
People�s Democratic Republic of Algeria

Ministry of Higher Education and Scienti�c Research

Mohamed Khider University, Biskra

Faculty of Exact Sciences and Natural and Life Sciences

DEPARTMENT OF MATHEMATICS

Thesis presented with a view to obtaining the Diploma :

MASTER of Mathematics

Option:statistics

By

ABEIZA Chaima

Title :

Regular Variation and application

Committee Members Examination:

Pr. Djamel Meraghni UMKB President

Pr. Abdelhakim Necir UMKB Advisor

Pr. Mouloud Cherfaoui UMKB Examiner

June 2024



Dedicace

First of all, I thank God, our creator, for giving me the strength, the will, and the courage to

accomplish this modest work.

I dedicate this work to my mother, the source of tenderness and the light that guides my paths

and takes me to the paths of success, for all her sacri�ces and her precious advice, for all her

assistance and her presence in my life.

To my father, I thank him enormously for his e¤orts, his advice, and his supervision.

To my dear brothers and sisters.

To my best friend.

To everything I know without exception.

To all my teachers without exception Especially Necir Abdelhakim.

Finally, I o¤er my blessings to all those who supported me in accomplishing this work.

i



Acknowledgements

First and foremost, I would like to thank God for giving me the strength, knowledge, ability and

opportunity to complete this work.

I would like to thank my supervisor, Prof. Abdelhakim Necir, who spared no e¤ort in guiding

me during the preparation of this thesis and was always there to support me and provide valuable

advice. I also extend my sincere thanks and appreciation to the chairman of the discussion

committee, Prof. Djamel Meraghni, and the discussant, Prof. Mouloud Cherfaoui, for

their constructive comments and guidance that contribute to improving the quality of this work. I

would also like to thank Prof. Fatah Benatia, and Prof. Djabrane Yahia, who provided

invaluable advice, and the student Loubna Zernadji, who did not hesitate to stand with me

throughout the research process.

Chaima...

ii



Contents

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

Introduction 1

1 Extreme Value Theory 2

1.1 Asymptotic behaviour of extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Distribution of Generalized Extreme Values (GEV) . . . . . . . . . . . . . . . . . . . 3

1.3 Domains of Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Regular Variation 7

2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 First order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Second-Order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Potter�s inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Uniform variation of the �rst order condition . . . . . . . . . . . . . . . . . . 14

2.4.2 Uniform variation of the second-order condition . . . . . . . . . . . . . . . . . 14

2.5 Fréchet domain of attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Example of Pareto-type distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



Contents

3 Consistency and asymptotic normality of Hill�s estimator 18

3.1 Construction of Hill�s estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Limit theorems for Pareto-type intermediate order statistics . . . . . . . . . . . . . . 20

3.3 Empirical tail processes and applications . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 High quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Simulation study and real data applications 34

4.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Real data applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 High quantile (var) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Conclusion 47

Bibliography 48

Annex A: R Software 51

Annex B : Abreviations and Notations 62

iv



List of Figures

4.1 Performance of Hill�s estimator for a sample of size N = 1000 (Burr�s model) with

 = f0:5; 1g top panel and  = f1:5; 2g (bottom panel). . . . . . . . . . . . . . . . . 35

4.2 Performance of Hill�s estimator for a sample of size N = 5000 (Burr�s model) with

 = f0:5; 1g top panel and  = f1:5; 2g (bottom panel) . . . . . . . . . . . . . . . . . 36

4.3 Asymptotic normality of Hill�s estimator for  = 0:5 (Burr�s model): . . . . . . . . . 36

4.4 Asymptotic normality of Hill�s estimator for  = 1 (Burr�s model): . . . . . . . . . . 37

4.5 Asymptotic normality of Hill�s estimator for  = 1:5 (Burr�s model): . . . . . . . . . 37

4.6 Asymptotic normality of Hill�s estimator for  = 2 (Burr�s model): . . . . . . . . . . 38

4.7 Histogram the Positive and Negative SP500 index by �tted Burr�s density . . . . . . 40

4.8 Histogram the Bloc maxima corresponding to the Positive and Negative SP500 index

and the �tting by Burr�s density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Histogram of R.T. Cancer and Lung Cancer and the �tting by Burr�s density. . . . . 41

4.10 Histogram of Accdeaths and Insurance Holders and the �tting by Burr�s density. . . 41

4.11 Histogram of Cars93 and the �tting by Burr�s density . . . . . . . . . . . . . . . . . 42

4.12 Histogram of nidd.thresh and nidd.annual data and the �tting by Burr�s density. . . 42

v



List of Tables

1.1 Usual models and their domaine of attractions . . . . . . . . . . . . . . . . . . . . . 5

2.1 Pareto-type models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Computation of optimal sample franction k and its corresponding Hill�s estimator

for Burr�s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Computation of optimal sample franction k and its corresponding Hill�s estimator

for Fréchet�s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Fiting data with Burr�s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Fitting data by Fréchet�s model using the block maxima method. . . . . . . . . . . . 43

4.5 Fiting data by Burr�s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



Introduction

The extreme values theory plays a prominent role in modeling rare events occurring across various

�elds such as �nance, insurance losses, and environmental sciences. Regularly varying functions are

the appropriate models that �t this data, appearing in numerous application �elds and considered

a fundamental tool to characterize the domains of attraction of distribution functions, namely

Gumbel, Weibull, and Fréchet. Our focus is to explore the signi�cance of this class of functions by

considering Pareto-type models, which correspond to the Fréchet domain of attraction, exhibiting

tails that behave as regularly varying functions of negative indices.

Our memory comprises four chapters:

In the �rst chapter, we are discussing the domains of attraction of distribution functions in relation

to regularly varying functions.

The second chapter aims to present the �rst and second conditions for this class of functions

and their corresponding uniform inequalities, known as Potter�s ones. These are key tools for

establishing the asymptotic behavior of estimators of the tail index.

The third chapter deals with the statistical inference of tail distribution functions, constructing the

so-called Hill�s estimator of the tail index and its corresponding high quantiles, then establishing

the consistency and asymptotic normality of the latter.

The fourth chapter is devoted to a simulation study of Hill�s estimator and the computation of the

optimal sample fraction k used in the estimation of extreme values. Additionally, it presents real

data applications to the asset returns of �nancial markets.
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Chapter 1

Extreme Value Theory

Extreme Value Theory (EVT) is essential for understanding and modeling rare events in datasets.
It focuses on the statistical behavior of extreme values, aiding in understanding their characteristics

and facilitating the prediction and assessment of risks associated with rare events.

1.1 Asymptotic behaviour of extremes

Let us consider fXigi�1 to be a sequence of n independent and identically distributed (i:i:d) of

random variables with cumulative distribution function (cdf) F de�ned by

F (x) = P(Xi � x) for i = 1; 2; :::; n:

We will be interested in the asymptotic behavior of the maximum of the sample fXigi�1 denoted

by

Mn := max(X1; :::; Xn):

As the random variables are (i:i:d) then the cdf of Mn is given by

FMn(x) = P (Mn � x) = P (X1 � x; :::;Xn � x) (1.1)

= P (X1 � x) :::P(Xn � x) = [F (x)]n :

2



Chapter 1. Extreme Value Theory

The approximate distribution of the maximum value as n tends to in�nity.

lim
n!1

FMn
(x) = lim

n!1
fF (x)gn =

8><>: 1 if F (x) = 1;

0 if F (x) < 1:

This means that the asymptotic distribution ofMn is a degenerate function. What we are interested

in with extrema is the existence of a non-degenerate law for the maximum, and the Extreme Value

Theorem provides an answer to this.

Theorem 1.1.1 (Fisher and Tippet (1928), Gnedenko (1943)) Let (Xi)i=1;:::;n be a sequence

of i:i:d random variables (rv) with cdf F: If there are two real sequences fangn�1 > 0 and fbngn�1 2

R such that for all x 2 R;

lim
n!1

P

�
Mn � bn
an

� x
�
= lim

n!1
Fn(anx+ bn) = G (x) ; (1.2)

then G (x) is of the same type as one of the following three distributions:

�(x) :=

8><>: 0 si x � 0

exp(�x�
1
 ) si x > 0

with  > 0 (Fréchet),

	(x) :=

8><>: 1 si x � 0

exp
h
�(�x)�

1


i
si x < 0

with  < 0 (Weibull),

�(x) := exp (� exp (�x)) ; for all x 2 R (Gumbel).

We refer to � ; 	 and � as the extreme value distributions.

A detailed proof of this theorem is given in Resnick (1987)[25].

1.2 Distribution of Generalized Extreme Values (GEV)

The behaviour of � ;	 and � is completely di¤erent but they can be combined into a single

distribution dependent on a single parameter that controls the tail thickness of the distribution.

3



Chapter 1. Extreme Value Theory

Theorem 1.2.1 If the limit (1:2) exists, then

G(x) :=

8><>: exp(�(1 + x)�
1


+ ) if  6= 0;

exp(� exp(�x)) if  = 0:

with (1 + x)+ = max (1 + x; 0) > 0:

� G (x) :Distribution G.E.V.

� G (x) is a non-degenerate function and  called the tail index or extreme value index.

The sign of the parameter  is an essential indicator of the shape of the tail:

1. The case  > 0; corresponds to Fréchet�s distribution with parameter 1= > 0:

2. The case  < 0; corresponds to the Weibull�s distribution with parameter �1= < 0:

3. The case  = 0; corresponds to Gumbel�s distribution.

De�nition 1.2.1 The Generalised Pareto Distribution (GPD); with parameters  2 R; and � > 0;

is de�ned by its distribution function, given by:

G;�(x) =

8><>: 1� (1 + 
�x)
�1= if  6= 0;

1� exp(� x
� ) if  = 0;

or, x � 0 if  � 0 and 0 � x � 
� if  < 0:

Remark 1.2.1 Depending on the values of the shape parameter ; the GPD includes the following

three distributions:

If  > 0 then G;�(x) 7�! Pareto law.

If  < 0 then G;�(x) 7�! Beta law.

If  = 0 then G;�(x) 7�! exponential law.

4



Chapter 1. Extreme Value Theory

1.3 Domains of Attraction

De�nition 1.3.1 (Domains of attraction) A distribution is said to belong to the DA of G; de-

noted F 2 DA (G) ; if the distribution of the normalised maximum converges to G: In other words,

if there exist real constants an > 0 and bn 2 R such that

lim
n!1

Fn(anx+ bn) = G(x):

The table 1:1 presents the DA for some models.

Domaine of attraction Models

Fréchet ( > 0) Fréchet, Burr,Pareto, Cauchy,

Student, Chi-square.

Gumbel ( = 0) Gumbel, Exponential, Log-normal, Gamma,

Logistic, Normal, Weibull.

Weibull ( < 0) Beta, Uniform.

Table 1.1: Usual models and their domaine of attractions

Characterisation of domains of attraction

Proposition 1.3.1 (Characterisation of DA(G)) F 2 DA(G) if and only if, for a certain

sequence an > 0 and bn 2 R;

lim
n!1

nF (anx+ bn) = � logG(x); x 2 R;

where F := 1� F is the survival function, also known as the tail of the cdf.

Theorem 1.3.1 We said that:

1) F is the Fréchet domain of attraction, i.e. F 2 DA(G) for  > 0; if and only if for all x > 0

F (x) = x�1=L(x), lim
t!1

F (tx)

F (t)
= x�1= :

5



Chapter 1. Extreme Value Theory

2) F is in the Weibull domain of attraction, i.e. F 2 DA(G) for  < 0; if and only if for all x > 0

F (xF � x�1) = x�1=L(x), lim
t!0

F (xF � tx)
F (xF � t)

= x�1= :

3) F is in the domain of attraction of the Gumbel distribution, i.e. F 2 DA for  = 0; with xF � 1

for all x 2 R

lim
t!xF

F (t+ xf(t))

F (t)
= exp(�x);

where xF be the end point of F:

The characterisation of domains of attraction relies heavily on the notion of functions with regular

variations The latter will be discussed in Chapter 2.
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Chapter 2

Regular Variation

In this section, we delve into functions with broad applications across various mathematical do-
mains, known as regularly varying functions, and explore their fundamental properties. Our goal

is to draw generalizations about these functions and their characteristics. Readers keen on further

exploring this theory are encouraged to reference seminal works by authors such as Bingham et al.

([5]) ; Embrechts et al. ([10]) ; Beirlant et al. ([3]) ; de Haan, Ferreira ([17]) and Resnick([24]) :

2.1 Basic concepts

De�nition 2.1.1 (Regular Variation) A measurable function h : R+ 7�! R+; is regularly vary-

ing at 1 with index � 2 R and we denote h 2 RV�; if

lim
t!1

h(tx)

h(t)
= x�; t > 0:

Example 2.1.1 The functions x 7! x� and x 7! (log (1 + x))
� are regularly varying with index

�:function x 7! sin(x) is not regularly varying.

De�nition 2.1.2 A sequence (hn)n2N of positive numbers is called regularly varying (at 1) of

index � 2 R

lim
n!1

hbnxc

hn
= x

�

; for x > 0;

and we write hn 2 RV�:

7



Chapter 2. Regular Variation

De�nition 2.1.3 (Extended regular variation) A measurable function h : R+ ! R is said to

have extended regular variation of index 1= which is denoted h 2 ERV1= ; if there exists a positive

a auxiliary function a such that, for all x > 0

lim
t!1

h(tx)� h(t)
a(t)

=
x1= � 1
1=

:

Theorem 2.1.1 If h is regularly varying with index � (in the case � > 0; assuming h bounded on

each interval ]0; t] ; t > 0; then for 0 < a � b <1;

lim
x!0

h(tx)

h(t)
= x�;

uniformly in x 2 [a; b] if � = 0; in x 2 ]0; b] if � > 0 and in x 2 [a;1[ if � < 0:

De�nition 2.1.4 A measurable function h : R+ ! R+ has regular variation of index � in the

neighbourhood of 0 denoted (h 2 RV 0� ); if for all x > 0;

lim
t!0

h(tx)

h(t)
= x�;

i.e. h(1=x) has a regular variation of index �� at in�nity.

Lemma 2.1.1 Let h be a function with regular variation of index �; then

lim
t!1

sup
x2[a;b]

����h(tx)h(t)
� x�

���� = 0; for all 0 < a < b:
If this

h(tx) = g(t)g(x) when x!1: (2.1)

1. (2:1) is satis�ed for all t > 0:

2. There exists � 2 R such that g(t) = t�; for any t > 0:

3. h(x) = x�L(x) where L(x) is a slowly varying function (at 1):

From this result, it is clear that to study regular variations, it is su¢ cient to study the properties

of slowly varying functions.

8



Chapter 2. Regular Variation

De�nition 2.1.5 A measurable function L : R+ 7�! R+ has slow variation at 1 with the index

� = 0 and we denote L 2 RV0; if

lim
t!1

L(tx)

L(t)
= 1; t > 0:

Example 2.1.2 Function x 7! log x is slowly varying. Indeed

lim
t!1

log (tx)

log t
= lim

t!1

log t+ log x

log t
= 1; for any t > 0:

Remark 2.1.1 A function with regular variation of index � 2 R can always be written in the form

h(x) = x
�

L(x); where L 2 RV0:

Proposition 2.1.1 Let h : R+ ! R+ be a regularly varying at 1 with index �: Then

i) If h is increasing then � � 0:

ii) If h is decreasing then � � 0:

iii) If h is not decreasing and � 2 [0;1) then h�1 2 RV 1
�
:

Proposition 2.1.2 If h; h1 and h2 vary regularly at in�nity with indices �; �1 and �2 respectively,

then

1) If h 2 RV�; then h� 2 RV��:

2) If � 6= 0

lim
x!1

h(x) =

8><>: 0 if � < 0;

1 if � > 0:

3) If h1; h2 2 RV�; and h2(x)!1 as x!1; then h1 � h2 2 RV�1�2 :

4) If h1; h2 2 RV�; then h1 + h2 2 RV� where � = max(�1; �2):

5) (Potter, 1942) if h 2 RV�; then there exists t0 such that for all x � 1; t � t0 :

(1� ")x��" < h(tx)

h(t)
< (1 + ")x�+"; for any " > 0:

6) Suppose that h is increasing, h(1) =1; and h 2 RV�; 0 � � � 1; then,

h 2 RV��1 :

9



Chapter 2. Regular Variation

7) Suppose that h1; h2 2 RV�; 0 < � <1; then for 0 � c � 1;

h1(x) v ch2(x); x!1;

is equivalent to

h�11 (x) v c���1h�12 (x); x!1:

8) If h 2 RV�; � 6= 0; then there exists a function h� which is absolutely continuous and strictly

monotonic satisfying

h(x) v h�(x); x!1:

Proposition 2.1.3 (Drees(1998)) If h 2 RV�; then there exists t0 = t0("; �) such that, for t;

tx � t0 : ����h(tx)h(t)
� x�

���� � "max(x�+�; x���); for any "; � > 0:
Theorem 2.1.2 (Karamata theorem) Let h 2 RV�; and locally bounded on x0 � x <1;

1) If � � �1; then,

lim
x!1

xh(x)R x
x0
h(t)dt

= � + 1: (2.2)

2) If � < �1 (If � = �1 and
R1
x
h(t)dt < +1); then,

lim
x!1

xh(x)R1
x
h(t)dt

= � (� + 1) : (2.3)

Conversely, if h veri�es (2:2) for �1 < � < 1; then h 2 RV�: And if h veri�es (2:3) with

�1 < � < �1; then h 2 RV�:

Proposition 2.1.4 (Karamata�s representation ) A function h : R+ ! R has regular vari-

ation of index 1=; if and only if there exist two measurable functions c : R+ ! R and r : R+ ! R

satisfying

lim
t!1

c(t) = c > 0 and lim
t!1

r(t) = 0;

such that

h(t) = t
�

c(t) exp

�Z t

t0

r(t)

t
dt

�
:

For some t0 � 0:

10



Chapter 2. Regular Variation

Theorem 2.1.3 (Karamata�s representation ) L 2 RV0; if and only if can be represented in

the form

L(x) = c(x) exp

�Z x

a

r(t)

t
dt

�
; x � a;

where c; r measurable functions, and

lim
x!1

c(x) = c0 2 ]0;+1[ and lim
x!1

r(t) = 0:

2.2 First order conditions

In the contex of pareto-type models, we will give three versions of the �rst condition of regular

variation, in terms of F the quantile function (or the generalized inverse)

Q (s) := F�1 (s) = inf fx; F (x) � sg ; 0 < s < 1;

and U (t) := Q (1� 1=t) :

� As a function of F : for all x > 0;

lim
t!1

F (tx)

F (t)
= x�

1
 , F (x) = x�

1
 L (x) ;

n
F 2 RV� 1


, F 2 DA

�
� 1



�o
: (2.4)

� As a function of Q : for all s > 0;

lim
t#0

Q (1� ts)
Q (1� t) = s

� , Q (1� s) = s�L (s) ;
n
Q (1� s) 2 RV� , F 2 DA

�
� 1



�o
:

(2.5)

� As a function of U :

lim
t!1

U (tx)

U (t)
= x ; for x > 0;

n
U 2 RV , F 2 DA

�
� 1



�o
: (2.6)

Proposition 2.2.1 (First-order condition of Haan and Ferreira (2006)) The following state-

ments are equivalent:

� F is of Pareto-type:

F 2 DA
�
�1=

�
;  > 0:

11



Chapter 2. Regular Variation

� U is regularly varying at 1 with index  > 0 :

lim
t!1

U(tx)

U(t)
= x ; x > 0:

� F is regularly varying at 1 with index �1= < 0 :

lim
t!1

F (tx)

F (t)
= x�1= ; x > 0:

� Q(1� s) is regularly varying at 0 with index � < 0 :

lim
s#0

Q(1� ts)
Q(1� t) = s

� ; 0 < s < 1:

In a semi-parametric approach, a �rst-order condition is generally not su¢ cient to study to study

the properties of tail parameter estimators, in particular asymptotic normality. In this case, a

second order condition is required. The most common are the following.

2.3 Second-Order conditions

De�nition 2.3.1 The tail of cdf F; F 2 DA(�);  > 0; is said to satisfy the second order

condition of a regular variation at 1 if one of the following (equivalent) conditions is satis�ed:

� There exists a real constant � � 0 and a function of constant sign A(t) ! 0 when t ! 1;

such that for all x > 0;

lim
t!1

U(tx)
U(t) � x



A(t)
= x

x� � 1
�

: (2.7)

� There exists a real constant � � 0 and a function of constant sign A�(t)! 0 as t!1 such

that for all x > 0;

lim
t!1

F (tx)

F (t)
� x�

1


A�(t)
= x�

1

x� � 1
�

: (2.8)

� There is a real constant � � 0 and a function A��(s)! 0 as t! 0 such that for all x > 0;

lim
t!1

Q(1�tx)
Q(1�t) � x

�

A��(t)
= x�

x� � 1
�

; (2.9)

12



Chapter 2. Regular Variation

where � is a second-order parameter that controls the convergence velocity in (2:6) ; (2:4) and (2:5)

where A check: jAj 2 RV�:

The functions A; A� and A�� are regularly varying, A� = A
�
1=F (t)

�
and A�� = A (1=t) : Their

role is to control the speed of convergence in (2:7) ; (2:8) and (2:9) : The relations above may be

reformulated respective:

lim
t!1

log U(tx)U(t) � log x


A(t)
=
x� � 1
�

;

lim
t!1

log F (tx)
F (t)

+ �1 log x

A
�
1=F (t)

� =
x� � 1
�

;

and

lim
t!1

log Q(1�tx)Q(1�t) +  log x

A (1=t)
=
x� � 1
�

:

2.4 Potter�s inequalities

The uniform version of the �st order condition of regular variation functions are expressed by

Potter�s inequalities.

De�nition 2.4.1 (Potter, 1942) Suppose h 2 RV�: If �1; �2 > 0 are arbitrary, there exists t0 =

t0(�1; �2) such that for t � t0; tx � t0;

(1� �1)x�min
�
x�2 ; x��2

�
<
h (tx)

h(t)
< (1 + �1)x

�max
�
x�2 ; x��2

�
:

By using these inequalities we show that:

Theorem 2.4.1 If h is regularly varying with index � (in the case � > 0; assuming h bounded on

each interval ]0; t] ; t > 0; then for 0 < a � b <1;

lim
x!1

h(tx)

h(t)
= x�; uniformly in x:

(a) x 2 [a; b] if � = 0;

(b) x 2 ]0; b] if � > 0;

(c) x 2 [a;1[ if � < 0:

Theorem 2.4.2 (Local uniform convergence) If h is regular varying function with index �

13



Chapter 2. Regular Variation

then,

lim
t!1

sup
x2A

����h(tx)h(t)
� x�

���� = 0;
where

A =

8>>>><>>>>:
[a; b] if � = 0;

]0; b] assume h is bounded on ]0; b] if � > 0;

[a;1[ if � < 0:

2.4.1 Uniform variation of the �rst order condition

Since F 2 RV�1= then

(1� �1)x�1= min(x�2 ; x��2) <
F (tx)

F (t)
< (1 + �1)x

�1= max(x�2 ; x��2):

Likewise, since U 2 RV then

(1� �1)x min(x�2 ; x��2) <
U (tx)

U (t)
< (1 + �1)x

 max(x�2 ; x��2):

We also have Q (1� �) 2 RV� then

(1� �1)x� min(x�2 ; x��2) <
Q (1� tx)
Q (1� t) < (1 + �1)x

� max(x�2 ; x��2): (2.10)

2.4.2 Uniform variation of the second-order condition

Since U 2 RV ; then

������
U(tx)
U(t) � x



A(t)
� x x

� � 1
�

������ � "x+�= max(x�; x��);
likewise, we have F 2 RV�1= ; then

������
F (tx)

F (t)
� x�1=

A(t)
� x�

1

x�= � 1
�

������ � "x�1=+�= max(x�; x��):
Where we also have Q (1� �) 2 RV� ; then

������
Q(1�tx)
Q(1�t) � x

�

A(t)
� x� x

�� � 1
�

������ � "x�+�= max(x�; x��):
14



Chapter 2. Regular Variation

Next we only consider the Fréchet domain of attraction and its relationship of the regular variation

functions.

2.5 Fréchet domain of attraction

Theorem 2.5.1 F 2 DA
�
�1=

�
if and only if F 2 RV�1= : In this case, an = F�1(1� n�1) and

bn = 0:

Gnedenko�s theorem, posited in 1943; provides a convenient framework for characterizing distribu-

tions F 2 DA
�
�1=

�
:In fact, we must verify

lim
t!+1

F (tx)

F (t)
= x�1= ; for any x > 0:

As exemple, the strict Pareto distribution is givne by

F (x) = 1� x�1= ; for x � 1:

It is clear that
F (tx)

F (t)
=
(tx)

�1=

(t)
�1= = x�1= ; for any x > 0:

So F 2 DA
�
�1=

�
and F 2 RV�1= :

On the other words, the cdf F belongs to the Fréchet domain of attraction that is

F (x) = x�
1
 L(x); for x > 0;

where L 2 RV0:

The following proposition gives a su¢ cient condition for F 2 DA
�
�1=

�
:

Proposition 2.5.1 (Von Mises condition) Let F cdf be an absolutely continuous density func-

tion f satisfying:

lim
x!+1

xf(x)

F (x)
=
1


> 0;

then F 2 DA(�1=):

15



Chapter 2. Regular Variation

Remark 2.5.1

� If F is of a Pareto model, then F belongs to the Fréchet domain of attraction.

� Along this memory, we consider only the Fréchet domain of attaraction.

2.6 Example of Pareto-type distributions

Burr model

� Probability density function:

f (x;�; c; �) =

8><>: c (�=�) (x=�)c�1

(1+xc)�+1
if x > 0

0 if x � 0
; for �; c; � > 0:

� Cumulative distribution function:

F (x;�; c; �) =

8><>: 1�
�
1 + ((x=�)

c
)
��
�

if x > 0;

0 if x � 0:

� Quantile function:

Q (s;�; c; �) = �
�
(1� s)�1=� � 1

�1=c
; 0 < s < 1:

If c = 1; Burr�s model correspond to the Pareto one.

Fréchet model

� Probability density function:

f (x; ; �; �) =

8><>:
1
�

�
x��
�

��1�1=
exp

�
�
�
x��
�

��1=�
if x > �

0 if x � �
; for � � 0; ; � > 0:

� Cumulative distribution function:

F (x; ; �; �) =

8><>: exp
�
�
�
x��
�

��1=�
if x > �;

0 if x � �:

16



Chapter 2. Regular Variation

� Quantile function:

Q (s; ; �; �) = �� � log� s; 0 < s < 1:

This is some of other Pareto-type models:

Model F (x) f (x)

Invers burr
�
1 + �x��

���
���x���1

�
1 + �x��

���
Lévy erf c

q
c

2(x��)
p

c
2� :

1
(x��)3=2 exp

�
� c
2(x��)

�
Lomax 1�

�
1 + x

�

��� �
�

�
1 + x

�

���
Log-logistique 1

1+(x=�)��
(�=�)(x=�)��1

(1+(x=�)�)
2

Pareto 1�
�
x
u

�� �
�uk

x�+1

�
Table 2.1: Pareto-type models
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Chapter 3

Consistency and asymptotic

normality of Hill�s estimator

3.1 Construction of Hill�s estimator

In this section, we deal with the estimation of the tail index  > 0 whenever F 2 DA (G) ; on the

other terms F satis�es the �rst order condition of regular variation function:

lim
t!1

F (tx)

F (t)
= x�1= ; for x > 0: (3.1)

To this end, we �rst introduce the following result:

Proposition 3.1.1 Assume that F satis�es the assumption, then

Z 1
1

x�1
F (tx)

F (t)
dx!  as t!1;

which is equivalent to
1

F (t)

Z 1
t

log (x=t) dF (x)!  as t!1: (3.2)

18



Chapter 3. Consistency and asymptotic normality of Hill�s estimator.

Proof. From Potter�s inequalities above, for any x � 1; � > 0 and for large t; we have

(1� �)x�1=�� < F (tx)

F (t)
< (1 + �)x�1=+�;

which implies that

(1� �)x�1=�1�� < x�1F (tx)
F (t)

< (1 + �)x�1=�1+�:

It is clear that

(1� �)
Z 1
1

x�1=�1��dx <

Z 1
1

x�1
F (tx)

F (t)
dx < (1 + �)

Z 1
1

x�1=�1+�dx:

We have
R1
1
x�1=�1+�dx = 

1�� and
R1
1
x�1=�1��dx = 

�+1 ; therefore

(1� �) 

�+ 1
<

Z 1
1

x�1
F (tx)

F (t)
dx < (1 + �)



1� � :

By letting � # 0; yields Z 1
1

x�1
F (tx)

F (t)
dx! ; as t!1;

which completes the proof of the �rst assertion. The second one comes by using an elementary

integration by part that we omit further details.

Let us now derive the so-called Hill�s estimator of the tail index : Let X1:n � ::: � Xn:n be the

order statistics pertaining to the sample X1; :::; Xn from the cdf F 2 DA (G) : Recall that, for any

sequence of integer k = kn such that k ! 1 and k=n ! 0; Xn�k:n ! 1 almost surely. Then by

substituting, in (3:2) ; t = Xn�k:n and F by its the empirical counterpart

Fn (x) = n
�1

nX
i=1

IfXi;n�xg;

we derive Hill�s estimator given by

bH := 1

Fn (Xn�k:n)

Z 1
Xn�k:n

log (x=Xn�k:n) dFn (x) :

19
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Notice that Fn (Xn�k:n) = k=n; then

bH = n

k

Z 1
0

Ifx>Xn�k:ng log (x=Xn�k:n) dFn (x)

=
1

k

nX
i=n�k+1

log (Xi:n=Xn�k:n) =
1

k

kX
i=1

log (Xn�i+1:n=Xn�k:n) :

There by changing i by n� i+ 1; we end up to �nal formula for Hill�s estimator

bH = 1

k

kX
i=1

log (Xn�i+1:n=Xn�k:n) :

3.2 Limit theorems for Pareto-type intermediate order stat-

istics

Let X1:n � ::: � Xn:n be the order statistics pertaining to the sample X1; :::; Xn for (rv) of regularly

varying distribution function F with negative index (�1=) ; notation F 2 RV(�1=) that is:

lim
t!1

P (X=t > x >j X > t) = lim
t!1

F (xt)

F (t)
= x�1= ; x > 0:

In terms of the quantile function Q = F�1; the previous limit is equivalent to:

lim
t#0

Q (1� st)
Q (1� t) = s

� ; s > 0: (3.3)

Some times it is convenient to rewrite the previous limit into:

lim
t!1

U (st)

U (t)
= s ; s > 0; (3.4)

where U (s) = Q (1� 1=s) ; s > 1:

Theorem 3.2.1 Let F 2 RV(�1=) and 1 < kn < n be a sequence of integers such that kn ! 1

and kn=n! 0; then
Xn�k+1:n
Q (1� kn=n)

P! 1; as n!1:

The proof Theorem 3:2:1 requires the propositions below.

Proposition 3.2.1 Let U1; :::; Un be a sample from a rv U uniformly distributed on (0; 1) and let
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E1; :::; En+1 be a sample from a rv E; independent of U; of standard exponential distribution, i.e.

E follows exp (1) : Then

fUi:ngni=1
D
=

�
Si
Sn+1

�n
i=1

;

where Si =
Pn

i=1Ei; i = 1; :::; n+ 1:

Proof. See the representation (4.24) page 44 in Ahsanullah et al. (2013)[1]. Indeed, observe

that jointly

Si
Sn+1

=
Si

Si + Sn�i+1

D
=

� (i; 1)

� (i; 1) + � (n� i+ 1; 1)
D
= beta (i; n� i+ 1) ; i = 1; ::; n

On the other hand, we have jointly Ui:n
D
= beta (i; n� i+ 1) ; it follows that jointly

Ui:n
D
=

Si
Sn+1

D
= beta (i; n� i+ 1) :

Proposition 3.2.2 Let 1 < kn < n be a sequence of integers such that k := kn !1 and k=n! 0;

then

nUk:n=k
p! 1 and n (1� Un�k+1:n) =k

p! 1; as n!1:

Proof. From Proposition 3:2:1; we write

Uk:n
D
=

Sk
Sn+1

:

Observe that

nUk:n=k
D
=

n

n+ 1

Sk
k

n+ 1

Sn+1
:

We have n
n+1 ! 1;as n!1 and from the law of large numbers, both Sk

k

p! 1 and Sk
k

p! 1 as n!1;

therefore nUk:n=k
p! 1: Since Uk:n

D
= 1 � Un�k+1:n then we also have n (1� Un�k+1:n) =k

p! 1; as

n!1 as sought.

We have now all the ingredients to prove Theorem 3:2:1:

Proof of Theorem 3:2:1: We �rst note that

Xn�k+1:n
D
= Q (Un�k+1:n) = Q (1� (1� Un�k+1:n)) :
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We set sn := n (1� Un�k+1:n) =k and tn = k=n; it the other terms

Xn�k+1:n
D
= Q (1� tnsn) :

By applying inequality (2:10) ; we infer that

(1� �)s�n min(s�n; s
��
n ) <

Q(1� tnsn)
Q(1� tn)

< (1 + �)s�n max(s�n; s
��
n ):

From Proposition 3:2:2; we have sn
p! 1; therefore with probability tending to 1; we get

(1� �) < Q(1� tnsn)
Q(1� tn)

< (1 + �);

this means that
Xn�k+1:n
Q (1� kn=n)

=
Q(1� tnsn)
Q(1� tn)

p! 1; as n!1;

the proof is now completed.

The following Theorem establish the asymptotic normality of the ratio

Xn�k+1:n=Q (1� kn=n) :

To this end, we require to the second order condition corresponding to the �rst one (3:4) that is

lim
t!1

U(st)
U(t) � s



A (t)
= s

s� � 1
�

; s > 0; (3.5)

where the � < 0 is the second order parameter and jAj 2 RV(�1=) tending to zero as t ! 1:

When F satis�es assumption (3:5) we write F 2 R(2)V(�1=): See for instance the limit (2.3.22) in

page 48 of de Haan and Ferreira (2006) [17].

Theorem 3.2.2 Let F 2 RV(�1=) and 1 < kn < n be a sequence of integers such that kn ! 1;

kn=n! 0 and
p
kA (n=k) = O (1) ; then

p
k

�
Xn�k+1:n
Q (1� k=n) � 1

�
D! N

�
0; 2

�
; as n!1

The proof Theorem 3:2:2 requires the propositions below.

Proposition 3.2.3 Let 1 < kn < n be a sequence of integers such that k := kn !1 and k=n! 0;
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then
p
k (nUk:n=k � 1)

D! N (0; 1) and
p
k (n (1� Un�k+1:n) =k � 1)

D! N (0; 1) :

Proof. We already write that

nUk:n=k
D
=

n

n+ 1

Sk
k

n+ 1

Sn+1
:

It easy to verify that
p
k (nUk:n=k � 1) = Tn1 + Tn2 �

p
k

n+ 1
;

where

Tn1 :=
n

n+ 1

p
k

�
Sk
k
� 1
�
n+ 1

Sn+1
and Tn2 :=

p
k

n

n+ 1

�
n+ 1

Sn+1
� 1
�
:

Using the central limit theorem, we have
p
k (Sk=k � 1)

D! N (0; 1) and by the law of large numbers

Sn+1= (n+ 1)
p! 1; it follows that Tn1

D! N (0; 1) : The second term may be rewritten into

Tn2 = �
r
k

n

n

n+ 1

p
n

�
Sn+1
n+ 1

� 1
�
n+ 1

Sn+1
:

Again by using the central limit theorem, we have
p
n
�
Sn+1
n+1 � 1

�
D! N (0; 1) then

p
n
�
Sn+1
n+1 � 1

�
is bounded in probability as n!1: On the other hand Sn+1= (n+ 1)

p! 1 and k=n! 0; therefore

Tn2
p! 0: It is obvious that

p
k

n+1 ! 0; which completes the proof.

Proposition 3.2.4 (Potter�s inequalities) For any � > 0; there exists t0 = t0(�) > 1 such that

for t � t0; ts � t0; ������
U(st)
U(t) � s



A0 (t)
� s s

� � 1
�

������ < �s+�max �s�; s��� ;
for some A0 (t) � A (t) as t!1: See for instance de Haan and Ferreira (2006) [17].

All the materiels now are available to show Theorem (3:2:2) :

Proof of Theorem 3:2:2: Observe that

Xn�k+1:n
D
= Q

�
1� 1

tnsn

�
= U (tnsn) ;

where

tn := n=k and sn :=
1

n (1� Un�k+1:n) =k
:
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It is clear that
p
k

�
Xn�k+1:n
Q (1� k=n) � 1

�
= Sn1 + Sn2;

where

Sn1 :=
p
k

�
U (tnsn)
U (tn)

� sn
�
and Sn2 :=

p
k (sn � 1) :

Let write

Sn1 :=
p
kA0 (tn)

8<:
U(tnsn)
U(tn) � sn
A0 (tn)

� sn
s�n � 1
�

9=;+pkA0 (tn) sn s�n � 1�
:

From Proposition 3:2:4; we have

������
U(tnsn)
U(tn) � sn
A0 (tn)

� sn
s�n � 1
�

������ < �s+�n max
�
s�n; s

��
n

�
;

and by Proposition 3:2:2 sn
p! 1; it follows that

U(tnsn)
U(tn) � sn
A0 (tn)

� sn
s�n � 1
�

p! 0:

First note that jAj 2 RV(�) then jA0j 2 RV(�) too, then since
p
kA (tn) = O (1) its implies that

p
kA0 (tn) too. Since sn

s�n�1
�

p! 0 then Sn1
p! 0 as well. Let now focus on the second term Sn2:

Making use of the mean theorem we write

Sn2 :=
p
k (sn � 1) = 

p
k (sn � 1) c�1n ;

where cn is between 1 and sn: From Proposition 3:2:2 we have sn
p! 1; it follows that cn

p! 1 as

well. On the other hand,

p
k (sn � 1) =

p
k

�
1

n (1� Un�k+1:n) =k
� 1
�

= � 1

n (1� Un�k+1:n) =k
p
k (n (1� Un�k+1:n) =k � 1) :

Again from Proposition 3:2:2 n (1� Un�k+1:n) =k
p! 1 and by Proposition 3:2:3 we have

p
k (n (1� Un�k+1:n) =k � 1)

D! N (0; 1) ;

therefore Sn2
D! N

�
0; 2

�
; which completes the proof.
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3.3 Empirical tail processes and applications

The uniform tail empirical process pertaining to a sample U1; :::; Un from an uniform (0; 1) (rv) is

de�ned by

�n (s) :=
p
k
�n
k
Gn (ks=n)� s

�
; 0 � s � 1;

where uniform

Gn (s) :=
1

k

nX
i=1

I(Ui�s); for 0 � s � 1:

Denote the corresponding uniform distribution function, where 1 < kn < n be a sequence of integers

such that kn !1; kn=n! 0:

Theorem 3.3.1 There exists a standard Wiener process fW (s) ; s � 0g such that for every 0 < � < 1=2 :

sup
0�s�1

s�� j�n (s)�W (s)j p! 0; as n!1:

Let X1:n � ::: � Xn:n be the order statistics pertaining to the sample X1; :::; Xn for random

variable (rv) of regularly varying distribution function F with negative index (�1=) ; notation

F 2 RV(�1=): The empirical df is de�ned pertaining to the sample X1; :::; Xn is de�ned by

Fn (x) =
1

n

nX
i=1

I(Xi�x);

where IA (�) denotes the indicator function. The corresponding tail empirical process is de�ned by

Dn (x) =
p
k
nn
k
Fn (xXn�k+1:n)� x�1=

o
; x > 0:

Theorem 3.3.2 Assume that F 2 RV(�1=) and let 1 < kn < n be a sequence of integers such

that kn !1; kn=n! 0: Then for every, x0 > 0; 0 < � < 1=2 :

sup
x�x0

���k�1=2Dn (x)��� p! 0; as n!1:

In addition if F 2 RV(2)(�1=); then

sup
x�x0

x(1=2��)=
����Dn (x)� nW �

x�1=
�
� x�1=W (1)

o
� x�1= x

�= � 1
�

p
kA0 (n=k)

���� p! 0; (3.6)

as n!1; where fW (s) ; s � 0g is the same standard Wiener process given in Theorem 3:3:1: See
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de Haan and Ferreira (2006) [17] (pages 52 and 161).

Theorem 3.3.3 Let F 2 RV(2)(�1=) and 1 < kn < n be a sequence of integers such that kn ! 1;

kn=n! 0 and
p
kA (n=k) = O (1) ; then

p
k

�
Xn�k+1:n
Q (1� k=n) � 1

�
= W (1) + op

�p
kA (n=k)

�
; as n!1:

We deduce that
p
k

�
Xn�k+1:n
Q (1� k=n) � 1

�
D! N

�
0; 2

�
; as n!1:

Proof. Let us make the following decomposition

Xn�k+1:n
Q (1� k=n) � 1 = Tn1 + Tn2;

where

Tn1 :=
Xn�k+1:n
Q (1� k=n) � (n (1� Un�k+1:n) =k)

�
;

and

Tn2 := (n (1� Un�k+1:n) =k)� � 1:

From representation of the proof of 3:2:2; we have

Tn1 = A0 (tn)

U(tnsn)
U(tn) � sn
A0 (tn)

;

and also we showed that Tn1 = op (A0 (tn)) ; as n!1: Let us now treat the second term, to this

end let us �rst recall that we write 1� Un�k+1:n
D
= Uk:n; its follows that

Tn2
D
= (nUk:n=k)

� � 1:

By using the mean value theorem (�nite increments theorem), there exsits a constant c betewen x

and b such that

f (b)� f (x) = f 0 (c) (b� x) :
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If we set f (x) = x� ; f 0 (x) = �x��1; b = nUk:n=k and x = 1; then

Tn2 = (nUk:n=k)
� � 1 = (nUk:n=k)� � 1�

= ���1n (1� nUk:n=k) ;

were �n is between 1 and nUk:n=k: We already showed that nUk:n=k = 1 + op (1) ; this means

���1n = 1 + op (1) too, therefore

Tn2 = (nUk:n=k)
� � 1 = (1 + op (1))  (1� nUk:n=k) :

On the other hand, it easy to verify that

�n (nUk:n=k) =
p
k
�n
k
Gn (k (nUk:n=k) =n)� nUk:n=k

�
:

Let us denote nUk:n=k = s; yields

�n (s) =
p
k
�n
k
Gn (ks=n)� s

�
:

We have Gn (Uk:n) = k=n; then n
kGn (Uk:n) = 1; therefore

�n (nUk:n=k) =
p
k (1� nUk:n=k) ;

it follows that
p
kTn2 = (1 + op (1)) �n (nUk:n=k) ;

where �n (�) being the uniform tail empirical process de�ned above. Making use of Theorem 3:3:1;

we get

�n (nUk:n=k) = W (nUk:n=k) + op (1) :

Using similar argument as used in Benchaira et al. (2016) [4], we infer that

jW (nUk:n=k)�W (1)j � 2�; almost surely,

therefore W (nUk:n=k) =W (1) + op (1) ; this means that

p
kTn2 = (1 + op (1))  (W (1) + op (1)) :
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Since is stochastically bounded, W (1) = Op (1) ; then
p
kTn2 = W (1)+op (1) : Finally we showed

that
p
k

�
Xn�k+1:n
Q (1� k=n) � 1

�
= W (1) + op (1) :

Since W (1) N (0; 1) ; then

p
k

�
Xn�k+1:n
Q (1� k=n) � 1

�
! N

�
0; 2

�
:

Theorem 3.3.4 Let F 2 RV(�1=) and 1 < kn < n be a sequence of integers such that kn ! 1;

kn=n! 0; then

bH p! ; as n!1:

In addition if F 2 RV(2)(�1=) then

p
k (bH � ) =  Z 1

0

s�1 (W (s)�W (1)) ds+
1

1� �
p
kA (n=k) + op (1) ;

provided that
p
kA (n=k) = Op (1) : Moreover, if

p
kA (n=k)! � <1; then

p
k (bH � ) D! N

�
�

1� � ; 
2

�
; as n!1:

Proof. We have

bH = Z 1
1

x�1
Fn (xXn�k:n)

Fn (Xn�k:n)
dx =

Z 1
1

x�1
nn
k
Fn (xXn�k:n)

o
dx:

Observe that

bH �  = Z 1
1

x�1
�n
k
Fn (xXn�k:n)� x�1=

�
dx =

Z 1
1

x�1
n
k�1=2Dn (x)

o
dx:

Let us �x 0 < � < 1=2 and write

Z 1
1

x�1k�1=2Dn (x) dx =

Z 1
1

x�1�(1=2��)=
n
x(1=2��)=k�1=2Dn (x)

o
dx:
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It is obvious that

����Z 1
1

x�1k�1=2Dn (x) dx

���� � �sup
x�1

���x(1=2��)=k�1=2Dn (x)�����Z 1
1

x�1�(1=2��)=dx

�
:

From the �rst part of Theorem (3:3:2) ; the �rst factor converges in probability to zero as n!1:

For the second factor, we have

Z 1
1

x�1�(1=2��)=dx =
1

� (1=2� �) =

h
x�(1=2��)=

i1
1
=



1=2� � :

Since 0 < � < 1=2; the previous integral is �nite and equal to 
1=2�� ; and therefore bH p!  as

n!1: Let us now establish the asymptotic normality of bH : On again by using representation,
p
k (bH � ) = Z 1

1

x�1Dn (x) dx:

Making use of the second part of Theorem (3:3:2) ; we write

p
k (bH � ) = Tn1 + Tn2 + Tn3;

where

Tn1 :=

Z 1
1

x�1
�
Dn (x)�

n
W
�
x�1=

�
� x�1=W (1)

o
� x�1= x

�= � 1
�

p
kA0 (n=k)

�
dx;

Tn2 :=

Z 1
1

x�1
�
x�1=

x��= � 1
�

p
kA0 (n=k)

�
dx;

and

Tn3 :=

Z 1
1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx:

By using weak approximation (3:6) ; we obtain

Tn1 = op (1)

Z 1
1

x�1+(1=2��)=dx = op (1) ; as n!1:

For the second term, we have

Tn2 =
p
kA0 (n=k)

Z 1
1

x�1
�
x�1=

x�= � 1
�

�
dx =

p
kA0 (n=k)

1� � :
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It follows that

p
k (bH � ) = Z 1

1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx+

p
kA0 (n=k)

1� � + op (1) :

Next we show that

�2 := var

�Z 1
1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx

�
= 2:

Indeed, it is clear that

E

�Z 1
1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx

�
=

Z 1
1

E
h
x�1W

�
x�1=

�
� x�1=�1W (1)

i
dx;

because E [W (s)] = 0; for any s so we have

E

�Z 1
1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx

�
= 0:

Then

�2 := E

�Z 1
1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx

�2
;

which equals

E

�Z 1
1

x�1
�
W
�
x�1=

�
� x�1=W (1)

�
dx

��Z 1
1

y�1
�
W
�
y�1=

�
� y�1=W (1)

�
dy

�
= E

Z 1
1

Z 1
1

�
x�1

�
W
�
x�1=

�
� x�1=W (1)

���
y�1

�
W
�
y�1=

�
� y�1=W (1)

��
dxdy

=

Z 1
1

Z 1
1

E
h�
x�1

�
W
�
x�1=

�
� x�1=W (1)

���
y�1

�
W
�
y�1=

�
� y�1=W (1)

��i
dxdy

=

Z 1
1

Z 1
1

x�1y�1E
h�
W
�
x�1=

�
� x�1=W (1)

��
W
�
y�1=

�
� y�1=W (1)

�i
dxdy:

Using the obvious formula (a� b) (c� d) = ac� ad� bc+ bd; we decompose the previous integral

into the sum of

I1 :=

Z 1
1

Z 1
1

x�1y�1E
h
W
�
x�1=

�
W
�
y�1=

�i
dxdy;

I2 := �
Z 1
1

Z 1
1

x�1y�1E
h
W
�
x�1=

�
y�1=W (1)

i
dxdy
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I3 := �
Z 1
1

Z 1
1

x�1y�1E
h
x�1=W (1)W

�
y�1=

�i
dxdy;

and

I4 :=

Z 1
1

Z 1
1

x�1y�1E
h
x�1=W (1) y�1=W (1)

i
dxdy:

Let us begin by I1: Observe that

I1 =

Z 1
1

Z 1
1

x�1y�1E
h
W
�
x�1=

�
W
�
y�1=

�i
dxdy

=

Z 1
1

Z 1
1

x�1y�1min
�
W
�
x�1=

�
;W

�
y�1=

��
dxdy:

Let us use the change of variables s = x�1= and t = y�1= ; which is equivalente to x = s� and

y = t� ; it follows that

I1 =

Z 0

1

Z 0

1

�
s�

��1 �
t�
��1

min (s; t) ds�ds� :

Note that ds� = �s��1ds and dt� = �t��1dt; then

I1 =

Z 1

0

Z 1

0

�
s�

��1 �
t�
��1

min (s; t)
�
�s��1ds

� �
�t��1dt

�
= 2

Z 1

0

�Z 1

0

s�1t�1min (s; t) ds

�
dt:

Observe now that

I1 = 
2

Z 1

0

Z t

0

s�1t�1min (s; t) dsdt+ 2
Z 1

0

Z 1

t

s�1t�1min (s; t) dsdt;

which equals

I1 = 
2

Z 1

0

Z t

0

s�1t�1sdsdt+ 2
Z 1

0

Z 1

t

s�1t�1tdsdt;

then

I1 = 
2

�Z 1

0

t�1
Z t

0

ds

�
dt+ 2

�Z 1

0

Z 1

t

s�1ds

�
dt

= 2 � 2
Z 1

0

log tdt = 22;
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since �
R 1
0
log tdt = 1: For I2 we have

I2 = �
Z 1
1

Z 1
1

x�1y�1y�1= min
�
x�1= ; 1

�
dxdy

= �
Z 1
1

Z 1
1

x�1y�1y�1=x�1=dxdy = �
�Z 1

1

x�1=�1dx

�2
= �2:

By similar arguments we also show that I3 = �2: The fourth integral equals

I4 =

Z 1
1

Z 1
1

x�1=�1y�1=�1E
�
W 2 (1)

�
dxdy

=

Z 1
1

Z 1
1

x�1=�1y�1=�1dxdy =

�Z 1
1

x�1=�1dx

�2
= 2:

Finally we have I = 22 � 22 + 2 = 2:

3.4 High quantile

The high quantile estimation of heavy tailed distributions has many important applications. There

are theoretical di¢ culties in studying heavy tailed distributions since they often have in�nite mo-

ments.

De�nition 3.4.1 The quantile of order p is the number xp denoted by

xp = inffx; F (x) � pg; for all small p:

De�nition 3.4.2 We call extreme quantile the quantile of order (1� p) ; de�ned by

xp = inffx 2 R; F (x) � pg = F�1 (1� p) : for all small p:

Weissman (1978) proposed the following semi parametric estimator of a high quantile.

Weissman estimator

Weissman�s estimator, Weissman (1978) [28], of the Pareto-type tail distribution function F := 1�F

is de�ned by bF (x) = k

n

�
x

Xn�k:n

��1=bH
; for all large x;
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where bH is the so called Hill estimator of the tail index :The corresponding high quantile estimator
is

F�1 (1� p) = Xn�k:n(
k

np
)�bH ; for all small p:
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Chapter 4

Simulation study and real data

applications

4.1 Simulation study

In this section, we check the �nite sample behavior of Hill�s estimator bH in terms of consistency

and asymptotic normality. To this end, let us consider sets of data drawn from three parameters

Burr (�; c; �) and three parameters Fréchet (; �; �) models with respective cdf�s

F (x;�; c; �) =

8><>: 1�
�
1 + ((x=�)

c
)
��
�

if x > 0

0 if x � 0
; �; c; � > 0;

and

F (x; ; �; �) =

8><>: exp
�
�
�
x��
�

��1=�
if x > �

0 if x � �
; �; �;  > 0:

First, we �x the values (0; 1) for (�; �) ; f0:5; 1; 1:5; 2g for ; 0:25 for �; then by using the notation

c = 1= (�) we get the corresponding values f8; 2; 1: 333; 1g for c: Then we vary the common

size n = 1000; 5000 of sample (X1; :::; Xn) ; then for each size, we generate 1000 independent

replicates. For the selection of the optimal numbers of upper order statistics, denoted bk; used in
the computation of bH ; we apply the algorithm of Reiss and Thomas:

bk := arg min
1<k<n

1

k

kX
i=1

i1=3 jbH (i)�median fbH (1) ; :::; bH (k)gj : (4.1)
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Chapter 3. Application and simulation

The results are summarized in two Tables 4:1 and 4:2: As illustration of the consistency of bH ; we
plot this one as function of sample fraction k; see Figures 4:1 and 4:2: For the asymptotic normality

we �t Zk =
p
k (bH � ) = by the normal distribution and then we plot together the histogram

and the corresponding density of the �tting normal model, see Figures 4:3; 4:4; 4:5 and 4:6:

 = 0:5  = 1  = 1:5  = 2

n b bk b bk b bk b bk
1000 0:695 21 0:867 95 1:603 100 1:946 100

5000 0:668 100 1:043 158 1:513 172 2:002 109

Table 4.1: Computation of optimal sample franction k and its corresponding Hill�s estimator for

Burr�s model.

 = 0:5  = 1  = 1:5  = 2

n b bk b bk b bk b bk
1000 0:443 19 0:992 100 1:421 100 2:281 35

5000 0:5473 500 1:180 500 1:688 496 2:021 499

Table 4.2: Computation of optimal sample franction k and its corresponding Hill�s estimator for

Fréchet�s model.

Figure 4.1: Performance of Hill�s estimator for a sample of size N = 1000 (Burr�s model) with
 = f0:5; 1g top panel and  = f1:5; 2g (bottom panel).
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Figure 4.2: Performance of Hill�s estimator for a sample of size N = 5000 (Burr�s model) with
 = f0:5; 1g top panel and  = f1:5; 2g (bottom panel)

� Asymptotic normality of Hill�s estimator for  = 0:5 (Burr�s model):

Figure 4.3: Asymptotic normality of Hill�s estimator for  = 0:5 (Burr�s model):
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� Asymptotic normality of Hill�s estimator for  = 1 (Burr�s model):

Figure 4.4: Asymptotic normality of Hill�s estimator for  = 1 (Burr�s model):

� Asymptotic normality of Hill�s estimator for  = 1:5 (Burr�s model):

Figure 4.5: Asymptotic normality of Hill�s estimator for  = 1:5 (Burr�s model):
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� Asymptotic normality of Hill�s estimator for  = 2 (Burr�s model):

Figure 4.6: Asymptotic normality of Hill�s estimator for  = 2 (Burr�s model):

4.2 Real data applications

In this section, we deal with dataset that belong to the Fréchet domain of attraction; then we choose
among others the Burr (�; c; �) distribution as the �tting model. The selected data are given in

Table 4:3 in which the MLE parameters estimation and the p-values of Cramer-Von mises (cvm)

and Kolmogorov-Smirnov (ks) goodnes-of-�t tests (goft) are given. The �tting some of the data

are illustrated in Figures 4:9; 4:10; 4:11 and 4:12: We note that all these data are of "small sample

size". The obtained p-vlaue are all greater than the level 0:05; this means among other that are of

pareto-type data. The EVT based estimation requires a large sample size to get meaningful results,

then the selected data do not be considered in our study. To this end, we selected other data which

meet our need, namely the �nancial data, the Dow Jones Industrial Average (Dow Jones), the S&P

500, the Russell 2000, and individual stocks such as Apple (APPL), experience daily �uctuations

in sales volumes and returns. These �uctuations are vital indicators for understanding market

dynamics and investor sentiment, crucial for e¤ective risk management. The NASDAQ Composite

Index, which heavily represents technology stocks, signi�cantly contributes to this daily volatility.

By incorporating the concept of Value at Risk (VaR) into our analysis, we can quantitatively assess

the potential downside risk associated with these �uctuations. Therefore, by examining daily sales

volumes, returns, and VaR for these markets, we gain a comprehensive understanding of their

38



Chapter 3. Application and simulation

behavior and the associated risk levels.

Next will deal with the asset returns of the four �nancial maktes, namely S&P 500, APPL, Russell

2000 and NAS daq and the exchange rates JPY/USD and EUR/USD. In the �rst step we test the

belonging of these data to the Fréchet domain of atrraction this by using the bloc maxima method.

The results are summarized in Table 4:4: The �tting of the S&P 500 stock market is illustrated is

Figure 4:8: In the second step, we �t our data by Burr (�; c; �) model. The results are summarized

in Table 4:5: The given �tting of the S&P 500 stock market is illustrated in Figure 4:7:

MLE parameters estimation p-value goft

data-name (package) � c � cvm p-value ks p-value

cancer1 2.103 1.427 12.232 0.996 0.858

lung.cancer (SMPracticals) 7.490 1.353 10718.88 0.959 0.835

nidd.thresh (evir) 0.072 44.917 68.123 0.618 0.642

nidd.annual (evir) 0.192 10.752 79.011 0.520 0.978

Cars93 (MASS) 0.809 4.127 15.994 0.873 0.774

accdeaths (MASS) 0.137 41.59 7677.694 0.222 0.888

Insurance (MASS) 1.168 1.122 166.003 0.991 0.990

WorldPhones (datasets) 0.323 2.032 1376.847 0.463 0.383

Nile (datasets) 1.050 8.731 904.092 0.730 0.906

euro (datasets) 0.204 1.906 1.775 0.958 0.479

oldage (evd) 308.597 71.066 112.940 0.381 0.102

oxford (evd) 1.497 31.149 86.881 0.871 0.650

lossalae (evd) 1.740 1.090 10717.44 0.744 0.835

lisbon (evd) 1.037 12.728 100.769 0.964 0.796

fox (evd) 325.57 2.839 34.166 0.805 0.845

failure (evd) 53.810 1.553 1304.352 0.310 0.449

annMax (extremeStat) 1.479 4.867 69.446 0.961 0.690

Table 4.3: Fiting data with Burr�s model
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Figure 4.7: Histogram the Positive and Negative SP500 index by �tted Burr�s density

Figure 4.8: Histogram the Bloc maxima corresponding to the Positive and Negative SP500 index
and the �tting by Burr�s density
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Figure 4.9: Histogram of R.T. Cancer and Lung Cancer and the �tting by Burr�s density.

Figure 4.10: Histogram of Accdeaths and Insurance Holders and the �tting by Burr�s density.
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Figure 4.11: Histogram of Cars93 and the �tting by Burr�s density

Figure 4.12: Histogram of nidd.thresh and nidd.annual data and the �tting by Burr�s density.
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�  p-value cvm goft

S&P 500 2.660 1.506 0.444

APPL 2.411 1.483 0.579

Dowjones 2.961 1.623 0.368

Russell 2000 3.675 3.012 0.907

NAS daq 3.148 3.378 0.886

JPY to USD 0.844 0.339 0.992

EUR to USD 2.997 0.694 0.183

Table 4.4: Fitting data by Fréchet�s model using the block maxima method.

� c � p-value cvm goft

S&P 500 8.560 1.103 4.380 0.950

APPL 3.732 1.265 4.771 0.836

Dowjones 6.558 1.143 3.322 0.325

Russell 2000 6.969 1.162 0.651 0.810

NAS daq 4.838 1.212 3.141 0.152

JPY to USD 4156.716 1.043 1182.62 0.981

EUR to USD 34.464 1.204 6.120 0.988

Table 4.5: Fiting data by Burr�s model.

4.2.1 High quantile (var)

In this section, we deal with the estimation of the high quantile, some times called the value-at-risk

(var), for the daily logarithmic returns corresponding the stock prices of S&P 500, APPL, Dowjones,

Russell 2000, NAS daq, JPY/USD and EUR/USD. To this end we use he logarithmic return R(t)

at the �nest time resolution is calculated by

Rt := log
Xt
Xt�1

; t = 1; 2; :::; n;

where Xt is the price of the asset at day t: It is worth mentioning that the distributions of �nancial

returns are known to be non-normal and tend to be heavy-tailed. Indeed, the �nancial models with

heavy-tailed distributions have been introduced to overcome problems with the realism of classical

�nancial models. These classical models of �nancial time series typically assume homoskedasticity
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and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility

clustering of the empirical asset returns in �nance. In 1963; Benoit Mandelbrot �rst used the

stable (or �-stable) distribution to model the empirical distributions which have the skewness

and heavy-tail property. Since �-stable distributions have in�nite p-th moments for all p > �;

the tempered stable processes have been proposed for overcoming this limitation of the stable

distribution. The Figures illustrate the computation of the tail indices and the var�s corresponding

to the aforementioned stock prices.
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Conclusion

The regularly varying functions of negative index play a prominent role is extreme values analysis

and modelling heavy-tailed data pertaining to rare events. The �exibility of this class of functions

allow us to derive estimators for the distribution tails and its corresponding high quantile. For

example, in �nancial data analysis the regularly varying functions can be used to estimate the

Value at Risk (VaR) helping to assess market risks and provide �nancial decisions. Therefore,

these functions play a signi�cant tool in managing risks in various �elds, namely the Insurance,

Finance, Economy, Environment and others.
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What is the R language?

� The R language is a programming language and mathematical environment used for data pro-

cessing. It allows for both simple and complex statistical analyses such as linear or non-linear

models, hypothesis testing, time series modeling, classi�cation, etc. It also features many highly

useful and professional-quality graphical functions.

� R was created by Ross Ihaka and Robert Gentleman in 1993 at the University of Auckland, New

Zealand, and is now developed by the R Development Core Team.

� The name of the language originates, on one hand, from the initials of the �rst names of the two

authors (Ross Ihaka and Robert Gentleman), and on the other hand, from a play on words with

the name of the language S to which it is related.

� The simulation program.

#Graphic of Hill estimator of the tail index.

�dburr=function(x, a , c,L ) {(c*a/L)*(x/L)^(c-1)/(1+(x/L)^c)^(a+1)}

�pburr=function(x, a , c,L ){1-(1+(x/L)^c)^(-a)}

�qburr=function(s,a,c,L){L*((1-s)^(-1/a)-1)^(1/c)}

# consistency of Hill�s estimator.

�gamma=1.5

�L=0.4

�c=0.6

�a=1/(gamma*c)
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�N=500

�library(extreme�t)

�library(�tdistrplus)

�library(extraDistr)

�library(goftest)

�library(SMPracticals)

�library(goftest)

�library(SMPracticals)

�library(evir)

�library(MASS)

�library(�tdistrplus)

�M=500

�r=seq(0.5,0.9,length=M)

�k=�oor(N^r)

�H=rep(NA,M)

�U=runif(N)

�x=qburr(U,a,c,L)

�X=sort(x)

�for(j in 1:M){

m=k[j]

d=N-m+1

H[j]=sum(log(X[d:N]))/m-log(X[N-m])}

�plot(k,H,type = "l",col="red")

�abline(h=gamma,col="blue",ylim=c(0,1))

# the optimale sample fraction k:

�n1=�oor(N/50) ; n2=�oor(N/10) ; alpha=numeric(n2)

�for(i in 1:n2){

alpha[i]=(1/i)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-i)])}
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�s=rep(NA,n2)

�for(k in 1:n2){

u=numeric(k)

for(w in 1:k){

u[w]=(w^0.3)*abs(alpha[w]-median(alpha[1:k]))}

s[k]=(1/k)*sum(u[1:k])}

ss=numeric(n2-n1+1)

�for(h in 1:(n2-n1+1)){

ss[h]=s[n1+h-1]}

�krep=(n1-1+which.min(ss))

�kopt=�oor(krep)

�print(kopt)

�abline(v=kopt,col="green")

�gamma1=H[kopt]

�print(gamma1)

�Tail=function(t){(kopt/N)*(t/X[N-kopt])^(-1/gamma1)*(t>X[N-kopt])}

�Hq=function(s){X[N-kopt]*(kopt/(N*s))^(-gamma1)*(s<kopt/N)}

�p=0.01 #### so that be < kopt/N

�VAR=Hq(p); print(VAR)

# Asymptotic normality of Hill�s estimator.

�N=1000

�M=50

�Z=rep(NA,M)

�for (j in 1:M){

U=runif(N)

x=qburr(U,a,c,L)

X=sort(x)

n1=�oor(N/50) ; n2=�oor(N/10) ; alpha=numeric(n2)
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for(i in 1:n2){

alpha[i]=(1/i)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-i)])}

for(k in 1:n2){

u=numeric(k)

for(w in 1:k){

u[w]=(w^0.3)*abs(alpha[w]-median(alpha[1:k]))}

s[k]=(1/k)*sum(u[1:k])}

ss=numeric(n2-n1+1)

for(h in 1:(n2-n1+1)){

ss[h]=s[n1+h-1]}

krep=(n1-1+which.min(ss))

kopt=�oor(krep)

h=(1/kopt)*sum(log(X[(N-kopt+1):N]),na.rm = FALSE)-log(X[(N-kopt)])

Z[j]=sqrt(kopt)*(h-gamma)/gamma}

�Z=na.omit(Z)

�p.value=round(shapiro.test(Z)[[2]],4)

�print(p.value)

�hist(Z,freq = FALSE,ylim=c(0,0.3),main="Asymptotic normality of Hill�s estimator" ,col="green")

�lines(density(Z),col="red",lw=2)

�my�t=�tdist(Z,"norm")

�mean1=my�t$estimate[[1]]

�sd1=my�t$estimate[[2]]

�curve(dnorm(x,mean1,sd1),-3,4,add=TRUE,col="blue",lw=2)

�text(-2.5, 0.25,paste("p.value","=",p.value))

�legend(2,0.3,legend = c("Historgram", "Kernel desity","Curve density"), lw= c(1,2,2), col =

c("green", "red","blue"),bty = "n")

� Fitting small sample data with Burr�s distribution.

�cancer_data=c(13.80,5.85,7.09,5.32,4.33,2.83,8.37,14.77,8.53,11.98,1.76,4.40,34.26,2.07,17.12,12.63,7.66,4.18,
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13.29,23.63,3.25,7.63,3.31,2.26,2.69,11.79,5.34,6.93,10.75,13.11,7.39,13.80,5.85,7.09,5.32,4.33,2.83,8.37,14.77,

8.53,11.98,1.76,4.40,34.26,2.07,17.12,12.63,7.66,4.18,13.29,23.63,3.25,7.63,2.87,3.31,2.26,2.69,11.79,5.34,6.93,

10.75,13.11,7.39)

�library(�tdistrplus)

�library(goftest)

�dburr=function(x, k , c,L ) {(c*k/L)*(x/L)^(c-1)/(1+(x/L)^c)^(k+1)}

�pburr=function(q, k , c,L ){1-(1+(q/L)^c)^(-k)}

�qburr=function(s,k,c,L){L*((1-s)^(-1/k)-1)^(1/c)}

�my�t=mledist(cancer_data,"burr",start=list(k=1,c=1,L=1))

�k1=my�t$estimate[[1]]

�c1=my�t$estimate[[2]]

�L1=my�t$estimate[[3]]

�mytest=cvm.test(cancer_data,"burr",k1,c1,L1)

�p_value=mytest$p.value

�print(p_value)

�U=runif(length(cancer_data))

�y=qburr(U,k1,c1,L1)

�ks.test(y,cancer_data)

� Fitting large-sample data to Burr�s distribution.

�burr1=function(x, k , c,L ) {(c*k/L)*(x/L)^(c-1)/(1+(x/L)^c)^(k+1)}

�pburr1=function(q, k , c,L ){1-(1+(q/L)^c)^(-k)}

�qburr1=function(s,k,c,L){L*((1-s)^(-1/k)-1)^(1/c)}

�options("getSymbols.warning4.0"=FALSE)

�options("getSymbols.yahoo.warning"=FALSE)

�dowJones <- new.env()

�getSymbols("^DJI", env = dowJones, src = "yahoo",from = as.Date("1990-01-01"), to = as.Date("2023-

01-01"))

�mydata=dowJones$DJI$DJI.Open
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�N=length(mydata)

�X=as.numeric(mydata)

�index=di¤(log(X))

�Ip=as.numeric(na.omit(index[index>0])*100); N=print(length(Ip))

�#In=abs(as.numeric(na.omit(index[index<0])*1000)); N=print(length(In))

�my�t=�tdist(Ip,"burr1",start=list(k=2,c=1,L=1))

�k1=my�t$estimate[[1]]

�c1=my�t$estimate[[2]]

�L1=my�t$estimate[[3]]

�mytest=cvm.test(Ip,"burr1",k1,c1,L1)

�p_value=mytest$p.value

�print(p_value)

�M=500

�r=seq(0.01,0.99,length=M)

�k=�oor(N^r)

�H=rep(NA,M)

�X=sort(Ip)

�for(j in 1:M){

m=k[j]

d=N-m+1

H[j]=sum(log(X[d:N]))/m-log(X[N-m])}

�plot(k,H,type = "l",ylim=c(0,1),main="Tail index of Dow Jones stock prices",col="red")

# the optimal sample fraction k.

�n1=�oor(N/50) ; n2=�oor(N/5) ; alpha=numeric(n2)

�for(i in 1:n2){

alpha[i]=(1/i)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-i)])}

�s=rep(NA,n2)

�for(k in 1:n2){
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u=numeric(k)

for(w in 1:k){

u[w]=(w^0.3)*abs(alpha[w]-median(alpha[1:k]))}

s[k]=(1/k)*sum(u[1:k])}

�ss=numeric(n2-n1+1)

�for(h in 1:(n2-n1+1)){

ss[h]=s[n1+h-1]}

�krep=(n1-1+which.min(ss))

�kopt=�oor(krep)

�print(kopt)

�gamma1=round(H[kopt],2)

�print(gamma1)

# High quantile estimation

�q=function(s){X[N-kopt]*(kopt/(N*s))^(-gamma1)*(s<kopt/N)}

�p=1/365

�VAR=round(q(p),2); print(VAR)

�abline(v=kopt,col="green",lty=2)

�abline(h=gamma1,col="blue",lty=2)

�text(1500,gamma1+0.05,paste("gamma","=",gamma1,"and","VAR","=",VAR))

� Fitting large-sample data to Frechet�s distribution using the block maxima method.

�library(extreme�t)

�library(�tdistrplus)

�library(extraDistr)

�library(goftest)

�library(SMPracticals)

�library(goftest)

�library(SMPracticals)

�library(evir)
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�library(MASS)

�library(�tdistrplus)

# these data are �tted ny Burr model

�data("SP500")

�mydata=SP500[SP500>0]

�mydata=abs(SP500[SP500<0])

�m=rep(NA,100)

�for (i in 1:100){

z=sample(mydata,30)m[i]=max(z)}

# Fitting by cramer-Von-Mises test

�my�t=�tdist(m,"frechet",method="mle",start = list(lambda = 1, mu = 1, sigma = 1))

�print(my�t)

�lambda1=my�t$estimate[[1]]

�mu1=my�t$estimate[[2]]

�sigma1=my�t$estimate[[3]]

�test=cvm.test(m,"frechet",lambda1,mu1,sigma1)

�p_value=test$p.value

�print(p_value)

# Fitting by Kolmogorov-Smirnov test

�U=runif(length(mydata))

�y=qfrechet(U,lambda1,mu1,sigma1)

�ks.test(y,m,exact=TRUE)

�hist(m,freq=FALSE,col = "gray", border = "blue")

�curve(dfrechet(x,lambda1,mu1,sigma1),add=TRUE,col="green",lty = 2, lwd = 3)

� Programme for calculating tail indicators and corresponding variables for the SP500.

�dburr1=function(x, k , c,L ) {(c*k/L)*(x/L)^(c-1)/(1+(x/L)^c)^(k+1)}

�pburr1=function(q, k , c,L ){1-(1+(q/L)^c)^(-k)}

�qburr1=function(s,k,c,L){L*((1-s)^(-1/k)-1)^(1/c)}
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# downloading �nancial data from its own website

�options("getSymbols.warning4.0"=FALSE)

�options("getSymbols.yahoo.warning"=FALSE)

�sp500 <- new.env()

�getSymbols("^GSPC", env = sp500, src = "yahoo",from = as.Date("1990-01-01"), to = as.Date("2023-

01-01"))

�mydata=sp500$GSPC$GSPC.Open

�N=length(mydata)

�X=as.numeric(mydata)

�index=rep(NA,N)

�for (i in 1:N){

index[i]=log(X[i+1]/X[i])}

�Ip=as.numeric(na.omit(index[index>0])*100); N=print(length(Ip))

�#In=abs(as.numeric(na.omit(index[index<0])*1000)); N=print(length(In))

�my�t=�tdist(Ip,"burr1",start=list(k=2,c=1,L=1))

�k1=my�t$estimate[[1]]

�c1=my�t$estimate[[2]]

�L1=my�t$estimate[[3]]

�mytest=cvm.test(Ip,"burr1",k1,c1,L1)

�p_value=mytest$p.value

�print(p_value)

�M=500

�r=seq(0.01,0.99,length=M)

�k=�oor(N^r)

�H=rep(NA,M)

�X=sort(Ip)

�for(j in 1:M){

m=k[j]

d=N-m+1
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H[j]=sum(log(X[d:N]))/m-log(X[N-m])}

�plot(k,H,type = "l",ylim=c(0,1),main="Tail index of SP500 stock prices",col="red")

# the optimal sample fraction k.

�n1=�oor(N/50) ; n2=�oor(N/5) ; alpha=numeric(n2)

�for(i in 1:n2){

�alpha[i]=(1/i)*sum(log(X[(N-i+1):N]),na.rm = FALSE)-log(X[(N-i)])}

�s=rep(NA,n2)

�for(k in 1:n2){

u=numeric(k)

for(w in 1:k){

u[w]=(w^0.3)*abs(alpha[w]-median(alpha[1:k]))}

s[k]=(1/k)*sum(u[1:k])}

�ss=numeric(n2-n1+1)

�for(h in 1:(n2-n1+1)){

ss[h]=s[n1+h-1]}

�krep=(n1-1+which.min(ss))

�kopt=�oor(krep)

�print(kopt)

�gamma1=round(H[kopt],2)

�print(gamma1)

# High quantile estimation.

�q=function(s){X[N-kopt]*(kopt/(N*s))^(-gamma1)*(s<kopt/N)}

�p=1/365

�VAR=round(q(p),2); print(VAR)

�abline(v=kopt,col="green",lty=2)

�abline(h=gamma1,col="blue",lty=2)

�text(1500,gamma1+0.05,paste("gamma","=",gamma1,"and","VAR","=",VAR))

# m is frechet (k) <=> 1/m is Weibull(k).
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�R=100

�M=10

�m=rep(NA,R)

�for (i in 1:R){

m[i]=max(sample(Ip,M))}

�T=1/m

�my�t1=�tdist(T,"weibull")

�k=my�t1$estimate[[1]]

�a=my�t1$estimate[[2]]

�mytest1=cvm.test(T,"pweibull",k,a)

�p_value1=mytest1$p.value

�print(p_value1)
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Notations

The following is an explanation of the various abbreviations and notations which are in use through-

out this report:

cdf : cumulative distribution function.

rv : random variable.

DA : Domains of attraction.

i:i:d : Independent and identically distributed.

xF : End point.

F (:) : distribution function.

F (:) : tail function.

Fn (:) : empirical distribution function.

EV T : extreme values theory.

evi : extreme values index.

RV : regularly varying functions with index :

RV
(2)
 : regular second order variation.

L (:) : slowly varying function.

GPD : Generalised Pareto Distribution.

IA (�) : the indicator function.

i:e: : in other words.
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MLE : Maximum Likelihood Estimator.

�n (�) : the uniform tail empirical process.

bnxc : Integer part of np:

� (i; 1) : gamma law with parameters i and 1.

D
= : of the same law.

p! : convergence in probability.

op (1) : Asymptotically negligible in probability.

O (1) : stochastically bounded.

v : A v B : A has distribution B.
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The memorandum addresses the application of regularly varying functions in Extreme Value 

Theory (EVT) and their importance in modeling rare events and extreme risks. We also discuss the 

domains of attraction of distribution functions related to regularly varying functions, focusing on 

the Fréchet domain of attraction. We cover the first and second conditions for these functions 

and their regular variations, then delve into the statistical inference of tail distribution functions, 

constructing a Hill estimator for tail indices and high quantiles, and proving consistency and 

asymptotic normality. We conclude our work with a simulation study of the Hill estimator and a 

real-life application in financial markets, particularly in analyzing asset returns and risk 

management using concepts of tail distribution functions. 

Keywords: regularly varying, Fréchet domain of attraction, Hill estimator, tail distribution, high 

quantiles. 

 

 

( وأهميتها في نمذجة الأحداث النادرة، المخاطر الخطرة. EVTالقيم القصوى )تتناول المذكرة تطبيق الدوال المتغيرة بانتظام  في نظرية 

نتناول ايضا مجالات جذب دوال التوزيع المتعلقة بالدوال المتغيرة بانتظام ركزنا على مجال جذب فريشي. كما تناولنا الشرطين الأول 

الإحصائي لدوال توزيع الذيل، بناء مقدر هيل لمؤشر الذيل وكمياته العالية،  والثاني لهذه الدوال ومتبايناتها المنتظمة، ثم تعمقنا في الاستدلال

ائد وإثبات الاتساق والطبيعية التقاربية. أنهينا عملنا  بدراسة محاكاة لمقدّر هيل وتطبيق حقيقي على الأسواق المالية، لا سيما تحليل عو

 ل.الأصول وإدارة المخاطر باستخدام مفاهيم دالة التوزيع الذي

 .العالية الكميات الذيل، توزيع هيل، مقدر فريشي، الجذب مجال المنتظم، التباين :المفتاحية الكلمات

 

 

Le mémoire aborde l'application de fonctions régulièrement variables dans la Théorie des Valeurs 

Extrêmes (EVT) et leur importance dans la modélisation des événements rares et des risques extrêmes. 

Nous discutons également des domaines d'attraction des fonctions de distribution liées aux fonctions 

régulièrement variables, en mettant l'accent sur le domaine d'attraction de Fréchet. Nous couvrons les 

premières et deuxièmes conditions pour ces fonctions et leurs variations régulières, puis nous nous 

plongeons dans l'inférence statistique des fonctions de distribution de la queue, en construisant un 

estimateur de Hill pour les indices de queue et les quantiles élevés, et en prouvant la cohérence et la 

normalité asymptotique. Nous concluons notre travail par une étude de simulation de l'estimateur de 

Hill et une application concrète dans les marchés financiers, notamment dans l'analyse des rendements 

des actifs et la gestion des risques en utilisant des concepts de fonctions de distribution de la queue. 

Mots clés : variation régulière, domaine d'attraction de Fréchet, estimateur de Hill, queue de 

distribution, .quantiles élevés 
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