
University of Mohamed Khider – BISKRA
Faculty of Exact Sciences, Science of Nature and Life

Computer Science Department

Thesis
Presented to obtain the academic master’s de gree in

Computer science

AI-powered Job Recommendation Platform
and Mobile Application

By DJEFAFLA Hachem and BOUDIBI Abdelhaq

Directed by Dr SAHRAOUI Somia
2023/2024

Members of the jury:

Dr. Terrissa Sadek Labib, Président
Dr. Sahraoui Soumia, Encadrant
Dr. Sahli Sihem, Examinateur

3

Abstract

Recently, Artificial Intelligence (AI) has transformed various industries, significantly
impacting the recruitment sector. This thesis details the development of an AI-powered
Job Recommendation Platform and Mobile Application specifically designed for the Al-
gerian job market. By leveraging advanced machine learning algorithms and natural
language processing (NLP) techniques, the platform offers a highly efficient and per-
sonalized job search experience. It analyzes extensive datasets, including user profiles,
job descriptions, and interaction patterns, to provide tailored job recommendations that
closely match individual user preferences and qualifications.

In order to recommend relevant jobs, this research presents a content-based recom-
mendation approach using TF-IDF, Bag of Words, and word embeddings. A series of
experiments are designed, starting with TF-IDF vectors and cosine similarity as the base-
line. Further experiments utilize Bag of Words and word embeddings to observe and
compare the results. The objective is to assess how well these different text representa-
tion techniques perform in providing accurate and relevant job recommendations, and to
determine how each method impacts the quality of job matching. The datasets used for
these experiments are provided by Kaggle, ensuring a robust evaluation of the proposed
recommendation system.

Keywords: Recruitment, Job recommendation, Artificial intelligence, Natural lan-
guage processing, Content-based filtering, Text to feature, Cosine similarity.

4

�
	
jÊÓ

Yl� ryb� �kK� A¾r�¥� ,�A�AnO�� �� d§d`�� AI ¨�AnW}¯� ºA�@�� �Äw� ,A¾r�¥�

ºA�@�A� T�w�d� �¶AZ¤ Ty}w� TOn� r§wW� T�¤rV±� £@¡ �¤Ant� .�yZwt�� �AW�

­ AftF¯� �®� �� .©r¶�z��� �m`�� �ws� AOyO� �mO� �wm�� �ybW�¤ ¨�AnW}¯�

TOnm�� r�w� ,NLP Ty`ybW�� T�l�� T��A`� �Aynq�¤ T�dqtm�� ¨�µ� �l`t�� �Ay�EC�w� ��

T`F�¤ �A�Ay� �A�wm�� �yl�t� �wq� .T§A�l� TyO�J¤ T�A`� �¶AZ¤ �� ��� T�r��

�¶AZ¤ �Ay}w� �§dqt� ��Aft�� ªAm��¤ ,�¶AZw�� �A}¤� ,�y�d�tsm�� �Afl� �mK�

. �r�±� �®¡¥�¤ �®ySf� �� �y�¤ �kK� ���wt� TOO��

«wt�m�� Yl� ­dmt`m�� Ty}wtl� A�h� ��b�� �@¡ �dq§ ,TlO�� ��Ð �¶AZw�� Ty}wt�

,
CA�t�� �� TlslF �ymO� �� .word embeddings ¤ ,Bag of Words , TF-IDF ��d�tFA�

Tq�®��
CA�t�� �d�ts� .xAF� X�� �Amt�� 	y� ¢�AK�¤ TF-IDF �Ah�t� �� A¾ºd�

º� � «d� �yyq� w¡ �dh�� .Aht�CAq�¤ �¶Atn�� Tb��rm� word embeddings ¤ Bag of Words
d§d��¤ ,Tl} ��Ð¤ Tqy� �¶AZ¤ �Ay}w� �§dq� ¨� £@¡ Tflt�m�� Pn�� �y�m� �Aynq�

�A�Ayb�� �A�wm�� ry�w� �t§ .TyfyZw�� Tq�AWm�� ­ w� Yl� Tq§rV �� ry��� Tyfy�

Ty}wt�� �A\n� A§w� Amyyq� �mS§ Am� ,Kaggle �b� ��
CA�t�� £@¡ ¨� T�d�tsm��

.�rtqm��

T�l�� T��A`� ,¨�AnW}¯� ºA�@�� ,�¶AZw�� �Ay}w� ,�yZwt��:Ty�Atfm�� �Amlk��

.�Amt�� 	y� ¢�AK� ,��zy� Y�� Pn�� �§w�� ,«wt�m�� Yl� ­dmt`m�� TyfOt�� ,Ty`ybW��

5

Acknowledgements

First and foremost, I thank my Allah for His grace which has enabled us to successfully
conduct this thesis.

I would also like to express my sincere gratitude to my parents. Their unwavering love,
support, and encouragement have been my constant source of motivation. I am deeply
indebted to them for their sacrifices and for always believing in me.

My deepest appreciation goes to my esteemed advisor, Professor Sahraoui Somia.
Thank you for your invaluable guidance, knowledge, and patience, which have been in-
strumental in shaping this thesis. Your challenges to think critically and the support
provided have been essential in navigating this research project.

Lastly, I extend my thanks to my friends and colleagues. Their collaborative spirit
and the dynamic, enjoyable atmosphere they fostered were crucial in making my time
both productive and pleasurable.

DJEFAFLA Hachem

First and foremost, all praise and thanks are due to Allah for granting me the strength,
knowledge, and perseverance to complete this thesis.

I am profoundly thankful to my parents for their unwavering support and encourage-
ment throughout my academic journey. Their belief in my potential has been a constant
source of strength and motivation.

Special thanks are due to my advisor Sahraoui Somia, whose expertise and guidance
have been invaluable. She has been a mentor and a role model, providing insightful
feedback and encouragement at every stage of this project. I am also grateful to the
members of my thesis committee.

I must also acknowledge my friends and colleagues, who have provided both technical
support and moral encouragement. Their companionship during long hours of work has
made this journey enjoyable and fulfilling.

This project was not only an academic challenge but also a personal growth journey,
and I am thankful to everyone who played a part in it.

Boudhibi Abdelhaq

6 CONTENTS

Contents

Contents 6

List of Figures 9

List of Tables 12

1 General introduction 13
1 Problem statement . 14
2 Objectives and goals . 14
3 Dissertation organization . 15

2 Background 17
1 Introduction . 17
2 Role of Technology in Modern Recruitment 17
3 What is a Recommendation System . 19

3.1 Definition . 19
3.2 The Beginning of Recommendation System 19
3.3 Use Cases and Applications . 20
3.4 Benefits of Recommendation Systems 21

4 Types of Recommendation Systems . 21
4.1 Content-Based Filtering . 22
4.2 Collaborative Filtering . 23

4.2.1 Matrix Factorization for Recommendation 24
4.3 Hybrid Recommendation Systems 25
4.4 Deep Learning Based Recommender Systems 26

5 NLP for Recommender Systems . 27
5.1 What is NLP . 27
5.2 Text Preprocessing . 29

5.2.1 Tokenization and Text Cleaning 29
5.2.2 Stop Words Removing . 30
5.2.3 Stemming and Lemmatizing 30
5.2.4 Part-of-Speech Tagging 30
5.2.5 Named Entity Recognition (NER) 31

5.3 Text Representation . 32
5.3.1 Bag-of-Words (BoW) Method 32

CONTENTS 7

5.3.2 TF-IDF (Term Frequency-Inverse Document Frequency) . 33
5.3.3 Word Embeddings : Word2Vec 34
5.3.4 Comparative Analysis of 3 Techniques 34
5.3.5 NLP with ML . 35

5.4 NLP Approaches for Recommendations 36
5.4.1 Text Similarity . 36
5.4.2 Named Entity Recognition (NER) 38
5.4.3 Keyword Extraction . 38
5.4.4 Text Summarization . 39

6 Recommendations in recruitment . 40
7 Related works . 41

7.1 Academic Research . 41
7.2 Commercial Platforms . 41
7.3 Emerging Technologies . 42

8 Conclusion . 42

3 Design and Implementation of Recommendation System 43
1 Introduction . 43
2 Design . 43

2.1 Dataset . 44
2.1.1 Description . 44
2.1.2 Structure . 44
2.1.3 Exploratory Data Analysis (EDA) 47

2.2 Preparing & Preprocessing . 48
2.2.1 Preparing . 49
2.2.2 Preprocessing . 50

2.3 Evaluation metrics . 51
3 Implementation . 51

3.1 Frameworks, tools and libraries . 51
3.2 Data Loading and Preparation . 53
3.3 Data Pre-processing . 55
3.4 Text to Features . 56

3.4.1 TF-IDF . 56
3.4.2 Bag of Words . 56
3.4.3 Words Embeddings . 57
3.4.4 Text to feature function 57

3.5 NLP model (Cosine Similarity) . 58
3.5.1 Jobs Recommendations 58
3.5.2 Applicants Recommender 59

4 Testing . 60
5 Conclusion . 62

4 Experiments and Results 63
1 Introduction . 63
2 Experiment environment . 63

8 CONTENTS

3 Evaluation of recommendations . 64
3.1 Result . 64
3.2 Discussion . 65

4 Conclusion . 66

5 Platform Development and Recommendation System Integration 67
1 Introduction . 67
2 System Architecture . 67

2.1 Architecture of the platform . 67
2.2 Components and their interactions 68
2.3 Technology stack used . 68

3 Frontend Development . 69
3.1 Clean Architecture . 69

3.1.1 Presentation Layer . 70
3.1.2 Domain Layer . 70
3.1.3 Data Layer . 71

3.2 Frameworks and tools . 71
3.3 User interface design . 71

4 Backend Development . 75
4.1 MVC Architecture . 75

4.1.1 Model . 76
4.1.2 View . 76
4.1.3 Controller . 76
4.1.4 Workflow in MVC Architecture 76

4.2 Server-side Frameworks and tools 77
4.3 API . 77

4.3.1 HTTP Protocol . 78
4.3.2 JSON . 79
4.3.3 API Testing . 80

4.4 Database design . 80
4.5 Security considerations . 81

5 Integration of the Recommendation System 83
6 Additional Features . 84

6.1 Chat-Bot . 84
6.2 Voice & Video Calling . 86
6.3 Real time messaging . 87

7 Conclusion . 88

6 General conclusion 89

References 91

LIST OF FIGURES 9

List of Figures

2.1 Visual Representation of a Recommendation System. 19
2.2 Content-Based Filtering Process. 22
2.3 Collaborative Filtering Process. 23
2.4 Matrix Factorization Process in Recommendation System. 24
2.5 Architecture of a Deep Learning-Based Recommendation System. 26
2.6 Diverse Applications of Natural Language Processing. 28
2.7 Tokenization Process in NLP. 29
2.8 Grammatical categories. 31
2.9 Example of Named Entity Recognition (NER) in NLP. 32
2.10 Transformation of Text Data into a Bag of Words. 33
2.11 Comparison of CBoW and Skip-gram Models. 34
2.12 The Intersections of AI, ML, DL, and NLP. 35
2.13 NLP-Based Recommendations for Job Matching. 36
2.14 Overview of Text Summarization Techniques in NLP. 40

3.1 Architecture of our content-based recommendation system 44
3.2 Structure and relationships of datasets . 46
3.3 Distribution of jobs by industry . 47
3.4 Word Cloud of frequently occurring terms in job descriptions 48
3.5 Distribution of job views per User . 48
3.6 Data preparation and preprocessing workflow 49
3.7 Constructing job description form datasets . 49
3.8 Constructing user profile form datasets . 50
3.9 Python logo . 52
3.10 Google colab logo . 52
3.11 Pandas logo . 52
3.12 NumPy logo . 52
3.13 Matplotlib logo . 53
3.14 Kaggle logo . 53
3.15 Recommended jobs for applicant . 59
3.16 Recommended applicants for job . 60
3.17 Detailed experience of recommended applicants for job 60
3.18 Testing result . 62

4.1 Precision, Recall and F1 score for different models 65

10 LIST OF FIGURES

5.1 System Architecture . 68
5.2 Flutter logo . 69
5.3 NodeJs logo . 69
5.4 MySql logo . 69
5.5 Socket.IO logo . 69
5.6 Flutter logo . 69
5.7 Clean Architecture . 70
5.8 Authentication screenshot . 72
5.9 Seeker side screenshot . 72
5.10 Messaging pages screenshot . 73
5.11 Add application screenshot . 73
5.12 Recruiter side screenshot . 74
5.13 Publish job screenshot . 74
5.14 Admin dashboard screenshot . 75
5.15 MVC Architecture . 75
5.16 RESTful API . 78
5.17 Thunder client screenshot . 80
5.18 Entity-Relationship Diagram for database . 81
5.19 JSON Web Tokens . 82
5.20 Recommendation System Integration . 83
5.21 JSON Web Tokens . 85
5.22 Intent structure . 85
5.23 JSON Web Tokens . 86
5.24 Real time messaging . 87

LISTINGS 11

Listings

3.1 Loading datasets . 53
3.2 Constructing job descriptions . 53
3.3 Constructing user profiles . 54
3.4 Import necessary libraries for text preprocessing 55
3.5 Text preprocessing function for NLP . 55
3.6 Applying Text Preprocessing . 56
3.7 TF-IDF function . 56
3.8 Bag of Words function . 56
3.9 Words embeddings function . 57
3.10 Text to feature function . 57
3.11 Jobs recommendation . 58
3.12 Testing jobs recommendation . 58
3.13 Applicants recommendation . 59
3.14 Testing applicants recommendation . 59
3.15 Testing system . 61

12 LIST OF TABLES

List of Tables

2.1 Comparing Stemming and Lemmatization Results for Different Words 31
2.2 Comparative Analysis of BoW, TF-IDF, and Word2Vec Techniques 35
2.3 Text Similarity in Job Matching: Candidate and Vacancy Analysis 37
2.4 NER-Based Location Matching in Job Preferences 38
2.5 Keyword Extraction for Matching Job Requirements with Candidate Experience 39

3.1 Structure of used datasets . 46
3.2 Matrix for recommendation system evaluation 51

4.1 Experimental environment specifications . 64
4.2 Table of results for different models . 64

5.1 Agora requirements . 87

Chapter 1: General introduction 13

C
h

a
p

t
e

r

1
General introduction

In an era marked by rapid technological advances, the job search process is undergo-
ing a transformative shift through the integration of artificial intelligence (AI) [1]. Our
project, an AI-powered Job Recommendation Platform and Mobile App, is at the forefront
of this innovation, specifically tailored to address the unique challenges and opportunities
within the Algerian job market. This platform leverages sophisticated AI algorithms to
not only streamline the job matching process but also enhance the recruitment landscape
by ensuring that both job seekers and employers can find their perfect matches with
unprecedented efficiency.

Our vision is to revolutionize job searching in Algeria by creating a seamless, intuitive,
and highly effective platform that empowers Algerian professionals and companies. By
harnessing the power of AI, the platform analyzes vast amounts of data to provide per-
sonalized job recommendations, reduces the time and effort typically associated with job
hunting, and opens up new pathways for career advancement. This is achieved through
a user-centric approach that prioritizes personalized experiences, high engagement, and
satisfaction levels among its users.

The mission of this initiative is to foster a dynamic and equitable job market where
every individual has the opportunity to achieve their career potential and contribute to
economic growth. Through this platform, we aim to provide valuable insights into the
labor market, facilitate effective talent acquisition, and support the ongoing development
of Algeria’s human capital. By addressing specific user needs with customized tools and
features, the platform not only caters to individual job seekers and employers but also
builds a robust infrastructure that supports broader economic and social goals.

14 Section 1: Problem statement

1 Problem statement
The job search and recruitment process in Algeria, as in many parts of the world, faces
significant challenges that hinder both job seekers and employers. These challenges form
the core problem that our AI-powered Job Recommendation Platform seeks to address:

1. Inefficiency in Matching: Traditional job search methods often result in inefficient
matching between job seekers and job opportunities. This mismatch is due to a lack
of precise tools to analyze and understand the skills, experiences, and preferences
of job seekers in relation to available positions.

2. Limited Access: Many individuals in Algeria do not have comprehensive access
to job opportunities, especially in remote or underserved areas. This limitation
restricts their ability to find suitable employment that matches their qualifications
and career aspirations.

3. Time-Consuming Processes: Both job seekers and employers experience prolonged
and often cumbersome recruitment processes. Job seekers spend considerable time
applying for jobs without receiving feedback, while employers sift through large
volumes of applications, which may not always align with the job criteria.

4. Economic Inefficiencies: The unemployment rate, particularly among youth and
recent graduates, remains high. This situation is exacerbated by a job market
that does not efficiently leverage the available human capital, leading to economic
inefficiencies and underemployment.

5. Lack of Personalization: Current platforms often do not provide personalized job
recommendations based on detailed individual profiles. This lack of personalization
results in a generic approach to job recommendations, which fails to meet the specific
needs of job seekers or the detailed criteria of employers.

Our platform aims to revolutionize this landscape by implementing advanced AI algo-
rithms that can learn from user interactions, preferences, and profiles to make highly
accurate and personalized job recommendations. By doing so, it seeks to significantly
reduce the time and effort involved in the job search and hiring processes, improve access
to job opportunities, and ultimately enhance the economic vitality of the Algerian job
market.

2 Objectives and goals
The primary objective of our AI-powered Job Recommendation Platform is to transform
the job search and recruitment landscape in Algeria by leveraging artificial intelligence
to match job seekers with ideal job opportunities efficiently and effectively. Specific goals
for the project include:

Chapter 1: General introduction 15

1. Enhance Job Matching Accuracy: Utilize AI technologies to analyze vast amounts
of data from job seekers and employers, ensuring that recommendations are highly
accurate and tailored to the needs and qualifications of users.

2. Reduce Job Search Time: Significantly decrease the time job seekers spend search-
ing for suitable jobs by providing targeted, relevant recommendations based on their
skills, experience, and preferences.

3. Increase Employment Rates: By more efficiently matching job seekers with ap-
propriate job opportunities, aim to reduce unemployment rates, particularly among
youth and recent graduates in Algeria.

4. Improve User Experience: Develop a user-friendly interface that simplifies the job
search and application process, making it accessible and convenient for all users,
regardless of their location or technical expertise.

5. Expand Access to Job Opportunities: Bridge the gap between job seekers and
employers, particularly in underserved areas, by offering a platform that reaches a
wider audience and provides equal opportunities for all.

6. Support Economic Growth: By optimizing the recruitment process and enhancing
job market efficiency, contribute to the overall economic development of Algeria,
fostering a dynamic, skilled workforce that can drive innovation and productivity.

7. Foster Continuous Learning and Improvement: Continuously update and refine
the AI algorithms based on user feedback and interaction data to improve the ef-
fectiveness of the recommendations and adapt to changing job market conditions.

These goals are designed to address the specific challenges identified in the problem
statement, aligning with our mission to empower individuals and companies in Algeria
through innovative, AI-driven job recommendations.

3 Dissertation organization
The organization of the dissertation is as follows:

1. Chapter 1: General Introduction: This introductory chapter outlines the problem
statement, objectives, and goals of the project. It provides an overview of the
dissertation’s structure, setting the stage for the subsequent chapters.

2. Chapter 2: Background: This chapter establishes the theoretical and contextual
framework for job recommendation systems. It explores the role of technology in
modern recruitment, defines recommendation systems, and discusses their types,
benefits, and applications. Additionally, it delves into the use of Natural Language
Processing (NLP) for recommender systems, covering various NLP techniques and
their relevance to the project.

16 Section 3: Dissertation organization

3. Chapter 3: Design and Implementation of Recommendation System: This chapter
focuses on the technical development of the recommendation system. It details
the system design, including dataset description, data preparation, preprocessing,
and evaluation metrics. The implementation section covers the frameworks, tools,
and libraries used, along with the process of data loading, preparation, and feature
extraction.

4. Chapter 4: Experiments and Results: This chapter assesses the effectiveness of the
AI algorithms in making accurate job recommendations, discusses the experiment
environment, and evaluates the results and their implications.

5. Chapter 5: Platform Development and Recommendation System Integration: This
chapter details the system architecture, including the architecture of the platform,
components and their interactions, and the technology stack used. It covers both
frontend and backend development, discussing the clean architecture, MVC archi-
tecture, and API development. Additionally, it explores security considerations and
additional features such as chat-bots, voice & video calling, and real-time messaging.

6. Chapter 6: Conclusion: In this last chapter, we summarize our approach to devel-
oping an AI-powered job recommendation platform.

Chapter 2: Background 17

C
h

a
p

t
e

r

2
Background

1 Introduction
This chapter provides the contextual foundation for understanding the AI-powered Job
Recommendation System. It delves into the technological and market landscapes that
necessitate such a platform, particularly within the Algerian context. The chapter begins
by exploring the role of technology in modern recruitment, highlighting the challenges
faced by traditional recruitment methods and how recommendation systems have evolved
to address these issues.

The chapter also introduces the concept of recommendation systems, discussing their
origins, different types, and how they function to connect job seekers and employers.
Furthermore, it examines the integration of Natural Language Processing (NLP) and
Machine Learning (ML) techniques into these systems, showcasing how they can enhance
job recommendations by analyzing textual data from resumes and job descriptions.

Overall, this chapter sets the stage for the subsequent discussions on system design,
implementation, and the impact of the AI-powered platform on the Algerian job market.

2 Role of Technology in Modern Recruitment
In recent years, technological advancements have significantly transformed the recruitment
landscape, making the process more efficient, effective, and inclusive [2]. Traditional
recruitment methods, often characterized by manual processes, extensive paperwork, and
limited reach, are being supplanted by innovative technological solutions that leverage
artificial intelligence (AI), machine learning (ML), and data analytics.

• Enhanced Efficiency and Accuracy One of the primary roles of technology in modern

18 Section 2: Role of Technology in Modern Recruitment

recruitment is enhancing the efficiency and accuracy of the hiring process. Tradi-
tional recruitment often involves sifting through large volumes of resumes manually,
a time-consuming and error-prone task. AI-powered applicant tracking systems can
automate this process by scanning resumes for relevant keywords and qualifications,
significantly reducing the time required to shortlist candidates. These systems use
natural language processing (NLP) to understand the context of resumes and job
descriptions, ensuring that only the most suitable candidates are selected for further
evaluation [2] .

• Personalized Candidate Matching Technology has also enabled personalized candi-
date matching, a significant improvement over the generic approaches of the past.
Recommendation systems, similar to those used by e-commerce platforms, analyze
a candidate’s skills, experience, and preferences to suggest the most relevant job op-
portunities. This personalized approach ensures that candidates are matched with
roles that align closely with their qualifications and career aspirations, improving
job satisfaction and retention rates [3].

• Overcoming Geographic and Demographic Barriers Modern recruitment technolo-
gies have made it possible to reach a wider and more diverse pool of candidates.
Online job portals and social media platforms allow companies to advertise job
openings to a global audience, overcoming geographic limitations. Additionally,
technologies like video interviewing platforms enable recruiters to conduct remote
interviews, making it easier to evaluate candidates from different locations. This
inclusivity ensures that companies can access a broader talent pool, enhancing di-
versity within the workforce [2].

• Data-Driven Decision Making Data analytics plays a crucial role in modern recruit-
ment by providing insights into various aspects of the hiring process. Companies can
use analytics to track the effectiveness of their recruitment strategies, identify bot-
tlenecks in the hiring process, and understand the characteristics of successful hires.
This data-driven approach allows for continuous improvement and optimization of
recruitment practices, leading to better hiring outcomes.

• Improved Candidate Experience Technological advancements have also improved
the overall candidate experience. AI-powered chatbots, for example, can provide
instant responses to candidate inquiries, guide them through the application pro-
cess, and keep them updated on the status of their application. These technologies
ensure that candidates feel valued and engaged throughout the recruitment process,
enhancing the employer brand and attracting top talent [3].

While technology has brought numerous benefits to recruitment, it also presents cer-
tain challenges. The use of AI and ML in recruitment must be managed carefully to avoid
biases that can arise from the training data. Ensuring transparency and fairness in AI-
driven recruitment processes is essential to maintaining trust and integrity. Companies
must also be mindful of data privacy regulations and ensure that candidate information
is handled securely and ethically.

Chapter 2: Background 19

3 What is a Recommendation System
3.1 Definition
"A recommendation system (or recommender system) is a class of machine learning that
uses data to help predict, narrow down, and find what people are looking for among an
exponentially growing number of options" [4].

A recommendation system, also known as a recommender system, is a subclass of
information filtering systems that aims to predict and identify items that a user may be
interested in. It is a form of machine learning that analyzes data to provide recommenda-
tions tailored to the user’s preferences and behavior patterns. The data can range from
structured entries to complex user behaviors, enabling these systems to navigate through
an expanding array of choices to find personalized options for users [5].

Fig. 2.1: Visual Representation of a Recommendation System.

3.2 The Beginning of Recommendation System
Recommendation systems have their roots in the late 20th century, with the emergence
of the internet as a catalyst for digital content proliferation. The foundational concept of
collaborative filtering was introduced with the Tapestry system in 1992, designed to filter
emails and news based on user feedback. The term "collaborative filtering" was coined,

20 Section 3: What is a Recommendation System

leading to the creation of GroupLens in 1994, a system that recommended news articles
on Usenet by analyzing readers’ ratings [6].

One of the landmark events in the evolution of recommendation systems was the
development of Amazon’s recommendation algorithm in the late 1990s, which applied
item-to-item collaborative filtering to personalize user experiences. This was closely fol-
lowed by the Netflix Prize competition in 2006, which incentivized the improvement of
algorithm accuracy for movie recommendations, spotlighting the potential of advanced
machine learning in this field [7].

Through the early 2000s, the refinement of matrix factorization techniques and the
introduction of singular value decomposition (SVD) enabled more precise user-item in-
teraction predictions. By the 2010s, the integration of deep learning models marked the
next leap forward, with systems like YouTube’s recommendation engine adopting complex
neural networks to match users with content [6].

Today’s sophisticated recommendation systems trace their lineage back to these pivotal
developments, now leveraging vast arrays of user data and advanced predictive analytics
to curate personalized experiences across the digital landscape.

3.3 Use Cases and Applications
Recommendation systems have a broad spectrum of applications across various sectors,
leveraging their capacity to enhance user interaction and satisfaction by personalizing
content and suggestions. Here are some prominent use cases:

1. E-commerce and Retail: Online retailers like Amazon use recommendation systems
to suggest products to customers based on browsing and purchase history, increasing
both customer satisfaction and sales [8].

2. Media and Entertainment: Platforms such as Netflix and Spotify recommend
movies, TV shows, and music based on users’ past consumption patterns. This
not only improves user experience but also boosts engagement and retention rates
(Underwood) [9].

3. Social Media: Social networking sites like Facebook and LinkedIn utilize recom-
mendation systems to suggest friends, jobs, and content to users, thereby enhancing
connectivity and relevance of the network experience [9].

4. Finance and Banking: Recommendation systems help financial services provide
personalized financial advice and product recommendations like credit cards, loans,
and investment options based on customer behavior and preferences [9].

5. Healthcare: In healthcare, recommendation systems can suggest personalized treat-
ment plans and medications by analyzing patient history and similar cases, thereby
improving outcomes through tailored care strategies [9].

6. Job Recommendation: Platforms like LinkedIn and Glassdoor use recommendation
systems to match job seekers with job postings that align with their skill sets and
career interests, streamlining the recruitment process [9].

Chapter 2: Background 21

7. Tourism and Hospitality: Recommendation systems in these sectors suggest travel
destinations, hotels, and recreational activities based on user preferences and pre-
vious trips, enhancing the personalized travel planning experience [9].

These applications showcase the versatility and impact of recommendation systems,
illustrating their pivotal role in transforming user interactions across digital platforms by
providing targeted, relevant, and timely suggestions.

3.4 Benefits of Recommendation Systems
Recommendation systems offer a multitude of benefits across various sectors by per-
sonalizing user experiences and improving operational efficiencies. Here are some key
advantages:

1. Increased Sales and Customer Satisfaction: By suggesting products and services
aligned with user preferences and past behavior, recommendation systems enhance
customer satisfaction, which often leads to increased sales and customer retention
[8].

2. Improved Content Discovery: These systems enable users to discover products,
services, or content that they might not have otherwise found, enhancing user en-
gagement and satisfaction [10] .

3. Efficient Information Filtering: Recommendation systems filter massive amounts of
content to present users with items likely to be of interest, saving time and reducing
information overload [10] .

4. Enhanced User Experience: They personalize the user experience on digital plat-
forms by understanding user preferences and presenting tailored options, thus im-
proving overall user satisfaction and platform usability [10].

5. Optimized Inventory Management: In e-commerce, recommendation systems help
predict product demand more accurately, assisting in better inventory management
and reducing operational costs [10] .

6. Data-Driven Insights and Decision Making: By analyzing user interactions and
feedback, recommendation systems provide valuable insights that can inform busi-
ness strategies and marketing campaigns, fostering data-driven decision-making [10].

These systems have transformed how businesses engage with customers, making them
essential tools in today’s digital economy.

4 Types of Recommendation Systems
Recommendation systems can be classified into several types. Each type utilizes distinct
methods to analyze user preferences and item characteristics, catering to specific needs

22 Section 4: Types of Recommendation Systems

and scenarios in various domains. This section explores the primary types of recommenda-
tion systems, namely Content-Based Filtering, Collaborative Filtering, Hybrid Systems,
and those based on Deep Learning. We’ll discuss how these systems function, their unique
advantages, and where they are best applied, illustrating the diverse approaches to rec-
ommendation that have evolved to tackle different recommendation challenges. This
examination will not only delineate the operational mechanisms but also highlight the
contextual applications of each system type, providing a comprehensive understanding of
their impact on personalization and recommendation quality in digital platforms.

4.1 Content-Based Filtering
Content-Based Filtering is a type of recommendation system that utilizes the features
of items themselves to recommend other similar items to users. This approach relies on
the specific characteristics of an item—such as genre, keywords, or attributes—to make
recommendations. Content-based filtering operates under the assumption that if a user
likes a certain item, they are likely to enjoy other items that are similar in content [5].

Fig. 2.2: Content-Based Filtering Process.

The system works by creating profiles for both users and items based on item de-
scriptions and user interactions. For instance, in a movie recommendation engine, the
attributes can include the director, actors, film genre, and plot keywords. The user profile
might incorporate the ratings or preferences expressed for certain films, which the system
then uses to calculate similarity scores between the user’s profile and the attributes of
different movies.

One of the primary advantages of content-based filtering is its ability to recommend
items that are lesser-known or new, as it does not require user interaction data for those
items. However, a significant drawback is that it can lead to a lack of diversity in the

Chapter 2: Background 23

recommendations, as the system tends to suggest items that are closely aligned with the
user’s existing preferences [11].

Content-based systems are particularly useful when detailed metadata about items
is available, allowing for nuanced differentiation and precise matching based on content
similarity [11].

4.2 Collaborative Filtering
Collaborative Filtering (CF) is one of the most popular and widely implemented types of
recommendation systems. Unlike content-based filtering, which focuses on the attributes
of items, collaborative filtering builds recommendations based on the relationships and
interactions between users and items. The fundamental premise of CF is that if users
agreed in the past, they are likely to agree again in the future [5].

Fig. 2.3: Collaborative Filtering Process.

There are two main approaches within collaborative filtering:

1. User-based Collaborative Filtering: This method involves finding users who have
similar preferences and tastes as a given user and recommending items that these
similar users have liked. For instance, if User A has similar movie preferences to
User B, and User B likes a particular movie that User A hasn’t seen yet, that movie
will be recommended to User A [5].

2. Item-based Collaborative Filtering: This approach focuses on the similarity be-
tween items rather than users. It recommends items that are similar to those a user
has already shown an interest in. For example, if a user has rated a movie highly,
the system will recommend movies that other users who liked the same movie also
rated highly [5]).

24 Section 4: Types of Recommendation Systems

Collaborative filtering systems are particularly effective because they require no item
metadata and purely operate on the interactions recorded between users and items, which
can lead to discovering unexpected preferences and serendipitous recommendations. How-
ever, they face challenges such as cold start for new users or items with no previous in-
teractions, and scalability due to the need to compute relationships between all users or
items [11].

This approach’s popularity stems from its ability to leverage the collective tastes of
the user community, thereby providing personalized and dynamically updated recommen-
dations based on user interactions [11].

4.2.1 Matrix Factorization for Recommendation

Matrix Factorization is a key technique in collaborative filtering systems, particularly
useful for extracting latent factors from user-item interactions. This approach helps to
address the issue of scalability and sparsity in large datasets, making it an essential tool
for recommendation engines.

The technique works by decomposing a large, sparse user-item matrix (where rows
represent users, columns represent items, and values represent interactions such as ratings
or views) into two lower-dimensional matrices: a user matrix and an item matrix. These
matrices capture latent factors that can be used to reconstruct the original interactions.

Fig. 2.4: Matrix Factorization Process in Recommendation System.

1. Latent Factors: These represent abstract concepts or characteristics that underlie
user preferences and item attributes. For example, in the context of movie rec-
ommendations, latent factors might capture dimensions such as genre preference,
acting quality, or directorial style.

2. Singular Value Decomposition (SVD): A common form of matrix factorization,
SVD breaks down the original matrix into three matrices, effectively reducing its
dimensionality. This helps identify patterns in user preferences and item character-
istics.

3. Alternating Least Squares (ALS): Another matrix factorization technique that iter-
atively minimizes the difference between predicted and actual interactions, refining
the user and item matrices to improve recommendation accuracy.

Chapter 2: Background 25

By uncovering these latent factors, matrix factorization allows collaborative filtering sys-
tems to make more accurate predictions and recommendations, enhancing the user expe-
rience. This technique also mitigates the cold start problem to some extent by filling in
missing values in the user-item matrix through approximations based on similar users or
items.

4.3 Hybrid Recommendation Systems
Hybrid Recommendation Systems combine the strengths of multiple recommendation
techniques, typically merging collaborative filtering, content-based filtering, and other
methods, to enhance recommendation accuracy and overcome the limitations inherent in
any single approach. By integrating different systems, hybrid models can provide more
robust, relevant, and diversified recommendations [11] .

There are several ways to design hybrid systems:

1. Weighted: This method combines the predictions of various recommendation tech-
niques, weighting each according to its reliability or accuracy in specific contexts.

2. Switching: The system switches between recommendation strategies based on the
situation. For instance, it might use content-based filtering when sufficient user
preference data is unavailable and switch to collaborative filtering once enough data
is collected.

3. Mixed: Recommendations from different approaches are presented together. For
example, the top recommendations from both collaborative and content-based filters
could be displayed simultaneously to the user.

4. Feature Combination: This method involves integrating features derived from dif-
ferent recommendation techniques into a single model. For example, using both
user-item interaction history and item metadata as inputs to a machine learning
model.

5. Model Ensemble: Similar to feature combination, model ensembles use machine
learning algorithms to combine multiple recommendation models into a single pre-
dictive model, aiming to capitalize on the unique strengths of each underlying model.

Hybrid systems are particularly effective because they can personalize the user experience
by addressing a wider range of user behaviors and preferences. They also help alleviate
the cold start problem by using content-based methods when user ratings are scarce and
collaborative methods when metadata is insufficient.

By leveraging the complementary advantages of various recommendation models, hy-
brid systems can significantly enhance the performance and flexibility of recommender
engines, making them adaptable to complex and evolving user needs.

26 Section 4: Types of Recommendation Systems

4.4 Deep Learning Based Recommender Systems
Deep Learning Based Recommender Systems utilize advanced neural network architec-
tures to model complex user-item interactions and uncover deep patterns in large datasets.
These systems represent the cutting-edge in recommendation technology, leveraging the
power of deep learning to provide highly personalized recommendations [5].

Fig. 2.5: Architecture of a Deep Learning-Based Recommendation System.

The core advantage of deep learning models lies in their ability to learn feature rep-
resentations automatically from raw data, which significantly enhances the capability of
recommendation systems in several ways:

1. Feature Learning: Deep learning models can learn intricate structures in the data
autonomously, without requiring manual feature engineering. This capability allows
them to capture subtle user preferences and item attributes that traditional methods
might overlook.

2. Complex Interactions: They are capable of modeling non-linear and complex in-
teractions between users and items, which are often challenging to capture with
traditional matrix factorization techniques.

3. Scalability and Flexibility: Modern deep learning techniques, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), can scale effectively
to accommodate the vast amount of data typically found in commercial recommen-
dation systems. They are also adaptable to various types of data input, including
images, text, and sequential interaction data.

4. Enhanced Contextual Relevance: By integrating contextual information such as
time, location, and social media behavior, deep learning models can offer dynamic
and context-aware recommendations.

Popular models and approaches include:

Chapter 2: Background 27

• Neural Collaborative Filtering (NCF): This model combines traditional collabora-
tive filtering with neural networks to enhance the interaction modeling capabilities.

• Autoencoders: Used for unsupervised learning of efficient codings, helping in noise
reduction and dimensionality reduction for better recommendation quality.

• Sequence Models like LSTM (Long Short-Term Memory): Effective for sequential
recommendation scenarios such as next-item recommendation where the order of
interactions matters.

Deep Learning Based Recommender Systems are increasingly prevalent in sectors where
the accuracy of recommendation is critical and data is abundant, such as streaming ser-
vices, e-commerce, and social networks. Their ability to improve over time with more
data makes them especially valuable in rapidly evolving markets.

5 NLP for Recommender Systems
5.1 What is NLP
Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI) concerned
with enabling computers to comprehend and manipulate human language. NLP leverages
machine learning techniques to endow computers with the ability to interpret, manipu-
late, and even generate human language. This field plays a crucial role in bridging the
communication gap between humans and machines [12].

NLP has opened doors to a world where machines can understand and interact with
human language. This capability translates into a wide range of applications that are
transforming various industries [13] . Here are some specific areas where NLP finds
applications:

1. Language Translation: Breaking down language barriers by translating text between
languages. (Applications: communication tools, travel assistance) [13].

2. Virtual Assistants: Understanding Your Needs Through Conversation. (Applica-
tions: Siri, Alexa, Google Assistant) - NLP empowers virtual assistants to under-
stand spoken language (speech recognition), grasp the intent behind your requests
(natural language understanding), and respond in a natural way (natural language
generation) [12].

3. Search Engines: Going Beyond Keywords to Find What You Really Need. (Ap-
plications: Google Search, Bing) - NLP allows search engines to understand the
meaning and context of your queries (information retrieval), enabling them to re-
turn the most relevant results even if the exact keywords aren’t present [13].

4. Sentiment Analysis: Unveiling Emotions Behind the Text. (Applications: Social
media monitoring, customer review analysis) - NLP empowers tools to analyze text
and determine the emotional tone (positive, negative, neutral). This helps businesses
understand customer sentiment and brand perception [13].

28 Section 5: NLP for Recommender Systems

Fig. 2.6: Diverse Applications of Natural Language Processing.

5. Spell and Grammar Checking: Ensuring Clear and Error-Free Communication.
(Applications: Word processors, email clients) - NLP techniques break down text
into words (tokenization) and assign grammatical labels (part-of-speech tagging) to
analyze structure and spelling. By comparing the text to a large dictionary and
grammar rules, NLP helps identify and suggest corrections for errors [13].

6. Text Summarization: Condensing lengthy text documents into concise summaries.
(Applications: news aggregators, research assistants) [14].

7. Information Retrieval (IR): While traditionally keyword-based, NLP is increas-
ingly being used in information retrieval systems to improve search accuracy by
understanding the meaning and context of user queries [12].

8. Information Extraction (IE): Extracting Meaningful Information from Text. (Ap-
plications: question answering, data mining) [14].

9. Chatbots and Virtual Assistants: Providing interactive customer service or infor-
mation retrieval experiences through natural language conversations. (Applications:
e-commerce websites, banking apps) [13].

Chapter 2: Background 29

In NLP tasks, raw textual data is often messy and unsuitable for direct analysis by
machines. To address this, the upcoming sections will delve into two crucial preliminary
steps: Text Preprocessing and Text Representation.

5.2 Text Preprocessing
Text preprocessing is a crucial first step in any NLP task. It involves transforming raw
text data into a clean and structured format that machines can understand and process
effectively. This process typically involves several sub-steps [15], each addressing a specific
aspect of the raw text:

5.2.1 Tokenization and Text Cleaning

1. Tokenization: This is the process of splitting text data into smaller units of meaning,
often referred to as tokens. These tokens can be individual words, phrases, or even
sentences depending on the specific NLP task.

2. Text Cleaning: This step aims to remove noise and inconsistencies from the text
data. It may involve tasks like :

• Lowercasing: Converting all text to lowercase to ensure consistency and avoid
treating capitalization as a separate feature.

• Punctuation Removal: Removing punctuation marks like commas, periods,
exclamation points, etc., as they often don’t hold significant meaning for the
NLP task at hand.

• Symbol Removal: Removing symbols like @, $, %, &, etc., which might not
be relevant to the analysis.

• Extra Space Removal: Removing unnecessary whitespace characters like mul-
tiple spaces or tabs to improve data consistency.

Fig. 2.7: Tokenization Process in NLP.

30 Section 5: NLP for Recommender Systems

Text cleaning can encompass additional tasks depending on the specific needs of the NLP
application.

By performing tokenization and text cleaning, we prepare the text data for further
processing and analysis in NLP tasks. This ensures that the model focuses on the core
content of the text and avoids getting sidetracked by irrelevant elements.

5.2.2 Stop Words Removing

After breaking text into tokens and cleaning it, stop words are often addressed in text
preprocessing.

Stop Words: These are extremely common words like "the," "in," or "and" that carry
little meaning on their own within a document. While stop words play a grammatical
role, they don’t significantly contribute to the core meaning of the text. Removing them
offers benefits :

• Reduced Processing Time: Eliminating stop words lessens the data processed by
NLP models, leading to faster training and analysis.

• Improved Focus: By removing stop words, NLP models can focus on the more
content-rich words, potentially improving accuracy in tasks like sentiment analysis
or topic modeling.

5.2.3 Stemming and Lemmatizing

Following stop word removal, text preprocessing often tackles the task of reducing words
to their base forms. Here, we encounter two techniques: stemming and lemmatization
[15].

1. Stemming: This process aims to simplify words by chopping off prefixes or suffixes
to obtain their root form (stem). For example, "running" would be stemmed to
"run," and "plays" would be stemmed to "play." Stemming is a rule-based approach
that doesn’t always result in a valid word (e.g., stemming "agrees" might result in
"agree" which isn’t the most accurate root form). However, it’s computationally
efficient.

2. Lemmatization: This technique goes a step further than stemming. It considers
the grammatical context of a word and aims to convert it to its dictionary or base
form (lemma), ensuring a valid word. For example, both "running" and "runs" would
be lemmatized to "run." Lemmatization is more linguistically accurate but can be
computationally more expensive than stemming.

5.2.4 Part-of-Speech Tagging

Moving beyond word forms, text preprocessing can delve into the grammatical role of
each word using part-of-speech (POS) tagging.

Chapter 2: Background 31

Word Stemming Lemmatization
information inform information
informative inform informative
computers comput computer
feet feet foot

Tab. 2.1: Comparing Stemming and Lemmatization Results for Different Words

This process assigns a grammatical category (such as noun, verb, adjective, adverb,
etc.) to each word in a sentence. This provides a deeper understanding of the sentence
structure and how words function within it [15].

Fig. 2.8: Grammatical categories.

5.2.5 Named Entity Recognition (NER)

This technique focuses on identifying and classifying specific types of entities within a text
corpus. These entities can be people, organizations, locations, dates, monetary values, or
other predefined categories relevant to the NLP task [15] .

In the sentence "Barack Obama, the former president of the United States, visited
Paris last week," NER might identify "Barack Obama" as a Person, "United States" as a
Location, and "Paris" as a Location.

32 Section 5: NLP for Recommender Systems

Fig. 2.9: Example of Named Entity Recognition (NER) in NLP.

By incorporating NER into text preprocessing, we can equip NLP models with the
ability to recognize and extract crucial information from text data, leading to a deeper
understanding of the content.

5.3 Text Representation

Text representation is a fundamental concept in Natural Language Processing (NLP). It
refers to the process of converting raw text data into a numerical format that machines
can understand and process effectively. This numerical representation captures the essen-
tial aspects of the text, such as word meaning, relationships between words, and overall
sentiment [16].

Just like we use indexes and catalogs to navigate vast libraries of information, text
representation allows NLP models to efficiently analyze and extract meaning from textual
data.

In the following sections, we will explore several established techniques for representing
text data numerically:

5.3.1 Bag-of-Words (BoW) Method

The Bag-of-Words (BoW) technique represents text by focusing on word presence or
frequency within a document. Think of it like a bag of unique words, where order doesn’t
matter. This approach allows for efficient document similarity comparisons and is useful
for tasks like spam filtering or basic sentiment analysis based on word frequency. However,
BoW disregards word order and context, limiting its ability to capture the full meaning
of text [16].

Chapter 2: Background 33

Fig. 2.10: Transformation of Text Data into a Bag of Words.

5.3.2 TF-IDF (Term Frequency-Inverse Document Frequency)

The Bag-of-Words (BoW) technique is straightforward and effective, yet it presents an
issue by treating all words equally. Consequently, it fails to differentiate between highly
frequent or rare words. To address this limitation, TF-IDF (Term Frequency-Inverse
Document Frequency) is introduced as a solution.

In contrast to the bag of words model, TF-IDF representation considers the significance
of each word within a document. TF stands for term frequency, representing how often a
word appears in a document, while IDF stands for inverse document frequency, indicating
the rarity of the word across all documents [16] .

To understand TF-IDF,it’s essential to discuss the two constituent terms individually:

• Term Frequency (TF) TF measures how often a specific word appears in relation
to the overall length of the document. Calculated by dividing the frequency of the
word by the total number of words in the document, TF offers insights into the
prominence of the term, aiding in the comprehension of the document’s content.

TF (t,d) = numberoftimes”t”appearsind

totalnumberofwordsin”d” (2.1)

• Inverse document frequency (IDF) IDF assesses the rarity of a word across a cor-
pus of documents. Common words receive lower IDF values, while rare words get
higher values. IDF helps prioritize terms based on their uniqueness and potential
informativeness within the corpus.

IDF (t) = log(totalnumberofdocuments

numberofdocumentsthatcontain”t”) (2.2)

• TF-IDF Score The TF-IDF score for a term in a document is derived by multiplying
its TF and IDF values. This composite score indicates the term’s significance both
within the document and across the corpus. Higher TF-IDF scores denote greater
importance of the term in context and across the entire collection of documents.

TFIDF (t,d) = TF (t,d)IDF (t) (2.3)

34 Section 5: NLP for Recommender Systems

5.3.3 Word Embeddings : Word2Vec

Word embeddings are numerical representations of words. These aren’t just random
numbers assigned to each word. Instead, they capture the semantic relationships and
meaning of words by encoding them as vectors in a high-dimensional space [16] .

Imagine a map where similar words are positioned closer together. Words with oppo-
site meanings might be placed far apart. This way, a computer can process words based
on their meaning and relationships, rather than just treating them as isolated symbols.

Word2Vec leverages the idea that words appearing in similar contexts likely share
similar meanings. It accomplishes this by analyzing surrounding words and learning
vector representations for each word. This essentially creates a numerical map where
words with close meanings reside in closer proximity [16].

The technique offers two main approaches:

1. Continuous Bag-of-Words (CBOW): This method acts like a guessing game. Given
a set of surrounding context words, CBOW predicts the word that would likely
appear in the center. This helps the model understand how a word relates to its
neighbors in a sentence .

2. Skip-gram: Here, the focus shifts to a single word. Skip-gram predicts the sur-
rounding context words based on the given word. This approach helps the model
learn the meaning of a word based on the company it keeps within a sentence .

Fig. 2.11: Comparison of CBoW and Skip-gram Models.

5.3.4 Comparative Analysis of 3 Techniques

This section explores the strengths and weaknesses of three text representation techniques:
Bag-of-Words (BoW), TF-IDF, and Word2Vec. It highlights their characteristics and
identifies the tasks for which each method is best suited.

Chapter 2: Background 35

Technique BoW TF-IDF Word2Vec
Computational Ef-
ficiency

Most efficient, ideal
for smaller datasets

Moderately de-
manding

Highly compu-
tational (deep
learning)

Semantic Repre-
sentation

Basic, lacks context
and word order

Weights word im-
portance, limited
context

Excellent, captures
semantic meaning
and relationships

Suitability for Data
Size

Effective with lim-
ited data

Effective with lim-
ited data

Ideal for larger
datasets

Ease of Implemen-
tation

Easiest to imple-
ment

Moderate linguistic
understanding re-
quired

Complex setup,
deep learning
knowledge required

Application Sce-
narios

Document classifi-
cation, spam de-
tection, basic senti-
ment analysis

Information re-
trieval, keyword
extraction, docu-
ment clustering

Machine transla-
tion, contextual
search, advanced
sentiment analysis

Tab. 2.2: Comparative Analysis of BoW, TF-IDF, and Word2Vec Techniques

5.3.5 NLP with ML

In the realm of Natural Language Processing (NLP), which involves understanding and
generating human language, machine learning techniques play a crucial role. Human
language is intricate, with numerous nuances and complexities that make it challenging
to process effectively. This complexity results in a high-dimensional feature space, which
refers to the vast number of potential features or attributes that can be associated with
language data [17].

Machine learning models offer an advantage in dealing with this complexity. Unlike
rule-based systems, which rely on predefined rules created by experts, machine learning
models can learn patterns and relationships directly from data. These models typically
have a larger capacity to represent complex relationships within the data.

Fig. 2.12: The Intersections of AI, ML, DL, and NLP.

36 Section 5: NLP for Recommender Systems

5.4 NLP Approaches for Recommendations
Natural Language Processing (NLP) techniques have emerged as pivotal tools in enhanc-
ing recommendation systems within various domains, particularly in job recommendation
platforms. These systems leverage NLP to better understand and match job descriptions
with candidate profiles by analyzing semantic and syntactic aspects of text data. Key
NLP techniques employed encompass text similarity assessment, named entity recognition
(NER), topic extraction, keyword identification, and concise text summarization.

By integrating these NLP approaches, recommendation systems can offer more precise,
contextually relevant job matches, significantly enhancing user experience and platform
efficiency.

Fig. 2.13: NLP-Based Recommendations for Job Matching.

5.4.1 Text Similarity

Text similarity is a fundamental Natural Language Processing (NLP) technique pivotal in
enhancing recommendation systems, especially in contexts that require matching textual
content, such as job recommendations. This technique measures the degree of closeness
between two pieces of text, enabling systems to efficiently identify documents most aligned
with a user’s preferences or queries. Several algorithms for computing text similarity
include cosine similarity, Jaccard similarity, and Euclidean distance. These metrics are
crucial for evaluating how closely textual data matches, by analyzing the occurrence and
distribution of words and phrases within the texts [15].

The below table presents a side-by-side comparison between a single job vacancy’s
requirements and the qualifications of various candidates, alongside calculated similarity
scores. These scores presumably indicate the degree of alignment between each can-
didate’s experience and the job criteria, based on NLP text similarity algorithms.The
similarity scores, likely generated by an advanced NLP model such as RoBERTa, provide
a numerical representation of relevance, guiding the recruitment process in identifying the
most suitable candidate for the position.

Chapter 2: Background 37

Vacancy Summary About the Candidate Similarity Score
Requires experience in
data analytics,
proficiency in SQL and
Python, experience
with Big Data tools,
knowledge of machine
learning, and must
have leadership skills.

Skilled in data analysis
with R.

0.74

Proficient in SQL, Python,
and data mining.

0.85

Worked with Big Data
technologies.

0.67

Experienced in machine
learning and AI.

0.74

Tab. 2.3: Text Similarity in Job Matching: Candidate and Vacancy Analysis

Euclidean Distance: This metric measures the straight-line distance between two
points in Euclidean space, which can be extended to multidimensional data such as text
vectors [18]. It is calculated using the formula:

Euclidean(A,B) =
√

(yB − yA) + (yB − yA) (2.4)
Where A and B are two vectors in 2-dimensional space.

Cosine Similarity: Measures the cosine of the angle between two non-zero vectors
(representations of text documents) within a multidimensional space. This metric eval-
uates how closely aligned the document vectors are in terms of direction, regardless of
their magnitude. It is particularly effective for assessing similarity in high-dimensional
data like text [18]. The cosine similarity is given by:

Cosine(A,B) = A.B

|A||B|
(2.5)

Where A and B are vector representations of the documents, and A . B denotes the
dot product of the vectors.

Manhattan Distance: Also known as the Taxicab or City Block Distance, this metric
sums the absolute differences of their Cartesian coordinates. It is used in various appli-
cations where the difference across multiple dimensions is to be accumulated [18]. The
Manhattan distance between two points is calculated as:

Manhattan(A,B) = |xB − yA| + |xB − yA| (2.6)
Where A and B are two vectors in 2-dimensional space.
Jaccard Similarity: Calculates the intersection over union of two sets of words. This

method is straightforward and highly effective for cases where the presence or absence of
words is more critical than the frequency of words [15].

Levenshtein Distance (Edit Distance): Determines the minimum number of single-
character edits (insertions, deletions, or substitutions) required to change one word into
the other. This approach is valuable in spelling correction and matching closely related
terms [15].

Hamming Distance: Measures the number of positions at which the corresponding
symbols are different. It’s used in scenarios where the strings are of the same length,

38 Section 5: NLP for Recommender Systems

helping to assess the degree of substitution needed to transform one string into another
[15].

5.4.2 Named Entity Recognition (NER)

Named Entity Recognition (NER) is a critical technique in Natural Language Processing
(NLP) that involves identifying and classifying key information in text into predefined
categories such as the names of persons, organizations, locations, expressions of times,
quantities, monetary values, percentages, etc [15]. This capability is fundamental to
many applications, including job recommendation systems where understanding specific
entities like job titles, skills, and educational qualifications is crucial.

NER helps to extract structured information from unstructured text, enabling rec-
ommendation systems to match job descriptions with candidate profiles more accurately.
For instance, by recognizing and categorizing entities such as programming languages,
certifications, or degree titles mentioned in resumes and job postings, NER systems can
enhance the precision of candidate-job alignment.

The table below demonstrates the use of Named Entity Recognition (NER) to match
job locations with candidate preferences. Using a BERT model, it assigns matching scores
that reflect location relevance; for example, a perfect match for ’New York’ is scored as 1.
Minor spelling variations are well-tolerated, evident in a high score for a misspelled ’New
Yor’. However, non-matching locations like ’San Francisco’ receive low or zero scores,
indicating a mismatch or a need for model adjustment for remote roles.

Vacancy Location About the Candidate Matching Score

New York

I am interested in finance
roles in New York.

1.0

Seeking finance opportuni-
ties in New Yor.

0.9

Looking for tech jobs in
San Francisco.

0.0

Open to positions in New
York or Boston.

0.95

Tab. 2.4: NER-Based Location Matching in Job Preferences

5.4.3 Keyword Extraction

Keyword extraction stands as an integral process within Natural Language Processing
(NLP), focusing on the isolation of significant words or phrases from a vast text corpus that
are vital in understanding the content and context. In the realm of job recommendation
systems, keyword extraction is instrumental in discerning the essential qualifications and
skills from job descriptions and resumes.

Several methods are employed for keyword extraction, including:

• Term Frequency-Inverse Document Frequency (TF-IDF): Identifies how important
a word is to a document within a collection or corpus.

Chapter 2: Background 39

• TextRank: A graph-based ranking model for text processing which identifies key-
words based on the number of times a word occurs and its relevance to the document.

• Deep Learning Approaches: Utilize complex models, often pre-trained on large
datasets, to identify and weigh keywords according to context and semantic meaning.

The table below illustrates keyword matching between job requirements and candidate
experiences using a Bert base extraction method. Candidates with direct experience in
the required technologies and operating systems score higher, reflecting a stronger match.
The simple comparison matching method quantifies the relevance of each candidate’s
profile to the vacancy.

Vacancy Summary About the Candidate Matching Score
Good familiarity with
the Windows desktop
environment and use
of Word, Excel, IE,
Firefox etc. are
required. Perform
execution and report
results accurately.

I have experience with
PyTorch, Tensorflow, and
Keras.

0

I have experience with dif-
ferent operating systems:
Windows, Ubuntu, Ma-
cOS.

1

I have experience in office
applications: Word, Excel,
PowerPoint, etc.

2

Tab. 2.5: Keyword Extraction for Matching Job Requirements with Candidate Experience

5.4.4 Text Summarization

Text Summarization in Natural Language Processing (NLP) is the process of distilling
the most important information from a source text to produce a concise and coherent
version. It plays a pivotal role in job recommendation systems by condensing lengthy job
descriptions and candidate resumes into succinct overviews. The objective is to capture
the essence of the information, enabling recruiters and job seekers to quickly grasp the
key points without delving into the full text.

There are two primary types of text summarization:

1. Extractive Summarization: This approach identifies key sentences or phrases from
the original text and extracts them to create a summary. It relies on algorithms to
determine the weight and relevance of each sentence and compose a summary that
represents the original content’s salient points.

2. Abstractive Summarization: A more advanced technique that involves generating
new sentences that may not necessarily appear in the source text. It interprets the
main ideas using NLP and machine learning to produce a coherent summary that
resembles human-generated narratives.

40 Section 6: Recommendations in recruitment

Fig. 2.14: Overview of Text Summarization Techniques in NLP.

6 Recommendations in recruitment
The traditional job search process, dominated by keyword-based searches and generic re-
sumes, can be a frustrating and time-consuming endeavor for both candidates and employ-
ers. Fortunately, the rise of recommendation techniques is transforming the job hunting
landscape by fostering smarter matching between candidates and suitable opportunities.
Here’s how these techniques are reshaping the recruitment scene:

Personalized Candidate Matching: Recommendation systems analyze a candidate’s
skills, experience, educational background, and potentially even social media activity to
create a comprehensive skills profile. This profile is then compared to job descriptions,
highlighting relevant requirements and experiences. This targeted approach eliminates
irrelevant job postings that waste a candidate’s time and allows them to focus on positions
that truly align with their qualifications and career aspirations.

Skills-Based Recommendations: Beyond just matching job titles, recommendation
systems can identify the specific skills and experiences most sought after by employers.
These insights empower candidates to tailor their resumes and cover letters, emphasizing
the skills required for the desired positions. Additionally, the system can recommend
relevant courses, certifications, or training programs to help bridge any skill gaps identified
in a candidate’s profile.

Uncovering Hidden Job Opportunities: Recommendation systems can leverage a can-
didate’s network and browsing behavior to discover hidden job opportunities that might
not appear in traditional searches. For instance, the system might recommend positions
at companies a candidate has shown interest in or connect them with former colleagues
who may have valuable insights into potential job openings. This ability to unearth hid-
den gems expands the job search landscape and increases a candidate’s chances of landing
the perfect role.

Employer Branding and Targeted Advertising: For companies, recommendation sys-
tems offer a powerful tool to strengthen their employer brand and attract high-caliber
candidates. By analyzing the profiles of successful employees, the system can identify the
key skills and experiences that contribute to success within the company. This informa-
tion can then be used to tailor job postings and employer branding initiatives to attract
candidates who possess the right skill sets and cultural fit. Additionally, targeted adver-

Chapter 2: Background 41

tising on social media platforms can be used to reach a pool of pre-qualified candidates
based on their skills and interests, streamlining the recruitment process.

Building a Collaborative Ecosystem: Recommendation systems can foster a more
collaborative job search ecosystem. By analyzing user behavior and feedback on job
postings, the system can continuously learn and improve its matching algorithms. Addi-
tionally, candidate reviews of companies and interview experiences can be fed back into
the system, providing valuable insights for both job seekers and employers in a transparent
and dynamic way.

Overall, recommendation techniques are transforming the job search landscape from
a random search to a strategic and personalized process. By empowering both candidates
and employers with smarter matching and valuable insights, these techniques have the
potential to revolutionize the way we find and fill jobs in the future.

7 Related works

7.1 Academic Research
• Collaborative and Content-based Filtering: Early research focused on collabora-

tive and content-based filtering methods has laid the groundwork for modern rec-
ommendation systems. These studies highlighted the strengths and limitations of
each approach, paving the way for hybrid models that combine the best of both
worlds.

• Matrix Factorization Techniques: Significant academic work has been done on
advanced matrix factorization models for improving recommendation accuracy, es-
pecially in sparse data environments common in job recommendation scenarios.

• Deep Learning Applications: Recent research has explored the use of deep learning
techniques, such as convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs), in enhancing the personalization and accuracy of recommendations.

7.2 Commercial Platforms
• LinkedIn: One of the pioneers in job recommendation, LinkedIn uses a combination

of user data and machine learning algorithms to provide personalized job suggestions
to its users.

• Indeed: As a major player in the job search engine market, Indeed utilizes complex
algorithms to match resumes with job listings, offering a wide range of filtering and
recommendation features to streamline the job search process.

• Glassdoor: Known for its company reviews and salary data, Glassdoor integrates
these insights with job recommendations, helping users make more informed deci-
sions about their career moves.

42 Section 8: Conclusion

7.3 Emerging Technologies
• AI and NLP in Job Matching: Innovations in AI and NLP are being increasingly

applied to understand deeper contextual meanings of job descriptions and resumes.
This technology helps in better aligning candidate skills with job requirements be-
yond mere keyword matching.

• Mobile Job Applications: Platforms like ZipRecruiter and Monster have developed
sophisticated mobile apps that use machine learning to adapt and personalize job
recommendations based on user interactions and feedback.

8 Conclusion
Chapter 1 has provided a comprehensive foundation for understanding recommendation
systems and their potential to revolutionize the recruitment landscape. We began by
highlighting the challenges of traditional keyword-based job searches and the crucial role
technology plays in modern recruitment.

The concept of recommendation systems was introduced, delving into their historical
origins and exploring various types, including collaborative filtering, content-based filter-
ing, and their hybrid counterparts. We then focused on specific techniques like matrix
factorization and deep neural networks, which power the sophisticated matching algo-
rithms utilized in modern systems.

The chapter further explored the diverse use cases and applications of recommendation
systems beyond recruitment, showcasing their broader impact across various industries.
We then highlighted the numerous benefits these systems offer, including improved ef-
ficiency, better candidate-job matching, and a more personalized job search experience.
Finally, we examined how recommendation techniques can be applied to job finding, em-
powering candidates to discover relevant opportunities and showcase their qualifications
more effectively.

This foundation paves the way for further exploration in subsequent chapters. By
delving deeper into the specific algorithms, implementation details, and evaluation metrics
associated with recommendation systems, we can gain a more nuanced understanding of
their capabilities and limitations in the context of recruitment. We can then explore
how these systems can be further fine-tuned and optimized to address specific challenges
within the recruitment process and ultimately achieve the goal of connecting the right
candidates with the right jobs.

In conclusion, Chapter 1 has established recommendation systems as a powerful tool
with the potential to transform the recruitment industry. By fostering smarter matching,
personalized experiences, and a more collaborative ecosystem, these systems hold the key
to a future where both candidates and employers can navigate the job market with greater
efficiency and success.

Chapter 3: Design and Implementation of Recommendation System 43

C
h

a
p

t
e

r

3
Design and Implementation of

Recommendation System

1 Introduction

In this chapter, we discuss the design and implementation of a content-based recom-
mendation system aimed at enhancing user engagement by delivering personalized job
recommendations. This system leverages user interaction data and job descriptions to
identify and suggest job listings that align closely with user preferences and professional
backgrounds. We detail the comprehensive approach taken from data acquisition and
preprocessing to the application of sophisticated natural language processing techniques.
The goal is to create a robust system that not only understands the intricate details of job
data but also accurately predicts and recommends jobs that users are likely to find rel-
evant and appealing. This chapter sets the stage for subsequent sections that delve into
the system’s architecture, the methodologies employed for data handling and analysis,
and the metrics used to evaluate the system’s performance.

2 Design

This section outlines the architecture and core principles of our content-based recommen-
dation system, focusing on the dataset’s characteristics, preprocessing methods, and the
evaluation metrics employed. We detail how each design aspect contributes to enhancing
the system’s ability to deliver personalized and relevant job recommendations efficiently.

44 Section 2: Design

Fig. 3.1: Architecture of our content-based recommendation system

2.1 Dataset
2.1.1 Description

In the development of the content-based recommendation system, we utilized four distinct
datasets from Kaggle [19], each providing essential data elements necessary for construct-
ing a comprehensive profile of both jobs and applicants. These datasets include:

Dataset 1: (Combined_Jobs_Final.csv) It contains detailed information about job
listings, including job titles, descriptions, company details, and geographic location. This
dataset forms the core of the job recommendation system by providing the data needed
for job content analysis and feature extraction.

Dataset 2: (Experience.csv) It catalogs the previous job experiences of applicants,
listing their former positions, employers, job locations, and descriptions. This dataset is
crucial for understanding applicants’ professional backgrounds and preferences, aiding in
the personalization of job recommendations.

Dataset 3: (Positions_Of_Interest.csv) It contains information about the job posi-
tions applicants have expressed interest in. This dataset is instrumental in aligning job
recommendations with the explicit preferences of the users.

Dataset 4: (Job_Views.csv) This dataset tracks which jobs applicants have viewed,
providing insights into applicant interests and engagement. It includes data on the appli-
cant ID, job ID, and timestamps of views, essential for analyzing interaction patterns.

2.1.2 Structure

In this section, we detail the structure of the datasets utilized in our recommendation
system. Each dataset comprises various fields that capture significant attributes relevant
to job seekers and job postings. The datasets and their structures are outlined in table
below:

Chapter 3: Design and Implementation of Recommendation System 45

Dataset Fields
Positions Of
Interest

• Applicant.ID: Unique identifier for each applicant

• Position.Of.Interest: Type or title of the job position the appli-
cant is interested in

• +9 other: Additional attributes not specified here

Experience

• Applicant.ID: Unique identifier for each applicant

• Position.Name: Name of the position held by the applicant

• +11 other: Additional attributes not specified here

Job Views

• Applicant.ID: Unique identifier for each applicant

• Job.ID: Unique identifier for each job viewed

• Position: Specific position of the job listing

• Company: Name of the company offering the job

• City: City where the job is located

• +9 other: Additional attributes not specified here

Continued on next page

46 Section 2: Design

Tab. 3.1 – continued from previous page
Dataset Fields
Jobs

• Job.ID: Unique identifier for each job listing

• Slug: A slug is a human-readable, unique identifier, used to iden-
tify a resource instead of a less human-readable identifier like an
id.

• Title: Title of the job listing

• Position: Specific position title within the company

• Company: Name of the company offering the job

• City: City where the job is located

• Employment.Type: Type of employment (e.g., Full-time, Part-
time)

• Education.Required: Educational requirements for the job

• Job.Description: Description of the job responsibilities

• +14 other: Additional attributes not specified here

Tab. 3.1: Structure of used datasets

The figure below illustrates the structure and relationships of four datasets used in a
job recommendation system: Positions of Interest, Experience, Job Views, and Jobs.

Fig. 3.2: Structure and relationships of datasets

Chapter 3: Design and Implementation of Recommendation System 47

2.1.3 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a fundamental process in data analysis that involves
summarizing main characteristics of datasets, often through visual methods. The primary
objective of EDA is to uncover patterns, spot anomalies, check assumptions, and test
hypotheses about the data under analysis. This crucial step provides deep insights that
inform subsequent data preparation and modeling phases. EDA aims to optimize the
analytical models and enhance decision-making processes.

The bar chart below illustrates the distribution of job listings across various indus-
tries within the dataset. It’s evident that the "Food and Beverages" industry dominates,
accounting for the majority of job postings, followed by industries such as "Office Ad-
ministration," "Transportation," and "Retail." The "Care Giving" sector has the fewest
listings, indicating a potential underrepresentation in the dataset.

Fig. 3.3: Distribution of jobs by industry

The word cloud displayed illustrates the most frequently occurring terms in job de-
scriptions from the dataset. Prominent words like "Home," "Health," "Sales," "Service,"
"Associate," "Customer," and "Clerk" indicate key focus areas in job roles and sectors.
This visualization provides a snapshot of the skills and positions that are currently in
high demand across various industries.

48 Section 2: Design

Fig. 3.4: Word Cloud of frequently occurring terms in job descriptions

The histogram above represents the distribution of the number of job views per user
in the dataset. It clearly shows that the majority of users view between 0 to 10 jobs, with
a sharp decrease as the number of job views increases.

Fig. 3.5: Distribution of job views per User

2.2 Preparing & Preprocessing
The preparation and preprocessing of data are critical steps in our recommendation sys-
tem’s pipeline, ensuring that the input data is clean, structured, and suitable for further
analysis and model building. The process is visualized in the accompanying diagram, il-
lustrating how multiple datasets are integrated and refined into structured forms suitable
for processing.

Chapter 3: Design and Implementation of Recommendation System 49

Fig. 3.6: Data preparation and preprocessing workflow

2.2.1 Preparing

In this initial phase, data from multiple sources is consolidated and cleaned to create a
unified dataset. This preparation is essential for aligning the data into a format suitable
for detailed analysis and subsequent processing.

• Data Cleaning

We perform extensive data cleaning which involves:

Removing Duplicates: Ensuring each data entry is unique to prevent skewed anal-
ysis.

Handling Missing Values: Filling in or omitting missing values to improve data
quality.

Data Verification: Checking for data consistency and correctness across different
sources.

• Fetching Job Description

Job descriptions are extracted and organized to highlight key information such as
title, description, and position which are critical for accurate job matching.

Fig. 3.7: Constructing job description form datasets

• Fetching User Profile

50 Section 2: Design

User profiles are constructed using demographic data, historical interaction data,
and preferences to enable personalized job recommendations tailored to individual
needs.

Fig. 3.8: Constructing user profile form datasets

2.2.2 Preprocessing

The preprocessing stage refines the text data through several techniques to enhance the
machine readability and analytical value of the content.

• Removing Stopwords

Commonly used words (such as "the", "is", "at") which do not add significant meaning
to the text are removed to focus on more meaningful words.

• Deleting Special Characters

Special characters and numbers are removed from the text to prevent any analytical
distortions and focus on the textual content.

• Converting to Lowercase

All text data is converted to lowercase to maintain uniformity and avoid discrepan-
cies in text processing.

• Stemming & Lemmatization

Words are reduced to their base or root form, smoothing out variations in the data
and improving the consistency of textual analysis.

• Tokenization

Text data is split into individual words or tokens, making it easier to apply natural
language processing techniques and analyze the data effectively.

After these steps, the data is well-prepared and preprocessed, formatted into two
primary schemas: one for job descriptions and another for user profiles, ready to be
utilized in the recommendation engine for further analysis and model training.

Chapter 3: Design and Implementation of Recommendation System 51

2.3 Evaluation metrics
In our recommendation system, we utilize classification accuracy measures such as Preci-
sion, Recall, and the F1 Score to evaluate the effectiveness of our recommendations. These
metrics are especially pertinent to systems that make binary decisions about user-item
pairs, i.e., whether to recommend or not recommend a particular item to a user.

Precision and Recall are applied by transforming the recommendation system’s output
from a continuous or multi-class scale into a binary scale. In this context, items predicted
to be of interest are labeled as "Recommend," and those deemed not of interest are labeled
"Do not recommend." This binary categorization allows us to directly measure the system’s
accuracy in predicting relevant items. Each item can be either relevant or irrelevant to
the user. We get, therefore, the following matrix:

Vacancy Summary Recommended Not Recommended Total
Relevant RR RN R = RR + RN
Not Relevant FP NN IR = F P + NN
Total REC = RR + F P NREC = RN + NN N = R + IR = REC

+ NREC

Tab. 3.2: Matrix for recommendation system evaluation

• Precision: Precision measures the proportion of recommended items that are rele-
vant. It is calculated as

Precision = RR

RR + FP
= RR

REC
(3.1)

• Recall: Recall measures the proportion of relevant items that have been recom-
mended. It is calculated as

Recall = RR

RR + RN
= RR

R
(3.2)

• F-measure (F1 Score): The F-measure, or F1 Score, is the harmonic mean of pre-
cision and recall, providing a single metric that balances both the precision and the
recall. It is calculated as

F1 = 2 PrecisionRecall
Precision + Recall

(3.3)

3 Implementation
3.1 Frameworks, tools and libraries

• Python:

52 Section 3: Implementation

Python is a versatile and widely-used programming language known for its read-
ability and broad support for scientific computing and data analysis. It is popular
in data science due to its powerful libraries and active community.

Fig. 3.9: Python logo

• Google Colab:
Google Colab is a cloud-based platform that allows users to write and execute
Python code through the browser. It is equipped with free access to GPUs and
TPUs which makes it ideal for machine learning and data analysis without requiring
local setup.

Fig. 3.10: Google colab logo

• Pandas:
Pandas is a library in Python that provides data structures and data analysis tools.
It excels in handling and manipulating structured data, such as tables, with its
DataFrame object.

Fig. 3.11: Pandas logo

• NumPy:
NumPy is a fundamental package for scientific computing in Python. It supports
large, multi-dimensional arrays and matrices, along with a large collection of high-
level mathematical functions to operate on these arrays.

Fig. 3.12: NumPy logo

Chapter 3: Design and Implementation of Recommendation System 53

• Matplotlib:
Matplotlib is a plotting library for the Python programming language and its nu-
merical mathematics extension NumPy. It provides an object-oriented API for em-
bedding plots into applications using general-purpose GUI toolkits like Tkinter,
wxPython, Qt, or GTK.

Fig. 3.13: Matplotlib logo

• Kaggle:
Kaggle is a platform for data science competitions and collaborative projects. It
provides datasets, a cloud-based work environment, and a community for data sci-
entists and machine learning practitioners to engage and collaborate.

Fig. 3.14: Kaggle logo

3.2 Data Loading and Preparation
The following code loads and prepares the job and user data for a content-based recom-
mendation system. It combines relevant columns to create comprehensive job descriptions
and user profiles by aggregating positions of interest and experiences. This preparation
ensures clean and structured data, ready for further processing and analysis. Load Data

1 import pandas as pd
2
3 # Load datasets
4 jobs_df = pd. read_csv (’drive/ MyDrive /Colab Notebooks /input/

Combined_Jobs_Final .csv ’)
5 job_views_df = pd. read_csv (’drive/ MyDrive /Colab Notebooks /input/

Job_Views .csv ’)
6 experience_df = pd. read_csv (’drive/ MyDrive /Colab Notebooks /input/

Experience .csv ’)
7 position_of_interest_df = pd. read_csv (’drive/ MyDrive /Colab Notebooks /

input/ Positions_Of_Interest .csv ’)

Listing 3.1: Loading datasets

Job Description
1 # Select relevant columns from the jobs DataFrame that will be used to

create the job description

54 Section 3: Implementation

2 jobs_df = jobs_df [[’Job.ID’, ’Title ’, ’Position ’, ’Company ’, ’City ’, ’
State.Name ’, ’Employment .Type ’, ’Education . Required ’, ’Job.
Description ’]]

3
4 # Remove rows with any missing values to ensure clean data
5 jobs_df = jobs_df . dropna ()
6
7 # Combine the selected columns into a single ’Description ’ column
8 jobs_df [’Description ’] = jobs_df [’Title ’] + ’ ’ + jobs_df [’Position ’] +

’ ’ + jobs_df [’Company ’] + ’ ’ + jobs_df [’City ’] + ’ ’ + jobs_df [’
State.Name ’] + ’ ’ + jobs_df [’Employment .Type ’] + ’ ’ + jobs_df [’
Education . Required ’] + ’ ’ + jobs_df [’Job. Description ’]

9
10 # Create a new DataFrame with only ’Job.ID’ and the newly created ’

Description ’ column
11 job_description_df = jobs_df [[’Job.ID’, ’Description ’]]
12
13 # Limit the job descriptions to the first 5000 entries to reduce

computational load
14 job_description_df = job_description_df [:5000]

Listing 3.2: Constructing job descriptions

User Profile
1 # Combine relevant columns to create the ’Experience ’ column for each

applicant
2 # This concatenates the position name , city , and job description into a

single string
3 experience_df [’Experience ’] = experience_df [’Position .Name ’] + ’ ’ +

experience_df [’City ’] + ’ ’ + experience_df [’Job. Description ’]
4
5 # Select ’Applicant .ID’ and ’Experience ’ columns and remove rows with

any missing values
6 experience_df = experience_df [[’Applicant .ID’, ’Experience ’]]. dropna ()
7
8 # Group by ’Applicant .ID’ and concatenate all experiences into a single

string for each applicant
9 experience_df = experience_df . groupby (’Applicant .ID’, sort=False)[’

Experience ’]. apply(’ ’.join). reset_index ()
10
11 # Select ’Applicant .ID’ and ’Position .Of. Interest ’ columns and remove

rows with any missing values
12 position_of_interest_df = position_of_interest_df [[’Applicant .ID’, ’

Position .Of. Interest ’]]. dropna ()
13
14 # Group by ’Applicant .ID’ and concatenate all positions of interest into

a single string for each applicant
15 position_of_interest_df = position_of_interest_df . groupby (’Applicant .ID’

, sort=False)[’Position .Of. Interest ’]. apply(’ ’.join). reset_index ()
16
17 # Merge the ’Position .Of. Interest ’ data with the ’Experience ’ data on ’

Applicant .ID’
18 # This creates a combined user profile containing both positions of

interest and experiences

Chapter 3: Design and Implementation of Recommendation System 55

19 user_profile_df = position_of_interest_df .merge(experience_df [[’
Applicant .ID’, ’Experience ’]], on=’Applicant .ID’, how=’left ’)

20
21 # Concatenate the ’Position .Of. Interest ’ and ’Experience ’ columns to

form the final ’Profile ’ for each applicant
22 user_profile_df [’Profile ’] = user_profile_df [’Position .Of. Interest ’] + ’

’ + user_profile_df [’Experience ’]. fillna (’’)
23
24 # Select ’Applicant .ID’ and ’Profile ’ columns and remove rows with any

missing values
25 user_profile_df = user_profile_df [[’Applicant .ID’, ’Profile ’]]. dropna ()
26
27 # Limit the user profiles to the first 5000 entries to reduce

computational load
28 user_profile_df = user_profile_df [:5000]

Listing 3.3: Constructing user profiles

3.3 Data Pre-processing
The following code performs text pre-processing to clean and normalize the job descrip-
tions and user profiles. It involves converting text to lowercase, removing special char-
acters, eliminating stopwords, and applying stemming and lemmatization. These steps
prepare the text data for efficient and accurate feature extraction.

Import Necessary Libraries
1 import pandas as pd
2 import re
3 from nltk. corpus import stopwords
4 from nltk.stem import PorterStemmer , WordNetLemmatizer
5 from nltk. tokenize import word_tokenize
6 from nltk import download

Listing 3.4: Import necessary libraries for text preprocessing

Define the Preprocessing Function
1 # Initialize stemmer and lemmatizer
2 stemmer = PorterStemmer ()
3 lemmatizer = WordNetLemmatizer ()
4 stop_words = set(stopwords .words(’english ’))
5
6 # Define preprocessing function
7 def preprocess_text (text):
8 text = text.lower () # Convert text to lowercase
9 text = re.sub(r’\W’, ’ ’, text) # Remove special characters

10 tokens = text.split () # Split text into tokens
11 tokens = [word for word in tokens if word not in stop_words] #

Remove stopwords
12 tokens = [stemmer .stem(word) for word in tokens] # Apply stemming
13 tokens = [lemmatizer . lemmatize (word) for word in tokens] # Apply

lemmatization
14 return ’ ’.join(tokens) # Rejoin tokens into a single string

Listing 3.5: Text preprocessing function for NLP

56 Section 3: Implementation

Apply Preprocessing
1 # Apply preprocessing to job descriptions
2 job_description_df [’Description ’] = job_description_df [’Description ’].

apply(preprocess_text)
3
4 # Apply preprocessing to user profiles
5 user_profile_df [’Profile ’] = user_profile_df [’Profile ’]. apply(

preprocess_text)

Listing 3.6: Applying Text Preprocessing

3.4 Text to Features
The following code extracts features from the text data using different techniques: TF-
IDF, Bag of Words, and Word Embeddings. Each technique is implemented as a function
to transform the job descriptions and user profiles into numerical representations suitable
for machine learning algorithms.

3.4.1 TF-IDF

TF-IDF is a statistical measure used to evaluate the importance of a word in a document
relative to a collection of documents (corpus). It transforms text data into numerical
features by considering the frequency of words and their inverse document frequency.

1 from sklearn . feature_extraction .text import TfidfVectorizer
2 # Initialize TF -IDF vectorizer
3 tfidf_vectorizer = TfidfVectorizer ()
4
5 def extract_features_tfidf (job_description_df , user_profile_df):
6 # Fit and transform the job descriptions
7 tfidf_matrix_jobs = tfidf_vectorizer . fit_transform (

job_description_df [’Description ’])
8
9 # Transform the user profiles

10 tfidf_matrix_profiles = tfidf_vectorizer . transform (user_profile_df [’
Profile ’])

11
12 return tfidf_matrix_jobs , tfidf_matrix_profiles

Listing 3.7: TF-IDF function

3.4.2 Bag of Words

Bag of Words is a simple technique that transforms text data into numerical features by
counting the occurrence of each word in the text. It ignores the order of words and treats
each word independently.

1 from sklearn . feature_extraction .text import CountVectorizer
2
3 # Initialize Bag of Words vectorizer
4 bow_vectorizer = CountVectorizer ()

Chapter 3: Design and Implementation of Recommendation System 57

5 def extract_features_bow (job_description_df , user_profile_df):
6 # Fit and transform the job descriptions
7 bow_matrix_jobs = bow_vectorizer . fit_transform (job_description_df [’

Description ’])
8
9 # Transform the user profiles

10 bow_matrix_profiles = bow_vectorizer . transform (user_profile_df [’
Profile ’])

11
12 return bow_matrix_jobs , bow_matrix_profiles

Listing 3.8: Bag of Words function

3.4.3 Words Embeddings

Word Embeddings represent words as dense vectors in a continuous vector space. These
vectors capture the semantic meaning of words. The Universal Sentence Encoder (USE)
is used to obtain embeddings for the entire sentences or documents.

1 import tensorflow_hub as hub
2
3 # Load Universal Sentence Encoder
4 embed = hub.load("https :// tfhub.dev/ google /universal -sentence - encoder /4"

)
5
6 def extract_features_embeddings (job_description_df , user_profile_df):
7 # Convert text to embeddings
8 job_embeddings = embed(job_description_df [’Description ’]. tolist ())
9 profile_embeddings = embed(user_profile_df [’Profile ’]. tolist ())

10
11 return job_embeddings , profile_embeddings

Listing 3.9: Words embeddings function

3.4.4 Text to feature function

The text_to_feature function converts job descriptions and user profiles into numerical
feature representations using the specified technique (TF-IDF, Bag of Words, or Word
Embeddings). This enables subsequent analysis and similarity calculations for personal-
ized job recommendations.

1 def text_to_feature (job_description_df , user_profile_df , technique ="TF -
IDF"):

2 # Initialize feature matrices
3 matrix_jobs , matrix_profiles = None , None
4 # Extract features based on the selected technique
5 if technique == "TF -IDF":
6 matrix_jobs , matrix_profiles = extract_features_tfidf (

job_description_df , user_profile_df)
7 elif technique == "BoW":
8 matrix_jobs , matrix_profiles = extract_features_bow (

job_description_df , user_profile_df)

58 Section 3: Implementation

9 elif technique == " Embeddings ":
10 matrix_jobs , matrix_profiles = extract_features_embeddings (

job_description_df , user_profile_df)
11 else:
12 raise ValueError (" Invalid technique specified . Choose from ’TF -

IDF ’, ’BoW ’, or ’Embeddings ’.")
13 return matrix_jobs , matrix_profiles

Listing 3.10: Text to feature function

3.5 NLP model (Cosine Similarity)
Cosine similarity is a metric used to measure how similar two items are, irrespective of
their size. In the context of job recommendations, it allows us to compare user profiles
with job descriptions to find the best matches.

The following code uses cosine similarity to measure the similarity between user profiles
and job descriptions. Based on this similarity, it generates top-N job recommendations
for each user or for each job. The feature extraction technique can be switched between
TF-IDF, Bag of Words, or Word Embeddings.

3.5.1 Jobs Recommendations

To generate job recommendations, we leverage cosine similarity to compare user profiles
against job descriptions. This method identifies the top job listings that align closely with
each user’s profile.

1 from sklearn . metrics . pairwise import cosine_similarity
2 def generate_recommended_jobs (job_description_df , user_profile_df ,

technique = "TF -IDF"):
3 matrix_jobs , matrix_profiles = text_to_feature (job_description_df ,

user_profile_df , technique)
4 # Compute cosine similarity between user profiles and job

descriptions
5 cosine_similarities = cosine_similarity (matrix_profiles , matrix_jobs

)
6 # Generate top -N recommendations for each user
7 top_n = 5 # Number of top recommendations to consider
8 recommendations = {}
9 for idx , similarities in enumerate (cosine_similarities):

10 top_indices = similarities . argsort ()[-top_n :][:: -1]
11 recommendations [user_profile_df .iloc[idx][’Applicant .ID’]] =

job_description_df .iloc[top_indices][’Job.ID’]. values
12 return recommendations

Listing 3.11: Jobs recommendation

Testing: To validate the job recommendation system, we generate recommendations for a
specific user and display the results. This involves checking the recommended jobs against
the user’s positions of interest.

1 recommendations = generate_recommended_jobs (job_description_df ,
user_profile_df)

Chapter 3: Design and Implementation of Recommendation System 59

2 display (position_of_interest_df [position_of_interest_df [’Applicant .ID’]
== 3149][[’Position .Of. Interest ’]])

3 jobs_df [jobs_df [’Job.ID’]. isin(recommendations [3149])][[’Job.ID’, ’Title
’, ’Position ’]]

Listing 3.12: Testing jobs recommendation

Fig. 3.15: Recommended jobs for applicant

3.5.2 Applicants Recommender

Similar to job recommendations, we can also recommend applicants for specific job listings.
This process uses cosine similarity to find user profiles that match the job descriptions,
suggesting the best candidates for each job.

1 def generate_recommended_applicant (job_description_df , user_profile_df ,
technique = "TF -IDF"):

2 matrix_jobs , matrix_profiles = text_to_feature (job_description_df ,
user_profile_df , technique)

3 # Compute cosine similarity between user profiles and job
descriptions

4 cosine_similarities = cosine_similarity (matrix_jobs , matrix_profiles
)

5 # Generate top -N recommendations for each user
6 top_n = 5 # Number of top recommendations to consider
7 recommendations = {}
8 for idx , similarities in enumerate (cosine_similarities):
9 top_indices = similarities . argsort ()[-top_n :][:: -1]

10 recommendations [job_description_df .iloc[idx][’Job.ID’]] =
user_profile_df .iloc[top_indices][’Applicant .ID’]. values

11 return recommendations

Listing 3.13: Applicants recommendation

Testing: To validate the applicant recommendation system, we generate recommenda-
tions for a specific job and display the results. This involves checking the recommended
applicants against the job’s requirements.

1 recommendations_for_jobs = generate_recommended_applicant (
job_description_df , user_profile_df)

2 print(job_description_df [job_description_df [’Job.ID’] == 134273])

60 Section 4: Testing

3 user_profile_df [user_profile_df [’Applicant .ID’]. isin(
recommendations_for_jobs [134273])]

Listing 3.14: Testing applicants recommendation

Fig. 3.16: Recommended applicants for job

The recommendations initially appear to be inappropriate for the required job because
the full text was not displayed. However, upon printing the entire text, we find that there
is a match, as shown in the figure below.

Fig. 3.17: Detailed experience of recommended applicants for job

This section demonstrates how cosine similarity can be effectively used to generate
both job and applicant recommendations. By testing the system with real data, we can
ensure its reliability and accuracy in making relevant recommendations.

4 Testing
To test the effectiveness of the recommendations made by our system, we can evaluate
how well the recommended job IDs match the job IDs that users have actually interacted
with, as recorded in our user interaction dataset. This approach involves comparing

Chapter 3: Design and Implementation of Recommendation System 61

the recommended jobs for a user against their historical job interactions, assessing the
precision, recall, and F1 score of the recommendations.

We focus solely on job recommendations for users, as we are unable to test appli-
cant recommendations for jobs. This limitation is due to the lack of ground truth data
necessary to evaluate the results of applicant recommendations.

Here’s how to set up and conduct this evaluation:
1 from sklearn . metrics import precision_score , recall_score , f1_score
2
3 # Generate recommendations for all users
4 recommendations = generate_recommended_jobs (job_description_df ,

user_profile_df , technique ="TF -IDF")
5
6 # Evaluates the recommendations for a specific user by calculating

precision , recall , and F1 score.
7 def evaluate_jobs_recommendations (recommendations , user_interactions_df ,

user_id):
8 # Get the recommended jobs for the user
9 recommended_jobs = recommendations .get(user_id , [])

10
11 # Filter the jobs_df to get the information of the recommended jobs
12 recommended_jobs_info = jobs_df [jobs_df [’Job.ID’]. isin(

recommended_jobs)][[’Title ’, ’Description ’]]
13
14 # Get the actual jobs the user interacted with
15 actual_jobs = user_interactions_df [user_interactions_df [’Applicant .

ID’] == user_id][’Job.ID’]. values
16
17 # Create ground truth and prediction arrays
18 ground_truth = []
19 predictions = []
20
21 # Iterate over all jobs in the dataset to create binary labels
22 all_jobs = job_description_df [’Job.ID’]. values
23 for job_id in all_jobs :
24 ground_truth . append (1 if job_id in actual_jobs else 0)
25 predictions . append (1 if job_id in recommended_jobs else 0)
26
27 # Calculate evaluation metrics
28 precision = precision_score (ground_truth , predictions)
29 recall = recall_score (ground_truth , predictions)
30 f1 = f1_score (ground_truth , predictions)
31
32 return recommended_jobs_info , precision , recall , f1
33
34 # Example user ID to evaluate
35 user_id_to_evaluate = 3001
36 positions = position_of_interest_df [position_of_interest_df [’Applicant .

ID’] == user_id_to_evaluate][[’Applicant .ID’, ’Position .Of. Interest ’
]]

37 # Evaluate the recommendations for the specific user
38 recommended_jobs , precision , recall , f1 = evaluate_jobs_recommendations (

recommendations , user_inter , user_id_to_evaluate)

62 Section 5: Conclusion

39
40 print(" ============ User interests ============ ")
41 display (positions .head ())
42 print(" ============ Recommeded jobs ============ ")
43 display (recommended_jobs .head ())
44 print(" ============ Evaluation ============ ")
45 print(f" Precision : { precision }")
46 print(f" Recall : { recall }")
47 print(f"F1 Score: {f1}")

Listing 3.15: Testing system

Fig. 3.18: Testing result

5 Conclusion
In this chapter, we presented the structure of our datasets and described our system de-
sign, detailing the exact processes involved in the preprocessing phase. We also discussed
the tools, libraries, and frameworks utilized, particularly focusing on natural language
processing (NLP) techniques for analyzing and interpreting job-related text data. The
implementation of our recommendation system was thoroughly explained, highlighting
how NLP facilitates the creation of targeted job recommendations. In the next chap-
ter, we will explore various experimentations and analyze the results obtained from our
system.

Chapter 4: Experiments and Results 63

C
h

a
p

t
e

r

4
Experiments and Results

1 Introduction
In this chapter, we systematically present the methodology, setup, and outcomes of exper-
iments conducted to evaluate the performance of our recommendation system. We detail
the experimental environment, define the criteria for performance evaluation, and assess
the effectiveness of our recommendations. This chapter aims to transparently quantify the
impact and efficiency of the system, providing a comprehensive analysis of its operational
capabilities and results.

2 Experiment environment
The table below delineates the comprehensive setup of the experimental environment used
to test and evaluate our job recommendation system.

Component Specification
Hardware CPU: Intel i7-9700K, RAM: 16GB, GPU: NVIDIA GTX 1080
Software Operating System: Windows 10, Python 3.8
Development
Tools

Jupyter Notebook

Libraries and
Frameworks

Pandas, NumPy, scikit-learn, NLTK, Matplotlib

Datasets Combined_Jobs_Final.csv, Job_Views.csv, Experience.csv, Posi-
tions_Of_Interest.csv

Continued on next page

64 Section 3: Evaluation of recommendations

Tab. 4.1 – continued from previous page
Component Specification
Algorithms TF-IDF, Bag of Words, Embeddings, Cosine Similarity
Performance
Metrics

Precision, Recall, F1 Score

Tab. 4.1: Experimental environment specifications

3 Evaluation of recommendations

The experiments were designed to evaluate the performance of the recommendation sys-
tem using different feature extraction techniques and similarity measures. We conducted
experiments using TF-IDF, Bag of Words, and Word Embeddings to extract features from
the job descriptions and user profiles. We then calculated the cosine similarity between
these features to generate job recommendations.

The evaluation was focused solely on job recommendations for users and did not
include applicant recommendations for jobs. This is because we do not have ground truth
data to evaluate the results for applicant recommendations.

3.1 Result

The results of the experiments are presented in the following table, where we analyze
the performance of each feature extraction technique and discuss the implications of our
findings. Each technique’s precision, recall, and F1 score are compared to determine the
most effective method for our recommendation system.

TF-IDF Bag of Words Embeddings
Precision 0.86 0.50 0.62
Recall 0.46 0.23 0.38
F1 Score 0.60 0.32 0.48

Tab. 4.2: Table of results for different models

Chapter 4: Experiments and Results 65

Fig. 4.1: Precision, Recall and F1 score for different models

3.2 Discussion
The results demonstrate that the TF-IDF technique achieved the highest precision and
F1 score, indicating that it is the most effective method for generating relevant job rec-
ommendations. The Bag of Words method had the lowest performance across all metrics,
suggesting that it may not be suitable for this application. Word Embeddings showed a
balanced performance, making it a viable alternative to TF-IDF.

There are a couple of reasons to explain why TF-IDF was superior:

1. TF-IDF focuses on the importance of terms within a document relative to a col-
lection of documents, effectively highlighting the most relevant terms without the
additional complexity. This simplicity helps in capturing the core content of job
descriptions and user profiles, leading to more accurate matches based on essential
keywords and phrases.

2. The Bag of Words (BoW) technique performed poorly because it treats each word
independently, losing context and semantic meaning, and results in a sparse feature
matrix that fails to capture relationships between words, leading to fragmented
representations and reduced accuracy.

3. A word embedding is a much more complex word representation and carries much
more hidden information. In our case, most of that information is unnecessary and
creates false patterns in our model. This noise can detract from the algorithm’s
ability to make accurate predictions, as it may overfit to irrelevant features present
in the embeddings.

66 Section 4: Conclusion

4 Conclusion
In this chapter, we conducted comprehensive experiments to evaluate the performance
of our content-based recommendation system. By comparing different feature extraction
techniques—TF-IDF, Bag of Words, and Word Embeddings—we identified significant
differences in their effectiveness.

These findings highlight the importance of selecting appropriate feature extraction
techniques to enhance the relevance and accuracy of job recommendations. Leveraging
NLP techniques allows the system to better analyze and interpret job-related text data,
resulting in more precise and targeted recommendations.

Chapter 5: Platform Development and Recommendation System Integration 67

C
h

a
p

t
e

r

5
Platform Development and

Recommendation System Integration

1 Introduction

This chapter delves into the creation of the AI-powered job recommendation platform,
detailing the end-to-end development process. It covers the system architecture, frontend
and backend development, and the integration of the recommendation system. Emphasis
is placed on the design choices, technologies used, and the implementation strategies to
build a functional and efficient platform.

2 System Architecture

2.1 Architecture of the platform

This architecture represents a system designed to integrate various technologies to deliver
a robust application comprising a client interface, server-side processing, and database
management. The system includes a Flutter client, a Node.js server for API handling, a
Python server for specialized services, and a MySQL database for data storage.

68 Section 2: System Architecture

Fig. 5.1: System Architecture

This architecture efficiently distributes tasks among specialized components, ensuring
scalability, maintainability, and enhanced performance. Each component will be explained
in detail in the next section.

2.2 Components and their interactions
Client (Flutter)

• The client side of the application is built using Flutter, which is a framework for
building cross-platform mobile, web, and desktop applications.

• It provides the user interface and interacts with the server through HTTP requests,
enabling users to interact with the application.

Python Server

• Provides specialized services such as a recommendation system and a chatbot.

• Utilizes machine learning and natural language processing (NLP) to deliver person-
alized recommendations and intelligent chatbot responses.

MySQL Database

• Serves as the primary data storage system.

• Stores datasets that include user information, application data, and any other rele-
vant information required by the Node.js server.

2.3 Technology stack used
• Flutter: Flutter is an open-source UI software development kit created by Google.

It allows developers to build natively compiled applications for mobile, web, and
desktop from a single codebase using the Dart programming language.

Chapter 5: Platform Development and Recommendation System Integration 69

Fig. 5.2: Flutter logo

• Nodejs: Node.js is an open-source, cross-platform JavaScript runtime environment
that executes JavaScript code outside of a web browser. It is designed to build
scalable network applications and is known for its non-blocking, event-driven archi-
tecture.

Fig. 5.3: NodeJs logo

• MySql: MySQL is an open-source relational database management system (RDBMS)
based on Structured Query Language (SQL). It is widely used for web database ap-
plications due to its reliability, ease of use, and performance.

Fig. 5.4: MySql logo

• Socket.io: Socket.IO is a JavaScript library for real-time web applications. It enables
real-time, bidirectional, and event-based communication between web clients and
servers, commonly used for chat applications and live updates.

Fig. 5.5: Socket.IO logo

• Agora: Agora is a cloud-based platform providing APIs for real-time video and
audio communications. It offers tools for embedding high-quality video, voice, and
live interactive broadcasting into applications across various platforms.

Fig. 5.6: Flutter logo

3 Frontend Development
3.1 Clean Architecture
Clean Architecture is a software design pattern that separates the concerns of an appli-
cation into distinct layers, promoting scalability, maintainability, and testability. This

70 Section 3: Frontend Development

architecture is particularly useful in frontend development as it ensures that the user
interface remains decoupled from the business logic and data access layers. The main
components of Clean Architecture include the Presentation Layer, Domain Layer, and
Data Layer. Each layer has a specific role, allowing developers to manage complexity and
make the codebase easier to understand and evolve.

Fig. 5.7: Clean Architecture

3.1.1 Presentation Layer

The Presentation Layer is responsible for displaying information to the user and handling
user interactions.

Components:

• Widgets: These are the building blocks of the user interface in Flutter. They define
the visual elements and layout of the application.

• GetX: This state management solution helps manage the state of the application,
making it reactive and allowing for efficient UI updates. While there are many
solutions for state management in Flutter, we chose GetX due to its ease of use and
simplicity, which significantly enhances developer productivity.

3.1.2 Domain Layer

The Domain Layer encapsulates the core business logic and rules of the application.
Components:

• Use Cases: These represent the specific actions or operations that a user can perform
within the application. They define the interaction between the user interface and
the business logic.

• Repository (Contract): This defines the interface for data operations, ensuring
that the business logic does not depend on the specifics of data retrieval or storage
mechanisms.

Chapter 5: Platform Development and Recommendation System Integration 71

3.1.3 Data Layer

The Data Layer is responsible for data retrieval, storage, and management.
Components:

• Repository (Implementation): This is the concrete implementation of the reposi-
tory interface defined in the Domain Layer. It contains the logic for accessing data
from various sources.

• Datasources: These are the actual sources of data, which can be local (e.g., SQLite
database on the device) or remote (e.g., REST API).

– Local: Handles data storage on the client’s device, enabling offline functional-
ity.

– Remote: Manages data retrieval from remote servers, ensuring that the appli-
cation can fetch and update data as needed.

3.2 Frameworks and tools
• Figma: Figma is a web-based design tool used for interface design, prototyping,

and collaboration. It allows multiple designers to work simultaneously on the same
project, making it ideal for team-based design workflows and real-time collaboration.

• Flutter widgets: Flutter widgets are the core building blocks of Flutter’s user in-
terface. They are immutable descriptions of parts of the UI and can be combined
to create complex interfaces. Flutter provides a rich set of pre-designed widgets for
building responsive, high-performance applications.

• GetX: GetX is a powerful and lightweight state management library for Flutter. It
offers a range of features including state management, dependency injection, and
route management, providing an all-in-one solution to simplify and enhance Flutter
application development.

3.3 User interface design
The User Interface (UI) for our platform was meticulously designed using Figma, a leading
web-based design tool. Our approach to UI design was guided by several core principles
to ensure an intuitive, efficient, and user-friendly experience:

• Simplicity and Clarity: Minimize clutter and focus on essential elements.

• Consistency: Maintain uniformity in colors, typography, and layout.

• Responsiveness: Ensure the UI adapts seamlessly to various screen sizes.

• Visual Hierarchy: Implement a clear hierarchy to guide users effectively.

• Interactive and Engaging Elements: Incorporate hover effects, transitions, and
animations.

72 Section 3: Frontend Development

• Feedback Mechanisms: Include validations, error messages, and success notifica-
tions.

Below are screenshots of various sections of the platform, illustrating our design approach:

• Authentication

Fig. 5.8: Authentication screenshot

• Seeker Side

Fig. 5.9: Seeker side screenshot

• Messaging Pages

Chapter 5: Platform Development and Recommendation System Integration 73

Fig. 5.10: Messaging pages screenshot

• Add Application

Fig. 5.11: Add application screenshot

• Recruiter Side

74 Section 3: Frontend Development

Fig. 5.12: Recruiter side screenshot

• Publish Job

Fig. 5.13: Publish job screenshot

• Admin dashboard

Chapter 5: Platform Development and Recommendation System Integration 75

Fig. 5.14: Admin dashboard screenshot

4 Backend Development
4.1 MVC Architecture
The Model-View-Controller (MVC) architecture is a widely used design pattern for de-
veloping APIs. It separates the application into three interconnected components, each
with a distinct responsibility, enhancing modularity and allowing for more maintainable
and scalable API code.

We chose the MVC architecture for its simplicity and ease of use, allowing developers
to create well-structured applications without requiring expert-level knowledge. Its clear
separation of concerns makes it accessible for developers at all skill levels to build and
maintain web applications efficiently.

Fig. 5.15: MVC Architecture

76 Section 4: Backend Development

4.1.1 Model

• The Model represents the data and the business logic of the application. It directly
manages the data, logic, and rules of the application.

• It interacts with the database, retrieves data, performs operations on it, and sends
the processed data back to the controller.

4.1.2 View

• The View is responsible for the presentation layer of the application. It displays the
data provided by the Controller in a format suitable for interaction.

• It receives user input and requests, which it forwards to the controller for processing.
It then receives data from the controller to render and display to the user.

4.1.3 Controller

• The Controller acts as an intermediary between the Model and the View. It han-
dles incoming requests, processes them (often involving calls to the Model), and
determines the appropriate response.

• It receives input from the View, processes the data with the help of the Model, and
returns the processed data to the View for presentation.

4.1.4 Workflow in MVC Architecture

1. User Interaction: The process begins when the user sends a request from the client
side, which is directed to the server.

2. Request Handling: The server receives incoming requests and forwards them to the
appropriate Global Middleware.

3. Global Middleware: This layer can handle cross-cutting concerns such as authenti-
cation, logging, or data parsing before the request reaches the Routes.

4. Routing: The Routes determine which controller should handle the incoming request
based on the request’s URL and method.

5. Route Middleware: This middleware can handle route-specific concerns, such as
permissions or validation, before the request reaches the Controller.

6. Controller Logic: The Controller processes the request. If data manipulation or
retrieval is needed, the Controller interacts with the Model.

7. Model Interaction: The Model performs the necessary operations on the database
and returns the results to the Controller.

8. Response Assembly: The Controller then processes the data and sends it back to
the View.

Chapter 5: Platform Development and Recommendation System Integration 77

9. View Rendering: The View generates the final output (e.g., HTML, JSON) based
on the data from the Controller and sends it back to the client as a response.

4.2 Server-side Frameworks and tools

• ExpressJs: Express.js is a minimal and flexible Node.js web application framework
that provides a robust set of features for web and mobile applications. It facilitates
the development of server-side applications by simplifying routing, middleware man-
agement, and HTTP handling.

• Prisma: Prisma is an open-source database toolkit and ORM (Object-Relational
Mapping) for Node.js and TypeScript. It simplifies database management by pro-
viding a type-safe query builder and an intuitive data modeling tool, enhancing
developer productivity and ensuring type safety.

• EncryptJs: EncryptJS is a JavaScript library that provides simple and effective
methods for data encryption and decryption. It enables developers to secure sensi-
tive information by using algorithms such as AES (Advanced Encryption Standard)
to protect data within their applications.

• Thunder Client: Thunder Client is a lightweight, fast, and intuitive REST API
client extension for Visual Studio Code. It allows developers to test and debug
APIs directly within the code editor, streamlining the development workflow and
improving productivity.

4.3 API

A RESTful API (Representational State Transfer) is an architectural style for designing
networked applications. It uses standard HTTP methods like GET, POST, PUT, and
DELETE to perform CRUD operations on resources, which are typically represented
in JSON format. This approach enables seamless communication between clients and
servers, promoting scalability and simplicity in web services.

78 Section 4: Backend Development

Fig. 5.16: RESTful API

We used RESTful API in our system because it provides a flexible, scalable, and easy-
to-maintain way to handle client-server communication. Its stateless nature ensures that
each request contains all the information needed for the server to process it, enhancing
efficiency and reliability.

4.3.1 HTTP Protocol

The Hypertext Transfer Protocol (HTTP) is the foundation of any data exchange on the
Web and a protocol used for transmitting hypermedia documents, such as HTML. It is
designed for communication between web browsers and web servers, but it can also be
used for other purposes.

Methods

• GET: Retrieve data from the server (e.g., fetching a web page).

• POST: Submit data to the server (e.g., submitting a form).

• PUT: Update existing data on the server.

• DELETE: Remove data from the server. : Apply partial modifications to a resource.

• HEAD: Retrieve the headers of a resource without fetching its body.

• OPTIONS: Describe the communication options for the target resource.

Headers
HTTP headers are used to pass additional information with the request or response.

Common headers include Content-Type (indicates the media type of the resource), Au-
thorization (contains credentials to authenticate a user), and User-Agent (identifies the
client software).

Chapter 5: Platform Development and Recommendation System Integration 79

Status Codes
HTTP responses include status codes that indicate the outcome of the request. Com-

mon status codes include:

• 200 OK: The request was successful.

• 201 Created: The request was successful and a new resource was created.

• 400 Bad Request: The request was malformed or invalid.

• 401 Unauthorized: Authentication is required and has failed or has not yet been
provided.

• 403 Forbidden: The server understands the request but refuses to authorize it.

• 404 Not Found: The requested resource could not be found.

• 500 Internal Server Error: The server encountered an unexpected condition that
prevented it from fulfilling the request.

4.3.2 JSON

JSON, or JavaScript Object Notation, is a lightweight data interchange format that is
easy for humans to read and write, and easy for machines to parse and generate. It is
commonly used to transmit data between a server and a web application as an alternative
to XML.

We chose JSON for our system for several compelling reasons:

1. Simplicity: JSON’s straightforward syntax, which consists of key-value pairs and
arrays, makes it easy to learn, read, and write.

2. Language Independence: JSON is language-agnostic, meaning it can be used and
parsed by virtually any programming language. This makes it ideal for data inter-
change between diverse systems and platforms.

3. Efficiency: JSON’s lightweight nature ensures that data is transmitted efficiently
over the network, reducing bandwidth usage and improving performance.

4. Human-Readable: JSON’s structure is easy for humans to read and understand,
which simplifies debugging and development processes.

5. Wide Adoption: JSON is widely supported across different web technologies, frame-
works, and libraries. This extensive adoption ensures compatibility and ease of
integration with various tools and services.

80 Section 4: Backend Development

4.3.3 API Testing

To ensure the reliability and correctness of our RESTful APIs, we used Thunder Client for
testing. Thunder Client is a lightweight and easy-to-use extension for Visual Studio Code,
designed for testing APIs. It allows us to quickly create and execute API requests, check
responses, and validate the behavior of our endpoints. This tool helps us identify and fix
issues early in the development process, ensuring that our APIs function as expected and
meet the required specifications.

Fig. 5.17: Thunder client screenshot

4.4 Database design

The database design for our platform is structured to efficiently handle and organize
data related to job postings, users, applications, and the interactions between them. The
schema includes the following primary entities: JobApplication, Job, User, Recruiter,
Seeker, and SeekerSkill. Additionally, there are other secondary entities, such as Message,
Contact, and SavedJob, which support supplementary functionalities but are not crucial
to include in this overview.

Chapter 5: Platform Development and Recommendation System Integration 81

Fig. 5.18: Entity-Relationship Diagram for database

4.5 Security considerations

Ensuring the security of our application is crucial for protecting user data and maintaining
the integrity of the system. This section discusses various security measures, including
the use of JSON Web Tokens (JWT) for authentication, and other important aspects of
application security.

JSON Web Tokens (JWT) Authentication

JWT is a widely used method for securely transmitting information between parties.
Here’s how JWT can be used to enhance the security of our application:

82 Section 4: Backend Development

Fig. 5.19: JSON Web Tokens

1. User Authentication: Users log in with their username and password. These cre-
dentials are sent to the server for verification.

2. JWT Creation and Encryption: Upon successful authentication, the server creates
a JWT containing the user’s identity and other claims. This token is encrypted to
ensure its integrity and security.

3. Token Transmission: The encrypted JWT is sent back to the client. The client
stores this token securely, typically in local storage or a secure cookie.

4. Token-Based Requests: For all subsequent requests, the client includes the JWT in
the HTTP headers. This allows the server to authenticate the user without requiring
them to re-enter their credentials.

5. Token Verification: The server verifies the JWT on each request. It checks the
token’s signature and expiration date to ensure its validity. If the token is valid, the
server processes the request and sends a response.

In addition to JWT, several other security practices are essential for maintaining the
overall security of your application:

• Data Encryption: Use HTTPS to encrypt data transmitted between the client and
server. This prevents interception by malicious actors.

• Input Validation and Sanitization: Validate and sanitize all user inputs to protect
against injection attacks, such as SQL injection and cross-site scripting (XSS).

• Rate Limiting and Throttling: Implement rate limiting to control the number of
requests a user can make within a specified time period. This helps prevent brute-
force attacks and reduces server load.

Chapter 5: Platform Development and Recommendation System Integration 83

• User Session Management: Manage user sessions effectively, including implement-
ing session expiration and revocation mechanisms to prevent unauthorized access.

• Secure Storage of Sensitive Data: Store sensitive data, such as user credentials and
tokens, securely. Use strong hashing algorithms for passwords and ensure tokens
are stored in secure, non-accessible client-side storage.

• Access Control: Implement robust access control mechanisms to ensure that only
authorized users can access certain parts of the application. This includes validating
user roles and permissions.

5 Integration of the Recommendation System
The integration of the recommendation system into the platform is a critical component
that enhances the platform’s ability to provide personalized job suggestions to users. The
architecture of this integration is depicted in Figure 5.20.

Fig. 5.20: Recommendation System Integration

The process is organized into a sequence of interactions between the client, the Node.js
server, the Python server running the recommendation system, and the database.

1. Client Request: The process begins when the client (user) makes a request through
the mobile application or web interface. This request is sent to the Node.js server
via HTTP.

84 Section 6: Additional Features

2. Node.js Server: The Node.js server, built with Express.js, acts as the intermediary
between the client and the backend systems. It receives the client’s request and
processes it, ensuring it is in the correct format for further processing.

3. Database Interaction: The Node.js server then interacts with the database to fetch
relevant data such as job descriptions and user profiles. This data is essential for
generating accurate recommendations and is retrieved from various tables within
the database.

4. Data Transfer to Python Server: Once the necessary data is gathered, it is sent to
the Python server, which hosts the recommendation system. The communication
between the Node.js server and the Python server is facilitated through HTTP
requests.

5. Recommendation System Processing: The Python server, running a Flask applica-
tion, processes the data using advanced AI algorithms. The recommendation system
utilizes techniques such as TF-IDF, Bag of Words, and Word Embeddings to extract
features from job descriptions and user profiles. It then calculates cosine similarity
to generate job recommendations tailored to the user’s preferences and history.

6. Response Back to Node.js Server: After processing the data, the recommenda-
tion system sends the results back to the Node.js server. This includes the list of
recommended jobs for the user.

7. Client Response: Finally, the Node.js server sends the recommendations back to
the client. The client application displays these job recommendations to the user,
enhancing their job search experience with personalized suggestions.

6 Additional Features

6.1 Chat-Bot

A chatbot is an AI-driven program designed to simulate human conversation through
text or voice interactions. It can assist with various tasks, from answering questions to
providing customer support, by understanding and responding to user inputs.

The Chat-Bot feature is an essential component of our platform, designed to enhance
user interaction and provide instant assistance. Here’s a detailed explanation of how our
Chat-Bot works:

Chapter 5: Platform Development and Recommendation System Integration 85

Fig. 5.21: JSON Web Tokens

1. User Message Handling: The Chat-Bot interaction begins when a user sends a
message. This message could be any query or request for assistance.

2. Text Preprocessing: The received message undergoes text preprocessing. This step
involves cleaning the text by removing any unnecessary characters, normalizing the
text (e.g., converting it to lowercase), and possibly stemming or lemmatizing words
to their root forms.

3. Feature Extraction: After preprocessing, the message is converted into a set of fea-
tures using the Bag of Words model. This involves creating a vector that represents
the frequency or presence of words in the message relative to a larger corpus.

4. Intent Classification: The feature vector is then fed into a neural network classifier.
This classifier, trained on a large dataset of categorized messages, analyzes the
vector to determine the intent behind the user’s message. The structure of intents
is illustrated in the following figure.

Fig. 5.22: Intent structure

5. Response Selection: Once the intent is identified, the Chat-Bot selects an appro-
priate response from a predefined set of responses associated with that intent. The
selection process may involve randomly choosing a response from the set to ensure
variability in interactions.

By following these steps, our Chat-Bot efficiently processes user messages and pro-
vides relevant and dynamic responses, significantly enhancing the user experience on our
platform.

86 Section 6: Additional Features

6.2 Voice & Video Calling
Video Calling enables one-to-one or small-group video interactions with smooth, jitter-
free streaming video. Agora’s Video SDK makes it easy to embed real-time video chat
into web, mobile, and native apps. With Agora’s advanced network technology, we can
ensure the highest available video and audio quality.

This section explains how we can integrate Video Calling features into our app. The
following figure shows the basic workflow needed to integrate this feature into our app.

Fig. 5.23: JSON Web Tokens

To start a session, we implement the following steps in our app:

1. Retrieve a token: A token is a computer-generated string that authenticates a user
when our app joins a channel. In this guide, we retrieve our token from Agora
Console. To see how to create an authentication server for development purposes,
see Implement the authentication workflow. To develop our own token generator
and integrate it into our production IAM system, read Token generators.

2. Join a channel: Call methods to create and join a channel; apps that pass the same
channel name join the same channel.

3. Send and receive video and audio in the channel: All users send and receive video
and audio streams from all users in the channel.

Below are the prerequisites required to set up and develop a Flutter application inte-
grated with Agora’s Video SDK.

Requirement Details
Flutter Version Flutter 2.0.0 or higher
Dart Version Dart 2.15.1 or higher
IDE Support Android Studio, IntelliJ, VS Code, or any other IDE that supports

Flutter, see Set up an editor.
Android
Development

Android Studio on macOS or Windows (latest version recommended)

Continued on next page

Chapter 5: Platform Development and Recommendation System Integration 87

Tab. 5.1 – continued from previous page
Agora Account
and Project

An Agora account and project to generate access tokens

Internet Access A computer with Internet access to connect with the Agora server

Tab. 5.1: Agora requirements

6.3 Real time messaging
Real-time messaging is a critical feature in modern applications, enabling instant commu-
nication between users. This section explains how to integrate real-time messaging in an
application, leveraging Socket.IO for efficient and effective message delivery. The process
is illustrated in the following figure.

Fig. 5.24: Real time messaging

The integration of real-time messaging involves several key steps to ensure smooth
communication between users. Below is a detailed breakdown of each step in the process:

1. Write Message (Client Application - Sender): The user initiates the messaging
process by writing a message within the client application. This message is then
sent to the server.

2. Send Message (Client Application to Server): The client application sends the mes-
sage to the server. This is typically done through an HTTP request or WebSocket
connection established using Socket.IO.

3. Server Processing: Upon receiving the message, the server processes it. This in-
cludes validating the message content, checking user permissions, and possibly log-
ging the message for record-keeping.

4. Return Response (Server to Client Application - Sender): After processing the
message, the server returns a response to the sender’s application. This response
might include a confirmation that the message was received and processed success-
fully.

88 Section 7: Conclusion

5. Push Message (Server to Client Application - Receiver): Using Socket.IO, the
server pushes the message to the recipient’s client application in real-time. Socket.IO
maintains an open WebSocket connection, enabling the server to send updates in-
stantly without the recipient needing to request new data constantly.

6. Display Message (Client Application - Receiver): The recipient’s client application
receives the pushed message and displays it to the user. This immediate delivery
and display create a seamless, real-time communication experience.

7 Conclusion
In this chapter, we explored the development of an AI-powered job recommendation
platform, detailing its system architecture with Flutter, Node.js, Python, and MySQL
components. We discussed the integration of advanced features like chatbots and real-
time communication using Agora. Security measures, including JWT authentication and
data encryption, were emphasized. We also highlighted the integration of additional
features for enhanced user interaction.

Chapter 6: General conclusion 89

C
h

a
p

t
e

r

6
General conclusion

This dissertation presents a comprehensive approach to developing an AI-powered job
recommendation platform aimed at transforming the job search and recruitment landscape
in Algeria. The primary objective was to leverage artificial intelligence to enhance job
matching accuracy, reduce job search time, and increase employment rates, particularly
among youth and recent graduates.

Throughout the study, we identified significant inefficiencies in the existing job market,
such as high unemployment rates and a lack of personalized job recommendations. By
integrating advanced AI algorithms capable of learning from user interactions and pref-
erences, our platform demonstrated the potential to provide highly accurate and tailored
job recommendations, thus addressing these inefficiencies.

In conclusion, this work not only highlights the effectiveness of AI in improving job
matching processes but also opens avenues for future research. Future efforts could focus
on incorporating additional datasets, experimenting with other deep learning techniques,
and implementing more sophisticated preprocessing methods to enhance the platform’s
performance. Ultimately, the successful deployment of this platform has the potential
to contribute significantly to reducing unemployment and underemployment in Algeria,
fostering economic growth, and supporting a dynamic and skilled workforce.

REFERENCES 91

References

[1] Nasreen Azad. Professionals’ perspective on using ai tools in recruitment process.
Journal of AI Recruitment, page 6, 2024.

[2] Derek Chapman and Jane Webster. The use of technologies in the recruiting, screen-
ing, and selection processes for job candidates. International Journal of Selection
and Assessment, 11, 09 2003.

[3] Varun Chand, Kurakula Kumar, Syarul Azlina S., Seema Sabharwal, and
Sivaprakasam Kumar. A study on the impact of artificial intelligence on talent sourc-
ing. IAES International Journal of Artificial Intelligence (IJ-AI), 13:1, 03 2024.

[4] What is a recommendation system? | data science. https://www.nvidia.com/en-us/
glossary/recommendation-system/, 2024. Accessed: April 2024.

[5] Akshay Kulkarni et al. Applied Recommender Systems with Python: Build Recom-
mender Systems with Deep Learning, NLP and Graph-Based Techniques. Apress,
2022. Accessed: 2024-05-05.

[6] Zhenhua Dong et al. A brief history of recommender systems. Journal of Recom-
mendation Engines, 2022.

[7] Nunung Nurul Qomariyah. Definition and history of recommender sys-
tems. https://international.binus.ac.id/computer-science/2020/11/03/
definition-and-history-of-recommender-systems/, 2020. Accessed: April 2024.

[8] Corinna Underwood. Use cases of recommendation systems in business
– current applications and methods. https://emerj.com/ai-sector-overviews/
use-cases-recommendation-systems/, March 2020. Accessed: April 2024.

[9] IT Convergence. Top use cases of ai-based recommendation systems. https://www.
itconvergence.com/blog/top-use-cases-of-ai-based-recommendation-systems/, 2023.
Accessed: 2024-05-05.

[10] Carole Sonia et al. Enhanced experiences: Benefits of ai-powered recommendation
systems. Journal of AI Technologies, pages 216–220, 2024.

[11] Zeshan Fayyaz et al. Recommendation systems: Algorithms, challenges, metrics, and
business opportunities. Applied Sciences, 20(21), 2020.

https://www.nvidia.com/en-us/glossary/recommendation-system/
https://www.nvidia.com/en-us/glossary/recommendation-system/
https://international.binus.ac.id/computer-science/2020/11/03/definition-and-history-of-recommender-systems/
https://international.binus.ac.id/computer-science/2020/11/03/definition-and-history-of-recommender-systems/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://www.itconvergence.com/blog/top-use-cases-of-ai-based-recommendation-systems/
https://www.itconvergence.com/blog/top-use-cases-of-ai-based-recommendation-systems/

92 REFERENCES

[12] Frank Edwin et al. Overview of natural language processing (nlp) in bi. Journal of
Business Intelligence, pages 5–11, 2024.

[13] Masato Hagiwara. Real-World Natural Language Processing: Practical applications
with deep learning. Manning, 3 edition, 2021.

[14] Elizabeth D. Liddy. Natural Language Processing, page 15. 2001.

[15] Akshay Kulkarni and Adarsha Shivananda. Natural Language Processing Recipes:
Unlocking Text Data with Machine Learning and Deep Learning Using Python.
Apress, 2 edition, 2021.

[16] Rajvardhan Patil et al. A survey of text representation and embedding techniques
in nlp. IEEE Access, PP, 2023.

[17] Schutte Dalton and Zhang Rui. Considerations for specialized health ai & ml mod-
elling and applications: Nlp. Healthcare AI, pages 623–641, 2024.

[18] M. Deza and Elena Deza. Encyclopedia of Distances. Springer, 2009.

[19] KANDI JAGADISH. Job analysis content recommendation, 2019. Accessed: May
2024.

	Contents
	List of Figures
	List of Tables
	General introduction
	Problem statement
	Objectives and goals
	Dissertation organization

	Background
	Introduction
	Role of Technology in Modern Recruitment
	What is a Recommendation System
	Definition
	The Beginning of Recommendation System
	Use Cases and Applications
	Benefits of Recommendation Systems

	Types of Recommendation Systems
	Content-Based Filtering
	Collaborative Filtering
	Matrix Factorization for Recommendation

	Hybrid Recommendation Systems
	Deep Learning Based Recommender Systems

	NLP for Recommender Systems
	What is NLP
	Text Preprocessing
	Tokenization and Text Cleaning
	Stop Words Removing
	Stemming and Lemmatizing
	Part-of-Speech Tagging
	Named Entity Recognition (NER)

	Text Representation
	Bag-of-Words (BoW) Method
	TF-IDF (Term Frequency-Inverse Document Frequency)
	Word Embeddings : Word2Vec
	Comparative Analysis of 3 Techniques
	NLP with ML

	NLP Approaches for Recommendations
	Text Similarity
	Named Entity Recognition (NER)
	Keyword Extraction
	Text Summarization

	Recommendations in recruitment
	Related works
	Academic Research
	Commercial Platforms
	Emerging Technologies

	Conclusion

	Design and Implementation of Recommendation System
	Introduction
	Design
	Dataset
	Description
	Structure
	Exploratory Data Analysis (EDA)

	Preparing & Preprocessing
	Preparing
	Preprocessing

	Evaluation metrics

	Implementation
	Frameworks, tools and libraries
	Data Loading and Preparation
	Data Pre-processing
	Text to Features
	TF-IDF
	Bag of Words
	Words Embeddings
	Text to feature function

	NLP model (Cosine Similarity)
	Jobs Recommendations
	Applicants Recommender

	Testing
	Conclusion

	Experiments and Results
	Introduction
	Experiment environment
	Evaluation of recommendations
	Result
	Discussion

	Conclusion

	Platform Development and Recommendation System Integration
	Introduction
	System Architecture
	Architecture of the platform
	Components and their interactions
	Technology stack used

	Frontend Development
	Clean Architecture
	Presentation Layer
	Domain Layer
	Data Layer

	Frameworks and tools
	User interface design

	Backend Development
	MVC Architecture
	Model
	View
	Controller
	Workflow in MVC Architecture

	Server-side Frameworks and tools
	API
	HTTP Protocol
	JSON
	API Testing

	Database design
	Security considerations

	Integration of the Recommendation System
	Additional Features
	Chat-Bot
	Voice & Video Calling
	Real time messaging

	Conclusion

	General conclusion
	References

