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Notations and Symbols

These are the different symbols and abbreviations used in this thesis.

Symbols:

� (Ω,F ,P) :Probability space.

� (Ω,F ,F,P) :Filtered probability space.

� W = (Wt)t≥0 :Brownian motion.

� N :Poisson random measure.

� Ñ : The compensated Poisson measure.

� E = R\0.

� a ∧ b : min(a, b) Minimum of two numbers.

� 1A : The indicator function of the set A.

� L1(R) : The space of the functions whose absolute value is integrable.

� L2(Ω) : The Banach space of R-valued, square-integrable random variables on (Ω,F ,P).

� L2
T (Ω) : The space of all R-valued, FT−measurable and square integrable random vari-

ables X : Ω → R.

� L2
υ : The set of Borelian deterministic functions φ : E → R such that

∥φ(.)∥2υ :=

∫
E

|φ(e)|2 υ(de) < ∞.

where υ is a σ−finite measure.
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� Lp
υ : The set real-valued measurable functions u defined on [0, T ] × E such that:

∥u(.)∥υ,p :=

(∫
E

|u(e)|p υ(de)

) 1
p

< ∞.

� C2(R) : The space of continuous functions φ : R → R which have continuous derivatives

φ′ and φ′′.

� H2(R) : The space of real-valued predictable processes Z : Ω × [0, T ] → R satisfying

E
[∫ T

0

Z(t)2dt

]
< ∞.

� H2
N(R) : The space of real-valued predictable processes U : Ω× [0, T ]×E → R satisfying

E
[∫ T

0

∫
E

|U(t, e)|2 υ(de)dt

]
< ∞.

� S2(R) : The space of adapted, càdlàg processes Y : Ω × [0, T ] → R satisfying

E

[
sup

t∈[0,T ]

|Y (t)|2
]
< ∞.

� M2
S = S2(R) ⊗H2(R) ⊗H2

N(R), which will be our solution space.

� W2
1 (R) : The space of continuous functions g from R to R such that g′ is continuous and

g′′ is integrable on R.

� W2
p,loc (R) : The Sobolev space of functions g defined on R such that both g and its

generalized derivatives g′ and g′′are locally integrable on R.

� M2 : The space of square integrable martingale M = (Mt)t≥0, i.e. M is a martingale,

and for each t > 0, E
(
|Mt|2

)
< ∞, and M0 = 0

� Ā : The closure of the set A.

� (.) ⊗ (.) : Tensor product.
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� := : Equal by definition.

Notations:

BM : Brownien Motion.

a.s. : Almost surely.

a.e. : Almost everywhere.

P−a.s. : Almost sure in probability P.

i.e. : That’s to say.

càdlàg : Right continuous with left limits.

w.r.t. : With respect to.

BSDEs : Backward stochastic differential equations.

BSDEJs : Backward stochastic differential equations with jumps.

QBSDEJs : Quadratic backward stochastic differential equations with jumps.

BDG : Burkholder-Davis-Gundy.

iff : If and only if.
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Introduction

Backward stochastic differential equations, or BSDEs for short, are a class of stochastic

differential equations where the solution is determined by a terminal rather than an initial

condition. They are significant in various fields, such as mathematical finance, where they

are used for pricing and hedging derivative securities and in stochastic control and optimal

stopping problems. See for example: [2, 7, 10, 29], mathematical finance [11, 13], stochas-

tic differential games and stochastic control [17] partial differential equations [5, 24], utility

optimization and dynamic risk measures [29], Morlais [28].

BSDEs are embraced for both continuous and jump types. In the continuous setting:

Linear BSDEs driven by continuous Brownian Motion initially appeared by Bismut in 1973 [9]

when he studied the adjoint equation in the Pontryagin-type maximum principle for stochastic

optimal control theory. The first well-posedness result for non-linear BSDEs was proved in

1990 by Pardoux-Peng [32], who proved the existence and uniqueness of solutions to BSDEs

under the conditions of Lipschitz continuity on the driver and square-integrability on the

terminal data, which has been recognized as the strong condition that guarantees the well-

posedness of BSDEs. Many works have proposed different methods or techniques to prove

that we can guarantee the existence of the solution under weaker assumptions, either on the

generator or on the terminal condition.

Given a filtered probability space (Ω,F , (Ft)t∈[0,T ] ,P) generated by an R-valued Brow-

nian motion W and a random measure N with compensator υ, the R-valued BSDEJs given
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Introduction

as:

Yt = ξ +

∫ T

t

H(s, Y (s), Z(s), U(s, .))ds−
∫ T

t

Z(s)dW (s) −
∫ T

t

∫
E

U(s, e)Ñ(ds, de),

for all 0 ≤ t ≤ T, where W is a Brownian motion and Ñ(ds, de) = N(ds, de)−υ(de)ds is a

compensated random measure such that N(ds, de) a time random measure with compensator

υ(de)ds. We refer to the previous equation as eq(ξ,H). The data ξ is called the terminal

condition (the terminal value), and H is the coefficient or the generator of eq(ξ,H). The key

challenge in BSDEs is solving for the pair of processes (Y, Z, U) given the terminal condition

ξ.

BSDEs with jumps generalize the classical BSDEs by adding a discontinuous part to the

backward equation. The use of jump processes in modeling stochastic systems with jumps

provides valuable insights into the behavior of these systems and helps in making predictions

and decisions.

BSDEJs were first introduced and studied by Tang and Li [37] during their study of an

optimal control problem, where the adjoint process is of type Linear BSDEJs. Using a fixed

point approach similar to the one used in [32], they proved the existence and uniqueness of

such equations in the general case (the generator is not necessarily linear). This is done under

the Lipschitz continuity assumption in y, z, and u, where the jump is of the Poisson type. It

is worth mentioning that the Lipschitz condition in y, z, and u is considered the strongest

condition that ensures the well-posedness of BSDEJs. Many attempts have been suggested to

relax the assumptions made on the generator H and the terminal datum assumptions. Barles

et al. in [5] established an existence and uniqueness result of BSDEJs Under a Lipschitz

condition on the generator to give a probabilistic interpretation (so-called Feynman-Kac rep-

resentation) of viscosity solution of semilinear integral Partial equations. Then Pardoux [31]

relaxed the Lipschitz condition of the generator on variable y by assuming a monotonicity

condition, and maintain the Lipschitz condition w.r.t. (z, u). Later, Situ [35] and Mao and
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Introduction

Yin [39] relax the monotonicity condition of the generator to a weaker version so as to re-

move the Lipschitz condition on variable z. All these studies are dedicated to BSDEJs when

the generator is driven by a Brownian motion and an independent Poisson random measure.

In 2006, Becherer [7] studied the existence and uniqueness of bounded BSDE’s driven by a

Brownian motion and a random measure that is possibly inhomogeneous in time with finite

jump activity solution when the generator is Lipschitz in (y, z) but not necessarily Lipschitz

in the jump component (Locally Lipschitz).

Recently, researchers have also been interested in a subcategory of BSDEJs whose gen-

erator shows quadratic growth in the Brownian component. This type of equation arises from

the utility maximization problem and has been extensively studied in the continuous frame-

work by many authors. However, there are few results for the discontinuous case. Morlais

improved the result of [7], by considering the exponential utility maximization problem in an

incomplete market in his paper [29] and proved that the value process could be characterized

as a solution of a specific quadratic BSDE with infinite activity jumps and has proved the ex-

istence and uniqueness of solution. Jeanblanc et al. [20] also studied the utility maximization

problem with random horizon. El Karoui et al. [12] studied the case of unbounded BSDEs

with jumps when the generator satisfies the quadratic exponential structure condition. Fujii

and Takahashi [15] have studied Malliavin’s differentiability of bounded solutions of BSDEs

with jumps under the quadratic-exponential growth condition of [12]. Kazi-Tani et al. [21]

established the existence of a solution of Lipschitz quadratic BSDE with jumps. Matoussi and

Salhi [27] study quadratic BSDE with infinite activity jumps and unbounded terminal condi-

tion. Their perspective is based on the work of [12], which examined the issue in the context

of finite activity jumps. Antonelli & Mancini (2016) [1] Antonelli studied quadratic BSDEs

with jumps when the generator is local Lipschitz with different assumptions. Based on the

stability of quadratic semimartingales, Barrieu & El Karoui (2013) [6] showed the existence

of a non-necessary unique solution under the minimal assumption. Most of the above-cited

references considered bounded or exponential integrable terminal data and at least continuous
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generators with some additional regularity properties.

This type of equation shows a quadratic growth in the Brownian component; that is,

its generator is not Lipschitzian but only locally Lipschitz. Therefore, the result of Tang

and Li in their seminal paper[37] is invalid and cannot be applicable in proving the existence

and uniqueness of solutions. Hence, we are raising the problem of proving the existence

and uniqueness of solutions to such equations when the generator is merely measurable and

integrable and the terminal condition is square integrable. To solve this problem, we first use

the phase space transformation (known as Zvonkin transformations) to remove the generator

or the quadratic part of it. This leads to a BSDEJs with a Lipschitz generator, which enjoys

the existence and uniqueness propriety. The last propriety can be transformed to the initial

quadratic BSDEJ via the inverse of Zvonkin transformation. Our study covers the following

cases:

H(y, z, u(.)) =


f(y) |z|2 + [u]f (y) =: Hf (y, z, u(.))

h(y, u(.)) + cz + Hf (y, z, u(.))

cz + f(y) |z|2 +
∫
E
u(e)υ(e)

These generators show quadratic growth in the Brownian component and non-linear

functional form w.r.t. the jump term, where f is a measurable and integrable function, h

enjoy some classical assumptions, [u]f (y) is a functional of the unknown processes Y, and

given by

[u]f (y) =

∫
E

F (y + u(e)) − F (y) − F ′(y)u(e)

F ′(y)
υ(de),

and the function F is defined, for every x ∈ R, by

F (x) =

∫ x

0

exp

(
2

∫ y

0

f(t)dt

)
dy.

This thesis consists of three chapters and aims to expose two results regarding the

existence, uniqueness of a BSDEJ solution.

Chapter 1 (General Reminder of Stochastic Calculus):

4
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This chapter provides an introduction to the fundamental results of probability theory

utilized throughout this thesis. We cover essential topics, including random processes, con-

tinuous stochastic calculus, and various auxiliary results that support the main chapters of

the dissertation.

Chapter 2 (Backward Stochastic Differential Equations with Jumps): The second

chapter is divided into two parts. The first part revisits key results in the discontinuous case,

with a particular focus on Itô-Krylov’s formula in the context of jumps, which is initiated by

Madoui et al. [26]. The second part introduces the foundational result on the existence and

uniqueness of solutions for BSDEs with jumps, as established by Tang and Li (1994) [37],

specifically in the case of a Lipschitzian generator.

Chapter 3 (Quadratic Backward Stochastic Differential Equations with Jumps):

This chapter constitutes the core of our thesis. We establish the existence and uniqueness of

solutions for certain quadratic BSDEs with jumps, where the generator is only measurable

and integrable, and the terminal condition is square-integrable. The chapter is organized into

the following sections: a priori estimates, existence and uniqueness of solutions, solvability of

specific quadratic BSDEs with jumps, and a comparison theorem.

5



Chapter 1

General Reminder of Stochastic

Calculus

This chapter’s goal is to provide an overview of the primary stochastic Calculus tools that

will be utilized in this thesis, especially those related to the continuous case and some useful

results that particularly serve the content of chapter three, and we mention some of the

references we used [3, 4, 8, 11, 14, 18, 19, 22, 23, 25, 26, 33, 36, 38].

1.1 Preliminaries

1.1.1 Preliminaries of Probability Theory

Definition 1.1.1 (P−null set)

Let (Ω,F ,P) be a probability space and A ⊆ Ω (not necessary measurable), we say that

A is P−null set if there exists B ∈ F such that A ⊆ B and P(B) =0. We denote by N the

set of all P−null set. The probability space (Ω,F ,P) is called complete if N ⊆ F . In this

thesis, the probability space (Ω,F ,P) will always be considered completed by the collection of

null probability sets. If X is a topological space, then BX denotes the Borel σ-algebra over X,

6



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

that is the σ−algebra generated by the family of open subsets of X, in particular Bd
def
= BRd

and B def
= B1.

Random Variable

A mapping X : Ω → X is an X−valued random variable if for all B ∈ BX

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} ∈ F .

• If X = R, then X will be called a real random variable (or scalar random variable).

• If X = Rd, then X will be called a d−dimensional random vector.

Remark 1.1.1

The random variable X is (BX,F)−measurable.

Definition 1.1.2

Let X : (Ω,F ,P) → X be a random vector. Then

σ(X) =
{
X−1(B) : B ∈ BX

}
is a σ-algebra of subsets of Ω (called the σ-algebra generated by X). Since X is a random

variable, σ(X) ⊂ F , and σ(X) is the smallest -algebra which makes X measurable. It is the

class of events for which one knows whether or not they are realized once X(ω) is observed.

In this sense, σ(X) represents the information carried by X. We also define

FX = σ(X) ∨N

to be the smallest σ-algebra which contains both σ(X) and N . In probabilistic terms, the

σ-algebra FX can be interpreted as containing all relevant information about the random

variable X.

7



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

1.1.2 Conditional Expectation

Definition 1.1.3 (Conditional Expectation in Relation to a σ−algebra)

Let X be a random variable that is either nonnegative or integrable defined on a probability

space (Ω,F ,P), G and H will denote sub-σ-algebras of F . The conditional expectation of X

given G, denoted E(X | G), is the unique random variable that satisfies:

(i) (Measurability) E(X | G) is G−measurable,

(ii) (Partial averaging)

∫
A

E(X | G)dP =

∫
A

XdP, ∀A ∈ G.

• If G is the σ-algebra generated by some other random variable Y (i.e. G = σ(Y )), we

generally write E(X | Y ) rather than E(X | σ(Y )).

Proposition 1.1.1 (Properties of the Conditional Expectation)

Let X and Y be integrable random variables on (Ω,F ,P), let G, H ⊂ F be finite σ-algebras,

and let α, β ∈ R,

(i) E(αX + βY | G) = αE(X | G) + βE(Y | G) a.s.

(ii) If X ≥ 0 a.s., then E(X | G) ≥ 0 a.s.

(iii) E(E(X | G)) = E(X).

(iv) Tower property: if H ⊂ G, then E(E(X | G) | H) = E(X | H) a.s.

(v) If X is G−measurable, then E(X | G) = X.

(vi) If X is G−measurable and XY ∈ L1(Ω), then E(XY | G) = XE(Y | G) a.s.

(vii) If H and X are independent, then E(X | H) =E(X).

8



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

1.2 Stochastic Process

Let (Ω,F ,P) be a probability space, T an index set, and (X,BX) a topological space. An

(X,BX)-valued stochastic process on (Ω,F ,P) is a collection (Xt)t∈T of random variables

Xt : (Ω,F) → (X,BX), for t ∈ T. (Ω,F ,P) is called the underlying probability space of the

process (Xt)t∈T , while (X,BX) is the state space or phase space. An Rd-valued stochastic

process will be called a d-dimensional stochastic process. By a stochastic process, we will

usually mean a one-dimensional stochastic process. For t ∈ T fixed, the random variable Xt

is the state of the process at time t. Moreover, for all ω ∈ Ω, the mapping

X(., ω) : t ∈ T → Xt(ω) ∈ X,

is called the trajectory or the sample path of the process corresponding to ω.

Definition 1.2.1

(i) A filtration is a family of sub−σ−algebra F := (Ft)t∈R+ that is increasing, i.e. Fs ⊆ Ft,

for each s ≤ t. (Ω,F ,F,P) is called a filtred probability space (or a stochastic basis). We say

that the filtration F is complete if and only if N ⊆ F0. A filtred probability space (Ω,F ,F,P)

is said to satisfy the usual hypothesis if and only if the filtration F is complete and right

continuous.

(ii) The σ−field generated by the adapted left-continuous processes is called the predictable

σ−field P. A process is called predictable if it is measurable with respect to the predictable

σ−field P.

Definition 1.2.2 (Natural Filtration)

The natural filtration associated with a stochastic process X : Ω × R+ → X is defined by

FX
t = σ(Xs : s ≤ t) ∨N ,

9



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

where N denotes the collection of all P-null-sets of F , FX
t is called the history of the

process X until (and including) time t ≥ 0.

Theorem 1.2.1

• (Xt)t∈R+ is said to be càdlàg if it almost sure has sample paths which are right continuous

with left limits.

• (Xt)t∈R+ is said to be càglàd if it almost sure has sample paths which are left continuous

with right limits.

• (Xt)t∈R+ is said to be continuous if it almost sure has continuous sample paths.

Theorem 1.2.2

(i) The stochastic process X = (Xt)t∈R+ defined on (Ω,F ,P) is said to be F-adapted (or

adapted with respect to F) if

∀t ≥ 0, Xt is Ft −measurable.

(ii) A stochastic process X is called (BR+ ⊗F ,BX)-measurable if ∀A ∈ BX,

{(t, ω) : Xt(ω) ∈ A} ∈ BR+ ⊗F .

In the other worlds, if the mapping X : (Ω×R+,BR+⊗F) → (X,BX) is (BR+⊗F ,BX)−measurable,

then we shall say that X is an X-valued measurable stochastic process.

(iii) A process X : Ω× [0, T ] → R, or X : Ω× [0, T ]× ζ → R, is called F-predictable if it is

F-adapted and P-measurable, or P ⊗ B(ζ)-measurable. Moreover, any measurable F-adapted

and left-continuous (with respect to t) process is predictable.

Definition 1.2.3 (Uniformly Integrable)

Let X= (Xα)α∈J be a family of random variable indexed by J , we say that the family X is

10



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

uniformly integrable if

∀ε ≥ 0,∃M ≥ 0 : sup(E(1{Xα>M} |Xα|)) < ε.

1.2.1 Martingale

We assume throughout that a filtered probability space (Ω,F ,F = (F t)t≥0,P) is given.

Definition 1.2.4 ((Sub/super-)Martingales in continuous time)

An F−adapted stochastic process (Xt)t≥0 such that Xt ∈ L1(Ω) (i.e. E |Xt| < ∞) for any

t ≥ 0, is called:

(i) A martingale if E(Xt | Fs) = Xs, for all 0 ≤ s ≤ t,

(ii) A super-martingale if E(Xt | Fs) ≤ Xs, for all 0 ≤ s ≤ t,

(iii) A sub-martingale if E(Xt | Fs) ≥ Xs, for all 0 ≤ s ≤ t.

• If (Xt)t≥0 is a submartingale, then (−Xt)t≥0 is a supermartingale.

Proposition 1.2.1

Let X := (Xt)t≥0 be an F−adapted integrable stochastic process

(i) If X is a martingale, then E(Xt) = E(Xs), ∀t, s ≥ 0,

(ii) If X is a sub-martingale, then E(Xt) ≥ E(Xs), ∀t, s ≥ 0, s ≤ t,

(iii) If X is a super-martingale, then E(Xt) ≤ E(Xs), ∀t, s ≥ 0, s ≤ t.

A martingale (Xt)t≥0 is said to be closed if there exists a random variable Z ∈ L1(Ω) such

that, for every t ≥ 0,

Xt = E(Z | Ft).

Definition 1.2.5

An F−martingale is called square integrable on [0, T ] if its second moments are bounded

(i.e. ∈ M2).

11
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Local Martingales

Definition 1.2.6

A random variable T : Ω → [0,∞] is a stopping time of the filtration (F t)t≥0 (or (F t)t≥0−stopping

time) if {T ≤ t} ∈ Ft, for every t ≥ 0. The σ-field of the past before T is then defined by

FT = {A ∈ F : ∀t ≥ 0, A ∩ {T ≤ t} ∈ Ft} .

For a process X and a stopping time T we further recall that XT denotes the stopped

process

XT
t = Xt∧T = Xt1{t<T} + XT1{t≥T}.

Definition 1.2.7

An adapted, càdlàg process X is a local martingale if there exists a sequence of increasing

stopping times Tn, with lim
n→∞

Tn = ∞ a.s., such that Xt∧Tn1{Tn>0} is a uniformly integrable

martingale for each n. Such a sequence (Tn) of stopping times is called a fundamental se-

quence.

Semi-Martingales

Definition 1.2.8 (Finite Variation)

1. Functions of finite variation: If f is a function of real variable, its variation over

the interval [a, b] is defined as

Vf ([a, b]) = sup
n∑

i=1

∣∣f(tni ) − f(tni−1)
∣∣ ,

where the supremum is taken over partitions: a = tn0 < tn1 < ...tnn = b, If Vf ([a, b]) is finite

then f is said to be a function of finite variation on [a, b].

2. Processes of finite variation: An adapted right-continuous process A = (At : t ≥ 0)

12
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is called a finite variation process (or a process of finite variation) if A0 = 0 and t → At is

(a function) of finite variation a.s..

Definition 1.2.9

An F−semi-martingale is a càdlàg process X which can be written as Xt = X0 + Mt + At,

where M is an F−local martingale such that M0 = 0, and A is an F−adapted càdlàg process

with finite variation.

1.2.2 Brownian Motion

Definition 1.2.10

A real-valued stochastic process (Wt)t≥0 is a Brownian motion (or a Wiener process) if for

some real constant σ :

(i) W0 = 0,

(ii) For each n ≥ 1 and any times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, the random variables{
Wtr −Wtr−1

}
are independent,

(iii) For each s ≥ 0 and t > 0 the random variable Wt+s −Ws has the normal distribution

with mean zero and variance σ2t (Wt+s −Ws ∼ N (0, σ2t)),

(iv) Wt is continuous in t ≥ 0.

When σ2 = 1, we say we have a standard Brownian motion.

Remark 1.2.1

Of the definition we conclude that ∀t ≥ 0, Wt ∼ N (0, t).

1.2.3 Quadratic Variation

Definition 1.2.11

The quadratic variation process of a càdlàg semi-martingale V , denoted [V, V ] = ([V, V ] (t))t≥0

13



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

is defined by

[V, V ] (t) = [V, V ]t = lim
n→∞

n∑
i=1

(
Vtni+1∧t − Vtni ∧t

)2
, 0 ≤ t ≤ T,

where lim
n→∞

supi=1,...,n

∣∣tni+1 − tni
∣∣ = 0, and the convergence is uniform in probability.

* The quadratic variation of a Brownian motion is given by [W,W ]t = t.

* The quadratic variation of a quadratic pure jump process J (a purely discontinuous Lévy

process or a step process) is given by [J, J ]t =
∑

s≤t |∆J(s)|2 .

* Let M be a square-integrable martingale, that is supt E (M2(t)) < ∞, the quadratic

variation of M has the property

M2(t) − [M,M ] (t) is a martingale.

Proposition 1.2.2 (Properties of Quadratic Variation)

(i) ([V, V ] (t))t∈[0,T ] is an increasing process.

(ii) The jumps of [V, V ] are related to the jumps of V by: ∆ [V, V ] (t) = |∆Vt|2. In

particular, [V, V ] has continuous sample paths if and only if V does.

(iii) If V is continuous and has paths of finite variation, then [V, V ] = 0.

(iv) If V is a martingale and [V, V ] = 0, then V = V0 almost surely.

1.3 Itô’s Stochastic Calculus

1.3.1 Itô Integral

Definition 1.3.1 (Itô Integral with Respect to Wiener Process)

Let (Ω,F ,F := (F t)t≥0,P) be a fixed filtered probability space satisfying the usual condition,

let T > 0 and θ be an adapted process, such that
∫ T

0
θ2(s)ds < ∞ with probability one, so that

14
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∫ t

0
θ(s)dWs is defined for any t ≤ T . Since it is a random variable for any fixed t,

∫ t

0
θ(s)dWs

as a function of the upper limit t defines a stochastic process

M(t) =

∫ t

0

θ(s)dWs.

• Itô integrals are F−adapted.

Theorem 1.3.1 (Properties of Itô Integral)

(i) Let V : Ω × [0, T ] → R be a predictable process satisfying

∫ T

0

|V (s)|2 ds < ∞,

Then (
∫ t

0
V (s)dW (s), 0 ≤ t ≤ T ) is a continuous local martingale with the quadratic variation

process [∫ .

0

V (s)dW (s),

∫ .

0

V (s)dW (s)

]
(t) =

∫ t

0

|V (s)|2 ds, 0 ≤ t ≤ T.

(ii) Let V ∈ H2(R), then (
∫ t

0
V (s)dW (s), 0 ≤ t ≤ T ) is a continuous, square-integrable

martingale, which satisfies

E

[∣∣∣∣∫ T

0

V (s)dW (s)

∣∣∣∣2
]

= E
[∫ T

0

|V (s)|2 ds
]
.

1.3.2 Itô’s Formula

Theorem 1.3.2 (Itô’s Formula for Semi-martingales)

Let X be a semi-martingale and let f be a C2-real function, then f(X) is again a semi-

15
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martingale, and the following formula holds:

f(Xt) − f(X0) =

∫ t

0

f ′(Xs−)dXs +
1

2

∫ t

0

f ′′(Xs−)d [X,X]cs

+
∑
0≤s≤t

(f(Xs) − f(Xs−) − f ′(Xs−)∆Xs) ,

where [X,X]c is the continuous component of the finite variation function [X,X] .

1.4 Some Auxiliary Results

Lemma 1.4.1

Let f be a measurable function and belongs to L1(R). The function F defined by

F (x) =

∫ x

0

exp

(
2

∫ y

0

f(t)dt

)
dy, (1.1)

has the following properties:

(i) F satisfies in R the equation

F ′′(x) − 2f(x)F ′(x) = 0, for a.e. x, (1.2)

(ii) F and F−1 are quasi-isometry, that is for any x, y ∈ R and ∥f∥1 =
∫
R |f(x)| dx

e−2∥f∥1 |x− y| ≤ |F (x) − F (y)| ≤ e2∥f∥1 |x− y| , (1.3)

e−2∥f∥1 |x− y| ≤
∣∣F−1(x) − F−1(y)

∣∣ ≤ e2∥f∥1 |x− y| .

(iii) Both F and its inverse function F−1 belongs to W2
1 (R) .

Proof. (i) For a.e. x, we calculate the derivative of F, we have F (x) = Φ(x) − Φ(0), where

16
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Φ is the primitive of y → exp
(
2
∫ y

0
f(t)dt

)
, then

F ′(x) = Φ′(x) = exp

(
2

∫ x

0

f(t)dt

)
,

we denote by Ψ the primitive of f, we get F ′(x) = exp (2Ψ(x) − 2Ψ(0)) , that implies

F ′′(x) = 2Ψ′(x) exp (2Ψ(x) − 2Ψ(0)) , then

F ′′(x) = 2f(x) exp

(
2

∫ x

0

f(t)dt

)
,

it’s clear that F ′′(x) − 2f(x)F ′(x) = 0, for a.e. x.

(ii) By definition the functions F and its inverse F−1 are continuous, one-to-one from R

onto R, strictly increasing functions, moreover F ′(x) = exp
(
2
∫ x

0
f(t)dt

)
, hence

for every x ∈ R, e−2∥f∥1 ≤ F ′(x) ≤ e2∥f∥1 and e−2∥f∥1 ≤ (F−1)′(x) ≤ e2∥f∥1 . (1.4)

This shows that F is a quasi-isometry.

(iii) Using the inequality (1.4), we conclude that both F and F−1 are C1(R). The second

generalized derivative F ′′ satisfies F ′′(x) = 2f(x)F ′(x) for a.e. x, and since f ∈ L1(R), then

F ′′ is an integrable function (but not necessarily continuous), thus, F ∈ W2
1 (R) . Using again

assertion (ii), we prove that F−1 belongs to W2
1 (R) .

Remark 1.4.1

(i) If f is continuous, then both F and F−1 are of class C2(R).

(ii) The previous lemma is very important in proving the existence and uniqueness of the

solution (Theorem 3.4.1) and priori estimates (Proposition 3.3.1).

Lemma 1.4.2

For a given real number y and a measurable function u(.) ∈ L2
υ.

17



CHAPTER 1. GENERAL REMINDER OF STOCHASTIC CALCULUS

(i) The operator [u]f (y) given by

[u]f (y) :=

∫
E

F (y + u(e)) − F (y) − F ′(y)u(e)

F ′(y)
υ(de) (1.5)

is well defined, where υ is a finite Lévy measure given by (2.2). Moreover,

∣∣∣[u]f (y)
∣∣∣ ≤ (1 + e4∥f∥1

)
∥u(.)∥υ,1 , (1.6)

such that ∥u(.)∥υ,1 =
∫
E
|u(e)| υ(de).

(ii) If f is non-negative, then [u]f (y) ≥ 0.

Proof. (i) From the quasi-isometry property (1.3) of the function F defined by (1.1), for all

y ∈ R, we have

∣∣∣[u]f (y)
∣∣∣ ≤ ∫

E

∣∣∣∣F (y + u(e)) − F (y) − F ′(y)u(e)

F ′(y)
υ(de)

∣∣∣∣
≤
∫
E

∣∣∣∣F (y + u(e)) − F (y)

F ′(y)

∣∣∣∣ υ(de) +

∫
E

|u(e)| υ(de)

=

∫
E

∣∣∣∣F (y + u(e)) − F (y)

F ′(y)

∣∣∣∣ υ(de) + ∥u(.)∥υ,1 ,

then

∣∣∣[u]f (y)
∣∣∣ ≤ ∫

E

e2∥f∥1 |u(e)|
F ′(y)

υ(de) + ∥u(.)∥υ,1

≤
(
e2∥f∥1

F ′(y)
+ 1

)
∥u(.)∥υ,1 .

Thus ∣∣∣[u]f (y)
∣∣∣ ≤ (e4∥f∥1 + 1

)
∥u(.)∥υ,1 .

Hence the operator [u]f (.) is well defined.

18
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(ii) We use the properties of F ′ for proof it. For each y ∈ R, we can write

[u]f (y) =
1

F ′(y)

∫
E

(F (y + u(e)) − F (y) − F ′(y)u(e)) υ(de)

=
1

F ′(y)

∫
E

∫ y+u(e)

y

(F ′(x) − F ′(y)) dxυ(de)

=
1

F ′(y)

∫
E

∫ y+u(e)

y

(F ′(x) − F ′(y))1{u(e)>0}dxυ(de)

+
1

F ′(y)

∫
E

∫ y

y+u(e)

(F ′(y) − F ′(x))1{u(e)<0}dxυ(de).

The last two terms in the above inequality are non-negative since F ′ is positive and increasing.

Lemma 1.4.3 (Burkholder-Davis-Gundy Inequalities)

Let M be a martingale with càdlàg paths, and let p ≥ 1 be fixed. Let M∗
t = sup

0≤s≤t
|Ms| .

Then, there exist constants cp and Cp such that

cpE
[
[M,M ]

p
2
t

]
≤ E [(M∗

t )p] ≤ CpE
[
[M,M ]

p
2
t

]
, (1.7)

for all 0 ≤ t < ∞. The constants cp and Cp are universal: they do not depend on the choice

of M .

Lemma 1.4.4 (Hölder Inequality for Integrals)

Let p > 1 and 1
p

+ 1
q

= 1. If f and g are real functions defined on [a, b] and if |f |p , |g|q are

integrable functions on [a, b] then

∫ b

a

|f(x)g(x)| dx ≤
(∫ b

a

|f(x)|p dx
) 1

p
(∫ b

a

|g(x)|q dx
) 1

q

. (1.8)
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Chapter 2

Backward Stochastic Differential

Equations with Jumps

The objective of this chapter is to present some basic definitions and results about Lévy

processes and introduce the notion of backward stochastic differential equations with jumps

(BSDEJs for short) driven by a Brownian motion and a compensated random measure, and

we consider the case of Lipschitz continuous generators. We will show the classical result of

existence and uniqueness. The content of this chapter is mainly based on these references

[3, 11, 16, 26, 30, 34]

2.1 Pure Jump Lévy Processes

2.1.1 Basics on Lévy Process

We recall some basic properties of Lévy processes. This is briefly what we need this thesis

about Lévy processes. Let (Ω,F , P ) be a complete probability space.

Definition 2.1.1 (Lévy Process)

A one-dimensional Lévy process is a stochastic process η = η(t), t ≥ 0, such that η(t) =
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η(t, ω), ω ∈ Ω, with the following properties:

(i) η(0) = 0, P-a.s.,

(ii) η has independent increments, that is, for all t > 0 and h > 0, the increment η(t +

h) − η(t) is independent of η(s) and s ≤ t,

(iii) η has stationary increments, that is, for all h > 0 the increment η(t + h) − η(t) has

the same probability law as η(h),

(iv) It is stochastically continuous, that is, for every t ≥ 0 and ε > 0, then

lim
s→t

P{|η(t) − η(s)| > ε} = 0,

(v) η has càdlàg paths, that is, the trajectories are right-continuous with left limits.

Let η(t) be a one-dimensional Lévy process on a complete probability space (Ω,F ,P),

we know that η has a càdlàg modification, and we will always use this modification. We define

the jumps of η at time t by ∆η = ηt − ηt− , where

ηt− = lim
s→t

ηs, s < t, (ηt− is the left limit at time t) and η0− = η0 = 0.

Let E := R\0, and define B(E) as the σ−algebra generated by the family of all Borel

subsets U ⊂ R, such that Ū ⊂ E. If U ∈ B(E) with Ū ⊂ E and t > 0, we define

N(t, U) =
∑
0≤s≤t

1{∆ηs∈U}, U ∈ B(E), t ≥ 0, (2.1)

that is, the number of jumps of size ∆ηs ∈ U for any s in 0 ≤ s ≤ t.

Since the paths of η are càdlàg, we know that N(t, U) < ∞, for all U ∈ B(E), with closure

not containing zero. Further, 2.1, defines in a natural way a Poisson random measure N on

B(0,∞) × B(E) given by

(a, b] × U → N(b, U) −N(a, U), 0 < a ≤ b, U ∈ B(E).
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This random measure is called the jump measure of η, and we use the notation N(dt, de),

t > 0, e ∈ E, for the differential form of the jump measure. The Lévy measure υ of η is

defined by

υ(U) := E[N(1, U)], U ∈ B(E), (2.2)

which is known to satisfy the condition

∫
E

min(1, e2)υ(de) < ∞.

Further, we define the compensated jump measure (also compensated Poisson random

measure) Ñ on B(R) × B(E) by

Ñ(dt, de) := N(dt, de) − υ(de)dt,

it is a martingale with a mean zero.

2.1.2 Stochastic Integration with Respect to Lévy Processes

Definition 2.1.2

For any t, let Ft be the σ−algebra generated by the random variables W (s) and Ñ(ds, de),

e ∈ E, s ≤ t, augmented for all P−null sets. Let the probability space (Ω,F ,P) with the

corresponding filtration F =(Ft)t≥0. For any F-adapted process θ = θ(t, e), t ≥ 0, e ∈ E such

that

E
[∫ T

0

∫
E

θ2(s, e)υ(de)ds

]
< ∞, for some T > 0,

we can see that the process

Mn(t) :=

∫ t

0

∫
|e|≥ 1

n

θ(s, e)Ñ(ds, de), 0 ≤ t ≤ T,
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is a martingale and its limit

Mt := lim
n→∞

Mn(t) =

∫ t

0

∫
E

θ(s, e)Ñ(ds, de), 0 ≤ t ≤ T,

is also a martingale. Moreover, we have the Itô isometry

E

[(∫ T

0

∫
E

θ(s, e)Ñ(ds, de)

)2
]

= E
(∫ T

0

∫
E

θ2(s, e)υ(de)ds

)
.

Theorem 2.1.1 (Properties of Stochastic Integration with Respect to Lévy Processes)

(i) Let V : Ω × [0, T ] × E → R be a predictable process satisfying

E
[∫ T

0

∫
E

|V (s, e)| υ(de)ds

]
< ∞,

where we integrate w.r.t. the compensator of a Poisson random measure N .

We may define
∫ t

0

∫
E
V (s, e)N(ds, de) and

∫ t

0

∫
E
V (s, e)υ(de)ds as integrable processes of

finite variation. Further,

∫ t

0

∫
E

V (s, e)Ñ(ds, de) =

∫ t

0

∫
E

V (s, e)(N(ds, de) − υ(de)ds)

is a martingale, and we have

E

(∫ T

0

∫
E

V (s, e)N(ds, de)

)
= E

(∫ T

0

∫
E

V (s, e)υ(de)ds

)
.

(ii) Let V : Ω × [0, T ] × E → R be a predictable process satisfying

∫ T

0

∫
E

|V (s, e)|2 υ(de)ds < ∞.

Then (
∫ t

0

∫
E
V (s, e)Ñ(ds, de), 0 ≤ t ≤ T ) is a càdlàg local martingale with the quadratic
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variation process, for all 0 ≤ t ≤ T

[∫ .

0

∫
E

V (s, e)Ñ(ds, de),

∫ .

0

∫
E

V (s, e)Ñ(ds, de)

]
(t) =

∫ t

0

∫
E

|V (s, e)|2N(ds, de).

(iii) Let V : Ω × [0, T ] × E → R be a predictable process satisfying

∫ T

0

∫
E

|V (s, e)| υ(de)ds < ∞.

Then (
∫ t

0

∫
E
V (s, e)Ñ(ds, de), 0 ≤ t ≤ T ) is a càdlàg local martingale and (

∫ t

0

∫
E
V (s, e)N(ds, de),

0 ≤ t ≤ T ) is a càdlàg process. Let N be the jump measure of a càdlàg process J . We also

have the property

∫ t

0

∫
E

V (s, e)N(ds, de) =
∑
s∈(0,t]

V (s,∆J(s))1∆J(s)̸=0(s), 0 ≤ t ≤ T.

(iv) Let V ∈ H2
N(R), then is a càdlàg, square-integrable martingale which satisfies

E

[∣∣∣∣∫ T

0

∫
E

V (s, e)Ñ(ds, de)

∣∣∣∣2
]

= E
[∫ T

0

∫
E

|V (s, e)|2 υ(de)ds

]
.

• We also recall that

[∫ .

0

V1(s)dW (s),

∫ .

0

∫
E

V2(s, e)Ñ(ds, de)

]
(T ) = 0. (2.3)

2.1.3 Martingale Representation Theorem

Theorem 2.1.2 (The Property of Predictable Representation)

The predictable representation property is the key concept in the theory of BSDEJs which

allows us to construct a solution to a BSDEJs. Let us consider a probability space (Ω,F ,F,P)
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with a filtration F = (Ft)0≤t≤T , any F-local martingale M has the representation

M(t) = M(0) +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫
E

U(s, e)Ñ(ds, de), 0 ≤ t ≤ T, (2.4)

where Z and U are F-predictable processes integrable with respect to W and Ñ . If M is

a locally square integrable local martingale, then the processes Z and U are locally square

integrable.

• We can easily deduce that the representation of a square integrable martingale M is

unique in H2(R) × H2
N(R). Consequently, any square integrable F-martingale M has the

unique representation (2.4), where (Z,U) ∈ H2(R) ×H2
N(R).

• We can also assume that any square integrable FT -measurable random variable ξ has the

unique representation

ξ = E(ξ) +

∫ T

0

Z(s)dW (s) +

∫ T

0

∫
R
U(s, z)Ñ(ds, dz), (2.5)

where (Z,U) ∈ H2(R)×H2
N(R). Representation (2.5) follows immediately from (2.4) by taking

the martingale M(t) = E(ξ | Ft), 0 ≤ t ≤ T .

2.2 BSDEJs with Globally Lipschitz Generators

2.2.1 Notation and Definitions

Let (Ω,F ,P) be a probability space. Let W be a one-dimensional Brownian motion and

N(dt, de) be a Poisson random measure with compensator υ(de)dt such that υ is a σ−finite

measure on E := R\0, equipped with its Borel field B(E). Let Ñ(dt, de) be its compensated

process. Let F = (Ft)t≥0, be the natural filtration generated both by the two mutually

independant processes W and N, it is a complete right continuous filtration.

Definition 2.2.1 (Driver, Lipschitz Driver)
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A function f is said to be a driver if

• f : Ω × [0, T ] × R× R× L2
υ → R

(ω, t, y, z, u(.)) → f(ω, t, y, z, u(.)) is P ⊗ B(R2)⊗B(L2
υ)- measurable,

• f(., 0, 0, 0) ∈ H2(R).

A driver f is called a Lipschitz driver if moreover there exists a constant C ≥ 0 such that

dP⊗dt-a.s., for each (y1, z1, u1), (y2, z2, u2)

|f(ω, t, y1, z1, u1) − f(ω, t, y2, z2, u2)| ≤ c (|y1 − y2| + |z1 − z2| + ∥u1 − u2∥υ) .

Definition 2.2.2 (BSDEs with Jumps)

We deal with backward stochastic differential equations driven by a Brownian motion and

a compensated random measure and we consider the case of Lipschitz continuous generators.

The backward stochastic differential equations with jumps (BSDEJs) were first introduced and

studied by Tang and Li [37] and it has the following form

Yt = ξ +

∫ T

t

f(s, Y (s), Z(s), U(s, .))ds−
∫ T

t

Z(s)dW (s) −
∫ T

t

∫
E

U(s, e)Ñ(ds, de), (2.6)

for all 0 ≤ t ≤ T, where W is a Brownian motion and Ñ is a compensated random measure.

Given a terminal condition ξ (this is why we say backward), sometimes call ξ the end point,

and f a generator . (ξ, f) is called a standard parameter.

Definition 2.2.3 (Solution of the BSDEJs)

Solution of the BSDEJs is a triple (Y, Z, U) ∈ M2
S such that (Y, Z, U) satisfied the dynamics

dY (t) = −f(t, Y (t), Z(t), U(t, .))dt + Z(t)dW (t) +

∫
E

U(t, e)Ñ(dt, de), (2.7)

and satisfies Y (T ) = ξ, where ξ is a square integrable random variable (ξ ∈ L2
T (Ω)). The

processes Z and U are called control processes. They control the process Y so that Y satisfies
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the terminal condition.

Remark 2.2.1

The predictable representation property (2.1.2) is the key concept in the theory of BSDEJs

since it allows us to find an adapted solution to an equation with a random terminal condition.

2.2.2 BSDEJs with Zero Generator

Let us deal with the equation

 dYt = ZtdWt +
∫
E
U(t, e)Ñ(dt, de)

Y (T ) = ξ.
(2.8)

Equation 2.8 is called a backward stochastic differential equation with zero generator. It is the

simplest example of a BSDEJs. We are interested in finding a triple (Y, Z, U) which satisfies

Yt = ξ −
∫ T

t

ZsdWs −
∫ T

t

∫
E

U(s, e)Ñ(ds, de), 0 ≤ t ≤ T. (2.9)

Theorem 2.2.1 (Existence and Uniqueness of Adapted Solutions)

Assume that ξ ∈ L2
T (R). There exists a unique solution (Y, Z, U) ∈ M2

S to the BSDEJs

2.9. The process Y has the representation

Y (t) = E [ξ | Ft] , 0 ≤ t ≤ T,

and the control processes (Z,U) are derived from the representation

ξ = E(ξ)+

∫ T

0

ZsdWs +

∫ T

0

∫
E

U(s, e)Ñ(ds, de).

Proof. See [11]
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2.2.3 BSDEJs with Generator Independent to Y, Z and U

Let us deal with the equation

Yt = ξ +

∫ T

t

f(s)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E

U(s, e)Ñ(ds, de), 0 ≤ t ≤ T, (2.10)

which we call a BSDEJs with generator independent of (Y, Z, U). We can immediately prove

the following result.

Theorem 2.2.2 (Existence and Uniqueness of Adapted Solutions)

Assume that ξ ∈ L2
T (Ω) and f : Ω × [0, T ] → R is a predictable process satisfying

E
([∫ T

0
|f(s)|2 ds

])
< ∞. There exists a unique solution (Y, Z, U) ∈ M2

S to the BSDEJs

(2.10). The process Y has the representation

Y (t) = E
(
ξ +

∫ T

t

f(s)ds | Ft

)
, 0 ≤ t ≤ T,

and the control processes (Z,U) are derived from the representation

ξ +

∫ T

0

f(s)ds = E
(
ξ +

∫ T

0

f(s)ds

)
+

∫ T

0

ZsdWs +

∫ T

0

∫
E

U(s, e)Ñ(ds, de).

Proof. See [25].

2.2.4 BSDEJs in General Case

We recall that υ(de)dt denote the compensator of the random measure N . We assume that

(H1) The terminal value ξ ∈ L2
T (Ω),

(H2) The generator f : Ω × [0, T ] × R × R × L2
υ(R) → R is predictable and Lipschitz
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continuous in the sense that

|f(ω, t, y, z, u) − f(ω, t, y′, z′, u′)|2 ≤ K

(
|y − y′|2 + |z − z′|2 +

∫
E

|u(x) − u′(x)|2 υ(de)

)
,

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z, u), (y′, z′, u′) ∈ R× R× L2
υ(R),

(H3) E
(∫ T

0
|f(t, 0, 0, 0)|2 dt

)
< ∞.

Assumptions (H1),(H2) and (H3) are called standard in the theory of BSDEJs. Let us

recall that the predictability of the generator f means that

f : Ω × [0, T ] × R× R× L2
υ(R) → R is P ⊗ B (R) ⊗ B (R) ⊗ B (L2

υ(R)) measurable.

We now prove the existence of a unique solution to the BSDEJs (2.6). The idea is to

construct a sequence of solutions to simpler BSDEJs for which the existence of a unique

solution can be established by Theorem (2.2.2) and the predictable representation property

(Theorem 2.1.2). Next, we shall prove that it is a Cauchy sequence in the Banach space M2
S.

Theorem 2.2.3

Assume that (H1),(H2) and (H3) hold. The BSDEJs (2.6) has a unique solution (Y, Z, U) ∈

M2
S.

Proof. See for example [11, 25, 37].

2.2.5 Special Case

If the BSDEJs (2.6) abandons the jumps part, we get

Yt = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s), 0 ≤ t ≤ T. (2.11)

Under the integrability condition of ξ and (f(t, 0, 0))t∈[0,T ] and Lipschitz condition in y and

z, then, by the Pardoux-Peng result, the BSDEJs (2.11) has a unique solution (Y, Z).

Proof. See [32].
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Chapter 3

Quadratic Backward Stochastic

Differential Equations with Jumps

Due to the important role played by Quadratic BSDEJs (QBSDEJs for short) in solving

most problems in various fields, it is necessary to focus on their existence and uniqueness of

solutions. In this chapter, we consider one-dimensional BSDEJs that show quadratic growth

in the Brownian component and non-linear functionals with respect to the jump term. This

type of equation does not satisfy the usual Lipschitz condition to ensure the existence and

uniqueness of solutions. However, using Zvonkin transformation to eliminate the drift or

a part of it, we can prove the existence and uniqueness of solutions for different types of

QBSDEJs. This chapter is mainly based on [26].

3.1 Introduction

We start with a stochastic basis (a filtered probability space) (Ω,F ,F,P) with a finite time

horizon T < ∞, E = R\ {0} endowed with the Borel σ−algebra B (E). On this stochastic

basis, let W = (Wt)t∈[0,T ] a one-dimensional standard Brownian motion, and N(ds, de) a time-

homogeneous Poisson random measure with compensator υ(de)ds on ([0, T ] × E, B ([0, T ]) ⊗ B (E)) .
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We denote by Ñ(ds, de) = N(ds, de)− υ(de)ds the compensated jump measure, υ(de) is a fi-

nite Lévy measure, suppose that the Brownian motion W and the random measure N(ds, de)

are stochastically independent under P. The filtation F = {Ft | t ∈ [0, T ]} is the natural fil-

tration generated both by the two independant processes W and Ñ. It is a complete with

P-null sets and right continuous, we assume that F0 is trivial. Moreover, we assume that the

filtration F has the predictable representation property, that is any local martingale can be

written as the sum of two stochastic integrals with predictable integrand processes, one w.r.t.

W and the other w.r.t. Ñ . Let ξ be an FT -measurable R-valued random variable.

The R-valued QBSDEJs is given by the following form

 −dYt = H(Yt, Zt, Ut(.))dt− ZtdWt −
∫
E
Ut(e)Ñ(dt, de), t ∈ [0, T [ .

YT = ξ.

Or, equivalently, P−a.s for all t ∈ [0, T ]

Yt = ξ +

∫ T

t

H(Ys, Zs, Us(.))ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E

Us(e)Ñ(ds, de). (3.1)

The previous equation will be denoted by eq(ξ,H). The data ξ called the terminal

condition (the terminal value), and will be assumed to be square integrable, and H called the

coefficient or the generator of eq(ξ,H). For the BSDEs of quadratic type associated with a

Brownian component and without the jumps parts have been studied by Bahlali et al. [3],

and this work is considered an extension of it.

For the special generators H of the following form:

H(y, z, u(.)) =


f(y) |z|2 + [u]f (y) =: Hf (y, z, u(.))

h(y, u(.)) + cz + Hf (y, z, u(.))

cz + f(y) |z|2 −
∫
E
u(e)υ(de)
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where:

• f is a measurable and integrable function, and we assumed that it is not constant.

• [u]f (y) is a functional of the unknown processes Y, and given by

[u]f (y) =

∫
E

F (y + u(e)) − F (y) − F ′(y)u(e)

F ′(y)
υ(de),

and the function F is defined, for every x ∈ R, by

F (x) =

∫ x

0

exp

(
2

∫ y

0

f(t)dt

)
dy. (3.2)

• h enjoy some classical assumptions.

Remark 3.1.1

The function F (3.2) which has the properties mentioned in the first chapter (Lemma 1.4.1)

allows us to eliminate the generator Hf in the eq(ξ,Hf ).

We are interested in proving the existence and uniqueness of the solution to one type of

quadratic BSDE with jumps and globally integrable generator (drift) Hf , and in the section

(3.5), we will solve some quadratic BSDEJs. We racall that the eq(ξ,Hf ) is given by

Yt = ξ +

∫ T

t

(
f(Ys) |Zs|2 + [Us]f (Ys)

)
ds−

∫ T

t

ZsdWs −
∫ T

t

∫
E

Us(e)Ñ(ds, de), (3.3)

for all t ∈ [0, T ] .

Definition 3.1.1 (Solution of QBSDEJs)

Let ξ is an FT -measurable and square integrable random variable and f : R → R is a

measurable function. A triple of processes (Y, Z, U), with adapted Y and predictable Z and

U , is a solution of eq(ξ,Hf ) if:

• E
[∣∣∣∫ T

0
f(Ys) |Zs|2 ds

∣∣∣2] < ∞,
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• (Y, Z, U) satisfies

Yt = ξ +

∫ T

t

Hf (Ys, Zs, Us(.))ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E

Us(e)Ñ(ds, de),

P-a.s. for all t ∈ [0, T ] , such that Z ∈ H2(R), U ∈ H2
N(R), Y ∈ S2(R).

Corollary 3.1.1

For a given real number y and a predictable process us(e) on [0, T ]×E, such that
∫ T

0
∥us(.)∥υ,1 ds <

∞, P−a.s. We have, using (1.6)

∫ T

0

∣∣∣[us]f (y)
∣∣∣ ds ≤ (1 + e4∥f∥1

) ∫ T

0

∫
E

|us(e)| υ(de)ds, P−a.s., ∀y ∈ R.

Moreover, if u ∈ H2
N(R), then there exists a constant Cf,υ (depending only on f and υ) such

that ∫ T

0

E
(∣∣∣[us]f (y)

∣∣∣2) ds ≤ Cf,υ

∫ T

0

E ∥us(.)∥2υ,2 ds. (3.4)

3.2 Krylov’s Estimates and Itô-Krylov’s Formula for

BSDEJs

We establish a Krylov-type estimate and an Itô-Krylov change of variable formula for the

solutions of one-dimensional quadratic backward stochastic differential equations with jump

(QBSDEJs) defined by (3.1). This allows us to prove various existence and uniqueness results

for some classes of QBSDEJs.

3.2.1 Krylov’s Estimates in BSDEJs

Proposition 3.2.1

Let (Y, Z, U) := (Yt, Zt, Ut(e))0≤t≤T,e∈E be a solution to eq(ξ,Hf ) in the sense of the Defi-
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nition (3.1.1). Put

θ = 2sup |Yt|
0≤t≤T

+
(
2 + e4∥f∥1

) ∫ T

0

∥Us(.)∥υ,1 ds,

then, for any measurable and integrable function ϕ on R, we have

E
(∫ T

0

|ϕ| (Ys) |Zs|2 ds
)

≤ 2E(θ) ∥ϕ∥1 e
2∥f∥1 . (3.5)

3.2.2 Itô–Krylov Change of Variable Formula in BSDEJs

Theorem 3.2.1

Let (Yt, Zt, Ut(e))0≤t≤T,e∈E be a solution to eq(ξ,H). Then, for any function g belonging to

the space W2
1,loc (R), we have with probability 1

g(Yt) = g(Y0) +

∫ t

0

g′(Ys−)dYs +
1

2

∫ t

0

g′′(Ys)d [Y, Y ]cs (3.6)

+

∫ t

0

∫
E

[g(Ys− + Us(e)) − g(Ys−) − g′(Ys−)Us(e)]N(ds, de),

where d [Y, Y ]cs = |Zs|2 ds.

Proof. See [26] for full proof.

The new Equation

If (Y, Z, U) is a solution to eq(ξ,Hf ), then we apply Itô–Krylov’s formula (3.6) to F (Yt)

such that F is given by (1.1) to obtain an equation with zero generator, and we get

F (Yt) = F (ξ) +

∫ T

t

(
F ′(Ys−)

[
f(Ys) |Zs|2 + [Us]f (Ys)

]
− 1

2
F ′′(Ys) |Zs|2

)
ds

−
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

F ′(Ys−)Us(e)Ñ(ds, de)

−
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−) − F ′(Ys−)Us(e)]N(ds, de),
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remember that

F ′(y) [u]f (y) =

∫
E

[F (y + u(e)) − F (y) − F ′(y)u(e)] υ(de), (3.7)

and we use the property (1.2) of F and (3.7), this implies

F (Yt) = F (ξ) +

∫ T

t

∫
E

(F (Ys− + Us(e)) − F (Ys−) − F ′(Ys−)Us(e)) υ(de)ds

−
∫ T

t

F ′(Ys−)ZsdWs +

∫ T

t

∫
E

F ′(Ys−)Us(e)υ(de)ds

−
∫ T

t

∫
E

(F (Ys− + Us(e)) − F (Ys−))N(ds, de),

then

F (Yt) = F (ξ) −
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

(F (Ys− + Us(e)) − F (Ys−)) Ñ(ds, de). (3.8)

For each 0 ≤ s ≤ T, we set ys := F (Ys), zs := F ′(Ys−)Zs and us(e) := F (Ys− + Us(e)) −

F (Ys−).

Before proving existence and uniqueness of solutions to eq(ξ,Hf ), we establish some

useful a priori estimates.

3.3 A Priori Estimates

Proposition 3.3.1

Let ξ ∈ L2
T (Ω) and f is an integrable function (∈ L1(R)). If (Y, Z, U) satisfies the

eq(ξ,Hf ), then we have:

(i) (zs)0≤s≤T , (Zs)0≤s≤T ∈ H2(R) and (us(e))0≤s≤T,e∈E, (Us(e))0≤s≤T,e∈E ∈ H2
N(R),

(ii) (ys)0≤s≤T , (Ys)0≤s≤T ∈ S2(R),
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(iii) E
[∣∣∣∫ T

0
f(Ys) |Zs|2 ds

∣∣∣2] < ∞.

Proof. In this proof we will repeatedly use Properties in subsections (1.3.1, 2.1.2) of stochastic

integrals. We recall that the convex inequality is given by

(a + b)2 ≤ 2(a2 + b2). (3.9)

(i) We take t = 0 and the square of the L2(Ω) norm in Itô–Krylov’s formula (3.8), we get

E

[∣∣∣∣∫ T

0

F ′(Ys−)ZsdWs +

∫ T

0

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de)

∣∣∣∣2
]

= E |F (ξ) − F (Y0)|2 .

Thanks to the orthogonality of the martingales W. and
∫ .

0

∫
E
Ñ(ds, de) (the Property 2.3)

together with the inequalities (1.3) , (1.4) and (3.9), we get

e−4∥f∥1
[
E
∫ T

0

|Zs|2 ds + E
∫ T

0

∫
E

|Us(e)|2 υ(de)ds

]
≤ E

∣∣∣∣∫ T

0

F ′(Ys−)ZsdWs

∣∣∣∣2 + E
∣∣∣∣∫ T

0

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de)

∣∣∣∣2
= E

∣∣∣∣∫ T

0

zsdWs

∣∣∣∣2 + E
∣∣∣∣∫ T

0

∫
E

us(e)Ñ(ds, de)

∣∣∣∣2
= E

∫ T

0

|zs|2 ds + E
∫ T

0

∫
E

|Us(e)|2 υ(de)ds

≤ E
[
e4∥f∥1 |ξ − Y0|2

]
≤ 2e4∥f∥1

[
Y 2
0 + E |ξ|2

]
< ∞.

This implies that z, Z ∈ H2(R) and u, U ∈ H2
N(R).
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(ii) From Itô–Krylov’s formula (3.8), quasi-isometry property (1.3) and F (0) = 0, we have

e−2∥f∥1 |Yt| ≤ |F (Yt)|

≤ |F (ξ)| +

∣∣∣∣∫ T

t

F ′(Ys−)ZsdWs

∣∣∣∣
+

∣∣∣∣∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de)

∣∣∣∣
≤ |F (ξ)| + sup

t∈[0,T ]

∣∣∣∣∫ t

0

zsdWs

∣∣∣∣+ sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
E

us(e)Ñ(ds, de)

∣∣∣∣ ,
we use convex inequality (3.9) and take the squar and the supremum over [0, T ]

e−4∥f∥1 sup
t∈[0,T ]

|Yt|2 ≤ sup
t∈[0,T ]

|F (Yt)|2

≤ 22

(
e4∥f∥1 |ξ|2 + sup

t∈[0,T ]

∣∣∣∣∫ t

0

zsdWs

∣∣∣∣2 + sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
E

us(e)Ñ(ds, de)

∣∣∣∣2
)

using BDG inequality (1.7), we have

E

(
sup

t∈[0,T ]

∣∣∣∫ t

0
zsdWs

∣∣∣)2

≤ C2E
([∫ .

0
zsdWs,

∫ .

0
zsdWs

]
T

)
= C2E

(∫ T

0
|zs|2 ds

)
,

E

(
sup

t∈[0,T ]

∣∣∣∫ t

0

∫
E
us(e)Ñ(ds, de)

∣∣∣)2

≤ Ć2E
(∫ T

0

∫
E
|us(e)|2 υ(de)ds

)
.

Now, by taking the expectation and previous inequalities, we get

e−4∥f∥1E

(
sup

t∈[0,T ]

|Yt|2
)

≤ E

[
sup

t∈[0,T ]

|yt|2
]

≤ 4

(
e4∥f∥1E |ξ|2 + C2E

∫ T

0

|zs|2 ds + Ć2E
∫ T

0

∥us(.)∥2υ,2 ds
)
.

The right-hand side of the above inequality is finite by (i).
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(iii) Since (Y, Z, U) satisfies eq(ξ,Hf ) and for t = 0, thus

∫ T

0

f(Ys) |Zs|2 ds = Y0 − ξ −
∫ T

0

[Us]f (Ys−)ds +

∫ T

0

ZsdWs +

∫ T

0

∫
E

Us(e)Ñ(ds, de).

Now, using the inequalities: convex (3.9) , Hölder’s (1.8) and (3.4) in Corollary (3.1.1), and

taking the expectation, we obtain

E
∣∣∣∣∫ T

0

f(Ys) |Zs|2 ds
∣∣∣∣2 ≤ 24

(
E
∣∣∣∣∫ T

0

ZsdWs

∣∣∣∣2 + E
∣∣∣∣∫ T

0

∫
E

Us(e)Ñ(ds, de)

∣∣∣∣2
)

+ 24

(
|Y0|2 + E |ξ|2 + T

∫ T

0

E
∣∣∣[Us]f (Ys−)

∣∣∣2 ds)
≤ 16

(∫ T

0

E |Zs|2 ds +

∫ T

0

E ∥Us(.)∥2υ,2 ds
)

+ 16

(
|Y0|2 + E |ξ|2 + TCf,υ

∫ T

0

E ∥Us(.)∥2υ,2 ds
)
.

Finally E
∣∣∣∫ T

0
f(Ys) |Zs|2 ds

∣∣∣2 is finite thanks to (i).

3.4 Existence and Uniqueness of the Solution

We denote by eq(F (ξ), 0) for the following simple equation

yt = F (ξ) −
∫ T

t

zsdWs −
∫ T

t

∫
E

us(e)Ñ(ds, de).

Theorem 3.4.1

Let ξ be an FT -measurable and square integrable random variable. If f is an integrable func-

tion, then (Yt, Zt, Ut(e))0≤t≤T,e∈E is a unique solution to eq(ξ,Hf ) if and only if (yt, zt, ut(e))0≤t≤T,e∈E

is a unique solution to eq(F (ξ), 0).

Proof. • If (Yt, Zt, Ut(e))0≤t≤T,e∈E is a solution to eq(ξ,Hf ), then (3.8) shows that

(yt, zt, ut(e))0≤t≤T,e∈E satisfies eq(F (ξ), 0).
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Since F and F−1 are globally Lipschitz, it follows that F (ξ) is square integrable if and only if

ξ is square integrable. Moreover, thank to the Proposition (3.3.1), we have (yt, zt, ut(e))0≤t≤T,e∈E ∈

M2
S. Then, by the Theorem (2.2.1) in the chapter 2,

(yt, zt, ut(e))0≤t≤T,e∈E is a unique solution to eq(F (ξ), 0).

• If (yt, zt, ut(e))0≤t≤T,e∈E be a solution to eq(F (ξ), 0), then Itô–Krylov’s formula (3.6)

applied to Yt = F−1(yt) (Because according to Lemma (1.4.1), F−1 belongs to W2
1 (R)) shows

that

F−1(yt) = F−1(F (ξ)) −
∫ T

t

(F−1)′(ys−)zsdWs

−
∫ T

t

∫
E

(F−1)′(ys−)us(e)Ñ(ds, de) − 1

2

∫ T

t

(F−1)′′(ys) |zs|2 ds

−
∫ T

t

∫
E

(
F−1(ys− + us(e)) − F−1(ys−) − (F−1)′(ys−)us(e)

)
N(ds, de),

then, by adding and subtracting the same term

∫ T

t

∫
E

[
F−1(ys− + us(e)) − F−1(ys−) − (F−1)′(ys−)us(e)

]
υ(de)ds,

we get

Yt = ξ −
∫ T

t

(F−1)′(ys−)zsdWs −
1

2

∫ T

t

(F−1)′′(ys) |zs|2 ds (3.10)

−
∫ T

t

∫
E

(
F−1(ys− + us(e)) − F−1(ys−)

)
Ñ(ds, de)

−
∫ T

t

∫
E

(
F−1(ys− + us(e)) − F−1(ys−) − (F−1)′(ys−)us(e)

)
υ(de)ds.

We remember the derivatives of inverse function is given by

(F−1)′(x) =
1

F ′ (F−1(x))
and (F−1)′′(x) = − F ′′(F−1(x))

[F ′ (F−1(x))]3
.
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We set Zs = (F−1)′(ys−)zs and Us(e) = F−1(ys− + us(e)) − F−1(ys−), this implies

1

2
(F−1)′′(ys) |zs|2 = − F ′′ (Ys)

2 (F ′ (Ys))
3

|Zs|2

[(F−1)′(ys−)]2
ds a.e

= − F ′′ (Ys)

2F ′ (Ys)
|Zs|2 = −f(Ys) |Zs|2 , (3.11)

and

∫
E

(
F−1(ys− + us(e)) − F−1(ys−) − (F−1)′(ys−)us(e)

)
υ(de) (3.12)

=

∫
E

(
Us(e) −

1

F ′ (Ys−)
(F (Ys− + Us(e)) − F (Ys−))

)
υ(de)

= −
∫
E

F (Ys− + Us(e)) − F (Ys−) − F ′ (Ys−)Us(e)

F ′ (Ys−)
υ(de)

= − [Us]f (Ys−).

Substituting (3.11) and (3.12) in (3.10), we end up with

Yt = ξ +

∫ T

t

(
f(Ys) |Zs|2 + [Us]f (Ys−)

)
ds−

∫ T

t

ZsdWs −
∫ T

t

∫
E

Us(e)Ñ(ds, de).

Thanks to the properties (1.3) and (1.4) of F , we show easily that

|Ys| ≤ e2∥f∥1 |ys| , |Zs| ≤ e2∥f∥1 |zs| and |Us(e)| ≤ e2∥f∥1 |us(e)| .

This means that Ys, Zs and Us belong respectively to S2(R), H2(R) and H2
N(R).

Consequently

(Ys, Zs, Us(e))0≤t≤T,e∈E

:=
(
F−1(ys), (F

−1)′(ys−)zs, F
−1(ys− + us(e)) − F−1(ys−)

)
0≤t≤T,e∈E

is a solution to eq(ξ,Hf ) in the sense of Definition (3.1.1).

Summary: According to Theorem (2.2.1), the BSDEJs eq(F (ξ), 0) has a unique solution

40



CHAPTER 3. QUADRATIC BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS WITH JUMPS

such that the process (yt)t∈[0,T ] is given by

yt = E [F (ξ) | Ft] ,

and thus

Yt = F−1 (E [F (ξ) | Ft]) .

Then the martingale representation Theorem (2.1.2) shows that there exists a unique pre-

dictable process (z, u) ∈ H2(R)×H2
N(R) satisfying eq(F (ξ), 0). Now, comparing with eq(F (ξ), 0)

(3.8), one can easily arrive at

Yt = F−1(yt), Zt =
zt

F ′(F−1(yt−))
and Ut(e) = F−1(yt− + ut(e)) − F−1(yt−).

We deduce finally that the equation eq(ξ,Hf ) admits a unique solution if and only if

eq(F (ξ), 0) admits a unique solution.

Corollary 3.4.1

Let f be a bounded and integrable function on R. The eq(ξ,Hf ) admits a unique solution

for any FT -measurable square integrable random variable ξ.

3.5 Solvability of Some Quadratic BSDEJs

In this section we shall use the results of the previous section to solve some QBSDEJs.

First of all, we apply Itô-Krylov’s formula to eq(ξ,H) given by (3.1), where the generator

H satisfying suitable conditions which guarantee the existence and uniqeness of a solution of

41



CHAPTER 3. QUADRATIC BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS WITH JUMPS

BSDEJs, leads to

F (Yt) = F (ξ) +

∫ T

t

[
F ′(Ys−)H (Ys, Zs, Us(.)) −

1

2
F ′′(Ys) |Zs|2

]
ds

−
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

F ′(Ys−)Us(e)Ñ(ds, de)

−
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−) − F ′(Ys−)Us(e)]N(ds, de).

Moreover, by adding and subtracting the same term

∫ T

t

∫
E

(F (Ys− + Us(e)) − F (Ys−)) υ(de)ds,

and use (3.7), we get

F (Yt) = F (ξ) +

∫ T

t

[
F ′(Ys−)

(
H(Ys, Zs, Us(.)) − [Us]f (Ys−)

)
− 1

2
F ′′(Ys) |Zs|2

]
ds (3.13)

−
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de)

Secondly, we use the result of the section (2.2.4) to show the existence and uniqueness

of the solutions to two types of QBSDEJs with different quadratic generators.

Let h : R× Lp
υ → R be a measurable function which satisfying:

(H1) Lipschitz and bounded: For all u(.), ú(.) in Lp
υ, and y, ý in R

|h(y, u(.)) − h(ý, ú(.))| ≤ L
(
|y − ý| + ∥u(.) − ú(.)∥υ,2

)
,

and there exists a constant c > 0, such that |h(y, u(.))| ≤ c.

(H2) f is bounded and integrable.

(H3) The function h(y, u(.)) is of the form h(y,
∫
E
g(u(e))υ(de)) and the mapping (y, u) →
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h(y, u) is continuous

∣∣∣∣h(y,

∫
E

g(u(e))υ(de))

∣∣∣∣ ≤ L
(
|y| + ∥u(.)∥υ,1

)
.

(1) eq(ξ, h(y, u(.)) + cz + Hf (y, z, u(.))):

The formula (3.13) corresponding to Hh,f := h(y, u(.)) + cz + Hf (y, z, u(.)), c ∈ R give

F (Yt) = F (ξ) +

∫ T

t

(
F ′(Ys−)

[
h(Ys, Us(e)) + cZs + f(Ys) |Zs|2

]
− 1

2
F ′′(Ys) |Zs|2

)
ds

−
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de),

by using (1.2), we get

F (Yt) = F (ξ) +

∫ T

t

F ′(Ys−) [h(Ys, Us(e)) + cZs] ds

−
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de),

is equivalent to

yt = F (ξ) +

∫ T

t

[H1(ys, us(.)) + czs] ds−
∫ T

t

zsdWs −
∫ T

t

∫
E

us(e)Ñ(ds, de),

(using the same notation in 3.2.2), where

H1(y, u(.)) := F ′(F−1(y))h
(
F−1(y), F−1(y + u(.)) − F−1(y)

)
.

The equation eq(F (ξ), H1+cz) has a unique solution if and only if H1 is Lipschitz and F (ξ)

is square integrable. Under the evious prassumptions, we deduce H1 is Lipschitz. Therefore,

eq(F (ξ), H1+cz) has a unique solution, thus our original eq(ξ,Hh,f ) admits a unique solution.

(2) eq(ξ, cz + f(y) |z|2 −
∫
E
u(e)υ(de)) :
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Consider the following BSDEJs

Yt = ξ +

∫ T

t

[
cZs + f(Ys) |Zs|2 −

∫
E

Us(e)υ(de)

]
ds−

∫ T

t

ZsdWs

−
∫ T

t

∫
E

Us(e)Ñ(ds, de),

by applying formula (3.13) to this equation, we get

F (Yt) = F (ξ) +

∫ T

t

F ′(Ys−)

(
cZs + f(Ys) |Zs|2 −

∫
E

Us(e)υ(de) − [Us]f (Ys−)

)
ds

− 1

2

∫ T

t

F ′′(Ys) |Zs|2 ds−
∫ T

t

F ′(Ys−)ZsdWs

−
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de).

We simplify the integrals with respect to the Lebesgue measure, we obtain

F (Yt) = F (ξ) +

∫ T

t

[
cF ′(Ys−)Zs −

∫
E

[F (Ys− + Us(e)) − F (Ys−)] υ(de)

]
ds

−
∫ T

t

F ′(Ys−)ZsdWs −
∫ T

t

∫
E

[F (Ys− + Us(e)) − F (Ys−)] Ñ(ds, de).

Or equivalently as

yt = F (ξ) +

∫ T

t

[
czs −

∫
E

us(e)υ(de)

]
ds−

∫ T

t

zsdWs −
∫ T

t

∫
E

us(e)Ñ(ds, de)

Since the generator H2(z, u(.)) := cz −
∫
E
u(e)υ(de) of the above equation is differentiable

w.r.t. z and u and its derivatives are bounded, and F (ξ) is square integrable for square

integrable ξ, then it has a unique solution. Thus, eq(F (ξ), H2) has a unique solution.
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3.6 Comparision Theorem

This comparison theorem of the solutions for QBSDEJs is novel in jump setting in that

it does so even in the absence of the Lipschitz, continuous and convex condition of both

generator.

Theorem 3.6.1 (Comparison principle)

Let ξ1, ξ2 be FT -measurable and square integrable random variables. Let f ∈ L1(R). Let

(Y 1, Z1, U1), (Y 2, Z2, U2) be respectively the solution of eq(ξ1, Hf ) and eq(ξ2, Hf ).

(i) If ξ1 ≤ ξ2 P-a.s., then Y 1
t ≤ Y 2

t P-a.s.

(ii) If in addition to (i), Y 1
0 = Y 2

0 , then ξ1 = ξ2.

(iii) (strict comparison) In addition to (i) if P (ξ2 > ξ1) > 0, then P (Y 2
t > Y 1

t , ∀t ∈ [0, T ]) >

0), in particular Y 2
0 > Y 1

0 .

Proof. (i) Notice that the solutions (Y 1, Z1, U1) and (Y 2, Z2, U2) belong to S2(R)×H2(R)×

H2
N(R). For a given integrable function f , remember that F associated to f is defined by

(3.2) and satisfies (1.2). We first apply Itô–Krylov’s formula to F (Y 2
t ), to obtain

F (Y 2
T ) = F (Y 2

t ) −
∫ T

t

F ′(Y 2
s−)f(Y 2

s )
∣∣Z2

s

∣∣2 ds
+

∫ T

t

F ′(Y 2
s−)Z2

sdWs +

∫ T

t

∫
E

F ′(Y 2
s−)U2

s (e)Ñ(ds, de)

+

∫ T

t

1

2
F ′′(Y 2

s−)
∣∣Z2

s

∣∣2 ds− ∫ T

t

F ′(Y 2
s−)
[
U2
s

]
f

(Y 2
s−)ds

+

∫ T

t

∫
E

[
F (Y 2

s− + U2
s (e)) − F (Y 2

s−) − F ′(Y 2
s−)U2

s (e)
]
N(ds, de),

using the definition of the operator [U2
s ]f (.) and the fact F satisfies (1.2), we obtain

F (Y 2
T ) = F (Y 2

t ) + (MT −Mt), (3.14)
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where

Mt =

∫ t

0

F ′(Y 2
s−)Z2

sdWs +

∫ t

0

∫
E

[
F (Y 2

s− + U2
s (e)) − F (Y 2

s−)
]
Ñ(ds, de),

is an Ft-martingale. Passing to conditional expectation and using the fact that F is an

increasing function and ξ2 ≥ ξ1, we get

F (Y 2
t ) = E(F (Y 2

T ) | Ft) = E(F (ξ2) | Ft)

≥ E(F (ξ1) | Ft) = F (Y 1
t ).

Taking F−1 in both sides, we conclude Y 2
t ≥ Y 1

t , for all t ∈ [0, T ].

(ii) From (3.14) for t = 0, we get

F (ξ2) = F (Y 2
0 ) + MT , (3.15)

and from (3.8) for t = 0 we have

F (Y 1
0 ) = F (ξ1) −NT , (3.16)

where

Nt =

∫ t

0

F ′(Y 1
s−)Z1

sdWs −
∫ t

0

∫
E

[
F (Y 1

s− + U1
s (e)) − F (Y 1

s−)
]
Ñ(ds, de).

If Y 1
0 = Y 2

0 , then we get, by substituting (3.16) in (3.15)

F (ξ2) = F (ξ1) −NT + MT ,

taking the expectation we obtain E [F (ξ2) − F (ξ1)] = 0.
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Since the quantity inside the expectation is positive, we conclude that

F (ξ2) = F (ξ1) P−a.s. and thus ξ2 = ξ1 P−a.s.

(iii) We have from (3.14)

F (Y 2
T ) = F (Y 2

t ) + (MT −Mt).

Moreover, thanks to (3.8)

F (Y 1
t ) = F (ξ1) − (NT −Nt).

Therefore, subtracting both sides of the above equalities leads to

F (Y 2
t ) − F (Y 1

t ) = F (ξ2) − F (ξ1) + (NT −Nt) − (MT −Mt),

taking the conditional expectation we get

F (Y 2
t ) − F (Y 1

t ) = E[F (ξ2) − F (ξ1) | Ft].

Consequently F (Y 2
t ) − F (Y 1

t ) > 0 on the set {ξ2 > ξ1}, finally taking into account the fact

that the function F is one to one P (Y 2
t > Y 1

t ) > 0 for all t ∈ [0, T ]. This achieves the proof.
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Conclusion

The main objective of this thesis is to study the existence and uniqueness of the square-

integrable solution for two types of backward stochastic differential equations with jumps (2.6)

driven by a Poisson random measure and independent Brownian motion. The first funda-

mental result is initiated and studied by Tang & Li [37] in 1994. This paper cover the

case where the generator f is globally Lipschitz with respect to the variables y, z and u, and

the terminal condition ξ and the processe (f(t, 0, 0, 0))t∈[0,T ] are square-integrable. As for the

second result, we have extended Itô-Krylov formula to the BSDEJs with jumps framework.

Building on this, the third significant result is the proof of an existence and uniqueness the-

orem for quadratic BSDEJs. This proof leverages Itô-Krylov formula and the phase space

transformation F (Zvonkin transformations ), which simplifies the quadratic BSDEJ by elim-

inating its drift or parts of it, resulting in an equation with a zero or Lipschitz generator.

If the transformed BSDEJ has a unique solution, then our original quadratic eq(ξ,Hf ) also

admits a unique solution. Finaly, we gave a comparison and strict comparison theorems for

the solutions of BSDEJs with non-Lipschitz coefficients.
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                                                           ملخص
 لمعادلات التفاضلية العشوائيةا لنوعين من الحل تفرد بمشكلة وجود ودراسة بحثية تتعلق  مذكرةالتقدم هذه 

   زي تليبشي الأولى ذات مولد ،التراجعية المولدة بواسطة قياس بواسون العشوائي و الحركة البراونية المستقلة

 بلاعشوائي مربعه ق رمتغي يه القيمة النهائيةو ذات مولد يتميز بنمو تربيعي في المكون البراوني  والثانية

                                                                                                                   .لللتكام

 ةالعشوائي؛ الحركالمعادلات التفاضلية العشوائية التراجعية؛ عملية القفز؛ قياس بواسون  : الكلمات المفتاحية

.ةالبراوني  

 
 
 

Résumé 

L'objectif de ce mémoire est d'analyser la question de l'existence et de 

l'unicité des solutions de EDSRs quadratiques avec sauts (EDSRQSs en 

abrégé), où les générateurs acceptent une croissance quadratique par 

rapport au terme de la composante Brownienne et une forme fonctionnelle 

non linéaire par rapport au terme de saut. Nous présentons également le 

résultat de l'existence et de l'unicité des solutions dans le cas du générateur 

Lipschitzienne, et la condition finale est de carrée intégrable. 

Mots-clés: Équations différentielles stochastiques rétrogrades; Processus de 

saut; Mesure aléatoire de Poisson; Mouvement Brownien. 

 

Mot  clés : 

Abstract 

In this master’s thesis, we study a BSDE with Jumps (BSDEJs in short), and 

prove the existence and uniquenes of the solutions, when the driver have 

quadratic growth in the Brownian companente and non-linear functional form 

with respect to the jump part, and the terminal condition is square integrable 

random variable. After proving the result of the existence and uniqueness of 

solutions under the strongest condition (Lipschitz condition). 

Key words: Backward stochastic differential equations; Jump process; 

Poisson random measure; Brownian motion. 
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