

Master thesis

Prepared and presented by :

Soumia Athmane , Nada Saker & Soumia Mebarki

GLSD / GLSD / SIOD

Intelligent University Pedagogical Management and

Scheduling Platform

Jury :

Academic year : 2023/2024

Dr.Bilal Mokhtari MCA University of Biskra Supervisor

Dr.Souraya Hamida MCA University of Biskra Chairperson

Dr.Hadia Hoadjli MAA University of Biskra Examiner

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research -Mohamed Kheider University of Biskra-

 Faculty of the exact sciences, natural and life sciences.

Department of Computer Science

Abstract

Scheduling university activities such as courses, exams, planning for replacements, and
graduation projects is a difficult and time-consuming task. The main challenge arises
from the need to schedule various types of sessions (lectures, tutorials, lab work, and
exams) across different study levels, taking into account constraints such as the avail-
ability of classrooms and teachers, as well as the specific requirements of each course.
In this project, we introduce a new multiplatform application (web and mobile) that is
highly beneficial for administrative staff, students, and teachers, as it facilitates com-
munication and enhances the planning of various tasks. The scheduling of pedagog-
ical activities such as courses, exams, and assignment of graduation projects is com-
pletely automated using a Multi-objective genetic algorithm. Therefore, the application
significantly reduces the manual effort required and improves overall satisfaction with
scheduling requirements, making it a valuable tool for educational institutions.

�
	
jÊÓ

ù

ë

�
éJ

	
¯A

	
�B@ ��mÌ'@ð

�
HA

	
KAj

�
JÓB@ ,

�
éJ
�@PYË@ ��mÌ'@ É

�
JÓ

�
éJ
ªÓAm.

Ì'@
�
é¢

�
�
	
�

B@

�
éËðYg.

¨@ñ
	
K

@

�
éËðYg. úÍ@

�
ék. Am

Ì'@ 	áÓ ©J.
	
�K
 ú

æ�J

KQË @ ø

Yj

�
JË @ .

�
CK
ñ£

�
A
�
J
�
¯ð

�
�Q

	
ª
�
J�

�
�ð

�
éJ.ª�

�
éÒêÓ

Q�.« (
�
HA

	
KAj

�
JÓB@ð ,

�
éJ

�
®J
J.¢

�
JË @ ð ,

�
éêk. ñÖÏ @ ÈAÔ«B@ð ,

�
H@Qå

	
�AjÖÏ @) ��mÌ'@ 	áÓ

�
é
	
®Ê
�
J
	
m×

�
é
	
¯A

	
�B

AK. ,

�
è
	
Y
�
KA�B@ð

�
éJ
�@PYË@ ÐA�

�
¯B@ Q

	
¯ñ
�
K É

�
JÓ XñJ

�
®Ë @

�
èA«@QÓ ©Ó ,

�
é
	
®Ê
�
J
	
m×

�
éJ
�@PX

�
HAK
ñ

�
J�Ó

�
HA�

	
JÖÏ @ XYª

�
JÓ

�
@YK
Yg.

�
A
�
®J
J.¢

�
� ÐY

�
®
	
K , ¨ðQå

�
�ÖÏ @ @

	
Yë ú

	
¯ .

�
é�k É¾Ë

�
é�A

	
mÌ'@

�
HAJ. Ê¢

�
JÖÏ @ úÍ@

�
IJ
k ,

�
è
	
Y
�
KA�B@ð H. C¢Ë@ ,ø

P@XB

@ Õ

�
¯A¢Ë@ 	áÓ É¾Ë

�
éK
A

	
ªÊË

�
@YJ

	
®Ó Q�.

�
JªK
 (ÉK
AK. ñÓð I. K
ð)

��mÌ'@ É
�
JÓ

�
éJ
ÒJ
Êª

�
JË @

�
é¢

�
�
	
�

B@

�
éËðYg. . ÐAêÖÏ @

	
Ê

�
J
	
jÖÏ ¡J
¢

	
j
�
JË @ 	P 	QªK
ð É�@ñ

�
JË @ ÉîD��

Ð@Y
	
j
�
J�AK.

�
AJ

KA
�
®Ê
�
K ÉÓA¿ É¾

�
��. Õ

�
æ
�
K h. Q

	
j
�
JË @ ©K
PA

�
�Ó

	á�
J
ª
�
Kð ,

�
HA

	
KAj

�
JÓB@ð

�
éJ
�@PYË@

ø

ðYJ
Ë @ Yêm.

Ì'@ 	áÓ Q�
J.» É¾
�
��.

�
�J
J.¢

�
JË @ ÉÊ

�
®K
 , ½Ë

	
YË .

	
¬@Yë

B@

�
èXYª

�
JÓ

�
éJ

	
�J
k.

�
éJ
Ó

	PP@ñ
	
k

.
�
éJ
ÒJ
Êª

�
JË @

�
HA��

ñÒÊË

�
éÒJ

�
¯
�
è @X

@ éÊªm.

�'

 AÜØ ,

�
éËðYm.

Ì'@
�
HAJ. Ê¢

�
JÖß. ÐAªË @ A

	
�QË@ 	á�m�'
ð H. ñÊ¢Ö

Ï @

i

Résume

La planification des activités universitaires telles que les cours, les examens, la plani-
fication des remplacements et les projets de fin d’études est une tâche difficile et très
chronophage. Le principal défi provient de la nécessité de programmer différents types
de sessions (cours, travaux dirigés, travaux pratiques et examens) à travers différents
niveaux d’études, en tenant compte des contraintes telles que la disponibilité des salles
de classe et des enseignants, ainsi que des exigences spécifiques de chaque cours. Dans
ce projet, nous introduisons une nouvelle application multiplateforme (web et mobile)
qui est très bénéfique pour le personnel administratif, les étudiants et les enseignants,
car elle facilite la communication et améliore la planification de diverses tâches. La pro-
grammation des activités pédagogiques telles que les cours, les examens et l’attribution
de projets de fin d’études est entièrement automatisée à l’aide d’un algorithme génétique
multi-objectifs. Ainsi, l’application réduit considérablement l’effort manuel requis et
améliore la satisfaction globale vis-à-vis des exigences de planification, ce qui en fait
un outil précieux pour les institutions éducatives.

ii

Acknowledgment

As we submit this thesis, it is only fitting to express our heartfelt

gratitude first and foremost to ALLAH, whose guidance and blessings

have been indispensable throughout this journey.

Our deepest thanks also go to our thesis advisor, Mokhtari Bilal, whose

expert guidance and unwavering support have been pivotal. His

dedication to nurturing academic excellence has inspired us throughout

this process.

Additionally, we extend our appreciation to the jury members for their

valuable time, expertise, and constructive criticism during the defense of

this thesis. Their insightful comments and suggestions have significantly

contributed to enhancing the quality of our work and have provided us

with a deeper understanding of our research area. Thank you for your

pivotal role in this academic endeavor.

iii

Dedication

This thesis is wholeheartedly dedicated to Allah, whose divine guidance

and blessings have been our unwavering source of strength and light on

this journey.

With deep love and gratitude, we extend this dedication to the Athmane,

Mebarki, and Saker families, consisting of our cherished parents, sisters,

and brothers, who have enveloped us in endless support and love.

Each family has uniquely shaped one of us, and we are eternally

grateful for your encouragement and steadfast belief in our abilities.

Additionally, we offer our heartfelt appreciation to our friends, the

extended family we chose, who have stood by us as pillars of support

and companionship.

Each of you has touched our hearts deeply, fueling our journey with joy

and resilience, contributing immensely to our personal and academic

growth.

Soumia, Soumia and Nada

iv

Contents

General Introduction xv

Chapter 1: Scheduling problem
1.1 Introduction . 3
1.2 Schedule . 3
1.3 Scheduling as a problem . 4
1.4 Scheduling techniques . 5

1.4.1 Manual techniques . 5
1.4.1.1 None visual methods 5
1.4.1.2 Visual techniques 6

1.4.2 Automated techniques . 6
1.4.2.1 Mathematical optimization techniques 7
1.4.2.2 Heuristics techniques 10
1.4.2.3 Machine Learning based techniques 16
1.4.2.4 Deep Learning Techniques 19
1.4.2.5 Rule-Based techniques (Expert Systems) 23

1.5 Conclusion . 24

Chapter 2: Genetic Algorithm : Academic Scheduling Optimization
2.1 Introduction . 27
2.2 Evolutionary algorithms (EAs) . 27
2.3 Genetic Algorithms (GA) . 28
2.4 Components and processes of Genetic Algorithms 28

2.4.1 Basic concepts of GA . 28

v

2.4.1.1 Genes . 28
2.4.1.2 Chromosomes . 29
2.4.1.3 Population . 29

2.4.2 Phases of Genetic Algorithms 30
2.4.2.1 Initialization . 30
2.4.2.2 Selection . 32
2.4.2.3 Crossover . 33
2.4.2.4 Mutation . 35
2.4.2.5 Evaluation . 37
2.4.2.6 Generation . 38

2.4.3 Convergence in genetic algorithms 38
2.5 Genetic algorithms classes . 39

2.5.1 Single-Objective Genetic Algorithms (SGA) 40
2.5.1.1 Elitist Algorithms: 40
2.5.1.2 Non-Elitist Algorithms 40

2.5.2 Multi-Objective Genetic Algorithms (MOGA) 42
2.5.2.1 Elitist Algorithms 42
2.5.2.2 Non-Elitist Algorithms 44

2.6 Application of Genetic Algorithms in scheduling 45
2.6.1 Problem representation . 45

2.6.1.1 Representation of courses 45
2.6.1.2 Genetic representation for courses 46
2.6.1.3 Representation of exams 49
2.6.1.4 Genetic representation for exams 50

2.6.2 Scheduling with NSGA-II: From theory to practice 52
2.6.2.1 Rationale for Choosing NSGA-II 52
2.6.2.2 Application of NSGA-II for the scheduling system . . 52

2.7 Conclusion . 62

Chapter 3: Analysis and Conception
3.1 Introduction . 65
3.2 Unified Modeling Language definition 65

3.2.1 Use case diagram . 65

vi

3.2.2 Class Diagram . 66
3.2.3 Sequence Diagram . 66

3.3 System design . 67
3.3.1 Professors part . 67

3.3.1.1 Professors functionalities 67
3.3.1.2 Professors use case diagram 67

3.3.2 Administrator role . 69
3.3.2.1 Administrator functionalities 69
3.3.2.2 Administrator use case diagram 70

3.3.3 Student role . 72
3.3.3.1 Student functionalities 72
3.3.3.2 Student use case diagram 72

3.3.4 Detailed specification . 73
3.3.4.1 Class diagrams . 73
3.3.4.2 Sequence diagram 79

3.4 Conclusion . 81

Chapter 4: Implementation and deployment
4.1 Introduction . 83
4.2 Development tools and technologies 83

4.2.1 Back-end tools . 83
4.2.2 Front-end tools . 85

4.3 System Architecture . 87
4.4 Implementation: Features and functionalities 91

4.4.1 Web Application . 91
4.4.2 Mobile application . 130

4.5 Results of the genetic algorithm scheduling 140
4.5.1 Genetic algorithm configuration 141
4.5.2 Obtained results . 142

4.5.2.1 Courses scheduling algorithm 142
4.5.2.2 Exams planning algorithm 146

4.6 Conclusion . 149
4.7 Future enhancements . 149

vii

List of Figures

1.1 Booking calendar for scheduling [1] . 6
1.2 Constraint Programming Paradigm. 8
1.3 linear programming optimization techniques [1]. 9
1.4 Flowchart diagram of Standard Tabu Search 11
1.5 Ant Colony Optimization Algorithm . 12
1.6 Flowchart diagram of simulated annealing algorithm 13
1.7 Flow diagram of PSO algorithm . 14
1.8 The evolutionary cycle of GA. 16
1.9 Illustration of Machine Learning Classification[2]. 17
1.10 DNN Architecture [3] . 20
1.11 Basic CNN architecture [4] . 21
1.12 Standard Transformer model [5]. 22
1.13 Basic architecture of a rule based system [6]. 24
2.1 Evolutionary Algorithms [7]. 27
2.2 Gene. 28
2.3 Chromosome. 29
2.4 A generation of chromosomes. 29
2.5 Population initialization techniques in GAs [8]. 30
2.6 Parent selection methods . 32
2.7 Survivor selection methods. 33
2.8 single point crossover illustration [9]. 34
2.9 Two-point crossover illustration [9]. 34
2.10 Uniform crossover illustration [9]. 35
2.11 Bit Flip Mutation. 35
2.12 Swap Mutation. 36

viii

2.13 Scramble Mutation. 36
2.14 Inversion mutation. 37
2.15 Evaluation process. 37
2.16 Generation in genetic algorithms. 38
2.17 Convergence in genetic algorithms [10]. 39
2.18 Classification of GAs Based on objective types and elitism. 39
2.19 Non-dominated Sorting Genetic Algorithm II 43
2.20 Strength Pareto Evolutionary Algorithm 2 44
2.21 Normal session gene representation . 47
2.22 Section session gene representation . 47
2.23 Normal session example . 48
2.24 Section session example . 48
2.25 Example of chromosome representation 49
2.26 Gene representation . 50
2.27 Example of gene representation . 51
2.28 Example of chromosome representation 51
3.1 Professor use case diagram . 69
3.2 Administrator use case diagram . 71
3.3 Student use case diagram . 73
3.4 Class Diagram of schedule generator 75
3.5 Class Diagram for exam scheduling 76
3.6 Class Diagram for graduation project assignment. 78
3.7 Sequence diagram for scheduling generation 79
3.8 Graduation project assignment process sequence diagram 80
4.1 Global architecture of the proposed system 87
4.2 Database tables . 88
4.3 Users accounts table . 89
4.4 Schedule table. 90
4.5 Bachelors assignments table . 91
4.6 Web login page . 92
4.7 Web login page error . 92
4.8 Web admin home page . 93
4.9 Web admin menu home page . 93

ix

4.10 Web professor home page . 94
4.11 Web student home page . 94
4.12 Web professor calendar . 95
4.13 Professor proctoring schedule waiting for generation 95
4.14 Professor proctoring schedule . 96
4.15 Search groups schedule . 96
4.16 Display groups schedule . 97
4.17 Apply request . 97
4.18 Schedule a test . 98
4.19 Test scheduling . 99
4.20 Replacement scheduling . 99
4.21 Consultation scheduling . 100
4.22 Notifications . 100
4.23 Schedule generator menu . 101
4.24 Selecting semester schedule . 101
4.25 Progress bar for waiting the scheduling process 102
4.26 Professor schedule before the generation 102
4.27 Groups schedule after the generation 103
4.28 Manipulation of the generated schedule 103
4.29 Confirming the insertion for web . 104
4.30 Insert the schedule in database for web 104
4.31 Professor schedule after the generation for web 105
4.32 Publish the schedule for web . 105
4.33 Email sending process . 106
4.34 Professor schedule excel format . 106
4.35 Exam schedule generator . 107
4.36 Choosing the exam interval dates . 107
4.37 The generated exam schedule for groups 108
4.38 The generated proctoring schedule for professors 108
4.39 The generated proctoring schedule excel format 109
4.40 Email reception . 109
4.41 Manipulate schedule . 110
4.42 Manipulation options . 110

x

4.43 Bachelors project assignment . 111
4.44 Bachelors excel file . 111
4.45 Pick file code . 112
4.46 Bachelors project assignment file chooser 112
4.47 Selection of the file . 113
4.48 Upload code . 113
4.49 Displaying the assignment result . 114
4.50 Email reception after the affection . 114
4.51 Masters project assignment . 115
4.52 Selection of the master file . 115
4.53 Displaying the masters assignment result 116
4.54 Email reception after the assignment 116
4.55 Manipulation department data main menu 117
4.56 Level manipulation . 117
4.57 Add level . 118
4.58 Option manipulation . 118
4.59 Add option . 119
4.60 Section manipulation . 119
4.61 Edit, delete or add section . 120
4.62 Groups manipulation . 120
4.63 Add group . 121
4.64 Students manipulation . 121
4.65 Edit, delete or add student . 122
4.66 Professors manipulation . 122
4.67 Edit, delete or add professor . 123
4.68 Subjects manipulation . 123
4.69 Edit, delete or add professor . 124
4.70 Rooms manipulation . 124
4.71 Edit, delete or add room . 125
4.72 Users manipulation . 125
4.73 Edit, delete or add user . 126
4.74 Bachelors final year project manipulation 126
4.75 Edit, truncate or add project . 127

xi

4.76 Bachelors final year project assignment manipulation 127
4.77 Masters final year project manipulation 128
4.78 Masters final year project assignment manipulation 128
4.79 Student calendar . 129
4.80 Student exams calendar . 129
4.81 student notifications . 130
4.82 Mobile login . 131
4.83 Professor profile . 132
4.84 Professor schedule . 133
4.85 Professor proctoring calendar . 134
4.86 Mobile Apply request option . 135
4.87 Professor notification . 136
4.88 Student profile . 137
4.89 Student schedule . 138
4.90 Student exam calendar . 139
4.91 Student notification . 140
4.92 Courses conflict reduction across generations 143
4.93 professor session consolidation Score maximization across generations . 144
4.94 Subject sessions order score reduction across generations. 145
4.95 professors required number of sessions score across generations 146
4.96 Conflicts reduction across generations 147
4.97 One exam per day score across generations 148
4.98 Proctoring distribution variance across generations 149

xii

List of Tables

1.1 Challenges and limitations of university scheduling 4
4.2 Parameter settings for courses scheduling algorithm 141
4.3 Parameter settings for exams planning algorithm 141
4.4 Results for Minimizing courses scheduling conflicts. 142
4.5 Results for Professors sessions consolidations 143
4.6 Results for Subject Sessions Order . 144
4.7 Results for maximizing required professor sessions number score. . . . 145
4.8 Results for minimizing conflicts. 146
4.9 Results of maximizing single exam per day 147
4.10 Results for Minimizing the Proctoring Distribution Variance 148

xiii

Glossary

ACO Ant Colony Opitimization.

AI Artificial Intelligence.

CNN Convolutional Neural Network.

CORS Cross-Origin Resource Sharing .

CP Constraint programming.

CSV Comma-separated values.

DEAP Distributed Evolutionary Algorithms in Python.

DNN Deep Neural Network.

EA Evolutionary Algorithm.

FCM Firebase Cloud Messaging.

GA Genetic Algorithm.

GAN Generative Adversarial Network.

HTTP Hypertext Transfer Protocol .

ILP Integer Linear Programming.

LP Linear Programming.

xiv

MOGA Multi-Objective Genetic Algorithms.

NSGA-II Non-dominated Sorting Genetic Algorithm II.

NumPy Numerical Python.

ORM Object Relational Manager.

PHP Hypertext Preprocessor.

PSO Particle Swarm Optimization.

RL Reinforcement learning.

RNN Recurrent Neural Network.

SGA Standard Genetic Algorithm.

SP Scheduling Problems.

UCSP University Class Schedule Problem.

UI User Interface .

UML Unified Modeling Language.

xv

General introduction

General introduction

Managers across various professional fields frequently encounter the challenge of schedul-
ing and planning work time for their employees. In hospitals, for instance, it is essential
to coordinate the shifts of doctors and nurses to ensure adherence to hospital regulations.
In businesses, planning involves balancing resources such as vehicles and employees,
along with timing constraints to complete tasks at designated times. Effective planning
is crucial for minimizing production costs, enhancing service quality for customers, and
maintaining a high quality of life for employees. Similarly, in educational institutions,
a major planning challenge is the allocation of time and scheduling various activities
involving students and teachers. This task demands significant human and financial re-
sources, and managing it manually is complex, requiring substantial time and effort.
The process becomes even more complicated when constraints such as classroom and
teacher availability must be considered. To address these challenges, we propose a new
solution that primarily automates the scheduling of various activities, including plan-
ning courses, replacements, tests, exams, and graduation project assignments. Genetic
algorithms have emerged as a promising solution, starting with an initial population and
iteratively refining it to achieve optimal scheduling outcomes. The proposed solution is
accessible through a multi-platform application, which is beneficial for students, teach-
ers, and administrative staff, improving communication and enhancing various tasks.
This manuscript is organized into four chapters.

• Chapter 1 provides an overview of the scheduling problem, emphasizing its im-
portance in resource optimization and process efficiency. It introduces and catego-
rizes different existing scheduling techniques, offering a comparative analysis to
demonstrate their applicability and effectiveness in addressing diverse scheduling
challenges.

• Chapter 2 covers the main concepts related to genetic algorithms and discusses
their potential utilization for optimizing academic scheduling problems. The
chapter showcases the effectiveness of genetic algorithms in solving complex
scheduling issues, particularly in optimizing course and exam schedules.

• Chapter 3 focuses on the analysis and design of the proposed scheduling system

1

using Unified Modeling Language (UML). It includes use case, class, and se-
quence diagrams to illustrate the system’s structure and interactions. The chapter
details the design for professors, administrators, and students, highlighting their
respective roles and functionalities. It concludes with a comprehensive specifica-
tion summarizing the design and analysis process.

• Chapter 4 details the implementation and deployment of the scheduling system.
It begins with an introduction to the development tools and technologies used,
covering both back-end and front-end tools. The chapter then outlines the system
architecture before describing the features and functionalities of the web and mo-
bile applications. It also presents the results of the genetic algorithm scheduling,
including the configuration and outcomes for course and exam scheduling. The
chapter concludes with a discussion of future enhancements and improvements.

The thesis concludes with a general summary and conclusions.

2

Chapter 1
Scheduling problem

Chapitre 1 Scheduling problem

1.1 Introduction

In many different industries, scheduling plays an important and essential role for pro-
ductivity and efficiency in a variety of settings, including production lines in manufac-
turing, computer operations, and shift management in hospitals. This chapter explores
scheduling as a necessity that is also a challenging area of problem-solving in opera-
tions research. First, we outline the meaning and history of the scheduling. After that,
we go over the reasons why scheduling is frequently regarded as a difficult process as
well as the different situations in which it arises. Then, we look at a variety of ways
and techniques used to solve scheduling problems, differentiating between automated
and manual, and give a simple and straightforward explanation on how each has been
applied to solve the problem. Apart from reviewing current techniques, we examine
pertinent studies and advancements in the field, offering a comprehensive overview of
both historical and contemporary perspectives.

1.2 Schedule

Based on [11], a schedule is a detailed plan or timetable that contain a planned activities
or events that are scheduled with the times and dates when they are supposed to happen.
However, the nature of these activities varies depending on the institutional context. For
a clear understanding of scheduling in our modern context, lets turn back the pages of
history to explore its origins and development over time. The concept of scheduling has
been a fundamental aspect of organization for ages, as previously mentioned in [12],
we find that the Chinese general and strategist ” Sun Tzu ” wrote about scheduling and
strategy from military perspective 2500 years ago. Along with numerous more events,
we discovered that the transcontinental railways have been built for some 200 years,
none of these activities or events would have been accomplished without some form of
scheduling or without the understanding of activities and sequencing.
Since the schedules are essential for effectively organizing our activities and tasks, let’s
explore the reasons why scheduling is a problem and explore the obstacles encountered
in the process.

3

Chapitre 1 Scheduling problem

1.3 Scheduling as a problem

Scheduling is a globally commune challenge that affect a lot of domains, specially aca-
demic institutions such as universities where it becomes a more complex process. The
administrators required to allocate limited resources such as suitable classrooms and
faculty staff with the necessities of a large students body while respecting and following
a broad of academic regulatory guidelines. This task is additionally complicated due to
the unexpected variable enrollments and particular faculty availabilities.
The table 1.1 outlines some of the challenges and limitations that appear during the
university scheduling process :

Table 1.1. Challenges and limitations of university scheduling

Challenges Limitation

Restricted accessibility of labs and
classrooms, each with specific require-
ment

Limited adaptability of physical re-
sources such as predetermined number
of classrooms spaces

Unpredictable changes Operating within financial limitation
that impact the growth of facilities and
technology investment

Coordinating overlapping sessions and
optimize the sessions to ensure the bal-
ancing of time

Managing resistance to changes in
scheduling practices from various en-
tities

Dealing with the fluctuation in course
enrollment and insure that there is
enough section are attainable

Handling the enormous and compli-
cated details in scheduling for impor-
tant, complex facilities

Relaying on traditional scheduling
ways that may cause issues since it
is not completely meet complex need
that come with it

Errors in scheduling can lead to
double-booked rooms and conflicting
class times, causing significant disrup-
tions

Since the concept of scheduling is not new, many attempted to solve this issues
using different methods and techniques to manually adjusting or automating the process
aiming to minimize scheduling conflicts and overall improve the academic outcomes.

4

Chapitre 1 Scheduling problem

1.4 Scheduling techniques

In the process of creating schedules, we find different preferences some favor the au-
tomated techniques while the others prefer to create their schedules manually using the
traditional methods. Due of these variations, it is helpful to understand how they differ
from each another more precising about their strengths and weaknesses.

1.4.1 Manual techniques

In the scheduling process,we consider manual any method that relies on the physical
intervention or direct manipulation of the human user, since these manual methods fully
depends on the user’s active involvement in managing and organizing the required tasks.
Almost all the known manual methods required the direct user manipulation and in-
volvement which means that they have the same characteristics regarding the time and
effort required,we can categorise them based on the level of the visual representation
that they provide.

1.4.1.1 None visual methods

These type of methods rely mainly on text based formats to organize schedules offering
a straightforward and accessible approach to the scheduling process, such as writing
down tasks,appointments and deadlines on paper, using simple to do lists, text docu-
ments, etc.
The lack of the visual representation of these methods make the process challenging,
specially as the complexity of the schedule increases, without the ability to visualise
the schedule it will be hard to allocate the resources effectively, prioritize some activ-
ities and identify dependencies between tasks. Additionally, these methods require a
lot of effort when updating and maintaining schedules since its hard to keep track of
changes that have been made. Overall, while the non visual methods has there benefits
in terms of simplicity and accessibility, they are not an effective choice when it comes
to managing complex schedules .

5

Chapitre 1 Scheduling problem

1.4.1.2 Visual techniques

In contrast to the non visual methods, these methods provide a graphical representa-
tion of the schedule, making it easier in terms of interpretation and management. For
example, the Figure 1.1 shows how the calendar provide a graphical overview of the
scheduled tasks, appointments and deadlines in a clear and organized way.

Figure 1.1. Booking calendar for scheduling [1]

Similarly, Gantt charts also are a visual method that represent the events and tasks in
a timeline format showing all the important information like the duration and the depen-
dencies. Overall, the visual methods offer in addition to the basic scheduling process
clarity, communication, overlaps identification, but they still may not be efficient when
the scheduling process become more big and complex.

1.4.2 Automated techniques

The shift toward developing and using the automated scheduling methods was mainly as
a response to the limitations of the manual scheduling methods. These methods powered
by the advancements in technology introduced data analytics, artificial intelligence and
sophisticated algorithms into the scheduling problem enabling significant advancement
over the manual methods, such as the ability of optimization of schedules with precision
and speed , considering preferences, etc.

6

Chapitre 1 Scheduling problem

1.4.2.1 Mathematical optimization techniques

In analytics and decision science, mathematical optimization offers effective methods
for identifying ideal solutions in a wide variety of applications in the realm of opera-
tional research and system design. Involves an objective function that is limited by a set
of acceptable solutions and is susceptible of minimizing or maximization. For example,
R.I kharbipov has published his article [13] in 2020, which was about how to auto-
mate the creation of the schedule at the university using the mathematical model, this
research initially focuses on using the workload criteria in the selection of educational
tasks. There are many various approaches in the field of mathematical optimization,
each is well suited to a particular set of constraints and problem types.

Constraint Programming

As defined in [14], Constraint Programming (CP) is a powerful paradigm for solving
complex problems. By using constraints between variables, it allows a direct and con-
cise description of the problem. It offers rapid development, cost-efficient maintenance,
and optimal performance as key advantages. Constraints are essential for identifying
requirements and restrictions in planning and scheduling problems.These include re-
source availability, job dependencies, capacity limitations, time constraints, and quality
standards. Incorporating these restrictions into mathematical models allows planners to
ensure that plans and schedules meet all requirements and are feasible. The following
figure 1.2 represent the paradigm constraint programming.

7

Chapitre 1 Scheduling problem

Figure 1.2. Constraint Programming Paradigm.

In scheduling, CP is sensitive to how constraints and decision variables are formu-
lated. This sensitivity originates from the need to formulate constraints and decision
variables carefully, handle large-scale and complicated problem instances quickly, and
optimize solutions within realistic computation times.

Linear Programming

Another sub-field of mathematical programming is known as linear programming (LP).
Noted in [15] as a quantitative analytical approach to decide whether or not to achieve
the intended objective. In many fields, LP is considered the most important optimiza-
tion technique, because it holds significant value and relevance across a wide range of
applications, industries, and problem domains. Used generally to find the most ideal
solution to the problem within a set of limitations. the technique consists of an objec-
tive function and linear inequalities, which depending on certain restrictions can take
the form of equations or inequalities. Depending on the restrictions reflected in the lin-
ear relationship, this approach is used to maximize or reduce the objective function of

8

Chapitre 1 Scheduling problem

the provided mathematical model, the Figure 1.3 provides a clearer visualization of the
main phases.

Figure 1.3. linear programming optimization techniques [1].

Linear Programming (LP) can be used to solve scheduling and planning problems
by setting the objective, setting constraints, developing the LP model, generating solu-
tions to the using LP solvers, evaluating the results and refining the model iteratively.
All of these aspects are expressed as mathematical functions. This method enhances the
efficiency of planning, task scheduling and resource allocation, making it effective in
different areas, particularly in project management, production planning and logistics
management. As an applications of this method, professors Ahmed Wasfy and Fadi A.
Aloul as detailed in [16] presented how to solve the university class scheduling problem
using advanced Integer Linear Programming techniques starting from how to formulate

9

Chapitre 1 Scheduling problem

the university schedule as an ILP problem. The ILP models are solved using advanced
generic based and boolean satisfiability based ILP solvers.
Although the method works well for planning, it also has downsides, including assump-
tions about linearity and issues with discrete variables. For more complex problems,
other methods may be better.

1.4.2.2 Heuristics techniques

Heuristics techniques especially in real-world applications, provide practical solutions
to optimization problem that are too large or complex for precise algorithms. These
techniques are distinguished by their adaptability and flexibility, and they are particu-
larly valuable in finding solutions to NP-hard problems. Follows, The commonly used
heuristic techniques.

Tabu search

Tabu search, as described in [17] is a strategy for solving combinatorial optimization
problems whose applications range from graph theory and matroid settings to general
pure and mixed integer programming problems.
This algorithm altered the scheduling problem by introducing a more efficient approach
that elevated and improved the quality of solutions, using a memory based strategy that
keep track of all the visited solutions (Tabu list), so they will be avoided when looking
for the near optimal one, improving the quality of the found solution. Figure 1.4 shows
the flowchart of a Standard Tabu Search.

10

Chapitre 1 Scheduling problem

Figure 1.4. Flowchart diagram of Standard Tabu Search

However, the reliance of the algorithm on memory can lead to high memory re-
quirements, specially with large scheduling problems, making it harder to maintain and
update the Tabu list, increasing the processing time which is considered unpractical for
dynamic and real-time scheduling environments.

Ant colony Optimization (ACO)

Ant colony Optimization is a probabilistic search technique, that simulate the foraging
behavior of an ants colony in the nature to discover the shortest path to the food by
leaving behind pheromones that motivate the other ants to follow their path. Which
considered as indirect form of communication as referenced in [18, 19].
Some researchers used this technique as a solution to the scheduling problems by em-
ploying ACO as a graph-based representation where nodes represent the tasks of the SP

11

Chapitre 1 Scheduling problem

and the possible scheduling decisions are illustrated as edges. This algorithm used the
population of the artificial ants to navigate through the graph enabling the colony to dy-
namically explore and evaluate different scheduling options within the solution space.
For more clarity the next figure 1.5 describe the steps of the ACO algorithm.

Figure 1.5. Ant Colony Optimization Algorithm

In this case, the authors of the article [20] used the ACO-based algorithm for solving
the airline crew scheduling problem. In addition, Edson Flórez1, Wilfredo Gómez2 and
MSc. Lola Bautista described the implementation of an ACO algorithm model to find
a solution to Job Shop Scheduling Problem, same as [21] which used this approach for
the resource-constrained project scheduling problem.
ACO algorithm in SP is aiming to focus on effectively distribute workload across re-
sources in order to assign sessions and tasks to specific time and space, leading to re-
duce conflicts and enhance efficiency.

12

Chapitre 1 Scheduling problem

Although ACO is an effective technique for addressing SP, there are also some limita-
tions such as the sensitivity in parameter settings and possibly may not scale well with
complex problems, making the solving process expensive.

Simulated Annealing

The simulated annealing algorithms as mentioned in [22] is one of the preferred heuristic
methods for solving the optimization problems, used to find approximate solutions. It
mimics the physical process annealing in metallurgy, where a low-energy crystalline
state is attained by heating and then slowly cooling the material to minimize energy
and reduce problems. When we are seeking to attempt to minimize (or maximize) an
objective function f with respect to a set of variable, this technique is commonly used,
the issues can range from scheduling task to circuits. This method’s initial solution
start with a preliminary resolution of the problem, this can be generated randomly or
by applying some heuristic. For more clarity of how the simulated annealing algorithm
work, the figure 1.6 represents a flowchart diagram of the process.

Figure 1.6. Flowchart diagram of simulated annealing algorithm

In the scheduling process, the algorithm begin with an initial schedule and con-
tinuously make small changes like swapping the order of tasks or adjusting resource
allocations in order to explore the neighboring schedules. The algorithm accept a new
schedule in every iteration made, based on multiple factors such as the the temperature
parameter and a determined probability. The sensitivity of simulated annealing towards
parameter selection, such as cooling schedule and initial temperature, is one of its main
drawbacks. It can be difficult to find the ideal combination because these elements have

13

Chapitre 1 Scheduling problem

a big impact on performance, especially when handling complicated scheduling prob-
lem.

Particle Swarm Optimization (PSO)

Particle Swarm Optimization as defined in [23], is an algorithm inspired from the nature,
especially from the movement and the behavior of animals and insects that are living in
swarms such as birds and fish by keeping each individual’s memory of the experience
along with the data that his group provides, all in the process of determining the optimal
food regions.
In this algorithm, an optimization problem’s possible solution is shown as a ”particle”.
In the solution space, every particle has a position and velocity, these particles come
together to form a ”swarm”, each swarm is initialized by random positions within the
solution space. The figure 1.7 provides a clear overview of the main phases that algo-
rithm go through.

Figure 1.7. Flow diagram of PSO algorithm

PSO can effectively applied to scheduling problems across various domains such
as project and task scheduling, along with their scheduling parameters like start time,

14

Chapitre 1 Scheduling problem

duration, resource requirements and dependencies are represented in SP. Within the
framework of PSO, any potential schedule can be considered as a solution or a particle.
In this regard, the authors of the article, Hossain, S. I., Akhand, M. A. H., Shuvo, M.
I. R., Siddique, N. and Adeli, H [24] explain how PSO is significant when it applied
to scheduling, who used this method with the help of Selective Search to optimize the
university course scheduling problem. this proposed technique is different from many
of the existing methods that are currently in use, such as PSO-based approaches, where
UCSP is converted into an equivalent floating point numeric domain.PSO Selection
Search approach uses a swap sequence based discrete PSO with a number of modifica-
tions.
Although This algorithm is effective in various optimization tasks. But, this does not
imply that it immune to limitations such as having difficulty to deal with the complex
scheduling problem’s constraints, which could lead to insufficient solutions. Also, in
large-scale scheduling scenarios with many tasks, resources and constraints, The PSO
may not be able to scale well.

Genetic Algorithms (GA)

A genetic algorithm is a search algorithm that traverses a space of solutions in the quest
for the optimal one, to solve a given problem. The way of handling this exploration is
by producing a ”population” of possible solutions, that are encoded as a chromosomes
or string of genes, and allowing them to evolve through successive generations. They
generate and evaluate potential solutions to scheduling problems by mimicking natural
selection. The figure 1.8 illustrates the cycle of the genetics algorithms.

15

Chapitre 1 Scheduling problem

Figure 1.8. The evolutionary cycle of GA.

Genetic algorithms Identify and enhance schedules that fulfill particular require-
ments, making them valuable tools for optimizing scheduling processes across various
domains for their ability to handle complicated constraints by representing each poten-
tial schedule as a chromosome which can consist genes that represent tasks or activities.
Many researchers have used GA to solve scheduling problem each one of them has
developed their own technique for implementing this algorithm. Such as, Herth A.K.
[25] has proposed in 2017 that a standard GA based on constraints tournament can be
applied to solve the university course timetabling problem using standard genetic algo-
rithm based on constraints tournament, and Abdullah ELEN [26] found that depending
on the constraints determined, the application of GA accurately creates exam schedul-
ing without overlapping. GA(s) face challenges in terms of scalability, premature con-
vergence and adaptability to dynamic environments, but remain powerful optimization
tools when adjusted and used appropriately for specific problems.

1.4.2.3 Machine Learning based techniques

Artificial intelligence (AI) has advanced significantly with machine learning, which pro-
vides powerful tools that let computers analyze and interpret large and complex amounts

16

Chapitre 1 Scheduling problem

of data to learn and make decisions. By implementing techniques that adaptively en-
hance their performance as the amount of data available for learning increases, which
are critical in making predictions or recommendations.
Typically, there are three primary classification for this field like the figure 1.9 shows,
which are individually tailored for certain data sets and objectives:

Figure 1.9. Illustration of Machine Learning Classification[2].

Supervised Learning

As defined in [27], Supervised learning is a machine learning method that relies on
training data that includes both inputs and their corresponding outputs. This data is
often called labeled or supervised data.The goal is to build a system that can predict
output, based on new inputs by learning the relationship between inputs and outputs. If
the outputs are discrete values, it leads to classification, while if the outputs are contin-
uous, it leads to regression.
As supervised learning is used to address plannings challenges, historical data is lever-
aged to anticipate future planning needs or to categorize tasks and assignments based

17

Chapitre 1 Scheduling problem

on different criteria such as priority or Resource requirements Before predictions or
classifications can be generated from labeled data, models must be trained beforehand.
This leads to improved decisions regarding scheduling and resource allocation.Applying
supervised learning to scheduling problems can face various challenges. Constraints re-
lated to the availability of labeled data, Challenges of handling dynamic scheduling
environments, Limited ability to generalize to unknown scenarios, Some difficulties in-
clude capturing complex planning links and possible model interpret-ability issues.

Unsupervised Learning

Unsupervised learning is a sort of machine learning that requires as little human super-
vision as possible to uncover data groupings or hidden patterns without utilizing la-
bels.It’s often known as self-organization, allows for the modeling of probability den-
sities across inputs instead of supervised learning, which typically uses human-labeled
data.In unsupervised learning, cluster analysis is used to group or segment data sets
with similar features to identify algorithmic linkages.In scheduling and planning, un-
supervised learning techniques are used to reveal hidden patterns, group similar tasks
or resources, detect anomalies, reduce dimensionality, discover recurring patterns, and
maximize resource allocation.This technique enable firms to make more informed de-
cisions, increase productivity, and improve overall scheduling and planning operations
through the examination of historical data.
This technique, for planning have several limitations, such as difficulty in finding clus-
ters, uneven quality of clusters, scalability issues, insufficient optimization guidance, re-
liance on evaluation of data quality and tedious efforts to adapt to configuration changes.
Nonetheless, they continue to be useful resources for uncovering hidden insights, espe-
cially when combined with additional techniques and in-depth domain knowledge.

Reinforcement Learning (RL)

As mentioned in [27], RL is a unique branch of machine learning from the previously
cited ones. In reinforcement learning, an agent engages with the environment to op-
timize its gains by acting and gaining knowledge from its outcomes. Two techniques
are used to compel the agent to act: (i) exploitation, in which the agent chooses to act
based on its past experiences—including setbacks and mistakes—and (ii) exploration,

18

Chapitre 1 Scheduling problem

in which the agent decides to act in a way that is unrelated to its prior experiences.
the technique is used for planning and scheduling, by encoding states that represent
planning configurations, selecting actions such as task assignment or resource distri-
bution, and creating rewards to promote desired results such as meeting deadlines or
optimizing the use of resources. Through repeated policy learning, the algorithm im-
proves decision strategies, harmonizing the search for new methods with the use of
proven approaches to adjust to changing environments and maximize performance in
different domains. The important methods in RL are Deep Q-Networks (DQN) for
deep learning applications, Reinforce for policy gradients, and Q-Learning and SARSA
(State-Action-Reward-State-Action) for value updates. Value and policy approaches are
combined in Actor-Critic methods (A2C, PPO), etc.
Within this approach, limitations in scheduling problems manifest in managing com-
plexity, computational demands, and reward formulation, requiring customized strate-
gies and domain-specific adjustments for effective optimization.

1.4.2.4 Deep Learning Techniques

With a suite of powerful algorithms that emulate human brain activity, Deep Learning
represent the next evolution in computational technology. Deep learning, is a sub field of
AI that uses in several methods through neural networks structured layers of algorithm,
each one of this methods has certain advantages and limitation. Here follows some
essential deep learning techniques, which can be used in scheduling.

Deep Neural Networks (DNN)

DNNs are a class of deep learning that is used widely in data-driven modeling. And as
clarified in [28] , they have layers with nodes and edges that reflect mathematical rela-
tionships. Training updates these associations iteratively via back propagation. These
updated relationships function as the formulas used to predict output variables from
input variables after training as shown in Figure 1.10. Consequently, the capacity of
DNNs to capture intricate and nonlinear interactions found in a system is one of its main
advantages. It has been used as an automation technique to the scheduling process spe-
cially for optimization and demand forecasting.DNNs reliably forecast future demand
for resources or services by analyzing historical data and patterns and improve schedul-

19

Chapitre 1 Scheduling problem

ing efficiency by continuously fine-tuning resource allocation based on real-time data,
guaranteeing optimal resource use.One major limitation of this technique is the large
amount of labeled data required,also it can be computationally demanding, involving
substantial computational resources for both training and inference.

Figure 1.10. DNN Architecture [3] .

Convolutional Neural Networks (CNN)

Convolutional Neural Networks, a class of deep learning algorithms created and used
for processing structured grid data like IMG1. According to [29], and like its shown in
the Figure 1.11, CNNs process input data by applying a number of convolutional layers.
Every layer is made up of several filters, or kernels, that move across the input data
to identify different characteristics like edges, textures, or patterns. A fully connected
layers are employed after multiple convolutional and pooling layers to create the final
predictions. In the scheduling process, CNNs convert the data into a format that is
structured and easy to interpret, like grids or sequences. In order to identify patterns and
correlations in the data, such as time task sequences or spatial resource distributions.
As mentioned in [30], a CNN consists of one output layer, many hidden layers, and
input layers. The data is sent to the input layer to begin training. Subsequently, the

20

Chapitre 1 Scheduling problem

information is routed through many concealed levels. Multiple filters and pooling layers
are included in the hidden layer. Better features are produced when these layers are
added between concealed layers. Through the process of identifying patterns, and then
forecast the best times to assign tasks or resources, reducing the likelihood of delays and
improving system performance as a whole. Numerous fields, including manufacturing,
energy management, and job shop scheduling, can benefit from this broad strategy.But
due to their computationally demanding nature and need for vast quantities of labeled
data for training, CNNs may not be as appropriate for real-time or extremely dynamic
scheduling scenarios.

Figure 1.11. Basic CNN architecture [4]

Recurrent Neural Networks (RNN)

Recurrent Neural Networks are defined in [29] as a type of artificial neural networks,
designed to identify patterns in data sequences like speech, text, or time series. RNNs,
in contrast to conventional neural networks, feature connections that create directed
cycles, which preserve information, due to their ability to retain a ”memory” of prior
inputs in a sequence. Utilizing past scheduling data, RNNs learn to identify patterns and
dependencies among tasks in scheduling processes. They are trained to comprehend the
order of tasks and their interdependences, retaining a ”memory” of prior tasks during
scheduling, enabling it to automatically determine the optimal next task while taking

21

Chapitre 1 Scheduling problem

Figure 1.12. Standard Transformer model [5].

into account the limits and circumstances of the moment. By minimizing delays and
optimizing resource usage, this aids in the creation of timetables that are more flexible
and efficient. Unlike CNNs and DNNs, RNNs use their design to handle temporal data,
which makes them especially useful for tasks involving sequences.

Transformer Models

Transformer models according to [31], are also a type of the neural networks, intended
for processing sequential input. Compared to earlier models like RNNs, they are better
at capturing long-range dependencies because they analyze incoming data in parallel
using a method called”self-attention”.
The encoder and decoder, the two components of the transformer, are shown in the fig-
ure 1.12. For the model to process and produce responses based on the complete input
sequence at once, as opposed to one element at a time, each block in the encoder and de-
coder is essential. Transformer models have been adapted to the scheduling process by
applying their self-attention mechanism, which enables them to evaluate every aspect of
a schedule simultaneously rather than one component at a time. This is especially help-

22

Chapitre 1 Scheduling problem

ful when scheduling complex tasks and resources, as different activities and resources
interact in complex ways. By using Transformers to assess the entire schedule collec-
tively, the model may determine the optimal times and sequences for tasks depending
on overarching objectives like avoiding downtime or balancing workloads. This all-
encompassing strategy aids in the creation of more adaptive and effective schedules,
particularly in settings where conditions change quickly.

Generative Adversarial Networks (GAN)

According to [32], Generative Adversarial Networks are a class of artificial intelligence
algorithms that are carried out by a system of two neural networks in a zero-sum game
framework, competing with each other. In 2014, Ian Goodfellow and colleagues first
introduced this technique. Simply, the generator network mimics real data instances to
learn how to generate data, while the discriminator network tries to separate real data
from fake. Because of the rivalry, both networks progressively improve their methods,
making it possible to produce realistic-looking synthetic data. GANs have been suc-
cessfully applied to optimize scheduling. For example, They drive deep reinforcement
learning in large computing environments to improve task scheduling in giant computer
systems, increasing resource allocation efficiency significantly. In the energy sector,
GANs are used in a similar fashion to offer accurate wind power scenarios that facili-
tate day-ahead scheduling and enhance energy distribution planning. These illustrations
demonstrate the great adaptability of GANs as a modeling and optimization tool for
complex scheduling tasks across multiple industries, making them a significant asset
for planning and forecasting. However, they are limited by the large amounts of data
and the processing power they require, and problems like mode collapse can make opti-
mization difficult.

1.4.2.5 Rule-Based techniques (Expert Systems)

The rule-based systems, also known as the expert systems, where among the earliest au-
tomated scheduling methods. Mentioned in [6] as approaches that solve issues or make
judgments based on predetermined, understandable rules. These systems as it is shown
in figure 1.13 composed of three main components. A knowledge base, which stores
the rules and facts used for decision-making, an inference engine, which applies the

23

Chapitre 1 Scheduling problem

rules from the knowledge base to specific situations to derive conclusions or decisions,
and a knowledge acquisition module, which is responsible for gathering and updating
the knowledge base with new rules and information. They are frequently used to auto-
mate and expedite decision-making in a variety of procedures. Among the most popular
strategies of rule-based systems are those that prioritize tasks by specific criteria, such
as priority rules, which rank tasks based on the earliest deadline or shortest processing
time. Also, there is dispatching rules which determine the sequence in which tasks are
processed on machines, while batch scheduling rules enhance efficiency by grouping
related tasks together for processing.

Figure 1.13. Basic architecture of a rule based system [6].

The simplicity of expert systems in implementation make them unique, simple to
comprehend, and adaptable to certain operational requirements. However, they are lim-
ited as the set of the rules cant cover all the scheduling scenarios, or readjust well to the
changing circumstances and conditions.

1.5 Conclusion

In this chapter to cover the scheduling problem and the numerous techniques used to ad-
dress this complex challenge, from sophisticated machine learning to traditional manual
approaches. Giving a general idea on how each technique has been specifically applied
to the problem and mention the main limitations of each one. The goal is to provide

24

Chapitre 1 Scheduling problem

a basic understanding for selecting the most effective strategy based on the specific re-
quirements and constraints of different scheduling scenarios. For our specific scenario,
which is scheduling university courses and exam sessions, we decided to go with GAs
as our preferred approach. This decision is based on there ability in handling multiple
constraints and objectives simultaneously. They excel in adapting to the complex and
dynamic nature of the academic scheduling, where a lot of factors must be balanced
efficiently such as room and professor availability, and the needs of both professors and
students.
Because GAs are more flexible, efficient, and adaptable than other options, they are
a better option for university scheduling tasks. In the next chapter, more explanation
on how we used the GAs as a solution to the academic scheduling specifically univer-
sity courses/exams scheduling, exploring the detailed setup and implementation of them
demonstrating how they deal with the challenges, constrains and limitations of academic
scheduling.

25

Chapter 2
Genetic Algorithm : Academic

Scheduling Optimization

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.1 Introduction

In this chapter, we will explore the fundamental components of Genetic Algorithms
(GAs), such as genes, chromosomes, and fitness functions. We will explain the roles of
various phases, including initialization, selection, crossover, and mutation, and discuss
how each contributes to the algorithm’s convergence. Additionally, we will classify
Genetic Algorithms into different types, highlighting their specific applications. Finally,
we will focus on the application of GAs to academic scheduling, discussing effective
problem representations and the practical implementation of these algorithms to solve
our scheduling challenges.

2.2 Evolutionary algorithms (EAs)

According to [33], evolutionary algorithms (EAs) are stochastic search based techniques
which use a population of solution to. They mimic natural evolution by employing
mechanisms such as selection, crossover, and mutation to evolve solutions over gener-
ations. Points in the search space are considered as individuals, or potential solutions,
which collectively constitute a population. Their fitness rating is a numerical represen-
tation of their suitability for the given objective. EAs can include three key elements in
addition to initialization and termination, which are the core elements of all algorithms:
a set of search operators (typically implemented as ”recombination” and ”mutation”),
an enforced control flow, and a representation that links suitable variables to feasible
solution candidates. The figure 2.1 illustrates the different families of Evolutionary Al-
gorithms, including Evolutionary Programming, Genetic Algorithms (which encompass
Genetic Programming), and Evolution Strategies.

Figure 2.1. Evolutionary Algorithms [7].

27

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.3 Genetic Algorithms (GA)

Genetic Algorithms are considered as a sub-class of Evolutionary Algorithms as shown
in the previous section, which means that EA is an umbrella term includes all the Algo-
rithms inspired by the idea of Darwinian evolution. In addition, according to [34, 35],
the term Genetic algorithm, universally abbreviated now into GA, is a search strategy
that is inspired by Neo-Drawinism, Drawin’s classical theory of evaluation, aside with
Weismann’s natural selection theory and Mendel’s concept of genetics. All are theories
of natural evolution that is based on processes of reproduction, mutation, competition
and selection which are an essential property of life. It was first introduced to the world
by John Holland in 1975, which considered as a pivotal year in the development of GA,
explaining for the first time its basic principles.

2.4 Components and processes of Genetic Algorithms

Before starting the discussion on how we applied the GAs in our proposed scheduling
system, it is essential to clarify and explain some key concepts and standard structure
that defines the GA.

2.4.1 Basic concepts of GA

2.4.1.1 Genes

A gene in a GA is the smallest unit of information, representing a single parameter or
value of a potential solution to the problem. Binary strings are the most common way to
represent genes. However, there are alternative ways to encode them as well, depending
on the situation. In Figure 2.2, the gene is depicted within a binary string. Each position

Figure 2.2. Gene.

28

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

in the string represents a bit, which can take the value of 0 or 1. The highlighted section
indicates a single gene within the chromosome.

2.4.1.2 Chromosomes

A chromosome is formed by an array of genes, representing a possible solution to the
problem. GA makes them evolve through generations using genetic operators, namely
crossover and mutation, until finding the best solution (fittest chromosome). In Figure

Figure 2.3. Chromosome.

2.3, the chromosome is depicted as a binary string composed of multiple genes. Each
position in the string represents a bit, which can take the value of 0 or 1. The entire
string represents a potential solution to the problem, with genetic operators acting on it
to evolve and improve the solution over generations.

2.4.1.3 Population

A population is a set of chromosomes. As the GA progress, the population changes and
evolves over the generations creating new populations.

Figure 2.4. A generation of chromosomes.

29

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

In Figure 2.4, the population is depicted as a collection of chromosomes. Each chro-
mosome represents a potential solution to the problem. Over successive generations,
the genetic algorithm modifies the population through operations such as selection,
crossover, and mutation, leading to the evolution of the population and the discovery
of better solutions.

2.4.2 Phases of Genetic Algorithms

2.4.2.1 Initialization

The first step in the GA process is population initialization [36]. This involves generat-
ing a group of solutions, also known as a set of chromosomes, for the current generation.
The initial population, P0, is typically created randomly. In subsequent generations, new
populations, Pt , are formed for each generation. t (where t = 1,2, . . .n). There are var-
ious types of population initialization techniques, each with different characteristics.
As mentioned in [8], a new categorization is introduced that encompasses all existing
population initialization techniques. This proposed classification groups the techniques
to three distinct and easy to understand perspectives. These aspects are randomness,
compositionality, and generality. Within each of these three categories, techniques are
further classified into sub-categories, and their properties are described in detail. Figure
2.5 illustrates this hierarchy.

Figure 2.5. Population initialization techniques in GAs [8].

30

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

• Randomness: Refers to whether the initialization method involves random processes.
It determines if the method uses random elements or follows a fixed, predictable pattern.
It includes two main sub-classes of techniques, stochastic and deterministic techniques.

Stochastic techniques: They incorporate random elements, including Random Num-
ber Generators which use random numbers to create populations, and chaotic systems
that introduce randomness through chaotic behavior.

Deterministic techniques: Techniques that do not depend on randomness, including
Low Discrepancy sequences that ensure evenly distributed points, and Uniform Exper-
imental Design that provides a structured sampling of the solution space.

• Compositionality: Refers to the number of independent procedures used in a technique.
Based on this, population initialization techniques are classified as either composite or
non-composite.

Non-Composite: Basic techniques that generate populations in a single step are
called non-compositional. This includes methods that are stochastic, deterministic,
generic, or application-specific but cannot be broken down into separate population
initialization methods.

Composite: Involves using multiple methods to improve the initialization, such as
Hybrid approaches that integrate different techniques for combined strengths, and
Multi-step methods that apply a sequence of techniques in stages.

• Generality: Refers to the versatility of a population initializer across various domains.
It indicates how broadly the initializer can be applied to different types of problems and
situations.

Generic: Techniques that can be applied to all types of optimization problems are
known as generic techniques. These methods generally assume that the given opti-
mization problem is a black-box puzzle.

Application-Specific: Tailored for particular real-world problems, using domain
knowledge to improve results and speed up the convergence of EA. They are effective
for targeted problems but may not work well elsewhere.

31

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.4.2.2 Selection

This phase involves selecting individuals according to their fitness from the current
population. Fittest individuals have more chance to be selected. This phase includes
two stages.

• Parent Selection: Choosing individuals from the current generation to reproduce
and generate offspring.

• Survivor Selection: Selecting individuals from both the parents and their off-
spring to form the next generation.

The various parents selection techniques used in genetic algorithm are illustrated in the
figure 2.6.

Figure 2.6. Parent selection methods .

This figure 2.6 categorizes parent selection methods in genetic algorithms into three
main groups: fitness proportionate,ordinal based, and threshold based. Fitness propor-
tionate methods, such as Roulette Wheel Selection and Stochastic Universal Sampling,
select individuals based on their fitness levels. Ordinal based methods, including Rank-
ing Selection and Tournament Selection, rank individuals or have them compete in tour-
naments to determine selection. Threshold based methods, like Truncation Selection,
only allow individuals above a certain fitness level to be selected. This classification
highlights the various techniques used to choose parents for reproduction in genetic
algorithms. Survivor Selection decides which individuals will be removed and which

32

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

will remain in the next generation. This process is also referred to as replacement. As
illustrated in the figure below .

Figure 2.7. Survivor selection methods.

The figure 2.7 illustrates survivor selection methods used in genetic algorithms, in-
cluding age-based and fitness-based approaches. In age-based selection, individuals are
removed after a set number of generations, while fitness-based selection replaces the
least fit individuals with new offspring using techniques like tournament selection. Elite
preservation (elitism) ensures the best chromosomes are copied to the next generation,
enhancing performance, and the GENITOR method (steady-state selection) continu-
ously replaces the least fit individuals, promoting gradual population improvement, thus
ensuring a balance of new and high-quality individuals in each generation.

2.4.2.3 Crossover

As defined in [37], the crossover operator is similar to the biological process of crossing
over and recombination of chromosomes during cell meiosis. This operator exchanges
a subsequence between two selected chromosomes to produce two offspring. Based on
the unique requirements and characteristics of the problem at hand, various crossover
techniques can be utilized. Each technique has its own approach to combine parental
genes, affecting the algorithm’s convergence and efficiency. Below, we explore the
different types of crossover techniques.

33

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Single Point Crossover

A crossover point is chosen on the parent organism string, and all data beyond this
point is exchanged between the two parent organisms. This method is characterized by
positional bias, as illustrated in the figure 2.8.

Figure 2.8. single point crossover illustration [9].

Two-Point Crossover

This is a particular example of the N-point crossover technique. As shown in the fig-
ure 2.9, two random points are selected on the individual chromosomes (strings), and
genetic material is swapped at these points.

Figure 2.9. Two-point crossover illustration [9].

34

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Uniform Crossover

As demonstrated in the figure 2.10, each gene is chosen at random from the correspond-
ing genes of the parent chromosomes, using a method similar to tossing a coin.

Figure 2.10. Uniform crossover illustration [9].

2.4.2.4 Mutation

As a key element in genetic algorithms, mutation handles the exploration of the search
space and it is crucial for convergence, unlike crossover. It involves making small ran-
dom changes to a chromosome to generate new solutions, thereby maintaining and intro-
ducing diversity within the genetic population. Typically applied with a low probability
to avoid turning the GA into a random search. Here, we discuss some of the most widely
used mutation operators.

Bit Flip Mutation

As represented in the figure 2.11, in bit flip mutation, one or more random genes are
selected and flipped. This technique is used for binary encoded genetic algorithms.

Figure 2.11. Bit Flip Mutation.

35

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Random Resetting

An extension of bit flip mutation for integer representation is random resetting. In this
method, a randomly selected gene is assigned a random value from the set of permissible
values.

Swap Mutation

As illustrated in the figure 2.12, in this technique, two positions on the chromosome are
selected at random, and their values are interchanged. This method is commonly used
in permutation-based encoding.

Figure 2.12. Swap Mutation.

Scramble Mutation

As visualized in the figure 2.13, scramble mutation is also popular with permutation rep-
resentations. In this method, a subset of genes from the entire chromosome is selected,
and their values are randomly scrambled or shuffled.

Figure 2.13. Scramble Mutation.

Inversion Mutation

As detailed in the figure 2.14, this technique involves selecting a subset of genes, like
in scramble mutation, but instead of shuffling, the entire string within the subset is
reversed.

36

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Figure 2.14. Inversion mutation.

2.4.2.5 Evaluation

As defined in [38], the fitness function acts as the evaluation metric that steers the ge-
netic algorithm towards finding the optimal solution. It assesses and quantifies the qual-
ity and suitability of each individual solution within the population. By assigning a
fitness score to each candidate, the function determines how well each solution meets
the objectives and adheres to the constraints of the optimization problem. Higher fit-
ness scores represent more effective solutions, enabling the algorithm to recognize and
prioritize the most promising candidates for further evolution and reproduction. This
ongoing process allows the algorithm to progressively improve the population, steadily
moving closer to the optimal solution with each generation.

Figure 2.15. Evaluation process.

The figure2.15 illustrates the evaluation process within a genetic algorithm. On the
left side, we have a population of individuals represented by binary strings (chromo-
somes). In the middle, the fitness function F evaluates each individual. This function
assigns a fitness score based on how well each solution meets the problem’s objectives
and constraints. On the right side, individuals are ranked based on their fitness scores.
The individuals with higher fitness scores are considered better solutions and are prior-
itized for further evolution and reproduction.

37

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.4.2.6 Generation

As shown in the figure 2.16, a generation in genetic algorithms (GAs) is defined as one
complete iteration that includes all phases from initialization to the selection of offspring
for the new population.

Figure 2.16. Generation in genetic algorithms.

2.4.3 Convergence in genetic algorithms

As [?] defined, convergence happens when every individual of a population become
identical. Complete convergence is observed in genetic algorithms that apply just crossover.
The population may settle on a sub-optimal solution, which is known as premature con-
vergence. However, populations don’t necessarily stabilize throughout time, with the
best individuals sharing genetic and behavioral traits.
In order to optimize the efficiency of evolutionary computing, it is necessary to deter-
mine the critical variables that affect convergence. Important components including
population size, recombination operators, reproduction strategy, and parameter repre-
sentation are illustrated in the figure 2.17.

38

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Figure 2.17. Convergence in genetic algorithms [10].

2.5 Genetic algorithms classes

Although there are several ways to classify GAs, such as genetic representation or se-
lection techniques. This discussion will specifically focus on categorizing them based
on objective types and elitism.

Figure 2.18. Classification of GAs Based on objective types and elitism.

As illustrated in the figure 2.18, we can see a systematic classification of genetic al-

39

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

gorithms (GAs) based on their optimization objectives and solution retention strategies,
divided into Single-Objective Genetic Algorithms (SGA) and Multi-Objective Genetic
Algorithms (MOGA). Each category is further categorized into elitist and non-elitist
algorithms, with each type tailored to specific operational mechanics and strategic fo-
cuses.

2.5.1 Single-Objective Genetic Algorithms (SGA)

These algorithms optimize a single criterion, focusing on finding the best solution to
either maximize or minimize that specific goal.

2.5.1.1 Elitist Algorithms:

Several elitist algorithms designed to optimize solutions are classified as single-objective
genetic algorithms. These algorithms take different approaches, but they all aim to pre-
serve high-quality solutions across generations. While there are various algorithms in
this category, the Steady-State Genetic Algorithm is particularly well-known. These
algorithms use different strategies to retain the best individuals in the population, in-
creasing the efficiency of the genetic search process.

Steady-State Genetic Algorithm

Maintains a constant population size by selectively replacing only a few individuals at
a time, thereby ensuring the retention of the best individuals. This approach effectively
prevents the loss of optimal genetic solutions, keeping high-quality genes within the
population across generations.

2.5.1.2 Non-Elitist Algorithms

Non-elitist algorithms, on the other hand, do not preserve the best individuals across
generations. Instead, they concentrate on the fundamentals of genetic processes. These
algorithms can be more exploratory, providing a wider range of solutions while risking
the loss of high-quality solutions. The Simple Genetic Algorithm (SGA) is a prominent
example in this category.

40

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Simple Genetic Algorithm (SGA)

Operates on the basic principles of selection, crossover, and mutation, cycling through
generations without explicitly preserving the best solutions. This method focuses on
exploring the genetic landscape broadly, which may result in the loss of good solutions
but simultaneously enhances the diversity of the gene pool. The Standard Genetic Al-
gorithm (SGA)can be described by the pseudo-code given by the algorithm1.7

Algorithm 1 Pseudo-code for Simple Genetic Algorithm (SGA)
1: Choose an initial population P0 of individuals;
2: Evaluate the fitness of all individuals;
3: Choose a maximum number of generations: tmax;
4: while not satisfied and t < tmax do
5: t← t +1;
6: Select parents for offspring production;
7: Apply reproduction and mutation operators;
8: Create a new population of survivors: Pt ;
9: Evaluate Pt ;

10: end while
11: Return the best individual of Pt ;

The algorithm apply the basic steps of GAs. Starting by generating the initial popu-
lation of individuals P0, evaluating and assigning a fitness value to each individual. Then
it starts looping until a satisfaction criterion is met or a maximum number of generations,
tmax, is reached. In each iteration, parents are selected from the existing population to
become the next one’s parents, and genetic processes like reproduction and mutation
are used to create new offspring. The fitness of this newly created populationPt , is then
assessed. When the procedure has completed running the loop, it returns the best indi-
vidual from the final population, which represents the optimal solution found during the
process, ensuring that the solutions will continue to be improved.. The (SGA) is com-
monly utilized in function optimization, and to help with feature selection and parame-
ter tuning for a variety of models, including as classifiers and regressors, in elementary
machine learning tasks. SGA is a favorite in educational and experimental contexts to
demonstrate the fundamentals of evolutionary algorithms since it also functions as a key
tool in basic evolutionary computing assignments.

41

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.5.2 Multi-Objective Genetic Algorithms (MOGA)

These algorithms handle multiple, often conflicting objectives, aiming to find a Pareto
front of solutions where each is optimal without dominating the others in all criteria.

2.5.2.1 Elitist Algorithms

Elitist algorithms in multi-objective genetic algorithms, similarly to their single-objective
counterparts, aim to maintain high-quality solutions across generations. Ensuring that
the best solutions are retained, they preserve a diverse and high-quality set of op-
tions. Two well-known elitist algorithms in this category are the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm 2
(SPEA2).

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

As mentioned in [39] The population is initialized and sorted into fronts based on non-
domination. The first front is fully non-dominant, with subsequent fronts dominated by
previous ones. Individuals are assigned fitness values based on their front, starting with
1 for the first front. A crowding distance parameter, measuring proximity to neighbors,
is also calculated. Larger crowding distances enhance population diversity. Parents are
chosen from the population through binary tournament selection, considering both rank
and crowding distance. An individual is selected if it has a lower rank or a higher crowd-
ing distance compared to the other [40].
The selected population generates offspring through crossover and mutation. The com-
bined population is then re-sorted by non-domination, and only the top N individuals,
based on rank and crowding distance, are retained. The figure 2.19 depicts the sequen-
tial phases of the NSGA-II algorithm, illustrating how it classifies and evolves solutions
to maintain a diverse and optimal Pareto front.

42

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Figure 2.19. Non-dominated Sorting Genetic Algorithm II

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

An external archive is used to preserve a selection of the top solutions, which are then
combined with the main population for future generations. This method evaluates fitness
based on both the dominance and density of solutions, helping to maintain a diverse set
of optimal solutions along the Pareto front. The figure 2.20 illustrates the step-by-step
process of SPEA2, highlighting its method for maintaining an archive of non-dominated
solutions and evolving the population.

43

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Figure 2.20. Strength Pareto Evolutionary Algorithm 2

2.5.2.2 Non-Elitist Algorithms

Non-elitist algorithms in multi-objective genetic algorithms behave similarly to their
single objective counterparts, but in a multi-objective context. They do not pass on
the most effective solutions to future generations. Instead, they concentrate on the fun-
damentals of genetic processes, with the goal of exploring a wide range of potential
solutions across multiple objectives. These algorithms can be more exploratory, pro-
viding a broader range of solutions while risking losing some high-quality ones. The
Generic Multi-Objective Genetic Algorithm serves as an example of this approach.

Generic MOGA Algorithm

Multi-Objective Genetic Algorithms (MOGAs) address optimization problems with mul-
tiple conflicting objectives by finding a set of non-dominated solutions known as a
Pareto front. These earlier methods prioritize basic optimization strategies over ad-
vanced features like elitism. MOGAs are useful in scenarios like engineering design,
resource management, and economic planning, helping decision-makers understand
trade-offs and make informed choices.

44

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.6 Application of Genetic Algorithms in scheduling

Scheduling courses and exams is not an easy task, and this is due to the different re-
quirements and constraints that should be considered, so both professors and students
can work in a favorite environments. This section provides an explanation about the
use of genetic algorithm in the context of scheduling courses and exams. Moreover
we offer the findings and analysis, showing how well our strategy worked to solve the
university’s scheduling problem.

2.6.1 Problem representation

Since in our work we are solving two problems of scheduling, scheduling department
courses and exams, we decided to divide the representation of the problem into two
separate sides so we can explain each side individually.

2.6.1.1 Representation of courses

In the course scheduling of the computer science department, we have five levels: three
bachelor’s levels (L1, L2, L3) and two master’s levels (M1, M2). Each level is divided
into sections, and each section contains groups. The data we used is selected from the
second semester of the last year.

The bachelor’s Levels (L1, L2, L3) is organized as follow:

• L1: Two sections, each one contains six groups.

• L2: One section contains eight groups.

• L3: One section contains seven groups.

• Since all the bachelor levels has the same option (SI), all the groups and sections
in the same level have the same subjects.

The masters Levels (M1, M2) is organized as follow:

• Both levels M1 and M2 has five different options (AI, SIOD, GLSD, RTIC, IVA).

45

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

• Each option has different subjects to schedule.

• Each option contains one section and one group in the section for each level.

Requirements for course scheduling

In order to ensure a functional and efficient schedule, we have identified several non
negotiable requirements that are essential for the scheduling process.

• Each course must be assigned a specific time slot and room.

• Professors must be available at the assigned times.

• No two courses can be scheduled in the same room at the same time.

• Each session must be assigned to a suitable room: practical sessions in a lab,
lectures in an amphitheater, and tutorial sessions in a normal classroom.

• Each professor must be scheduled for the subjects they are assigned to.

• Lectures must be assigned only to the professor responsible for the subject.

Besides the essential requirements, there are also some favorable requirements that ele-
vates the scheduling process.

• Professors should be scheduled for a maximum of three days per week to consol-
idate their sessions.

• Each professor should have a maximum of 9 hours of teaching per week, equiva-
lent to 6 sessions.

• The order of sessions for each subject should ideally be Lecture, Tutorial, and
then Lab work.

2.6.1.2 Genetic representation for courses

In this section, we delve into the fundamental components of our GA designed for op-
timizing course scheduling. The effectiveness of a GA largely hinges on how well the

46

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

problem domain is encoded through its genetic representation. Here, we detail the struc-
ture and functionality of genes, chromosomes, and populations, tailored specifically for
the complexities of course scheduling.

1. Gene

In our GA we initially represented the gene as one session for a group. How-
ever, because lectures are shared across sections, this strategy created problems
for lecture sessions. Consequently, lectures frequently violated the main require-
ments, since the algorithm interpreting them as multiple sessions scheduled in the
same room and by the same professor. To address this problem, we revised our
approach to represent the gene in two different ways. Both representations still re-
flect a single session from the schedule, but we introduced two types of sessions:
normal sessions and section session. Normal sessions and section sessions genes
are represented respectively in figures 2.21 and 2.22.

Figure 2.21. Normal session gene representation

Figure 2.22. Section session gene representation

This way, we schedule lecture sessions for the entire section instead of individual
groups, which prevents violations of the requirements. By doing so, we ensure
that lectures are not mistakenly interpreted as multiple sessions in the same room
or with the same professor, thereby maintaining compliance with the main con-
straints. Examples of normal sessions and section sessions are given respectively
by figures 2.23 and 2.24.

47

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Figure 2.23. Normal session example

Figure 2.24. Section session example

2. Chromosome

In our genetic algorithm, the chromosome represents the entire schedule for all
the groups and sections in the department. Each chromosome is a comprehensive
sequence of genes, where:

• Each gene corresponds to a scheduled session, either for an individual group
(normal session) or for an entire section (section session).

• The chromosome contains the entire set of sessions, ensuring that the schedul-
ing constraints and requirements are met for all courses within the depart-
ment.

By using this method, the genetic algorithm is able to evaluate and optimize the
schedule entirely, ensuring that all sessions are allocated to the proper time slots
and rooms, ensuring no conflicts. An example of a Chromosome is given by the
figure 2.25

48

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Figure 2.25. Example of chromosome representation

Notice that N represents the total number of sessions in the complete schedule,
encapsulating all the scheduled sessions for all groups and sections in the depart-
ment.

2.6.1.3 Representation of exams

Exam schedules at the computer science department cover four academic levels: three
bachelor’s levels (L1,L2 and L3) and one master’s level (M1 and M2). Each level is
split into sections, and those sections are further divided into groups,with the levels
having the same representation as in the courses. The second semester of the preceding
academic year is covered by the considered data. Notably, no exam is given at the M2
level within the specified time frame. As a result, the level has been eliminated from the
exam schedule.

Requirements for exams planning

Several fundamental, non-negotiable elements for the scheduling process have been es-
tablished in order to guarantee an efficient and successful exam schedule.

• A specific time slot and room must be assigned to each exam session.

• Proctors must be available during the assigned times.

• Exam sessions cannot be in the same room at the same time across all levels.

49

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

• Each session must be assigned to a suitable room for its level. For bachelor levels
exam sessions are scheduled in an amphitheater, while master’s level sessions take
place in ”TD” rooms, which are normal classrooms.

• It is essential to schedule each proctor for the subjects to whom they have been
assigned.

• the professor in charge is always listed as a proctor for every exam session.

• Each room must accommodate the number of groups and proctors that correspond
to its capacity.

• Proctors for an exam session should be qualified professors of the subject. If only
one qualified professor is available for a subject, additional proctors will be added
to fulfill the room’s required proctors number.

• The number of groups assigned to an exam session in a specific time and room
must match the room’s capacity.

In addition to the necessary requirements, there are a few optional requirements that
improve the scheduling processes.

• All proctors should have the same number of proctored sessions, except for those
associated with subjects having a coefficient of 1, who should only be assigned a
single exam session to proctor.

• Each group, across all sections and levels, have only one exam session per day.

2.6.1.4 Genetic representation for exams

Gene
The gene was depicted in our exam planning algorithm as one exam session for a group,
as shown in the figure 2.26.

Figure 2.26. Gene representation

50

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

An example is given in the figure 2.27

Figure 2.27. Example of gene representation

Chromosome

A chromosome represents the department’s exam planning for all groups and sections
across all levels, it is consisting of a sequence of genes where each gene corresponds to
a specific exam session (see figure 2.28).

Figure 2.28. Example of chromosome representation

N is the total number of exam sessions in the whole planning, which includes all the
sessions that are scheduled for each group and section within the department.

51

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

2.6.2 Scheduling with NSGA-II: From theory to practice

In scheduling, particularly when dealing with complex multi-objective problems, find-
ing an optimal solution that balances various conflicting objectives is a significant chal-
lenge. To solve this, we chose and used the Non-dominated Sorting Genetic approach
NSGA-II, a popular multi-objective optimization approach. This section explains why
we chose NSGA-II for our scheduling challenge and how we used it in our work, its
implementation in our specific context and the results and analyses derived from its
application.

2.6.2.1 Rationale for Choosing NSGA-II

The selection of NSGA-II for our scheduling problem was based on several factors.
While there are many advantages to use NSGA-II, the main factors that led us to choose
it are listed below:

• Multi-Objective Optimization: Our scheduling problem has multiple conflicting
objectives, such as minimizing conflicts and managing the different preferences
of the involved entities. NSGA-II excels at handling multi-objective optimization
problems, offering a wide range of solutions that balance these objectives.

• Pareto Front Diversity: NSGA-II maintains diversity in the Pareto front through
a crowding distance mechanism. This is critical for our scheduling problem be-
cause it ensures that we have a diverse set of solutions to accommodate varying
scheduling constraints and preferences.

• Non-Dominated Sorting: The NSGA-II’s non-dominated sorting approach ranks
solutions effectively based on their dominance levels. This allows us to clearly
identify and select the best schedules that balance competing objectives, resulting
in a high-quality solution set.

2.6.2.2 Application of NSGA-II for the scheduling system

In the process of implementing NSGA-II for our scheduling needs, we applied a con-
sistent methodology across both exam scheduling and course scheduling in several key
phases of the algorithm. The initialization, mutation, selection, and crossover processes

52

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

are identical in their execution for both applications, reflecting our commitment to a uni-
fied genetic algorithm framework that leverages robustness and efficiency. While these
phases are uniformly implemented, the distinctive nature of each scheduling problem
necessitates a tailored approach during the fitness evaluation phase.

Initialization:

The initial population in both algorithms exams scheduling and courses scheduling is
generated semi-randomly. It takes into account a number of constraints, including suit-
able classrooms, qualified professors, and session requirements. This careful initial-
ization ensures that the resulting schedules are somehow viable from the start, which
reduces the need for large modifications later in the algorithm. Given the problem’s
complexity, we determined that this approach was needed for our algorithm’s perfor-
mance. By starting with a population that already meets some fundamental constraints,
we significantly minimize the search space and convergence time, resulting in faster
and more efficient optimization. During the initialization process, both algorithms the
exams algorithm and the courses algorithm perform the following steps tailored to their
respective scheduling needs.

1. Courses scheduling initialization
The initialization in course scheduling is taillored to satisfy the needs of every sec-
tion and group. First, the algorithm determines which subjects should be sched-
uled according to the option and level of the scheduled sections and groups. Sub-
sequently, it assigns qualified professors to guarantee that every topic is taught by
a fitting professor for the scheduled session. It then selects time slots and rooms
that are suitable for each session type, scheduling the required number of lectures,
tutorials, and lab sessions.

2. Exams scheduling initialization
In this process, the algorithm assigns proctors, time slots to the exam sessions, and
determines subjects for each group in each section based on associated options to
ensure appropriate coverage. Rooms are allocated based on the number of groups
to reduce capacity issues—for example, amphitheater H accommodates 6 groups.
It also ensures that there is an exam session for every given subject for every

53

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

group in a section across all levels, efficiently controlling space and resources
across sections and levels.

Evaluation

In our algorithm, the evaluation of scheduling quality addresses multiple objectives in-
dependently, recognizing the distinct challenges and criteria specific to course and exam
scheduling. This necessitates a separate consideration for each scheduling type to en-
sure precision and effectiveness. The method employed to manage and compare these
objectives is based on the principle of Pareto dominance. According to this approach, a
solution ’P’ is said to dominate another solution ’Q’ if it is no worse than ’Q’ in all ob-
jectives and superior in at least one. This comparative analysis is guided by weights that
indicate the desired direction higher or lower for each objective’s values when assess-
ing dominance. This method ensures that our optimization process comprehensively
evaluates each potential solution’s overall performance across the varied and competing
objectives.

• Courses scheduling evaluation
In course scheduling, we emphasize the following objectives, each treated indepen-
dently to reflect the multi-dimensional nature of the optimization:

– Minimize conflicts: To ensure minimal conflicts between courses, enhancing the
feasibility of the schedule for students and professors.

– Maximize professor session consolidation Score: To consolidate teaching ses-
sions for professors for maximum of three days, thereby reducing their idle time
and improving operational efficiency.

– Maximize professor sessions number score: To distribute teaching loads evenly
across faculty members, promoting fairness and optimal resource utilization.

– Minimize subject order penalty: To sequence courses logically (e.g., lectures
before labs), facilitating a coherent learning experience.

Each objective is assigned a weight indicating its importance, which guides the opti-
mization process. The weights are defined as follows:

– wconflict: Weight for minimizing conflicts (-2).

54

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

– wprof consolidation: Weight for maximizing professor session consolidation (1).

– wprof sessions: Weight for maximizing professor sessions number (-1).

– worder: Weight for minimizing subject order penalty (-1).

Objective functions
In this section, we delve into the specific objective calculations for course scheduling.

1. Conflicts calculation (Pconflict)
The equation 2.1 represents the objective function of conflicts, and the goal of the
scheduling algorithm would be to minimize Pconflict.

Pconflict =
N

∑
i=1

Ci (2.1)

Where:

– Ci represents each individual conflict penalty component.

– N is the total number of conflict types (professor availability, room availabil-
ity, group schedules, section session overlaps, professor-subject unsuitability,
section-group overlaps).

The equations (2.2) to (2.7) represent the different conflicts that the function aims to
minimize.

Professor Availability Conflicts (Cprof):

Cprof = ∑
s∈S

∑
d∈D

∑
t∈T

δprof(s,d, t) (2.2)

Room Availability Conflicts (Croom):

Croom = ∑
s∈S

∑
d∈D

∑
t∈T

δroom(s,d, t) (2.3)

55

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Group Schedule Conflicts (Cgroup):

Cgroup = ∑
s∈S

∑
d∈D

∑
t∈T

δgroup(s,d, t) (2.4)

Section Session Overlaps (Csection):

Csection = ∑
s∈S

∑
d∈D

∑
t∈T

δsection(s,d, t) (2.5)

Professor-Subject Unsuitability (Pprof suit):

Cprof suit = ∑
s∈S

δprof suit(s) (2.6)

Section-Group Overlaps (Csection group):

Csection group = ∑
s∈S

∑
d∈D

∑
t∈T

δsection group(s,d, t) (2.7)

Where:

– s represents a session, which includes details about the scheduled activity.

– d represents a day, indicating when the session is scheduled.

– t represents a time slot, specifying the exact time when the session occurs.

– Each δ function is a condition-checking function that returns the count of spe-
cific conflicts or unsuitabilities detected for given sessions, days, and time slots.

2. Consolidation score (Sprof)

The equation 2.8 represents the objective function of consolidation (the penalties each
time a professor is scheduled to teach on more than three days in a week to enhance
consolidation efficiency).

Sprof = ∑
p∈P

consolidation score(p) (2.8)

56

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

Where:

– p represents a professor.

3. Session number score (Cprof sessions)

The equation 2.9 represents the objective function of required sessions number for
professors. Cprof sessions.

Cprof sessions = ∑
p∈P

session count penalty(p) (2.9)

Where:

– p represents a professor

– the score is a penalty applied inversely to the number of sessions conducted by
the professor.

4. Subject order penalty (Porder)

The equation 2.10 represents the objective function of the subject sessions order (the
penalties each time a subject session does not respect the preferred order of sessions
for a group. We aim to minimize Porder to ensure that the curriculum is delivered in a
logical sequence.

Porder = ∑
g∈G

∑
s∈S

subject order penalty(g,s) (2.10)

Where:

– g represents a group.

– d represents a day.

– s represents a session.

– aiming to enforce correct sequential order of sessions of the same subject within
a week(Lecture,Tutorial then Lab work).

57

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

• Exams scheduling evaluation
In exams scheduling, our objectives include:

– Minimize conflicts To ensure minimal conflicts between courses, enhancing the
feasibility of the schedule for students and professors.

– Maximizing that each group in each section and level has only one exam session
per day

– Minimizing the proctoring distribution variance

– wconflicts: Weight for minimizing conflicts (-2).

– wsingle exam: Weight for maximizing the possibility that each group has only one
exam per day across all sections and levels (1).

– wproctored sessions: Weight for minimization of proctoring distribution variance (-
1).

Objective functions Here, we delve into the specific objective calculations for exams
scheduling.

1. Conflicts calculations: The equation 2.11 represents the objective function of
conflicts, aiming to minimize Pconflict.

Pconflicts =
N

∑
i=1

Ci (2.11)

Where:

– Minimize Pconflict is the total conflict penalty.

– Ci represents each individual’s conflict .

– N is the total number of conflict types (professor availability, room availabil-
ity,time availability, sessions overlaps).

2. Scheduling one exam session per day The equation 2.12 represents the objective
function of scheduling one exam session per day (the penalties each time more than

58

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

one exam is scheduled in a day for a section, aiming to minimize)Psingle exam.

Psingle exam = ∑
g∈G

one exam per day(g) (2.12)

Where:

– G is the set of groups.

– group sessions per day(g) is the score for group g having limited exam sessions
per day .

3. Proctoring distribution variance : The equation 2.13 represents the objective
function of proctoring distribution (variance).

Jproctored sessions =
P

∑
i=1

(xi−µ)2 (2.13)

where:

– J represents the objective function to be minimized.

– xi denotes the actual number of proctoring sessions assigned to the i-th professor.

– µ is the ideal number of sessions per professor, calculated as total number of subjects
total number of professors .

– P is the total number of professors.

Selection

In our algorithm, we went through two stages in the selection process: parent selection
and survival selection. These stages helps maintain a balance between preserving high-
quality solutions and introducing new genetic material for exploration.

1. Parents selection :

• Parents are selected from the population using the NSGA-II selection method,
which is predefined in the DEAP library.Each individual in the population
is assigned a crowding distance value since selection is based on rank and

59

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

crowding distance. Crowding distance is calculated within each front, mak-
ing comparisons between individuals in different fronts less meaningful.
The method for calculating crowding distance is as follows:
For each front Fi with n individuals:

– Initialize the crowding distance to zero for all individuals:

Fi(d j) = 0 for all j

– For each objective function m:

* Sort the individuals in front Fi based on objective m:

I = sort(Fi,m)

* Assign infinite distance to the boundary individuals:

I(d1) = ∞ and I(dn) = ∞

* For k = 2 to n−1:

· Update the crowding distance:

I(dk) = I(dk)+
I(k+1).m− I(k−1).m

f m
max− f m

min

where I(k).m is the value of the m-th objective function of the k-th
individual in I.

The crowding distance measures the Euclidean distance between individu-
als within a front based on their objectives in the multi-dimensional space.
Boundary individuals always receive an infinite distance, ensuring their se-
lection.

2. Survivor selection :

• The current population (parents) and the offspring are combined, and the
best individuals are selected to form the next generation’s population. This
ensures that the best traits are carried over while introducing new genetic

60

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

material.

• Elitism: The Hall of Fame (HoF) mechanism ensures that the best individ-
ual from the current population is preserved and carried over to the next
generation to ensure that the highest quality solution is not lost.

Crossover

The crossover process is implemented using a one-point crossover mechanism. This
mechanism selects a random crossover point for each pair of parent individuals and ex-
changes their genetic material at this point to produce two new offspring. This approach
ensures that new offspring inherit characteristics from both parents, promoting genetic
diversity and exploring new parts of the solution space.

This function works as follows:

• It takes two parent individuals, ‘ind1‘ and ‘ind2‘, as inputs.

• It checks if the length of either individual is less than or equal to 1, in which case
no crossover is performed.

• The maximum crossover index is determined based on the shorter of the two
parents to ensure valid crossover points.

• A random crossover index is selected within the valid range.

• The genetic material of the parents is swapped up to the crossover point to create
two new offspring.

Mutation

The mutation process is implemented using bit flip mutation. This helps in exploring
new solutions and prevents the algorithm from getting stuck in local optima. This func-
tion works as follows:

• It takes an individual as input.

• It iterates through each session in the individual.

61

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

• A mutation type is selected from ”time slot”, ”room”, or ”professor” for courses
and ”time slot”, ”room” for exams .

• Depending on the mutation type, the session’s day and time, room, or professor is
altered.

Solution extraction

The final step in our genetic algorithm is the extraction of the best solution after the
algorithm has completed its run. This involves selecting the best individual from the
population, which represents the optimal schedule based on the defined objectives and
constraints. After the completion of the specified number of generations, the best solu-
tion is extracted from the Pareto front. The solutions are ordered based on the conflict
penalty and crowding distance:

• Conflict Penalty: The solutions are first ordered based on the conflict penalty.
The solution with the least conflict penalty is considered the best.

• Crowding Distance: Among the solutions with the same conflict penalty, the
crowding distance is used to further distinguish and select the best solution. The
solution with the higher crowding distance is preferred as it promotes diversity.

This function works as follows:

• It finds the minimum conflict penalty among the solutions in the front.

• It selects all solutions that have this minimum conflict penalty.

• It calculates the crowding distance for these selected solutions.

• It selects the solution with the maximum crowding distance as the best solution.

2.7 Conclusion

In this chapter, we provided a comprehensive overview of GAs, explaining their basic
concepts, types, and primary phases. Explored key elements like populations, chro-
mosomes, and genes and discussed how they are coordinated through phases like ini-

62

Chapter 2 Genetic Algorithm : Academic Scheduling Optimization

tialization, selection, crossover, mutation, and evaluation. We showcased the practical
application of these algorithms in our academic scheduling problem using NSGA-II.

63

Chapter 3
Analysis and Conception

Chapter 3 Analysis and conception

3.1 Introduction

In this chapter, we explore the main features of our multi-platform scheduling system
created specifically for the computer science department. The primary objective is to
make the scheduling of courses, exams, and the assignments of graduation project fully
automatic. Both web and mobile platforms are supported by our platform. Thus, we
go over the major goals, functions, and features of the system. Additionally, we will
provide UML diagrams that demonstrates user-system interactions and highlights the
ways in which the application satisfies the demands of administrators, professors and
students.

3.2 Unified Modeling Language definition

Unified Modeling Language (UML) is a standardized modeling language, which of-
fers a collection of graphical notation tools for building visual representation of object-
oriented software system. UML helps in the specification, construction, documentation
and visualisation of a software system’s artifacts which enable developers and stake-
holders understand and design complex systems. Due to these characteristics, we chose
UML to help in modeling, explaining and providing a better visualization of our system.
UML contains over then 14 types which divide into two categories: 7 types of diagrams
represent structural information, and seven more types represent general UML diagrams
for behavioral modeling. In the next context, we will explain the UML diagrams that
we used in our project modeling.

3.2.1 Use case diagram

The functional needs of a system can be represented by a use case diagram, which is
a type of diagram described by the Unified Modeling Language (UML). According to
the definition provided by [41], use case diagram gives a high-level overview of the sys-
tem. It is primarily used to model a system’s behavior as observed by actors or external
individuals and to capture its dynamic characteristics. In our scenario, the actors are stu-
dents, professors and administrators, each one of them interact with different features
offered by the system and represent the roles that users play inside it.

65

Chapter 3 Analysis and conception

Use cases illustrate the features of the system by offering particular services to the ac-
tors. On the other hand, the system boundary defines its extent and sets it apart from the
surrounding environment.
Use case diagrams include a variety of relationships between the actors and use cases,
such as generalization which indicate inheritance between actors or use cases from spe-
cific roles or functions, as well as associations that are represented by lines that connect
actors and use cases for illustrate the interaction between the two of them. In addition, to
include and extend relationships, in the include side, a use case’s behavior is integrated
into another, and in the extend a use case is expanded for optional or exceptional cases.

3.2.2 Class Diagram

As defined in [42], a class diagram in software engineering is a form of static structure
diagrams, which illustrates the classes, attributes, operations, and interactions between
objects in a system. Class diagrams rely on relationships between classes since they
demonstrate how different classes relate to one another. These relationships include
composition , aggregation, association, inheritance and dependencies. This diagram
helps with comprehension and communications by providing a clear picture of the ar-
chitecture of the system, which is essential for scalability, maintenance and documenta-
tion.

3.2.3 Sequence Diagram

UML Sequence Diagrams are interaction diagrams that demonstrate the steps involved
in implementing an software, as defined by [43]. They represent how items interact
with one another as they function together. Sequence diagrams are time-focused and
visually depict the sequence of the interaction by displaying the time, which messages
are sent, and when to display the interaction’s sequence visually on the vertical axis of
the diagram. There are several advantages for using sequence diagrams, one of them
is making the flow control in the system easier to understand by providing a clear and
thorough perspective of the sequence in which objects interact with each other. They
also improve communication among stakeholders, including developers, designers and
non-technical users, by offering an illustration of the system’s behavior over time. For

66

Chapter 3 Analysis and conception

the purpose of maintenance and upcoming development, this type of diagrams provides
full documentation of how things work on the entire process.

3.3 System design

In this section, we provide an explanation of our multiplatform’s conceptual framework
while highlighting the key actors in the system, which are administrators, professors and
students. Each individual plays an essential part in the efficiency of the system. Along
with providing diagrams that demonstrate the features and interactions that support each
actor accomplish the overall objectives of the system.

3.3.1 Professors part

Within the computer science department, professor is an academic staff member who is
responsible of teaching courses and doing his own research. In our case, he is able to
more effectively manage academic tasks. For more details, we will explore the features
and interaction that may happened between our actor which is the professor and the
multi-platform.

3.3.1.1 Professors functionalities

Professors can use the same features on both web and mobile platforms. The main
features are:

- The ability to check his own schedule.

- Consult schedules of all the groups.

- Schedule a replacement, test or consultation session, by filling all the needed in-
formation to apply the request. The concerned group will be notified accordingly.

- Receives notifications or emails whenever an update happened to his schedule.

3.3.1.2 Professors use case diagram

The figure 3.1 represents the use case diagram for the professors role.

67

Chapter 3 Analysis and conception

1. The professor should access to his personal account using the login page, which
provide him the features and tasks that he need.

2. Professors can check out their schedules through this feature, which makes it
simpler for them to efficiently manage their time and duties.

3. During exams season, the professors can check their proctoring schedule to know
when and where they have session to supervise.

4. The professor can see the schedule of a specific groups, which gives him an
overview at any time.

5. This feature will assist the professor in submitting requests of any type that cor-
respond to the cases that will be discussed below.

(a) This feature can be used whenever the professor want to add a session (Lec-
ture, Lab work, Tutorial) to a specific group(s) for any reason such as making
up for a missed class or in the case of a course delay.

(b) The professor can use this feature to schedule a test session (Lecture, Tuto-
rial).

(c) To schedule a session to consult the applied works or project of the practical
sessions, This is the ideal use case for this situation.

6. Professors use this feature to successfully exit and log out from their accounts.

68

Chapter 3 Analysis and conception

Figure 3.1. Professor use case diagram

3.3.2 Administrator role

An administrator, who we refer to on the platform as ”admin”, is a professor that is
in charge to handle administrative tasks and operations such as the head of department
and his assistant. In each interface, whether web or mobile, gives the admin access to
different features or tasks. Since our system is a multi platform, in the following context
we will describe the features that this actor can use on each user-screen.

3.3.2.1 Administrator functionalities

Administrators maintain all of the features of academics since they are professors with
extra administrative responsibilities. However, their web interface has special capabil-
ities designed and implemented for their duties. Among these functionalities, we can
mention:

- Admin can manage professors and students accounts by adding, deleting or edit-
ing.

69

Chapter 3 Analysis and conception

- Manipulate the database of the department by examine, update, edit or delete
information from the databases (Levels, students, subject, etc).

- Generates the groups, professors schedule of the current academic semester.

- Has the ability to generate the groups or professors exam schedule.

- Able to launch the automatic processing of the allocation of the subjects to stu-
dents based on their individual choices and rank, and then make them available to
those concerned.

- The administrator has the ability to consult each group schedule and then he can
make updates on it by adding , deleting and editing sessions.

3.3.2.2 Administrator use case diagram

As we knew before that the administrator is in fact a professor but with more special
tasks and since we detailed the professors features in the previews use case, we are going
to discuss the special features of the admin. The figure 3.2 illustrates the administrator
use case diagram. In follows, the main components of the diagram.

1. The admin can generate multiple type of schedule automatically, which include
semester schedule and exam schedule for both groups and professors. However,
he can manually modify the generated schedule if he desired.

(a) The administrator has the ability to generate the current semester schedule
for the groups and all the professors. Thus, the end of this process all the
concerned parts will be notified.

(b) In each evaluation season, this feature can be used by the admin to generate
the schedules of the exams. A notification will be send to inform all the
groups and professors.

2. Admin can modify the schedules by adding, editing or deleting sessions.

3. The administrator has the hand to make changes or updates to the department
information such as updates the users list, adding the new students or professors,
deleting the canceled subjects, etc.

70

Chapter 3 Analysis and conception

4. It is about assigning the graduation project for the bachelors and masters levels.
This features can only be launched by the administrator during the graduation pe-
riod. All the involved students will be notified of the results after the submission.

5. This feature used to inform all the concerned staff whenever any changes hap-
pened to the schedule.

Figure 3.2. Administrator use case diagram

71

Chapter 3 Analysis and conception

3.3.3 Student role

One of the primary users of this system are the students, who take benefits of it to
enhance their academic journey. Subsequent, we will highlight their special features.

3.3.3.1 Student functionalities

Same as the professors, the student features can be used on both platform web and
mobile which can be presented as:

- Consult their schedules.

- Receive notification if the schedule get updated.

- Get notified if any session is added to the schedule (replacement, test, consultation
session).

- Consult exam planning.

- If the student is in the bachelors or masters level, he got notified when the desired
project is assigned.

3.3.3.2 Student use case diagram

The figure 3.3 represents the use case diagram of the student role. Here follow the main
components of the diagram.

1. Like the professors, the students can use this feature to consult their schedules,
whether it’s for the semester or for exams.

2. if any change accrued in the schedule such as adding replacement session, test
session, etc, the student is notified through this feature.

72

Chapter 3 Analysis and conception

Figure 3.3. Student use case diagram

3.3.4 Detailed specification

In-depth descriptions of some significant administrative features are presented in this
section. Class diagram will be used to show the system’s static structure, and sequence
diagram will be implemented to represent the sequential interactions between different
components during various operations. A solid understanding of the architecture and
operation of the system will be attainable due to these diagrams.

3.3.4.1 Class diagrams

A class diagram is essential since it connects use cases, illustrations and software design
diagrams (interaction diagrams and class diagrams). Some of the main features will be
explained in this section.
Class diagram for semester schedule generator
Before starting the generation process, we should have a better insight and understand-

73

Chapter 3 Analysis and conception

ing of the structure and logic behind this generation process. The figure 3.4 represent
the class diagram of the courses scheduling generator for the semester. This process is
built by eight key classes, each class has an important role in managing the generation
process of several schedule.

- The ”ScheduleGenerator” class is considered as the primary widget in charge to
serve the schedules generator interface. The inbuilt state for this class relies on its
management state class which is ”Schedule-GeneratorState”.

- Using the TabController, the ”Schedule-GeneratorState” class controls the tab
navigation and keep managing the content view list for the exam and general
scheduling. The ”iniState” method is used to initialize the interface state. This
class also contains functions like ”groupschedule-generation”, ”examschedule-

generation” and ”menuGenerator”. For more clarity, the ”menuGenerator” is
used to display an interface-user list of the generation options such as general
scheduling (managed by ”group-schedule-generation” method) and exam schedul-
ing (managed by ”exam-schedule-generation” method).

- Two of the main tab classes are ”GroupSchedule-Tab” and ”Profschedule-Tab”,
which are controlled by the ”groupschedule-generation” method from the ”Sched-

uleGeneratorState” class. Each one of these tab classes is responsible to create
a user interface for displaying the resulted schedules for the groups and profes-
sors. Both ”ProfscheduleTabState” and ”GroupscheduleTabState” are inherited
respectively to these tabs classes. These state classes are responsible to execute
the scheduling algorithm and get the returned schedules, all of that is handled by
the methods ”runAlgorithm” and ”getTimetable”.

- Supporting to the scheduling process, The ”FlaskSchedule” class, is originally a
web application framework. This class represents the backend Flask application
that runs the scheduling algorithm executed by the ”ScheduleGeneration”, return-
ing a mapped list to the ”getTimetable” method. The ”ScheduleGeneration” is a
class that provides the methods responsible for the scheduling algorithm and other
methods to handle the mapping of the schedule to be returned when the program
is executed.

74

Chapter 3 Analysis and conception

- Once the resulted data is obtained, the method ”getTimeTable” handle the data by
decoding the response from the flask server to a map, then convert each map in
the JSON map to a”TimeTableEntry” model.

- The ”parseAndSchedule method intervenes by receiving this map as an input pa-
rameter, this map contain a detailed list of type ”TimeTableEntry” that consist
of groupid, professorid, roomid, subjectid, day and starttime, each item in the
”TimeTableEntry” list represents one session. After the necessary detailed data
are extracted, a session detailed map is created and then this map is used by the
schedules map to organize the sessions.

Figure 3.4. Class Diagram of schedule generator

75

Chapter 3 Analysis and conception

Class diagram for exams scheduling
As we have provided a detailed explanation of the general schedule class diagram, we
will do the same to the exam scheduling diagram, which is represented in the figure 3.5.
This generator relies on the same key classes as the general scheduling process, with
some differences in certain classes.

Figure 3.5. Class Diagram for exam scheduling

- With a spotlight on generating the exams schedule automatically, the diagram
presents the ”ExamGroupScheduletab” and ”ExamProfScheduletab” classes.

76

Chapter 3 Analysis and conception

These classes are responsible for creating a user interface to display the result-
ing schedules for professors and students, associated from the ”ScheduleGener-

atorState”. ”ExamGroupScheduletabState” and ”ExamProfScheduletabState” are
in charge of managing the state for these tabs.

- The ”ExamScheduleGeneration” class is used to run the scheduling algorithm,
and this process will be executed only by the ”getTimetable” method from the
”ExamGroupScheduletabState” as part of the ” FlaskExam” class’s backend pro-
cessing.

- After getting the data from the flask server, the ”getTimeTable” handle the re-
turned data by decoding it to a map then converted it to a ”TimeTableEntryExam”,
then the method ”parseAndSchedule” step in to handle the creation of the sched-
ule map by extracting the detailed session data that represents by the groupid,
sectionid, proctorsid, roomid, subjectid, day, starttime and finally the date of each
exam.

Class diagram for graduation project assignment

The figure 3.6 illustrates the class diagram of the graduation project assignment.

- The main widget responsible for providing functionality of the assignment result
interface has been identified as ”GPAssignement” class.

- The main classes for creating a user interface for displaying the resulted assign-
ment project are ”Bachelor” and ”Master” classes. Both ”BachelorState” and
”MasterState” are responsible to manage the state of these tabs and these two
states are inherited from them.

- The method ”filechooserwidget” is responsible of importing the inputted excel file
from the interface by calling the function ”pickfile” to display the file picker.When
the file is imported, the method ”runAlgorith” invoked to start the algorithm by
sending the imported file name. The flask server receive the name of the file
leading to transfer it to the class of the assignment process. The ”processcsvfile”
function uses the name of the transferred file as a parameter to calculate the gen-
eral mark of each student then to the each group by the functions ”calculmoyG”

77

Chapter 3 Analysis and conception

and ”calculmoyGgroup”. After affected the project to each group the ”insertRe-

sultedData” step in to insert the detailed data such as groupid, students name,
their choices and the affected choice.

- After executing the algorithm from the classes ”GABachelorsAssignment” and
”GAMastersAssignment” for both masters and bachelors, the method ”fetchdata”
is responsible for fetching the result from the database to display it in the inter-
faces.

Figure 3.6. Class Diagram for graduation project assignment.

78

Chapter 3 Analysis and conception

3.3.4.2 Sequence diagram

For a greater understanding of the system, the sequence diagram will be the appropriated
tool to use. We shall delve deeply in the process explanation in the following context.

Sequence diagram for schedule generation process
The sequence diagram presented in the figure 3.7 illustrates the generation process for
both exams and semester schedule.

Figure 3.7. Sequence diagram for scheduling generation

Initially, the admin start this process by opening the groups schedule generator in-
terface and fill the necessary information such as selecting the current semester and
entering the current year. The groups schedule generator send a request to backend
flask server when the start button is pressed. In order to handle this request, this server
runs the course generator algorithm. After the scheduling process is finished, the algo-
rithm class return the created schedule map to the flask server, which transmits it to the
groups schedule generator interface leading to display the new schedules of both groups
and professors to admin at the areas that have been set up for that. Once the schedule
has been approved and verified by the administrator, he can press the confirm button

79

Chapter 3 Analysis and conception

which allow the notification service to notify the involved users. All of these steps are
the same for the exam schedule generator.
Sequence diagram for the graduation project assignment process

Figure 3.8. Graduation project assignment process sequence diagram

As illustrated in the figure 3.8, the administrator open the ”GA assignment” interface
which reveal to him a input field to import the excel file that contain the necessary data
such as groupid, name students, students yearly mark and their desired project choices.
After the user imported the excel file, he can press the start button, which leads to
send a request to the flask server that runs in the backend application. The graduation
project assignment initialize by the ”GA assignment generation”, when the process is
accomplished the resulted data will be inserted in the database. In order to display the
assignment result, the ”GA assignment” class will fetch the data from the database. The
admin press the confirm button whenever he completed the verification to the resulted
assignment leading to send notification to the involved students.

80

Chapter 3 Analysis and conception

3.4 Conclusion

In this chapter, we have given an in-depth analysis and conception of the scheduling
system, applying a variety of UML diagrams and detailed specifications to highlight
its behavioral and structural elements. As a way to make sure the system satisfies the
demands of the administrators, students and professors, these diagrams captured the
user interactions, system architecture, and dynamic processes in detail. In the upcoming
chapter, we will go over the requirements and give a summary of the platform.

81

Chapter 4
Implementation and deployment

Chapter 4 Implementation and deployment

4.1 Introduction

The main focus of this chapter is to provide the implementation details and results of the
proposed scheduling system. We proceed by describing the system requirement, which
include the used software, the key components of the application, the main features and
the user-friendly interfaces of our platform. We also illustrate the technical details of
the used genetic algorithm for scheduling courses and exams. Finally, we conclude the
chapter by highlighting the forthcoming updates and planned additions, ensuring the
system’s continuous development to satisfy needs in the future.

4.2 Development tools and technologies

Both front-end and back-end applications are required for our scheduling system. The
operating systems, databases, frameworks, and libraries needed for the front-end and
back-end are all included in this section. Efficient and dependable system functioning
is ensured by following the recommendations.

4.2.1 Back-end tools

In this section, The important back-end tools are described, along with the critical soft-
ware elements required for the best possible system performance.

• Python Language: As defined in [44], python is a popular interpreted, object-
oriented, high-level programming language that is easy to learn and understand.
It is suitable for a range of applications, from web development and data analysis
to machine learning and automation.

• Numerical Python (NumPy): Large multi-dimensional arrays and matrices are
supported by NumPy, it is a core package scientific computing in Python, and
offers a set of mathematical operations for large arrays. It provides the foundation
for numerous other Python scientific and data analysis libraries and is commonly
utilized for numerical and array-oriented computing workloads.

• Distributed Evolutionary Algorithms in Python (DEAP): The DEAP library
[45] is a framework designed for rapid prototyping and testing of evolutionary

83

Chapter 4 Implementation and deployment

algorithms. It emphasizes making algorithms explicit and data structures trans-
parent, facilitating ease of use and integration with parallelization mechanisms
such as multiprocessing.

• Matplotlib: Referred to [46], it is a comprehensive library for creating static, an-
imated and interactive visualizations in Python. It is an adaptable tool for data
visualization in scientific and analytical applications since it offers an object-
oriented API for embedding plots into applications and supports a variety of plot
and chart types.

• Math: The Math module in Python comprises various mathematical functions
and constants. Designed to facilitate a wide range of mathematical tasks. As
a built-in module, it provides essential functions for basic arithmetic operations
such as addition (+), subtraction (−), multiplication (∗), and division (/), along-
side advanced operations including trigonometric, logarithmic, and exponential
functions.

• MySQL Connector: It is a database connector, which means that it uses a query
to retrieve data from a database. By selecting Database from the toolbar at the
top of the window, you may navigate to the connection page for this and other
database connectors in the Data Center.

• Random: The Python random module [47] generates pseudo-random numbers,
meaning they are not truly random. This module can be used for various random
actions, such as generating random numbers and selecting random values from a
list or string.

• Pandas: The Pandas library in Python according to [48], is a powerful, open-
source tool designed for data manipulation and analysis. It is built on top of
the NumPy package, providing fast and flexible data structures such as Series
(1-dimensional) and Data-Frame (2-dimensional) that are designed to work with
structured data.

• Comma-separated values: CSV files can be read and written in Python using
an integrated module called this library. It is a useful tool for data modification
and interchange since it makes managing csv files easier by providing classes and

84

Chapter 4 Implementation and deployment

methods to read data into dictionaries or lists and write data from dictionaries or
lists into csv format.

• Flask: Flask [49], is a web framework for Python, designed to facilitate the devel-
opment of web applications with ease. As a micro-framework, it features a small,
easy-to-extend core and does not include an Object Relational Manager (ORM)
or similar components. Despite its lightweight nature, Flask offers many useful
features, such as URL routing and a template engine. It operates as a WSGI web
application framework, making it a powerful tool for building web applications.

• Cross Origin Resource Sharing (CORS): CORS [50] is a security feature that
leverages HTTP headers to enable servers to specify which external origins (do-
mains, schemes, or ports) are permitted to access their resources. This mechanism
is essential for bypassing the same origin policy restrictions, which typically pre-
vent web applications from making requests to a different origin than the one that
served the web page. CORS allows for more flexible and secure interactions be-
tween web pages and different origins, facilitating safer cross origin requests and
data sharing.

4.2.2 Front-end tools

The front-end tools listed below outline the essential software elements required for a
productive and responsive user experience.

• Flutter: It is developed by google, which is an open-source UI software devel-
opment kit. It used to create desktop, web and cross-platform applications from a
single codebase , including IOS, Android and Windows.

• Dart: by google created Dart, it is a client-optimized programming language,
used to help the developers creating quick apps for any platform. With the Flutter
framework, Dart is frequently used to create cross-platform mobile applications.

• Hypertext Transfer Protocol (HTTP): It is a library which enables an effort to
communicate with web services via HTTP requests in flutter. HTTP gives devel-
opers the ability to transmit and retrieve data over the internet using an intuitive

85

Chapter 4 Implementation and deployment

API for GET, POST, PUT, DELETE, and others. For Flutter apps to integrate
network connection, this package is necessary.

• Ngrok: As mentioned in [51], Ngrok lets you make a local server public on
the internet. It allows external access to your local development environment
by establishing a secure tunnel to your localhost. Web developers that need to
test webhooks, APIs, or show off their local development work to others without
deploying it to a distant server may find this to be especially helpful.

• File Picker: It is a package that enables the users to select files from the devices
storage. As defined in [52], it is a vital resource for applications that need file
input capabilities since it offers a straightforward and adaptable API for selecting
one or multiple files.

• Cloud functions: This library allows flutter apps to interact with Google Cloud
Functions. It enables to trigger server-side code written in Google’s cloud envi-
ronment directly from the flutter app, without needing to set up a server.

• Cloud fire store: This library provides access to Google Cloud Fire store, a scal-
able database for mobile, web, and server development. It allows to store and
synchronize data across multiple clients and backend services in real-time.

• XAMMP: It is an open-source cross platform web server solution stack package
developed by Apache Friends. It provides an easy-to-install and use environment
for web development, combining various components that are essential for build-
ing and running web applications. The acronym XAMPP stands for: X: Cross-
platform (works on multiple operating systems, such as Windows, macOS, and
Linux), A: Apache HTTP Server, M: MariaDB (formerly MySQL), P: PHP, P:
Perl

• Hypertext Pre-processor (PHP): as defined in [53], PHP is a server-side script-
ing language designed for web development but also used as a general-purpose
programming language.

86

Chapter 4 Implementation and deployment

4.3 System Architecture

This section describes the architecture of our system. It employs a client/server model
using Flutter technology for creating web and mobile interface. The architecture is
detailed in the figure 4.1.

Figure 4.1. Global architecture of the proposed system

Here, we present the architecture shown in figure 4.1 within our system, highlighting
the interactions among client applications, servers, and database structures.

1. Client: A request is sent by the client to the server. After receiving the request
from the controller, the server forwards the data to the model for processing. The
controller replies to the client after processing. This exchange of information takes
place via the HTTP protocol. The client is represented by:

- Flutter app (Mobile): The mobile application is developed in Dart using
VS code. Data exchange between the application and the server is in the
lightweight JSON format.

- Flutter app (Web): The web application is developed using Dart.

87

Chapter 4 Implementation and deployment

2. Servers: The servers used in our application are XAMPP and Flask.

3. Notifications handler: We used Firebase Cloud Messaging (FCM) to send notifica-
tions from the server to the Android client.

4. Database: The database (illustrated in Figure 4.2) was created using phpMyAdmin.
We propose an architecture with 20 tables which satisfies the requirements of this
work.

Figure 4.2. Database tables

The figures 4.3, 4.4 and 4.5 show some tables as examples.

• Users accounts (userList):For controlling user access within the application, the
”userList” table is essential. Fields like iduser, username, and password are among
them. Users are categorized by role, with professors, students and admins being
distinguished by the type field. If the user is a professor or admin, their idprof links
to their professor record, if the user is a student, their idstudent links to their student
record. In order to facilitate efficient user communication, the fcmtoken field is also
utilized to send notifications to the user’s device. In general, controlling user access
and interactions inside the program is largely handled by the userList table.

88

Chapter 4 Implementation and deployment

Figure 4.3. Users accounts table

• Schedule (groupsschedules): An essential part of the application for controlling
professor and group schedules is the ”groupsschedules” table. It has a number of
important fields with comprehensive details about every scheduled session. Each
schedule entry is uniquely identified by the id field, and the idgrp field provides a link
to the particular group for which the schedule is meant. The room where the session
will take place is indicated by the idroom element, while the idsub field relates to
the topic related to the session. The professor in charge of leading the session is also
linked to the idprof field. The starttime field shows the exact time of the session,
while the day field denotes the day of the week it is planned to take place. The
session type, such as lecture, tutorial, or lab work, is defined in the sessiontype field.
Additionally, the role field in the session is used only in situations where temporary
sessions, tests, and consultations are added, specifying the scheduled date.

89

Chapter 4 Implementation and deployment

Figure 4.4. Schedule table.

• Bachelors assignments: Students group assignments are managed via the affected-

gp2 table according to their desires. It has a number of important fields that are
essential to this process. Groups can be balanced according to academic performance
by using the moyG-group field, which shows the group’s average grade, and the idgrp

field, which acts as a unique identification for each group. The names of the students
assigned to each group are stored in the variables stu-1, stu-2, stu-3, and stu-4, with
a maximum of four students per group. The group preferences for the assignment
are represented by the fields choice1 through choice5, where choice 1 denotes their
preferred choice and option 5 their least preferred one. The group affected choice,
determined by a number of circumstances, is indicated in the affected-choice field.

90

Chapter 4 Implementation and deployment

Figure 4.5. Bachelors assignments table

4.4 Implementation: Features and functionalities

This section provides a detailed overview of the features and functionalities imple-
mented in our application. It is divided into two parts: Web and Mobile. Each subsec-
tion highlights the various interfaces available to different users, including professors,
students and administrators.

4.4.1 Web Application

The web application serves as the primary platform for managing and accessing the
various features of our system. It includes interfaces for professors, students, and ad-
ministrators, each tailored to their specific needs and roles. Here following the key
interfaces available in the web application.

1. Login: Every user sees the interface shown in figure 4.6 after establishing a connec-
tion to the web application. He connects to his account successfully and displays the
home page if the username and password are accurate. If not, it denies the connection
and displays an error message, as shown in figure 4.7.

91

Chapter 4 Implementation and deployment

Figure 4.6. Web login page

Figure 4.7. Web login page error

2. Home page: After a successful login, each user’s home page whether they are a
student, professor or administrator will show up with features specific to their roles.
To improve the applications usability and functionality, each menu item is made to
provide instant access to the needed areas. Students, professors and administrators

92

Chapter 4 Implementation and deployment

have different needs, and the navigation system is designed to meet those needs.
This makes it possible for all users to quickly locate and make use of the functions
that are required for their particular responsibilities. figures 4.8, 4.9, 4.10 and 4.12
present the unique user interfaces for each user group, highlighting the personalized
navigation features offered by the application.

Figure 4.8. Web admin home page

Figure 4.9. Web admin menu home page

93

Chapter 4 Implementation and deployment

Figure 4.10. Web professor home page

Figure 4.11. Web student home page

3. Professor Interfaces
The professors can consult their daily and proctoring schedules, manage group sched-
ules, and apply for temporary sessions such as tests, replacements, and consultations.
Additionally, professors receive notifications about any updates or changes to their
schedules, ensuring they stay informed and organized.

• Calendar: This interface displays the daily schedule of a professor, see figure
4.12.

94

Chapter 4 Implementation and deployment

Figure 4.12. Web professor calendar

• Proctoring Schedule: Similar to the calendar, this interface also displays the pro-
fessors proctoring schedule which is linked to specific dates. The display adjust
depending on the state of the exam schedule, if the exam schedule is not generated
yet, it will be shown in the figure 4.13.

Figure 4.13. Professor proctoring schedule waiting for generation

When the schedule is generated, the figure 4.14 illustrates how the interface will
appear.

95

Chapter 4 Implementation and deployment

Figure 4.14. Professor proctoring schedule

• Groups schedule: this interface displays the schedule of all the groups in the
department by specifying the level, option and group name. Initially, the interface
will be displayed as the figure 4.15 where the professor can select the level, option
and group.

Figure 4.15. Search groups schedule

As displayed in figure 4.16, the interface refreshes to provide a full view of the
schedules for the selected group once these selections are made.

96

Chapter 4 Implementation and deployment

Figure 4.16. Display groups schedule

• Apply request: Here, a menu will appear as shown in figure 4.17, allowing the
professor to manage scheduling temporary sessions (tests, replacements, and con-
sultations) by navigating in the menu items. Specifying the session type (lecture,
tutorial, lab work), level, option, group(s), day, date, time, room, and finally sub-
ject, With each selection, the available choices are filtered based on the previously
selected options. After filling out all the necessary information, the professor con-
firms the request. If the request has been accepted, a confirmation message will
show up.

Figure 4.17. Apply request

97

Chapter 4 Implementation and deployment

Test: If the professor want to schedule a test session, this is the appropriate inter-
face to use. The initial screen shown in figure 4.18 presents empty fields for se-
lecting the session details. The level, option and subject field will be dynamically
filtered based on the professor’s teaching schedule. After choosing the group(s),
the desired day and the date, the time field will also be dynamically filtered based
on the free time that the session can be scheduled on. The same process is appli-
cable to the room. First, it will be filtered based on the session type, then for the
available rooms at the selected time.

Figure 4.18. Schedule a test

Once the professor fill out this fields, exactly as shown in figure 4.19, then by
clicking on the confirm button the session will be add to the concerned group(s)
schedule, which initialize automatic notification to alert the related group(s).

98

Chapter 4 Implementation and deployment

Figure 4.19. Test scheduling

Replacement: Scheduling a replacement session as displayed in figure 4.20, fol-
lowing the same process as the test session.

Figure 4.20. Replacement scheduling

Consultation: For scheduling a consultation session, the professor will follow the
same steps as scheduling a test session, but the only difference between these two
processes is that in this feature, the professor can only schedule lab work evaluation
sessions.

99

Chapter 4 Implementation and deployment

Figure 4.21. Consultation scheduling

• Notification: After applying any updates in the schedule, a notification message
will appear as it presented in figure 4.22.

Figure 4.22. Notifications

4. Admin Interfaces
The admin, who is also a professor, have access to all the functionalities available to
professors, as well as administrative features. Since the professor functionalities have
been previously explained, we will focus here only on the administrative features.

100

Chapter 4 Implementation and deployment

• Generate Schedules: This interface includes the menu for selecting generation op-
tions, such as generating the semester schedule or exam schedule, like it is presented
in figure 4.23.

Figure 4.23. Schedule generator menu

Semester: As shown in figure 4.24, the admin start the automatic generation of
schedules for both professors and groups, after specifying the semester and the cur-
rent academic year.

Figure 4.24. Selecting semester schedule

Afterwards, a progress bar will be appeared, as seen in figure 4.25, which indicate

101

Chapter 4 Implementation and deployment

that the generation is still processing.

Figure 4.25. Progress bar for waiting the scheduling process

Meanwhile, the professor schedule generation can’t be done till the groups schedule
is generated, and will be displayed to the admin as shown in the figure 4.31.

Figure 4.26. Professor schedule before the generation

After the generation process is done, the generated groups schedule will be displayed
as seen in the figure 4.27.

102

Chapter 4 Implementation and deployment

Figure 4.27. Groups schedule after the generation

If the admin want to add, edit or delete a session, he can press on the table cell
and then a dialog field will be shown in the figure 4.28. After the admin verify the

(a) Add session (b) Edit session

Figure 4.28. Manipulation of the generated schedule

schedule, he can press the confirm button in the figure 4.29, which automatically
insert the schedule into the database.

103

Chapter 4 Implementation and deployment

Figure 4.29. Confirming the insertion for web

For informing the admin that the inserting data has been successfully done, a notifi-
cation will be appeared as the figure 4.30 represents.

Figure 4.30. Insert the schedule in database for web

The professor schedule will be displayed same as the figure 4.31 illustrate.

104

Chapter 4 Implementation and deployment

Figure 4.31. Professor schedule after the generation for web

For publishing the schedule, the admin press on the publish button that is displayed
on the figure 4.32, which is in charge of notifying professors via email with their
schedules in Excel format are attached.

Figure 4.32. Publish the schedule for web

The figures 4.33 and 4.34 describe the publishing process results.

105

Chapter 4 Implementation and deployment

(a) Waiting for emails to be
sent (b) Emails are sent (c) Emails reception

Figure 4.33. Email sending process

Figure 4.34. Professor schedule excel format

Exam: Same process as the semester scheduling, but with specifying the starting
and ending dates. The figure 4.35 illustrates the selection fields of the necessary
details (semester, semester year and date interval) before starting the exam schedule
generation.

106

Chapter 4 Implementation and deployment

Figure 4.35. Exam schedule generator

The admin select the start date and end date of the exams session as shown in figure
4.36.

Figure 4.36. Choosing the exam interval dates

After filling out the necessary details and pressing start button, the generated exam
groups schedules will be displayed as shown in the figure 4.37.

107

Chapter 4 Implementation and deployment

Figure 4.37. The generated exam schedule for groups

After the admin verifies the generated group schedule, he presses confirm schedule,
which results in the schedule data being inserted into the database. The professor
proctoring schedule will be displayed as shown in the figure 4.38.

Figure 4.38. The generated proctoring schedule for professors

After pressing on the publish button, the professors will be notified by an email with
their proctoring schedule are attached in their excel file format as shown in the figures
4.39 and 4.40.

108

Chapter 4 Implementation and deployment

Figure 4.39. The generated proctoring schedule excel format

Figure 4.40. Email reception

• Manipulate schedules: To manage schedules, the admin must first select the specific
level, option, and group name as shown in figure 4.41.

109

Chapter 4 Implementation and deployment

Figure 4.41. Manipulate schedule

The admin can edit, add, or delete sessions through the dialog fields shown in figure
4.42.

(a) Add session (b) Edit or delete session

Figure 4.42. Manipulation options

• Graduation project assignment: This interface is divided into two part, one for the
bachelor graduation assignment and the other for the masters. Allowing the admin to
upload a file with specific format and data. After confirming the process, the result
will appear.

Bachelor: By pressing on the select button that it is represented in the figure 4.43.

110

Chapter 4 Implementation and deployment

Figure 4.43. Bachelors project assignment

The admin start the bachelors final year project assignment by uploading the excel
file as shown in the figure 4.44, which contains the groups of four students and their
5 desired choices. Starting from the most desirable choice to the least one.

Figure 4.44. Bachelors excel file

To enable the administrator to choose an Excel file, the file picker interface is called
as seen in the following Dart code excerpt.

111

Chapter 4 Implementation and deployment

Figure 4.45. Pick file code

A file chooser will be pop up to allow the admin to select only the excel files format
as it is illustrated in the figure 4.46.

Figure 4.46. Bachelors project assignment file chooser

After selecting, the admin can start the file upload process by pressing the ’Start’
button, as shown in figure 4.47.

112

Chapter 4 Implementation and deployment

Figure 4.47. Selection of the file

This action triggers the runAlgorith function in the Flutter application, which sends
the file to the Flask server. The code for this function is illustrated in Figure 4.48.

Figure 4.48. Upload code

The resulted assignment will be displayed as the figure 4.49. By clicking the confirm
button, a notification will be sent to all the concerned part and emails will be also
sent to all the professor for informing them as seen in the figure 4.50.

113

Chapter 4 Implementation and deployment

Figure 4.49. Displaying the assignment result

Figure 4.50. Email reception after the affection

Master: Master final year project assignment works in the same process as the bach-
elors assignment, the only difference is that the uploaded excel file contains groups
of just 3 students max. The admin presses the select button as shown in 4.51, which
results in a pop-up file picker to allow him to pick the desired Excel file.

114

Chapter 4 Implementation and deployment

Figure 4.51. Masters project assignment

After the selection, the admin can start the assignment process by clicking on the
start button that is illustrated in the figure 4.52.

Figure 4.52. Selection of the master file

Whenever the assignment process is completed, the resulted assignment project groups
will be displayed as the figure 4.53 presents.

115

Chapter 4 Implementation and deployment

Figure 4.53. Displaying the masters assignment result

After pressing the confirm button, all the concerned parties will be notified. For
example, the professor will be alerted via email, as presented in figure 4.54.

Figure 4.54. Email reception after the assignment

• Manipulate department data: The interface shown in figure 4.55contains a menu
for manipulating department data, covering a comprehensive range of administra-
tive functions. Subsequent figures from 4.56 to 4.78 display the visual interfaces
available to the admin for managing different aspects of the department. Each fig-

116

Chapter 4 Implementation and deployment

ure features a table that contains relevant data for managing levels, options, sections,
groups, students, professors, subjects, rooms, users, bachelor’s graduation projects,
and master’s graduation projects, accompanied by manipulation options for adding,
editing, and deleting this information. These interfaces are tailored to enable efficient
and streamlined management across all department functions.

Figure 4.55. Manipulation department data main menu

The figure 4.56 displays the ’Level’ table, which includes detailed information such
as the name of each level, as well as counts of students, groups, and options associ-
ated with each level.

Figure 4.56. Level manipulation

117

Chapter 4 Implementation and deployment

Figure 4.57. Add level

The table presented in figure 4.58 provides a full overview of the options that are
available. It includes information on the name of the options and the associated
levels.

Figure 4.58. Option manipulation

118

Chapter 4 Implementation and deployment

Figure 4.59. Add option

As seen in figure 4.60, this table provides department sections, listing each by name
alongside corresponding level and option.

Figure 4.60. Section manipulation

119

Chapter 4 Implementation and deployment

(a) Add section (b) Edit or delete section

Figure 4.61. Edit, delete or add section

The ’Groups’ table, as illustrated in figure 4.62, arranges group names along with
their corresponding level, option, and section.

Figure 4.62. Groups manipulation

120

Chapter 4 Implementation and deployment

Figure 4.63. Add group

This table, which is shown in figure 4.64, contains information on each individual
student record, including name, matriculation details, and associations with particu-
lar groups, options, and levels. This information helps to provide a comprehensive
academic and demographic picture of the student body.

Figure 4.64. Students manipulation

121

Chapter 4 Implementation and deployment

(a) Add student (b) Edit or delete student (c) Edit student

Figure 4.65. Edit, delete or add student

The ’Professors’ table in figure 4.66 presents professors names along with the sub-
jects they specialize in and their emails.

Figure 4.66. Professors manipulation

122

Chapter 4 Implementation and deployment

(a) Add professor (b) Edit professor

Figure 4.67. Edit, delete or add professor

Figure 4.68 presents a table that outlines department subjects, along with their name,
type, associated level, option and the professor in charge.

Figure 4.68. Subjects manipulation

123

Chapter 4 Implementation and deployment

(a) Add subject (b) Edit subject

Figure 4.69. Edit, delete or add professor

”Rooms” table, which is shown in figure 4.70, lists the department resources (rooms),
including their names and types (Lecture, tutorial or Lab work).

Figure 4.70. Rooms manipulation

124

Chapter 4 Implementation and deployment

(a) Add room (b) Edit or delete room (c) Edit room

Figure 4.71. Edit, delete or add room

Figure 4.72 displays the ’Users’ table, which classifies all system users according
to their roles (student, teacher, admin), and associates them with their username and
password.

Figure 4.72. Users manipulation

125

Chapter 4 Implementation and deployment

(a) Add user (b) Edit user

Figure 4.73. Edit, delete or add user

Two tabs are shown in the display in Figure 4.74: one for projects and another for
assignments (figure 4.76), primarily related to bachelor’s degrees. Each project’s
title, supervising professors, and project’s description are listed under the ’Projects’
tab. The affected assignment project to each group or person are listed under the
’Assignments’ tab.

Figure 4.74. Bachelors final year project manipulation

126

Chapter 4 Implementation and deployment

(a) Add project (b) Edit project (c) Truncate project

Figure 4.75. Edit, truncate or add project

*

Figure 4.76. Bachelors final year project assignment manipulation

The interface, which focuses on master’s degrees, is separated into two tabs as shown
in Figure 4.77: one for projects and another for assignments (figure 4.78). The
’Projects’ tab offers a listing project associated by their name, description and the
professor in charge. The ”Assignment” tab display the affected assignment project
of groups .

127

Chapter 4 Implementation and deployment

Figure 4.77. Masters final year project manipulation

Figure 4.78. Masters final year project assignment manipulation

5. Student Interfaces
The student can consult his calendar, his exams calendar, and receive notifications
after any updates may apply to his schedule.

• Calendar: The figure 4.79 represent the student calendar interface of his per-
sonal semester schedule.

128

Chapter 4 Implementation and deployment

Figure 4.79. Student calendar

• Exams Calendar: In exams session, the student can consult their own exams
schedule using this interface as shown in figure 4.80.

Figure 4.80. Student exams calendar

• Notifications: The figure 4.81 presents how the notifications appeared to the
student.

129

Chapter 4 Implementation and deployment

Figure 4.81. student notifications

4.4.2 Mobile application

In this section, we will present the interfaces of the mobile application. Since we have
already explained all the functionalities in the web part, here we will focus on the
changes and differences in the mobile app interfaces design. Additionally, we did not in-
clude the admin in the mobile application since some of his functionalities are complex
and require high computational power, which is better suited for the web application.

1. Login The next figure 4.82 represents the shared login page of the mobile applica-
tion, which contains username and password fields. If the username or password
is incorrect, an alert message will appear to the user. If not, the user will login
successfully to his personal page.

130

Chapter 4 Implementation and deployment

(a) Mobile login page (b) Mobile login page error

Figure 4.82. Mobile login

2. Professor Interfaces
This section describes the several features that our system offers to professors.
This consists of the opportunity to request different academic sessions, schedules,
proctor calendars, and a thorough view of personal profiles.

Professor profile: As the figure 4.83 illustrates, this interface displays the pro-
fessor profile, which contain his personal information such as email address and
name.

131

Chapter 4 Implementation and deployment

Figure 4.83. Professor profile

Professor personal schedule: The professor can consult his own schedule using
this interface by navigating through the days to delay each day’s schedule, as
shown in the figure 4.84.

132

Chapter 4 Implementation and deployment

Figure 4.84. Professor schedule

Professor proctoring calendar: the professor uses this interface to consult his
proctoring schedule as presented in the following figure 4.85.

133

Chapter 4 Implementation and deployment

Figure 4.85. Professor proctoring calendar

Apply request: Same process as the web application, the professor can schedule
a test, replacement and consultation sessions through the phone and that by filling
out the session details. The figure 4.86 illustrates the changes in mobile interfaces
design.

134

Chapter 4 Implementation and deployment

(a) Mobile apply request page (b) Mobile test page

(c) Mobile replacement page (d) Mobile consultation page

Figure 4.86. Mobile Apply request option

Professor Notifications: If any updates happened, whether schedule updates,
exam schedule updates, or the graduation project was assigned, the professor was
notified. The figure 4.87 represents the potential notifications that the professor
can receive.

135

Chapter 4 Implementation and deployment

(a) Schedule updates notification (b) Proctoring schedule update notifi-
cation

(c) Masters assignment notification (d) Bachelors assignment notification

Figure 4.87. Professor notification

3. Student interfaces
This section offers students a comprehensive range of resources to help them man-
age their academic journey, including personal profiles, semester and exam sched-
ules, and notifications regarding assignments and schedule changes.

136

Chapter 4 Implementation and deployment

Student profile: As the figure 4.88 illustrates, this interface displays the student
profile, which contain his level, option, group, section and his email address.

Figure 4.88. Student profile

Student calendar: Same as the professor, The student can consult his schedule
using this interface by navigating through the days to delay each day’s schedule,
as shown in the figure. 4.89.

137

Chapter 4 Implementation and deployment

Figure 4.89. Student schedule

Student exam calendar: the student use this interface to consult his exam sched-
ule as presented in the figure 4.90.

138

Chapter 4 Implementation and deployment

Figure 4.90. Student exam calendar

Student notifications: If any updates happened, whether schedule updates, exam
schedule updates, the graduation project was assigned or sessions are add, the
student will be notified. The figure 4.91 represent the potential notifications that
the students can receive.

139

Chapter 4 Implementation and deployment

(a) Schedule updates notifi-
cation

(b) Exam schedule update
notification

(c) Project assignment noti-
fication

(d) Scheduling test notifica-
tion

(e) Scheduling replacement
notification

(f) Scheduling consultation
notification

Figure 4.91. Student notification

4.5 Results of the genetic algorithm scheduling

This section presents the technical details and results related to the implementation of
the genetic algorithm (GA) used in the proposed scheduling system for the department.

140

Chapter 4 Implementation and deployment

4.5.1 Genetic algorithm configuration

The tables 4.2 and 4.3 details the parameters used in the courses and exams scheduling
algorithms,respectively. Each parameter is chosen based on its crucial role in optimizing
the algorithm’s efficiency and effectiveness. The settings reflect a strategy designed to
maximize solution quality while managing computational complexity.

Table 4.2. Parameter settings for courses scheduling algorithm

Parameter Value
Population Size 40
Crossover Rate 0.9
Mutation Rate 0.1
Generations 500

Table 4.3. Parameter settings for exams planning algorithm

Parameter Value
Population Size 50
Crossover Rate 0.3
Mutation Rate 0.1
Generations 300

- Optimal execution time: With the previously mentioned configurations, the exam
planning algorithm takes around 3 minutes to finish, while the courses scheduling al-
gorithm takes approximately 5 minutes to execute. These durations reflect the optimal
execution times attainable, successfully maintaining a balance between rapid results
and optimal scheduling outcomes for both courses and exams.

- Configuration selection: The chosen configurations were determined after testing
various settings. This process involved evaluating different combinations of popula-
tion sizes, crossover rates, and mutation rates to identify the most effective configura-
tions for our needs.

- Population size and Computational Efficiency: Increasing the population size was
initially considered to potentially enhance the quality of results. However, it was
found that larger population sizes did not improve outcome quality but significantly

141

Chapter 4 Implementation and deployment

increased computational demands. This led to the decision to operate with a smaller
population size with a relatively larger number of generations, which proved more
effective in achieving the desired results without undue computational expense.

4.5.2 Obtained results

This section covers the results derived from applying the NSGA-II algorithm. Clearly
state the numerical results and the graphical displays of the algorithm’s performance for
each of the different objectives.

4.5.2.1 Courses scheduling algorithm

The results of the courses scheduling algorithm are represented through various tables
and plots, each corresponding to different objective.

The table 4.4 represents the results of minimizing courses scheduling conflicts over
generations.

Table 4.4. Results for Minimizing courses scheduling conflicts.

Total Number of
conflicts

Conflicts re-
solved

Percentage
achieved

Values 258 258 100%

Where:

• Total number of conflicts: The initial count of courses scheduling conflicts iden-
tified.

• Conflicts resolved: Number of conflicts successfully resolved or minimized through
the scheduling process.

• Percentage achieved: Shows the success rate in reducing conflicts by a percent-
age.

The plot in the figure 4.92 shows the minimization of conflicts over generations.

142

Chapter 4 Implementation and deployment

Figure 4.92. Courses conflict reduction across generations

The table 4.5 represents the results for the of maximizing professors sessions con-
solidation score.

Table 4.5. Results for Professors sessions consolidations

Total Number of
Profs

Profs Scheduled
for Max 3 Days

Percentage
Achieved

Values 77 53 68.83%

Where:

• Total number of professors: Indicates the total number of professors involved in
the scheduling process.

• Professors scheduled for Max 3 Days: Number of professors who were scheduled
for a maximum of three days, aiming to consolidate their sessions for efficiency.

• Percentage achieved: Reflects the success rate of achieving the scheduling goal
for professors as a percentage of the total.

Figure 4.93 shows the trend of maximizing the professor session consolidation score
across various generations.

143

Chapter 4 Implementation and deployment

Figure 4.93. professor session consolidation Score maximization across generations

The table 4.6 presents the results for minimizing the subject order penalty in the
scheduling algorithm.

Table 4.6. Results for Subject Sessions Order

Total Number of
Subject-Group Pairs

Subject-Group Pairs
Not Respecting Order

Percentage
Achieved

Values 218 62 28.44%

Where:

• Total Number of Subject-Group Pairs: Indicates the total count of pairings be-
tween subjects and groups.

• Subject-Group Pairs Not Respecting Order: The number of pairs that did not
follow the prescribed scheduling order.

• Percentage Achieved: Reflects the percentage of subject-group pairs that com-
plied with the intended order.

The figure 4.94 below illustrates the distribution and trends of subject-group pair order
compliance over various generations.

144

Chapter 4 Implementation and deployment

Figure 4.94. Subject sessions order score reduction across generations.

The table 4.7 illustrates the results for maximizing the number of sessions allocated
to professors within the scheduling system.

Table 4.7. Results for maximizing required professor sessions number score.

Total Number of Profs Profs with Required
Sessions number

Percentage
Achieved

Values 77 65 84.33%

Where :

• Total Number of Profs: Represents the total number of professors involved in the
scheduling process.

• Profs with Required Sessions Number: Indicates how many professors received
the planned number of teaching sessions, meeting the maximum requirements
which is six sessions total.

• Percentage Achieved: Reflects the percentage of professors who received their
required number of sessions.

The figure 4.95 illustrates the improvements in assigning the required number of ses-
sions to professors across different generations.

145

Chapter 4 Implementation and deployment

Figure 4.95. professors required number of sessions score across generations

4.5.2.2 Exams planning algorithm

The results of the exams planning algorithm are represented through various tables and
plots, each corresponding to different objective.

The table 4.8 represent the results for the objective of minimizing exams scheduling
conflicts.

Table 4.8. Results for minimizing conflicts.

Total Number of
conflicts

Conflicts re-
solved

Percentage
achieved

Values 96 96 100%

Where:

• Total number of conflicts: The initial count of scheduling conflicts identified.

• Conflicts resolved: Number of conflicts successfully resolved or minimized through
the exams scheduling algorithm.

• Percentage achieved: Shows the success rate in reducing conflicts by a percent-
age. The plot in the figure 4.96

146

Chapter 4 Implementation and deployment

Figure 4.96. Conflicts reduction across generations

The table 4.9 outlines the results for the objective of maximizing the scheduling of one
exam per day for each group . Where:

Table 4.9. Results of maximizing single exam per day

Total Number
of Section-Day
Pairs

Section-Day
Pairs Respecting
the Objective

Percentage
Achieved

Values 54 39 72.22%

• Total number of section-day pairs: Represents the total combinations of sections
and days possible.

• Total number of section-day pair respecting the objective: Shows the count of
pairs where only one exam per section per day is scheduled.

• Percentage achieved:Indicates the proportion of section-day pairs that meet the
objective, providing a measure of scheduling effectiveness.

The plot in Figure 4.97 shows the progression of the ”one exam per day score” across
100 generations.

147

Chapter 4 Implementation and deployment

Figure 4.97. One exam per day score across generations

Presented in the table 4.10 are the outcomes related to the objective of minimizing
the variance in proctoring distribution among professors.

Table 4.10. Results for Minimizing the Proctoring Distribution Variance

Initial variance
score

Final variance
score

Percentage
Achieved

Values 5 0.95 81%

Where:

• Initial variance score: Represents the variance score at the beginning of the exams
scheduling.

• Final variance score: shows the variance score at the end of the process, demon-
strating the outcome to distribute proctoring duties more equitably.

• Percentage achieved:calculates the percentage change from the initial variance
score to the final variance score.

The plot in the figure 4.98 illustrates the progressive reduction in proctoring distribution
variance across successive generations

148

Chapter 4 Implementation and deployment

Figure 4.98. Proctoring distribution variance across generations

4.6 Conclusion

This chapter covered the deployment and implementation details of our scheduling sys-
tem. The system architecture and development tools that enable reliable web and mo-
bile applications are presented. The specific features related to each platform were de-
scribed, emphasizing user-friendly layout and effective system interactions. In order to
address changing educational needs, future improvements will incorporate cutting-edge
features.

4.7 Future enhancements

As we strive to continuously evolve and improve our app, we have identified several key
areas for development that will enhance user experience and functionality. The possible
enhancements are:

• Add graduation scheduling.

• Provide the offline mode that enable access to schedules without an internet con-
nection to ensure continuous accessibility.

• Provide multi-language interface options to enhance usability for all users.

149

Chapter 4 Implementation and deployment

• Virtual classroom integration like Zoom for seamless transitions between schedul-
ing and participating in virtual classrooms.

150

General conclusion

General conclusion

Throughout this project, we have explored the scheduling problem of pedagogical ac-
tivities, a complex task that needs to be handled automatically. The manual approach to
scheduling has proven to be time-consuming and tiring task, especially as the number
of students grows.
To address this challenge, we developed a new software solution that utilizes genetic
algorithms to automate and optimize the scheduling of different pedagogical activities,
namely courses, tests, exams, and graduation project assignment. Additionally, this so-
lution is deployed across multiple platforms (web and mobile), enhancing usability for
students, professors, and administrative staff responsible for planning various tasks.
Our experiments have demonstrated that genetic algorithms is well-suited for handling
the stochastic nature of scheduling, capable of managing multiple objectives and con-
straints. By simulating natural selection, our algorithm generates high-quality schedules
that significantly reduce conflicts, improve resource utilization, and satisfy diverse con-
straints. The iterative nature of genetic algorithms facilitates continuous improvement,
ultimately producing schedules that are not only feasible but also optimized according
to academic criteria.
The obtained results underscore the significant potential of these algorithms to enhance
operational efficiency and user satisfaction. Departments, administrators, and students
alike can benefit from this application, which streamlines the scheduling process, re-
duces administrative burdens, and improves the overall educational experience.
In conclusion, this solution provides a robust foundation for future applications in ed-
ucational scheduling. Potential enhancements could include more sophisticated multi-
criteria optimization, real-time scheduling adjustments, and improved user interface de-
signs. Furthermore, the principles and methodologies developed here could be adapted
for other complex scheduling environments beyond academia.
In summary, the successful implementation of this application highlights the transfor-
mative potential of genetic algorithms in university scheduling. This approach effec-
tively meets the immediate practical needs of educational institutions by optimizing
complex scheduling tasks, thereby enhancing operational efficiency and streamlining
processes on a daily basis.

152

Bibliography

[1] Wix Support. Wix bookings: Scheduling your classes, 2022. Accessed: 2024-03-
14.

[2] Maurice Comlan. Groups of algorithms in machine learning, 2023. Accessed:
2024-06-25.

[3] Meriem Bahi and Mohamed Batouche. Deep learning for ligand-based virtual
screening in drug discovery. In Proceedings of the 2018 3rd International Confer-

ence on Pattern Analysis and Intelligent Systems (PAIS), October 2018.

[4] Phung and Rhee. A high-accuracy model average ensemble of convolutional neu-
ral networks for classification of cloud image patches on small datasets. Applied

Sciences, 9:4500, 10 2019.

[5] Vikram Singh. Understanding transformers: A beginner’s guide to the basics and
applications. Assistant Manager - Content, July 2023. Updated on July 10, 2023
11:00 IST.

[6] G. Tuncel. A Heuristic Rule-Based Approach for Dynamic Scheduling of Flexible

Manufacturing Systems, chapter Dynamic Scheduling of Flexible Manufacturing
Systems. InTechOpen, 2007.

[7] Adrian Gepp and Phil Stocks. A review of procedures to evolve quantum algo-
rithms. School of Information Technology, Bond University, May 29 2008.

[8] Borhan Kazimipour, Xiaodong Li, and Kai Qin. A review of population initial-
ization techniques for evolutionary algorithms. In Proceedings of the 2014 IEEE

Congress on Evolutionary Computation (CEC). IEEE, July 2014.

153

[9] Crossover in genetic algorithm, 2023. Last Updated: 10 March, 2023.

[10] GeeksforGeeks. Ml – convergence of genetic algorithms, 2021. Accessed: 2024-
06-18.

[11] Cambridge Dictionary. Schedule. [Online; accessed March 14, 2024].

[12] Patrick Weaver. Originally presented: myprimavera conference. 4 - 6 April 2006,
Hyatt, Canberra, 2006. Director, Mosaic Project Services Pty Ltd.

[13] R. I. Khabipov. Automation of the creation of the schedule at the university: Math-
ematical model. Utopı́a y Praxis Latinoamericana, 25(Esp.7):251–256, 2020. Re-
ceived: 03 August 2020, Accepted: 07 September 2020.

[14] Mark Wallace. Constraint Programming. IC-Parc, Imperial College, LONDON
SW7 2AZ, September 1995. Contact address: IC-Parc, William Penney Labora-
tory, Imperial College, LONDON SW7 2AZ. Email: mgw@doc.ic.ac.uk.

[15] An introduction to linear programming problems with some real-life applications.
European Journal of Mathematics and Statistics, April 2022. Article in press.

[16] Ahmed Wasfy and Fadi A. Aloul. Solving the university class scheduling problem
using advanced ilp techniques. 2007.

[17] Fred Glover. Tabu search-part i. ORSA Journal on Computing, 1(3):190, 1989.

[18] Teotia Tanya Tawhid Abdalrahman and Elmiligi Haytham. Machine learning for
optimizing healthcare resources. In Machine Learning, Big Data, and IoT for

Medical Informatics, chapter Chapter 13, pages 215–239. Academic Press, 2021.

[19] Mohammadali Geranmehr, Mohammad Reza Nikoo, Ghazi Al-Rawas, Khalifa Al-
Jabri, and Amir H. Gandomi. Application of metaheuristic algorithms in optimal
design of sewer collection systems. In Comprehensive Metaheuristics: Algorithms

and Applications, chapter Chapter 8, pages 153–161. Academic Press, City, Coun-
try, 2023.

[20] Guang-Feng Deng and Woo-Tsong Lin. Ant colony optimization-based algo-
rithm for airline crew scheduling problem. Expert Systems with Applications,
38(5):5787–5793, 2011.

154

[21] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary

Computation, 6(4):333–346, 2002.

[22] Yavuz Eren, İbrahim B. Kücükdemiral, and İlker Üstoğlu. Optimization in renew-
able energy systems recent perspectives. Chapter 2 - Introduction to Optimization,
pages 27–74, 2017.

[23] Ikram Hamadache and Mohamed Arezki Mellal. Design optimization of a car
side safety system by particle swarm optimization and grey wolf optimizer. In
Nature-Inspired Computing Paradigms in Systems, pages 15–24. 2021.

[24] Sk. Imran Hossain, M.A.H. Akhand, M.I.R. Shuvo, N. Siddique, and H. Adeli.
Optimization of university course scheduling problem using particle swarm opti-
mization with selective search. Expert Systems with Applications, 127:9–24, Aug
2019.

[25] Achini Kumari Herath. Genetic algorithm for university course timetabling prob-
lem. M.sc. thesis, University of Mississippi, Mississippi, USA, 5 2017. Available
at eGrove, Electronic Theses and Dissertations, University of Mississippi Gradu-
ate School.

[26] Abdullah Elen. A complete solution to exam scheduling problem: A case study.
Journal of Scientific Reports-A, 2022. Received Date: 14 October 2021, Accepted
Date: 30 March 2022.

[27] Qiong Liu and Ying Wu. Supervised learning. In Encyclopedia of Machine Learn-

ing, pages 921–922. Springer, 2012.

[28] Chonghyo Joo, Hyukwon Kwon, Junghwan Kim, Hyungtae Cho, and Jaewon Lee.
Machine-learning-based optimization of operating conditions of naphtha crack-
ing furnace to maximize plant profit. Computer Aided Chemical Engineering,
52:1397–1402, 2023.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

155

[30] Manjuan Duan, Ethan Hill, and Michael White. Generating disambiguating para-
phrases for structurally ambiguous sentences. In Proceedings of the Conference,
Columbus, OH 43210, USA, 2023. Department of Linguistics, The Ohio State
University.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, volume 30, pages 5998–
6008, 2017.

[32] Florentin Woergoetter and Bernd Porr. Reinforcement learning. Scholarpedia,
3:1448, 2008.

[33] Thomas Bartz-Beielstein, Jürgen Branke, Jörn Mehnen, and Olaf Mersmann.
Overview: Evolutionary Algorithms, volume 2 of Schriftenreihe CIplus. Publisher
Name, 2015.

[34] Aseel Abdalfattah. Genetic algorithms. Computer Engineering Department, An-
Najah National University, 2020. November 26, 2020.

[35] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

[36] Chathurangi Shyalika. Population initialization in genetic algorithms: An insight
to genetic algorithms — part ii, 1 2019.

[37] J. Carr. An Introduction to Genetic Algorithms. 2014.

[38] V Sowmyashri. Fitness functions in genetic algorithms: Evaluating solutions.
Medium, Jan 2024.

[39] Aravind Seshadri. A fast elitist multiobjective genetic algorithm: Nsga-ii, 2001.
Detailed discussion on the implementation and theory of NSGA-II.

[40] Georg Beyer and Kalyanmoy Deb. On self-adaptive features in real-parameter evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation, 5(3):250–
270, June 2001.

156

[41] Lucid Software Inc. Uml use case diagram tutorial. https://www.lucidchart.
com/pages/uml-use-case-diagram, 2023.

[42] Visual Paradigm International Ltd. What is class diagram? https:

//www.visual-paradigm.com/guide/uml-unified-modeling-language/

what-is-class-diagram/, 2023.

[43] Visual Paradigm International Ltd. What is sequence diagram? https:

//www.visual-paradigm.com/guide/uml-unified-modeling-language/

what-is-sequence-diagram/, 2023.

[44] Python Software Foundation. What is python? executive summary. https://

www.python.org/doc/essays/blurb/, 2023. Accessed: 2024-06-07.

[45] DEAP Project. DEAP Documentation. Accessed: 2024-06-07.

[46] The Matplotlib development team. Matplotlib: Visualization with Python. Ac-
cessed: 2024-06-07.

[47] GeeksforGeeks. Python random module, 2024. Accessed: 2024-06-07.

[48] GeeksforGeeks. Python pandas tutorial, 2024. Accessed: 2024-06-07.

[49] PythonBasics. What is flask python?, 2024. Accessed: 2024-06-07.

[50] MDN Web Docs. Cross-origin resource sharing (cors), 2024. Accessed: 2024-06-
07.

[51] ngrok Documentation. Ngrok platform. https://ngrok.com/, 2024. Accessed:
2024-06-07.

[52] File Picker Package Documentation. File picker. https://pub.dev/packages/
file_picker, 2023. Accessed: 2024-06-07.

[53] THE PHP Group. What is php? https://www.php.net/manual/en/

intro-whatis.php, 2001-2022. Accessed: 2024-06-07.

157

