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Abstract

Shannon entropy, established by Shannon in 1948 and widely utilized in reliability

and information studies, has seen a recent counterpart in extropy, proposed by Lad

et al. (2015), which serves as its dual measure.

This master’s thesis aims to present the concept of extropy, a measure of uncer-

tainty. One statistical application of extropy is to score the forecasting distribu-

tions. It addresses the problem of extropy of ordered variates records and order

statistics and related properties. Simplified expressions of the extropy of ordered

variates are derived.

iii



Notations and symbols

iid Independent and identically distributed

P (.) probability function

cdf Cumulative distribution function note F (.)

pdf Probability density function also density function note f(.)

F̄ (.) The complementary cumulative distribution function

Fn (.) The empirical (or sample) distribution function

U(n) Upper record times

L(n) Lower record times

UX
n Upper record values

LX
n Lower record values

UX
n,k nth value of upper k-records

LX
n,k nth value of lower k-records

Xk,n the kth statistical order

fk,n(x) The pdf of the order statistic

Fk,n(x) The cdf of the order statistic

Fi,j:n(x, y) The joint cdf of Xi,n and Xj,n

fi,j:n(x, y) The joint pdf where (Xi,n ≤ Xj,n)
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h(x) The hazard function

H(x) The cumulative hazard function

fUx
n
(x) Probability density function of nth Upper record values

fUX
m ,UX

n
(x, y) The joint probability density function of mth and nth Upper

records

fUX
n |UX

m
(x, y) The conditional probability density function of nth upper given

mth upper record

FUX
n
(x) Cumulative distribution function of nth value of upper records

fUX
n,k
(x) Probability density function of nth value of upper k-records

FUX
n,k
(x) Cumulative distribution function of nth value of upper k-records

fUX
m,k,U

X
n,k
(x, y) The joint probability density function of mth and nth Upper k

records

fUX
n,k|U

X
m,k

(y|x) The conditional probability density function of nth upper given

mth upper k record

fLX
n
(x) Probability density function of nth lower record values

fLX
m,LX

n
(x, y) The joint probability density function of mth and nth lower

records

fLX
n |LX

m
(x, y) The conditional probability density function of nth lower given

mth lower record

fUX
n,k
(x) Probability density function of nth value of upper k-records

FUX
n,k
(x) Cumulative distribution function of mth and nth Upper krecords

fUX
m,k,U

X
n,k
(x, y) The joint probability density function of mth and nth Upper

krecords

fUX
n,k|U

X
m,k

(y|x) The conditional probability density function of nth upper given

mth upper k record
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fLX
n,k
(x) Probability density function of nth value of lower k-records

FLX
n,k
(x) Cumulative distribution function of mth and nth lower krecords

fLX
m,k,L

X
n,k
(x, y) The joint probability density function of mth and nth lower

krecords

fLX
n,k|L

X
m,k

(x, y) The conditional probability density function of nth lower given

mth lower k record

J(X) The Extropy of X

F−1(u) The inverse function of a cumulative distribution function

Xi Random variables with i = 1, 2, ...

R.V Record values

O.S Order statistics
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Introduction

Uncertainty is commonly understood as a result of insufficient information,

whereas information is seen as the means to diminish uncertainty. When these

specific interpretations of uncertainty and information risk being misunderstood

with their broader meanings, it is beneficial to refer to them as information-driven

uncertainty and uncertainty-driven information, respectively.

Uncertainty, often attributed to a lack of information, finds its quantitative expres-

sion through entropy, a cornerstone of information theory introduced by Shannon

(1948[26]) and Wiener (1948[28]) over three decades ago. This formalism con-

tinues to thrive, applied from image restoration to socio-economic data analysis.

However, as interpretations of uncertainty and information broaden, distinctions

such as ”information-driven uncertainty” and ”uncertainty-driven information”

become pivotal.

In recent years, the concept of entropy has evolved further with the proposal of

extropy by Lad, Sanfilippo, and Agro (2015[14]). Extropy complements Shan-

non (1948[26]) entropy, offering a dual perspective on uncertainty measurement,

particularly suited for ordered variables and statistical distributions beyond con-

ventional entropy’s scope. This extension finds applications in fields ranging from

order statistics to advanced information measures. The extropy measure has been
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Introduction

developed for ordered variables. Qiu (2017[20]) was the first to apply extropy for

order statistics and record values and present several of their properties. After

that, the researchers manifested to present extension measures of extropy.

This master’s thesis is divided to two chapters, in the first chapter, we will

present an overview of fundamental concepts related to records and order statis-

tics. This includes an exploration of various notions and properties of order statis-

tics and record statistics (both upper and lower) and their distributions in con-

tinuous cases.

In the second and final chapter, we will find into the extropy of records and

order statistics. We will discuss some results and characterizations based on both

records (R.V) and order statistics (O.S). Additionally, we will perform numeri-

cal computations on the upper and lower record values, order statistics, and their

extropy.
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Chapter 1

Records and Order Statistics

In this chapter, we find into the record and the order statistics pertaining to

continuous random variables, which comprises four sections. Section 1.1 serves as

an introduction to order statistic and we explore various characterizations of order

statistics derived from a sequence of continuous random variables. Section 1.2 acts

as an introductory overview to order statistics, We find different characterizations

of record statistics ”upper and lower” obtained from a sequence of continuous

random variables.

1.1 Order Statistic

In this section, we start by explaining some definitions and characteristics of

order statistics. Then, we gradually move on to discussing their distributions in

continuous cases.

3



Chapter 1. Records and order Statistics

1.1.1 Ordinary Order Statistics

Definition 1.1.1 Let (X1, X2, ..., Xn) be a sequence of independent and identi-

cally distributed (iid) random variable over space (R,Ω), each distributed accord-

ing to continuous cdf F and pdf f F (F (x) = P (Xn ≤ x), for x ∈ R) let Sn be the

set of permutation of {1, ..., n} .

Definition 1.1.2 We have([3]):

• The sample statistics (X1, X2, ..., Xn) is the increasing arrangement (X1, ..., Xn).

It is noted (X1,n, X2,n, ..., Xn,n). It has X1,n ≤ ... ≤ Xn,n, and there is a

random permutation σn ∈ Sn such that

(X1,n, ..., Xn,n) =
(
Xσn(1), ..., Xσn(n)

)
.

The vector (X1,n, ..., Xn,n) is called the associated ordered sample (X1, ..., Xn)

and Xk,n being the kth statistical order

• The random variable minimum and maximum of the n-sample (iid) corre-

spond better to the idea of extreme value:

X1,n = m (n) = min (X1, ..., Xn) = min
1≤i≤n

Xi

Xn,n = M (n) = max (X1, ..., Xn) = max
1≤i≤n

Xi

• Fn (x) =
1
n

n∑
i=1

1{Xi≤x} denotes the empirical (or sample) distribution function

4



Chapter 1. Records and order Statistics

Let mention that:

Fn(x) =


0 if x ≺ X1,n

i
n

if Xi,n ≤ x ≤ Xi+1,n and 1 ≤ i ≤ n− 1

1 if x > Xn,n

Remark 1.1.1 If the law of variable X is absolutely continuous one can conclude

that,

P (X1,n ≤ X2,n ≤ ... ≤ Xn,n) = 1

1.1.2 K-Order Probability Density Function

Proposition 1.1.1 The cdf of the order statistic Xk,n is given for all x ∈ R by

(David [1970], Balakrishnan and Clifford Cohen[1991])

Fk,n (x) = FXk,n
(x) = P (Xk,n ≤ x) =

n∑
r=k

Cr
n [F (x)]r [1− F (x)]n−r , x ∈ R.

(1.1)

Proposition 1.1.2 In the case where the distribution function F is continuous

and derivable almost everywhere from derivativef , order statistics have a law that

admits a density relative to the Lebesgue measurement. The density of Xk,n is

given by

fk,n (x) =
n!

(k − 1)! (n− k)!
f (x) [F (x)]k−1 [1− F (x)]n−k . (1.2)

As another direct consequence of this result, it is easily shown that if U1, ..., Un

One are random variables independent of uniform law then Uk,n follows a Beta

law of k and n− k+ 1 parameters. It is recalled that the density of a Beta law of
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Chapter 1. Records and order Statistics

parameters a > 0 and b > 0 is

1

β (a, b)
xa−1 (1− x)b−1 , x ∈ [0, 1] .

In particular, for all s ∈ N,

E
(
U s
k,n

)
=

n!

(n+ k)!

(k + s− 1)!

(k − 1)!
. (1.3)

Proposition 1.1.3 (Barry and al.(1992))If the distribution function F is contin-

uous and derivable almost everywhere from derivative f , the density of the vector

(X1,n, ..., Xn,n) is

fn (x1, ..., xn) = n!
n∏

i=1

f (xi) , x1 ≤ x2 ≤ ... ≤ xn. (1.4)

It can therefore be concluded from the statistics of the minimum that the cdf and

the pdf are respectively

F1,n (x) = FX1,n (x) = [1− F (x)]n

f1,n (x) = fX1,n (x) = n [1− F (x)]n−1 f (x) , (1.5)

For the maximum statistics, we have

Fn,n (x) = FXn,n (x) = [F (x)]n , (1.6)

fn,n (x) = fXn,n (x) = n [F (x)]n−1 f (x) , (1.7)

Proof. Using the independent property of the random variables X1, X2, ..., Xn,

we deduce that,

6



Chapter 1. Records and order Statistics

F1,n (x) = P {X1,n ≤ x} = 1 − P {X1,n ≻ x} = 1 − P

{
n⋂

i=1

Xi ≻ x

}
= 1 −

n∏
i=n

P {Xi ≻ x} = 1−
n∏

i=1

[1− P {Xi ≤ x}] = [1− F (x)]n , Fn,n (x) = P {Xn,n ≤ x} =

n∏
i=1

P {Xi ≤ x} = [F (x)]n .

Example 1.1.1 Let X1, X2, ..., X5 be a simple aleatory sample and Y1 < Y2 <

Y3 < Y4 < Y5 are statistics of order and size n = 5 with density f (x) = 3x2,

0 ≤ x ≤ 1.

F (x) =

x∫
0

f (t) dt = x3, 0 ≤ x ≤ 1.

F (y) = P (X ≤ y) = y3, 0 ≤ y ≤ 1.

1. f1,5 (y1) = n [1− F (y1)]
n−1 f (y1) = 5 [1− y31]

5−1
3y21 = 15y21 [1− y31]

4
F1,5 (y1) =

[1− F (y1)]
n = [1− F (y1)]

5 = [1− y31]
5

2. f5,5 (x) = n [F (y1)]
5−1 f (y1) = 5 [y31]

5−1
3y21 = 15y241

F5,5 (x) = [F (y1)]
5 = [y31]

5
= y151

3. f3,n (x) =
5!
2!2!

f (x) [F (x)]2 [1− F (x)]2 = 5!
2!2!

3y21 [y
3
1]

2
[1− y31]

2
= 30y81 [1− y31]

2

F3,5 (x) =
5∑

r=3

Cr
5 [F (x)]r [1− F (x)]5−r = 5y91 [1− y31] [2 (1− y31) + y31]

Theorem 1.1.1 The joint cdf of Xi,n and Xj,n, where (Xi,n ≤ Xj,n), 1 ≤ i ≤ j ≤

n and −∞ ≺ x ≺ y ≺ +∞ is given by(Arnold et al.(1992) [6])

Fi,j:n (x, y) =
n∑

s=j

s∑
r=i

n!

(r − 1)! (s− r − 1)! (n− s)!
[F (x)]r−1 f (x) [F (y)− F (x)]s−r−1

f (y) [1− F (y)]n−s . (1.8)
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Chapter 1. Records and order Statistics

For x ≥ y then the cdf is

Fi,j:n (x, y) = F(Xi,n≤Xj,n) (x, y) = FXj,n
(y) .

The joint pdf where (Xi,n ≤ Xj,n) is

fi,j:n (x, y) =
n!

(i− 1)! (j − i− 1)! (n− j)!
[F (x)]i−1 f (x) [F (y)− F (x)]j−i−1

f (y) [1− F (y)]n−j . (1.9)

Remark 1.1.2 The joint pdf of X1,nand Xn,n is

fX1,n,Xn,n (x, y) = n (n− 1) [F (y)− F (x)]n−2 ,−∞ ≺ x ≺ y ≺ +∞. (1.10)

1.2 Record Statistics

In this section, we first explain what upper and lower record statistics are and

their main features. Then, we move on to how they are distributed in continuous

cases.

1.2.1 Ordinary Record Statistics

Let X1, X2, ... be a sequence of independent and identically distributed (iid) ran-

dom variables and X1,n ≤ ... ≤ Xn,n be the corresponding order statistics.

Definition 1.2.1 The classical upper record times U(n) (n ≥ 1) and upper record

values UX
n as follows:

U (1) = 1, U (n+ 1) = min
{
j : j ≥ U (n) , Xj ≻ UX

n

}
, UX

n = XU(n), n = 1, 2, ...

8



Chapter 1. Records and order Statistics

Definition 1.2.2 The sequences of lower record times L(n) (n ≥ 1) and lower

record values LX
n as follows :

L (1) = 1, L (n+ 1) = min
{
j : j ≥ L (n) , Xj ≺ LX

n

}
, LX

n = XL(n), n = 1, 2, ...

1.2.2 Record Probability Density Function

Proposition 1.2.1 The hazard function, also known as the failure rate or force

of function, denoted as h(x), represents the ratio of the probability density function

f(x) to the survival function 1− F (x). This relationship is expressed as:

h (x) =
f (x)

1− F (x)
.

The cumulative hazard function

H (x) = − log [1− F (x)] . (1.11)

Lemma 1.2.1 Let X be a random variable having an absolutely continuous cumu-

lative distribution function (cdf) F (x)and probability density function (pdf) f(x),

be the cumulative hazard function and the corresponding hazard rate, respectively.

Then the pdf of UX
n is obtained to be ( Arnold et al. (1998)[7])

fUx
n
(x) =

[H (x)]n−1

(n− 1)!
f (x) , x ∈ R, n = 1, 2, ... (1.12)

◦The joint pdf of UX
m and UX

n ; where 1 ≤ m < n; is given by (Arnold et

9



Chapter 1. Records and order Statistics

al.(1998)[7])

fUX
m ,UX

n
(x, y) =

[H (x)]m−1

(m− 1)!

[H (y)−H (x)]n−m−1

(n−m− 1)!
h (x) f (y) ,

−∞ ≺ x ≺ y ≺ +∞ (1.13)

◦From the pdf of UX
n and The joint pdf of UX

m and UX
n , the conditional pdf of

UX
n given UX

m (1 ≤ m < n); can be written as

fUX
n |UX

m
(x, y) =

[H (y)−H (x)]n−m−1

(n−m− 1)!

f (y)

1− F (x)
, x ≺ y (1.14)

◦The survival function of the nth record can be represented as

1− FUX
n
(x) = [1− F (x)]

n−1∑
j=0

[− log (1− F (x))]j

j!
(1.15)

Where

FUX
n
(x) =

∫ − log(1−F (x))

0

un−1

(n− 1)!
e−udu.

Similarly, the pdf of LX
n is given by

fLX
n
(x) =

[− logF (x)]n−1

(n− 1)!
f (x) , −∞ ≺ x ≺ +∞, n = 1, 2, ... (1.16)

The joint pdf of LX
m and LX

n , where 1 ≤ m ≺ n, can be written as

fLX
m,LX

n
(x, y) =

[− logF (x)]m−1

(m− 1)!

[logF (x)− logF (y)]n−m−1

(n−m− 1)!

f (x)

F (x)
f (y) ,

−∞ ≺ x ≺ y ≺ +∞. (1.17)

10



Chapter 1. Records and order Statistics

The conditional pdf of LX
n given LX

m where 1 ≤ m < n, can be written as([4],[7])

fLX
n |LX

m
(x, y) =

[− logF (y) + logF (x)]n−m−1

(n−m− 1)!

f (y)

F (x)
, x ≺ y. (1.18)

1.2.3 k-Record Statistics

Let {Xk; k ≥ 1}g be a sequence of iid random variables with a continuous cdf F

and pdf f . Let X1:n ≤ X2:n ≤ ... ≤ Xn:n; be the order statistics of X1, X2, ..., Xn

Let

U1,k = k,

and

Un,k = min
{
j : j ≻ Un−1,k, Xj ≻ XUn−1,k−k+1:Un−1,k

}
, (1.19)

for a fixed integer k ≥ 1 and n ≥ 2. Then UX
n,k = XUn−1,k−k+1:Un−1,k

and

Un,k(n ≥ 1) are the sequences of upper k-record values and upper k-record times,

respectively. The model of k-record values are proposed firstly by Dziubdziela

and Kopocinski (1976)([7])

Theorem 1.2.1 The pdf of UX
n,k is obtained to be

fUX
n,k

(x) = kn [H (x)]n−1

(n− 1)!
[1− F (x)]k−1 f (x) ,−∞ ≺ x ≺ +∞. (1.20)

Proof. By induction, the densities fUX
n
(x1, ..., xk), n = 1, 2, ..., satisfy the equa-

tions

fUX
n
(x1, ..., xn) =

 k!gUX
n
(x1) f (x1) f (x2) ...f (xk) , x1 ≺ x2 ≺ ... ≺ xk

0, otherwise

11



Chapter 1. Records and order Statistics

where,

gUX
1
(x) = 1

gUX
n+1

(x) = k

∫ x

−∞
gUX

n
(y)

f (y)

1− F (y)
dy, n = 1, 2, ...

it is easy to verify that

gUX
n
(x) =

1

(n− 1)!
[− log (1− F (x))]n−1 , n = 1, 2, ...

then we have

fUX
n,k

(x) =

∫ ∞

x

∫ ∞

x2

...

∫ ∞

xk−1

k!

(n− 1)!
f (x) f (x2) ...f (xk) dxk...dx2

=
k

(n− 1)!
[−k log (1− F (x))]n−1 [1− F (x)]n−1 f (x) . (1.21)

Corollary 1.2.1 We have,

◦The cdf of UX
n,k is obtained to be ([27])

FUX
n,k

(x) =
γ (n,−k lnF (x))

γ (n)
(1.22)

where Γ (a, x) =
∫ x

0
ua−1e−udu is the lower incomplete gamma function.

◦The joint pdf of UX
m,k and UX

n,k, where 1 ≤ m < n, is given by (see, Grudzien

(1982)[10]).

fUX
m,k,U

X
n,k

(x, y) =
kn

(n− 1)! (n−m− 1)!
[H (x)]m−1 [H (y)−H (x)]n−m−1 [1− F (y)]k−1

h (x) f (y) ,−∞ ≺ x ≺ y ≺ +∞. (1.23)
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◦ The conditional pdf of UX
n,k given UX

m,k (1 ≤ m < n), can be written as

fUX
n,k|U

X
m,k

(y | x) = kn−m

(n−m− 1)!
[H (y)−H (x)]n−m−1 [1− F (y)]k−1

f (y)

[1− F (x)]k
, x ≺ y. (1.24)

Similarly, we have LX
n,k = XLn−1,k−k+1:Ln−1,k

is the sequences of lower k-record

values and Ln,k (n ≥ 1) is sequences of lower k − record times,

L1,k = k

with probability 1,

Ln,k =
′ min

{
j : j ≻ Ln−1,k, Xj ≺ XLn−1,k−k+1:Ln−1,k

}
, (1.25)

Corollary 1.2.2 We have:

◦The pdf of LX
n;k is given by

fLX
n,k

(x) = kn [− logF (x)]n−1

(n− 1)!
[F (x)]k−1 f (x) ,−∞ ≺ x ≺ +∞ (1.26)

◦The cdf of LX
n;k is given by([27])

FLX
n,k

(x) =
γ (n,−k ln [1− F (x)])

γ (n)
, (1.27)

Where,γ (a, x) =
∫ x

0
ua−1e−udu is the upper incomplete gamma function.

◦The joint pdf of LX
m,kand LX

n,k; where 1 ≤ m < n, can be written as (see, Pawlas

13



Chapter 1. Records and order Statistics

and Szynal (1998, 2000)[16] and [18])

fLX
m,k,L

X
n,k

(x, y) =
[− logF (x)]m−1

(m− 1)!

[logF (x)− logF (y)]n−m−1

(n−m− 1)!
[F (y)]k−1

f (x)

F (x)
f (y) ,−∞ ≺ x ≺ y ≺ +∞. (1.28)

◦The conditional pdf of LX
n,k given LX

m,k where 1 ≤ m < n, can be written as

fLX
n,k|L

X
m,k

(x, y) =kn−m [− logF (y) + logF (x)]n−m−1

(n−m− 1)!
[F (y)]k−1

f (y)

[F (x)]k
, x ≺ y. (1.29)

For details on generalized k − values, one can refer Arnold, Balakrishnan, and

Nagaraja (1998)[7], Dziubdziela and Kopoci nski (1976)[8], and Goel, Taneja,

and Kumar (2018)[11]. Now, we present a brief introduction of some univariate

stochastic orders which are used to compare two random variables. For various

other stochastic orders and stochastic comparison results, one can refer Shaked

and Shanthikumar (2007).[25]

Example 1.2.1 Climate data of the Biskra area during the period (1989-2021)

(Weather in Biskra, 2021).This dataset represts Relative Humidity(%) (H%) over

12 month (n = 12) in 2021[5]

{51.32, 41.95, 43.6, 41.22, 31.05, 26.72, 24.92, 28.92, 40.1, 40.82, 47.15, 52.22}

Order Statistics:

◦We want to find the pdf and cdf of the 3th order statistics, X(3).

{24.92 ≤ 26.72 ≤ 28.92 ≤ 32.05 ≤ 40.1 ≤ 40.82 ≤ 41.22 ≤

41.95 ≤ 43.6 ≤ 47.5 ≤ 51.32 ≤ 52.22}

14



Chapter 1. Records and order Statistics

Given that the Relative Humidity follows a gamma distribution with shape param-

eter k = 2 and scale parameter θ = 3, we can use the properties of order statistics.

First, let’s calculate the cdf of the gamma distribution:

FX (x) =
1

Γ (k)

∫ x

0

tk−1e−
t
θ dt

For k = 2 and θ = 3, the cdf become:

FX (x) = [−3xe−
x
3 − 27e−

x
3 + 27]

To find the pdf and cdf of X(3),we need consider the order statistics distribution

formula (1.1) and (1.2), we need also the pdf of the gamma distribution, which is:

fX (x) =
1

Γ (k) θk
xk−1e−

x
θ

In our case, k = 2 and θ = 3,

fX (x) =
1

Γ (2) 32
x2−1e−

x
3 =

1

9
xe−

x
3

Where:

◦ n is the sample size ,

◦ r is the order statistics we are interested in,

◦ FX (x) is the cdf of the gamma distribution,

◦ fX (x) is the pdf of the gamma distribution.

In our case, n = 10 and r = 3, then the X(3) = 28.92 into the order statistics

formula:

15
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1. the pdf of X(3),

fX(3)
(x) =

10!

(3− 1)! (10− 3)!

[
FX(3)

(x)
]3−1 [

1− FX(3)
(x)

]10−3

fX(3)
(x)

2. The cdf of X(3),

FX(3)
(x) =

10∑
i=4

Ci
10

[
FX(3)

(x)
]i [

1− FX(3)
(x)

]10−i

Record Statistics:

We have,

{51.32, 41.95, 43.6, 41.22, 31.05, 26.72, 24.92, 28.92, 40.1, 40.82, 47.15, 52.22}

For n = 1, where n represents the sample size, the first lower record time is

denoted as L(1) = 1

XL1 = LX
1 = X1 = 51.32

When n = 2, the process involves determining the lower record time and subse-

quently identifying the corresponding lower value. To accomplish this, we search

for j such that it satisfies the following conditions:

L (2) = min
{
j : j ≥ L (1) , Xj ≺ LX

1

}

16
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we have:

X2 = 51.32 ≻ 41.95 : hence, the corresponding value of the second lower record

should be determined L (2) = 2, XL(2) = LX
2 = X2 = 41.95.

X3 = 43.6 ≻ 41.95 : does not give the required results.

◦Alternatively, by examining the lower record values for all subsequent n, we ob-

serve that XL(i) = LX
i = X2 for all i = 2, 3..., 12. This is due to X8 being the

smallest value in Xj where 1 ≤ j ≤ 12. Our analysis concludes at n = 2 as it has

reached the minimum value within the dataset.

Thus, the lower record values within this dataset can be identified as follows:

”51.31, 41.95, 41.22, 32.05, 26.72, 24.92”.

Using a similar approach, we can determine the upper record values as follows:

”51.32, 52.22”.

We establish lower k-records from the dataset k = 2, 3, as outlined below: Con-

sider k = 2 and n = 1, 2, . . . , 2. Let X1,12 ≥ ... ≥ X12,12 be the order statistics of

X1, ..., X12 as follows

We have for n = 1

L1,2 = 2, LX
1,2 = XL1,2−2+1:L1,,2 = X1,2 = 51.32

For n = 2

L2,2 = min
{
j : j ≻ L1,2, Xj ≺ XL1,2−3:L1,2

}
= min {j : j ≻ 2, Xj ≺ X1,2}

Now, we seek the value of j that fulfills the following condition:

min {j : j ≻ 2, Xj ≺ X1,2} .

17
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Therefore, we find for

j = 3 : L2,2 = min {j : 3 ≻ 2, X3 ≺ 51.32} .

Therefore,

L2,2 = 3, LX
2,2 = XL2,2−2+1:L2,2 = X2,3 = 43.6

For n = 3

L3,2 = min
{
j : j ≻ L2,2, Xj ≺ XL2,2−3:L2,2

}
= min {j : j ≻ 3, Xj ≺ X2,3}

Thus, j = 4 satisfies the condition, and therefore we have:

j = 4 : L3,2 = min {j : 4 ≻ 3, X4 ≺ 43.6}

Therefore,

L3,2 = 4, LX
3,2 = XL3,2−2+1:L3,2 = X3,4 = 41.95

We proceed similarly to obtain the sequence of the lower 2 − record, which is

presented as follows:

51.32, 43.6, 41.95, 41.22, 32.05, 26.72

As a result, the table below displays the upper k-record for k = 2, 3, 4, 5

18
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2− record 51.32 43.6 41.95 41.22 32.05 26.72

3− record 51.32 41.95 41.22

4− record 51.32 43.6 41.95 41.22 32.05

5− record 51.32 43.6 41.95 41.22 40.1

Table 1.1: The Lower k-Record for k = 2, 3, 4, 5.

To find the pdf and cdf of 2 − record,we need to consider the record statistics

distribution formula: (1.20) and (1.22)

fLX
n,k

(x) = kn [− logF (x)]n−1

(n− 1)!
[F (x)]k−1 f (x) ,−∞ ≺ x ≺ +∞

FLX
n,k

(x) =
γ (n,−k ln [1− F (x)])

γ (n)

we need also the pdf and the cdf of the gamma distribution, which are

(In our case, k = 2 and θ = 3):

fX (x) =
1

9
xe−

x
3

FX (x) = [−3xe−
x
3 − 27e−

x
3 + 27]

In our case, n = 10 and k = 2, then the lower 2-record statistics formula:

fLX
10,2

(x) = 210
[
− log[−3xe−

x
3 − 27e−

x
3 + 27]

]10−1

(10− 1)!
[−3xe−

x
3−27e−

x
3+27]2−11

9
xe−

x
3 ,

−∞ ≺ x ≺ +∞

FLX
10,2

(x) =
γ
(
10,−2 ln

[
1− (−3xe−

x
3 − 27e−

x
3 + 27)

])
γ (10)
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Chapter 2

Extropy of Records and Order

Statistics

This chapter begins with an introduction to extropy, provided in section2.1, and

some preliminaries of stochastic order in section2.2. Following that, we find into

the discussion of the extropy of k-records in sections2.3 and extropy of k-order

in section2.4, and the latter two are dedicated to exploring fundamental findings

and characterizations of the extropy of records and order statistics. In the end,

we will make Some numerical computations in 2.5.

2.1 Background

A novel measure called extropy was introduced by Lad et al. (2015) to quantify

certain aspects of random variables. If we consider a random variable X with

a cumulative distribution function (cdf) F (x) and probability density function

(pdf) f(x) that are both absolutely continuous, then the extropy of X is defined
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as

J (x) = −1

2

∫ +∞

−∞
f 2 (x) dx (2.1)

= −1

2

∫ 1

0

f
(
F−1 (u)

)
du

where

F−1 (u) = inf {t : F (t) ≥ u} , 0 ≺ u ≺ 1,

is the quantile function of F . Lad et al. (2015) present numerous properties of the

extropy measure and explore its applications. Qiu (2017)[20] further contributes

to this field by establishing characterizations and lower bounds on the extropy

of order and record statistics, investigating associated monotonic propreties, and

exploring stochastic comparisons. This research finds into analyzing the extropy

measure concerning record statistics. Lad et al. (2015) introduced an alternative

measure of uncertainty, which is defined for a random variable X as

J (X) = −1

2
E (f (X)) . (2.2)

Recent literature has extensively discussed the statistical applications of extropy.

Qiu (2017)[20] examines various properties, characterizations, and lower bounds

related to the extropy of order and record statistics. Additionally, Qiu and Jia

(2018a)[21] propose estimators for extropy, which are applied in testing uniformity.

Introducing the concept of residual extropy, Qiu and Jia (2018b)[22] aims to

measure the residual uncertainty of a random variable. Most recently, Raqab

and Qiu (2018)[23] explored the extropy of ranked set sampling, investigating

numerous monotone properties and other associated bounds.
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2.2 Preliminaries

Consider two random variables, X and Y , each characterized by cumulative dis-

tribution functions (cdf’s) denoted by F and G, and survival functions repre-

sented by F = 1 − F and G = 1 − G, respectively. The probability density

functions (pdf’s) corresponding to X and Y are f and g, respectively. Let

F−1(x) = inf{t : F (t) ≥ x} and G−1(x) = inf{t : G(t) ≥ x} represent the

left continuous inverses of F and G, where 0 < x < 1.

Definition 2.2.1 (Shaked and Shanthikumar, 2007[25]) It is stated that X

is less than Y

1. Usual stochastic order (X ≤st Y ) if F (t) ≤ G (t) for all t ∈ [0,+∞[ .

2. Likelihood ratio order (X ≤lr Y ) if the ratio g (t) /f (t) is increasing in t ∈

[0,+∞[ .

3. In the hazard rate order (X ≤hr Y ) if hX (t) ≥ hY (t) for all t ∈ [0,+∞[ ,

hX = f/F
(
hY = g/G

)
is the hazard rate function of X (Y ) .

4. In the convex transform order (X ≤c Y ) if G−1F (t) is convex in t ∈ [0,+∞[ .

5. In the star order (X ≤∗ Y ) if G−1F (t) is star-shaped ( that is, if G−1F (t)/t

increase in x > 0) .

6. In the supper-additive order (X ≤su Y ) if G−1F (t) is super-additive, equiv-

alently, G−1F (t+ s) ≥ G−1F (t) +G−1F (s) for all t, s ≥ 0.

7. In the increasing concave (convex) order (X ≤icv Y (X ≤icx Y )) if EΦ(X) ≤

EΦ(Y ) for all increasing concave (convex) functions Φ : R −→ R, provided

the expectations exist;
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8. In the dispersive order, denoted by (X ≤disp Y ) if G−1F (t)− t is increasing

in t ≥ 0. The connections between the earlier mentioned stochastic orders are

described in the following diagram (see Shaked and Shanthikumar, 2007[25])

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤icx Y,

X ≤c Y ⇒ X ≤∗ Y ⇒ X ≤su Y.

Lemma 2.2.1 Suppose X and Y are two non-negative random variables with

probability density functions f and g, respectively, where f(0) ≥ g(0) > 0.

If X ≤su Y (X ≤c Y or X ≤∗ Y ), then X ≤disp Y . ([1])

Lemma 2.2.2 If X ≤disp Y, then J (X) ≤ J (Y ) .

Proof. It is evident that

J (X) = −1

2

∫
s

f 2 (x) dx

= −1

2

∫
s

f (x) dF (x)

= −1

2

∫ 1

0

f
(
F−1 (u)

)
du

If X ≤disp Y, G−1F (x) − x is increasing in x ≥ 0 defintion. Hence, we obtain

f (F−1 (v)) ≥ g (G−1 (v)) for all v ∈ [0, 1] .

Thus,

J (X) = −1

2

∫ 1

0

f
(
F−1 (v)

)
dv ≤ −1

2

∫ 1

0

g
(
G−1 (v)

)
dv = J (Y )

Suppose we have independent and identically distributed (iid) observationsX1, ..., Xn
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with cumulative distribution function F and probability density function f . The

order statistics (OS) of the sample are denoted by X1:n ≤ X2:n ≤ ... ≤ Xn:n.

Similarly, denote the OS of Y by Yi:n, where i = 1, 2, ..., n. If X is less than or

equal to Y in distribution X ≤disp Y , in Shaked and Shanthikumar (2007)[25]

asserts that Xi:n ≤disp Yi:n for i = 1, 2, ..., n.

2.3 Extropy of Record Statistics

This section will initially provide the expressions for the extropy of the nth value

of upper k-records and the nth value of lower k-records. Drawing from these

expressions, we will then outline the symmetric properties existing between the

extropy of nth upper k-record values and nth lower k-record values.

2.3.1 The Extropy of nth Value of k-Records

In this subsection, we begin by presenting the expression for the extropy of UX
n,k

and LX
n,k. To achieve this, we substitute 2.1 into 1.26.

Theorem 2.3.1 The extropy of nth value of lower k-records is given by

J
(
LX
n,k

)
= − k2n

2 (2k − 1)2n−1

 2n− 1

n− 1

Ef
(
F−1

(
e−V2n−1,2k−1

))
. (2.3)

Proof.

we have,

J
(
LX
n,k

)
= −1

2

∫ +∞

−∞
k2n [− logF (x)]2(n−1)

[(n− 1)!]2
[F (x)]2(k−1) f 2 (x) dx
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We use the transformation v = −log(F (x)) thus exp(−v) = F (x), we immediately

have

J
(
LX
n,k

)
= −k2n

2

∫ +∞

0

v2(n−1)

[(n− 1)!]2
e−2v(k−1)f

(
F−1

(
e−v

))
dv

= − k2n

2 ((n− 1)!)2

∫ +∞

0

v2(n−1)e−2v(k−1)f
(
F−1

(
e−v

)) Γ (2n− 1) (2k − 1)2n−1

Γ (2n− 1) (2k − 1)2n−1dv

= − k2nΓ (2n− 1)

2 ((n− 1)!)2 (2k − 1)2n−1

∫ +∞

0

v2(n−1)e−2v(k−1) (2k − 1)2n−1

Γ (2n− 1)
f
(
F−1

(
e−v

))
dv

= − k2n

2 (2k − 1)2n−1

(2n− 2)!

(n− 1)! (n− 1)!

∫ +∞

0

v2(n−1)e−2v(k−1) (2k − 1)2n−1

Γ (2n− 1)
f
(
F−1

(
e−v

))
dv

= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

∫ +∞

0

v2(n−1)e−2v(k−1) (2k − 1)2n−1

Γ (2n− 1)
f
(
F−1

(
e−v

))
dv

As a result of this, the extropy of the nth value of lower k-records can be expressed

as

J
(
LX
n,k

)
= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

Ef
(
F−1

(
e−V2n−1,2k−1

))
where V2n−1,2k−1 is G(2n− 1, 1/(2k − 1)) variable. For convenience, let’s express

the probability density function (pdf) of G(n, k) as:

25



Chapter 2. Extropy of Records and Order Statistics

g (v) =
vn−1e−kv

Γ (n)

Remark 2.3.1 Proceeding similarly, the extropy of nth value of upper k-records

is given by

J
(
UX
n,k

)
= −k2n

2

∫ +∞

0

v2(n−1)

[(n− 1)!]2
e−2v(k−1)f (Ψ (v)) dv

= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

Ef (Ψ (V2n−1,2k−1)) . (2.4)

Proposition 2.3.1 The extropy of the nth value of upper k−records, denoted by

UX
n,k, and the n− th value of lower k− records, denoted by LX

n,k, can be expressed

as follows[11]:

J
(
UX
n,k

)
= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

Ef (Ψ (V2n−1,2k−1))

and

J
(
LX
n,k

)
= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

Ef
(
F−1

(
e−V2n−1,2k−1

))
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The random variable V2n−1,2k−1 follows a gamma distribution with parameters

(2n− 1) > 0 and 1 /(2k − 1) > 0.

Remark 2.3.2 Setting k = 1 allows us to readily derive the classical records

from the sequence of k − records, the extropy of nth value of upper and lower

k − records :

J
(
LX
n,1

)
= −1

2

 2n− 2

n− 1

Ef
(
F−1

(
e−V2n−1

))
,

and

J
(
UX
n,1

)
= −1

2

 2n− 2

n− 1

Ef (Ψ (V2n−1)) .

2.3.2 Some Results and characterizations based on record

statistics

In this subsection, we present certain findings concerning the extropy of k-record

statistics, while also outlining symmetric properties of the extropy of the nth value

from upper k-records and the nth value from lower k-records.

Lemma 2.3.1 If X is a random variable with cumulative distribution function F ,

probability density function f , and finite mean µ, then f (µ+ x) = f (µ− x) for

all x ≻ 0 if and only if f (F−1 (v)) = f (F−1 (1− v)) for all v ∈ [0, 1].(Fashandi

and Ahmadi, (2012)[9]).

Lemma 2.3.2 The sequence of Laguerre functions Φn (x) = e−
x
2Ln (x) /n!, for

n ≥ 0 forms a complete orthonormal system for the space L2 (0,∞) , where Ln (x)
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represents the Laguerre polynomial. These polynomials are defined as the coeffi-

cients of e−x in the nth derivative of xne−x.

Property 2.3.1 If the probability density function of X exhibits symmetry around

its finite mean µ, then

J
(
UX
n,k

)
= J

(
LX
n,k

)
Proof. we have

J
(
UX
n,k

)
= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

Ef (Ψ (U2n−1,2k−1))

It is straightforward to verify that by the lemma 2.3.1 and proposition 2.3.1

J
(
UX
n,k

)
= − k2n

2 (2k − 1)2n−1

 2n− 2

n− 1

Ef
(
F−1

(
e−U2n−1,2k−1

))
= J

(
LX
n,k

)
.

Proposition 2.3.2 Suppose X is a random variable with cdf F and pdf f , then

J
(
UX
n,k

)
− J

(
LX
n,k

)
≥ − k2n

2(2k−1)2n−1

 2n− 2

n− 1

 ||δ (v)||2


(2k−1)


4n− 4

2n− 2


24n−3



1
2

where

δ (v) = f (F−1 (1− e−v))− f (F−1 (e−v)) ,

and
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||δ (v)||2 =
(∫∞

0
δ2 (v) dv

)
.
1
2

The equality is true if and only if

F (x) = 1− exp


−g−1

2n−1,2k−1

(2k−1)


4n− 4

2n− 2




1
2

24n−3||δ(v)||2

[
f(x)− f

(
F−1

(
F (x)

))]


.

Proposition 2.3.3 Let X and Y be two rv’s with cdf ’s F and G, pdf ’s fand g,

respectively, if E [log2f(X)] ≤ +∞, E [log2g(X)] ≤ +∞, then

X
d
= Y ⇔ J

(
UX
n

)
= J

(
UY
n

)
, ∀n ≥ 1

Remark 2.3.3 The same conclusion holds true for lower RV’s.

Proposition 2.3.4 Let X denote a random variable with cdf F and pdf, then

J
(
UX
n,k

)
− J

(
LX
n,k

)∣∣∣∣δ (v) e−u
2

∣∣∣∣
2

≥ −

k2n

 2n− 2

n− 1


22n (k + 1)2n−1


(2k + 2)4n−2

 4n− 4

2n− 2


(4k + 5)4n−3 −

(
k + 1

2k + 3

)2n−1

+ 1



1
2

.

Proposition 2.3.5 Let X be a random variable with the cdf F and the pdf f .

If f(F−1(x)) is non-decreasing in x, then for n ≥ k, J(UX
n,k) decreases as n

increases.[12]
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2.4 Extropy of order Statistics

This section begins by presenting the formulas for the extropy of the mth order

statistic. Using these formulas as a basis, we will subsequently highlight the

symmetrical properties that characterize the extropy of the mth order statistic.

2.4.1 The Extropy of mth order statistics

In this subsection, we first provide expressions for the extropy of mth order statis-

tics Xm:n. To this end, substituting 1.2 into 2.1 .

Theorem 2.4.1 if η is a continuous function on the interval[0, 1], such that∫ 1

0
xnη (x) dx = 0 for n ≥ 0, the η (x) = 0 for any x ∈ [1, 0] .

Furthermore, consider the probability density function (pdf) of the mth order

statistic Xm:n in a sample of size n with an underlying distribution X.

fm:n (x) =
Fm−1 (x)F

n−m
(x) f (x)

β (m,n−m+ 1)
(2.5)

The term β (m,n−m+ 1) = Γ(m)Γ(n−m+1)
Γ(n+1)

denotes the beta function with param-

eters m and (n−m+ 1). t’s noteworthy that the mth order statistic in a sample

of size n signifies the lifespan of an (n−m+ 1). In the ensuing theorem, we

demonstrate that the characteristics of the extropy information of Xm:n can be

indicative of the parent distribution.

Property 2.4.1 Let X random variable with cdf ’s F and pdf’s f , the extropy of

mth order statistic is
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J (Xm:n) = −1
2

((
n

m−1

))2 ∫ +∞
−∞ [F (x)]2(m−1)[1− F (x)]2(n−m)f 2(x) dx

Proof. We have

J (Xm:n) = −1
2

∫ +∞
−∞

[
n!

(m−1)!(n−m)!
f(x)[F (x)]m−1[1− F (x)]n−m

]2
dx

then,

J (Xm:n) = −1
2

∫∞
−∞

(
m!

(m−1)!(n−m)!

)2

f 2 (x) (F (x))2(m−1) (1− F (x))2(n−m) dx

In the last,

J (Xm:n) = −1
2

((
n

m−1

))2 ∫ +∞
−∞ [F (x)]2(m−1)[1− F (x)]2(n−m)f 2(x) dx

2.4.2 Some Results and characterizations based on order

statistics

In this subsection, we explore the extropy associated with mth order statistics,

focusing on its implications and properties.(The upcoming outcome, stemming

as a corollary from the Stone–Weierstrass Theorem (Aliprantis and Burkinshaw,

1981[4]), will be instrumental in demonstrating the principal findings within this

subsection.

Proposition 2.4.1 Consider two random variables X and Y with cumulative dis-

tribution functions F and G, probability density functions f and g respectively,

where the supports S1 and S2 have a common lower boundary b. For a fixed value

of m where (1 ≤ m ≤ n) ,[20]

X
d
= Y ⇔ J (Xm:n) = J (Ym:n) ,∀n ≥ m.

Remark 2.4.1 By considering m = 1

we have,

X
d
= Y ⇔ J (X1:n) = J (Y1:n) ,∀n ≥ 1
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The exponential distribution holds significant relevance within reliability theory.

Hereafter, we present a novel characterization for this distribution.

Proposition 2.4.2 An exponential distribution is defined by the formula F (x) =

e−ux, µ > 0 can be characterized by ([20])

J (X1:n) = nJ (X) ,∀n ≥ 1. (2.6)

Proof. If F (x) = e−µx, then J(X1:n) = −nµ/4 = nJ(X) for all n ≥ 1.

We can rewrite the condition J(X1:n) = nJ(X) for all n ≥ 1 using equations 2.1

and 1.2,

−1

2

∫ ∞

−∞
F

2n−2
(x) f 2 (x) dx =

1

n
J (X)

By employing the transformation v = F
2
(x), it can be deduced that

∫ 1

0

[
1

4
λX

(
F−1

(
1−

√
v
)
+ J (X)

)]
vn−1dv = 0

We have λX (F−1 (1−
√
v)) = −4J (X) for all u ∈ [0, 1]. In exponential distri-

butions, the hazard rate functionµ is constant and relates to J(X) through the

equation: µ = −4J(X).

Remark 2.4.2 The distribution F (x) = eµx, where x < 0 and µ > 0, can be

defined by the condition that J(Xn:n) = nJ(X) holds true for all n ≥ 1.
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2.5 Some numerical computation

Next, we conduct some numerical computations for the extropy of various statis-

tical measures. Specifically, we will focus on the upper and lower record values,

the extropy of upper record values, and the extropy of the first-order statistics.

These computations is applied on R program, and it will provide insights into

the behavior and properties of extropy in the context of record values and order

statistics, enhancing our understanding of these important concepts in statistical

analysis.

2.5.1 Upper and Lower record values

R implementation:

• Generate a sample from the exponential distribution:

We use the exponential distribution, parameterized by rate (λ = 2) as pro-

vided in the code below (See the figure 2.1).

1 set.seed (10)

2 z<-rexp (100 ,2)
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Figure 2.1: The sample of exponential distribution

• Extract Upper k-Record Values:

Derive the upper record of the previous sample, we extract the k-upper

records when k = 1, 2, 6, 10 as shown in the following table 2.1.

1− record 0.007478203 0.460110602 0.787520925 1.163811436 1.284425807

1.396504857 1.514796570 1.862417187

2− record 0.007478203 0.376079469 0.460110602 0.543336502 0.787520925

0.816491940 1.163811436 1.284425807 1.396504857 1.514796570

1.636034790

6− record 0.007478203 0.115829308 0.364561911 0.376079469 0.460110602

0.543336502 0.557710973 0.644155052 0.658273534 0.698149591

0.699053713 0.787520925 0.816491940 0.872359347 0.959390665

1.144283106 1.163811436 1.177305890 1.284425807
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10− record 0.007478203 0.115829308 0.213264896 0.336134143 0.338287665

0.364561911 0.376079469 0.460110602 0.543336502 0.557710973

0.644155052 0.658273534 0.698149591 0.699053713 0.787520925

0.816491940 0.872359347 0.873754053 0.959390665 1.007737983

1.144283106

Table 2.1: The Upper k-Record values for n = 100 when k = 1, 2, 6, 10.

• Extract Lower k-Record Values:

Derive the lower record of the previous sample, we extract the k-lower

records when k = 1, 2, 6, 10 as shown in the following table 2.2.

1− record 0.007478203 0.005285596

2− record 0.460110602 0.376079469 0.115829308 0.035597038 0.007478203

6− record 0.78752093 0.54333650 0.46011060 0.37607947 0.36456191

0.33828767 0.33613414 0.21326490 0.20664691 0.17346120

0.14647503 0.11582931 0.08521080 0.08322197 0.07335645

0.04585984 0.03559704 0.03551009 0.03442678

10− record 1.16381144 0.78752093 0.64415505 0.55771097 0.54333650

0.46011060 0.37607947 0.36456191 0.33828767 0.33613414

0.32265258 0.21326490 0.20664691 0.17346120 0.14647503

0.14135658 0.11582931 0.08521080 0.08322197 0.07723997

0.07335645 0.07207056 0.06831550 0.06542576 0.04585984

Table 2.2: The Lower k-Record values for n = 100 when k = 1, 2, 6, 10.
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2.5.2 Extropy of upper record

Plotting the extropy of upper k-record value in R:

• The Extropy of Upper k-Record Values in R by applying the density of the

upper k-record value of a exponential distribution (with parameters λ = 2):

J(UZ
n,k) = −

(
λk

22n

)(
2n− 1

n− 1

)

impliying,

J(UZ
n,k) = −

(
2k

22n

)(
2n− 1

n− 1

)
Now, let’s shaw the folloing code:

R code:

1 # Function of extropy for exponential distribution

2 p <- function(n, k, l) {

3 g <- (-l * k / 2^(2 * n)) * (factorial (2 * n - 2) / (

factorial(n - 1)^2))

4 return(list(n = n, k = k, d = g))

5 }

6 p(20, 4, 2)

36



Chapter 2. Extropy of Records and Order Statistics

• by utilizing the code below, we can visualize the extropy of upper k-records

statistics where k = 2, 5, 9 showing at the the graph 2.2

R code:

1 n <- c(1:10)

2 plot(x1, type = ’l’)

3 plot(n, x1, type = "o", col = "blue", pch = "o", lty = 1,

ylim = c(-8, 0), xlab = "n-value", ylab = "J(n,k)")

4 points(n, x2 , col = "red", pch = "*")

5 lines(n, x2 , col = "red", lty = 2)

6 points(n, x3 , col = "dark red", pch = "+")

7 lines(n, x3 , col = "dark red", lty = 3)

8 legend(2, -4, legend = c("J(n,2)", "J(n,5)", "J(n,9)"), col =

c("blue", "red", "black"), pch = c("o", "*", "+"), lty =

c(1, 2, 3), ncol = 1)

The plot:
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Figure 2.2: Extropy of the n-th Value of Upper k-Records from Exp(2)

Conclusion:

The plot effectively demonstrates the behavior of the function J(n, k) under the

condition that f(F−1(x)) is non-decreasing x 2.3.5. For n ≥ k, J(n, k) in is

shown to decrease with increasing n, which aligns with the theoretical condition.

The visualization clearly captures this decreasing trend across different values

of k (2, 5, 9), supporting the mathematical relationship between the distribution

functions and the extropy function J .
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2.5.3 Extropy of the first order statistic

According to proposition (2.4.2), if f follows an exponential distribution, the

extropy of the first-order statistic is given by J(X1:n) = nJ(X) for all n ≥ 1.

Given an exponential distribution with λ = 2, this implies:

f(z) = 2e−2z

then,

J(Z) = −1

2

∫ ∞

0

(2e−2z)2 dz

= −1

2

when we Apply the equation(2.6),

J (Z1:n) = −n

2

we Apply it with a random varibale with n-value is 100 the we have

n 10 20 50 100

Jm:n (Z) −5 −10 −25 −50

Table 2.3: Extropy of the first order statistic for n = 100

39



Conclusion

This master’s thesis explores the concept of extropy in the context of records

and order statistics, particularly focusing on its application introduced by Lad

et al. in 2015. Extropy serves a crucial role in understanding historical trends,

patterns, and outcomes within datasets, providing benchmarks for performance

evaluation and goal setting across various fields.

Extropy enables the comparison of uncertainty levels among record statistics

across different datasets and conditions. Unlike traditional methods tied to spe-

cific data distributions, extropy’s versatility allows it to be applied to various

types of record statistics regardless of their underlying distribution. This flexibil-

ity makes it a valuable tool for researchers seeking deeper insights into ordered

data behavior.

However, the master’s thesis also identifies some difficulties in the application of

extropy of record Statistics which needs more time to explore. The interpretation

and application of extropy can vary based on its specific definition, influencing

its effectiveness in different scenarios. Moreover, extropy’s approach frequires

deriving separate equations tailored to each order within the dataset (such as 1st

order, 2nd order, etc.), which contrasts with statistics that have universal formulas

applicable across all orders.
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Conclusion

Despite these challenges, the master’s thesis remains optimistic about extropy’s

potential in analyzing record and order statistics. As research progresses, ex-

tropy is expected to play an increasingly significant role in quantifying uncer-

tainty within this domain. By acknowledging both its strengths and limitations,

researchers can effectively use extropy to enhance their understanding of record-

breaking phenomena and the behavior of ordered data.

Overall, the master’s thesis underscores extropy as a promising avenue for advanc-

ing the analysis of record and order statistics, contributing to informed decision-

making and continuous improvement in diverse fields.
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Annexe A: Software R

2.6 What is the R language?

• The R language is a programming language and mathematical environment

used for data processing. It allows you to perform both simple and complex

statistical analyzes such as linear or non-linear models, hypothesis testing, time

series modeling, classification, etc. It also has many very useful, professional-

quality graphics functions.

• R was created by Ross Ihaka and Robert Gentleman in 1993 at the University

of Auckland, New Zealand, and is now developed by the R Development Core

Team.

The origin of the name of the language comes, on the one hand, from the initials

of the first names of the two authors (Ross Ihaka and Robert Gentleman) and, on

the other hand, from a play on words on the name of the language S to which it

is related.
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2.7 R code used at chapter 2

R code:

1 # Upper

2 upper.record.values <- function(sqnc , k) {

3 if (sum(is.na(sqnc)) > 0) {

4 stop("There are missing values in data. The function is not

designated for such a data!")

5 } else {

6 if (length(k) == 1 && k >= 1 && k <= length(sqnc) && is.

numeric(k) && floor(k) == k) {

7 sqnc <- unique(sqnc)

8 dl <- length(sqnc)

9 wndw <- sort(sqnc [1:k])

10 records <- wndw [1]

11 if (k < dl) {

12 for (i in (k+1):dl) {

13 if (sqnc[i] > wndw [1]) {

14 if (i <= dl - k + 2) {

15 w <- which(sqnc[i] > wndw)

16 } else {

17 w <- which(sqnc[i] > wndw [1:(dl-i+2)])

18 }

19 where <- w[length(w)]

20 if (where > 1) {

21 wndw [1:( where -1)] <- wndw [2: where]

22 }

23 wndw[where] <- sqnc[i]

24 records <- c(records , wndw [1])

25 } } }

26 return(records)
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27 } else {

28 stop("k must be an integer between 1 and length(sqnc)")

29 }}}

1 # Lower

2 lower.record.values <- function(sqnc , k) {

3 if (sum(is.na(sqnc)) > 0) {

4 stop("There are missing values in data. The function is not

designated for such a data!")

5 } else {

6 if (length(k) == 1 && k >= 1 && k <= length(sqnc) && is.

numeric(k) && floor(k) == k) {

7 sqnc <- -unique(sqnc)

8 dl <- length(sqnc)

9 wndw <- sort(sqnc [1:k])

10 records <- wndw [1]

11 if (k < dl) {

12 for (i in (k+1):dl) {

13 if (sqnc[i] > wndw [1]) {

14 if (i <= dl - k + 2) {

15 w <- which(sqnc[i] > wndw)

16 } else {

17 w <- which(sqnc[i] > wndw [1:(dl-i+2)])

18 }

19 where <- w[length(w)]

20 if (where > 1) {

21 wndw [1:( where -1)] <- wndw [2: where]

22 }

23 wndw[where] <- sqnc[i]

24 records <- c(records , wndw [1])

25 } } }

26 return(-records)
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27 } else {

28 stop("k must be an integer between 1 and length(sqnc)")

29 } }}
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Abstract 

Shannon entropy, established by Shannon in 1948 and widely utilized in reliability and 

information studies, has seen a recent counterpart in extropy, proposed by Lad et al. (2015), 

which serves as its dual measure.                                                                                                

This master's thesis aims to present the concept of extropy, a measure of uncertainty.  One 

statistical application of extropy is to score the forecasting distributions. It addresses the problem 

of extropy of ordered variates records and order statistics and related properties. Simplified 

expressions of the extropy of ordered variates are derived. 

Key words: Extropy, order statistic, record statistic, measure of uncertainty 

Résumé 

L'entropie de Shannon, établie par Shannon en 1948 et largement utilisée dans les études de 

fiabilité et d'information, a récemment trouvé une contrepartie dans l'extropie, proposée par Lad 

et al. (2015), qui sert de mesure duale.                                                                                      

Cette thèse de master vise à présenter le concept d'extropie, une mesure de l'incertitude. Une 

application statistique de l'extropie est de noter les distributions de prévision. Elle aborde le 

problème de l’extropies des variés ordonnées, des records et des statistiques d'ordre et les 

propriétés associées. Des expressions simplifiées de l'extropie des variés ordonnées sont dérivées. 

Mots clé : Extropy, Statistique d'ordre, Record statistique, mesure de l'incertitude 

 

 الملخص 
والمستخدمة على نطاق واسع في دراسات الموثوقية والمعلومات، وجدت مؤخرًا   1948شانون، التي أسسها شانون في عام   أنتروبيا

(، والتي تعمل كمقياس مزدوج 2015نظيرًا لها في الإكستروبيا، التي اقترحها لاد وآخرون )  

تهدف هذه الأطروحة إلى تقديم مفهوم الإكستروبيا، وهو مقياس لعدم اليقين. إحدى التطبيقات الإحصائية للإكستروبيا هي تقييم توزيعات  

التنبؤ. تتناول الأطروحة مشكلة الإكستروبيا للمتغيرات المرتبة، والسجلات، وإحصاءات الترتيب والخصائص ذات الصلة. يتم اشتقاق  

 تعبيرات مبسطة للإكستروبيا للمتغيرات المرتبة 

 كلمات مفتاحية: اكستروبيا, الإحصاء الترتيبي, الإحصاء السجلي, مقياس عدم اليقين
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