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Abstract

Record statistics is a broad term; it can refer to various types of statistical informa-

tion related to records. In a general sense, record statistics could involve analyzing

and presenting data related to records. The subject of the study is to introduce the

concept of record as applied to probability distribution function and present some

their characterization results based on the records values. In addition, we discuss

the problem of estimation of the location and scale parameters in Best Linear Un-

biased Estimator (BLUE) and how applied it in both different types of records with

differents distributions functions.
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Notations and symbols

iid Independent and identically distributed

cdf Cumulative distribution function note F (·)

pdf Probability density function also density function note f(·)

h(·) Hazard or failure rate function

H(·) Cumulative hazard function

U(n) Upper record times

UX
n Upper record values

UX
n,k nth value of upper k-records

fUX
n
(x) Probability density function of nth upper record values

fUX
m ,UX

n
(x, y) The joint probability density function of mth and nth upper records

fUX
n |UX

m
(y|x) The conditional probability density function of nth upper givenmth

upper record

fUX
n,k
(x) Probability density function of nth value of upper k-records

fUX
m,k,U

X
n,k
(x, y) The joint probability density function of mth and nth upper k-

records

fUX
n,k|U

X
m,k

(y|x) The conditional probability density function of nth upper givenmth

upper k-records

L(n) Lower record times
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LX
n Lower record values

LX
n,k nth value of lower k-records

fLX
n
(x) Probability density function of nth lower record values

fLX
m,LX

n
(x, y) The joint probability density function of mth and nth lower records

fLX
n |LX

m
(y|x) The conditional probability density function of nth lower given mth

lower record

fLX
n,k
(x) Probability density function of nth value of lower k-records

fLX
m,k,L

X
n,k
(x, y) The joint probability density function of mth and nth lower k-

records

fLX
n,k|L

X
m,k

(y|x) The conditional probability density function of nth lower given mth

lower k-record

Xi Random variables with i = 1, 2, . . .

et al and others

E(·) Mathematical esperance

V ar(·) Mathematical variance

BLUE Best Linear Unbiased Estimation

MLM Maximum Likelihood Method
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Introduction

The word ”record” is derived from the Latin verb ”recordari” - to remember, and

everyone has a basic understanding of what a recorded event entails. People have

learned that a new record is something important that will be remembered. There-

fore, many people feel impressed by achieving and then breaking new and exciting

records, making the ”Guinness World Records” book itself a record holder as the

best-selling copyrighted book in history.

The study of record values has been undertaken by a relatively small but highly

talented group of individuals. The statistical study of record values began with

Chandler[[8]], where he formulated the theory of record values as a model for suc-

cessive extremes in a sequence of independently and identically distributed random

variables. Stuart was a pioneer in discovering the quantitative statistical applications

of record keeping in inference. Barton, Mallows, and F.N.David were fascinated by

the combinatorial aspects of record sequences. While Dwass established the inde-

pendence of record indicators, Rényi developed some of the initial limit theorems.

Resnick (1973) and Shorrock (1973) documented the asymptotic theory of records.

The theory of record values and their distributional properties have been extensively

studied in the literature; for example, see Ahsanullah (1995, 1997), Nagaraga[[10]],

Arnold and Balakrishnan [[6]], Balakrishnan and Ahsanullah (1994), Raqab[[2]], Bi-

eniek and Szynal (2002), Saran and Singh (2008). Many books on order statistics

and related processes have chapters on record values. Many of them emphasize the
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close parallel between record value theory and the theory of sample maxima.

In life, during experimental testing, an experimenter may find it necessary to ter-

minate the experiment prematurely if a certain number of units fail, rather than

waiting for all units to fail. This approach is efficient in terms of time and cost, and

such observations are referred to as type II controlled sampling. Therefore, we use

estimation, which is considered the cornerstone of the decision-making, planning,

and resource allocation process. It involves the process of approximating or predict-

ing values, quantities, or outcomes based on available information, experience, and

logical reasoning.

In Chapter 2 we see the Best linear unbiased estimation (BLUE) wich is a widely

utilized method for estimating population parameters such as scale or location, par-

ticularly when the available sample is either complete or Type-II censored. Key

references for this method include works by Rao (1973), David [[10]], Balakrishnan

and Cohen (1991), and Arnold, Balakrishnan, and Nagaraja (1992). It’s important

to note that the concept of ”best” is well-defined when estimating a single param-

eter, typically meaning the minimum variance. However, when estimating multiple

parameters, there is no single definition of ”best.” Therefore, two criteria, namely

trace and determinant, are commonly considered. These criteria are based on the

variance-covariance matrix of parameter estimators, with ”best” being defined as the

minimum trace or determinant of this matrix. Consequently, estimators are cate-

gorized as either ”trace-efficient” or ”determinant-efficient.” It’s worth noting that

only a limited number of distributions allow for the explicit derivation of BLUE for

any distribution. In certain cases, such as the exponential distribution, BLUE co-

incides with maximum likelihood estimators. Moreover, BLUE estimators are not

only explicit linear estimators but also highly efficient ones. In fact, they are asymp-

totically fully efficient compared to maximum likelihood estimators. An interesting

finding is that, for the two-parameter exponential distribution, trace-efficient and

2



determinant-efficient estimators align with BLUE estimators.
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Chapter 1

Record statistics

In this chapter we start with a definition of upper-record and lower-record in the

section 1.1, then we introduce record time and value with their characteristics for

continuous random variables in the section 1.2 of K-record statistics, in section 1.3

we present its special case when(k = 1), which called ordinary or classical record

statistics. At the end, we extract the density of the lower and upper records from

specific continuous distribution in the section 1.4.

1.1 Introdution

Record values are the local maxima or minima of a sequence of random variables,

records occur naturally in various fields of study such as medicine, sports, and engi-

neering among others.

We will examine scenarios where the record values, such as the consecutive highest

insurance claims in non-life insurance, peak water levels, or extreme temperatures,

are considered as ”outliers.” Consequently, the second or third largest values become

particularly noteworthy. Examples could include insurance claims in certain non-life

insurance contexts. Dziubdziela and Kopocinski (1976) [[11]]introduced a model for
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K-th record values, with K representing a positive integer. Record values can be

used to characterize various distributions.

Let X1,X2,... be a sequence of independent observations on a random variable X

having the cumulative distribution function (cdf) F (x) and probability density func-

tion (pdf) f(x). An observation Xj is called a record value (or simply a record) if its

value is smaller than or greater than all the preceding observations. If it is smaller

than all the preceding observations, it is called lower record. Hence Xj is a record,

if Xj<Xi for every i < j. An analogous definition can be given for the upper record

also. It is interesting to note here that the first observation is always a lower record

as well as upper record.

An observation is called is called a record if it is greater than (or less than) all the

preceding observations. Frequently, our attention is drawn towards witnessing fresh

achievements and documenting them, such as Olympic or global records. These

record values serve a purpose in reliability theory. Additionally, these statistical

metrics are intricately linked to the timing of certain non-uniform Poisson processes

utilized in models concerning shocks.

1.2 K-Record Statistics

Chandler [[8]]introduced the record values and the record times. Feller (1966) pro-

vided some examples of record values concerning issues related to gambling.

1.2.1 Definition of k-Record Values and k-Record Times

Suppose that X1, X2, ..., Xn is a sequence of iid random variables with cdf F and pdf

f . LetX1,n ≤ X2,n ≤ ... ≤ Xn,n, be the order statistics of X1, ..., Xn.
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1/k-Record Values

Definition 1.2.1 Record values refer to the maximum or minimum observations

within a dataset, representing the extreme points or peaks of a particular variable,

let’s define the sequences of upper k-record values, for a fixed integer k ≥ 1 and n ≥ 2

as follows:

UX
n,k = XUn,K−k+1:Un,k

and the sequences of lower k-record values are as follows:

LX
n,k = XLn,K−k+1:Ln,k

2/k-Record Times

Definition 1.2.2 Record times denote the moments or instances when these extreme

values occur, indicating the times at which the highest or lowest observations are

recorded within a given dataset or timeframe. let’s clarify the sequences of upper

k-record times, for (n ≥ 1) as follows:

Un,k = min
{
i : i > Un−1,k, Xi > X

Un−1,K
−k+1:Un−1,k

}
, U1,k = k

and the sequences of lower k-record times are as follows:

Ln,k = min
{
i : i > Ln−1,k, Xi < XLn−1,K−k+1:Ln−1,k

}
, L1,k = k

1.2.2 K-Record Probability Density Function

The model of k-record values is proposed at first by (Dziubdziela and Kopocinski[[11]])

Lemma 1.2.1 The hazard (function also known as the failure rate, hazard rate, or

force of function) h(x) is the ratio of the probability density function f to the survival
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function 1− F (x), given by:

h(x) =
f(x)

1− F (x)
.

The cumulative hazard function

H(x) = −log[1− F (x)]. (1.1)

Theorem 1.2.1 The pdf of UX
n,k is obtained to be:

fUX
n,k
(x) = kn [H (x)]n−1

(n− 1)!
[1− F (x)]k−1f(x),−∞ < x < ∞. (1.2)

Proof. By induction ,the densitiesfUX
n
(x1, ...xk), n = 1, 2, ..., satisfy the equations

fUX
n
(x1, ...xk) =

 k!gUX
n
(x1)f(x1)f(x2)...f(xk), x1 < x2 < ... < xk

0, otherwise

where

gUX
1
(x) = 1

and

gUX
n+1

(x) = k

x∫
−∞

gUX
n
(y)

f(y)

1− F (y)
dy, n = 1, 2, ...

Then we find

gUX
n (x) =

1

(n− 1)!
[−klog(1− F (x))]n−1, n = 1, 2, ...
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In the end, we have

fUX
n,k
(x) =

∞∫
x

∞∫
x2

...

∞∫
xk−1

k!

(n− 1)!
[−klog(1− F (x))]n−1f(x)f(x2)...f(xk)dxk...dx2

=
k

(n− 1)!
[−klog(1− F (x))]n−1[1− F (x)]k−1f(x).

Corollairy 1.2.1 The cumulative distribution function of the k-record value is of

the form

FUX
n,k
(x) =

−klog(1−F (x))∫
0

un−1

(n− 1)!
e−udu, n = 1, 2, ...

Definition 1.2.3 Let X be a continuous random variable. We define

1. The joint pdf of UX
m,kand UX

n,k ,where 1 ≤ m ≤ n, is given by Grudzien(1982) :

fUX
m,k,U

X
n,k
(x, y) =

kn

(m− 1)!(n−m− 1)!
[H(x)]m−1[H(y)−H(x)]n−m−1[1− F (y)]k−1

h(x)f(y),−∞ < x < y < ∞. (1.3)

2. The conditional pdf of UX
n,k given UX

m,k(1 ≤ m ≤ n)can be written as:

fUX
m,k|U

X
n,k
(y|x) = kn−m

(n−m− 1)!
[H(y)−H(x)]n−m−1[1− F (y)]k−1 f(y)

[1− F (x)]k
,

x < y. (1.4)

3. An analogous pdf’s can be given respectively for lower k record The pdf of LX
n,kis

given by:

fLX
n,k
(x) = kn [−logF (x)]n−1

(n− 1)!
[F (x)]k−1f(x),−∞ < x < ∞. (1.5)
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4. The joint pdf of LX
m,kand LX

n,k ,where 1 ≤ m ≤ n , can be written as (see,

Pawlas and Szynal )[[16]],[[17]]

fLX
m,k,L

X
n,k
(x, y) =

[−logF (x)]m−1

(m− 1)!

[logF (x)− logF (y)]n−m−1

(n−m− 1)!

[F (y)]k−1 f(x)

F (x)
f(y),−∞ < x < y < ∞. (1.6)

5. The conditional pdf of LX
n,k given LX

m,k,where 1 ≤ m ≤ n, can be written as:

fLX
n,k|L

X
m,k

(y|x) = kn−m

(n−m− 1)!
[logF (x)− logF (y)]n−m−1[F (y)]k−1

f(y)

[F (x)]k
, x < y. (1.7)

Remark 1.2.1 we obtain ordinary upper and lower record values when k=1, which

we see in the next item.

Example 1.2.1 The data set available below is the pulse rates in beats per minute

of a random sample of adult females to test the claim that the mean is less than 73

bpm, by using a 0.05 significance level:

89, 71, 66, 47, 42, 86, 54, 48, 105, 51, 92, 59, 58, 36, 47, 105, 77, 74, 42, 43.

we create lower k-records from the data where k = 2, 3, 4, 5, 6 when n=1,...,20 ,by

using the definition we compute:

• for k=2

1. for n=1:

L1,2 = 2, LX
1,2 = XL1,2−2+1:L1,2 = X1,2 = 89

9



2. for n=2:

L2,2 = min
{
i : i > L2−1,2, Xi < XL2−1,2−2+1:L2−1,2

}
= min {i : i > 2, Xi < X1,2} . (1.8)

Now, we search the value of i that satisfies eq(1.8).Thus, we find for

i = 3:

L2,2 = min {i : 3 > 2, X3 < 89} ,

L2,2 = 3, LX
2,2 = XL2,2−2+1:L2,2 = X2,3 = 71.

(because 89 > 71 > 66).

3. for n=3:

L3,2 = min
{
i : i > L3−1,2, Xi < XL3−1,2−2+1:L3−1,2

}
= min {i : i > 3, Xi < X2,3} . (1.9)

for i=4:

L3,2 = min {i : 4 > 3, X4 < 71} ,

L3,2 = 4, LX
23,2 = XL3,2−2+1:L3,2 = X3,4 = 66.

(because 89 > 71 > 66 > 47).

• We continue in the same way (we stop when the value is the same with the one

before it) to get the sequence of the lower 2-record which is given as follows:

89, 71, 66, 47

As a consequence, the following table presents the lower k-record for

k = 2, 3, 4, 5, 6.

10



2-records 89 71 66 47

3-records 89 71 66

4-records 89 71

5-records 89 86 71 66

6-records 89 86 71

Table 1.1: The Lower K-record for k = 2, 3, 4, 5, 6.

1.3 Ordinary Record Statistics

Let X1, X2, ... be a sequence of independent and identically distributed random vari-

ables and X1,n ≤ ... ≤ Xn,n be the corresponding order statistics where:

X1,n = min{X1, X2, ..., Xn}and Xn,n = max{X1, X2, ..., Xn}.

Definition 1.3.1 the classical upper record times U(n) and upper record values

UX
n as follows:

U(1) = 1, U(n+ 1) = min{j : j ≥ U(n), Xj ≥ UX
n }, UX

n = XU(n), n = 1, 2, ...

Definition 1.3.2 the sequences of lower record times L(n)(n ≥ 1) and lower record

values LX
n as follows :

L(1) = 1, L(n+ 1) = min{j : j ≥ L(n), Xj ≤ LX
n }, LX

n = XL(n), n = 1, 2, ...

Remark 1.3.1 Moving from lower records to upper records by replacing the orig-

inal sequence of random variables {Xj} by{−Xj, j > 1} or if P (Xj > 0) = 1 by

{1/Xj, j > 1}, j = 1, 2, . . .

1.3.1 Record Probability Density Function

In this subsection, we begin by presenting an expression of the density function of

UX
n and LX

n . Furthermore, we introduce the joint pdf of upper and lower records,

11



concluding with the definition of the conditional pdf of the upper and the lower

records.

Theorem 1.3.1 The pdf of UX
n is obtained to be (Arnold et al.[[6]])

fUX
n
(x) =

[H(x)]n−1

(n− 1)!
f(x),−∞ < x < ∞, n = 1, 2, ... (1.10)

Proof. To prove the theorem, we are going to consider exponential observations

since this distribution has a lack of memory property then the differences between

successive records will be iid standard exponential random variable. Let {X∗
j , j > 1}

be a sequence of iidExp(1) random variables, and consequently, it follows that the

nth upper record U∗
n has a gamma distribution with shape n+ 1 and rate 1.

U∗
n ∼ Gamma(n+ 1, 1), n = 1, 2, ... (1.11)

These results will be useful to obtain the distribution of the nth record corresponding

to an iid sequence of random variables {Xj} with common continuous cdf F . IfX has

a continuous cdf F , then the cumulative hazard function has a standard exponential

distribution. we have

H(X) ≡ −log[1− F (X)],

then

X
d
= F−1(1− e−X∗

)

{X∗
j }follows standard exponential, therefore, we have:

Un
d
= F−1(1− e−U∗

n), n = 1, 2... (1.12)

12



Repeated integration by parts can be used to justify the following expression for the

survival function of U∗
n(a Gamma(n+ 1, 1) random variable):

P (U∗
n > x) = ex

∗
n∑

k=0

(x∗)k

(k − 1)!
, x∗ > 0.

We may then use the relation (1.12) to immediately derive the survival function of

the nth record corresponding to an iid F sequence.

P (Un > x) = 1− FUX
n
(x) = [1− F (x)]

n∑
k=0

[−log(1− F (x))]k

(k − 1)!
.

which is equivalent to:

P (Un < x) =

−log(1−F (x))∫
0

yne−y/(n− 1)!dy

If F is absolutely continuous with the corresponding probability density function,

we may differentiate either of the above expressions to derive the pdf for UX
n . We

obtain:

fUX
n
(x) =

[H(x)]n−1

(n− 1)!
f(x)

=
1

(n− 1)!
[−log(1− F (x))]n−1f (x) .

For more details see Arnold et al. [[6]] ,page (31) and Karlin[[13]].

Theorem 1.3.2 The joint pdf of UX
m and UX

n ,where 1 ≤ m ≤ n, is given by (Arnold

et al(1998) )[[6]]

fUX
m ,UX

n
(x, y) =

[H(x)]m−1

(m− 1)!

[H(y)−H(x)]n−m−1

(n−m− 1)!
h(x)f(y),−∞ < x < y < ∞. (1.13)

13



Proof. To start the proof, we begin by noting that the joint pdf of a set of Exp(1)

records (U∗
0 , U

∗
1 , ..., U

∗
n) can be readily formulated. Additionally, given that the record

spacings U∗
n − U∗

n−1are iid Exp(1). Thus, we find:

fU∗
0 ,U

∗
1 ,...,U

∗
n
(x∗

0, x
∗
1, ..., x

∗
n) = ex

∗
, 0 < x∗

0 < x∗
1 < ... < x∗

n

Now,we apply the transformation eq(1.12) coordinatewise to obtain the joint pdf of

the set of records U0, U1, ..., Un corresponding to an iid F sequence expressed as:

fU0,U1,...,Un(x0, x1, ..., xn) =

n∏
i=0

f (xi)

n−1∏
i=1

[1− F (xi)]

,

= f(xn)
n−1∏
i=1

h(xi),−∞ < x0 < ... < xn. (1.14)

The joint pdf of any pair of records Um, Un naturally be derived from eq(1.14) by

integration.it might be more straightforward to first find the joint distribution for

two Exp(1) records (U∗
m, U

∗
n) and then use the transformation eq(1.12) where m < n,

since (U∗
m, U

∗
n) = (Y1, Y1 + Y2) where Y1 ∽ Gamma(m+ 1, 1) and Y2 ∽ Gamma(n−

m, 1) are independent, we may use a simple Jacobian argument starting from the

joint pdf of (Y1, Y2) to obtain:

fU∗
m,U∗

n
(x∗

m, x
∗
n) =

1

m!(n−m− 1)!
x∗m
m (x∗

n − x∗
m)

n−m−1e−x∗
n , 0 < x∗

m < x∗
n < ∞.

With eq(1.12)applied U∗
m to U∗

n, we obtain

fUm,Un(xm, xn) =
[−log(1− F (xm))]

m

m!

[
−log

(
1−F (xn)
1−F (xm)

)]
(n−m− 1)!

f(xm)h(xn)

1− F (xm)
,−∞ < xm < xn < ∞.
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Corollairy 1.3.1 The conditional pdf UX
n given UX

m (1 < n < m) using eq(1.10)

and eq(1.13)is as follows:

fUX
n |UX

m
(y|x) =

fUx
m,Ux

n
(x, y)

fUX
m
(x)

=
[H(y)−H(x)]n−m−1

(n−m− 1)!

f (y)

1− F (x)
, x < y. (1.15)

Remark 1.3.2 The survival function of the nth upper record can be represented as:

1− FUX
n
(x) = [1− F (x)]

n−1∑
j=0

[−log(1− F (x))]j

j!
(1.16)

where

FUX
n
(x) =

−log(1−F (x))∫
0

un−1

(n− 1)!
e−udu, n = 1, 2, . . .

The following corollary presents the pdfof lower records and the joint and conditional

pdf of LX
m and LX

n .

Corollairy 1.3.2 We have:

• The pdf of LX
n is given by :

fLX
n
(x) =

[−logF (x)]n−1

(n− 1)!
f (x) ,−∞ < x < ∞, n = 1, 2, . . . (1.17)

• The joint pdf of LX
m and LX

n ,where 1 ≤ m ≤ n, can be written as:

fLX
m,LX

n
(x, y) =

[−logF (x)]m−1

(m− 1)!

[logF (x)− logF (y)]n−m−1

(n−m− 1)!

f (x)

F (y)
f (y) , (1.18)

−∞ < x < y < ∞.
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• The conditional pdfof LX
n given LX

m where 1 < m < n,can be written as:

fLX
n |LX

m
(y|x) = [logF (x)− logF (y)]n−m−1

(n−m− 1)!

f(y)

F (x)
, x < y. (1.19)

Example 1.3.1 Consider the following 20 observations:

10, 10, 10, 8, 12, 5, 9, 36, 3, 2, 1, 30, 14, 20, 22, 22, 61, 4, 7, 90.

By the definition of upper record and lower record, we obtain:

upper record values:

10, 12, 36, 61, 90

lower record values:

10, 8, 5, 3, 2, 1

1.4 Record From Specific Continuous Distribution

In statistical analysis, it’s often necessary to understand and visualize the behavior of

random variables and their distributions. In this example, we will focus on extracting

and analyzing specific record values from a continuous distribution, using R for the

computation and plotting.

1.4.1 Weibull Distribution

Record values are significant in understanding extreme observations in a dataset. In

continuous distributions, the upper k-record value is the k-th largest observation seen

so far. We will use the Weibull distribution, a widely used continuous probability

distribution, to illustrate this concept. Our objective is to:

1. Extract upper k-record values from a sample generated from the Weibull dis-

tribution.

16



2. Define the probability density function (pdf) for these upper k-record values.

3. Implement the theoretical concepts in R and visualize the results using a plot.

Theoretical concepts

f (x) = r
λr (x)

r−1 e−(
x
λ)

r

F (x) = 1− e−(
x
λ)

r

fUX
n,k
(x) = rkn

λr(n−1)!

(
x
λ

)r(n−1)
(x)r−1

(
e−(

x
λ)

r)k
fUX

n
(x) = r

λr(n−1)!

(
x
λ

)r(n−1)
(x)r−1 exp

(
−
(
x
λ

)r)
fLX

n,k
(x) = rkn

λr(n−1)!

[
−log

(
1− e−(

x
λ)

r)]n−1 [
1− e−(

x
λ)

r]k−1

(x)r−1 e−(
x
λ)

r

fLX
n
(x) = r

λr(n−1)!

[
−log

(
1− e−(

x
λ)

r)]n−1

(x)r−1 e−(
x
λ)

r

R implementation and plotting:

Here’s the step-by-step implementation in R:

• Generate a sample from the Weibull distribution:

We use the Weibull distribution, parameterized by shape (r = 2) and scale

(λ = 5) as provided in the code below (See the figure 1.1).

1 set.seed (10)

2 z <- rweibull (100, 5, 2)

17



Figure 1.1: The sample of Weibull distribution

• Extract Upper k-Record Values: Derive the upper record of the previous sample

we extract the K-upper records when k = 1, 2, 3, 4, 5, 6 as shown in the following

table 1.2.

1-record 1.850609 2.067896 2.395194 2.484509 2.669720

2-record 1.850609 1.936578 2.067896 2.165961 2.336451 2.395194 2.484509

2.648453

3-record 1.850609 1.936578 2.067896 2.105373 2.108018 2.165961 2.336451

2.377573 2.395194 2.484509 2.561421 2.629511

4-record 1.636301 1.850609 1.936578 2.067896 2.105373 2.108018 2.165961

2.336451 2.377573 2.395194 2.484509 2.529640 2.561421 2.570375

5-record 1.636301 1.850609 1.936578 2.067896 2.105373 2.108018 2.117748

2.147960 2.165961 2.242732 2.336451 2.377573 2.395194 2.398257

2.417934 2.484509 2.529640 2.561421

6-record 1.636301 1.850609 1.936578 2.067896 2.105373 2.108018 2.117748

2.147960 2.165961 2.242732 2.255759 2.336451 2.357154 2.377573

2.395194 2.398257 2.417934 2.484509 2.529640

Table 1.2: Upper K-record of k = 1, 2, 3, 4, 5, 6.
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Plotting the PDF in R

The Probability Density Function (PDF) of Upper k-Record Values in R is

defined in the appendix A section 2.2.2 and by utilizing the code below, we

can visualize the density of the upper record value of a Weibull distribution

(with parameters r = 2, λ = 5) on the graph 1.2.

1 f <- function(n, k, r, l, w ) {

2 g <- ((r * k^n) / (l^r * factorial(n - 1))) * (w / l)^(r * (n

- 1)) * (w)^(r - 1) * (exp(-(w / l)^r))^(k)

3 return(g)

4 }

5 f(100, 3, 2, 5, w )

6 DATAA <- data.frame(URV = z, DOURV = f(100, 3, 2, 5, z))

7 library(ggplot2)

8 ggplot(data = DATAA , aes(x = URV , y = DOURV)) +

9 geom_line() +

10 geom_point()

Figure 1.2: Weibull distribution’s density in terms of upper k-record values
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Results and Discussion

This example demonstrates the extraction and analysis of upper k-record values

from a Weibull distribution using R. The theoretical function combined with R im-

plementation and visualization provides a comprehensive approach to studying upper

k-records in continuous distributions. The plot generated by the R code shows the

pdf of the upper k-record values from the Weibull distribution. This visualization

helps in understanding the distribution and behavior of the extreme values in the

sample.

Remark 1.4.1 The following results are just theoretical findings.

1.4.2 Gumbel Distribution

f (x) = 1
β
e(−

x−µ
β )e

(
−e(−

x−µ
β )

)

F (x) = e

(
−e(−

x−µ
β )

)

fUX
n,k
(x) = kn

β(n−1)!

[
−log

(
1− e−e

−x−µ
β

)]n−1 [
1− e−e

−x−µ
β

]k−1

e−
x−µ
β e−e

−x−µ
β

fUX
n
(x) = 1

β(n−1)!

[
−log

(
1− e−e

−x−µ
β

)]n−1

e−
x−µ
β e−e

−x−µ
β

fLX
n,k
(x) = kn

β(n−1)!

[
−log

(
e−e

−x−µ
β

)]n−1 [
e−e

−x−µ
β

]k−1

e−
x−µ
β e−e

−x−µ
β

fLX
n
(x) = 1

β(n−1)!

[
−log

(
e−e

−x−µ
β

)]n−1

e−
x−µ
β e−e

−x−µ
β
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1.4.3 Frechet Distribution

f (x) = α
β−α (x− µ)−α−1 e−(

x−µ
β )

−α

F (x) = e−(
x−µ
β )

−α

, x > µ

fUX
n,k
(x) = αkn(x−µ)−α−1

β−α(n−1)!

[
−log

(
1− e−(

x−µ
β )

−α)]n−1 [
1− e−(

x−µ
β )

−α]k−1

e−(
x−µ
β )

−α

fUX
n
(x) = α

β−α(n−1)!

[
−log

(
1− e−(

x−µ
β )

−α)]n−1

(x− µ)−α−1 e−(
x−µ
β )

−α

fLX
n,k
(x) = αkn

β−α(n−1)!

[
−log

(
e−(

x−µ
β )

−α)]n−1 [
e−(

x−µ
β )

−α]k−1

(x− µ)−α−1 e−(
x−µ
β )

−α

fLX
n
(x) = α

β−α(n−1)!

[
−log

(
e−(

x−µ
β )

−α)]n−1

(x− µ)−α−1 e−(
x−µ
β )

−α

21



Chapter 2

Power and Exponential

distribution: Records application

In this chapter we study two cases which are the power function distribution in the

section 2.1 and the Exponential distribution in the section 2.2, each one containing

some characteristics and parameters estimator with the BLUE methode and MLM.

2.1 Power function distribution

2.1.1 Characterization

The Power function distribution has a probability distribution used to model phe-

nomena where a small number of instances carry a significant proportion of the total

value. This distribution is notable for its heavy right tail, indicating that rare events

or extreme values occur more frequently than in a normal distribution. Understand-

ing the power function distribution helps in analyzing and modeling complex systems

where rare events play a significant role. Let XL(1), XL(2), ..., XL(r) be the first r lower
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record values from the Power pdf

f(x) =


δxδ−1, 0 ≤ x ≤ 1

0, otherwise,

and cdf

F (x) = xδ, 0 ≤ x ≤ 1

where δ > 0, a simple description of the record value sequence is possible.

We introduce some basic rules that play a central role in the present study. The

probability density function of XL(r) is given by

fr (x) =
1

Γ (r)
[− ln (F (x))]r−1 f (x) ,−∞ < x < ∞,

=
1

Γ (r)

[
− ln

(
xδ
)]r−1

δxδ−1.

and the joint probability density function of two lower record valuesXL(r) and XL(s)is

given by

f (xr, xs) =
1

Γ (r) Γ (s− r)
[− ln (F (xr))]

r−1 [ln (F (xr))− ln (F (xs))]
s−r−1 f (xr)

F (xr)
f (xs) ,

−∞ < xs < xr < ∞.

=
δ2

Γ (r) Γ (s− r)

[
− ln

(
xδ
r

)]r−1 [
ln
(
xδ
r

)
− ln

(
xδ
s

)]s−r−1 1

xr

xδ−1
s

Corollairy 2.1.1 •The first moment of XL(r) from the Power function probability-

distribution is given by

E(XL(r)) =

(
δ

δ + 1

)r

.
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•The second moment of XL(r) is (similar to the first)

E(XL(r))
2 =

(
δ

δ + 2

)r

.

•We compute the variance of XL(r) to be

V ar(XL(r)) = E(XL(r))
2 −

(
E(XL(r))

)2
=

(
δ

δ + 2

)r

−
(

δ

δ + 1

)2r

=

(
δ

δ + 1

)r [(
δ + 1

δ + 2

)r

−
(

δ

δ + 1

)r]
= arbr. (2.1)

Proof. let’s define

E(XL(r)) =

1∫
0

xfr (x) dx

=

1∫
0

x
1

Γ (r)

[
− ln

(
xδ
)]r−1

δxδ−1dx

substituting y = − ln
(
xδ
)
and simplifying we get

E(XL(r)) =

+∞∫
0

1

Γ (r)
yr−1 exp

(
−y

(
1 +

1

δ

))
dy

by using the Gama distribution(
+∞∫
0

1
Γ(α)βαy

α−1e−
y
β = 1) and by matching we find

E(XL(r)) =

(
δ

δ + 1

)r

= br. (2.2)

By using the same method we can prove the other statements.
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2.1.2 Parameters estimator

The following concepts, Mbah and Tsokos, [[15]], identifies the analytical estimator

of the parameters for µ and σ when δ is known.

Lemma 2.1.1 Let x1, x2, . . . , xr be r lower record values from the power function

distribution is given by equation (f (x) = δ ((x− µ) /σ)δ−1), where

ht = (x1, x2, . . . , xr),

then

E
(
ht
)
= µ1+ σα,

and

V ar
(
ht
)
= σ2V,

Proof. We have from Lloyd (1952) that:

h1 ⩽ h2 ⩽ . . . ⩽ hr,

z1 ⩽ z2 ⩽ . . . ⩽ zr;

where (h1, h2, . . . , hr) and(z1, z2, . . . , zr) in ascending order of magnitude of (x1, x2, . . . , xr)

and yr in the order when

yr = (xr − µ) /σ,

zr = (hr − µ) /σ.

Let

E (zr) = αr , V ar (zr) = V ;
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these quantities have known values depending on the form of the parent distribution

but not on the parameters µ and σ. we clearly have in the matrix form:

E
(
ht
)
= µ1+ σα , V ar

(
ht
)
= σ2V.

where, from equations (2.2) and (2.1)

1t=(1, 1, . . . , 1) ,

αt = (b1, b2, . . . , br) ,

Lemma 2.1.2 The inverse of covariace martix

V −1 =
(
V ij
)
, 1 ≤ i < j ≤ r,

where

V ij =



ai+1bi−1−ai−1bi+1

(aibi−1−ai−1bi)(ai+1bi−aibi+1)
, if i = j = 1 to r − 1

−1
ai+1bi−aibi+1

, if j = i+ 1 and i = 1 to r − 1

br−1

br(arbr−1−ar−1br)
, if i = j = r

0, if j > i+ 1

Proof. From the lemma (2.1.1) we can write the Esperance and the variance as

E
(
ht
)
= Mθ , V ar

(
ht
)
= σ2V;

whereM is the (r × 2) matrix (1, α),and θt = (µ, σ) .With V is the (r × r) symmetric
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positive definite matrix

V = vij =



V ar (x1, x1) Cov (x1, x2) . . . Cov (x1, xr)

Cov (x1, x2)
. . . Cov (x2, xr)

...
. . .

...

Cov (x1, xr) Cov (x2, xr) · · · V ar (xr, xr)


For A = V −1,the required estimator of the vector θ of parameters are given by

θ̂ =
(
M tAM

)−1
M tAht.

The variance matrix of the estimates is (M tAM)
−1

σ2,where

M tAM =

 1tA1 1tAα

1tAα αtAα

 ,

which his inverse (
M tAM

)−1
=

1

∆

 αtAα −1tAα

−1tAα 1tA1

 ,

where ∆ is the determinant of the matrix M tAM .

Theorem 2.1.1 The BLUE,µ̂ and σ̂ for µ and σ based on r lower record values

from the power function probability distribution is given by

µ̂ =
αtV−1 (α1t − 1αt)V−1h

∆
,

and

σ̂ =
1tV−1 (1αt − α1t)V−1h

∆
.

Proof. By using lemma (2.1.1) and lemma (2.1.2) (using the results of the inverse
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matrix in the equation of θ̂ We find the following estimates)

µ̂ = −αtWht , σ̂ = 1Wht,

where W is the skew-symmetric matrix defined by

W =
A (1αt − α1t)A

∆
.

Corollairy 2.1.2 The variance of these estimates are

V ar (µ̂) =
αtAασ2

∆
, V ar (σ̂) =

1tA1σ2

∆
.

Lemma 2.1.3 The best linear unbiased estimates (BLUE),µ̂ and σ̂ for µ and σ for

known δ are respectively

µ̂ = − 1

D0

[
(δ + 2)2 x1

δ
+

(
δ + 2

δ

)2

x2 + . . .+

(
δ + 2

δ

)r−1

xr−1 − (δ + 1)

(
δ + 2

δ

)r

xr

]
,

and

σ̂ =
δ + 1

δD0

[(
D0 +

(δ + 2)2

δ

)
x1 +

(
δ + 2

δ

)2

x2 + . . .+

(
δ + 2

δ

)r−1

xr−1

− (δ + 1)

(
δ + 2

δ

)r

xr

]
,

where

D0 =
r∑

i=2

(
δ + 2

δ

)i

.

Proof. Using the method introduced by Lloyd, [[14]]; the entries of V−1 are given
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by

V ii =
A

BC
=
(
2δ2 + 4δ + 1

)(δ + 2

δ

)i

, i = 1, . . . , r − 1;

where:

A =

(
δ

δ + 1

)i−1
[(

δ + 1

δ + 2

)i+1

−
(

δ

δ + 1

)i+1
]
−
(

δ

δ + 1

)i+1
[(

δ + 1

δ + 2

)i−1

−
(

δ

δ + 1

)i−1
]

B =

[(
δ

δ + 1

)i−1
((

δ + 1

δ + 2

)i

−
(

δ

δ + 1

)i
)

−
(

δ

δ + 1

)i
((

δ + 1

δ + 2

)i−1

−
(

δ

δ + 1

)i−1
)]

C =

[(
δ

δ + 1

)i
((

δ + 1

δ + 2

)i+1

−
(

δ

δ + 1

)i+1
)

−
(

δ

δ + 1

)i+1
((

δ + 1

δ + 2

)i

−
(

δ

δ + 1

)i
)]

V ij = V ji

=
−1(

δ
δ+1

)i [( δ+1
δ+2

)i+1 −
(

δ
δ+1

)i+1
]
−
(

δ
δ+1

)i+1
[(

δ+1
δ+2

)i − ( δ
δ+1

)i]
= − (δ + 1)

(δ + 2)i+1

δi
, j = i+ 1, i = 1, . . . , r − 1,

V ij = 0 for |i− j| > 1,

and

V rr =

(
δ

δ+1

)r−1(
δ

δ+1

)r [( δ
δ+1

)r−1 (( δ+1
δ+2

)r − ( δ
δ+1

)r)− ( δ
δ+1

)r (( δ+1
δ+2

)r−1 −
(

δ
δ+1

)r−1
)]

= (δ + 1)2
(
δ + 2

δ

)r
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we have that by Mbah[[15]]

αtV−1 = [(δ + 1) (δ + 2) , 0, . . . , 0] ,

and

1tV−1 =

[
− (2δ + 3)

δ + 2

δ
,−
(
δ + 2

δ

)2

, . . . ,−
(
δ + 2

δ

)r−1

, (δ + 1)

(
δ + 2

δ

)r

δr−2

]
.

Therefore,

αtV−1α = δ (δ + 2) ,

αtV−11 =(δ + 1) (δ + 2) ,

and

1tV−11 =
(δ + 1)2 (δ + 2)

δ
+D0.

Let

∆ =
(
αtV−1α

) (
1tV−11

)
−
(
αtV−11

)2
= δ (δ + 2)D0,

then

αtV−1
(
α1t − 1αt

)
V−1 = δ (δ + 2)3

[
− (δ + 2) ,−δ + 2

δ
, . . . ,−

(
δ + 2

δ

)r−2

,

(δ + 1)

(
δ + 2

δ

)r−1
]
,

30



and

1tV−1
(
1αt − α1t

)
V−1 = (δ + 1) (δ + 2)

[
D0 +

(δ + 2)2

δ
,
(δ + 2)2

δ2
, . . . ,

(δ + 2)r−1

δr−1
,

−(δ + 1) (δ + 2)r

δr

]
.

Thus, the best linear unbiased estimates (BLUE),µ̂ and σ̂ for µ and σ for known δ

are respectively

µ̂ = − 1

D0

[
(δ + 2)2 x1

δ
+

(
δ + 2

δ

)2

x2 + . . .+

(
δ + 2

δ

)r−1

xr−1 − (δ + 1)

(
δ + 2

δ

)r

xr

]
,

and

σ̂ =
δ + 1

δD0

[(
D0 +

(δ + 2)2

δ

)
x1 +

(
δ + 2

δ

)2

x2 + . . .+

(
δ + 2

δ

)r−1

xr−1

− (δ + 1)

(
δ + 2

δ

)r

xr

]
,

where

D0 =
r∑

i=2

(
δ + 2

δ

)i

.

Corollairy 2.1.3 The variance of µ̂, σ̂ and covariance of µ̂, σ̂ are given by

V ar (µ̂) =
αtV−1α

∆
σ2 =

σ2

D0

,

V ar (σ̂) =
1tV−11

∆
σ2

=

(
(δ + 1)2

δ2D0

+
1

δ (δ + 2)

)
σ2.

31



Remark 2.1.1 If δ = 1, then D0 = 9(3r−1 − 1)/2, and BLUE µ̂, σ̂of µ and σ from

the uniform distribution based on lower record values XL(1), XL(2), . . . , XL(r) are

µ̂ =
1

D0

[
−32XL(1) +

r−1∑
i=2

3iXL(i) + 2× 3rXL(r)

]
,

and

σ̂ = 2
(
XL(1) − µ̂

)
,

with

V ar (µ̂) =
σ2

D0

V ar (σ̂) =
3r + 5

9 (3r−1 − 1)
,

Method of Maximum likelihood:

Lemma 2.1.4 The joint pdf of r lower record values XL1 , XL2 , . . . , XLr from a con-

tinuous cumulative probability distribution function F (x) is given by:

f1,2,...,r(x1, x2, . . . , xr) = f(xr)
r−1∏
i=1

f(xi)

F (xi)
, −∞ < x1 < . . . < xr < ∞.

Observe from the previous lemma that the likelihood of a standard power function

distribution is

L (δ | x1, x2, . . . , xn) = xδ
r

r∏
i=1

δ

xi

.

The loglikelihood function is given by
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log (L (δ | x1, x2, . . . , xn)) = log xδ
r + log

(
r∏

i=1

δ

xi

)
= δ log (xr) +

r∑
i=1

(log δ − log xi)

= −δ log (xr)
r

−
∑

log
i=1

xi + r log (δ) . (2.3)

Differentiating (2.3) with respect to δ and equating to zero gives the MLE estimate

of δ,δ̂MLE to be

δ̂MLE = − r

ln (xr)
.

2.2 Exponential Distribution

2.2.1 Characterization

The exponential distribution is a probability distribution that describes the time

between events in a Poisson process, where events occur continuously and indepen-

dently at a constant average rate. It is commonly used in various fields such as

reliability engineering, queueing theory, and survival analysis, it is often used to

model phenomena such as the time until the next radioactive decay, the lifespan of

certain devices, or the waiting time between arrivals of customers at a service point.

Suppose that XU(1), XU(2), . . . , XU(r) are r upper record values with probability den-

sity function (pdf) given by:

f(x) =


λ exp(−λx) 0 < x < ∞,

0 otherwise.
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and cumulative distribution function (cdf)

F (x) = 1− exp(−λx).

We introduce some basic rules that play a central role in the present study. The

probability density function of XU(r) is given by

fr(x) =
1

Γ(r)
[− ln(1− F (x))]r−1f(x), −∞ < x < ∞,

=
1

Γ(r)
λrxr−1 exp(−λx).

The first moment of XU(r) from the Exponential distribution is given by

E(XU(r)) =
Γ(r + 1)

λΓ(r)
.

Proof. Let’s define

E(XU(r)) =

∫ ∞

0

xfr(x)dx

=

∫ 1

0

x
1

Γ(r)
[− ln(exp(−λx))]r−1λ exp(−λx)dx.

By using the Gamma distribution
(∫ +∞

0
1

Γ(α)βαy
α−1e−(y/β)dy = 1

)
and by matching

we find

E(XU(r)) =
Γ(r + 1)

λΓ(r)
= br.

The second moment of XU(r) is (similar to the first)

E(XU(r))
2 =

Γ(r + 2)

λ2Γ(r)
.
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We compute the variance of XU(r) to be

V ar(XUr)) = E(XU(r))
2 − (E(XU(r)))

2

=
Γ(r + 2)

λ2Γ(r)
−
(
Γ(r + 1)

λΓ(r)

)2

=
1

λ

Γ(r + 1)

Γ(r)

(
Γ(r + 2)

λΓ(r + 1)
− Γ(r + 1)

λΓ(r)

)
= arbr.

2.2.2 Parameters estimator

Best Linear Unbiased Estimator

Suppose that x1, x2, . . . , xr are the r (upper) record values from E(µ, σ) (by Ahsanullah[[3]]

), with pdf

f(x) =


1
σ
exp (σ−1(x− µ)) , −∞ < µ < x < ∞, σ > 0,

0, otherwise.

Without any loss of generality, we will consider in this part the standard exponential

distribution, E(0, 1), with pdf f(x) = exp(−x), 0 ≤ x < ∞, in which case we have

f(x) = 1− F (x),

1t = (1, 1, . . . , 1), αt = (1, 2, . . . , r),

V = (vij), vij = aibi, i, j = 1, 2, . . . , r.
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The inverse of V can be written as

V −1 =



2 i = j = 1 to r − 1

−1 |i− j| = 1 and i, j = 1 to r

1 i = j = r

0 otherwise.


Using the method introduced by Lloyd, [14], we have that (by Ahsanullah [3])

αtV −1 = (0, 0, . . . , 0, 1),

and

1tV −1 = (1, 0, . . . , 0).

Therefore,

αtV −1α = r,

αtV −11 = 1,

and

1tV −11 = 1.

Let

∆ = r − 1,

Thus, the best linear unbiased estimates (BLUE), µ̂ and σ̂ for µ and σ are respec-

tively:

µ̂ =
rx1 − xr

r − 1
,

and

σ̂ =
xr − x1

r − 1
,
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The variance of µ̂, σ̂ and covariance of µ, σ are given by

Var(µ̂) =
rσ2

r − 1
,

Var(σ̂) =
σ2

r − 1
.

Method of Maximum Likelihood

Observe from equation (1.14) that the likelihood of the Exponential function distri-

bution is

L(σ|x1, x2, . . . , xr) =
1

σ
exp

(
−xr

σ

) r−1∏
i=1

1

σ
.

The log-likelihood function is given by

log(L(σ|x1, x2, . . . , xr)) = log

(
1

σ

)
− xr

σ
+ log

(
r−1∏
i=1

1

σ

)

= − log σ − xr

σ
−

r−1∑
i=1

log σ

= − log σ − xr

σ
− (r − 1) log σ.

On differentiating the above equation concerning the parameter σ and equating to

zero, we get

σ̂MLE = −xr

r
.

To determine the Best Linear Unbiased Estimator (BLUE) and the Maximum Like-

lihood Estimator (MLE), one typically relies on statistical models and assumptions

about the data. BLUE is derived from the Gauss-Markov theorem, which assumes

linearity, unbiasedness, and minimal variance within linear estimators. Conversely,

MLE involves maximizing the likelihood function based on the observed data to es-

timate the parameters that make the observed data most probable. Both methods

are essential in statistical inference, offering different approaches depending on the
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context and assumptions.
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Conclusion

In the present study, we have introduced the concept of records and explained

record time, record value, and lower and upper records including some important

properties of K-record and ordinary record which are the special case when (k=1),

then we provide them by giving two examples.

We present records from specific continuous distributions, in addition, we discuss it

by an application for the Weibull distribution.

On the other hand, we investigate the problem of estimation of the location and

scale parameters in the best linear unbiased estimator (BLUE) of the Power func-

tion and the Exponential distributions by using different types of record (Record in

the first and the upper-record in the second), where we started with some basic char-

acteristics by extracting the single and the second moment with the variance of that

distribution, then we summarized the method of the Best Linear Unbiased estimator

and give the estimation of parameters with their first moment and variance, at the

end we use the Likelihood Estimation.

In conclusion, record statistics is a broad term; it can refer to various types of

statistical information related to records. In a general sense, record statistics could

involve analyzing and presenting data related to records.

The Best Linear Unbiased Estimator is the most accurate method to estimate com-

pared with Likelihood or moment estimation methods but it has negative points

of which: Limited Applicability; BLUE is specifically designed for linear regression
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models. It may not be suitable for non-linear relationships or models with complex

functional forms.

The study of other distribution with respect to records is not very much exploited.

This could be because of the complex form of the probability density function of

record observation since close form solutions will not be obtained for the maximum

likelihood estimates.Another method is to investigating the concept of records with

respect to using the kernel density approach to characterize the behavior of records

is an interesting extension of the theory of records.
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Appendix A: Software R

2.3 What is the R language?

• The R language is a programming language and mathematical environment used

for data processing. It allows you to perform both simple and complex statistical

analyzes such as linear or non-linear models, hypothesis testing, time series model-

ing, classification, etc. It also has many very useful, professional-quality graphics

functions.

• R was created by Ross Ihaka and Robert Gentleman in 1993 at the University of

Auckland, New Zealand, and is now developed by the R Development Core Team.

The origin of the name of the language comes, on the one hand, from the initials

of the first names of the two authors (Ross Ihaka and Robert Gentleman) and, on

the other hand, from a play on words on the name of the language S to which it is

related.

2.4 R code used at chapter 1

1 upper.record.values <- function(sqnc , k) {

2 if (sum(is.na(sqnc)) > 0) {

3 stop("There are missing values in data. The function is not

designated for such data!")

4 } else {
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5 if (length(k) == 1 && k >= 1 && k <= length(sqnc) && is.

numeric(k) && floor(k) == k) {

6 sqnc <- unique(sqnc)

7 dl <- length(sqnc)

8 wndw <- sort(sqnc [1:k])

9 records <- wndw [1]

10 if (k < dl) {

11 for (i in (k+1):dl) {

12 if (sqnc[i] > wndw [1]) {

13 if (i <= dl -k+2) {

14 w <- which(sqnc[i] > wndw)

15 } else {

16 w <- which(sqnc[i] > wndw [1:(dl -i+2)])

17 }

18 where <- w[length(w)]

19 if (where > 1) {

20 wndw [1:( where -1)] <- wndw [2: where]

21 }

22 wndw[where] <- sqnc[i]

23 records <- c(records , wndw [1])

24 }

25 }

26 }

27 return(records)

28 } else {

29 stop("k must be an integer between 1 and length(sqnc)")

30 }

31 }

32 }
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Abstract 

Record statistics is a broad term; it can refer to various types of statistical information related 

to records. In a general sense, record statistics could involve analyzing and presenting data 

related to records.  The subject of the study is to introduce the concept of record as applied to 

probability distribution function and present some their characterization results based on the   

records values.  In addition,  we discuss the problem of estimation of the location and scale 

parameters in Best Linear Unbiased Estimator (BLUE) and how applied it in both different types 

of records with differents distributions functions. 

 

 

Résumé 

Les statistiques des records sont des termes larges; elles peuvent se référer à divers types 

d'informations statistiques liées aux records. Dans un sens général, les statistiques des records 

peuvent impliquer l'analyse et la présentation des données relatives aux records. Le sujet de 

l'étude consiste à introduire le concept de record tel qu'appliqué à la fonction de distribution 

de probabilité et à présenter certains résultats de leur caractérisation basés sur les valeurs des 

records. De plus, nous discutons du problème de l'estimation des paramètres de localisation et 

d'échelle dans le Meilleur Estimateur Linéaire Non Biaisé (BLUE) et de son application à 

différents types de records avec différentes fonctions de distribution. 

 

 الملخص

 قيمومات الإحصائية المتعلقة بالالقياسية هو مصطلح واسع؛ يمكن أن يشير إلى أنواع مختلفة من المعل لقيمإحصاءات ا

المتعلقة بها. القياسية تحليل وتقديم البيانات  قيممن إحصاءات الالقياسية. بشكل عام، قد تتض   

القياسية كما يُطبق على دالة توزي    ع الاحتمالات وتقديم بعض نتائج التوصيف  قيمموضوع الدراسة هو تقديم مفهوم ال

ا إل
ً
ي أفضل مقدر يها استناد

 
خطي غير منحاز  وكيفية . بالإضافة إلى ذلك، نناقش مشكلة تقدير معلمات الموقع والمقياس ف

ي أنواع مختلفة من ال
 
القياسية مع دوال توزي    ع مختلفة قيمتطبيقه ف (BLUE) 
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