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خص لم  

 

  الأطروحة   هذه  تس تكشف.  الفضاء  اس تكشاف  في  الأهمية  بالغ  تحديً   للصواريخ  والدقيق  الآمن  الهبوط   يظل

 .الصواريخ لهبوط ذات  تحكم نظام لتطوير الاصطناعي  الذكاء محاكاة  تطبيق

  هذه  تدمج. للصواريخ واقعية  هبوط  بيئة  تصميم  يت  ،ML-Agents أأداة وباس تعمال Unity محرك  داخل 

 يت.  الصواريخ  رحلة  على  تؤثر  التي  الصلة  ذات  الأخرى  الفيزيئية  والقوى  الجوي  والسحب  الجاذبية  تاأثيرات  البيئة

لى  المعزز   التعلم  خوارزمية  من  الوكيل   قرارات  لترجمة  مخصص  برنامج  تطوير  ذلك  بعد جراءات  ا    للصاروخ   فعلية  تحكم  ا 

 .الهبوط أأرجل نش  أأو الدفع، توجيه في والتحكم المحرك، دفع ضبط   ال جراءات هذه  تشمل قد. المحاك 

  الوكيل   يتعلم .(The Agent) الوكيل   لتدريب  (PPO) التقدمية  الس ياسة  تحسين  خوارزمية  تنفيذ   يت

  الهبوط  دقة   مثل   عوامل  مراعاة   مع   المحاكية،  البيئة   داخل  والخطاأ   التجربة   تفاعلات   خلال  من  الصاروخ   في  التحكم 

 .البيئية الاضطرابات  مواجهة على  والقدرة وكفاءة

  يمكنه   الحقيقية،  الفيزيء  بمحاكاة  والمقترن  المقترح،  الاصطناعي  الذكاء  على  المعتمد  التحكم  نظام  أأن  النتائج  تظُهر

  الهبوط  سيناريوهات تعقيد مثل المتبع، للنهج الحالية  القيود الأبحاث  تحدد كما .  المحاكية البيئات  في ناج  هبوط  تحقيق

  أأكث   صواريخ  نماذج   واس تكشاف  الحقيقي  العال   بيانات   دمج   المس تقبل   العمل  اتجاهات  تشمل.  الحقيقي  العال   في

 للصواريخ،  الذات   الهبوط   تقنية  تقدم  في  الأبحاث  هذه   تسهم.  للتطبيق  وقابلية  قوة  أأكث   تحكم  نظام   على   للحصول  تعقيدًا

 .وموثوقية كفاءة أأكث الفضاء اس تكشاف لمهام  الطريق يمهد مما



Résumé

L’atterrissage sûr et précis des fusées reste un défi crucial dans l’exploration spatiale. Cette thèse

explore l’application des simulations d’intelligence artificielle (IA) pour développer un système

autonome de contrôle d’atterrissage de fusée. Au sein du moteur Unity et de la plateforme ML-

Agents, un environnement d’atterrissage de fusée réaliste est conçu. Cet environnement intègre

les effets de la gravité, de la traînée atmosphérique et d’autres forces physiques pertinentes qui

influencent le vol de la fusée. Un script personnalisé est ensuite développé pour transférer les

décisions de l’agent de l’algorithme d’apprentissage par renforcement aux actions de contrôle

réelles pour la fusée simulée. Ces actions peuvent inclure l’ajustement de la poussée du mo-

teur, la manipulation de la vectorisation de poussée ou le déploiement de jambes d’atterrissage.

L’algorithme d’apprentissage par renforcement Proximal Policy Optimization (PPO) est implé-

menté pour former l’agent. L’agent apprend à contrôler la fusée grâce à des interactions par es-

sais et erreurs dans l’environnement simulé, en tenant compte de facteurs tels que la précision

de l’atterrissage, le rendement énergétique et la robustesse aux perturbations environnemen-

tales. Les résultats démontrent que le système de contrôle proposé basé sur l’IA, associé à la sim-

ulation physique réelle, peut réaliser des atterrissages réussis dans des environnements simulés.

La recherche a également identifié les limites de l’approche actuelle, telles que la complexité des

scénarios d’atterrissage réels. Les orientations de travail futures incluent l’intégration de don-

nées du monde réel et l’exploration de modèles de fusées plus complexes pour un système de

contrôle plus robuste et transférable. Cette recherche contribue à l’avancement de la technolo-

gie d’atterrissage de fusée autonome, ouvrant la voie à des missions d’exploration spatiale plus

fiables.
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Abstract

Safe and precise rocket landing remains a critical challenge in space exploration. This thesis

explores the application of Artificial Intelligence (AI) simulations for developing an autonomous

rocket landing control system.

Within the Unity engine and the ML-Agents platform, a realistic rocket landing environment

is designed. This environment incorporates the effects of gravity, atmospheric drag, and other

relevant physical forces that influence rocket flight. A custom script is then developed to trans-

late the agent’s decisions from the reinforcement learning algorithm into actual control actions

for the simulated rocket. These actions might include adjusting engine thrust, manipulating

thrust vectoring, or deploying landing legs.

The Proximal Policy Optimization (PPO) reinforcement learning algorithm is implemented

to train the agent. The agent learns to control the rocket through trial and error interactions

within the simulated environment, considering factors like landing accuracy, and robustness to

environmental disturbances.

The results demonstrate that the proposed AI-based control system, coupled with real physics

simulation, can achieve successful landings in simulated environments. The research also iden-

tifies limitations of the current approach, such as the complexity of real-world landing scenar-

ios. Future work directions include incorporating real-world data and exploring more complex

rocket models for a more robust and transferable control system. This research contributes to

the advancement of autonomous rocket landing technology, paving the way for more efficient

and reliable space exploration missions.
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General introduction

Autonomous rocket landing systems are crucial in space exploration for their ability to reduce

human error, lower operational costs, and significantly improve mission success rates. Tradi-

tional landing methods, which often involve human intervention, can be complex, expensive,

and prone to error. Autonomous systems, on the other hand, offer the potential for precise han-

dling of harsh landing environments [1]. However, several key challenges must be addressed for

successful rocket landings.

High-speed descent is one of the major challenges, as rockets re-enter the atmosphere at

speeds exceeding Mach 5 [2], necessitating precise control maneuvers to decelerate safely and

achieve a controlled landing. Uncertain environmental conditions, such as wind shear, atmo-

spheric variations, and uneven terrain, also pose significant risks to the landing process [3, 4]..

Additionally, limited fuel resources make fuel efficiency critical during landing, as unnecessary

fuel expenditure can compromise the mission. Thermal management is another challenge [5],

as the extreme heat generated during re-entry requires rockets to be designed to withstand high

temperatures while maintaining controllability. Reliable and accurate sensor data is essential

for real-time decision-making during landing, but factors like noise and latency can affect data

accuracy, making control more challenging [6].

AI is emerging as a powerful tool to address these challenges in space exploration. AI appli-

cations in data analysis allow for the efficient processing of massive amounts of data generated

by spacecraft, enabling the identification of patterns, anomalies, and insights that might escape

human analysis. Autonomous systems and robotics powered by AI can perform tasks such as
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General introduction

exploration, sample collection, and spacecraft maintenance [7], reducing reliance on human

control and enabling extended missions in hazardous environments. AI also aids in decision-

making [8] and mission planning by analyzing complex data and making real-time decisions,

optimizing trajectories, fuel usage [9, 10], and overall mission efficiency. Moreover, AI-powered

training and support systems can create interactive simulations for astronauts [11], monitor

their health and well-being, and provide real-time support during missions [12].

This research aims to develop an AI-based control system for autonomous rocket landing

using Proximal Policy Optimization (PPO) [13] within a physics-based simulation environment.

The primary objective is to implement and train the AI control system in Unity, focusing on cre-

ating a reward function that promotes efficient landings. The system’s robustness and adapt-

ability will be evaluated under various initial conditions, including different starting heights

and rotations, and with different control strategies such as Thrust Vector Control (TVC) [14]

alone and in combination with Cold Gas Thrusters (CGT) [15, 16]. Additionally, the system will

be tested with both free and limited TVC capabilities to assess its performance with different

hardware limitations.

A comprehensive evaluation methodology will be developed to assess the AI system across

multiple metrics, including landing success rate, precision, and trajectory analysis. The success

rate will be measured by the percentage of simulations resulting in controlled landings within a

designated zone. Precision will be evaluated based on the rocket’s final position and velocity at

touchdown, while trajectory analysis will focus on the AI’s ability to generate optimal and safe

landing paths.

The thesis is structured into four main chapters. The first chapter introduces the use of re-

inforcement learning (RL) for rocket landing control, detailing the challenges, benefits, and the

choice of PPO as the RL algorithm. The second chapter provides foundational knowledge on

rocket science, including propulsion principles and control techniques such as TVC and CGT,

and discusses real-world examples like SpaceX’s Falcon 9 and Starship landings. The third chap-

ter details the development of the simulation environment in Unity, explaining the tools, scripts,
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and RL training approach. The final chapter presents the outcomes of the RL training, evaluates

the AI system’s landing performance under various conditions, and discusses limitations and

areas for further improvement.
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Chapter 1

Leveraging Reinforcement Learning for

Rocket Landing

1.1 Introduction

Machine learning is revolutionizing how computers interact with the world [17]. But what if,

instead of being spoon-fed information, a program could learn by doing? Reinforcement learn-

ing (RL) is a powerful technique that empowers machines to tackle challenges through trial and

error [18], just like a child learning to walk. In this approach, an agent interacts with its environ-

ment, taking actions and receiving rewards or penalties in response. Over time, the agent learns

which actions lead to success, constantly adapting and refining its behavior. This ability to learn

autonomously makes RL a game-changer for tasks like robotics control, resource management

in complex systems, and even mastering complex simulations.

1.1.1 Motivation for Applying Reinforcement Learning to Rocket Landing

Control

Traditional control methods for rocket landing rely on pre-programmed flight paths and control

laws. These methods require extensive engineering expertise to account for various flight condi-

4



Leveraging Reinforcement Learning for Rocket Landing

tions and environmental factors. However, real-world scenarios often involve complexities and

uncertainties that can be challenging to predict and model precisely.

Reinforcement Learning (RL) offers a compelling alternative approach for autonomous rocket

landing control [19]. Here’s why:

• Adaptability: RL agents can learn to adapt their control strategies in response to changing

environments and unexpected situations. This makes them well-suited for handling the

dynamic and unpredictable nature of rocket landings.

• Learning from Experience: Through trial and error within a simulated environment, RL

agents can learn optimal control strategies without the need for extensive manual pro-

gramming. This can significantly reduce development time and effort.

• Continuous Improvement: As an RL agent accumulates experience, it can continuously

refine its control policies, potentially surpassing the performance of pre-programmed ap-

proaches.

1.2 Fundamentals of Reinforcement Learning

This section provides a foundational understanding of Reinforcement Learning (RL), focusing

on the core concepts that guide an agent’s learning process for effective decision-making.

1.2.1 Core Concepts: Learning from Interaction

Reinforcement Learning deals with an agent interacting with its environment [20]. Here’s a

breakdown of these key elements :

1.2.1.1 The Agent and the Environment

• Agent: The agent represents the entity that learns and makes decisions within the RL

framework. In our case, the agent is the rocket landing control system.
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• Environment: The environment encompasses everything the agent interacts with. For us,

this is the rocket simulator that includes the rocket itself, the landing pad, and the laws

of physics that govern their motion.

Figure 1.1: "The Agent-Environment Dance" Reinforcement Learning Model

The agent and environment engage in a continuous cycle of interaction:

1.2.1.2 Taking Actions and Receiving Rewards

The agent perceives the environment through observations (e.g., rocket position, velocity) and

takes actions (e.g., adjusting thrust vector control). The environment responds to these actions,

and the agent receives rewards that signal the desirability of the chosen action. High rewards

indicate favorable outcomes (e.g., getting closer to the landing pad), while low rewards or penal-

ties might be given for undesirable outcomes (e.g., tilting excessively).

1.2.1.3 Learning Through Trial and Error

Through repeated interactions and by observing the rewards it receives, the agent gradually

learns to associate actions with their corresponding rewards. This trial-and-error process al-
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lows the agent to refine its decision-making strategy over time.

1.2.1.4 Learning Objective

The ultimate goal of the agent is to learn a policy that maps observations from the environment

to actions that consistently yield high rewards. This policy essentially represents the agent’s

control strategy for achieving its objective (e.g., landing the rocket successfully).

1.2.2 Key Components of Reinforcement Learning

Beyond the agent-environment interaction, several key components play a crucial role in RL:

1.2.2.1 States

At each point in time, the environment can be in a specific state. This state captures a snapshot

of the relevant aspects of the environment that influence the agent’s decision-making. In our

scenario, the state might include the rocket’s position, velocity, orientation, and the distance to

the landing pad.

1.2.2.2 Actions

The agent has a repertoire of possible actions it can take within the environment. These actions

can be discrete (e.g., choosing a specific direction to thrust) or continuous (e.g., adjusting the

thrust vector angle by a certain degree).

1.2.2.3 Rewards

Rewards act as the guiding signal for the agent’s learning process. They are numerical values

that the agent receives after taking an action in a specific state. These rewards provide feedback

on the effectiveness of the chosen action in achieving the overall goal.

Designing Effective Rewards:
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• High rewards are given for actions that move the agent closer to its goal (e.g., getting closer

to the landing pad, maintaining a stable orientation).

• Low rewards or penalties are given for undesirable actions (e.g., deviating significantly

from the landing trajectory, exceeding fuel consumption [21], tilting heavily).

• The reward design should be clear, consistent, and informative to guide the agent’s learn-

ing efficiently.

Rewards Shape the Agent’s Policy: By consistently receiving high rewards for specific ac-

tions in certain states, the agent learns to favor those actions in the future when it encounters

similar situations. This is how the reward system shapes the agent’s decision-making policy over

time.

1.2.2.4 Policy

The policy represents the core of the agent’s decision-making strategy. It’s a function that maps

the perceived state of the environment (observations) to the actions the agent will take. There

are various ways to represent an RL policy, such as:

• Tables : For simple environments with a discrete number of states and actions, a policy

can be a table that maps each state to the corresponding action.

• Neural Networks : In complex scenarios like our case, the policy can be represented by a

neural network that learns the mapping between states and actions through training.

Learning and Improving the Policy : Through trial and error, the agent interacts with the en-

vironment, receives rewards, and gradually refines its policy to select actions that consistently

yield high rewards. This process allows the agent to learn an effective control strategy for achiev-

ing its objective in the given environment.
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1.2.3 Benefits of Reinforcement Learning

Reinforcement Learning offers several advantages compared to traditional control methods [22]:

• Adaptability : RL agents can learn to adapt their control strategies to changing environ-

ments and unexpected situations. This makes them well-suited for dynamic and unpre-

dictable real-world tasks like rocket landing.

• Data-Driven Learning : RL agents can learn from experience through trial and error within

a simulated environment. This reduces the need for extensive manual programming and

allows for continuous improvement as the agent gathers more data.

• Handling Complex Problems : RL can handle problems where the environment dynam-

ics are complex and difficult to model explicitly. The agent learns through interaction,

overcoming the limitations of pre-programmed control approaches.

By leveraging reinforcement learning, we can develop intelligent agents that can effectively

learn control strategies for complex tasks like autonomous rocket landing.

1.3 Proximal Policy Optimization (PPO)

This section dives into the heart of our solution - utilizing Proximal Policy Optimization (PPO)

[13] for effective rocket landing control.

1.3.1 Why PPO for Rocket Landing Control?

Several factors make PPO an ideal choice for our task:

1.3.1.1 Advantages of PPO for Our Specific Task

• Continuous Control: PPO excels at handling continuous control problems, where the

agent can take a range of values for actions (e.g., adjusting thrust vector angles by varying

degrees). This aligns perfectly with the nuanced control requirements of rocket landing.
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• Sample Efficiency: PPO is known for its ability to learn effectively from a moderate amount

of training data. This is beneficial as gathering real-world rocket landing data can be ex-

pensive and time-consuming.

• Stability and Performance: PPO offers a good balance between exploration (trying new

actions) and exploitation (focusing on actions known to yield high rewards) [23]. This

stability is crucial for achieving reliable and successful rocket landings.

1.3.1.2 Balancing Exploration and Stability in Continuous Control

Proximal Policy Optimization (PPO) is a powerful reinforcement learning (RL) algorithm de-

signed for excelling in continuous control tasks. Unlike algorithms that deal with discrete action

spaces (go left/right), PPO thrives in scenarios where the agent can make nuanced adjustments,

like precisely controlling a rocket’s thrust for a smooth landing.

Here’s a deeper dive into the core concepts of PPO, assuming an understanding of RL funda-

mentals:

Policy as a Probability Distribution: PPO operates under the assumption that The agent’s

policy, denoted by π(a|s), represents a probability distribution over possible actions (a) given

the current state (s) of the environment. This distribution captures the likelihood of the agent

taking specific actions in different situations.

Policy Gradient Methods and the Importance Ratio: PPO belongs to the family of policy

gradient methods. These methods aim to improve the policy by taking a gradient step in the

direction that is likely to increase the expected future reward. However, directly estimating this

gradient can be challenging due to high variance. PPO addresses this by introducing the impor-

tance ratio (p) [24]:

ρ(at |a′
t ) = πnew(at |st )

πold(at |st )
(1.1)

Here, at and a′
t represent the action taken at time step t according to the old (πold) and new

(πnew) policies, respectively. The importance ratio essentially measures how much more likely
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the new policy was to take action at compared to the old policy.

Clipped Policy Objective with Surrogate Function: PPO introduces a key element – the

clipped objective function [25]. This function ensures stable policy updates by mitigating the

issue of large policy changes that can occur in standard policy gradient methods.

The objective function in PPO maximizes a clipped surrogate objective (LCLIP) instead of

directly maximizing the expected future reward:

LCLIP = min(ρ(at | a′
t ) · At ,clip(ρ(at | a′

t ),1−ϵ,1+ϵ) · At ) (1.2)

where:

• At is the advantage function, which estimates the long-term benefit of taking action at

compared to the average action in that state.

• ϵ (epsilon) is a hyperparameter that defines the clipping range. The clipping mechanism

works as follows:

– If the importance ratio (ρ) is within the range (1− ϵ,1+ ϵ), the advantage function

(At ) is multiplied directly. This encourages the agent to explore actions that the new

policy favors more than the old policy, while staying close to the original strategy.

– If the importance ratio falls outside the clipping range, the advantage function is

clipped to a value within the range. This prevents excessively large policy updates

that could destabilize the learning process.
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Figure 1.2: Clipping

Here is a more detailed figure that explains how things work a bit more.

Figure 1.3: Clipping Further Explained

1.4 Tailoring Contextual Decision Model For Our Agent

Effective decision-making by the rocket agent hinges on three key aspects: representation, mod-

eling, and shaping. Representation refers to how we translate the complex environment, in-

cluding the rocket’s position, velocity, and orientation, into a format the agent can understand.

This could be a vector of numbers or a more complex data structure. Once the agent has a suit-

able representation of the environment, modeling comes into play. This involves capturing the
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dynamics of how the agent’s actions (e.g., adjusting thrust vector angles) influence the environ-

ment’s state (e.g., rocket’s movement) and the resulting rewards it receives. By understanding

these relationships, the agent can learn to select actions that lead to a successful landing.

However, directly optimizing for a perfect landing might be challenging at the beginning of

the training process. Here’s where shaping plays a crucial role. Shaping refers to a technique

used in reinforcement learning to guide the agent towards learning a desired behavior more ef-

ficiently. It involves manipulating the reward structure of the environment in a staged manner.

By providing the agent with intermediate rewards for achieving smaller milestones (e.g., main-

taining a stable orientation), we can guide it towards the ultimate goal of a safe landing. We will

now talk about the considerations for representation, modeling, and shaping within the context

of our rocket landing simulation.

Figure 1.4: Reinforcement Learning Model for Contextual Decision Making [26]

1.4.1 Representation

This refers to how information about the environment and the agent’s state is encoded. For ex-

ample, the state of the environment (rocket position, velocity) might be represented as a vector
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of numbers.

• Contextual Instructions: These are signals or commands given to a learning agent that

are dependent on the current state or context of the task.

1.4.2 Modeling

This refers to how the interaction between the agent and the environment is modeled. This

includes the agent’s actions (discrete or continuous) and how they affect the environment’s state

and the rewards received.

• Discrete Action: A type of action where the agent chooses from a set of distinct and sepa-

rate possibilities.

• Continuous Action: Actions that can vary in a continuous way, allowing for a range of val-

ues rather than distinct options. for example in our rocket landing simulation, the agent

might continuously adjust the thrust vector angles in various degrees to achieve a smooth

landing.

• Instruction Model: A model that interprets and translates instructions into a form that

the agent can understand and act upon.

1.4.3 Shaping

Shaping refers to a technique used in reinforcement learning (RL) to guide the agent towards

learning a desired behavior more efficiently. It involves manipulating the reward structure of

the environment in a staged manner.

• Reward Function (Reward Shaping): A technique in reinforcement learning where addi-

tional rewards are provided to guide the agent towards desired behaviors more quickly.

– Positive Rewards: Rewards are given for actions that bring the rocket closer to a safe

landing. These might include:
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* Decreasing distance to landing pad: As the rocket gets closer, the reward in-

creases.

* Maintaining a stable orientation: A reward is given for keeping the rocket up-

right during descent.

* Smooth velocity reduction: Reward for gradually decelerating the rocket to avoid

a crash landing.

– Penalizing Unwanted Behavior: Penalize actions that deviate from the desired tra-

jectory or lead to potential damage:

* Penalizing excessive tilting: Penalize actions that cause the rocket to tilt signif-

icantly, jeopardizing stability.

* Crash penalty: A significant negative reward for a crash landing.

By carefully designing the reward function, we can provide the agent with the neces-

sary feedback to learn a control policy that effectively guides the rocket to a safe and

controlled landing.

• Action-Value Function (Value Shaping): A method of modifying the value function used

by the agent to evaluate the desirability of actions, helping to shape the learning process.

• Policy (Policy Shaping): The strategy that an agent employs to decide which action to take

in a given state. Policy shaping involves altering this strategy to improve learning.

Decision Biasing: Influencing the agent’s decision-making process to favor certain actions

over others, often to speed up learning or to ensure safety.

Action: The specific step or move made by an agent in response to the state of the environ-

ment or instructions received.
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1.5 Related Work

In this paper [27], the authors introduce an intelligent control algorithm for rocket landings, uti-

lizing deep reinforcement learning and Long Short Term Memory (LSTM) neural networks. By

combining imitation and reinforcement learning, the method accelerates training and achieves

real-time control on an embedded platform. The algorithm demonstrates superior landing ac-

curacy, rapid convergence, and enhanced adaptability, showcasing its potential for autonomous

rocket landings without heavy reliance on precise control models.

The authors [28] aims to use Unity ML-Agents and deep reinforcement learning for au-

tonomous orbital rocket landings, focusing on reusable first-stage rockets. This introduces in-

novative autonomous control, aligning with SpaceX’s progress in rapid reusability of launch ve-

hicles.

This project [29] develops a simulation for evaluating classical control and machine learning

algorithms in vertical rocket landings. It implements Proportional Integral Derivative (PID) con-

troller, Model Predictive Control (MPC), and RL algorithms like Deep Deterministic Policy Gra-

dients (DDPG), showcasing potential for stable and consistent landings. Aligned with SpaceX

and Blue Origin’s successes, it contributes to the broader goal of reusable space systems, ad-

dressing the challenge of autonomous rocket landings.

It’s important to acknowledge the advancements our simulation offers compared to previous

research by Ferrante et al [29]. Our work leverages a fully immersive 3D environment, allowing

for a more comprehensive evaluation of the AI control system’s capabilities. In contrast, Ferrante

et al.’s research employed a 2D simulation setting, potentially limiting the complexity of the

landing scenarios explored.

Furthermore, our simulation expands the control options available to the AI compared to

the two degrees of control (X-axis for lateral movements) and two Cold Gas Thrusters (CGTs) on

the left and right featured in his work. We introduce a more comprehensive control scheme by

incorporating four Cold Gas Thrusters (left, right, front, and back) and a thrust vector direction

that can be adjusted along both the X and Z axes. This enhanced controllability allows for a
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more realistic simulation of rocket dynamics and a more rigorous assessment of the AI’s ability

to perform complex maneuvers during landing.

1.6 Conclusion

This chapter has established a foundational understanding of reinforcement learning (RL) as a

promising approach to complex rocket landing control. We have examined the core concepts

of RL, emphasizing the interplay between the agent, environment, states, actions, rewards, and

policy learning – all geared towards maximizing long-term reward. We then identified Proximal

Policy Optimization (PPO) as a well-suited RL algorithm for continuous control problems like

rocket landing. We discussed the advantages of PPO in this context, particularly its ability to

balance exploration and stability during policy updates. Finally, we introduced the concept of

a contextual decision model specifically tailored for our rocket landing agent, highlighting the

critical roles of representation, modeling, and reward shaping.

By laying this groundwork, the path is now clear for a deeper exploration of RL in rocket

landing control. Subsequent chapters will delve into the specifics of our approach. This includes

the design of a realistic and informative environment, detailing the observations accessible to

the agent and the actions it can take. We will explore the art of shaping the reward system to

effectively guide the agent’s learning process, alongside a discussion on the hyperparameters

employed during training. Finally, we will rigorously evaluate the agent’s performance to assess

the effectiveness of RL in achieving successful and efficient rocket landings. This evaluation will

provide valuable insights into the potential of RL for real-world rocket control applications.
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Chapter 2

Unveiling the Magic of Rocket Science: From

Liftoff to Landing

2.1 Introduction

This chapter delves into the fascinating world of rocket science, equipping you with the funda-

mental knowledge of how rockets move through space and achieve controlled landings.

Have you ever gazed up at the night sky and marveled at the stars and planets twinkling

above? Perhaps you’ve dreamt of one day venturing into the cosmos and exploring the vast

unknown. This dream of space travel has captivated humanity for centuries, and rockets have

played a pivotal role in making it a reality.

This chapter delves into the fascinating world of rocket science, the engineering marvel that

allows us to defy gravity and propel objects into space. We will embark on a journey to under-

stand the fundamental principles of how rockets work, from the core concepts of thrust genera-

tion to the intricate details of rocket components. We will explore the challenges of maneuvering

and controlling rockets during flight, and delve into the complexities of achieving a successful

and controlled landing.

By the end of this chapter, you will be equipped with the foundational knowledge of rocket
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science, preparing you to explore the exciting world of autonomous rocket control using rein-

forcement learning in the following chapters.

2.1.1 The Need for Rocket Science

Space travel demands overcoming immense challenges: escaping Earth’s gravity, operating in a

vacuum, reaching high speeds, maneuvering in space, and re-entering for landing [30] . Rockets,

with their powerful engines and unique design, are the key to unlocking the vast possibilities

beyond our planet.

2.2 Rocket Fundamentals

This section delves into the core principles that enable rockets to defy gravity and propel them-

selves through the vastness of space. We’ll explore the fundamental concepts behind thrust

generation, including the crucial role played by Newton’s Third Law of Motion 2.1.

∑
F⃗on A =−∑

F⃗on B (2.1)

2.2.1 Unveiling the Power of Propulsion

At the heart of every rocket lies its engine, a marvel of engineering that harnesses the power of

controlled explosions to generate thrust. Rocket engines operate on the fundamental principle

of Newton’s Third Law of Motion: for every action, there is an equal and opposite reaction (see

eq. 2.1).
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Figure 2.1: Rocket Propulsion.

(a) This rocket has a mass m and an upward velocity v . The net external force on the system

is −mg , if air resistance is neglected.

(b) A time ∆t later the system has two main parts, the ejected gas and the remainder of the

rocket. The reaction force on the rocket is what overcomes the gravitational force and

accelerates it upward.

2.2.2 Essential Components of a Rocket
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Figure 2.2: Structure of a Rocket

There are four main systems or components in a rocket. They are

• Structural system

• Payload system: This is the cargo that the rocket carries into space. It can be anything

from satellites and probes for scientific exploration to spacecraft carrying astronauts or

cargo for space stations. The payload capacity of a rocket is limited by its overall thrust

and the amount of fuel it can carry.

• Guidance system: This system ensures the rocket follows the desired trajectory. It uses

various sensors like accelerometers, gyroscopes, and star trackers to determine the rocket’s

position, orientation, and velocity. Based on this information, the guidance system calcu-

lates adjustments and sends commands to control surfaces or thrust vectoring systems

(discussed later) to steer the rocket on course.

• Propulsion system

1. Engine (Discussed in 2.2.1): As the heart of the rocket, the engine provides the thrust
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necessary for liftoff and maneuvering. We’ve already discussed its role in generating

thrust through combustion and gas expansion.

2. Fuel Tanks: Rockets carry a significant amount of fuel and oxidizer to power the

engine during flight. These tanks are typically made of lightweight and high-strength

materials like aluminum or composites to minimize weight while ensuring structural

integrity.

– Fuel Tank: Stores the fuel (e.g., liquid hydrogen, kerosene) used for combustion

within the engine.

– Oxidizer Tank: Carries the oxidizer (often liquid oxygen) as combustion cannot

occur in space without an external oxygen source.

2.3 The Art of Rocket Control

While a powerful engine propels a rocket forward, maneuvering and steering it during flight

require a different set of technologies. This section explores the crucial aspects of rocket control:

Thrust Vector Control (TVC) [14], Cold Gas Thrusters (CGT) [31], Understanding Pitch, Yaw, and

Roll and our Guidance & Navigation System.

2.3.1 Thrust Vector Control (TVC)

Thrust Vector Control (TVC) allows for maneuvering a rocket by adjusting the direction of its

engine thrust. Instead of a fixed exhaust plume, TVC enables the engine nozzle to swivel slightly,

directing the thrust vector in a specific direction.

Here’s a breakdown of how TVC works:
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Figure 2.3: Thrust Vector Control

1. Movable Nozzle: The engine nozzle is designed with a mechanism that allows it to pivot or

deflect within a limited range. This movement can be achieved using hydraulic actuators,

electric motors, or other control systems.

2. Steering by Thrust Adjustment: By electronically controlling the nozzle deflection, the

direction of the thrust vector can be adjusted. Tilting the nozzle slightly in one direction

creates a force that causes the rocket to turn in the opposite direction, similar to how a

boat’s rudder works.

3. Precise Maneuvering: TVC allows for more precise control during flight maneuvers, in-

cluding course corrections, attitude adjustments, and even controlled landings for reusable

rockets.

Benefits of TVC:

• Enhanced Maneuverability: Enables precise control during flight maneuvers.

• Improved Stability: Allows for corrections to counteract any external disturbances.

• Landing Assist: Plays a crucial role in controlling the descent and achieving a soft

landing for reusable rockets

While Thrust Vector Control (TVC) provides powerful maneuvering capabilities, rockets also uti-

lize another system for precise adjustments and orientation control: Cold Gas Thrusters (CGT)
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[15, 16].

2.3.2 Cold Gas Thrusters (CGT)

A Cold Gas Thruster[15, 16], also known as a cold gas propulsion system, operates by harnessing

the expansion of pressurized gas to generate thrust, without involving any combustion. Unlike

traditional rocket engines, cold gas thrusters have simpler designs, comprising only a fuel tank,

a regulating valve, a propelling nozzle, and minimal plumbing. While they offer lower thrust

and efficiency compared to monopropellant and bipropellant engines, they are valued for their

affordability, simplicity, and reliability. Cold gas thrusters are widely used for tasks such as or-

bital maintenance, maneuvering, and attitude control due to their cost-effectiveness and ease

of operation.

Figure 2.4: Cold Gas Thrusters

2.3.2.1 The Essence of CGT Maneuvering:

Unlike the fiery combustion engines used for main propulsion, CGTs rely on a simpler approach.

They utilize the rapid expansion of pressurized gas (often helium or nitrogen) to generate thrust.

This allows for controlled bursts of force, ideal for:

• Fine-Tuning Trajectory: Making minor course corrections during flight to stay on the de-

sired path.
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• Orientation Adjustments: Maintaining the rocket’s precise attitude (pointing direction) to

ensure instruments and sensors are aimed correctly.

• Station Keeping: Holding the rocket in a fixed position relative to another object in space,

critical for satellite deployment or docking maneuvers.

Figure 2.5: CGT On A Falcon 9 Rocket

The falcon 9 is equipped with a total of 8 nitrogen cold gas thrusters that are mounted to-

wards the top of the first stage. There is one pod on each side of the rocket, each containing 4

thrusters. Like the gimbaled main engines, the cold gas thrusters are used to control the orien-

tation of the rocket.

2.3.2.2 Achieving Precise Maneuvers With CGTs

1. Pressurized Gas Reservoir: CGTs hold a tank filled with an inert gas, typically under high

pressure.

2. Simple and Reliable Design: These systems comprise a propellant tank, a pressure regu-

lator valve, and a nozzle. This simplicity translates to high reliability.
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Figure 2.6: Cold Gas Thrusters In Action

3. On-Demand Thrust Bursts: When activated, the valve opens, allowing the pressurized

gas to flow through the nozzle and rapidly expand.

4. Precise Control: The short burst of thrust generated by gas expansion can be precisely

controlled electronically, enabling delicate adjustments in the desired direction.

2.3.2.3 Benefits of Utilizing CGTs

• Pinpoint Maneuvering: Their ability to deliver small, controlled thrust bursts makes them

ideal for fine-tuning a rocket’s trajectory and attitude.

• Fuel Efficiency: CGTs offer exceptional fuel efficiency as they use a minimal amount of

propellant for each burst.

• Simplicity and Reliability: The lack of complex combustion processes minimizes the risk

of malfunctions, making them a reliable choice for critical maneuvers.

• Safety: Using inert gases eliminates the risk of explosion or contamination associated with

traditional propellants.
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2.3.2.4 Limitations to Consider:

• Low Thrust Output: Compared to main engines, CGTs generate significantly lower thrust,

limiting their use for major course corrections.

• Propellant Depletion: Since they rely on a finite amount of stored gas, prolonged use can

deplete their propellant, requiring careful management during missions.

2.3.3 Pitch, Yaw, and Roll

Rockets may soar through the vast emptiness of space, but they still need to be steered! Just like

navigating our own 3D world, controlling a rocket’s direction requires precise control in all three

dimensions.

Imagine the rocket balancing on a point in space – its center of gravity, where all its weight is

concentrated. To control its "posture" or attitude, we need to understand how it rotates around

this point.

Think of a giant, invisible X, Y, and Z axis crossing through the center of gravity. By monitor-

ing how much the rocket twists and turns along each axis, we can determine its exact orienta-

tion in space. This knowledge then allows us to make adjustments and ensure the rocket dances

across the celestial stage with perfect form.

Figure 2.7: Pitch Yaw and Roll [32]

27



Unveiling the Magic of Rocket Science: From Liftoff to Landing

To navigate and maneuver precisely, the rocket needs to control its orientation in three di-

mensions. Here’s where pitch, yaw, and roll come in:

• Pitch: This refers to the tilting motion of the rocket’s nose up or down, like nodding your

head. Pitch control allows the rocket to adjust its trajectory during flight.

• Yaw: This describes the rocket’s turning motion left or right, similar to shaking your head.

Yaw control helps the rocket change its direction while facing forward.

• Roll: This signifies the rocket’s rotation along its long axis, like rolling a barrel. Precise roll

control ensures the rocket stays upright and maintains stability [33].

Figure 2.8: Pitch Yaw and Roll (Different Perspective)

These three rotations work together to give the rocket complete control over its movement

in space.

2.3.4 Guidance and Navigation

While TVC helps steer the rocket, it requires a guiding system to determine the desired direction

and trajectory. This is where Guidance and Navigation come into play.

The Role of Guidance and Navigation: This system acts as the "brain" of the rocket, deter-

mining its course and ensuring it reaches its destination. It comprises several key components:

• Sensors: These instruments collect data about the rocket’s position, orientation, and

velocity. Examples include accelerometers (measure acceleration), gyroscopes (measure
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angular rate), and a landing pad tracker (This sensor, specifically used for landing maneu-

vers, can be a radar system that tracks the designated landing pad. It provides real-time

information about the rocket’s relative position and distance to the landing pad, aiding in

precise control during descent and touchdown.)

• Onboard Computer: This computer processes the sensor data and calculates the neces-

sary adjustments to keep the rocket on course. It compares the actual trajectory with the

desired path and sends commands to the control surfaces or TVC system to make correc-

tions.

• Reference System: The guidance system needs a reference point to determine the desired

trajectory. This could be a pre-programmed flight path based on ground control data, or

it could use celestial navigation by referencing the position of stars.

2.4 The Challenge of Returning from the Stars: Landing a Rocket

While launching a rocket is a marvel of engineering, the true test lies in bringing it back safely

[34]. This section explores the hurdles of rocket landings and the strategies employed, focusing

on the Falcon 9’s impressive reusability.

2.4.1 The Complexities of Re-entry

Imagine a rocket screaming back towards Earth at incredible speeds. Re-entry is a critical phase

[35] where the vehicle faces several challenges:

• Intense Heat: As the rocket plunges through the atmosphere, friction with air molecules

creates extreme heat, potentially reaching thousands of degrees Celsius. This heat can

damage the rocket’s structure if not properly managed.

• High G-Forces: The rapid deceleration during re-entry subjects the rocket and its payload

to significant gravitational forces (g-forces). These forces can stress the vehicle and its
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contents.

• Atmospheric Control: Friction with air also disrupts the smooth flow of air around the

rocket, potentially causing instability and control issues.

Overcoming these challenges requires careful planning and design [? ]. Rockets employ

heat shields made of special materials that absorb and deflect the intense heat. Additionally,

aerodynamic control surfaces or thrust vectoring (explained earlier) help maintain stability dur-

ing re-entry.

2.4.2 The Power Of Controlled Landing

Traditionally, rockets were expendable, meaning they were destroyed upon launch or ditched in

the ocean after use. This approach is costly and generates a lot of space debris. However, the

concept of reusable rockets is revolutionizing spaceflight.

Precisely controlling a rocket’s descent allows for a targeted landing, minimizing damage

and enabling reuse. This significantly reduces launch costs and promotes a more sustainable

approach to space exploration.
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2.4.2.1 Falcon 9 Landing Strategy:

SpaceX’s Falcon 9 exemplifies a successful reusable launch vehicle. Here’s how it lands:

Figure 2.9: Falcon 9 Launch And Landing Profile

1. Stage Separation : After propelling the payload to its desired orbit, the first stage (booster)

of the Falcon 9 separates and begins its descent back to Earth.

2. Re-entry Maneuvers : The booster uses grid fins and thrust vectoring to orient itself and

control its re-entry.

3. Powered Descent : As the booster nears the landing zone, it reignites its engines for a

controlled descent, slowing down significantly.

4. Landing Legs Deploy : Deployable landing legs extend to prepare for touchdown.

5. Precision Touchdown : Using onboard guidance and engine control, the Falcon 9 aims

for a designated landing pad on land or a drone ship in the ocean, achieving a soft vertical

landing.
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The success of the Falcon 9 landing strategy paves the way for a more cost-effective and

sustainable future of space exploration. By mastering the art of controlled landings, we can

unlock new possibilities for space travel and discovery.

2.4.2.2 A Family of Reusables: Unveiling Falcon Heavy and Starship

While the Falcon 9’s reusability is impressive, it’s not the only game in town. Let’s explore the

launch and landing profiles of other SpaceX vehicles:

1. SpaceX Falcon Heavy: This "brute force" cousin of the Falcon 9 is essentially three Falcon

9 cores strapped together, significantly boosting its payload capacity. Here’s its profile:

Figure 2.10: Falcon Heavy Flight Configuration And Mission Profile
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• Launch: Similar to the Falcon 9, all three cores ignite simultaneously, lifting the mas-

sive vehicle off the launchpad. After reaching a certain altitude, the two side boosters

detach and return to Earth for reuse, employing a similar re-entry and landing strat-

egy as the Falcon 9.

• Landing: The central core, carrying the payload, continues its journey to orbit. How-

ever, depending on the mission requirements, this core might also be recovered. In

such cases, it performs a re-entry and landing similar to the side boosters, often tar-

geting a designated landing pad.

2. Starship: This ambitious next-generation launch vehicle aims to revolutionize space travel.

It consists of two reusable elements:

(a) Super Heavy Booster: This massive booster, powered by next-generation Raptor en-

gines, lifts the Starship spacecraft to high altitude. After separation, the Super Heavy

performs a controlled re-entry and landing very similar to the Falcon 9, aiming for a

designated landing pad.

(b) Starship Spacecraft: This spacecraft carries crew and cargo to various destinations,

including the Moon, Mars, and beyond. Unlike the Falcon 9 and Falcon Heavy, Star-

ship itself is designed to be fully reusable. After reaching orbit, it performs a belly-

flop maneuver during re-entry to slow down using the atmosphere. Finally, it lands

vertically on landing legs at the launch site, similar to the Falcon 9.
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Figure 2.11: Star Ship Flight Configuration And Mission Profile
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By showcasing these diverse launch and landing profiles, we gain a broader perspective on

SpaceX’s innovative approach to reusable rockets, paving the way for a more sustainable and

cost-effective future in space exploration.

2.5 Conclusion

This chapter has taken us on a thrilling journey, exploring the inner workings of a rocket. We’ve

delved into the power of thrust, the delicate dance of pitch, yaw, and roll, and the crucial role of

sensors in guiding the beast through the vastness of space.

We then tackled the complexities of returning a rocket safely, with the fiery challenges of re-

entry and the awe-inspiring power of controlled landings, exemplified by the reusable Falcon

9. We even peeked into the future with the innovative launch and landing profiles of SpaceX’s

Falcon Heavy and Starship.

As we move forward, remember that these marvels of engineering are not just sophisticated

machines. They are testaments to human ingenuity, pushing the boundaries of science and

technology to unlock the secrets of the universe. The journey may hold challenges, but with

each successful launch, controlled landing, and mission accomplished, we inch closer to a fu-

ture where the stars are no longer a distant dream, but a tangible reality.

Summarizing the fundamental knowledge gained about rocket science and their control.
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Chapter 3

From Concept to Control: Methodology for a

Rocket Landing Simulation

3.1 Simulation Environment Design

3.1.1 Introduction

Before we embark on building our virtual launchpad, it’s crucial to understand why simula-

tion plays such a vital role in developing successful rocket landing systems. Real-world rocket

launches are incredibly complex and expensive endeavors. Risks associated with physical test-

ing are high, and opportunities for experimentation are limited. Here’s where simulation steps

in.

Simulations allow us to create safe and cost-effective environments where we can test and

refine different landing strategies repeatedly. These virtual testing grounds offer valuable in-

sights into the behavior of rockets under various conditions, enabling us to identify potential

issues and optimize landing control systems before venturing into actual launches.

Now, let’s talk about our choice of platform: Unity. We’ve opted for Unity due to several

compelling reasons:

• Powerful and Flexible: Unity is a widely recognized game engine with a robust physics en-
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Figure 3.1: Unity Logo

gine at its core. This allows for the creation of realistic simulations that accurately model

the physics of rocket flight and landing.

• Accessibility and User-Friendliness: Unity offers a user-friendly interface and a vast array

of tools that make it ideal for developing interactive simulations. This allows for efficient

development and the incorporation of various features into the simulation environment.

• Large and Active Community: Unity boasts a large and active community of developers.

This translates to readily available resources, tutorials, and support, which can prove in-

valuable during the development process.

3.1.2 Development Environment and Scripting Languages

Before we delve into the specifics of our virtual design, let’s discuss the tools that will bring it to

life. We’ll be utilizing a powerful combination of software to create our rocket landing simula-

tion:

3.1.2.1 Visual Studio Code (VS Code):

This versatile code editor serves as our central hub for development. VS Code offers a user-

friendly interface, syntax highlighting, and debugging capabilities, making it ideal for writing

and editing code efficiently.
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Figure 3.2: Visual Studio Code

3.1.2.2 Scripting Languages:

Our simulation will leverage two primary scripting languages:

• C#: As the primary scripting language within Unity, C# will be used to develop core func-

tionalities of the simulation environment. This includes scripting the behavior of the vir-

tual rocket, interacting with the physics engine, and managing user input for control pur-

poses.

Figure 3.3: C#

• Python: When dealing with intricate artificial intelligence (AI) and reinforcement learn-

ing algorithms, Python presents a compelling option due to its concise and readable syn-

tax. This makes it well-suited for rapid prototyping and development of these complex

algorithms. Additionally, Python’s extensive ecosystem of data analysis libraries, such as

matplotlib, will be instrumental in extracting valuable insights from the simulation. These

libraries can be leveraged to perform tasks like: Rocket Trajectory Plotting

Figure 3.4: Python
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By combining the power of VS Code with C# Python, we gain the flexibility and control

needed to build and refine our rocket landing simulation within the Unity framework.

3.1.3 A Glimpse into the Unity Interface

Our exploration of the virtual landing environment wouldn’t be complete without a brief intro-

duction to the core sections of the Unity interface that facilitate its creation. Understanding

these sections is crucial for navigating and manipulating elements within the simulation.

Figure 3.5: Unity Interface

1. Hierarchy: This panel acts as an organizational hub, displaying a tree-like structure of

all objects present in the simulation scene. Similar to an organizational chart, the hierar-

chy allows for easy selection and manipulation of individual objects, such as the rocket,

landing pad, or background elements.

2. Scene (Editor View): The Scene view, which we’ll refer to as the "Editor View", serves as

the primary workspace for constructing and editing our simulation environment. Here’s a

breakdown of its key functionalities:
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• Building the Environment: This view acts as our virtual canvas, where we can place

and arrange objects like the rocket, landing pad, and background scenery. It allows

us to manipulate these objects directly, similar to working with a 3D modeling pro-

gram.

• Visualization and Editing: The Scene view offers a real-time representation of your

simulation environment. You can zoom in and out, rotate the view, and navigate

around the scene to inspect details and make adjustments. Additionally, the Scene

view allows for selection and manipulation of individual objects within the environ-

ment. You can use tools like the Transform gizmos to precisely position, rotate, and

scale these objects.

• Raycast Visualization: The Scene view also displays raycasts. These are visual aids

that represent lines with different colors extending from the rocket in the scene. Ray-

casts can be helpful for debugging purposes, and are used in gathering information

also, allowing us to visualize how objects might interact with each other.

3. Cameras (Simulation View): The Cameras view, which we’ll refer to as the "Sim View",

acts as a dedicated window for visualizing the final rendered output of our simulation.

Imagine it as a real-time camera feed capturing what the user would experience during

the actual simulation:

• Camera Perspective: This view showcases the scene exclusively through the lens of

the virtual cameras we’ve positioned within our environment. This allows us to verify

how the simulation will appear when running without the clutter of the Editor tools

present in the Scene view.

• Optimized Rendering: Unlike the Scene view, the Sim view focuses on optimized

rendering, providing a smooth and realistic representation of the simulation envi-

ronment. This helps ensure that the visual experience for the user during the simu-

lation is optimized.
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In essence, the Scene view serves as our editing and construction workspace, while the

Sim view provides a dedicated window for visualizing the final rendered output of our

simulation through the designated cameras. By effectively utilizing both views, we can

create a visually compelling and informative rocket landing simulation environment.

4. Inspector: Imagine a detailed control panel - that’s precisely what the Inspector offers.

When we select an object in the Hierarchy, the Inspector displays its properties and set-

tings. This allows us to fine-tune aspects like the object’s position, rotation, scale, material

properties, and even behaviors if they are scripted.

5. Project/Console Area: The bottom bar typically houses the Project panel. This panel

serves as a file management system, providing an overview of all assets (images, models,

scripts) imported into our project. The bottom section also displays the Console panel

(when selected), which relays important messages, warnings, logs, or errors during devel-

opment.

By effectively utilizing these key sections of the Unity interface, we can construct, customize,

and interact with the virtual landing environment, paving the way for a robust and informative

rocket landing simulation

3.1.4 Project Hierarchy

This section delves into the organization of our rocket landing simulation project within the

Unity interface, specifically focusing on the objects and their hierarchical relationships. This

hierarchy plays a crucial role in managing and manipulating elements within the simulation.

Plane: A single plane object, which serves as the virtual ground for our launch and landing

area

Main Focus: "Falcon9 Area" This parent object acts as a container, encompassing all ele-

ments directly associated with the rocket and its landing environment:
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Figure 3.6: Hierarchy

• Display: This child object is responsible for displaying crucial information on the screen

throughout the simulation. Examples include velocity (vertical and horizontal), overall

speed, rocket position relative to the landing pad, distance to landing, and potentially

reward indicators.

• Camera: This child object serves as a container for various camera setups within the sim-

ulation:

1. Main Camera: This grandchild object offers a comprehensive view of the rocket, dy-

namically following it as it descends towards the landing pad.

2. TVC Camera: Focused on the bottom of the rocket setup, this grandchild camera

allows for observing the activation of the Thrust Vector Control (TVC) system.
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3. Different POV Camera: This grandchild object provides an alternative perspective

to the rocket’s descent, offering a different viewpoint for analysis.

4. Eagle Eye: This grandchild camera provides a bird’s-eye view, encompassing the en-

tire simulation environment.

5. Horizon Cam: This grandchild camera offers a horizontal view of the simulation en-

vironment, focusing on the horizon line.

6. Above Cam: Positioned above all landing pads, this grandchild camera grants an

overview of the simulation, allowing for visual confirmation of successful (green land-

ing pad) and failed (red landing pad) attempts.

• Training Area: This child object encompasses all elements related to the training environ-

ment:

1. SpaceX - Falcon 9: This grandchild object represents the virtual rocket model used

in the simulation.

Figure 3.7: Falcon9 Hierarchy

– Fairing: This grandchild object represents the protective nose cone of the rocket.

– First Stage: This grandchild object represents the main booster stage of the rocket.

– Second Stage: This grandchild object represents the upper stage of the rocket

that carries the payload.

– Particle System TVC: This grandchild object is a particle system that visually de-

picts the activation of the Thrust Vector Control system.
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– Particle System CGT: his grandchild object is a particle system that visually de-

picts the activation of the Cold Gas Trusters system.

2. Landing Pad: This grandchild object represents the designated landing zone for the

rocket

• Different Levels (1 to 10): This child object acts as a container for various difficulty levels

within the simulation. Each level (Level 1 to Level 10) is a grandchild object containing

specific configurations or challenges for the rocket landing.

3.1.5 Conceptual Overview

This concept map provides a visual representation of the core components and their interac-

tions within the reinforcement learning framework designed for training an autonomous rocket

landing agent. The map illustrates the key elements and how they work together to achieve

successful landing simulations.

Figure 3.8: Concept Map
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3.1.6 Simulation Environment Design

The cornerstone of our rocket landing simulation is the meticulously crafted virtual environ-

ment. This environment serves as the training ground where the autonomous landing maneu-

vers are honed. We’ll begin by taking a closer look at the core elements of this environment,

focusing on the rocket and landing pad. We’ll then delve into the innovative approach used to

create multiple training areas, fostering a diverse and challenging training landscape for the AI.

Figure 3.9: Simulation Environment Design

3.1.7 Description of the rocket model in Unity

Our simulated rocket (Figure 3.10) closely resembles a real-world model, mirroring the hierar-

chical structure of the SpaceX Falcon 9 (Figure 3.11; reference: [36]).

This translates to a three-stage design:

1. Fairing: The fairing acts as a protective enclosure for the payload during launch. It’s jetti-

soned at a predetermined altitude.

2. First Stage: This primary stage powers the initial liftoff and ascent phase and also the re-

entry and landing phase.
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Figure 3.10: Our Project Falcon-9 Model

Figure 3.11: SpaceX Official Falcon-9 Model [36]

• Landing Legs: Landing legs are the sturdy supports attached to the bottom of the

first stage. These unsung heroes play a critical role during the rocket’s return to

Earth. As the first stage reenters the atmosphere, landing legs withstand immense

heat and aerodynamic forces. Upon touchdown, they absorb the impact, ensuring

a controlled descent and preventing damage to the rocket and launch infrastruc-

ture. In essence, landing legs play an important role in the safe return of the reusable

rocket.
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Figure 3.12: Falcon-9 Fairing

Figure 3.13: Falcon-9 First Stage

Having a realistic landing leg model is crucial for achieving a controlled touchdown. To

simulate the behavior of the landing legs and implement control logic, we developed a

dedicated landing leg controller component. This component interacts with the physics

engine to accurately reflect the physical properties and movements of the landing legs
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Figure 3.14: Falcon-9 Landing Legs

during descent.

To provide a deeper understanding of the landing leg control implementation, we present

the following:

(a) LandingLegController Class Diagram: To provide a foundational understanding of

the landing leg control logic, we present the LandingLegController class diagram

(Figure 3.15). This diagram focuses on the internal structure of the class, illustrat-

ing the various attributes and methods that work together to manage the landing leg

behavior.

(b) Landing Legs Controller Sequence Diagram This sequence diagram illustrates the

message flow between the LandingLegController and other relevant objects during

the deployment of the landing legs. It clarifies the sequence of events and interac-

tions necessary to extend the landing legs from their stowed position (Figure 3.16).
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Figure 3.15: Landing Legs Controller Internal structure of the class

Figure 3.16: Landing Legs Controller Sequence Diagram

3. Second Stage: Taking over after first-stage separation, the second stage provides propul-

sion for the remainder of the ascent.
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Figure 3.17: Falcon-9 Second Stage

3.1.8 Rocket Control and Scripting

The simulated rocket is equipped with a control system that guides its descent towards the land-

ing pad. This system relies on various sensors (e.g., gyroscopes, accelerometers) to gather real-

time data about the rocket’s orientation and movement. Additionally, high-level control logic is

implemented using scripts. These scripts interpret sensor data and send commands to the con-

trol system, dictating actions like adjusting engine thrust or initiating landing leg deployment

at specific points during the descent. Scripting offers flexibility in defining and testing various

control strategies, allowing us to optimize the rocket’s landing performance.

Figure 3.18 depicts the rocket prefab within the scene editor, along with its inspector window

showcasing the attached components. These components play a crucial role in simulating the

rocket’s behavior and enabling its control during the landing phase.

1. Transform: This fundamental component stores the rocket’s position and rotation data

in 3D space. This information is vital for various purposes, including:
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Figure 3.18: Rocket’s Inspector Components

• Information Retrieval: Scripts can access the transform component to obtain the

current position and orientation of the rocket during its descent.

• State Manipulation: The transform component allows scripts to reset the rocket to

a new starting position and orientation for each landing attempt. This is typically

achieved by randomly modifying the transform values within a predefined range.

2. Capsule Collider: This component defines the rocket’s collision volume as a capsule shape.

This collider is essential for enabling realistic physics interactions. The capsule collider

ensures that the rocket collides with other objects in the environment (such as the land-

ing pad) and prevents it from passing through them unrealistically.

3. RigidBody: The rigidbody component governs the rocket’s physical properties that influ-

ence its movement during the simulation. Key attributes within this component include:

• Mass: Defines the overall weight of the rocket, affecting its momentum and inertia.

• Drag and Angular Drag: These properties simulate air resistance, impacting the rocket’s

velocity and rotational speed.
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• Center of Mass: This point represents the mass distribution within the rocket, influ-

encing its rotational behavior.

• Gravity: Enabling or disabling gravity allows control over the simulated gravitational

force acting on the rocket.

4. Scripts: The "Scripts" section of the inspector window displays the various scripts at-

tached to the rocket prefab. These scripts are responsible for implementing the high-level

control logic for the rocket during descent. We will delve into the functionalities of each

script in the next section.

3.1.9 Main Code Components:

• Rocket Prefab: This prefab serves as the blueprint for our simulated rocket. It encapsu-

lates various environment objects representing the rocket’s physical structure (e.g., mesh,

materials, componenets) and other objects like the landing pad, particle systems and so

on.

Figure 3.19: Prefabs

• Rocket Scripts: These are the core components controlling the rocket’s functionality. Here

are the main scripts relevant to our rocket control:

Figure 3.20: Rocket Attached Scripts
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1. Rocket Controller: Manages overall rocket movement based on physics interactions

and script instructions.

2. Rocket Agent: Implements an intelligent control strategy using reinforcement learn-

ing.

3. Behavior Parameters: Holds configurable settings that influence the behavior of

various scripts during the simulation.

4. Decision Requester: Facilitates communication between the rocket agent and the

simulation environment, allowing the agent to request decisions based on observed

states.

5. Rocket Trajectory Recorder: Captures the rocket’s trajectory data throughout the

simulation run for analysis purposes.

• Unity Physics Engine: The Unity physics engine provides the foundation for simulating

the rocket’s physical behavior. It processes interactions between the rocket and its envi-

ronment, including gravity, collisions, and forces applied by the scripts.

3.2 Curriculum Learning

The figure 3.21a depicts the curriculum learning approach [37] employed in training the rocket

agent. It showcases ten batches, each containing 96 training areas. Each batch represents an

incremental increase in the initial drop height range for the rocket agent, as detailed in Table

4.2. The figure visually depicts these ranges, such as "[1700m - 2000m]" for one batch. The

figure on the right 3.21b provides a visual representation of the rocket agent during training at

different heights. It complements the curriculum learning approach depicted in the left figure.
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(a) Curriculum Learning Approach (b) Visualization of Agent Training (Execution)

Figure 3.21: Curriculum Learning for Progressive Rocket Agent Training

3.3 Code Implementation and Rocket Control:

3.3.1 Rocket Controller:

The RocketController script is a crucial component of the rocket simulation, responsible for

managing the rocket’s thrust, orientation, and various control systems. This script leverages

Unity’s physics engine to apply forces and simulate realistic rocket behavior.

Key Components:

• Thrust Variables:

– The serialized fields thrustForce_Up, thrustForce_Right, thrustForce_Left, thrust-

Force_Front, and thrustForce_Back allow for configuring the thrust forces in differ-

ent directions, measured in Newtons (N).

• Force Direction Vectors:

– These vectors: TVC_Force_Direction_Up,

TVC_Force_Direction_Right,

TVC_Force_Direction_Left,

TVC_Force_Direction_Front,
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TVC_Force_Direction_Back

define the directions of the thrust forces applied during Thrust Vector Control (TVC).

Figure 3.22: TVC Force Direction Declaration

Figure 3.23: Math Graph Plotting TVC Force Vectors

– and These vectors:

CGT_Force_Direction_Right,

CGT_Force_Direction_Left,

CGT_Force_Direction_Front,

CGT_Force_Direction_Back

define the directions of the forces applied by the Cold Gas Thrusters (CGT).

Figure 3.24: CGT Force Direction Declaration
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Figure 3.25: Math Graph Plotting CGT Force Vectors

• Control Variables:

– MaxThrustSpeed, Max_Thrust_Force_Change, Desired_Time: These variables cal-

culate the maximum thrust speed and the desired time for force changes.

– scale_weight: A factor to scale the weight of the rocket for force calculations.

• Particle Systems:

– Particle_System_TVC, Particle_System_CGT_Holder: Objects representing the vi-

sual effects for the TVC and CGT systems.

– particleControl_system_TVC, particleControl_system_CGT : Control scripts for man-

aging the particle systems.

• Landing Leg Control:

– Landing_Leg_Rotator, is_Landing_Legs_open, landing_Leg_Controller: These man-

age the deployment of the rocket’s landing legs.

• Raycast for Landing:

– hit, localOffset, raycastLength, isVerticalRaycastHit: These variables and the asso-

ciated logic detect the proximity of the rocket to the landing pad.

Main Functions:
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• Start():

Initializes the Rigidbody, particle systems, and stores the initial position and rotation of

the rocket.

Figure 3.26: Start() Function

• TVC(Vector3 Force_Direction, float thrustForce):

Applies a force in the specified direction using the TVC system.
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Figure 3.27: TVC() Function

• Cold_Gas_Thrusters(Vector3 Force_Direction, float thrustForce):

Applies a force using the Cold Gas Thrusters.

Figure 3.28: CGT() Function
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• Update():

Handles input for resetting the rocket, deploying landing legs, and performing raycast

checks for landing.

Figure 3.29: Update()

Conclusion:

The RocketController script plays a vital role in simulating realistic rocket behavior by man-

aging thrust forces, controlling various thruster systems, and ensuring safe landing procedures.

Its integration with Unity’s physics engine and various control mechanisms enables detailed

and accurate simulations, contributing significantly to the project’s overall success.

3.3.2 Rocket Agent:

The "Rocket Agent" is a core component of the simulation environment that leverages rein-

forcement learning to control the autonomous landing of a rocket. This agent is implemented
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using the Unity ML-Agents framework, which provides tools for training intelligent agents in

dynamic environments. Below, we detail the implementation and functionality of the Rocket

Agent script, highlighting the key elements and processes involved.

Main Methods:

• OnEpisodeBegin():

This method [38]is invoked at the beginning of each training episode, serving to reset the

environment, initialize essential components, and adjust the agent’s training parameters

based on the progress made in previous episodes. By systematically preparing the agent

for a new episode, the OnEpisodeBegin method ensures a structured and effective learn-

ing process.

Figure 3.30: OnEpisodeBegin Method

• OnActionReceived():

The OnActionReceived [39] method serves as the entry point for the agent to receive and

process actions from the environment in a reinforcement learning setting. It interprets the

actions provided by the environment, translates them into meaningful commands for the
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agent (such as controlling thrusters or adjusting orientation), calculates rewards based

on the agent’s actions and the environment’s state, and determines whether an episode

should continue or terminate based on predefined conditions. Essentially, it drives the

decision-making process of the agent within its environment.

Figure 3.31: OnActionReceived Method

Let’s break it down:

1. Input Handling: It receives action information (actionBuffers) from the environ-

ment.

2. Thrust Vector Control (TVC): It extracts discrete actions for TVC and applies corre-

sponding thrust forces based on the actions.

3. Cold Gas Thrusters (CGT): It extracts discrete actions for CGT in different directions

and applies thrust forces accordingly.

4. Reward Function: It calculates rewards based on various factors such as distance to

the landing pad, rotation angles, altitude, velocity, and leg landing status (ref:3.4).

5. End Episode Conditions: It determines when to end the episode based on failure

conditions (e.g., crashing or exceeding rotation limits) or success conditions (e.g., all

legs landed and stable for a certain duration).
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6. Normalization and Weighting: It normalizes angles and distances and applies weights

to different components of the reward (ref: 3.4).

7. Final Reward Calculation: It combines individual rewards using predefined weights

to compute the final reward for the agent (ref: 3.4).

8. Reward Assignment: It sets the calculated reward for the agent (ref: 3.4).

3.3.3 Behavior Parameters:

Behavior Parameters play a crucial role in configuring how agents behave within the Unity ML-

Agents environment. This component acts as a container for various settings that influence the

decision-making processes, actions, and overall functionality of the agent during training and

simulation runs.

Figure 3.32: Behavior Parameters

Key Parameters:

• Behavior Name: This field assigns a unique name to the behavior, allowing us to distin-
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guish between multiple behaviors an agent might possess.

• Space Size: This defines the dimensionality of the vector representing the agent’s observa-

tion space. The agent receives observations from the environment in this format, and the

size should correspond to the number of elements used to represent the state of the world.

In Figure 3.33, the value is set to "22," indicating a 22-dimensional vector for observations.

Figure 3.33: Collecting Observations

The behavior parameters for the rocket agent’s observations are detailed in Table 3.1. This

table comprehensively outlines each observation type, including its nature and specific
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details.

Table 3.1: Detailed Behavior Parameters for Rocket Agent Observations

Observation Type Description Size
Rocket Position Vector (X, Y, Z) Axis 3
Rocket Rotation Vector (Pitch, Yaw, Roll) Angles 3
Rocket Velocity Vector (X, Y, Z) Velocity Components 3
Landing Pad Position Vector (X, Y, Z) Axis 3
Distance Vector Distance to Landing Pad in (X, Z) 2
Landing Legs Boolean Leg Landing States 4
Cold Gas Thrusters Activation Boolean Thruster Activation States 4

• Actions: This section specifies the action space that the agent can utilize. It consists of

two dropdown menus:

1. Type: This dropdown defines the format of the actions the agent can take. Options

include Discrete (meaning a finite set of choices) and Continuous (where actions are

represented by floating-point values).

2. Size: This value specifies the number of elements within the chosen action format.

The figure 3.32 shows separate values for different branches (explained below 3.3.3).

• Branches: This section is used for configuring a branching structure within the action

space. It allows us to define multiple discrete or continuous action sub-spaces (branches)

that the agent can choose from at a given point. The provided figure 3.34 shows five

branches, each with its own size specified. When a branch is active, the agent can only

output actions within the corresponding size constraints of that branch.
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Figure 3.34: Visualization of Different Branch Sizes

– Branch 0 (TVC) has 6 dimensions, allowing the agent to choose from 6 different con-

trol actions for the Thrust Vector Control system.

– Branches 1 through 4, representing the Cold Gas Thrusters (CGT), each have a di-

mension of 2. This means the agent can choose independent on/off states for each

individual Cold Gas Thruster.

Total Combinations = (Number of choices in Branch 0)×(Number of choices per CGT)Number of thrusters

(3.1)

Total Combinations = 6×24 = 6×16 = 96

So, the agent has 96 possible action combinations at each step.

• Model: Holds a reference to the machine learning model (e.g., a neural network) asso-

ciated with the behavior. This model maps observations from the environment to agent

actions.

• Inference Device: Specifies the hardware device used for executing the machine learning

model’s computations (e.g., CPU, GPU).
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• Behavior Type: Sets the overall mode in which the agent behaves:

1. Default: During training, the agent learns a policy (model) that maps observations

to actions. In the "Default" mode, the agent interacts with the environment, receives

observations, and then uses inference on its trained policy to determine the appro-

priate action for the current state.

2. Heuristic: Overrides the learned policy with custom logic for debugging or specific

scenarios.

3. Inference: Agent receives actions directly from a pre-trained model, The model then

generates actions based on the observations without the back-and-forth interaction

with the environment.

3.3.4 Decision Requester:

The DecisionRequester component is used to automatically request decisions at regular inter-

vals for an agent in Unity’s ML-Agents framework. By attaching this component to an agent,

we can control the frequency of decision-making without manually requesting decisions in the

agent’s code.

• Key Functionalities:

1. RequestDecision(state): This receives the current state information from the Rocket-

Agent and transmits it to the simulation environment.

2. ReceiveAction(action): This retrieves the action (control decision) chosen by the

simulation environment (or pre-defined control logic) and sends it back to the Rocket-

Agent.

3. Decision Interval: The primary configuration parameter is the decision interval,

which determines how often the agent will request a decision. For example, setting

the interval to 5 means the agent will request a decision every 5 steps.
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Figure 3.35: Decision Requester

3.3.5 Rocket Trajectory Recorder:

Understanding the agent’s flight path and decision-making process during training and simula-

tion runs is crucial for evaluating its performance. This section explores the interplay between

the RocketTrajectoryRecorder script and data visualization techniques to achieve this goal.

1. Trajectory Recording: The RocketTrajectoryRecorder script acts as a monitoring tool,

capturing the agent’s trajectory data at predefined intervals. This data typically includes

the rocket’s position (X, Y, and Z coordinates) at each recorded instance. Additionally, it in-

corporate flags indicating distinct flight phases. Essentially, the script builds a time-series

record of the agent’s movements throughout the simulation run.
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Algorithme 1 : Rocket Trajectory Recording Algorithm

1: Initialize an empty list trajectoryPoints
2: Initialize an empty list connectFlags
3: Set timer← 0
4: Define recordInterval as the time interval for recording positions
5:

6: while simulation is running do
7: Increment timer by ∆t
8: if timer ≥ recordInterval then
9: timer← 0

10: RecordRocketPosition()
11: end if
12: end while
13:

14: Procedure RecordRocketPosition()
15: if trajectoryPoints is not empty then
16:

17: if IsNewPhase(currentPos, previousPos) then
18: Add 0 to connectFlags
19:

20: end if
21:

22: end if
23: Add current rocket position to trajectoryPoints
24: Add 1 to connectFlags
25: End Procedure
26:

27: Function IsNewPhase(currentPos, previousPos)
28: return (currentPos.y - previousPos.y > 50.0)
29: End Function
30:

31: Procedure SaveTrajectoryData(filePath)
32: for each point in trajectoryPoints do
33: Write (x, y, z, connectFlags[i]) to CSV file
34: end for
35: End Procedure

2. Data Export and Visualization: The recorded trajectory data is stored in a format suitable

for further analysis, such as a CSV (Comma-Separated Values) file. This file format allows

for easy import into various data analysis and visualization tools. Tools like Python’s mat-

plotlib library, as demonstrated in the provided code snippet, can be leveraged to create

68



From Concept to Control: Methodology for a Rocket Landing Simulation

informative visualizations of the flight path.

Figure 3.36: Trajectory Visualization Script

Figure 3.37: Rocket Trajectory Plot
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3.4 Reward Shaping

3.4.1 Distance

The distance reward shaping mechanism plays a pivotal role in guiding the rocket towards the

landing pad by incentivizing it to minimize the distance to the target location. Here’s a detailed

breakdown of the distance reward shaping process:

Figure 3.38: Distance Reward Section

The distance between the rocket and the landing pad is computed in the X and Z axes while

ignoring the Y axis. This calculation enables the agent to focus solely on horizontal positioning

relative to the target.
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rocketPosition = transform.localPosition

landingPadPosition = Landing_Pad.transform.localPosition

Distance_to_landingPad_X = rocketPosition.x− landingPadPosition.x

Distance_to_landingPad_Z = rocketPosition.z− landingPadPosition.z

The Euclidean distance between the rocket and the landing pad is then calculated using the

Pythagorean theorem:

distanceToPad =
√

(rocketPosition.x− landingPadPosition.x)2 + (rocketPosition.z− landingPadPosition.z)2

(3.2)

The reward for distance is determined based on how close the rocket is to the landing pad

relative to a predefined maximum distance. This distance reward is normalized to ensure it falls

within a specified range, typically between -1 and 1, but in our case, we extend the range to [-10,

1] to heavily penalize any large deviation. The formula used for normalizing the distance reward

is as follows:

normalizedDistance = Clamp

(
2× (maxDistance−distanceToPad)

maxDistance
−1.0,−10,1.0

)
(3.3)

The resulting normalized distance reward guides the rocket’s behavior towards the landing

pad, with penalties for being far away and rewards for getting closer.

3.4.2 Rotation

The rotation component is crucial in ensuring the rocket maintains a stable orientation during

its descent and landing. This component considers the pitch, yaw, and roll angles of the rocket
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and normalizes these angles to calculate a rotation reward. The detailed steps are as follows:

• Extracting Rotation Angles: The rocket’s current rotation angles are extracted from its

transform component. These angles represent the pitch, yaw, and roll of the rocket.

pitchAngle = transform.eulerAngles.x (3.4)

yawAngle = transform.eulerAngles.y (3.5)

rollAngle = transform.eulerAngles.z (3.6)

• Defining Maximum Allowed Angles: The maximum permissible angles for pitch, yaw,

and roll are defined to prevent excessive rotation, which could destabilize the rocket.

maxPitch = 45.0◦ (3.7)

maxYaw = 45.0◦ (3.8)

maxRoll = 45.0◦ (3.9)

• Normalizing Angles: The rotation angles are normalized to the range [−180◦,180◦) to han-

dle the wrap-around effect that occurs at 360◦.

• Calculating Normalized Rotation: Each angle is normalized based on its maximum al-

lowed value, yielding a value between 0 and 1. This normalization ensures that smaller

deviations from the ideal orientation are rewarded higher than larger deviations.

normalizedPitch = clamp

(
1.0−

∣∣∣∣pitchAngle

maxPitch

∣∣∣∣ ,0.0,1.0

)
(3.10)

normalizedYaw = clamp

(
1.0−

∣∣∣∣yawAngle

maxYaw

∣∣∣∣ ,0.0,1.0

)
(3.11)

normalizedRoll = clamp

(
1.0−

∣∣∣∣rollAngle

maxRoll

∣∣∣∣ ,0.0,1.0

)
(3.12)
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• Weighting Rotation Components: Each normalized rotation angle is assigned a weight

to balance their contributions to the final rotation reward. Here, pitch and roll are given

higher weights compared to yaw.

pitchWeight = 0.45 (45% of the total value) (3.13)

yawWeight = 0.1 (10% of the total value) (3.14)

rollWeight = 0.45 (45% of the total value) (3.15)

• Combining Rotation Rewards: The final rotation reward is a weighted sum of the normal-

ized rotation components.

rotationReward = (pitchWeight ·normalizedPitch)

+ (yawWeight ·normalizedYaw)

+ (rollWeight ·normalizedRoll) (3.16)

This detailed consideration of the rocket’s rotation helps ensure that the rocket maintains

stability and orientation during the descent and landing phases, contributing significantly to

the overall reward shaping mechanism.
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[scale=0.5]

Figure 3.39: Rotation Reward Section

3.4.3 Altitude

The altitude of the rocket is measured relative to its initial drop height. The reward mechanism

is designed to encourage the rocket to minimize its altitude in a controlled manner.

Figure 3.40: Altitude Reward Section

The altitude is determined by the y-coordinate of the rocket’s local position:

altitude = transform.localPosition.y (3.17)
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The maximum altitude is defined as the initial height from which the rocket begins its de-

scent:

maxAltitude = rocketController.initialPosition.y (3.18)

The reward for altitude is computed by normalizing the current altitude relative to the max-

imum altitude. This normalization ensures that the altitude reward ranges from 0 to 1, where 1

represents the lowest possible altitude (i.e., at the landing pad level), and 0 represents the maxi-

mum initial altitude. The formula used to calculate the altitude reward is as follows:

altitudeReward = 1.0−Clamp

(
altitude

maxAltitude
,0.0,1.0

)
(3.19)

In this context, the Clamp function ensures that the ratio altitude
maxAltitude remains within the in-

terval [0.0,1.0], preventing values outside this range that might result from measurement noise

or other factors.

The resulting altitude reward is then combined with other rewards (such as distance, rota-

tion, and velocity) to form the overall reward signal guiding the rocket’s descent.

3.4.4 Velocity

The reward for velocity is determined by comparing the rocket’s vertical descent speed to a tar-

get descent speed. This comparison is used to calculate a reward that encourages the rocket to

maintain an optimal descent velocity. The reward is normalized to ensure it falls within a speci-

fied range, typically between -1 and 1, but in our case, we extend the range to [-10, 1] to heavily

penalize any large deviation. The formula used for normalizing the velocity reward is as follows:

velocityDifference = ∣∣verticalDescentSpeed− targetDescentSpeed
∣∣ (3.20)

normalizedDifference = Clamp

(
1.0− velocityDifference

maxDifference
,−10.0,1.0

)
(3.21)
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velocityReward = normalizedDifference (3.22)

Here’s a detailed explanation:

1. Vertical Descent Speed Calculation: The vertical descent speed is obtained from the neg-

ative of the rocket’s y-axis velocity, since positive y is upward. This is given by:

verticalDescentSpeed =−rocketBody.velocity.y (3.23)

2. Target and Maximum Descent Speed: The target descent speed is set to a desired value,

for example, 10.0 m/s. The maximum allowable descent speed is set to another value, for exam-

ple, 15.0 m/s. These values can be adjusted based on specific requirements:

targetDescentSpeed = 10.0m/s and MaximumDescentSpeed = 15.0m/s

3. Velocity Difference: The absolute difference between the vertical descent speed and the

target descent speed is calculated to measure how far the current speed deviates from the target:

velocityDifference = ∣∣verticalDescentSpeed− targetDescentSpeed
∣∣ (3.24)

4. Normalization of the Difference: The velocity difference is then normalized to fall within

the range of [0, 1] based on a maximum difference, which can be adjusted as needed. This

normalization ensures that as the rocket’s descent speed gets closer to the target, the reward

increases. The range is extended to [-10, 1] to penalize large deviations more heavily:

normalizedDifference = Clamp

(
1.0− velocityDifference

maxDifference
,−10.0,1.0

)
(3.25)

5. Velocity Reward Calculation: Finally, the normalized difference is used to calculate the
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velocity reward. The reward increases as the velocity gets closer to the target:

velocityReward = normalizedDifference (3.26)

This reward shaping encourages the rocket to maintain a descent speed close to the target,

ensuring a controlled and safe landing.

Figure 3.41: Velocity Termination Negative reward

In addition to rewarding proximity to the target descent speed, a significant penalty is im-

posed if the vertical descent speed exceeds the maximum allowable descent speed. If this thresh-

old is breached, a substantial negative reward is issued, the landing pad color is changed to red,

and the episode ends:

Mathematically, the condition for applying the negative reward is:

if vy > vmax, then apply a reward of −50.0

3.4.5 Landing Legs Status

The landing leg reward system is designed to incentivize the rocket to land stably by reward-

ing the number of landing legs that make contact with the ground. Each leg’s landing status is

checked, and an exponential reward is calculated based on the count of landed legs. Addition-

ally, if all legs are landed and the rocket remains stable for a specified duration, a substantial

reward is given, and the episode ends successfully.

First, the number of landed legs is determined:
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landedLegsCount = 0 (3.27)

The landing status of each leg is checked and the count is incremented accordingly:

Figure 3.42: Landing legs count

An exponential reward is calculated based on the number of landed legs:

legLandingReward = 2landedLegsCount (i.e., 1, 4, 8, 16) (3.28)

If at least one leg is landed, this reward is applied:

// Increment the reward for successfully landed legs

if (landedLegsCount != 0) {

SetReward(legLandingReward);

}

To ensure a successful landing, all legs must be landed and remain stable for a specified

duration. This is checked using a timer:

// Check if all legs are landed

allLegsLanded = landing_Leg_Controller.is_leg1_landed &&

landing_Leg_Controller.is_leg2_landed &&

landing_Leg_Controller.is_leg3_landed &&

landing_Leg_Controller.is_leg4_landed;
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if (allLegsLanded) {

// Increment the timer when all legs are landed

landingTimer += Time.deltaTime;

// Check if the landing duration threshold is reached (e.g., 15 seconds)

if (landingTimer >= landingDurationThreshold) {

// End the episode and provide a positive reward

SetReward(successfulLandingReward[Current_Level]);

Change_LandingPad_Color(Color.green);

TrainingStatistics.IncrementGlobalSuccessfulAttempt(); // Increment the global successful attempt count

EndEpisode();

}

} else {

// Reset the timer if not all legs are landed

landingTimer = 0f;

}

In summary, the reward system for landing legs is as follows:

1. Calculate the number of landed legs.

2. Apply an exponential reward based on the number of landed legs.

3. If all legs are landed and the rocket remains stable for a threshold duration, provide a signifi-

cant reward and end the episode successfully.

This system ensures that the rocket is rewarded for stable landings, promoting safe and con-

trolled descent.

3.4.6 Final Reward

The overall reward for the rocket’s performance is derived by combining four distinct compo-

nents: distance, rotation, altitude, and velocity rewards. Each component contributes equally
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to the final reward, ensuring a balanced evaluation of the rocket’s landing process.

First, each component is assigned an equal weight:

distanceWeight_reward = 0.25 (3.29)

rotationWeight_reward = 0.25 (3.30)

altitudeWeight_reward = 0.25 (3.31)

velocityWeight_reward = 0.25 (3.32)

The weighted rewards for each component are calculated as follows:

Final_Distance_Reward = distanceWeight_reward×normalizedDistance

Final_Rotation_Reward = rotationWeight_reward× rotationReward

Final_Altitude_Reward = altitudeWeight_reward×altitudeReward

Final_Velocity_Reward = velocityWeight_reward×velocityReward

The overall reward is then obtained by summing these weighted rewards:

reward = Final_Distance_Reward+Final_Rotation_Reward+Final_Altitude_Reward+Final_Velocity_Reward

(3.33)
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Figure 3.43: Final Reward Section

This comprehensive reward structure ensures that the rocket is evaluated based on its prox-

imity to the landing pad (distance reward), its orientation (rotation reward), its altitude (altitude

reward), and its descent velocity (velocity reward). By weighting each component equally, the

reward system promotes a balanced approach to optimizing all critical aspects of the rocket’s

landing process.

The implementation of this final reward occurs at every interval of steps set by the decision

requester (3). This interval determines how frequently the agent’s decisions and corresponding

rewards are evaluated, ensuring timely and accurate feedback for the learning process.

3.5 Training Configuration and Process

In this section, we detail the configuration settings and the process involved in training the

rocket’s behavior using Proximal Policy Optimization (PPO). The parameters and settings used

for training the Rocket_Behavior are summarized in Table 3.2.

Here’s a breakdown of some key parameters and their justifications:

• Batch Size (120): The Batch Size parameter determines how many completed episodes

are grouped together for updating the agent’s policy network (the ”brain” that guides its
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Table 3.2: Training Parameters for Rocket_Behavior

Parameter Value
trainer_type PPO
batch_size 120
buffer_size 12000
learning_rate 0.0003
beta 0.001
epsilon 0.2
lambd 0.95
num_epoch 3
learning_rate_schedule Linear
normalize True
hidden_units 128
num_layers 2
vis_encode_type Simple
gamma 0.99
strength 1.0
keep_checkpoints -1
checkpoint_interval 50000000
max_steps 1000000000
time_horizon 1000
summary_freq 12000

decision-making). This is why 120 is a common choice for batch-based reinforcement

learning algorithms, balancing computational efficiency with learning progress. Typical

range: 32 - 512

• Learning Rate (0.0003): This value helps the agent learn at a steady pace without encoun-

tering instability or slow convergence. Typical range: 1e−5 −1e−3

• Beta (0.001): Beta directly influences the clipping range used in PPO. A higher Beta value

leads to a stricter clipping range, meaning the updated policy is closer to the previous one,

promoting exploitation. Conversely, a lower Beta value allows for a looser clipping range,

giving the agent more freedom to explore new actions. Typical range: 1e−4 −1e−2

• Epsilon (0.2): This exploration parameter allows the agent to balance exploitation (choos-

ing known good actions) with exploration (trying new actions) during training. Typical

range: 0.1 - 0.3
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• Hidden Units (128) and Num Layers (2): This configuration provides a sufficient neural

network capacity for the agent to learn complex control policies for the rocket landing

task.

• The remaining parameters in Table 3.2 control various aspects of the training process,

such as buffer size, learning rate schedule, and checkpoint frequency. These were chosen

to ensure efficient training and facilitate the evaluation of the trained agent’s performance.

The training process involves setting up the agent’s behavior and using the specified pa-

rameters to guide its learning. The Rocket_Behavior is configured to use the Proximal Policy

Optimization (PPO) algorithm, which is a widely-used reinforcement learning algorithm known

for its stability and reliability.

These settings and processes are crucial for ensuring the agent learns effectively and effi-

ciently, optimizing the performance of the rocket landing behavior.

3.5.1 Training Command and CMD Output

To initiate the training process, we use the following command in the Command Prompt (CMD):

mlagents-learn Rocket.yaml --env=C:/Users/Hicham/Desktop/"Final Project"/Builds/Limited_TVC/Build_1/Rocket-Landing-Using-AI --run-id=Limited_TVC/Batch_1/Test_3_All_Lvls --quality-level=0 --width=1280 --height=720

This command starts the ML-Agents training process using the configuration specified in

Rocket.yaml. Below is a breakdown of each component of the command:

• mlagents-learn: The command to start the training process using ML-Agents.

• Rocket.yaml: The configuration file that contains the training parameters and settings.

• –env=C:/Users/Hicham/Desktop/"Final Project"/Builds/Limited_TVC/Build_1/Rocket-Landing-Using-AI:

Specifies the environment executable for the rocket landing simulation.

• –run-id=Limited_TVC/Batch_1/Test_3_All_Lvls: Assigns a unique identifier for this

training run, which is used for logging and checkpointing.
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• –quality-level=0: Sets the quality level of the environment, with 0 being the lowest

quality, to optimize performance during training.

• –width=1280 –height=720: Sets the resolution of the environment window.

3.5.1.1 CMD Output During Training

When the training command is executed, the CMD window displays various information related

to the training process. This includes the initialization of the training environment, loading of

the configuration file, and real-time updates on the training progress such as Step, Time Elapsed,

Mean Reward, and other relevant metrics.

Figure 3.44: CMD Output During Training

Figure 3.44 shows a screenshot of the CMD output during the training process. Key informa-

tion displayed includes:

• Initialization Logs: These logs confirm the environment has been successfully loaded and

the training process has started.
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• Episode Updates: These lines show real-time updates for each episode, including Step,

Time Elapsed, Mean Reward, and other relevant metrics.

• Checkpoint Logs: Periodic logs indicating when checkpoints are saved, allowing the train-

ing to resume from the last checkpoint in case of interruptions.

The CMD output is crucial for monitoring the progress and performance of the training pro-

cess, providing immediate feedback and insights into the agent’s learning behavior.
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Chapter 4

Results and Analysis

In this chapter, we delve into the outcomes and insights derived from the experimental phase

of our AI-guided rocket landing project. The primary objectives of these experiments were to

assess the performance and effectiveness of our reinforcement learning system, particularly in

the context of autonomous rocket landings.

4.1 Hardware and Software Specifications

In this section, we outline the hardware and software used for the development and training of

our rocket agent. The performance and capabilities of the hardware, along with the choice of

software, play a crucial role in the efficiency of training and the quality of results obtained.

4.1.0.1 Hardware Specifications

The hardware setup used for training includes high-performance CPU and GPU units to han-

dle the computationally intensive tasks associated with training machine learning models. The

detailed specifications are listed in Table 4.1.
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Table 4.1: Hardware Specifications

Component Specification
Laptop IdeaPad Gaming 3 15ACH6
CPU AMD Ryzen 7 5800H with Radeon Graphics, 3201 Mhz, 8 Core(s), 16 Logical Processors
GPU NVIDIA GeForce RTX 3060 Laptop GPU, 6 GHz VRAM
RAM 16.0 GB DDR4
Storage 1TB SSD
Operating System Microsoft Windows 11 Pro

4.1.0.2 Software Specifications

The software environment used for the development and training of the rocket agent includes

specific versions of Unity and ML-Agents. These versions are chosen to ensure compatibility

and to leverage the latest features and improvements in the tools.

• Unity Version: Unity 2022.3.10f1

• ML-Agents Version: ML-Agents Release 19

4.1.0.3 Impact of Specifications on Training Time and Results

The specifications of the hardware and software used have a significant impact on both the

training time and the results achieved. High-performance CPUs and GPUs can substantially

reduce the time required for training by handling more calculations per second and processing

larger batches of data. Sufficient RAM ensures that large datasets and complex simulations can

be loaded into memory without causing slowdowns.

Moreover, the choice of Unity and ML-Agents versions ensures that we have access to the

latest tools, features, and optimizations. This can lead to more efficient training processes and

potentially better-performing models.

Overall, the combination of advanced hardware and up-to-date software is crucial for achiev-

ing optimal results in the training and deployment of our rocket agent.
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4.1.1 Models Trained

Throughout the research, numerous models were trained, each stored in different folders, rep-

resenting various training phases and configurations. The training process involved extensive

experimentation, taking hundreds of hours to refine and optimize the models.

Figure 4.1: Hundreds of hours of Models within folders

Below is a summary of each folder structure and contents:

4.1.1.1 Folder structure and content

Figure 4.2: Model Folder Structure

• Rocket_Behavior (NN model) This .ONNX File is our neural network model saved in

ONNX format. Each model represents a specific trained behavior of the rocket.

• Rocket_Behavior (Folder): This folder includes multiple neural network models saved at

different training intervals. For instance, models are named according to the step count,

such as "Rocket_Behavior-1000000000", indicating the model saved at one billion steps.
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Figure 4.3: Rocket Behavior Folder Models

• Additionally, this folder contains:

– Run Logs: Detailed logs of each training run, capturing important metrics and events.

– Configurations (.yaml file): The configuration files used for each training run, de-

tailing the parameters and settings.

By integrating TensorBoard with our training framework, we gained valuable insights into

the agent’s learning process. Visualizing the scalar metrics allowed us to track the agent’s per-

formance over time, identify potential issues like convergence problems, and make informed

decisions about hyperparameter tuning.

4.2 Agent Performance Visualization in Unity

Figure 4.4: Unity Simulation Scene + Dynamic Monitoring View
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This section details the visualization components within the Unity engine used to monitor

and evaluate the performance of the reinforcement learning agent during its training for au-

tonomous rocket landings.

Simulation Scene with Raycast: The left window of Figure 4.4 showcases the simulation

environment. This includes a visualization of the rocket and the landing pad. Here, a raycast is

employed to depict the force direction applied by the agent’s control decision (action) at each

timestep. This visual aid helps understand the relationship between the chosen action and the

resulting force acting on the rocket.

Camera View and Force Visualization: The right window provides a camera view attached

to the rocket, allowing observation of its orientation and balance throughout the descent. Ad-

ditionally, a particle system dynamically visualizes the thrust forces (both Cold Gas Thrusters

(CGT) and Thrust Vector Control (TVC)) acting on the rocket. The particles are emitted in the

opposite direction of the applied force, offering a clear representation of the forces influencing

the rocket’s motion.

Reward Structure and Visualization: The top right corner of the right window displays the

current velocity of the rocket, including its vertical and horizontal components.

The top left corner displays the real-time reward information for various aspects of the rocket’s

state:

• Distance (X/Z Axis) Reward (25%): This reward encourages the agent to land close to the

center of the landing pad. As the distance from the center increases, the reward decreases.

• Rotation Reward (25%): This reward incentivizes the agent to maintain a minimal roll,

pitch, and yaw throughout descent. A value of zero for all rotations yields the maximum

reward.

• Altitude Reward (25%): This reward motivates the agent to descend towards the landing

pad. The reward starts at zero and increases as the rocket gets closer to the landing pad’s

height.
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• Velocity Reward (25%): This reward encourages a controlled descent. The maximum re-

ward is received when the rocket’s velocity reaches a target value (e.g., 10 m/s in this case).

This target velocity can be adjusted to reflect real-world landing requirements.

These individual rewards are all added up for each step the agent takes during the landing pro-

cess. Since each contributes 25% (0.25), the total reward can potentially reach a maximum of 1

each step if all aspects are performing perfectly throughout the entire landing attempt.

Footnote: Within the context of our reinforcement learning setup for autonomous rocket

landing, a "step" signifies a fundamental unit of time advancement within the Unity simulation

environment. During each step, the environment updates its state, the agent receives observa-

tions, and the agent makes a control decision based on those observations. The total reward

an agent accumulates is calculated by summing up the individual rewards received at each step

throughout the landing episode.

we establishe a maximum number of steps allowed for each difficulty level (initial drop

height) 4.2. This value reflects the increasing complexity associated with higher initial starting

heights (Levels 1-10). Episodes exceeding this limit are considered unsuccessful.

This approach provides a clearer understanding of the training process, acknowledging the

dynamic nature of episode lengths while showcasing the maximum effort allocated to complet-

ing a run at each difficulty level.
Table 4.2: Maximum steps allowed in each run

Initial drop
height

(100m) (100m,
200m)

(200m,
300m)

(300m,
400m)

(400m,
500m)

(500m,
700m)

(700m,
1000m)

(1000m,
1300m)

(1300m,
1700m)

(1700m,
2000m)

Maximum
steps

1500 2000 2500 3000 3500 5500 6000 7000 11500 18000

Additional Information Display:

Bottom Right: Pitch, Yaw, and Roll angles of the rocket in real-time.

Bottom Left: The current position of the rocket and the landing pad, along with the distance

between them.

Bottom Center: Total training attempts made, Successful landing attempts, Failed landing
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attempts, Success rate.

Top Center: Difficulty level of the current training scenario. This level determines the initial

randomness applied to the rocket’s starting drop height and orientation.

Criteria for Successful Landing: The landing pad visually communicates the outcome of each

landing attempt. A successful landing is defined as the rocket remaining upright and station-

ary on the landing pad for a minimum duration of 5 seconds. If this success criterion is met,

the landing pad turns green. Conversely, if the rocket tips over, crashes, or fails to remain sta-

tionary for the specified duration, the landing pad turns red, indicating an unsuccessful landing.

4.2.1 Leveraging TensorBoard for Visualization and Monitoring

This section provides an overview of TensorBoard, a valuable tool we utilized for visualiza-

tion and monitoring throughout the reinforcement learning process for our autonomous rocket

landing agent. TensorBoard, developed by the TensorFlow team (https://www.tensorflow.org/),

is a web application that facilitates the visualization of various data generated during training.

This data can include:

• Scalar Metrics: These represent numerical values tracked during training, such as the

agent’s reward, loss function, success rate, or any other relevant performance measure.

• Histograms: These visualizations help understand the distribution of values for specific

parameters or variables within the network.

• Others like Images, and Embeddings which can be helpful for tasks like image classifica-

tion or to visualize high-dimensional data in a lower-dimensional space.
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Figure 4.5: Tensorboard

4.2.2 Success Rate

Figure 4.4 showcases an impressive achievement. After 360,489 training attempts, the agent

achieved a remarkable success rate of 99.6%, leaving only a negligible 0.4% failure rate. This

exceptional outcome demonstrates the effectiveness of the reinforcement learning approach in

enabling the agent to acquire control strategies for precise and safe landings within the simu-

lated environment.

Figure 4.6 presents the cumulative reward obtained by the reinforcement learning agent

during training with two control configurations: TVC+CGT (Thrust Vector Control and Cold Gas

Thrusters) and TVC Only. As evident in the graph, the agent utilizing both TVC and CGT con-

sistently achieves a higher cumulative reward throughout the training compared to the agent

with TVC alone. This initial observation implies that incorporating Cold Gas Thrusters along-

side Thrust Vector Control offers a potential advantage in accumulating reward during descent.

The higher reward might be attributed to the agent’s capability to perform finer adjustments and

maintain a more balanced posture using both control mechanisms, leading to a more optimal

trajectory.
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Figure 4.6: Cumulative Reward Comparison: TVC-only vs. TVC with CGT

Figure 4.7: Value Loss and Policy Loss During Training with TVC+CGT and TVC Only

Figure 4.7 illustrates the value loss and policy loss incurred during the training process with

two control configurations: TVC+CGT (Thrust Vector Control and Cold Gas Thrusters) and TVC

Only. The value loss signifies the discrepancy between the predicted and actual rewards received

by the agent, while the policy loss reflects how well the current control strategy performs in

achieving the landing objective.

As observed in the graph, the TVC+CGT configuration consistently exhibits lower value loss
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compared to TVC Only throughout the training run. This pattern suggests that the value func-

tion for the TVC+CGT agent is more accurate in predicting the rewards associated with utilizing

both control mechanisms for maintaining rocket stability during descent.

In contrast, the policy loss curves for both configurations seem to converge over time. This

initial convergence might indicate that both control strategies eventually lead the agent to learn

policies that achieve some level of control. However, the continued lower value loss for TVC+CGT

suggests that the agent using both TVC and CGT might be acquiring a more efficient policy for

accumulating reward, potentially leading to a more optimal landing trajectory in the long run.

Figure 4.8: Policy Evaluation Metrics: Beta, Entropy, Epsilon, and More
TVC with CGT (Blue color) TVC-only (Red color)

In our exploration of detailed policy dynamics, we delve into specific metrics that unravel

the intricacies of the Proximal Policy Optimization (PPO) algorithm during the training of our

rocket agent as shown in Figure 4.8. These metrics provide a nuanced understanding of the

learning process, shedding light on stability, convergence, and performance enhancements.
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4.3 Performance Analysis of Rocket Trajectories

This section analyzes the significant improvement in rocket landing trajectories achieved through

the reinforcement learning process. Figure 4.9 showcases the stark contrast between the behav-

ior of the initial model (left) 4.9a and the final, well-trained model (right) 4.9b. Both figures

depict the rocket’s descent path from a 100-meter drop height.

(a) 100,000 Step Model (Initial) (b) 1,000,000,000 Step Model (Final)

Figure 4.9: Trajectory Optimization: Initial vs. Final Model

4.3.1 Initial Model Trajectory (Left):

The trajectory of the initial model (at [100,000 steps] of training) exhibits significant instability.

The path is characterized by:

• Erratic Deviations: The rocket’s descent path shows considerable deviations from a straight

line, indicating the model’s struggle to control its descent effectively.

• Uncontrolled Descent Velocity: The initial model might exhibit rapid descents or even

overshoots, suggesting a lack of precise control over its velocity.

• Potential for Crash Landing: Due to the erratic nature of the trajectory, there’s a high risk

of the rocket crash landing or missing the designated landing zone entirely (as seen in

figure 4.9).
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4.3.2 Final Model Trajectory (Right):

The trajectory of the final, well-trained model (at [1,000,000,000, steps] of training) demon-

strates a remarkable improvement. This trajectory is characterized by:

• Controlled Descent: The path is a much straighter line, indicating the model’s ability to

maintain a controlled descent towards the landing pad.

• Optimized Velocity: The final model exhibits a smooth, controlled descent velocity, en-

suring a safe landing within the designated zone.

• High Landing Success Rate: Due to the improved control and stability, the final model

has achieved more successful landings within the desired parameters.

This comparison visually highlights the effectiveness of the reinforcement learning process.

Through extensive training, the model has learned to effectively control the rocket’s descent,

transitioning from a chaotic and potentially unsafe trajectory to a controlled and well-optimized

flight path for landing.

4.3.3 Performance at Higher Drop Heights (1700-2000 meters)

This subsection explores the performance of the final, well-trained model at significantly higher

drop heights, ranging from 1700 to 2000 meters. While the top-down view in Figure 4.10 might

initially appear chaotic due to the increased distance covered, it reveals a crucial aspect of the

model’s capabilities: recovery from diverse initial positions.
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Figure 4.10: Top View Rocket Trajectory

4.3.3.1 Resilient Recovery:

Despite starting from various positions in space at these higher drop heights, the model demon-

strates its ability to recover and achieve controlled descents. The seemingly erratic movements

in the top-down view represent the model’s corrective maneuvers to adjust its trajectory and

guide itself back towards the landing pad.

4.3.3.2 Controlled Descent from the Side View:

(a) Higher Drop Side View 1 (Z-Axis) (b) Higher Drop Side View 2 (X-Axis))

Figure 4.11: Comparison of Trajectory Plots
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Figures 4.11a and 4.11b showcase the descent path from a side perspective. These figures

provide a clearer picture of the controlled descent achieved by the model. The multiple lines

represent landing attempts from different initial conditions, and the similarities in their overall

shape suggest a consistent landing pattern learned by the model.

4.3.3.3 Findings:

These observations indicate that the final model exhibits:

• Adaptability: The model can effectively recover from various initial positions at higher

drop heights, demonstrating its ability to adapt to different starting conditions.

• Robust Control: Even with the seemingly erratic top-down view, the side views reveal

a controlled descent pattern, suggesting the model maintains effective control over the

rocket’s trajectory during descent.

• Learned Landing Strategy: The similarities observed in the landing attempts from differ-

ent initial conditions suggest the model has learned a successful landing strategy that can

be applied across various starting positions.

These findings highlight the model’s ability to handle complex landing scenarios at significantly

higher altitudes. The model’s adaptability, robust control, and learned landing strategy con-

tribute to its effectiveness in achieving successful autonomous rocket landings.
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Challenges

This section explores the key challenges encountered while developing our system for autonomous

landing using reinforcement learning. These challenges highlight the complexities involved in

bridging the gap between simulation and real-world deployment.

1. Limited Computational Resources and Training Time:

• Training a robust AI model for real-world landing scenarios requires significant com-

putational resources. Unfortunately, our initial attempts using the university’s HPC

system [40] were hampered by maintenance downtime.

• Limited access to high-performance computing hinders the efficiency of the training

process. This restricts our ability to quickly evaluate the effectiveness of different

training approaches and identify optimal parameters.

2. Bridging the Simulation-to-Reality Gap:

• Accurately replicating real-world physics within a simulated environment presents

a significant challenge. Numerous factors must be meticulously modeled to ensure

the simulated behavior reflects the complexities of the actual landing scenario.

• The theoretical nature of simulations necessitates real-world testing to validate the

learned behavior. Miniaturized real-world testing environments, in conjunction with

the trained model, offer valuable insights. This approach allows for data collection

on unforeseen variables that can then be incorporated into the simulation for con-

tinuous improvement.
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3. Unpredictability of Learned Behavior:

• Reinforcement learning can lead to unforeseen behaviors during the training pro-

cess. While the AI strives to maximize its reward function, its actions may not always

align with the desired outcome.

• In our case, the model developed a strategy of hovering near the landing pad to max-

imize reward, neglecting the actual landing objective. This highlights the challenge

of balancing reward design with desired outcomes. However, it also presents a po-

tential opportunity. Unforeseen solutions discovered by the AI could lead to novel

and efficient landing strategies not previously considered.

4. Iterative Development and Refinement:

• The reinforcement learning process inherently involves ongoing analysis and refine-

ment. During extended training periods, unforeseen issues may emerge. This re-

quires adapting the training process or reward structure to address these challenges.

• For example, our system initially exhibited unrealistic landing velocities exceeding

50 m/s. This necessitated the implementation of a velocity control reward shaping

mechanism to promote a safe landing speed. This continuous improvement process,

while time-consuming, fosters the development of a robust and adaptable landing

system.

These challenges underscore the importance of iterative development, collaboration with

high-performance computing facilities, and the utilization of real-world testing to bridge the

gap between theory and practice. By acknowledging these hurdles, we can strive towards a more

effective and adaptable landing system using reinforcement learning.
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Future Work: Enhancing Realism and

Autonomy

This section outlines promising avenues for further development to enhance the realism and

autonomy of our rocket landing agent.

Figure 4.12: Free-Ranged Thrust Vector Control with Autonomous Thrust Force Decision

1. Dynamic Thrust Control: Our current implementation empowers the agent to autonomously

determine thrust levels. We aim to expand on this by allowing the agent to manage thrust

variations more dynamically throughout the descent process as seen in Figure 4.12. This

could involve implementing continuous thrust control instead of discrete levels, enabling
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the agent to fine-tune its descent trajectory for optimal performance.

2. Free-Range Thrust Vector Control (TVC): The current TVC allows the agent to choose

from pre-defined vector directions. Future work will focus on enabling continuous TVC

control. This signifies the agent’s ability to freely adjust the TVC direction within a spec-

ified range, granting finer control over the rocket’s attitude during descent. As illustrated

in Figure 4.12, this expanded control empowers the agent to make real-time adjustments

for precise landing maneuvers.

3. Advanced Environment Modeling: We have successfully incorporated data from the SpaceX

Falcon 9 User’s Guide [41] to enhance the realism of our simulation. This approach demon-

strates the potential for further improvements by integrating additional environmental

factors. This could involve incorporating wind models, atmospheric variations based on

altitude, and more complex terrain representations. This ongoing process will allow our

simulated environment to progressively reflect real-world landing scenarios with greater

fidelity.

4. Multi-Objective Reward Function Design: The current reward function prioritizes suc-

cessful landing. Future work will delve into exploring multi-objective reward functions.

This could involve incorporating additional goals such as fuel efficiency, minimizing wear

and tear on the rocket during descent, or achieving a specific landing posture. By carefully

designing a multi-objective reward function, we can guide the agent towards achieving a

broader set of optimal landing parameters.

5. Transfer Learning for Real-World Applications: While advancements have been made

within the simulated environment, the ultimate goal is to translate this knowledge to real-

world applications. Here, transfer learning techniques can be explored. By leveraging the

knowledge gained from the simulated training process, the agent can adapt to real-world

scenarios with minimal additional training data. This will be crucial for bridging the gap

between simulation and real-world deployment.
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By pursuing these future work directions, we can create a more realistic and autonomous

rocket landing agent capable of handling complex landing scenarios with increased adaptability

and efficiency.
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International Conference Paper

I’m thrilled to share that my research on AI-guided rocket landing strategies has been accepted

for oral presentation at the prestigious KES 2024 conference that will be held at Silken Al-Andalus

Palace (Seville, Spain)! This acceptance signifies a significant milestone in this ongoing project.

Figure 4.13: KES 2024 Conference Acceptance Letter

As you can see in the Figure 4.13, my paper titled "AI-Guided Rocket Landing: Navigating

Precision Descent Strategies" will be presented alongside other cutting-edge research at the

conference.

This achievement reflects the culmination of extensive research and development. Through-
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out this process, I’ve delved into the complexities of using reinforcement learning to guide a

simulated rocket towards a precise and efficient landing. The presented work explores the chal-

lenges and potential solutions for achieving this goal.

Attending KES 2024 provides a valuable opportunity to share my research with a wider au-

dience, gain valuable feedback from experts in the field, and foster future collaborations. I’m

eager to participate in this international forum and contribute to the ongoing advancements in

AI-powered space exploration technologies.
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General Conclusion

In conclusion, our AI-guided rocket landing project represents a substantial step forward at the

intersection of artificial intelligence and aerospace engineering. Leveraging the Proximal Policy

Optimization (PPO) algorithm, we have made notable progress in training a rocket agent for

autonomous navigation with the goal of precise landings on a designated pad.

The meticulous modeling of the rocket environment, incorporating real-world physics and

control mechanisms, laid the foundation for a robust reinforcement learning system. The inte-

gration of Thrust Vector Control (TVC) and Cold Gas Thrusters (CGT), along with accurate ob-

servations, contributed to a comprehensive representation of the rocket’s dynamics. The reward

system, emphasizing distance, rotation, and altitude, has been designed to shape the agent’s be-

havior, fostering controlled descents and improving landing precision.

Our approach to curriculum learning, incorporating randomized initial conditions and var-

ied starting altitudes, showcased the adaptability of the trained agent to diverse scenarios. The

use of multiple copies of the training area, combined with the expedited learning process using

PPO, highlighted the scalability and efficiency of our methodology.

With one of our primary objectives being the improvement of TVC movement to be more

free and realistic within its constraints, our intention is to facilitate the seamless transfer of this

model to real-world hardware. This endeavor aligns with our broader vision of contributing to

the development of autonomous rocketry that can be effectively applied in practical aerospace

scenarios.

As we continue our pursuit of autonomous rocket landings, addressing challenges and refin-
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ing our approach will be crucial for future success. This ongoing research sets a solid foundation

for the continuous evolution of AI-guided rocketry, marking a promising trajectory towards the

future of space exploration.
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