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Introduction

The extreme values theory plays a prominent role in modeling rare events occurring across various
fields such as finance, insurance losses, and environmental sciences. Regularly varying functions are
the appropriate models that fit this data, appearing in numerous application fields and considered
a fundamental tool to characterize the domains of attraction of distribution functions, namely
Gumbel, Weibull, and Fréchet. Our focus is to explore the significance of this class of functions by
considering Pareto-type models, which correspond to the Fréchet domain of attraction, exhibiting

tails that behave as regularly varying functions of negative indices.
Our memory comprises four chapters:

In the first chapter, we are discussing the domains of attraction of distribution functions in relation

to regularly varying functions.

The second chapter aims to present the first and second conditions for this class of functions
and their corresponding uniform inequalities, known as Potter’s ones. These are key tools for

establishing the asymptotic behavior of estimators of the tail index.

The third chapter deals with the statistical inference of tail distribution functions, constructing the
so-called Hill’s estimator of the tail index and its corresponding high quantiles, then establishing

the consistency and asymptotic normality of the latter.

The fourth chapter is devoted to a simulation study of Hill’s estimator and the computation of the
optimal sample fraction k used in the estimation of extreme values. Additionally, it presents real

data applications to the asset returns of financial markets.



Chapter 1

Extreme Value Theory

Extreme Value Theory (EVT) is essential for understanding and modeling rare events in datasets.
It focuses on the statistical behavior of extreme values, aiding in understanding their characteristics

and facilitating the prediction and assessment of risks associated with rare events.

1.1 Asymptotic behaviour of extremes

Let us consider {X;},5, to be a sequence of n independent and identically distributed (i.i.d) of

random variables with cumulative distribution function (cdf) F' defined by
Fz)=P(X; <z)fori=1,2,..,n.

We will be interested in the asymptotic behavior of the maximum of the sample {X;} ;>1 denoted
by
M, = max(Xy, ..., X,).

As the random variables are (i.i.d) then the cdf of M,, is given by
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The approximate distribution of the maximum value as n tends to infinity.

" 1 if F(z)=1,
lim Fy, (x) = lim {F(x)}" =
e e 0 if F(z) <1.
This means that the asymptotic distribution of M,, is a degenerate function. What we are interested

in with extrema is the existence of a non-degenerate law for the maximum, and the Extreme Value

Theorem provides an answer to this.

Theorem 1.1.1 (Fisher and Tippet (1928), Gnedenko (1943)) Let (X;);=1,...n be a sequence
of i.i.d random variables (rv) with cdf F. If there are two real sequences {an},~; >0 and {b,},>, €
R such that for all x € R,

M. —
lim P (nbn < x) = lim F"(anx +b,) =G, (x), (1.2)

n—oo a n— 00

then G (x) is of the same type as one of the following three distributions:

0 stx <0
Q. (x) = . with v >0 (Fréchet),
exp(—z 7)) siz>0
1 stx >0
U, (x) := . with v <0 (Weibull),
exp [—(—m)f?} siz <0

A (z) :=exp(—exp(—2)),for all z € R (Gumbel).

We refer to ®, V., and A as the extreme value distributions.

A detailed proof of this theorem is given in Resnick (1987)[25].

1.2 Distribution of Generalized Extreme Values (GEV)

The behaviour of ®, ,¥, and A is completely different but they can be combined into a single

distribution dependent on a single parameter that controls the tail thickness of the distribution.
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Theorem 1.2.1 If the limit (1.2)) exists, then

exp(—(1+ vw)ﬁ) if v # 0,

exp(—exp(—z))  ify=0.

G (z) :=

with (1 +~yx), = max (1+~x,0) > 0.

e G, (z) :Distribution G.E.V.

e G, (z) is a non-degenerate function and +y called the tail index or extreme value index.

The sign of the parameter 7 is an essential indicator of the shape of the tail:

1. The case v > 0, corresponds to Fréchet’s distribution with parameter 1/ > 0.
2. The case v < 0, corresponds to the Weibull’s distribution with parameter —1/v < 0.

3. The case v = 0, corresponds to Gumbel’s distribution.

Definition 1.2.1 The Generalised Pareto Distribution (GPD), with parameters v € R, and o > 0,

1s defined by its distribution function, given by:

1— (14 2z)77 ify #0,

L—exp(-2)  ify=0,

Gy o(z) =

or,t>0ify>0and 0 <z <L ify<0.

Remark 1.2.1 Depending on the values of the shape parameter v, the GPD includes the following

three distributions:

If v > 0 then G o (x) — Pareto law.
If v < 0 then G »(x) — Beta law.

If v =0 then G o(x) — exponential law.
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1.3 Domains of Attraction

Definition 1.3.1 (Domains of attraction) A distribution is said to belong to the DA of G, de-
noted F' € DA (G), if the distribution of the normalised mazimum converges to G. In other words,

if there exist real constants a, > 0 and b, € R such that

lim F"(apz +by) = G4 ().

n—oo

The table [I.1] presents the DA for some models.

Domaine of attraction Models

Fréchet (v > 0) Fréchet, Burr,Pareto, Cauchy,

Student, Chi-square.

Gumbel (y =0) Gumbel, Exponential, Log-normal, Gamma,

Logistic, Normal, Weibull.

Weibull (v < 0) Beta, Uniform.

Table 1.1: Usual models and their domaine of attractions

Characterisation of domains of attraction

Proposition 1.3.1 (Characterisation of DA(G)) F € DA(G,) if and only if, for a certain

sequence a, > 0 and b, € R,

lim nF(a,z +b,) = —log G (z), = € R,

where F :=1— F is the survival function, also known as the tail of the cdf.

Theorem 1.3.1 We said that:
1) F is the Fréchet domain of attraction, i.e. F' € DA(G) for v > 0, if and only if for allz >0

z) =2 Y'L(z im 7@@ =g/
F(x) = L( )(:)th RONE .

o
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2) F is in the Weibull domain of attraction, i.e. F' € DA(G.,) for v <0, if and only if for allz > 0

_ Flal —
F(zf' — 2™ =2 Y7 L(z) & lim M =z,
t—=0 F(xF —1t)

3) F is in the domain of attraction of the Gumbel distribution, i.e. F' € DA for v =0, with z¥ < oo

for all x € R
F(t+af(t)

li - = exp(—
R ) exp(—z),

where x¥" be the end point of F.

The characterisation of domains of attraction relies heavily on the notion of functions with regular

variations The latter will be discussed in Chapter 2.



Chapter 2

Regular Variation

In this section, we delve into functions with broad applications across various mathematical do-
mains, known as regularly varying functions, and explore their fundamental properties. Our goal
is to draw generalizations about these functions and their characteristics. Readers keen on further
exploring this theory are encouraged to reference seminal works by authors such as Bingham et al.

([E]) , Embrechts et al. ([10]), Beirlant et al. ([3]), de Haan, Ferreira ([I7]) and Resnick([24]).

2.1 Basic concepts

Definition 2.1.1 (Regular Variation) A measurable function h: Ry —— R, is regqularly vary-

ing at oo with index p € R and we denote h € RV,, if

I h(tx)
00 h(?)

=af, t>0.

Ezample 2.1.1 The functions x — xf and x — (log (1 + x))” are reqularly varying with index

p-function x +— sin(z) is not regularly varying.

Definition 2.1.2 A sequence (hy)nen of positive numbers is called regularly varying (at 0o) of

index p € R
hney

. P
lim x , forx >0,
n—oo n

and we write h, € RV,,.
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Definition 2.1.3 (Extended regular variation) A measurable function h : Ry — R is said to
have extended regular variation of index 1/v which is denoted h € ERV, ., if there exists a positive

a auziliary function a such that, for all x >0

i h(tz) — h(t) /7 —1
tmeoa(t) 1y 7

Theorem 2.1.1 If h is regularly varying with index p (in the case p > 0, assuming h bounded on

each interval |0,t], t > 0, then for 0 < a < b < oo,

im hitz) =z,
2 h(t)

uniformly in x € [a,b] if p=0, in x €]0,b] if p >0 and in z € [a,00[ if p < 0.

Definition 2.1.4 A measurable function h : Ry — Ry has regular variation of index p in the

neighbourhood of 0 denoted (h € RVPO), if for all x > 0,

h(tx) .
=0 ()

i.e. h(1/x) has a regular variation of index —p at infinity.

Lemma 2.1.1 Let h be a function with reqular variation of index p, then

. h(tx)
lim sup — 2P| =0, for all0 < a <b.
t—oo z€la,b] h(t)
If this
h(tx) = g(t)g(z) when  — co. (2.1)

1. (2.1)) is satisfied for all ¢ > 0.
2. There exists p € R such that g(t) = t*, for any ¢ > 0.

3. h(z) = 2P L(z) where L(z) is a slowly varying function (at co).

From this result, it is clear that to study regular variations, it is sufficient to study the properties

of slowly varying functions.
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Definition 2.1.5 A measurable function L : R. —— Ry has slow variation at oo with the index

p =0 and we denote L € RV, if

lim L(tx)

220
O

Example 2.1.2 Function x — logx is slowly varying. Indeed

log (¢ logt +1
g o8 (t2) _ ) lostdlogz s,
t—oo logt t—00 logt

Remark 2.1.1 A function with regular variation of index p € R can always be written in the form
h(z) = 2" L(z), where L € RVj.

Proposition 2.1.1 Let h: Ry — Ry be a regularly varying at oo with index p. Then

i) If h is increasing then p > 0.
ii) If h is decreasing then p < 0.

iii) If h is not decreasing and p € [0,00) then h™' € RV1.

Proposition 2.1.2 If h, hy and hy vary reqularly at infinity with indices p, p1 and ps respectively,
then
1) If h € RV,, then h™ € RV,,.

2) Ifp#0

0 ifp<0,
lim h(z) = fe

oo if p>0.

3) If hy, ha € RV, and hao(x) — 0o as x — oo, then hy o hy € RV, ,,.
4) If h1,he € RV, then hy + ho € RV, where p = max(p1, p2).
5) (Potter, 1942) if h € RV,, then there exists to such that for all x > 1, t >ty :

h(tx)
h(t)

(I—-e)zf < < (1+e&)zP*e, for any e > 0.

6) Suppose that h is increasing, h(oo) = oo, and h € RV,, 0 < p < oo, then,

h™ € RVP71 .
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7) Suppose that hi,he € RV,, 0 < p < o0, then for 0 < ¢ < oo,
hi(x) « cha(x), x — o0,

18 equivalent to

it (z) - c_pflhgl(;zc)7 T — 0.

8) If h € RV, p # 0, then there exists a function h* which is absolutely continuous and strictly
monotonic satisfying

h(z) «~ h*(z), © — oco.

Proposition 2.1.3 (Drees(1998)) If h € RV,, then there exists ty = to(e,0) such that, for t,

tx > 1o :

p

h(t
‘ (tz) < emax(z"t°, 2P~?), for any e, § > 0.

h(t)

Theorem 2.1.2 (Karamata theorem) Let h € RV, and locally bounded on xo < z < 00,

1) If o > —1, then,

2) If o <=1 (Ifo = =1 and [° h(t)dt < +00), then,

lim xh(x)

Jim g = (c+1). (2.3)

Conversely, if h wverifies (2.2) for —1 < o < oo, then h € RV,. And if h verifies (2.3|) with

—o0 < 0 < —1, then h € RV.

Proposition 2.1.4 (Karamata’s representation ) A function h : Ry — R has regular vari-
ation of index 1/, if and only if there exist two measurable functions ¢ : Ry — R andr : Ry — R
satisfying

lim ¢(t) =¢ >0 and lim r(t) =0,

t—oo t—oo

h(t) =t c(t) exp {/t: T(tt)dt} .

such that

For some ty > 0.

10
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Theorem 2.1.3 (Karamata’s representation ) L € RV, if and only if can be represented in

L(z) = c(z) exp {/z T(t)dt} Cz>a,

t

the form

where ¢, v measurable functions, and

lim c(x) = ¢p €]0,400[ and lim r(t) = 0.

Tr— 00 Tr— 00

2.2 First order conditions

In the contex of pareto-type models, we will give three versions of the first condition of regular

variation, in terms of F' the quantile function (or the generalized inverse)

Q(s):=F ' (s)=inf{zx, F(z)>s}, 0<s<1,

and U (¢) :=Q (1 —1/¢).

e As a function of F : for all z > 0,

=27 F(r)=2 7L(a), {FeRV @FEDA((I)%)}. (2.4)

1
1
e As a function of @ : for all s > 0,

lim QU = ts)

im Sy = e Q) =5 L), {ea-s)erv, & Fepa(o

2=
~—
——

e As a function of U :

. U (tx)
o0 U (2)

™

~——

—
—~
[N}
D
~

= a7 for o> 0,{U € RV, & F € DA(®

Proposition 2.2.1 (First-order condition of Haan and Ferreira (2006)) The following state-

ments are equivalent:

e [ is of Pareto-type:
F € DA(®y,), v>0.

11
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e U is regularly varying at oo with index v > 0:

Ulte)
Jm 0t =z, z>0.

e F is regularly varying at oo with index —1/y < 0:

F
T ) S VY
t—o0 F(t)

e Q(1 — s) is regularly varying at 0 with index —y < 0:

Qi)
Woa—y

=57, 0<s<1.

In a semi-parametric approach, a first-order condition is generally not sufficient to study to study
the properties of tail parameter estimators, in particular asymptotic normality. In this case, a

second order condition is required. The most common are the following.

2.3 Second-Order conditions

Definition 2.3.1 The tail of cdf F, F € DA(®,), v > 0, is said to satisfy the second order

condition of a regular variation at oo if one of the following (equivalent) conditions is satisfied:

e There exists a real constant p < 0 and a function of constant sign A(t) — 0 when ¢ — oo,

such that for all z > 0,
U(tz) x 2 — 1
lim 2 = . (2.7)
t—oo A(R) p

o There exists a real constant p < 0 and a function of constant sign A*(¢f) — 0 as ¢ — oo such

that for all > 0,
E(tz) -
lim L0 53

t—oo AX(t) p

2
|
I
8
>
|
—_

(2.8)

e There is a real constant p < 0 and a function A**(s) — 0 as t — 0 such that for all z > 0,

Q—tx)  —~

X P _
lim -2U=9 e ity (2.9)
t—oo A*(t) P

12
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where p is a second-order parameter that controls the convergence velocity in , and
where A check: |A| € RV,.

The functions A, A* and A** are regularly varying, A* = A (1/F (t)) and A*™* = A(1/t). Their
role is to control the speed of convergence in 7 and . The relations above may be

reformulated respective:

i log %(ff)) —logzY 4r_1
im =
t—o0 A(t) p
t=se  A(1/F (1)) o
and QU1 -ta)
. log Gy +7vlogz Car—1

2.4 Potter’s inequalities

The uniform version of the fist order condition of regular variation functions are expressed by

Potter’s inequalities.

Definition 2.4.1 (Potter, 1942) Suppose h € RV,. If §1,02 > 0 are arbitrary, there exists to =

to(d1,92) such that for t > tg, ta > to,

(1 —61) 2% min (x‘h,a:_‘h) < h(tz) < (14 61)z" max (3:62,95_52) .

By using these inequalities we show that:

Theorem 2.4.1 If h is regularly varying with index p (in the case p > 0, assuming h bounded on

each interval 10,t], t > 0, then for 0 < a <b < o0,

lim h(tx)

0 = xP, uniformly in x.
(a) = € [a,b] if p=0,

(b) = €]0,0] if p > 0,

(c) = €a,o00]if p <O.

Theorem 2.4.2 (Local uniform convergence) If h is reqular varying function with index p

13
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then,
h(tz
Jim sup | =] <o
where
[a, b] if p=0,
A= 10,0]  assume h is bounded on ]0,b] if p > 0,
[a, 00| if p<O.

2.4.1 Uniform variation of the first order condition

Since F € RV_y,, then
F
(1 —61)z~ Y min(2%,27%) < ="~

Likewise, since U € RV, then

(1 —61)z” min(z°2,27%) < < (14 61)z” max(z°2, z7%).

We also have @ (1 —-) € RV_,, then

Q1 —tr)

(1 —81)z™ Y min(z%, 27%2) < 22 < (14 6;)z " max(2%2, 27°%).

Q(1—1)

2.4.2 Uniform variation of the second-order condition

Since U € RV,,, then

v ~* o P —1

< ez’ P/ max(a?, 27?),
A(t) p

likewise, we have F € RV_, /~» then

F(tr) _ —1/y
M _ x—%M < ex V7PV max(29, 27%).
A(t) P N

Where we also have @ (1 —-) € RV_,, then

Q(1—tx) _
ou—n ¢ a1

A" T

< ex VPV max(x®, 27°).

14

(2.10)
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Next we only consider the Fréchet domain of attraction and its relationship of the regular variation

functions.

2.5 Fréchet domain of attraction

Theorem 2.5.1 F € DA (®y,,) if and only if F € RV_y,.. In this case, a, = F~'(1 —n™") and
b, = 0.

Gnedenko’s theorem, posited in 1943, provides a convenient framework for characterizing distribu-

tions F' € DA ((IHM) In fact, we must verify

F(t
lim ﬁ =2~ Y7, for any = > 0.
t——+oo F(t)

As exemple, the strict Pareto distribution is givne by

F(z)=1—z"7, forz>1.

It is clear that

—1/v

t t

F((f)) B (<a;)_m =/ for sy 2> 0.
t

So F e DA (@1/7) and F € RV_y,.

On the other words, the cdf F' belongs to the Fréchet domain of attraction that is
F(z) =27 L(z), for z > 0,

where L € RVj.

The following proposition gives a sufficient condition for F' € DA (<I>1 /7) .

Proposition 2.5.1 (Von Mises condition) Let F' cdf be an absolutely continuous density func-

tion f satisfying:
1
lim 1;]‘(:1:) =—->0,

then F € DA(®,,).

15
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Remark 2.5.1

e If F'is of a Pareto model, then F' belongs to the Fréchet domain of attraction.

e Along this memory, we consider only the Fréchet domain of attaraction.

2.6 Example of Pareto-type distributions

Burr model

e Probability density function:

o) &L e s
[ (@A c0) = (/o) (4™ , for o,c, A > 0.
0 ifz <0

o Cumulative distribution function:

1— (1 + ((x/a)C)**> if 2 > 0,
0 if x <0.

F(xz; M\ ¢ 0) =

e Quantile function:

1/c
Q(s;)\,c,o):0((1—5)_1”71) , 0<s<1.

If ¢ = 1, Burr’s model correspond to the Pareto one.

Fréchet model

e Probability density function:

% (55 e (- (55 7) e

0 ifex<p

(@57, p,0) = , for u>0,v,0 > 0.

e Cumulative distribution function:

exp (f (%)71/7) if x > p,

0 if x < p.

F(x;y,p,0) =

16
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e Quantile function:

Q(s;y, o) =p—oclog7s, 0<s<1.

This is some of other Pareto-type models:

Model F (z) f(z)

Invers burr (1+ )\x_‘s)_’ﬁ BASz 071 (1 + /\x_é)_ﬁ

2z c C 1 £
Levy ate /o | VE e (-nt)

Lomax 1—[14_%]’0‘ %[1_,_%] o
a)(z/a)? 1

Log-logistique | i3 5= Cey

Pareto 1— (%)a (%)

Table 2.1: Pareto-type models

17



Chapter 3

Consistency and asymptotic

normality of Hill’s estimator

3.1 Construction of Hill’s estimator

In this section, we deal with the estimation of the tail index v > 0 whenever F' € DA (G,), on the

other terms F satisfies the first order condition of regular variation function:

lim F;(tx)

— 1/
M F o x , for > 0. (3.1)

To this end, we first introduce the following result:

Proposition 3.1.1 Assume that F' satisfies the assumption, then

> _F(t
/ aflf(z)dx—wyast—u)o,
1 F(t)

which is equivalent to
1

F(t)/f log (z/t) dF (z) — v as t — . (3.2)

18



Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

Proof. From Potter’s inequalities above, for any = > 1, € > 0 and for large ¢, we have

F(tz)

l—ea V7 < =2 < (146 z /e
(1-9 Sl <u+o
which implies that
11— L F(tx) 1
1—6x 1/y-1 6<£U 1 \ < 1+ T 1/v—1+€
(1-9 A<+
It is clear that
(1- e)/ e Ve < / x_lﬁdx <(1+ e)/ ey,
1 1 E(t) 1
We have [z~ 1/7~1+edy = 1. and [ eV = Sorq therefore

—€ 7 Oox_:lM T € 7
(I—e¢) </1 F(t)d <1+ )1_%.

By letting € | 0, yields
> | F(t
/ aflf(x)dxﬂfy, ast — oo,
1 F(t)

which completes the proof of the first assertion. The second one comes by using an elementary

integration by part that we omit further details. m

Let us now derive the so-called Hill’s estimator of the tail index ~. Let X;., < ... < X,,.,, be the
order statistics pertaining to the sample X1, ..., X,, from the cdf FF € DA (G,) . Recall that, for any
sequence of integer k = k,, such that k — oo and k/n — 0, X,,_j., — oo almost surely. Then by

substituting, in (3.2)) , t = X,,_k., and F by its the empirical counterpart

Fn (Jj) = n_l ZH{X‘LTLSm}’
=1

we derive Hill’s estimator given by

~ 1 /°°
Yo = =——— log (/X pn_gn) dF, ().
Fn (Xn—k:n) Xn_kin
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

Notice that F,, (X,,_g:n) = k/n, then

T = [ oo s 108 (/X son) 4F (0
0

- k
! 1
= % i:;Jrl log (Xi:n/Xn—k:n) = E ; log (Xn—i+1:77,/Xn_k:") .

There by changing ¢ by n — ¢+ 1, we end up to final formula for Hill’s estimator

k
N 1
YH = % ;log (Xn—i-l-l:n/Xn—k:n) .

3.2 Limit theorems for Pareto-type intermediate order stat-
istics
Let X5., < ... < X,,.,, be the order statistics pertaining to the sample X7, ..., X,, for (rv) of regularly

varying distribution function F with negative index (—1/7), notation F € RV (_1/) that is:

F (ot
lim P(X/t> 0> X > ) = lim )
t—o0 t—o0 F(t)

=z Y7, >0

In terms of the quantile function Q = F~!, the previous limit is equivalent to:

Q1 —st)

lim ——2% =577 . .
tll%lQ(lft) 577, 8>0 (3.3)

Some times it is convenient to rewrite the previous limit into:

lim U(st)

=37 4
A5 T ) sT, s> 0, (3.4)

where U (s) =Q (1 —1/s), s > 1.

Theorem 3.2.1 Let F € RV(_1/y) and 1 < k,, < n be a sequence of integers such that k, — oo

and ky/n — 0, then
Xn—k+1:n

Q1 —ky/n)

P
— 1, as n — oo.

The proof Theorem requires the propositions below.

Proposition 3.2.1 Let Uy, ...,U, be a sample from a rv U uniformly distributed on (0,1) and let
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

Ey, ..., Eq 41 be a sample from a rv E, independent of U, of standard exponential distribution, i.e.

n D SL "
{Ui:n}izl - { } B

Snt1) i

E follows exp (1). Then

where S; =Y " Ei,i=1,.,n+ 1

Proof. See the representation (4.24) page 44 in Ahsanullah et al. (2013)[1]. Indeed, observe

that jointly

Sl' Sz D F(Z71) D ; ; 3
= = = bet — 1 =1,..
Sn+1 Si+ Sn—it+1 F(i,1)+1“(n—i+1,1) 6a(27n v )71 ol

On the other hand, we have jointly Uj., L beta (i,n —i+ 1), it follows that jointly

Si

beta (i,n —1i+1).
Sn+1 ( )

Proposition 3.2.2 Let 1 < k,, < n be a sequence of integers such that k := k,, — oo and k/n — 0,
then

nUkn/k 21 and n (]- - Unkarl:n) /k L 1, asn — oo.

Proof. From Proposition [3.2.1] we write

S
Uk:n 2 i

Sn+1

Observe that
n & n+1
n+1k Sn+1 '

We have 25 — l,asn — oo and from the law of large numbers, both % 2 1 and % L lasn— 0,

therefore nUy.,, /k 2, 1. Since Ug.p, 2y Un—k+1:n then we also have n (1 — Up_gt1.0) /k 21, as

n — oo as sought. m

We have now all the ingredients to prove Theorem [3.2.1

Proof of Theorem [3.2.11 We first note that
Xn—k+1:n 2 Q (Un—k—i-l:n) = Q (1 - (1 - U7z—k+1:n)) .
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

We set s, :=n (1 — Up—g+1.n) /k and t,, = k/n, it the other terms
D
Xn—k:-‘rl:n = Q (1 - tnsn) .

By applying inequality (2.10)), we infer that

Q(]- - tnsn)
Q(l - tn)

(1 —¢€)s,, " min(sy, s, ) <

< (1+€)s,, " max(s;,, s, ).

n» n

From Proposition , we have s, - 1, therefore with probability tending to 1, we get

Q(l - tnsn)

(1—¢)< Qi —t,)

< (1+e),

this means that

Xn7k+1:n _ Q(l - tnsn) ﬂ) 1. as n — 0o

Q(l 7kn/n) Q(l 7tn)

the proof is now completed.

The following Theorem establish the asymptotic normality of the ratio

Xn—k+1:7z/Q (1 - kn/n) .

To this end, we require to the second order condition corresponding to the first one (3.4) that is

lim T (3.5)
T Y R |

where the p < 0 is the second order parameter and |A| € RV(_;/,) tending to zero as t — oo.
When F satisfies assumption (3.5) we write F' € RV _,,). See for instance the limit (2.3.22) in
page 48 of de Haan and Ferreira (2006) [17].

Theorem 3.2.2 Let F € RV(_1/y) and 1 < kn < n be a sequence of integers such that k, — oo,
kn/n — 0 and VEA (n/k) = O (1), then

\/E(m_l)gfv(oﬁ)a asm — o0

The proof Theorem [3.:2.2] requires the propositions below.
Proposition 3.2.3 Let 1 < k, < n be a sequence of integers such that k := k,, — oo and k/n — 0,
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

then
VE (U Jk — 1) 2 N(0,1) and VE(n (1 = Un—jsrm) /k — 1) 2 N (0,1).

Proof. We already write that
n Sgn+1

D
Ukn/k = — .
" k'/ 1’L+1]€Sn+1

It easy to verify that
VEk

k (nUgsn [k = 1) = Tog + Tpg — ——,
VE (nUgin [k = 1) = Tp1 + Tpa ]

where

n Sk n+1 n n+1
Th = k{— -1 d T, :=VEk —-1].
! n+1f(k )Sn+1 o ? fnJFl(Sn-&-l )

Using the central limit theorem, we have vk (Si/k — 1) SN (0,1) and by the law of large numbers

Spi1/ (n+1) 51, it follows that T}, A N (0,1). The second term may be rewritten into

k n Sn-i—l n+1
Ty = —1/ % 1 .
2 \/;n+1‘/ﬁ(n+1 )sn+1

Again by using the central limit theorem, we have \/n (f{ff - 1) Y (0,1) then \/n (i’fll - 1)

is bounded in probability as n — co. On the other hand S, 1/ (n+ 1) 2 1 and k/n — 0, therefore

T2 2 0. It is obvious that T\{El — 0, which completes the proof. m

Proposition 3.2.4 (Potter’s inequalities) For any e > 0, there exists to = to(€) > 1 such that

Jort > 1o, ts > to,
%(stt) -7 s’ —1
®) -7 < es7T¢ max (SE, 3_5) ,
Ao (t)

for some Ag (t) ~ A(t) ast — oo. See for instance de Haan and Ferreira (2006) [17].

All the materiels now are available to show Theorem (3.2.2]) .

Proof of Theorem [3.2.2] Observe that

Xn—k—i—l:n 2 Q <1 -

where

t, :=n/k and s, :=

n (]- - Un7k+1:n) /k'
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

It is clear that

X n
\/% (k+1) - 1> = Snl + SnQa

Q(l—k/n
where
U tn n
S, = Vk ([U((ts)) — s%) and Sy 1= \/E(s?Z —-1).
Let write
Ug("zs";) —s) P —1 sP—1
Sn1 := VEAg (t,) A" — sy + VEAp (t,) 57—,
0 (tn) P
From Proposition we have
U(tnSn) ~
U(t,) Sn o4 s1p1 -1 y+e € —€
— S, < €S, max|(s,,s, ),
O ( )

and by Proposition PRLN 1, it follows that

U(tnsn)
U(tn) B S;YL — g 857, —1 ﬂ) 0.
Ag (tn) "

First note that [A] € RV, then |Ag| € RV, too, then since VEA (t,) = O (1) its implies that

VEAg (t,) too. Since s Sf'/;l 2,0 then S,,; 2 0 as well. Let now focus on the second term S,.

Making use of the mean theorem we write
Spo = VE(s) —1) =vVk (sp — 1) )71,

where ¢, is between 1 and s,. From Proposition we have s, 2, 1, it follows that c, 21 as

well. On the other hand,

VG0 =VE (g )

(1 - Unkarl:n
1
-
n (1 - Unkarl:n) /k

\/E(TL (1 - Un—k+1:n) /k - 1) .
Again from Proposition n (1= Up_gy1m) /k 2 1 and by Proposition we have
VE 1 =Unpi1m) /k—1) 2 N(0,1),

therefore S,2 SN (0, 'y2) , which completes the proof.
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

3.3 Empirical tail processes and applications

The uniform tail empirical process pertaining to a sample Uy, ..., U, from an uniform (0,1) (rv) is

defined by
n

an (s) = Vk (EGn (ks/n) — s) , 0<s<1,

where uniform
1 n
T ZH(UiSS)v for 0 <s<1.

i=1

G, (s) :=

Denote the corresponding uniform distribution function, where 1 < k,, < n be a sequence of integers

such that k,, — oo, k,/n — 0.

Theorem 3.3.1 There exists a standard Wiener process {W (s); s > 0} such that for every (0 < e < 1/2:

sup s~ |ay (s) — W (s)] 20, asn — oc.
0<s<1

Let X1., < ... < X,., be the order statistics pertaining to the sample Xi,..., X,, for random
variable (rv) of regularly varying distribution function F' with negative index (—1/v), notation

Fe RV(Z1/~)- The empirical df is defined pertaining to the sample X, ..., X, is defined by

1 n
F% = - Iix, )
(@) =~ ;:1: (Xi<z)
where T4 (-) denotes the indicator function. The corresponding tail empirical process is defined by

Dn (.’L’) = \/E{ Fn (CCank+1;n) — .’I}_l/’y} , T > 0.

>3

Theorem 3.3.2 Assume that F € RV (—1/y) and let 1 < k, < n be a sequence of integers such

that k,, — o0, ky,/n — 0. Then for every, o >0,0<e<1/2:

sup |k~Y2D,, (z)| £ 0, as n — oco.
x>x0

L= (2)
In addition if F € RV(_l/W), then

sup £(1/2-9/7

T>To

Dy (z) — {W (gfl/v) — VW (1)} - xl/vxp/;v_l\/mo (n/k)| 20, (3.6)

as n — oo, where {W (s);s > 0} is the same standard Wiener process given in Theorem See
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Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

de Haan and Ferreira (2006) [17) (pages 52 and 161).

Theorem 3.3.3 Let F € RVEQ_)l/,y) and 1 < k, < n be a sequence of integers such that k, — oo,
En/n — 0 and VEA (n/k) = O (1), then

\/E(Cm - 1) =W (1) + o, (\/%A(n/k)), asn — oo.

We deduce that
Xn—k+1: D
\/E(nkﬂ'n—l>—>/\/' 0,7%), asn — oo.
Q(1—k/n) (0.4%)

Proof. Let us make the following decomposition

ankJrl:n

—————— — 1 =Ty + Tha,

QU k/n) e
where

Xn—k+1:n —

Thwi=———/"—797/9/—"-— 1—U,_ga1:
nl Q (1 — k/n) (n( Un k+1.n) /k) )

and

TnQ = (TL (]. - Un,kJrlm) /k)77 — 1.

From representation of the proof of [3.2.2] we have

U(tnsn) _
U(tn)

AO (tn) '

v
Sn

Tnl - AO (tn)

and also we showed that T;,; = 0, (Ao (t,)), as n — oo. Let us now treat the second term, to this

end let us first recall that we write 1 — Up,—g11:n s Uk.n, its follows that
T 2 (nUjin Jk) ™7 = 1.

By using the mean value theorem (finite increments theorem), there exsits a constant ¢ betewen x

and b such that
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If we set f(z) =277, f' () = —yoz =77 L, b = nUy.,/k and = = 1, then

The = (MUpn JK) 7 =1 = (nUpp k) — 177

= '7777:771 (1 = nUkn/k),

were 1), is between 1 and nUy.,/k. We already showed that nUg.,/k = 1 + o, (1), this means

nn "' =1+ o0, (1) too, therefore
Too = MUk /k) T = 1= (140, (1)) 7 (1 — nUp.n/k).
On the other hand, it easy to verify that

n (WUgn [k) = VE (%Gn (k (WUgon /) /1) — U /k:) .

Let us denote nUg., /k = s, yields

o (s) =Vk (%Gn (ks/n) — s) .

We have Gy, (Ug:n) = k/n, then 2G,, (Ug.n) = 1, therefore
ap (NUgn/k) = \/%(1 —nUgmn/k),

it follows that

\/ETHQ =1+ Op (1)) van (nUk:n/k)

where a, () being the uniform tail empirical process defined above. Making use of Theoremm

we get

ay (NUgin /k) =AW (nUk.n k) + 0p (1) .

Using similar argument as used in Benchaira et al. (2016) [4], we infer that
W (nUg., /) — W (1)] < 2¢, almost surely,
therefore W (nUg.n/k) = W (1) + 0, (1), this means that

VETns = (140, (1)) v (W (1) 4 0, (1)).
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Since is stochastically bounded, W (1) = O, (1), then VkT,s = yW (1) +o0, (1) . Finally we showed
that

Xn—k'-l—l:n _ _ o
ﬁ(@(l—k/n) 1) AW (1) + o0, (1).

Since W (1) ~» N (0,1), then

Xn—k+1:n N N 2
ﬁ(@(l—k/n) 1) N ).

Theorem 3.3.4 Let F € RV (—1/y) and 1 < ky, < n be a sequence of integers such that k, — oo,
kn/n — 0, then

~ P
YH — 7, asn — Q.

2)

In addition if F € RV(—1/7)

then
! 1
VEGH =) =7 [ 571 W () = W (1) ds + = VRA@/k) + 0, (1),
provided that VEA (n/k) = O, (1) . Moreover, if VEA (n/k) — X < oo, then
A

\/E(/'}?H_'Y) B)N<1p,'}/2>, as n — oQ.

Proof. We have

Observe that

AH — 7 = /100 z! (%Fn (xXn—km) — xil/v) dr = /00 x ! {kfl/QDn (az)} dx.

Let us fix 0 < € < 1/2 and write

/oo x_lk_l/QDn (x) do — /OO 2 1-(1/2=¢) /v {x(l/Q—e)/'yk—l/QDn (JJ)} der.
1 1
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It is obvious that

/ e k"Y2D, (2) dx
1

< {Sup‘$(1/2_e)/7]{)_1/2Dn (x)‘} {/00 x_l—(l/Q—e)/'ydx}.

r>1 1

From the first part of Theorem ([3.3.2), the first factor converges in probability to zero as n — oo.

For the second factor, we have

o0 1 00
“1-(2=) /vy — = (-2 T
/1 v T T A2—0 /y {x L 1/2— ¢

Since 0 < € < 1/2, the previous integral is finite and equal to ﬁ, and therefore 75 2 ~ as

n — oo. Let us now establish the asymptotic normality of 7. On again by using representation,

Vi@ —7) = /OO z7'D, (z) dz.

1

Making use of the second part of Theorem (3.3.2) , we write
\/E(;Y\H - "Y) =Th1 + Tho + Tha,

where

T = /loo oL {Dn () — {W (m_1/7> — VW (1)} - m_l/'yxp/;’y_l\/EAo (n/k)} de,

oo —p/v _
Tho := / z ! {xl/”’wl\/EAo (n/k)} dz,
1 Py

and

Ths = /100 z! (W (m_lm) —z YW (1)) dx.

By using weak approximation (3.6]) , we obtain
o0
T =o0p (1)/ 12797y — 0, (1), as n — oo.
1

For the second term, we have

Tno = VEAo (n/k) /100 z! {zl/vxp/v_l} dx = M.

Py 1—-p
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It follows that

Vk@n —7) = /100 z ! (W (w‘l/’y) —z Vw1 )) fAO (n/k:) +o0,(1).

Next we show that

o? := var [/100 ! (W (xil/”> — VW (1)) d:c} =72

Indeed, it is clear that

oo

E [/100 2! (W (;«-1”) - x_l/"W(l)) da:} :/1 E [m—lw (x_l/'y) eVt ()] da,

because E [W (s)] = 0, for any s so we have

E Uloo z! (W (:fl/W) — VW (1)) dm] =0.

Then

which equals

E(/“x—l (W( 1/7 _w )(/1 - 1/7 _ —1/7W(1))dy)
_E/ / (et (W (=77) =W ) (v ( ( ) =y W (1)) dady
ot el
RS 1~>—w-1~w<1>> (¥ 57 =7 )

Using the obvious formula (a — b) (¢ — d) = ac — ad — bc + bd, we decompose the previous integral

I := / / Ty 1E 1/7 W(yil/v)} dzdy,

/ / T 1E 1/7 71/”’W(1)}dzdy

into the sum of
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_/100 /100 Yy 'E [m—l/”W(l)W(y‘l/'*)]dxdy,

and

I 7/ / Yy E [z~ VW (1) *1/7W(1)} dwdy.

Let us begin by I;. Observe that
I, = /100 /100 1y 'E [W (x_l/“’) W (y_1/7>] dxdy
= /100 /100 z~ 1y~  min (W (zfl/“’) W (y*1/7)> dxdy.

Let us use the change of variables s = 2~/ and t = y~!/7, which is equivalente to = s~ and

y =t"7, it follows that

0 40
L = / / (3_7)_1 (t_"*)_1 min (s,t)ds Yds™7.
1 J1

Note that ds™ = —ys~7"!ds and dt =7 = —yt~7~1dt, then

I = / / ) " min (s,t) (—ys 77 1ds) (=t tdt)

. /O (/0 s~ min (s, t)ds)d

Observe now that

1t
11:72// ~'t ' min (s, t) dsdt + ~° // ~min (s, 1) dsdt,
o Jo
1t 11
11:72/ / sfltflsdsdtJr’yz/ / s~ Mtdsdt,
o Jo o Jit

which equals

then

1 t 1 1
I =~2 (/ fl/ ds) dt + ~* (/ / slds>dt
0 0 0 t

1
=~% 72/ log tdt = 2+2,
0
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since — fol logtdt = 1. For Iy we have

b= [ [ ety min (2107, 1) dody
1 1
2

_ _/ / Ty Y e Y dady = — (/ xl/vldm> = 42
1 J1 1

By similar arguments we also show that I3 = —y2. The fourth integral equals

Iy = / / gz V= ly~ g [W2 (1)] dzdy
1 J1
2

:/ / e~V TV g dy = (/ w_l/w_ldx> =2,
1 N1 1

Finally we have I = 292 — 272 +~2 =72,

3.4 High quantile

The high quantile estimation of heavy tailed distributions has many important applications. There
are theoretical difficulties in studying heavy tailed distributions since they often have infinite mo-

ments.

Definition 3.4.1 The quantile of order p is the number x, denoted by
zp = inf{z, F (z) > p}, for all small p.
Definition 3.4.2 We call extreme quantile the quantile of order (1 — p), defined by
z, =inf{x € R, F (z) > p} = F~* (1 —p). for all small p.
Weissman (1978) proposed the following semi parametric estimator of a high quantile.

Weissman estimator

Weissman’s estimator, Weissman (1978) [28], of the Pareto-type tail distribution function F := 1—F
is defined by

F(z)= - < v ) , for all large x,

32



Chapter 3. Consistency and asymptotic normality of Hill’s estimator.

where 7y is the so called Hill estimator of the tail index v.The corresponding high quantile estimator
is

F! (1 - p) = X’n—k:n(ﬁ)iﬁy\H, for all small p.
np
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Chapter 4

Simulation study and real data

applications

4.1 Simulation study

In this section, we check the finite sample behavior of Hill’s estimator g in terms of consistency
and asymptotic normality. To this end, let us consider sets of data drawn from three parameters
Burr (A, ¢,0) and three parameters Fréchet (v, y, o) models with respective cdf’s

c\—A .
1—(1+ (/o ifz>0
F (z;\,¢c,0) = ( (/o)) ) , 0,¢,A >0,

0 itz <0

and
exp (— (%)71#/) ifx>up

0 ife<p

F(z;7y,p,0) = . py0,7y > 0.

First, we fix the values (0,1) for (u,0), {0.5,1,1.5,2} for ~, 0.25 for A, then by using the notation
¢ = 1/(yA) we get the corresponding values {8,2,1.333,1} for ¢. Then we vary the common
size n = 1000, 5000 of sample (Xji,...,X,), then for each size, we generate 1000 independent
replicates. For the selection of the optimal numbers of upper order statistics, denoted E, used in

the computation of 7y, we apply the algorithm of Reiss and Thomas:

o~

k

o1 1731~ s NN ~

k := arg  min E '3 Ay (i) — median {75 (1), ..., 3m (k)}]. (4.1)
i=1
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Chapter 3. Application and simulation

The results are summarized in two Tables and As illustration of the consistency of 7y, we
plot this one as function of sample fraction k, see Figures[4.1and [£:2] For the asymptotic normality
we fit Z;, = vk (g — ) /7y by the normal distribution and then we plot together the histogram
and the corresponding density of the fitting normal model, see Figures [£-3] [£-4] and [£:6]

n | 3 | k| 3 k| A5 | k]| 5 |k

1000 | 0.695 | 21 | 0.867 | 95 | 1.603 | 100 | 1.946 | 100

5000 | 0.668 | 100 | 1.043 | 158 | 1.513 | 172 | 2.002 | 109

Table 4.1: Computation of optimal sample franction k and its corresponding Hill’s estimator for

Burr’s model.

~v=0.5 =1 ¥=1.5 v=2

n | 7 |k | A | k| A3 | k| 3 |&

1000 | 0.443 | 19 | 0.992 | 100 | 1.421 | 100 | 2.281 | 35

5000 | 0.5473 | 500 | 1.180 | 500 | 1.688 | 496 | 2.021 | 499

Table 4.2: Computation of optimal sample franction k and its corresponding Hill’s estimator for

Fréchet’s model.

H
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H
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\

o |
| B — E— o | B — E—
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Figure 4.1: Performance of Hill’s estimator for a sample of size N = 1000 (Burr’s model) with
v ={0.5,1} top panel and v = {1.5,2} (bottom panel).
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Figure 4.2: Performance of Hill’s estimator for a sample of size N = 5000 (Burr’s model) with
~v={0.5,1} top panel and v = {1.5,2} (bottom panel)

e Asymptotic normality of Hill’s estimator for v = 0.5 (Burr’s model):

Asymptotic normality of Hill's estimator

04

- p.value = 0.6686

Density

-3 -2 -1 0 1 2 3

Figure 4.3: Asymptotic normality of Hill’s estimator for v = 0.5 (Burr’s model).
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e Asymptotic normality of Hill’s estimator for v =1 (Burr’s model):

Asymptotic normality of Hill's estimator

04

- p.value =0.1204

Density

Figure 4.4: Asymptotic normality of Hill’s estimator for v =1 (Burr’s model).

e Asymptotic normality of Hill’s estimator for v = 1.5 (Burr’s model):

Asymptotic normality of Hill's estimator
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Density
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00

Figure 4.5: Asymptotic normality of Hill’s estimator for v = 1.5 (Burr’s model).
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e Asymptotic normality of Hill’s estimator for v =2 (Burr’s model):

Asymptotic normality of Hill's estimator

04

- p.value = 0.2621

Density

Figure 4.6: Asymptotic normality of Hill’s estimator for v = 2 (Burr’s model).

4.2 Real data applications

In this section, we deal with dataset that belong to the Fréchet domain of attraction; then we choose
among others the Burr (A, ¢, o) distribution as the fitting model. The selected data are given in
Table in which the MLE parameters estimation and the p-values of Cramer-Von mises (cvm)
and Kolmogorov-Smirnov (ks) goodnes-of-fit tests (goft) are given. The fitting some of the data
are illustrated in Figures [£.9] [£:10] [£:I1] and [£:12] We note that all these data are of "small sample

size". The obtained p-vlaue are all greater than the level 0.05, this means among other that are of
pareto-type data. The EVT based estimation requires a large sample size to get meaningful results,
then the selected data do not be considered in our study. To this end, we selected other data which
meet our need, namely the financial data, the Dow Jones Industrial Average (Dow Jones), the S&P
500, the Russell 2000, and individual stocks such as Apple (APPL), experience daily fluctuations
in sales volumes and returns. These fluctuations are vital indicators for understanding market
dynamics and investor sentiment, crucial for effective risk management. The NASDAQ Composite
Index, which heavily represents technology stocks, significantly contributes to this daily volatility.
By incorporating the concept of Value at Risk (VaR) into our analysis, we can quantitatively assess
the potential downside risk associated with these fluctuations. Therefore, by examining daily sales

volumes, returns, and VaR for these markets, we gain a comprehensive understanding of their
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behavior and the associated risk levels.

Next will deal with the asset returns of the four financial maktes, namely S&P 500, APPL, Russell
2000 and NAS daq and the exchange rates JPY/USD and EUR/USD. In the first step we test the
belonging of these data to the Fréchet domain of atrraction this by using the bloc maxima method.
The results are summarized in Table The fitting of the S&P 500 stock market is illustrated is
Figure In the second step, we fit our data by Burr (A, ¢, o) model. The results are summarized
in Table The given fitting of the S&P 500 stock market is illustrated in Figure [£.7]

MLE parameters estimation p-value goft
data-name (package) A c o cvm p-value | ks p-value
cancerl 2.103 1.427 12.232 0.996 0.858
lung.cancer (SMPracticals) | 7.490 1.353 | 10718.88 0.959 0.835
nidd.thresh (evir) 0.072 | 44.917 | 68.123 0.618 0.642
nidd.annual (evir) 0.192 | 10.752 | 79.011 0.520 0.978
Cars93 (MASS) 0.809 4.127 15.994 0.873 0.774
accdeaths (MASS) 0.137 41.59 | 7677.694 0.222 0.888
Insurance (MASS) 1.168 1.122 | 166.003 0.991 0.990
WorldPhones (datasets) 0.323 2.032 | 1376.847 0.463 0.383
Nile (datasets) 1.050 8.731 | 904.092 0.730 0.906
euro (datasets) 0.204 1.906 1.775 0.958 0.479
oldage (evd) 308.597 | 71.066 | 112.940 0.381 0.102
oxford (evd) 1.497 | 31.149 | 86.881 0.871 0.650
lossalae (evd) 1.740 | 1.090 | 10717.44 0.744 0.835
lisbon (evd) 1.037 | 12.728 | 100.769 0.964 0.796
fox (evd) 325.57 | 2.839 34.166 0.805 0.845
failure (evd) 53.810 | 1.553 | 1304.352 0.310 0.449
annMax (extremeStat) 1.479 4.867 69.446 0.961 0.690

Table 4.3: Fiting data with Burr’s model
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Figure 4.7: Histogram the Positive and Negative SP500 index by fitted Burr’s density
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Figure 4.8: Histogram the Bloc maxima corresponding to the Positive and Negative SP500 index
and the fitting by Burr’s density
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Figure 4.9: Histogram of R.T. Cancer and Lung Cancer and the fitting by Burr’s density.
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Figure 4.11: Histogram of Cars93 and the fitting by Burr’s density
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Figure 4.12: Histogram of nidd.thresh and nidd.annual data and the fitting by Burr’s density.
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o ¥ p-value cvm goft
S&P 500 2.660 | 1.506 0.444
APPL 2411 | 1.483 0.579
Dowjones 2.961 | 1.623 0.368
Russell 2000 | 3.675 | 3.012 0.907
NAS daq 3.148 | 3.378 0.886
JPY to USD | 0.844 | 0.339 0.992
EUR to USD | 2.997 | 0.694 0.183

Table 4.4: Fitting data by Fréchet’s model using the block maxima method.

o c A p-value cvm goft
S&P 500 8.560 1.103 | 4.380 0.950
APPL 3.732 1.265 | 4.771 0.836
Dowjones 6.558 1.143 | 3.322 0.325
Russell 2000 | 6.969 1.162 | 0.651 0.810
NAS daq 4.838 1.212 | 3.141 0.152
JPY to USD | 4156.716 | 1.043 | 1182.62 | 0.981
EUR to USD | 34.464 1.204 | 6.120 0.988

Table 4.5: Fiting data by Burr’s model.

4.2.1 High quantile (var)

In this section, we deal with the estimation of the high quantile, some times called the value-at-risk
(var), for the daily logarithmic returns corresponding the stock prices of S&P 500, APPL, Dowjones,
Russell 2000, NAS daq, JPY/USD and EUR/USD. To this end we use he logarithmic return R(t)

at the finest time resolution is calculated by

Xt
Xi1

R; :=log ,t=1,2,...,n,

where X, is the price of the asset at day ¢. It is worth mentioning that the distributions of financial
returns are known to be non-normal and tend to be heavy-tailed. Indeed, the financial models with
heavy-tailed distributions have been introduced to overcome problems with the realism of classical

financial models. These classical models of financial time series typically assume homoskedasticity
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and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility
clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the
stable (or a-stable) distribution to model the empirical distributions which have the skewness
and heavy-tail property. Since a-stable distributions have infinite p-th moments for all p > «,
the tempered stable processes have been proposed for overcoming this limitation of the stable
distribution. The Figures illustrate the computation of the tail indices and the var’s corresponding

to the aforementioned stock prices.
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Tail index of Exchange rate JPY/USD
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Conclusion

The regularly varying functions of negative index play a prominent role is extreme values analysis
and modelling heavy-tailed data pertaining to rare events. The flexibility of this class of functions
allow us to derive estimators for the distribution tails and its corresponding high quantile. For
example, in financial data analysis the regularly varying functions can be used to estimate the
Value at Risk (VaR) helping to assess market risks and provide financial decisions. Therefore,
these functions play a significant tool in managing risks in various fields, namely the Insurance,

Finance, Economy, Environment and others.
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Annex A: R Software

What is the R language?

e The R language is a programming language and mathematical environment used for data pro-
cessing. It allows for both simple and complex statistical analyses such as linear or non-linear
models, hypothesis testing, time series modeling, classification, etc. It also features many highly

useful and professional-quality graphical functions.

e R was created by Ross IThaka and Robert Gentleman in 1993 at the University of Auckland, New

Zealand, and is now developed by the R Development Core Team.

e The name of the language originates, on one hand, from the initials of the first names of the two
authors (Ross Thaka and Robert Gentleman), and on the other hand, from a play on words with

the name of the language S to which it is related.

e The simulation program.

#Graphic of Hill estimator of the tail index.

>dburr=function(x, a , ¢,L ) {(c*a/L)*(x/L)"(c-1)/(1+(x/L)~¢c)"~(a+1)}
>pburr=function(x, a , ¢,L ){1-(1+(x/L)"c)"~(-a)}
>qgburr=function(s,a,c,L){L*((1-s) ~(-1/a)-1)~(1/c)}

# consistency of Hill’s estimator.

>gamma=1.5

>L=0.4

>c=0.6

>a=1/(gamma*c)
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>N=500

>library (extremefit)

>Slibrary (fitdistrplus)
>library(extraDistr)

>library(goftest)
>library(SMPracticals)
>library(goftest)
>library(SMPracticals)

>library(evir)

>library(MASS)

>library(fitdistrplus)

>M=500

>r=seq(0.5,0.9,length=M)
>k=floor(N"r)

>H=rep(NA,M)

>U=runif(N)

>x=qburr(U,a,c,L)

>X=sort(x)

>for(j in 1:M){

m=k{j

d=N-m+1
HIj]=sum(log(X[d:N])) /m-log (X [N-m]) }
>plot(k,H type = "1",col="red")
>abline(h=gamma,col="blue" ylim=c(0,1))
# the optimale sample fraction k.
>nl=floor(N/50) ; n2=floor(N/10) ; alpha=numeric(n2)
>for(i in 1:n2){

alpha[i]=(1/i)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-i)])}
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>s=rep(NA n2)

>for(k in 1:n2){

u=numeric(k)

for(w in 1:k){
u[w]=(w"0.3)*abs(alpha[w]-median(alpha[1:k])) }
s[k]=(1/k)*sum(u[1:k])}

ss=numeric(n2-n1+1)

>for(h in 1:(n2-n1+1)){

ss[h]=s[nl+h-1]}

>krep=(nl-14+which.min(ss))

>kopt=floor (krep)

>print(kopt)

>abline(v=kopt,col="green")
>gammal=H[kopt]

>print(gammal)

> Tail=function(t){ (kopt/N)*(t/X[N-kopt]) ~(-1/gammal )*(t>X[N-kopt]) }
>Hq=function(s){X[N-kopt]*(kopt/(N*s)) " (-gammal)*(s<kopt/N)}
>p=0.01 #### so that be < kopt/N
>VAR=Hq(p); print(VAR)

# Asymptotic normality of Hill’s estimator.
>N=1000

>M=50

>Z=rep(NA,M)

>for (j in 1:M){

U=runif(N)

x=qburr(U,a,c,L)

X=sort(x)

nl=floor(N/50) ; n2=floor(N/10) ; alpha=numeric(n2)
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for(i in 1:n2){

alphali]=(1/1)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-1)]) }
for(k in 1:n2){

u=numeric(k)

for(w in 1:k){

u[w]=(w"0.3)*abs(alpha[w]-median(alpha[1:k]))}

s[k]=(1/k) *sum(u[1:K])}

ss=numeric(n2-n1+1)

for(h in 1:(n2-n1+1)){

ss[h]=s[n1+h-1]}

krep=(nl-14+which.min(ss))

kopt=~floor(krep)

h=(1/kopt)*sum(log(X[(N-kopt+1):N]),na.rm = FALSE)-log(X[(N-kopt)])
Z[j]=sart(kopt)*(h-gamma) /gammay}

>Z=na.omit(Z)

>p.value=round(shapiro.test(Z)[[2]],4)

>print(p.value)

>hist(Z,freq = FALSE,ylim=c(0,0.3),main="Asymptotic normality of Hill’s estimator" ,col="green")
>lines(density(Z),col="red" lw=2)

>myfit=fitdist(Z,"norm")

>meanl=myfit$estimate[[1]]

>sdl=myfit$estimate[[2]]
>curve(dnorm(x,meanl,sdl),-3,4,add=TRUE,col="blue" lw=2)
>text(-2.5, 0.25,paste("p.value","=" p.value))

nn

>legend(2,0.3,legend = c("Historgram", "Kernel desity","Curve density"), lw= ¢(1,2,2), col =
C(ngeenl!7 Nred",llblue")’bty — Hnll)
e Fitting small sample data with Burr’s distribution.
Scancer data=c(13.80,5.85,7.09,5.32,4.33,2.83,8.37,14.77,8.53,11.98,1.76,4.40,34.26,2.07,17.12,12.63,7.66,4.18,

54



Annex A:R Software

13.29,23.63,3.25,7.63,3.31,2.26,2.69,11.79.5.34,6.93,10.75,13.11,7.39,13.80,5.85,7.09,5.32,4.33,2.83,8.37,14.77,
8.53,11.98,1.76,4.40,34.26,2.07,17.12,12.63,7.66,4.18,13.29,23.63,3.25,7.63,2.87,3.31,2.26,2.69,11.79,5.34,6.93,
10.75,13.11,7.39)

>library (fitdistrplus)

>library(goftest)

>>dburr=function(x, k , ¢,L ) {(c*k/L)*(x/L)"~(c-1)/(1+(x/L)"c)~ (k+1)}

>pburr=function(q, k , ¢,L }{1-(14+(q/L)"¢)"(-k)}

>qburr=function(s,k,c,L){L*((1-s)~(-1/k)-1)~(1/c)}

>myfit=mledist(cancer _data,"burr" start=list(k=1,c=1,L=1))

>kl=myfit$estimate[[1]]

>cl=myfit$estimate[[2]]

>Ll=myfitSestimate[[3]]

>mytest=cvm.test(cancer _data,"burr" k1,c1,L.1)

>p_value=mytest$p.value

>print(p_ value)

>U=runif(length(cancer _data))

>y=qburr(U,kl,c1,L1)

>ks.test(y,cancer _data)

e Fitting large-sample data to Burr’s distribution.

>burrl=function(x, k , ¢,L ) {(c*k/L)*(x/L)"(c-1)/(1+(x/L)"¢c)" (k+1)}
>pburrl=function(q, k , ¢,L. }{1-(1+(q/L)"¢)"(-k)}
>qburrl=function(s,k,c,L){L*((1-s)~(-1/k)-1)~(1/c)}
>options("getSymbols.warning4.0"=FALSE)
>options("getSymbols.yahoo.warning"=FALSE)

>dowJones <- new.env()

>getSymbols(""DJI", env = dowJones, src = "yahoo",from = as.Date("1990-01-01"), to = as.Date("2023-

01-01"))

>mydata=dowJones$DJI$DJII.Open
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>N=length(mydata)

>X=as.numeric(mydata)

>index=diff(log(X))

>Ip=as.numeric(na.omit(index[index>0])*100); N=print(length(Ip))
>#In=abs(as.numeric(na.omit(index[index<0])*1000)); N=print(length(In))
>myfit=fitdist(Ip, "burrl" start=list(k=2,c=1,L=1))
>kl=myfitSestimate[[1]]

>cl=myfit$estimate[[2]]

>Ll=myfit$estimate[[3]]

>mytest=cvm.test(Ip,"burrl" k1,c1,L1)

>p_value=mytest$p.value

>print(p_ value)

>M=500

“S1=s¢q(0.01,0.99,length=M)

>k=floor(N"r)

>H=rep(NA M)

>X=sort(Ip)

>for(j in 1:M){

m=k{[j]

d=N-m+1

Hj]=sum(log(X[d:N])),/m-log(X[N-])}

>plot(k,H,type = "1",ylim=c(0,1),main=""Tail index of Dow Jones stock prices",col="red")
# the optimal sample fraction k.

>nl=floor(N/50) ; n2=floor(N/5) ; alpha=numeric(n2)

>for(i in 1:n2){

alphali]=(1/1)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-1)])}
>s=rep(NA,n2)

>for(k in 1:n2){
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u=numeric(k)

for(w in 1:k){
u[w]=(w"0.3)*abs(alpha[w]-median(alpha[1:k]))}
s[k]=(1/k)*sum(u[1:k])}

>ss=numeric(n2-n1+1)

>for(h in 1:(n2-n1+1)){

ss[h]=s[nl+h-1]}

>krep=(nl-14+which.min(ss))
>kopt=floor(krep)

>print(kopt)

>gammal=round(H[kopt],2)

>print(gammal)

# High quantile estimation
>q=function(s){X[N-kopt]*(kopt/(N*s)) " (-gammal)*(s<kopt/N)}
>p=1/365

>VAR=round(q(p),2); print(VAR)
>abline(v=kopt,col="green" lty=2)
>abline(h=gammal,col="blue" lty=2)

>text(1500,gammal+0.05,paste("gamma","=" gammal,"and","VAR","="_VAR))

e Fitting large-sample data to Frechet’s distribution using the block maxima method.

>library(extremefit)
>Slibrary (fitdistrplus)
>library(extraDistr)
>library(goftest)
>library(SMPracticals)
>library(goftest)
>library(SMPracticals)

>library(evir)
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>library(MASS)

Slibrary(fitdistrplus)

# these data are fitted ny Burr model
>data("SP500")

>mydata=SP500[SP500>0)]
>mydata=abs(SP500[SP500<0])
>m=rep(NA,100)

>for (i in 1:100){
z=sample(mydata,30)m[i|=max(z)}

# Fitting by cramer-Von-Mises test
>myfit=fitdist(m,"frechet" ,method="mle" start = list(lambda = 1, mu = 1, sigma = 1))
>print (myfit)

>lambdal=myfit$estimate[[1]]
>mul=myfit$estimate[[2]]
>sigmal=myfit$estimate[[3]]
>test=cvm.test(m,"frechet" Jambdal,mul,sigmal)
>p_value=test$p.value

>print(p_ value)

# Fitting by Kolmogorov-Smirnov test
>U=runif(length(mydata))
>y=qfrechet(U,lambdal,mul,sigmal)
>ks.test(y,m,exact=TRUE)
>hist(m,freq=FALSE,col = "gray", border = "blue")

>curve(dfrechet(x,Jambdal,mul,sigmal),add=TRUE,col="green" Ity = 2, lwd = 3)

e Programme for calculating tail indicators and corresponding variables for the SP500.

>dburrl=function(x, k , ¢,L. ) {(c*k/L)*(x/L)"(c-1)/(1+(x/L)~¢c)" (k+1)}
>pburrl=function(q, k , ¢,L ){1-(14+(q/L)"¢)"(-k)}

>qburrl=function(sk,c,L){L*((1-s)~(-1/k)-1)~(1/c)}
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# downloading financial data from its own website
>options("getSymbols.warning4.0"=FALSE)
>options("getSymbols.yahoo.warning"=FALSE)
>sp500 <- new.env/()

>getSymbols("~GSPC", env = sp500, src = "yahoo",from = as.Date("1990-01-01"), to = as.Date("2023-
01-01"))

>mydata=sp500$GSPCS$GSPC.Open

>N=length(mydata)

>X=as.numeric(mydata)

>index=rep(NA,N)

>for (iin 1:N){

index[i]=log(X[i+1]/X[i]) }
>Ip=as.numeric(na.omit(index[index>0])*100); N=print(length(Ip))
>#In=abs(as.numeric(na.omit(index[index<0])*1000)); N=print(length(In))
>myfit=fitdist(Ip,"burrl" start=list(k=2,c=1,L=1))
>kl=myfitSestimate[[1]]

>cl=myfit$estimate[[2]]

>Ll=myfitSestimate[[3]]

>mytest=cvm.test(Ip,"burrl" k1,c1,L1)

>p_value=mytest$p.value

>print(p_ value)

>M=500

S 1=s¢q(0.01,0.99,length=M)

>k=floor(N"r)

>H=rep(NA M)

>X=sort(Ip)

>for(j in 1:M){
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HIj] =sum(log(X[d:N])) /m-log(X[N-m])}
>plot(k,H,type = "1",ylim=c(0,1),main=""Tail index of SP500 stock prices",col="red")
# the optimal sample fraction k.

>nl=floor(N/50) ; n2=floor(N/5) ; alpha=numeric(n2)

>for(i in 1:n2){

>alphali]=(1/i)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-i)])}
>s=rep(NA n2)

>for(k in 1:n2){

u=numeric(k)

for(w in 1:k){

u[w]=(w"0.3)*abs(alpha[w]-median(alpha[1:k]))}

S[K/=(1/K) sum(u[1:K])}

>ss=numeric(n2-n1+1)

>for(h in 1:(n2-n1+1)){

ss[h]=s[nl+h-1]}

>krep=(nl-14+which.min(ss))

>kopt=floor(krep)

>print(kopt)

>gammal=round(H[kopt],2)

>print(gammal)

# High quantile estimation.

>q=function(s){X[N-kopt]*(kopt/(N*s)) " (-gammal)*(s<kopt/N)}

>p=1/365

>VAR=round(q(p),2); print(VAR)

>abline(v=kopt,col="green" lty=2)

>abline(h=gammal,col="blue" lty=2)
>text(1500,gammal+0.05,paste("gamma","=" gammal,"and","VAR","=" VAR))

# m is frechet (k) <=> 1/m is Weibull(k).
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>R=100

>M=10

>m=rep(NA,R)

>for (iin 1:R){
mli|=max(sample(Ip,M))}
>T=1/m
>myfit1=fitdist(T,"weibull")
>k=myfit1$estimate[[1]]
>a=myfit1$estimate[[2]]
>mytestl=cvm.test(T,"pweibull" k,a)
>p_ valuel=mytest1$p.value

>print(p_valuel)
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Notations

The following is an explanation of the various abbreviations and notations which are in use through-

out this report:

cdf : cumulative distribution function.

v :  random variable.

DA : Domains of attraction.

1.i.d : Independent and identically distributed.
zt : End point.

F(.) : distribution function.

F() : tail function.

F,(.) : empirical distribution function.

EVT . extreme values theory.

evi :  extreme values index.

RV, : regularly varying functions with index ~.
RV.Y@) regular second order variation.

L(.) : slowly varying function.

GPD : Generalised Pareto Distribution.

I4(-) : the indicator function.

i.e. : in other words.
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MLE

Maximum Likelihood Estimator.

the uniform tail empirical process.
Integer part of np.

gamma law with parameters ¢ and 1.

of the same law.
convergence in probability.
Asymptotically negligible in probability.
stochastically bounded.
A« B : A has distribution B.
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ABSTRACT

The memorandum addresses the application of regularly varying functions in Extreme Value
Theory (EVT) and their importance in modeling rare events and extreme risks. We also discuss the
domains of attraction of distribution functions related to regularly varying functions, focusing on
the Fréchet domain of attraction. We cover the first and second conditions for these functions
and their regular variations, then delve into the statistical inference of tail distribution functions,
constructing a Hill estimator for tail indices and high quantiles, and proving consistency and
asymptotic normality. We conclude our work with a simulation study of the Hill estimator and a
real-life application in financial markets, particularly in analyzing asset returns and risk
management using concepts of tail distribution functions.

Keywords: regularly varying, Fréchet domain of attraction, Hill estimator, tail distribution, high
quantiles.
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RESUME

Le mémoire aborde I'application de fonctions régulierement variables dans la Théorie des Valeurs

Extrémes (EVT) et leur importance dans la modélisation des événements rares et des risques extrémes.
Nous discutons également des domaines d'attraction des fonctions de distribution liées aux fonctions
régulierement variables, en mettant I'accent sur le domaine d'attraction de Fréchet. Nous couvrons les
premiéres et deuxiemes conditions pour ces fonctions et leurs variations réguliéres, puis nous nous
plongeons dans I'inférence statistique des fonctions de distribution de la queue, en construisant un
estimateur de Hill pour les indices de queue et les quantiles élevés, et en prouvant la cohérence et la
normalité asymptotique. Nous concluons notre travail par une étude de simulation de I'estimateur de
Hill et une application concréte dans les marchés financiers, notamment dans I'analyse des rendements
des actifs et la gestion des risques en utilisant des concepts de fonctions de distribution de la queue.

Mots clés : variation réguliére, domaine d'attraction de Fréchet, estimateur de Hill, queue de
distribution, .quantiles élevés
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