$\varphi = \frac{1}{S} \frac{dQ}{dt} \tag{I.2}$$

$$\phi = \frac{d\varphi}{dS}$$

Où S est l'aire de la surface (m²).

On appelle flux de chaleur la quantité de chaleur transmise sur la surface S par unité de temps :[4]

$$\emptyset = \frac{dQ}{dt} \tag{I.3}$$

I.3 Différents modes de transfert de chaleur

Chacun des trois modes de transmission de chaleur – conduction, convection et rayonnement – est connecté à un processus physique spécifique bien défini. L'énergie thermique d'un milieu matériel étant égale à l'énergie chimique de ses constituants fondamentaux présentant un certain degré de mobilité (molécules, atomes, électrons, libres, etc.), ces constituants vont échanger tout ou partie de leur énergie thermique, c'est-à-dire gagner ou perdre de l'énergie chimique :

- Soit par interaction directe avec des particules proches (comme un choc moléculaire), ce qui équivaut à une conduction ;
- Soit par l'émission ou l'absorption d'un rayonnement électromagnétique, ce qui équivaut à un rayonnement.

Enfin, dans le cas d'un gaz ou d'un liquide, les échanges résultant du mélange de différents composants du fluide à différentes températures sont également considérés, mais cette fois à une échelle macro, sous la forme d'une forme de transmission thermique appelée convection [5].

I.3.1 Transfert par Conduction:

Il s'agit du transfert de chaleur dans un environnement opaque provoqué par une différence de température sans aucun mouvement de matière. Il existe deux mécanismes différents par lesquels la chaleur est transférée par conduction à l'intérieur d'un corps : l'un implique les vibrations de molécules ou d'atomes, et l'autre implique des électrons libres.[6].

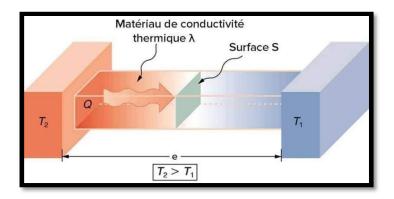


Figure I.3. Transfert par conduction

La théorie de la conduction repose sur l'hypothèse de *Fourier* : la densité de flux est proportionnelle au gradient de température :

$$\vec{\emptyset} = -KS \, \overline{grad}(T) \tag{I.4}$$

Ou sous forme algébrique :

$$\emptyset = -KS(x)\frac{\partial T}{\partial x}$$
 (I.5)

Ø: flux de chaleur transmis par conduction (W).

K : Conductivité thermique du milieu ($W m^{-1}K^{-1}$).

x: Variable d'espace dans la direction du flux (m).

S : Aire de la section de passage du flux de chaleur (m^2) [6].

On trouvera dans le tableau I.2 les valeurs de la conductivité thermique λ de certains matériaux parmi les plus courants [6].

Tableau (I.2) : les valeurs de la conductivité thermique λ de certains matériaux [6].

Matériau	(W.m ⁻¹ . °C ⁻¹)	Matériau	(W.m ⁻¹ . °C ⁻¹)
Argent	419	Plâtre	0.48
Cuivre	386	Amiante	0.16
Aluminium	204	Bois (feuille-résineux)	0.12-0.23
Acier doux	45	Liège	0.044-0.049
Acier inox	15	Laine de roche	0.038-0.041
Glace	1.88	Laine de verre	0.035-0.051
Béton	1.4	Polystyrène expansé	0.036-0.047
Brique terre cuite	1.1	Polyuréthane (mousse)	0.030-0.045
Verre	1.0	Polystyrène extrudé	0.028
Eau	0.60	Air	0.026

I.3.2 Transfert par convection:

La convection est le terme utilisé pour décrire le transfert thermique qui se produit dans les fluides en mouvement, liquides ou gazeux. La convection est le processus de transfert de chaleur provoqué par le mouvement des particules constitutives d'un fluide à travers des zones où les températures varient.

La convection peut se produire entre des flux de fluide circulant le long d'une surface solide où la température du fluide varie, ou elle peut se produire entre des couches de fluide avec des températures différentes. Il existe trios types différents de convection :

a) Convection libre (naturelle) : Dans ce type le mouvement du fluide est du simplement aux différences de densité résultant des gradients de température.

- **b)** Convection forcée : Le mouvement du fluide est causée par l'action des forces extérieurs par exemple (ventilateur, pompe,...etc.) qui lui donne des vitesses de déplacement assez importantes radiateur [7].
- c) Convection mixte :Le cas général de la convection présente un grand nombre de situations intermédiaires où les mécanismes de la convection naturelle et de la convection forcée coexistent avec des ordres de grandeur comparables ; les deux mécanismes vont s'aider ou se contrarier selon le sens relatif du mouvement forcé par rapport au mouvement dû aux effets de la pesanteur ; trois cas peuvent se présenter :
- Si l'écoulement forcé s'oppose aux forces de pesanteur, l'écoulement sera freiné, le transfert thermique diminue et on parle de la convection mixte « contrariée ».
- Si l'écoulement forcé est de même sens que les forces de pesanteur, les transferts thermiques s'amplifient alors et on parle de la convection mixte « aidée ».
- Si l'écoulement forcé est perpendiculaire à la direction des forces de pesanteur, il y aura une amélioration des échanges thermiques [8].

Le problème devient alors encore plus complexe car les formules de corrélation sont ainsi, comme nous l'avons vu précédemment, de la forme :

$$Nu = f(Pr, Re, Ri)$$
 ou $Nu = f(Pr, Re, Gr)$ [11]. (I.6)

L'objectif principal de l'étude de phénomène de la convection, consiste essentiellement à:

- La compréhension et la modélisation de ce phénomène pour la prédiction de ses effets dans
 Les équipements relatifs et même dans l'environnement;
 - a. Le dimensionnement et le choix de matériaux convenables des appareils, équipements et

Installations de chauffage et de refroidissement;

b. L'amélioration de performances des systèmes de refroidissement des composants électroniques (processeurs par exemple, pour atteindre une vitesse optimale de traitement des données);

- c. Calcul du coefficient d'échange de chaleur par convection (h),
- d. L'établissement des corrélations empiriques utilisées pratiquement pour le calcul et le Dimensionnement [9].

Ce mécanisme de transfert est régi par *la loi de Newton* qui stipule que la densité de flux de chaleur échangée entre une paroi solide et un fluide en écoulement est proportionnelle à l'écart de température qui lui a donné naissance. Elle s'écrit :

$$\emptyset = hS(T_p - T_\infty)[13] \qquad (I.7).$$

Avec:

 \emptyset : Flux de chaleur transmis par convection (W).

h: Coefficient de transfert de chaleur par convection $(W.m^{-2}.^{\circ}C^{-1})$.

 T_p : Température de surface du solide (°C).

 T_{∞} : Température du fluide loin de la surface du solide (°C)

S: Aire de la surface de contact solide/fluide (m^2) [2].

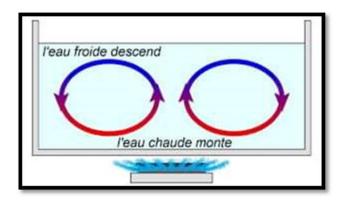


Figure I.4. Transfert par convection [10].

I.3.2.1 Régime d'écoulement :

Compte tenu du lien entre le transfert de masse et le transfert de chaleur, il est nécessaire de considérer le régime d'écoulement. Considérons à titre d'exemple l'écoulement d'un fluide dans une conduite [11].

a. **En régime laminaire :** L'écoulement s'effectue par couches pratiquement indépendantes entre deux filets fluides adjacents les échanges de chaleur s'effectuent :

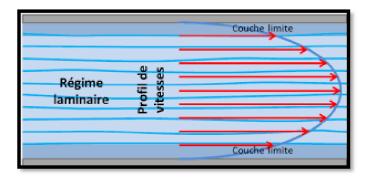


Figure I.5: écoulement d'un fluide en régime laminaire [12].

b) En régime turbulent : l'écoulement n'est pas unidirectionnel : L'échange de chaleur dans la zone turbulente s'effectue par convection et conduction dans toutes les directions. On vérifier que la chaleur transférée par conduction est généralement négligeable par rapport à celle transférée par convection [13].

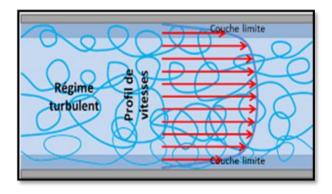


Figure I.6. Écoulement d'un fluide en régime turbulent [13].

I.3.2.2 Calcul du coefficient d'échange par convection h :

En convection forcée en l'absence de convection naturelle, le coefficient d'échange h.

✓ En convection forcée

En convection forcée, le coefficient d'échange h est indépendant de la différence de la température de la paroi et du fluide mais il dépend des grandeurs suivantes:

U : vitesse moyenne du fluide $(\frac{m}{s})$.

 ρ : Masse volumique du fluide (Kg/m^3) .

 c_p : Chaleur spécifique à pression constante du fluide en $(\frac{J}{KaK})$.

 μ : viscosité dynamique du fluide en(Pa.s) ou en $(\frac{Kg}{m.s})$).

 λ : Conductivité thermique du fluide en $(\frac{W}{m.K})$.

 D_h : Dimension caractéristique de la surface d'échange.

$$D_h = \frac{4S_p}{P_m}$$

- à l'intérieur du tube interne : $D_h = d_{int}$

- pour la section annulaire : $D_h = d_{int} - d_{ext}$

-pour une plaque plane : $D_h = L$ avec L: la langueur d'une plaque plane

 S_p : Section de passage en (m^2) .

 P_m : Périmètre mouillé en(m).

A partir de ces grandeurs, on définit les nombres sans dimension suivants :

$$Nu = \frac{hD_h}{\lambda}$$
 nombre de Nusselt (I.8)

$$Re = \frac{\rho U D_h}{\mu}$$
 nombre de Reynold (I.9)

$$P_r = \frac{\mu c_p}{\lambda}$$
 nombre de Prandt (I.10)

Les travaux expérimentaux étudiant le transfert de chaleur par convection dans une situation donnée fournissent leurs résultats sous forme de corrélations mathématiques Nu = f(Re, Pr) qui permettent de calculer h par :

$$h = \frac{Nu\lambda}{D_h} \tag{I.11}$$

Le nombre de Reynolds caractérise le régime d'écoulement du fluide

Re < 2000 Écoulement laminaire

2000 < Re < 3000 : Ecoulement intermédiaire

Re > 3000: Écoulement turbulent

Pr : Le nombre de Prandtl caractérise les propriétés thermiques du fluide

Nu :Le nombre de Nusselt caractérise l'échange thermique entre le fluide et la paroi.

Exemple: plaque verticale, oblique ou horizontale.

$$Nu = \frac{2}{3}Re^{0.5}Pr^{1/3}(I.12)$$

$$Nu = \frac{0.036Re^{0.5}Pr}{1 + 0.83(Pr^{0.6} - 1)}[14]$$
 (I.13)

✓ En convection naturelle

Dans la convection naturelle, le mouvement du fluide est dû aux variations de la masse volumique du fluide provenant des échanges de chaleur entre le fluide et la paroi. Le fluide est mis en mouvement sous l'effet des forces d'Archimède car sa masse volumique est fonction de sa température.

La convection forcée est négligeable si

$$\frac{Gr}{Pr^2} > 100$$
 (I.14)

$$Nu = c(GrPr)^n (I.15)$$

$$Gr = \frac{\beta g \Delta T \rho^2 L^3}{\mu^2}$$
 Nombre de Grashof (I.16)

Convection Laminaire
$$GrPr > 10^9 \Rightarrow n = \frac{1}{4}$$
 (I.17)

Convection Turbulente
$$GrPr < 10^9 \Rightarrow n = \frac{1}{4}$$
 (I.18)

Exemple : plaque plane verticale ou horizontale de longueur L et de température uniforme.

Convection Laminaire
$$Nu = 0.53(GrPr)^{\frac{1}{4}}$$
 (I.19)

Convection Turbulente
$$Nu = 0.105(GrPr)^{\frac{1}{3}}$$
. [15] (I.20)

I.3.3 Transfert par Rayonnement:

Contrairement aux deux autres mécanismes d'échange – conduction et convection – le rayonnement ne nécessite pas la présence d'un support physique. Il s'étend dans l'espace, à la manière d'une forme de visite environnementale. Ce milieu se propage en ligne droite s'il est homogène. Un transfert d'énergie électromagnétique entre deux surfaces, y compris l'espace, est appelé rayonnement [6].

La chaleur est transférée entre deux corps à des températures différentes, séparés par un vide ou un environnement semi-transparent à l'aide d'ondes électromagnétiques, qui ne nécessitent aucun support externe. Ce mécanisme de transfert est régi par la loi Stefan [9].

Ex : corps de petite dimension placé dans une enceinte fermée

$$\emptyset = \varepsilon \sigma S(T_p^4 - T_c^4)$$
 (I.21)

Avec:

 ε : Émissivité du corps $(0 < \varepsilon \le 1)$.

 $T_p: La \ temp\'erature \ de \ la \ surface \quad \ (K^{°}).$

 T_c : La température de corps (K°) .

S: Aire de la surface (m²) [6].

Elle est régie par la loi de Stefan-Boltzmann, qui stipule que la densité superficielle du flux d'énergie rayonné par un corps noir est proportionnelle à sa température de surface absolument élevée à quatre heures.[16]

$$E_{corps\;noir} = \sigma.\,T^4\left(\frac{w}{m^2}\right) (1.22)$$

Avec

 σ : est la constant de Stefan Boltzmann

$$\sigma = 5,67. \, 10^{-8} \left(\frac{w}{m^2 \cdot \kappa^4} \right).$$
 [6]

Chapitre II

Détermination de la température maximale de la chambre de combustion

II.1. MOTEURSACOMBUSTIONINTERNE:

Il s'agit, comme son nom l'indique, d'une machine thermique qui permet au moteur de

récupérer la chaleur provenant de la combustion d'un combustible à l'intérieur de celui-ci ; la

source chaude est en quelque sorte située à l'intérieur du moteur.

Les moteurs à combustion interne du type à piston sont largement utilisés dans les

automobiles, les trains, les avions et autres véhicules.

La partie principale de chaque moteur à pistons est le cylindre, qui utilise un système

bielle-manivelle pour déplacer un piston fixé à l'organe de travail. La chambre de combustion

comporte deux ouvertures de soupape scellées : l'une permet à l'air ou au mélange inflammable

d'entrer au début du cycle, tandis que l'autre permet aux gaz brûlés de s'échapper une fois le cycle

terminé.

Ce type de moteur est principalement composé d'un ou plusieurs cylindres dont

chacun possède un piston mobile. Le piston constitue la partie mobile de la chambre où se

produit la combustion.

Le piston qui tourne à l'intérieur du cylindre ne peut avoir qu'un mouvement alternatif

(linéaire). Afin d'obtenir un flux continu de fluide, le piston du moteur (vilebrequin) est relié à un

arbre articulé à ces deux extrémités.

II.2. Etude thermodynamique

II.2.1.Le choix des valeurs caractérisant du moteur:

Les paramètres thermodynamiques qui définissent les caractéristiques du moteur diesel sont

donnés par intervalles; les valeurs retenues doivent correspondre aux dimensions caractéristiques

du moteur (alésage et cap), qui sont déterminées par calcul.

II.2.1.1.Données relatives au moteur diesel 1.6HDI

a-Pression et température ambiante:

 $P_0=0.1MP_a$ $T_0=288^{\circ}$ **k**

13

b-Pression et température des gaz résiduels

 $P_r = 1.2P_0$

$$\rightarrow$$

 $P_r = 0.12 MP_a$

 $T_r = 700 \text{à} 900 \text{°k}$

$$\rightarrow$$

 $T_r = 850^{\circ} \text{k}$

c-L'exposant poly tropique:

c-1/Phase de compression:

$$n_1$$
=1.34 à 1.39

$$\rightarrow$$
 $n_1=1.38$

c-2/Phase de détente:

$$n_2=1.14 \hat{a} 1.23$$

$$\rightarrow$$
 n_2 =1.23

d-Augmentation de température du fluide moteur admis par le contact avec les parois

$$\Delta T = 20 \text{ à } 40$$

$$\rightarrow$$
 $\Delta T=31$

e-Coefficient d'admission supplémentaire:

$$\lambda_1 = 1.02 \ \hat{a} \ 1.07$$

$$\rightarrow \lambda_1 = 1.05$$

f-Coefficient de balayage de la chambre de combustion:

$$\lambda_2=0 \hat{a} 1$$

g-Coefficient de balayage de la chaleur spécifique λ_t en fonction de α :

$$a=1.4$$
 0 $\lambda_t=1.1$

h-Exposant poly-tropique m:

m=1.5

j-coefficient d'utilisation de la chaleur au point z :

$$\pounds_z = 0.65 \ \hat{a} \ 0.85 \rightarrow \pounds_z = 0.82$$

k-coefficient d'utilisation de la chaleur au point b :

$$\pounds_b = 0.85 \ \hat{a} \ 0.90 \rightarrow \pounds_b = 0.81 \ [19].$$

II.2.2.Etablissement du diagramme réel d'un moteur à quatre temps

Chaque moteur thermique utilise les changements thermodynamiques d'une masse gazeuse pour convertir l'énergie chimique contenue dans le carburant en énergie mécanique qui peut être

directement utilisée par le moteur. En affichant les valeurs de pression des gaz à chaque instant le

long de l'axe des ordonnées et les volumes qui ont provoqué ces pressions le long des abscisses

axiales, qui sont composées de quatre au cours d'un cycle, on peut obtenir le schéma théorique

d'un moteur, qui est copossède quatre parties qui se succèdent dans l'ordre suivant :

Le premier temps: Admission.

Le deuxième temps : **Compression**.

Le troisième temps : Combustion-détente.

Le quatrième temps : Echappement.

II.2.2.1.Admission: Le piston décrit une course descendant du PMH au PMB, la soupape

d'admission est ouverte, le mélange air +carburant préalablement dose pénètre dans le cylindre,

l'énergie nécessaire pour effectuer ce temps est fournie au piston par le vilebrequin par

l'intermédiaire de la bielle.

a)Détermination de la quantité théorique de l'air nécessaire pour une

combustion complète d'un Kg de combustible:

C'est la quantité théorique d'oxygène Othminimale qui peut être importé pour l'oxydation

complète d'I Kg de combustible liquide composé essentiellement du C Kg de carbone, H Kg

d'hydrocarbure et d'**O** Kg d'oxygène, elle est décrite par les réactions chimiques suivant:

$$C+O_2 \rightarrow CO_2$$

$$H_2+O_2\rightarrow 2H_2O$$

Nous avons que le combustible renfermer par Kg:

$$C Kg \rightarrow C/12 K Mole$$

On peut dire:

C Kg de(C)+C/12 K Mole de(2) \rightarrow C/12 K Mole de(C \mathbf{O}_2)

15

H Kg de(H)+H/12KMolede(2) \rightarrow C/12KMolede(C O_2)

Alors pour la combustion complète d'un Kg de combustible il faut:

(C/12+H/4)K Mole $de(\mathbf{O}_2)$ mais comme une partie $de(\mathcal{O}_2)$ existe déjà dans le combustible Soit(O/32) K Mole donc l'oxygène demandé sera :

(C/12+H/4-O/32)K Mole et comme l'air contient 21% de(\mathbf{O}_2)c'est-à-dire 1 m^3 de(O_2)

Correspond à4.76m³ d'air donc la quantité théorique d'air nécessaire est:

Les composants	Carbone(C)	Hydrogène(H)	Oxygène(O)
La valeur massique en%	0.87	0.126	0.004

 A_{th} =1/0,209 (C/12+H/4–O/32) K Mole

=1/0,209 (0.87/12+0.126/4-0.004/32)

 A_{th} =0.499 KMole/Kg

b) La quantité réelle d'air admise dans le cylindre:

Dans la combustion la qualité d'air réellement utile (M_1) est un peu supérieure a la quantité théorique pour une combustion complète; c'est-à-dire avec un excès d'air symbolise par un coefficient $(\alpha > 1)$.

On a:
$$M_1 = \alpha . M$$
 et $\alpha = 1.4$ (II.1)

 M_1 =0.699**KMole/Kg**

 A_{th} =0.499KMole/Kg

C/Calcul des paramètres d'admission:

c.1) Détermination de P_a :

Avec: $P_a=0.8.P_0$ (II.2)

A.N: $P_a=0.089MPa$

c.2) Détermination de Ta:

C2.1)Détermination des coefficients d'admission et des gaz résiduels (η_v, y_r)

a) Coefficient du gaz résiduels y_r

On a:
$$y_r = Mr/M_1$$
 (II.3)

ET
$$M_r = (P_r.V_c)/(8314.T_r) = (P_r.V_h)/(8314.(\epsilon - 1).T_r(II.4))$$

Donc: $(P_0.V_0)/(8314.T_0)$

(II.5)

V₀=Le volume occupé par l'air aspiré

 $V_0 = \eta_v / V_h$

Tel que: η_v =coefficient d'admission (de remplissage).

Donc:

$$y_r = M_r/M_1 = (.T_c)/P_a.(\epsilon - 1)T_r.\eta_v$$
 (II.6)

b) Coefficient d'admission(de remplissage) η_v

On a:

$$\eta v = V_0 / V_h \tag{II.7}$$

Tel que : V_h ?est le volume d'écrit par la course du piston[4]

 $V_h = \pi$. D^2 .S/4 =0.9425 L

D : Diamètre de l'alésage

S:Course du piston

Au point à du cycle on a: $P_a.V_a=(M_{1a}+M_r).T_a$ (II.8)

Et pour la quantité totale d'air
$$M_1:P_0V_0=RM_1T_0$$
 (II.10)

Alors:
$$M_{1a}+M_r=(M_1+M_r)/\lambda_1=(P_a.V_a)/(R.T_a)$$
 (II.11)

Ou:
$$M_{1a}+M_r=\lambda_1 P_a.V_a/(R.T_a)$$
 (II.12)

Et
$$M_1 = (P_0.V_h).\eta_v/(R.T_0)$$
 (II.13)

Donc
$$(M_{1a} + M_r)/M_1 = (\lambda_1 P_a V_a T_0)/(T_a P_0 V_h, \eta_v) = 1 + y_r$$
 (II.14)

Avec:
$$V_a/V_h = \varepsilon . V_c/((\varepsilon - 1).V_c) = \varepsilon /(\varepsilon - 1)$$
 et $\varepsilon = V_a/V_c$ (II.15)

Donc $\eta_v = (\lambda_1.\epsilon.P_a.T_0)/(\epsilon-1).P_a.T_0(1+y_r)$

(II.16)

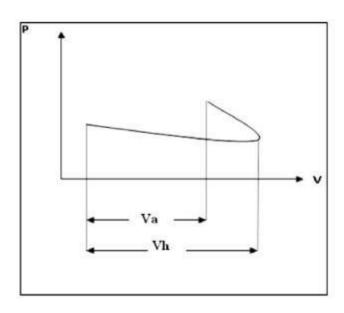


Figure II.1 la courbe d'admission

> Calcul de Ta

La température de fin d'admission T_a peut être déterminée en écrivant l'équation d'équilibre d'énergie entre l'air admis et le mélange air +gaz résiduels :

On définit: C_p : La chaleur spécifique de l'air frais

 C_p ':La chaleur spécifique du mélange(air +gaz résiduelles)

C":La chaleur spécifique des gaz résiduels

On pose
$$C_p = \lambda t. C_p$$
 (II.17)

Donc l'équation d'équilibre devient

$$M_t(T_k + \Delta T) + \lambda_2 \cdot M_r \cdot C'' \cdot T_r' = (M_1 + M_r) C_p \cdot T_a$$

$$(II.18)$$

Avec λ_2 est le coefficient du balayage choisi $\lambda_2=1$

Et
$$(M_1+M_r)=M_1(1+M_1/M_r)$$
 (II.19)

Donc
$$T_a = M_t \cdot C_p \cdot (T_0 + \Delta T) + M_r \cdot T_r' \cdot \lambda_t \cdot C_p / [C_p \cdot (1 + M_r)]$$
 (II.20)

m : est l'exposant poly tropique de la détente des gaz résiduels pendant la phase d'admission

Alors:
$$T_a = [M_1.(T_0 + \Delta T) + M_r.T_r.\lambda_t.(P_a/P_r)^{(m^{-1})/m}]/C_p.(1+M_r)]$$
 (II.21)

Et comme
$$y_r = M_r/M_1$$
 (II.22)

$$T_a$$
 Exprime y: $T_a = [\Delta T + T_0 + y. T_r. (P_a/P_r)^{(m-1)/m}]/(y+1)$ (II.23)

r r

En remplaçant
$$y_r$$
 par: $(P_r.T_0)/P_0.(\varepsilon-1).T_r.\eta_v$ (II.24)

Et
$$\eta v \operatorname{par}(\lambda_t.\epsilon.P_a.T_0)/(\epsilon-1)P_a.T_0.(1+y_r)$$
 (II.25)

On obtient une équation à partir de la quelle on peut déterminer η_v

$$\eta_{v} = (1/(\epsilon-1)) \cdot [0/(T_0 + \Delta T)/(P_a/P_0) \cdot [\epsilon \cdot \lambda_1 - \lambda(P_r/P_a)^{1/m}]$$
 (II.26)

Et
$$y=(P_r/P_a).(\Delta T+T_0)/T_r.[\epsilon.\lambda_1-\lambda(P_r/P_a)^{1/m}]$$
 (II.27)

Avec: P_a **=0.089MPa** et P_0 =0.1MPa

A.N: $\eta_{v} = 0.79$

 $y_r = 0.030$

Et T_a =333.49°K ou t_a =60.47°C

II.2.2.2.Compression:

Apres son arrivée au **PMB**, le piston revient en comprimant l'air dans le cylindre, les soupapes d'admission et d'échappement étant fermées, dans cette phase la température et la pression doivent s'augmenter d'une manière à permettre à la fin la combustion du mélange.

En réalité la phase de compression n'est pas une transformation adiabatique, car ilexiste un échange de chaleur entre le gaz et les parois du cylindre, au début de la compression et la température de l'air admis étais inférieure à celle des parois ce qui favorise le transfert de chaleur des parois vers les gaz admis.($>0, n_1>\gamma$)

Avec Q:quantité de chaleur transférée.

 n_1 : Coefficient poly-tropique de compression

A la fin de compression, la température des gaz sera plus élevés(pour qu'elle permettre la combustion des gaz), alors dans ce cas il y a un transfert de chaleur des gaz vers les parois.

Entre les deux étapes où la température des gaz passe d'une valeur élevée, il existe un moment

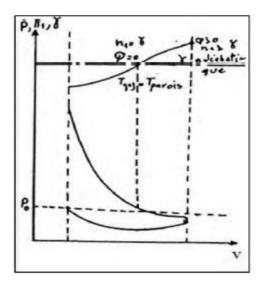


Figure II.2 la courbe de compression

Pour simplifier le calcul on fixe un exposant poly tropique moyen calculé à partir de la conservation de l'énergie avant et après que la température des gaz soit égale à celle des gaz soit

égale à celle des parois.

La valeur du coefficient déterminée pratiquement est:

$$n1=(1.34\grave{a}1.39) \rightarrow n1=1.38$$

Calcul des paramètres de la compression

On a:
$$P_a.V_a=8314.M_a.T_a$$
 (II.28)

Done:
$$T_c = T_a \cdot (V_c / V_a) \cdot (P_c / P_a)^{n_1}$$
 (II.29)

Avec:
$$\frac{P_c}{P_a} = \varepsilon n_{I}-1$$
 et $\frac{V_c}{V_a} = 1/s$ $\varepsilon = 1/s$

Donc:
$$T_c=T_a. \varepsilon^{n_1-1}$$
 et $P_c=P_a. \varepsilon^{n_1}$

A.N:

$$P_c$$
=4.8MPa

$$T_c=1000^{\circ}\text{K} \rightarrow t_c=727^{\circ}C$$

II.2.2.3.Combustion et détente:

Combustion : c'est la phase essentielle du cycle puisque c'est pendant que l'énergie contenue dans le combustible est libérée par la combustion, elle transforme dans les meilleurs conditions l'énergie calorifique libérée par la combustion, en travail cette transformation se fait dans un temps très court avec des conditions thermique très dures.

Lorsque le piston atteint le PMH on injecte dans l'air comprimé le combustible à une pression supérieur à celle de ce dernier et sous forme de très fins gouttelettes, ce contact provoque la combustion qui tend à augmenter la pression, ce qui pousse le piston du PMH au PMB

Pratiquement le combustible Les contrainte s'influence sur la combustion :

Est injecté avant le PMH et se termine après ce point pour donner au combustible le temps de se bruler, le décalage entre le début d'injection et le **PMH** s'appelle l'avance d'injection correspond ant à un angle qui varie entre 14°et18°

- Le rapport de compression(ε).
- L'angle d'avance d'injection(Al).
- La forme de la chambre de combustion.
- La vitesse de rotation du moteur.
- La méthode d'alimentation.
- La combustion dépend de la forme et la vitesse de la réaction chimique.

Le processus thermodynamique de la combustion :

Dans le moteur diesel la combustion est la conséquence directe du phénomène d'autoinflammation du combustible injecté sous forme d'un brouillard dans la masse d'air portée a température élevée par la compression L'obtention d'une température suffisante pour créer l'autoinflammation (≈600"C) nécessite un rapport volumétrique plus grand.

Lorsque le mélange gazole air se brule dans le cylindre moteur, une partie de la chaleur dégagée est transmise aux paris pendant la détente et une autre partie de cette chaleur est utilisée pour la dissociation des molécules par la combustion a une haute température. Le processus de dissociation consiste essentiellement de détruire les liaisons des molécules de $\mathbf{C}O_2$ et H_2O à des simples molécules en formant simultanément \mathbf{O} et \mathbf{H} atome et \mathbf{OH} , \mathbf{NO} , aussi c'est une cause qui s'oppose àla transformation intégrale du pouvoir calorifique du combustible en travail.

Le calcul et l'expérience montrent qu'en réalité l'influence de la dissociation es négligeable pour les moteurs Diesel, ainsi que pour les moteurs à explosion.

Les pertes totales de la chaleur de combustion (dues à l'incomplète combustion et aussi à la dissociation et au transfert de la chaleur aux parois du cylindre), sont caractérisées par un coefficient d'utilisation de chaleur de combustion £ déterminé expérimentalement, la combustion se déroule à volume constant, puis à une pression constante.

Calcul des paramètres de combustion

a. Quantité de gaz brulé (M2)on a:

 $M_2=M(CO_2)+M(H_2O)+M(O_2)+M(N_2)K$ Mole

$$M_2 = \left(\frac{c}{12}\right) + \left(\frac{H}{2}\right) + 0.79.A_{th}$$
 (II.30)

A.N: $M_2=0.7293$ kMole/Kg

b. Variation du volume après la combustion (ΔM)

$$\Delta M = M_2 - M_1$$
 $\Delta M = 0.0303$ (II.31)

c. Coefficient de variation du volume après la combustion(β th)(théorique) :

$$\beta_{\text{th}} = M2/M1 = (1 + \Delta M)/M1 = 1 + (H/4 + 0/32)/(\alpha. M0)$$
 (II.32)

 $M1=\alpha.Ath$

 β th=1.044

d. Coefficient de variation réelle (β) :

$$\beta = (M_2 + M_r)/(M_1 + M_r) = (\beta th + y_r)/(1 + y_r)$$
(II.33)

 $\beta = 1.0427$

e. Coefficient de variation au point Z(z):

$$\beta_{z} = [(1+y_{r}).M_{1} + X.\Delta M]/[(1+y_{r}) + M_{r}] = 1 + X.(\beta th - 1)/(1+y_{r})$$
(II.34)

Avec : $X=\pounds_z/\pounds_b=0.82/0.81$

 $\beta_z = 1.04$

Détermination de la température maximale du $cycle(T_z)$

D'après la première loi de la thermodynamique (loi de la conservation de l'énergie) on a:

$$\pounds_{z}.Q_{h}=U_{z}-U_{c}+W_{zz}'$$
(II.35)

$$\pounds_{z}.Q_{h} = (M_{2} - M_{r}).U_{z}'' - M_{1}.U_{c} - M_{r}.U_{c}'' + W_{zz}''$$
(II.36)

Tel que U_z " et U_c " les énergies interne d'1 k mole des gaz brulée aux températures des

pont Z et C

 U_c :Est l'énergie interne d'1 kg mole de l'air au point c

Wzz':Le travail fourni de point z au point z'

Q_h: est le pouvoir calorifique du combustible (Q_h =43MJ/KMo)

$$W_{zz}':P_z.(v_z-v_c)$$
 (II.37)

$$P_z = \lambda . P_c$$
 (II.38)

$$W' = Pz . Vz - \lambda . Pc . Vc = 8314. [(z + Mr). Tz - (M1 + Mr). Tc$$
 (II.39)

Donc on aura

$$\pounds_{z}.Q_{h} + M_{1}.U_{c} + M_{r}.U'' + 8314_{r}(M_{1} + M_{r}).\lambda.T_{c} = (M_{2} + M_{r}).U'' + 8314.[(M_{2} + M_{r})_{r}T_{z}]$$
(II.40)

Finalement on obtient l'équation qui nous permet de déterminer Tz

$$(\pounds_{z}.Q_{h}/M1 (1+y)) + (U_{c} + y_{r}U_{c}'')/(1+y_{r}) + 8314.\lambda.T_{c} = \beta th.(U_{z}'' + 8314.T_{z})$$
(II.41)

- C'est l'équation de combustion et à partir de laquelle on détermine la température maximale du cycle
- Détermination de Tz :
- \diamond Calcul U_c e tU'':voir les tableaux II-1etII-2

Ona: $Tc=1000^{\circ}k$ $t_c=727^{\circ}C$

On remarque que: $800^{\circ}C > t_{c} > 700^{\circ}C$

Donc on doit faire une approximation pour calculer U_c et $U_c^"$

$$U_c = C_{cv} T_c$$
 (II.42)

En utilisant le tableau II-1 à $t_c=727^{\circ}C$, nous trouvons

 C_{cv} =22.49 KJ/K mole. °C

L'énergie interne de 1 k mole d'air à la température de compression t_c=727°C

$$U_c$$
=22.49×727 $\to U_c$ = 16.350 KJ/K mole

L'énergie interne à Tc 1 K mole des produits de la combustion comprend l'énergie interne des produits de combustion pour $\alpha = 1$ et l'énergie interne de l'air r en excès

$$Uc'' = (Uc')\alpha = 1 \times (rM2)\alpha = 1 + Ucrex.air$$
 (II.43)

En utilisant le tableau II-2àt_c=727°C, nous trouvons

C_{cv} ''=25.079 KJ/Kmole °C

$$\checkmark$$
 (c")(α =1)=25.19×727 \rightarrow (c")(α =1)=**18.31 KJ/Kmole**

$$\checkmark$$
 (rM2)α=1=M2α=1/M2 →(rM2)α=1=0.7263

$$M_{2\alpha=1}=(C/12)+(H/2)+0.79$$
. Ath= $(0.87/12)+(0.126/2)+0.79\times0.449=0.5297$ Kmole/kg

$$\checkmark$$
 $r_{\text{ex.air}} = (\alpha - 1) \text{ Ath}/M_2 = ((1.4 - 1).0.499)/0.7293 = 0.27$

Donc:

$$Uc''=18.31\times0.7293+16.350\times0.27=17.77$$
K,J/KMole

On aura donc l'équation finale de combustion comme suit:

$$\checkmark$$
 (£z. Qh /M1(1+ yr)=(0.82.43)/(0.699(1+0.033)= **48.83 KJ/KMole**

$$\checkmark$$
 (Uc + y_rUc["])/(1+ y_r)=(16.350+0,033×17.77)/(1+0.033)=**16.39KJ/KMole**

$$\checkmark$$
 8314. λ .T_c=8314×1.8×1000= **14.96KJ/KMole**

$$(\pounds_{z}.Q_{h}/M1(1+y_{r})) + (Uc + y_{r}Uc^{"})/(1+y_{r}) + 8314.\lambda.T_{c} = 80.18 \text{ KJ/KMole}$$

$$\beta$$
th.($Uz''+8314.Tz$)= **80.18 KJ/KMole**

$$(Uz''+8314.Tz)=77.09$$
 KJ/KMole

Cette équation peut être résoudre par une méthode de comparaison en choisissant une température Tz convenable, à partir de laquelle on déterminer la valeur de U" puis on compare

de telle façon que ces valeurs choisies vérifient l'équation précédente

 $T_z = 2273^{\circ} K$ $t_z = 2000^{\circ}C$

 $U_z''(\alpha=1)$ =**58.197** KJ/KMole U_z =**50.660** KJ/KMole

 $Uz'' = (58.197 \times 0.7293 + 50.660 \times 0.27) = 56.13 \text{KJ/KMole}$

(Uz''+8314.Tz)=75.037 KJ/KMole

Et $T_z = 2423^{\circ} K$ $t_z = 2150^{\circ}C$

 $Uz''(\alpha=1)=63.2625$ KJ/KMole (par interpolation) Uz=54.9233 KJ/KMole

 $Uz'' = (63,2625 \times 0.7293 + 54.9233 \times 0.27) = 60,96$ KJ/KMole

(Uz''+8314.Tz)=78,84 KJ/KMole

Alors la température Tz et bien choisi Tz=2423°K tz=2150°C

Tempera- ture t. °C	Air	Oxygen O ₂	Nitrogen (atmos- pheric) N ₂	Carbon d lox ide CO ₃	Water vapour H₃O	Carbon monoxide CO	Hydrogen H ₂
0*	20.758	20.959	20.704	27.545	25.184	20.808	20.302
100	20.838	21.223	20.733	29.797	25.426	20.863	20.620
200	20.984	21.616	20.800	31.744	25.803	20.988	20.758
300	21.206	22.085	20.972	33.440	26.260	21.202	20.808
400	21.474	22.563	21.185	34.935	26.775	21.474	20.871
500	21.780	23.019	21.449	36.258	27.315	21.784	20.934
600	22,090	23.446	21.729	37.438	27.880	22.110	21.001
.700	22.408	23.834	22.027	38.498	28.474	22.437	21.093
800	22.713	24.187	22.320	39.448	29.077	22.755	21.202
900	23.006	24.510	22.609	40.302	29.693	23.061	21.332
1000	23,283	24.803	22.881	41.077	30.304	23.350	21.474
1100	23.547	25.071	23.140	41.784	30.901	23.622	21.629
1200	23.794	25.318	23.392	42.425	31.510	23.877	21.792
1300	24.018	25.548	23.626	43.007	32.092	24.112	,21.972
1400	24.250	25.761	23.848	43.543	32.661	24.338	.22.152
1500	24.459	25.967	24.057	44.033	33.210	24.543	22.332
1600	24.652	26.159	24.250	44.485	33.741	24.736	22.517
1700	24.863	26.343	24.434	44.903	34.261	24.916	22.697
1800	25.003	26.519	24.602	45.299	34.755	25.087	22.877
1900	25.167	26.691	24.765	45.644	35.224	25.246	23.057
2000	25.326	26.854	24.916	45.975	35.680	25.393	23.233
2100	25.474	27.013	25.062	46.281	36.120	25.535	23.408
2200	25.611	27.168	25.200	46.566	36.538	25.665	23.576
2300	25.745	27.319	25.326	46.829	36.940	25.791	23.743
2400	25.870	27.470	25.447	47.076	37.330	25.908	23.907
2500	25.992	27.612	25.560	47.302	37.702	26.021	24.070

Le tableau II-1

<u> </u>		Petro	ol at		
Temperature 1, °C	$\alpha = 1.0$	α=0.9	$\alpha = 0.8$	α=0.7	Diesel fuel
0	22.1849	22.0451	21.8810	21.6845	22.190
100	22.5304	22.3556	22.1502	21.9040	22.525
200	22.8830	22.6762	22.4334	22.1426	22.902
300	23.2899	23.0552	22.7790	22.4480	23.320
400	23.7203	23.4605	23.1459	22.7807	23.739
500	24.1478	23.8772	23.5376	23.1426	24.200
600	24.5828	24.2931	23.9316	23.5095	24.618
700	25.0191	24.7126	24.3315	23.8859	25.079
800	25,4382	25.1173	24.7191	24.2530	25.498
900	25.8439	25.5088	25.0967	24.6122	25.874
1000	26.2261	25.8806	25.4548	24.9534	26.293
1100	26.5899	26.2355	25.7948	25.2698	26.628
1200	26.9370	26.5726	26.1230	25.5950	27.005
1300	27.2636	26.8896	26.4306	25.8912	27.298
1400	27.5722	27.1808	26.7235	26.1738	27.633
1500	27.7840	27.4646	26.9993	26.4402	27.884
1600	28.1340	27.7300	27.2578	26.6905	28.177
1700	28.3928	27.9833	27.5047	26.9295	28.428
1800	28.6314	28.2180	27.7337	27.1518	28.638
1900	28.8604	28.4420	27.9527	27.3647	28.889
2000	29.0752	28.6526	28.1587	27.5649	29.098
2100	29.2812	28.8546	28.3564	27.7548	29.308
2200	29.4755	29.0455	28.5432	27.9386	29.517
2300	29.6555	29.2299	28.7173	28.1099	29.584
2400	29.8284	29.3930	28.8845	28.2732	29.852
2500	29.9905	29.5528	29.0415	28.4271	30.019

Le tableau II-2

Table 2- δ Internal Energy of Combustion Products U (in MJ/kmole)

		Petr	ol at	(4)	
Temperature 1, °C	α=1.0	α=0.9	α=0.8	α=0.7	Dlesel fue α=1
0	0	0	0	0	0
100	2.2530	2.2045	2.1881	2.1685	2.252
200	4.5766	4.5352	4.4867	4.4285	4.580
300	6.3969	6.9165	6.8337	6.7344	6.992
400	9.4881	9.3842	9.2584	9.1123	9.483
500	12.0740	11.9386	11.7688	11.5713	12.100
600	14.7500	14.5759	14.3590	14.1057	14.779
700	17.5130	17.2989	17.0422	16.7202	17.585
800	20.3090	20.0938	18.7753	19.4024	20.390
900	23.2600	22.9688	22.5870	22.1510	23.237
1000	26.2262	25.8806	25.4548	24.9534	26.293
1100	29.2490	28.8569	28.3743	27.7968	29.308
1200	32.3250	31.8871	31.3476	30.7140	32.406
1300	35,4430	34.9565	34.3598	33.6586	35.504
1400	38.6010	38.0531	37.1129	36.6433	38.686
1500	41.6760	41.1969	40.4990	39.6603	41.868
1600	45.0140	44.3680	43.6125	42.7048	45.008
1700	48.2680	47.5716	46.7580	45.7802	48.358
1800	51.5370	50.7924	49.9207	48.8732	51.498
1900	54.8350	55.0398	53.1101	51.9929	54.931
2000	58.1500	57.3052	56.3174	55.1298	58.197
2100	61.4910	60.5947	59.5484	58.2851	61.546
2200	64.8460	63.9001	62.7955	61.4671	64.979
2300	68.2080	67.2127	66.0498	64.6528	68.287
2400	71.5880	70.5432	69.3228	67.8557	71.594
2500	74.9760	73.8820	72.6038	71.0678	75.027

Le tableau II-3 [20].

Chapitre III

Dessin et simulation la chambre de combustion avec SolidWorks et Ansys

III. Introduction

Les charges thermiques

Flux de chaleur

Les apports d'énergie calorifique dégagée par la combustion se situent essentiellement sur la surface de tête du piston, La structure de ce dernier est, en conséquence, le siège d'une propagation de cette énergie calorifique dont l'intensité est exprimée par unité de surface et par unité de temps,

Cette énergie dont nous ne pouvons avoir une notion concrète que grâce a la température laquelle est une qualité accessible à la mesure, soit en en relevant ces valeur dans la chambre de combustion en utilisant des thermocouple, ou par la méthode théorique en étudiant le cycle thermodynamique T(v) du moteur

Convection

Les surfaces du piston entrent en contact avec des gaz chauds ;ainsi, ils sont le siège d'un échange thermique entre le fluide et les surfaces dont l'intensité est proportionnelle à un coefficient de transfert thermique de h [W/m2.°C], qui est la quantité de chaleur qui les traverse, en unités de temps, l'unité de surface de la paroi. Ce coefficient dépend de la pression et de la vitesse du fluide, ainsi que d'un nombre important d'autres paramètres (tels que la forme, la nature et la rugosité de la paroi, la masse spécifique du fluide, etc.).

La densité du flux thermique est aussi proportionnelle à la différence des températures entre le fluide et la surface de la paroi

$$Q_h = h(T_g - T_p)$$

(Loi de transmission de chaleur de NEWTON).

Avec:

 $T_{\rm g}$ =température résultante des gaz

 T_p =température de la paroi du Piston

Conduction

Ce mécanisme de transfert vise à répartir l'énergie cinétique des différentes particules de manière uniforme dans tout le piston en dispersant les zones ou la moyenne de cette énergie, c'est-à-dire les régions où la température est élevée (tête du piston), vers les régions où elle est basse. (Jupe)

La loi correspondant à ce processeur spécifique de diffusion de chaleur stipule que la chaleur est telle que la densité du flux est une fonction linéaire du gradient de température.

Qc = k. grad(T)

(Loi de FOURIER)

K (**W/m.C**°) : la conductivité thermique du matériau : Quantité de chaleur qui laisse passer par unité de surface et par unité de tempe une paroi ayant pour épaisseur l'unité sous une différence de température de 1°C.

Rayonnement

Lore de la combustion dans la chambre, il se forme une flamme, puis un flux de produit de combustion in candescent le gaz carbonique et la valeur d'eau), qui transmettent par rayonnement une quantité importante de chaleur aux parois plus froides de la chambre(chemise et face supérieure du piston), dans une telle flamme, en plus des gaz triatomique, l'émission est due aux particules des suites formées par la décomposition thermique à l'étape initiale de combustion. La flamme est un milieu émetteur et absorbant ses caractéristiques radiatives dépendent fortement de la concentration de la dimension et des propriétés physiques particules solides, ainsi que la température.

Les calculs techniques de l'échange de chaleur radiatifs dans la chambre de combustion se font ordinairement, d'après deux méthodes principales, la première est fondée sur l'Application de l'équation de STEFAN-BOLTZMANN, la deuxième Sur l'application de la théorie de la similitude thermique, et l'utilisation des équations Semi-empiriques de similitude.

Dans notre cas on applique la loi de STEFAN-BOLTZMANN pour calculer la densité de flux thermique par rayonnement[w/m^2]

$$\emptyset = \varepsilon \sigma S(T_p^4 - T_c^4)$$

Avec:

σ=5.67.10–8w/m5k4 Constante de STEFAN BOLTZMANN

 $\varepsilon S = 0.9$ (Pour le gas-oil) degré de noirceur pouvoir absorbant de la chambre

Le degré de noirceur *c* d'un volume d'un gaz est défini comme étant le rapport de la densité superficielle du rayonnement produit par le volume de gaz à une certaine température a la

Densité du rayonnement noir à la même température, Remarque: la température Tp est très inférieure à celle du gaz Tg

$$(T_g^4) \approx (T_p^4)$$

Et la densité du flux thermique deviendra:

$$Q_r = \varepsilon \sigma S(T_g)^4$$

Ou
$$Q_r=5.67\varepsilon c(g/1OO)^4$$

On note ici que O_rreprésente la densité de flux émis par la source (combustion des gaz), mais il n'est pas totalement absorbe par la surface réceptrice, et cela dépend de l'état de cette dernière de genre du revêtements 'il existe, donc pour calculer [18].

Définition

SOLIDWORKS est un modeleur 3D utilisant la conception paramétrique. Il génère 3 types de fichiers relatifs à trois concepts de base : la pièce, l'assemblage et la mise en plan. Ces fichiers sont en relation. Toute modification à quelque niveau que ce soit est répercutée vers tous les fichiers concernés.

ANSYS Workbench est la plateforme de simulation d'ANYS dans laquelle sont organisés et pilotés les calculs multi-physiques. Elle offre une Interface graphique commune avec des passerelles vers les CAO courantes et des outils de maillage.

Préparation des données: définir le problème;

Les étapes ma jeurssont décrites ci-dessous:

- Introduction des propriétés géométrique set les propriétés physiques des matériaux:
- Maillage des lignes/surfaces/volume si cela est requis
- Traitement ou procession: introduction des conditions aux limites et résolution; on spécifie notamment la nature des charges
 - Tracé les isothermes
 - Affichage des déformations et contraintes

Dessin de piston avec **SOLIDWORKS**

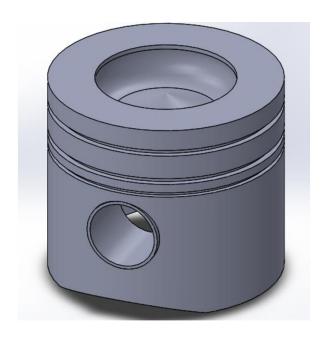


Figure III.1.piston 207 1,6 Hdi

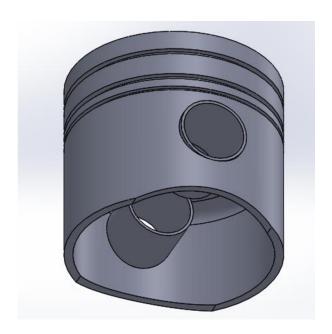


Figure III.2. Autre face de piston 207 1,6 Hdi

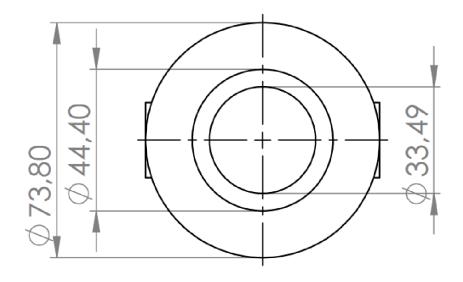


Figure III.3 dimension du piston

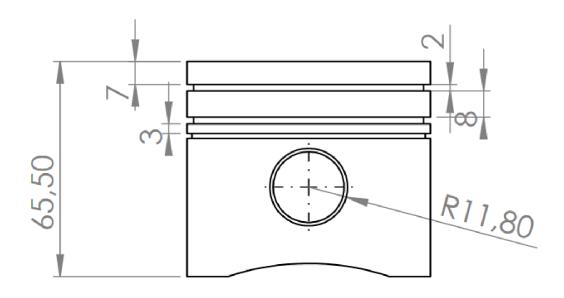


Figure III.4 dimension du piston

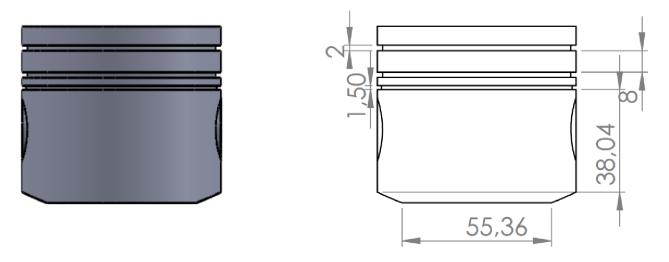


Figure III.5 dimension du piston

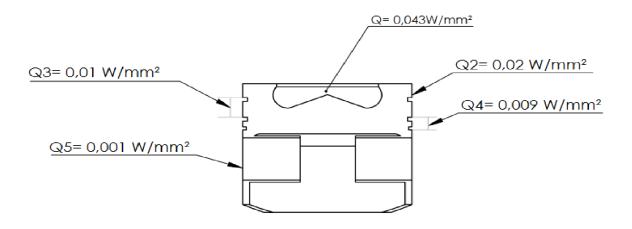


Figure III.6 Les charge thermique sur les différantes faces du piston

Simulation avec ansys Workbench

Choix de l'étude

Type d'analyse	Thermomécanique (Système
	personnalisé)
Type de maillage	Maillage volumique

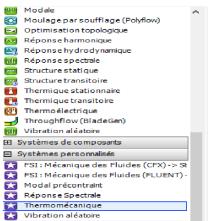


Figure III.7choix de l'étude

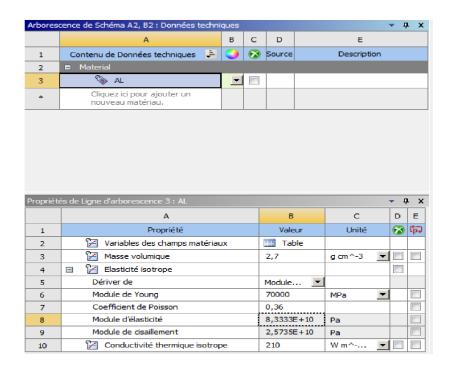


Figure III.8 choix de matériaux

Dans cette etape nous avons importé la géométrie après l'avoir dessiné par SOLIDWORKS et enregestrez-le dans un fichier a la forme parasolid (*.x_t)

			Composants
Référence du modèle	Propriétés		
	Nom	AL	Corps
	Conductivité thermique :	210 w/m.k	
	Température de fusion :	658 C°	volumique
	Module de Young :	70000 Mpa	
	Masse volumique:	2,7 g/cm3	
	Coefficient de poisson :	0,36	

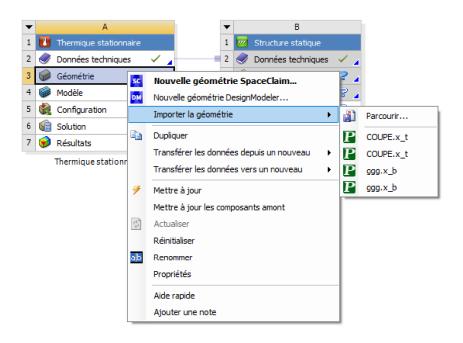
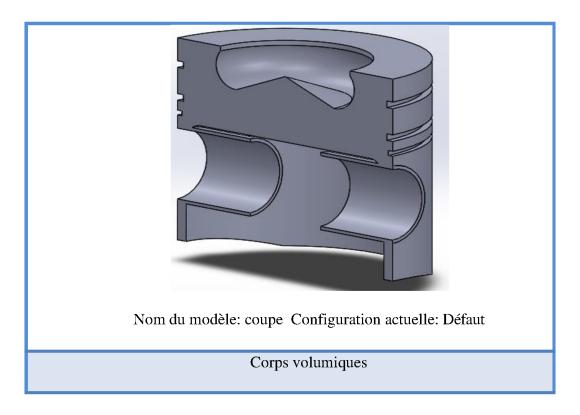



Figure III.9 Importation de la géométrie

Informations sur le modèle

Unité

Système d'unités:	SI(MKS)
Longueur/Déplacement	mm
Température	Kelvin
Vitesse angulaire	Rad/sec
Pression/Contrainte	N/m^2

Propriétés de l'étude

Nom d'étude	Thermique2
Type d'analyse	Thermomécanique(Régime permanent)
Type de maillage	Maillage volumique
Type de solution	Régime permanent


Tableau récapitulatif : Chargements thermiques (les conditions aux limites)

Chapitre III: Dessin et simulation la chambre de combustion

Nom du chargement	Image du chargement	Détails du	ı chargement
Convection		Entités: Coefficient de convection: Variation de temps: Variation de température: Température ambiante: Variation de temps:	4 face(s) 0,00023W/ (mm^2.K) Désactivé(e) Désactivé(e) 1400Kelvin Désactivé(e)
Convection-2		Entités: Coefficient de convection: Variation de temps: Variation de température: Température ambiante: Variation de temps:	1 face(s) 0,00069944W/(mm^2.K) Désactivé(e) Désactivé(e) 450 Kelvin Désactivé(e)

Chapitre III: Dessin et simulation la chambre de combustion

	5	Entités:	2face(s)
		Coefficient de convection:	0,00069944 W/(mm^2.K)
		Variation de temps:	Désactivé(e)
Convection-3		Variation de température:	Désactivé(e)
		Température ambiante:	420 Kelvin
		Variation de temps:	Désactivé(e)
		Entités: 9 f	ace(s)
		Coefficient de convection: 0,0	115897W/(mm^2.K)
		Variation de temps:	Désactivé(e)
Convection-4		Variation de température:	Désactivé(e)
		Température ambiante: 42	20 Kelvin
		Variation de temps:	Désactivé(e)
		Entités: 1 f	ace(s)
		Coefficient de convection: 0,0	000347 W/(mm^2.K)
Convection-5		Variation de temps: D	Désactivé(e)
Convection-3		Variation de température: l	Désactivé(e)
		Température ambiante: 3	350 Kelvin
		Variation de temps I	Désactivé(e)

III.1Présentation des résultats

III.1.1.La température au sien du piston

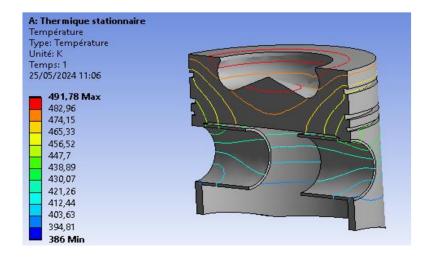


Figure III.10.Les isothermes au sein du piston en (Kelvin)

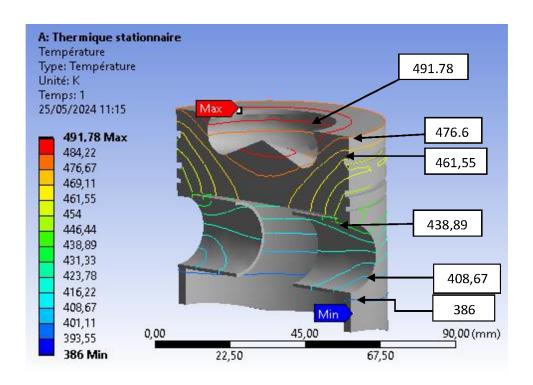


figure III.11 illustre la valeur max et la valeur min des réparations de température

III.1.2 Résultats thermique température max et min

Nom	Туре	Min	Max
Résultants Thermique Stationnaire	TEMP: Température	386 Kelvin	491,78 Kelvin

III.2.Les Déformation thermique

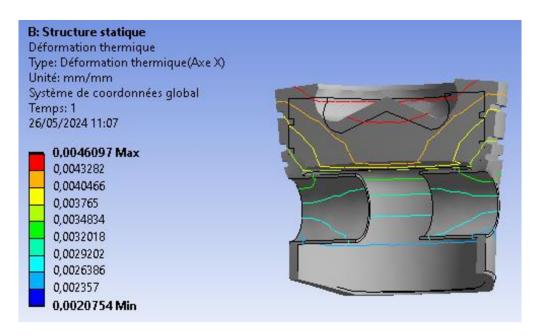


Figure III.12.La déformation thermique

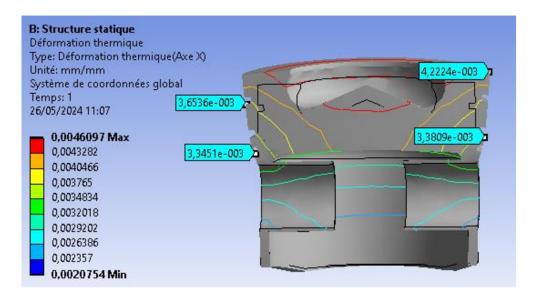


Figure III.13.les valeurs de déformation à certains place

III.3.Les contrainte thermique

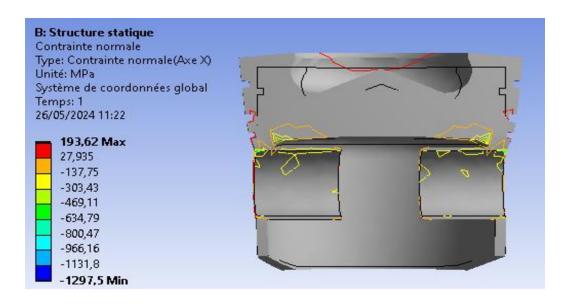


Figure III.14.Les contrainte

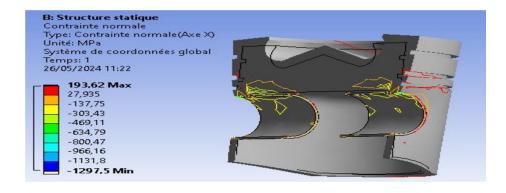


Figure III.15. Autre face de la contrainte

III .4 Tableau de résultats

Nom	Туре	Min	Max
Resultats Sructure statique	Déformation thermique	0,0020754 mm/mm	0,0046097 mm/mm
		,	, ,
Resultats Sructure statique	Contrainte normale	-1297,5 Mpa	193,62 Mpa

Chapitre IV Discussion des résultats

IV.1.LES Répartitions de la température :

Sur le figure (III.11); présente les résultats de calcule de les répartition de température c'est-à-dire les lignes isothermes évalués par ANSYS, il est très claire que Correctement réparti sur toute la forme géométrique du piston, On remarque que les températures maximales sont concentrées dans la tête du piston, et cela est dû à la grande valeur du flux thermique. La répartition des températures est progressive, car on remarque que les températures maximales sont concentrées dans la tête du piston491,78 Kelvin, et cela est dû à la grande valeur du flux thermique, mais les températures minimales sont concentrées dans la partie inférieure386 Kelvin.

IV.2.LES CONTRAINTES THERMIQUES:

Sur le figure (III.14); sont présentés les résultats de calcul des contraintes thermiques évalués par ANSYS, il est très claire que ce sont des contraintes d'extension, vu la liberté du déplacement de la tête dans le deux sens radial et axial, les contraintes maximales se localisent sur le bas de la tête du piston à cause de l'appui de cette dernière sur l'axe.

L'effet du déplacement de l'arête supérieure de la tête piston vers l'extérieur comme étant la partie la plus chauffée, et du déplacement radial de la couronne porte-segments, conduit à l'apparition des contraintes thermiques élevées qui se localisent dans les zones critiques (où il y a un risque de rupture sous l'effet de la dilatation) comme par exemple les fonds des gorges des segments de tête et d'huile ou la contrainte est maximale 193,62 MPa, aussi des valeurs plus hautes apparaissent dans les endroits qui présentent des points d'inflexion dues à la déformation de la tête.

En outre, on doit noter le choix de la forme géométrique de la tête du piston qui à jouer un grand rôle dans répartition des contraintes thermiques élevées dans la totalité de la tête du piston même dans les zones à faible gradient thermique comme la partie inférieure de la tête, ce qui donne l'avantage d'éviter une forte concentration de ces contraintes dans un seul endroit.

IV.3.LES Déformation THERMIQUES:

Les déformations thermiques de la tête du piston évalués par ANSYS figure (III.12) qui correspondent à la distribution de températures sont présentés sur la figure (III.11), il est claire que la grande déformation a eu lieu dans la plus haute zone de la tête.

L'arête supérieure du piston a déplacé suivant l'axe x d'une valeur de 0,004224 mm, l'action du champ de température provoque une tendance à la tête du piston de s'enfler, ce gonflement entraine le tournant de la tête ainsi que son déplacement radial et le contact total de la surface d'appui du fond avec l'axe du piston sera violé. La diminution de la surface de contact provoque l'augmentation des forces réactives et influe sur le fonctionnement réciproque de l'axe du piston et de la tête, causant par la suite une usure rapide de la zone d'appui. Pour distinguer la situation existante à cet endroit il est préférable de faire des essais de longues durées et observer l'effet de l'usure, et à chaque fois on détermine par le calcul la valeur de l'inclinaison correspondante du plan d'appui jusqu'à 1'obtention d'une position optimale du plan d'appui avec lequel e l'usure sera minimale et le contact total de la surface d'appui durant le travail soit assuré.

A la suite de l'extension thermique de la zone du piston, la couronne porte-segments se déplace vers l'extérieur, la valeur de ce déplacement à une grande pratique, elle définit l'écartement entre le piston et la chemise, et également exerce importance une influence considérable sur le fonctionnement du premier segment.

Ce jeu doit-être suffisant pour que les gaz arrivent aisément au premier segment et assez faible pour qu'ils s'y présentent suffisamment refroidis, il apparait judicieux que ce jeu, une fois l'équilibre thermique atteint

. D'après le calcul (figure (III.12)) l'Arte supérieure de la couronne a déplacer de 0,004224 mm, le diamètre du piston a donc augmenter de 0,008448 mm, on remarque que cette valeur est faible vu la présence d'une cavité avec un diamètre relativement grand, elle est inférieure au jeu de fonctionnement qui est de 0,7 mm, ce qui nous rassure du bon fonctionnement du piston.

Un autre point important qu'il mérite être clarifié, il s'agit du fonctionnement du premier segment, malgré qu'il ne faut pas s'inquiéter à propos de son fonctionnement sûr, vu la forme géométrique qui a été donnée à la gorge qui le porte, en effet, il se peut que le segment peut perdre sa mobilité à la suite de sa fixation par les arrêtes de la gorge d'une forme rectangulaire,

et faisant corps avec le piston ne puisse plus, en particulier lors du basculement, assurer son rôle d'étanchéité et tout défaut d'étanchéité laisse libre un passage plus où moins abordant pour les gaz de combustion (fuite), ce qui faisant disparaitre la couche d'huile lubrifiant le glissement, provoque un rapide et intense grippage du segment et de la chemise.

D'une autre coté l'augmentation de la température du segment provoque la perte de son élasticité (ce que l'on constate au démontage par une diminution de la coupe l'état libre). Il est remarquable que ce phénomène ne dépend absolument que la température de la gorge du premier segment ce qui nous mène à dire que : l'assurance du niveau de la température à cet endroit représente la condition nécessaire mais non suffisante du fonctionnement sûr du premier segment.

Conclusion générale

CONCLUSION GENERALE

Sur la base de ces travaux, il apparaît clairement que le programme ANSYS a permis une approche incontestablement intéressante de la situation thermique globale du piston. Malgré sa géométrie complexe, les résultats des calculs prouvent que la conception de ce piston est efficace et qu'il répond aux exigences de fonctionnement du moteur. Il peut également remplir son rôle en toute sécurité sous des charges élevées pendant une longue période de fonctionnement. Les principaux points sur lesquels reposent ces affirmations et qui ont été vérifiés par calcul sont :

- ✓ La contrainte maximale atteinte en cas de charges thermiques est de 193 MPA, elle est bien inférieure à la contrainte critique du matériau utilisé, 225-275 MPA[17].
- ✓ Aussi, la valeur de déformation maximale correspondant au bord supérieur de la couronne (0,008448 mm) est bien inférieure à la limite élastique du matériau du piston.
- ✓ L'écart entre l'arête supérieure de la couronne porte-segments et la chemise après déformation thermique est de 0,01415 mm, ce qui semble approprié au bon fonctionnement du piston, car il n'est pas loin de la valeur requise de 0,25 mm[18].
- Le choix optimal de la conception du piston a joué un rôle essentiel, notamment dans la répartition des contraintes thermiques. L'avantage de la présence de la cavité, outre son rôle dans la turbulence et l'échange thermique, se manifeste dans la réduction de la valeur de déformation de l'arête supérieure de la couronne, et dans la translation radiale de la couronne complète, qui évite la rotation de la surface d'appui de la tête du piston sur son axe ce qui assure un contact linéaire entre ces pièces évitant ainsi leur usure réciproque.
- La conductivité thermique affecte grandement la répartition de la chaleur à l'intérieur du piston, car nous constatons que plus la conductivité thermique du matériau qui compose le piston est élevée, plus le dégagement de chaleur est important du fait qu'il est fabriqué en alliage d'aluminium. Le fabricant a ajouté des matériaux à l'aluminium, tels que le Magnésium, Silicium, Nickel et le Cuivre. Cela vise à augmenter la valeur de la conductivité thermique et à élever le point de fusion du matériau qui compose le piston.
- Nous avons constaté aussi que la réduction du coefficient de transfert thermique par convection 'h' minimise le valeur de température maximale du piston.

Enfin, nous concluons que, malgré le rôle important joué par le programme ANSYS, la détermination de la structure finale d'un piston de moteur diesel ne peut être qu'empirique, basée sur une expérience résultant d'une combinaison d'observation et de logique, prenant en compte la

CONCLUSION GENERALE

complexité des faits et contraintes thermiques et de leurs variations dans le temps et dans l'espace du fait des systèmes de fonctionnement variables des moteurs.

Bibliographie

Bibliographie

- [1]Brahimi Meryem,Debih Maroua ; Etude numérique de la convection naturelle au sein d'une cavité carrée.Thème de Master, Université MOHAMED BOUDIAF M'SILA, année (2019/2020).
- [2] Naceri Yamina, Hamzi Safaa, Etude du phénomène thermique de convection forcée, mémoire licence, Juin 2009.
- [3] https://parlonssciences.ca/ressources-pedagogiques/documents-dinformation/les-transferts-de-chaleur
- [4] Mr CHAIBI IDRISS, Etude thermique du soudage bout à bout de tube en polyéthylène à haute densité, Thème de Master, Université BADJI MOKHTAR-Annaba, année 2015.
- [5] MOKRANE Mohamed Amine Abdel Ghani, Modélisation de transfert de chaleur dans un échangeur de chaleur co-axial. Thèse de doctorat, Université de Biskra, (2005-2006).
- [6] Amira haceni, Etude analytique et numérique d'évolution des températures dans une plaque carrée munie d'un trou cylindrique, mémoire de Master, Université de Biskra, october 2020.
 - [7] N.BOULTIF, cours de 3éme année, Transfert de chaleur, (2017/2018).
- [8] BOUAMOUD Benameur, Etude de la convection dans une cavité carrée avec une paroi partiellement chauffée par la méthode de Boltzmann sur réseau. Le diplôme de Magister, Université de ABDELHAMID IBN-BADIS MOSTAGANEM, année (23/01/2014).
- [9] MEDDAS AMAR, Modélisation des paramètres de la conversion thermique de l'énergie solaire. Thème de Master, Université e Biskra, année (2014/2015).
- [10]https://www.google.com/amp/s/docplayer.fr/amp/8260352-Chapitre-4-transferts-de-chaleur-par-convection.html
- [11] Mr BEKKOUCHE Sidi Mohammed El Amine, Modélisation du Comportement Thermique de Quelques Dispositifs Solaires, Université ABOU- BAKR BELKAÏD Tlemcen, année (2008/2009).

Bibliographie

- [12]https://www.cap-recifal.com/articles.html/materiel/circulation-deau-part-2-dimensionnement-r102/
 - [13]http://www.fast.u-psud.fr/~mergui/2A101/cours_thermique_L2.pdf
- [14] Belmehdi Abdellatif, Étude numérique de la convection thermique dans un échangeur de refroidissement de véhicule diésel 1.6 l. Thème de Master, Université e Biskra, année (2019/2012).
- [15] Nora BOULTIF. Etude d'un échangeur de chaleur à triple tube concentrique en régime permanent et transitoire, Thèse de Doctorat, Université de Biskra, Soutenue publiquement 26/04/2017.
- [16] Chawki Mahboub. Etude des phénomènes de transfert thermique dans les échangeurs de la chaleur destinés aux applications solaires ,Thèse de Doctorat, Université de Biskra, Soutenue publiquement le 05/04/2016
- [17]http://www.sciences-technologies.net/genie-mecanique/26-mat%C3%A9riaux/28-mat%C3%A9riaux-caract%C3%A9ristiques.html?start=4
- [18] A.Benarfaoui, Détermination la quantité de la chaleur libérée dans une chambre de combustion d'un moteur diesel L4F912 de la SONACOM
- [19] Boubidi Mohamed Larbi, Etude de transfert de chaleur dans la chambre de combustion d'un moteur à combustion interne 207 HDI 1.6, mémoire de Master, Université de Biskra, septembre 2020.
- [20] M.KHOVAKH, MOTOR VEHICLE ENGINES, translated by A,TROITSKY and M.SAMOKHVALOV, Russian ,12 janvier 1982

Résumés

Dans un moteur diesel, le piston est l'élément sensible car il est exposé à une énergie thermique élevée résultant de la combustion, ce qui entraîne des contraintes et des déformations. D'autre part, il est soumis à un effort mécanique qui génère des contraintes mécaniques élevées, principalement dues à la pression résultant de la combustion du mélange de carburant. La gamme d'utilisation des logiciels ANSYS et SOLIDWORKS est très large, et nous les avons appliqués dans notre cas pour étudier le transfert de chaleur à l'intérieur d'un corps solide comme le piston d'un moteur diesel HDI 1.6.

Abstract

In a diesel engine, the piston is the sensitive element because it is exposed to high thermal energy resulting from combustion, which leads to stresses and deformations. Additionally, it is subjected to mechanical effort, generating high mechanical stresses primarily due to the pressure resulting from the combustion of the fuel mixture. The range of use for ANSYS and SOLIDWORKS software is very broad, and we have applied them in our case to study heat transfer inside a solid body such as the piston of an HDI 1.6 diesel engine.

ملخص

في محرك الديزل المكبس هو العنصر الحساس لأنه يتعرض لطاقة حرارية عالية الناتجة عن الاحتراق، تؤدي الى ظهور اجهادات وتشوهات ومن جهة أخرى يتعرض لجهد ميكانيكي يؤدي الى ظهور إجهادات ميكانيكية عالية. تتشأ بشكل أساسي عن الضغط الناتج عن احتراق مزيج الوقود، . نطاق استخدام برامج سوليدوركس وانسيس واسع جدًا، وقد قمنا بتطبيقه في حالتنا لدراسة انتقال الحرارة داخل جسم صلب مثل مكبس محرك ديزل 1.6.