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Introduction

The EDSRs were introduced in 1973 by J.-M. Bismut [3] in the case where the
generator f is linear with respect to the variables Y and Z. It was not until the
beginning of the 90s and the work of E. Pardoux and S. Peng [6] to have the first result
of existence and uniqueness of solution in the nonlinear case. Forward- backward
stochastic differential equations (shortly, FBSDESs) were first studied by Antonelli in
[1]. He showed the existence and uniqueness of the solution of a backward -forward
stochastic differential equations, where the solution depends explicitly on both the
past and future of its own trajectory, under a more restricture hypothesis on the
Lipschitz constant. Since then they are encountered in stochastic optimal control

problems and mathematical finance.

The objective of this memory is to establish the necessary conditions of optimality as
maximum principle for relaxed control problem for system governed by the following

FBSDE of mean-field type:

dX, = [, b(t, X{' BIX}), u)pe(du)dt + [, o(t, XI' BIXE], w) g (du)dW,
_dY; - fU f(tJ X#’ E[Xfiu]v Y;‘,Hv E[Y;H]v Z#vE[Ztu]? U)Nt(du)dt - thWt
Xy ==, Yp=g(X3,EBIX7]), t€]0,T].

The functionnel cost to be minimized over the set R of admissible relaxed controls,

is defined by the form:



Introduction

J (i) = Bla(Xp, BIXE]) + B(Y, BY()

T
s [ [ e Xp B Y B, 2 B2, wh ()t
0 Ju
We say that admissible relaxed control ¢ is optimal control if:

J(q) = inf J(p).

wER

This memory is composed of two chapters:

Chapter 1: In this chapter, we study a type of nonlinear forward-backward stochastic
differential equations this type is called mean field, where the system is dependent on
the state process, as well as its distribution via the expectation of the state process.
We will give the demonstration of the result of existence and uniqueness of solution
for systems derived by nonlinear forward-backward stochastic differential equations
of mean field type (MF-FBSDE), under Lipschitz condition and by using Picard

iteration.

Chapter 2: Our objective in the second chapter is to establish the necessary optim-
ality condition in the form of a stochastic maximum principle, for relaxed controls
for a system governed by nonlinear forward-backward SDEs, of mean field type. To
achieve this goal, we use the fact that the set of relaxed controls is convex and

applying the weak (convex) perturbation method.



Chapter 1

The existence and uniqueness of

solution for nonlinear mean-field

FBSDE

1.1 Existence and uniqueness of solution for FBSDE:
We consider the following nonlinear forward-backward SDEs, of mean field type:

dX, =  b(t, X, B[X,))dt + o(t, X, B[X,))dW,
—dY, = f(t, X,,B[X,],Y:,BY)], Z,, B[ Z)])dt — Z,dW, (1-1)
XO =T , YT - Q(XT;E[XT])v



The existence and uniqueness of solution for nonlinear mean-field FBSDE

where the following functions must be measurable:

b:Qx[0,T] xR" xR" = R"
o:Qx[0,T] x R* x R" — R™*¢

COX R xR - R™

s

f:Ox[0,T] x R" x R" x R™ x R™ x R™*% x R™*4 _ R™,

This system can be interpreted in full form as follows:

Xe= @+ [ b(s, Xo, BIX,))ds + [) o(s, X,, BX,))dW, t>0
Y, = g(Xr, E[X7]) +ftT f(s, Xs, B[X,], Y5, BYS], Z,, B[ Z,])ds — ftT ZsdWs,

the system (1.1) is called forward and backward stochastic differential equation of
mean-field type (MF-FBSDE). Such that, the coefficient b is called the drift, o is
called the diffusion of the FSDE and f is called the generator of the BSDE.

-We will work with two process spaces.

-We will first denote by S?(R") the vector space formed by the process X;, progress-

ively measurable, with values in R",

such that:

| X; ||%=E[ sup | X; |*] < oo.
0<s<T

And S%(R™) the subspace formed by continuous processes.

-And then M?2(R™*?) that formed by the process Z; progressively measurable, with

values in R™*?, such that:
T
12 =B 112 1P it < .

-The spaces 52, S? and M? are Banach spaces for the defined norms previously.
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-We will designate B? the Banach space
B? = S?(R™) x S2(R™) x M*(R™*4).

Definition:

We call solution of the system of Forward-Backward stochastic differential equations
(FBSDE) of mean field type (1.1), all triple (X,Y,Z) of progressively measurable

processes valued in R”x R™ xR™*¢ and square integrable such that:

Xy =+ [7b(s, Xo, B[X,])ds + [ o(s, X,, B[X,))dW, ¢ >0
}/; = g(XT>E[XT]) + LT f(S7X8aE[XS]a K?E[}{S]a ZSaE[ZS])dS - LT stws-

1.1.1 Existence and uniqueness theorem:
Theorem (Existence and uniqueness):

Let b, 0, f and g are a Borelian functions. Assume that there is a constant k£ > 0 such

that , for all ¢ € [0, 71, all (w1, %, w2, %, Y1, Y1, Y2, Yp, 21, 21, 22, 25) € REHAmram=d

1-Lipschitz condition:

[b(t, 1, 21) = b(t, w2, 25) | + [0 (t, 21, 7) — o (¢, w2, 25) |

< E(lzy — 29| + |2] — 25)),

and

| g(1, 1) — g2, 25) [ k(| w1 — 2o |+ [ 2] — 25 ).
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2-Linear growth:

[b(t, 2, 2")] + llo(t, 2, 2")|| < k(L + |=] + |2']),

and

T
E U 1£(5,0,0,0,0,0,0)*| ds < +oc.
0
Then there is a unique solution (X, Y, Z) of the mean-field FBSDE (1.1).

Proof:

1-Existence: We construct the solution using Picard’s iteration methode. By
defining the sequence (X", Y™, Z™),en such that: Xy =x,Yy = Zy =0,

(XL Yyt Znt) s the solution of the following mean-field FBSDE system.

Xttt = w ot [7b(s, X2 BIXT))ds + [ (s, X0 BIX])dW,
Yt = g(Xp BIXRD) + [ f(s, X0 BIXP], Y BV, 20, BIZ0)ds — [ Zrtdw.

S

(1.2)
And such that the stochastic integrals are well defined because it is clear by recur-
rence that for each n, X;"*! continuous and adapted, therefore the process o(s, X7, E[X7])
is too.

We show the existence of solution to the SDE in (1.1), for ¢ € [0, 7], first checking
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by induction on n that there exists a constant C,, such that for all ¢ € [0, 7.
B[IX7)] < Cn.
Assume that E [|Xf|2} < C, and we show that
E [!X;‘“ﬂ < Coir. (1.3)
We have:

t 2

t
o4 / b(s, X", BIX"])ds + / o (s, X" BIX™))dWV,
0 0

X+ =

As we have (a + b+ ¢)? < 3(a® + b* + ¢?), by passing to hope, we obtain:

B[ X7°] < 302 + BI(; (s, X7 BIX7)| ds)?) »
BI(fy llo(s, X7 Blaz))| dW,)?).

Applying isometry theorem and linear growth, we find:

( / (s, X7 E[X”])dWs)2] (1.5)
[/ oo X2 B P ds|

<E U (14 | X7 1 +E[| X7 |*])ds }

E

IN

\\

‘1+E[ X7 ]+ E[E[| X7 [*]))ds

k2(1 + 2E[| X" |2)ds.
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And by the Cauchy-Schwarz inequality, we have:

(f b(s,X:,E[X:J>ds)2] (16)
o for([inemine)a

<TE [/0 (14 | X |? +E[] X! |2])ds}

E

replace (1.5) and (1.6) in (1.4) we find:

B X+ 2] < 3( « 2 +T.E[f; k2(1+ | X7 |?
+E[| X2 [2)ds] + [ k(1 + 2B]| X7 [?])ds)
<C+C [ E[| X! [Plds , Yte€[0,T], C>0.

Proving (1.3)

We will increase by recurrence the quantity:

E [ sup | XM — X7 P

0<t<T
Using Doob’s inequality, we obtain:

Blsupoc, | X7 — X7|'] < 2B [ o(s, X BIXY]) — o(s, X;7HLE[X]TY))

2B {

b5, X2, BLXT) — b5, X5 BLX s ]
< 2B [y lor(s, X2, BLXZ) — (s, X0t BLX2 ) ds]
+ 2T | [y (s, X2, BLXT]) — b(s, X2~ BLX2 1) ds]

As the functions b and o are Lipshitzian, we obtain for ¢ € [0, T]

t
E {Sup | X+t X |2} <41+ T)K’E U | X" — xnh)? ds] :
0

0<s<t
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So:

t
E | sup | X' — X! |2} gc/ E{Sup | X — X2 dr (1.7)
0

0<s<t 0<r<s
Where C' = 4(1 + T)k>.
We repeat the same method, applying Doob’s inequality, to | X — X' | to get
| X2 — X P 2| [ (o (r, X BIXEY) = o(r, XP2 BIX2))dW, |
2| L2 (b(r, X BIXPY) — b(r, X272 BIX22]))dr |

<2 [5 N (o(r, X2~ BIX7 ) — o(r, X772 BIX72)) |1 dr
2T | [ (b(r, X2 BIXY) — b(r, X272, BIX2) [ dr.

As the functions b and o are Lipshitzian, therefore:

E[Sllpogrgs | XTT’L - X:L ! < Cfo | Xn ! XTT’L_2 |2]dT

(1.8)
< CfOSE[SupngST | X,?_l — X,?_z |2]d7".
In the same way as (1.7) and (1.8), we can find:
E[sup | X' — X2 ] < C’/ E[sup | X2 — X3 |!]dk. (1.9)
0<k<r 0 0<I<k

By replacing (1.8) and (1.9) to (1.6) we obtain:

B [subyeoc [ X0 = XIP| < CJy B [supge, <, |X7 = X7 ds
< C? [ (f3 B [suppre, [XE = Xp%] dr)ds
<O (5 (fo B [supo<l<k | X2 — X"—3\2] dk)dr)ds
< C°E [Supo<l<k|X” 2 X ]fo [ dik)dr)ds
< O [supercr | X7~ = Xp 7] i s

< C°E [Sllpoglgk {Xln T X 3} ] t S2d

(
(

<GB [suppee [ X772 - X7

10
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We repeat this method several times, we find:

E[SU‘I)OSSST | X?H - X¢ |2]

< CnTnE[SUPogng | X = X717 < D

- nl n!

By applying Chebyshev’s inequality, we have:

P[SIIPOSSST | X;Hl - X7 = 271%]

< DET" (k) = 4DUED".

n!

It turns out that:

S0 o Plsupge,er | X2 — X7 |> Ay < S0 DI (12

=4D> " @n = 4De'? < .

What the Borel-Cantelli Lemma implies:

P | su XX > ,VnEN} =0.
Léng| ° ° | 2n+1
What does it mean that:
Pl sup | XM — X7 < ,vn e N| =1
LSSéT| ° ;1< 2n+1

That is to say:

1 .
sup | X! — X" < ﬁ,Vn > nyg, for certain ny € N.
0<s<T

11
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With probability equal to 1. Moving on to the sum we find:

supgc,cr | X7 — X7 < S supgeper | XE = X* |

oo 1 1
S Zk:m/\n_l 2k+1 é ogmAn *

For m An > ng(w); where m V n = max {m, k}. So the process (X,)32, is a

Cauchy sequence, therefore convergent. Then there exists a continuous process
(Xt)te[o,T}

such as :

sup_ | Xp'— X, |— 0,
0<t<T

when n — oo, whith probability equal to 1.

So, P — p.s, X,, converges to a continuous process X;. It is very easy to check that
X, is a solution of the SDFE in (1.1) passing to the limit in the equation progressive

in the system (1.2).
-So moving on to solve the second recurrence equation for Y,,.

Let us now prove that the sequence (Y, Z") is a Cauchy sequence in the space of

Banach B2.

By applying the formula d’It6 to e® | Y™ — V" |2, we obtain:

(e | Y =Y P) = 2¢ | Y =Y [ d | YT - Y
+ae | Y -y 2 (1.10)

+ eatd<| }/trH-l _ Y;n |’| Yn—i—l _yn |>t’

12



The existence and uniqueness of solution for nonlinear mean-field FBSDE

we have:
Y Y = g(X3LEXE]) — gL EXEY) (1.11)
T
- / (F(s, X™, B[X™), Y, B[V, 27 B Z")
t
— F(s, XTLBXTY, Y BYEY, 20 B 201 ) ds
T
—I—/ (Zs"+1 — Z?)dWs,
t
and

AV =¥ = = (f(s, X7 BX]), Y] BY]), 22, BIZ]) (1.12)
= fls, XPLEIXTL YL BY Y 20 B2 )

+ (20— ZMadw,

By replacing (1.11) and (1.12) in (1.10) we find:

[e% n n 2 (0% n n n n n n n n
d<€ ! |Yt - Yt | ) = —2e }Y; ! _Yt | (f(tht >E[Xt]>y; ’E[Y; ]’Zt >E[Zt])
— f XL BT Y LB, 20T B2 ) ) dt
i 2¢e0t |Y’tn+1 _ Y;n| (Ztn-i-l _ Ztn)th + et ‘Y;n-i-l _ Y;nf
+ eatd<|yn+1 _ Yn| ’ |Yn+1 _ Yn|>t
Passing to the integral between ¢ and 7.

T o n n 2 T as n n n n n n n n
ft d(e t‘y; i _Yt ‘ ) = _2<ft € |Ys i _Ys "<f(Sva>E[Xs]>Y:s ,E[Y; ]’ZS7E[Z8])
- f(S, X?_1>E[Xsn_l]> }/;n_laE[}/;n_l]a Z?_IE[Z;L_I])»dS
+2 [ (e | Y =Y | (20 = Z0))dW,

o [leos | Yoty 2ds+ [T e || 20t — 70 |? ds.

13
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By passing to hope and using the fact that f is Lipshitzian, we have:

Bleet [V = Y]+ aB[ [ e Y1 = Y7 ds] + B, e || 200 = 22| ds)
< kE[e*" | X7 — X7 7]
F2RCE[f, e VI = Y| (X0 = X2 A [BXY = X+ Y =Y
+EY? =Y 4 128 = 207+ B2 - 2.

Which implies (according to Yong’s inequality (2ab < e2a® + %b?)) that:

Bleet | Y7 = Y P+ B [ e || 20t - 22 |1 ds]
< kBl |Xp = Xp [ + (K22 — B [ f e V4t - v ds]
8 e - ]+ 85 b v
BB ([ e 120 = 20 s + 4B [ e mIXy - X0 s

—|—8%E |:LT easEHY'Sn _ }/Sn—1|2]d8:| + S%E [LT GQSE[”Z;L _ Z§_1H2]:| dS,
then according to Fubini’s theorem:

E[eat {}/tn—i-l _ }/tn{z] +E [];T s ” Z;H—l _ Z;L ||2 dsi|
< k.B[e"T | X7 — X5 ") + (K% — a)B[[)] e [V — Y| ds]
+ 3B [ [ e | X7 — X ds| + BE [ [ e [y — vt ds|

+ 2B ([ Bl |27 — 227 las] .
We choose o and ¢ such that 1—3 = 1—12 and 144k — a = 0, so:

Eleot | Y/ =Y [P + B[ e || 20t — 27 |12 ds
< KB | X5 — X2 + B[ e (X — Xp!
| YP =Y P 20 = 207 |)P)ds).

14
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So for t = 0, find:

Elsupocicr e | Y7 =Y P+ B(fy e || 20t — 20 |1? ds]
< k‘E[t?aT | X7 — X;_l %] + %(E[Sllpogth e (| X7 — th_l ?)] (1.13)

+E[supo< < e | Y = Y7 2|+ Blfy e || 27 = 2071 | ds).

We repeat the same method, applying the formula d’Ito to e® | Y, — Y, |, to get

E [Sul)ogth et }Y;" — Ytn_lﬂ +E [fOT e || 2 = Z7 71| ds]
n— n—212 / a n— n—2|2
kB [eaT | X3t = X377 } + (B [Su1’0§t§T€ (Xt = X ]]

o n— n—2|2 T as n— n—
—i—E[supOStSTe t}Y; Loy, 2} } —I—E[fo e || Znt — Zr 2||2als}).
(1.14)

By replacing (1.14) in (1.13) we have:

Elsupgcicp e |V — Y;"}z] + E[fOT e || 20+t — 27| ds]
< ]{,‘.E[eaT }X% _ X?—lf] + k‘/.E[eaT(‘X;_l _ X¥_2|2)]
n—112 / a n— n—2|2
+ %E [Sllpogth eat({th - Xy 1} )] + %E [SHPOStSTe t(}Xt f- X 2{ )}

’ a n— n—2|2 T as n— n—
+ G (B [swpoeer et [y =Y 2P| B[ f) e | 20— 202 |12 as))
We repeat this method several times, we find:

Efsupg<r e | Y, — Y 2]+ B[f) e || 201 — 22 |2 ds]
< OBl | Xz — Xo~ 7] + Bleo | X7t — X727 + ...
o+ Bl (X} — X9 + O (Blsupge,<p e (| X7 — X771 )])
+ Blsupgger e (|X7 7 = X772 )] + . + Blsupggyer (| X} — X))
+ %(E[SUPogth e }Y;n - Ytn_lﬁ + E[Supogth e }Y;n_l - Ytn_zm
+ ... + Elsupgecp e |V — Y;O|2] + EUOT e |1 27 — Z?‘1||2 ds]
+E [ T o || gn-1 — Zg—2||2ds} totE [ T as || 71 — Zg||2ds]),

0 0

15
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SO:

T
E[ sup e | YT — Y™ |7 +E[/ e || ZiH — Z7 |? ds]
0

0<t<T
<— —0 asn— oc.
- 12n
Consequently, (X™, Y™ Z"),cn is a Cauchy sequence, therefore convergent. So, there

is a triple of a stochastic process (X;,Y;, Z;) € B2, such as:

lim E| sup | X=X, |2

0,
n—+oo | 0<t<T

lim E{Sup |Y;"—Y}|2} =0

n—+00 | 0<¢<T

and

T
lim B U | Zitt — 727 |12 dt] =0,
0

n—-—+oo

with probability equal to 1. That’s to say :

lim X"=X, lim Y"=Y, lim 2" =7

n—-4o0o n—-4oo n—-4-o0o

It is easy to verify that (X,Y), Z) is a solution of FBSDE (1.1) just do a passage to
the limit in the mean field type FBSDE (1.2).

2 Uniqueness: Suppose that (XY, Z) and (X, }A/, Z) are two solutions of (1.1) for

|

/Ot (o5 X BIX.)) - o(s. X, BIX.])) W,

all t € [0,77]. Since (a + b)? < 2a? + 2b?, then

B [1 %~ % ] < 28| | [ (9o, X BIX]) o, KBS ) s

+2E

|

16



The existence and uniqueness of solution for nonlinear mean-field FBSDE

According to the inequality of Cauchy Schwarz and by the isometry of d’ité6 we have:

2
]ds

— (2T.K? +2K?) ['B| X, — X, [?]ds (1.15)

~ |2 ~ 12 ~
E UXt—Xt ] <OTK? ['E UXS—XS ]ds+2K2 e UXS—XS

=C [ E[| X, — X, [*|ds,
where C' = (2T.K? + 2K?), either:
R t
o(t) =E[| X, — X, |*] ,0(t) < C/ o(s)ds , Yt €[0,T].
0

Using Granwall’s lemma, with Cy = 0 implies ¢ = 0, we find:

By applying the formula d’Ito to | Y; — Y, |?, we find:
d1i =Y ) =2V =Y [d(| Y, =Y, ) +d(Y =V, Y =),

By passing to the integral from ¢ to 7" and expectation, we have:

~ T ~
Bllvi-ViP] 48| [ 12~ 2 ]
t
|

s [ / ' (Y. = Ya. £(s. X, BX.). Vo BV, Z BIZ)

—E Ug(XT, E[X7]) — g(Xr, B[X7])

~ f(s, X, BIX.). .. BIV.), 2, B[Z.)].

17



The existence and uniqueness of solution for nonlinear mean-field FBSDE

So:

B|IYi—Yi P| +B [ 1 2 - 2 |1 ds]
<KE[| Xp— Xy || +2KB 1|V, = Vo | (| X, - X, |
+ | BIX, — K] [+ | Y=Y, | + | BlY, - Vi] |
+12,- 2, +|BlZ, - Z] )]

By the Yong’s inequality we have:

E[| Y-V +B[f7 1 2~ 2P ds]

< K°E [| Xp — Xp ﬂ 2K E [ff Y, Y, |2 ds}

+ 5B |1 X, = X Pds|+ SB[V, - ¥, 2 ds]
+3E 711 Z - 2, 1P ds).

BV, =¥ P + 3B [ 1 2, - 2 |1 ds]
< I°E [| Xp— Xy ﬂ +(24K? + LR [ftTle—YsPds
B[ X, - X, P as].

By inequality (1.3) we have:

Then X, = XS and Xp = XT, SO:

B 1Y = Y | + 3B 71 2, - 2 | ds]
<CE ([ |V, =i P ds],

with C' = 24K2 + 1.

18



The existence and uniqueness of solution for nonlinear mean-field FBSDE

We can extract two inequalities:
A T A
B[ sy 1vi- T <[ [ 1v-npa. (1.16)
0<t<T t

and

1 g 5 12 g o2
SE | Zs—Zs ||"ds| < CE 1Y, — Y, |2 ds| . (1.17)
t t

According to Granwall’s lemma at (1.16), (we have b = 0), so:

E{Sup Y, - Y, |2} = 0. (1.18)

0<t<T

Replacing (1.18) in (1.17) a gives us :

T A
EU ||ZS—Z8||2ds]:0.
t

Therefore Y, = Y;, Z, = Zs. which proves uniqueness.
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Chapter 2

Necessary optimality conditions

for relaxed control problems for

nonlinear MF-FBSDE

In this section, we establish necessary optimality conditions for relaxed control prob-
lems driven by systems of nonlinear MF-FBSDEs. This chapter is inspired from [2],
[4] and [5].

2.1 Necessary optimality conditions for relaxed

control problems

2.1.1 Relaxed control

Let V be the set of Radon measure on [0, 7] x U whose projection on [0, T coincides
with the Lebesgue measure dt, equipped with the topology of the stable convergence
of the measure. The space V' is equipped with its Borelian tribe, which is the smallest

tribe such that the map ¢ — / f(s,a)q(ds,da) is measurable for any measurable
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function f, bounded and continuous in a .

A relaxed control ¢ is a random variable ¢(w,dt,da) with value in V' such that
for each t,194q is Fi-measurable (F; = 0(B,,0 < s < t)). Any relaxed control
can be integrated into ¢(w,dt,da) = dtq(w;t;da) where ¢(t,da) is a progressively

measurable process with values in the space of probability measures.

Definition 2.1.1 A relaxed control q is a random variable q(w, dt; da) with value in

V' such that for each t, 10 q is F;-measurable.
We denote by R all the relaxed controls.

Remark 2.1.1 Let P(U) denote the space of probability measures on B(U) equipped
with the topology of weak convergence, where U is a nonempty Borel compact subset
of R¥. In a relaxed control problem, the U-valued process v; is replaced by an P(U)-
valued process q;. Moreover, if q(du) = 6,,(du) is a Dirac measure charging a strict
control v; for each t, then we get that the strict control problem is a particular case

of the relaxed one.

To establish necessary optimality conditions for relaxed control, let us consider a

relaxed control problem governed by the following MF-FBSDE:

(
dX{ = [ b(t, X' BIX]], u)p(du)dt + [, o(t, X} BIX]], w)p(du)dW,

07 = = 0, X B B 2 B e
+ Z{dw,

Xp =, Yf=h(XEEXE), te0,T],

and the functional cost to be minimized over the set of relaxed controls R, is given
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by:

J(n) = Bla(X7, BIXZ]) + 6(Y, B[Y() (2.2)

T
[ [ e Xe B, Y B, 22 B2, i),
0o JuU
We say that a relaxed control ¢ is an optimal control if:

J(q) = inf J(u). (2.3)

1wER

According to the fact that the set of relaxed controls is convex, then to establish
necessary optimality condition we use the convex perturbation method. Let ¢ be
an optimal relaxed control with associated trajectories (X{,Y;?, Z!) solution of the

MF-FBSDEs (2.1). Then, we can define a perturbed relaxed control by:
G = Qe+ el — @),

where ¢ > 0 is sufficiently small and p, is an arbitrary element of R. Denote by
(X5, Yg, Z5) the solution of the system (2.1) corresponding to the perturbed relaxed

control ¢°.
We shall consider in this section the following assumptions.

e (H1) (Regularity conditions)
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.
(1) the mappings b, h, o, o are bounded and continuously differentiable with

respect to(z,z'), and the functions f and 3 are bounded and continuously
differentiable with respect to (X, X ,,Y, Yl, Z, Zl) and (X, X ,), respectively,
(7i) the derivatives of b, h, o, f with respect to the above arguments are
continuous and bounded
(#44) the derivatives of [ are bounded by C(1+ | X |+ | X' | +|Y |+ | Y|
+HIZ1+12),
(iv) the derivatives of o and 3 are bounded by C(14 | X | + | X' |) and

C(14+|Y | +]Y"|) respectively,

\
for some positive constant C'.

21.2 T he vaiaton al in equality

Using the optimality of q., the variational inequality will be derived from the following
inequality

0<J(¢) = J(a).
For this end, we need some results.

P wopadion 21.1  Under assumptions (H1), we have:

lim E { sup | X7 — X/ |2} =0, (2.4)
=0 Jo<i<T
lim E l sup | Y7 =Y/ |2} =0, (2.5)
=0 Jo<i<T

T
lim 5 {/ | Zi — Z1 ||? dt] =0, (2.6)
e— 0
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P wof We calculate B[] X — X/ |?] and using the definition of ¢ to get:

Bl X; — X¢ 2] < CB [y | [, (s, X2, BIXZ], u)a.(du)
—fU s, X4 B[XY9),u)qs(du) |? ds}
+ C2B [ [ | bls, X2 BIXE) w) (1s(du) — o () ds]
+CEfO | [, o(s, X5, B[XE], u)gs(du
— Jy o, X2, BIX), w)au(du) [ ds]
+ C2B [ [y |f o, X2 BIXE] w) (1s(dw) — a(du)) [ ds]

Since b and ¢ are uniformly Lipschitz and bounded, we can show
t
Bl X; - X/ |?) < CE U | X — X192 ds} + Ce2.
0

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality, we get (2.4).

On the other hand, applying It6’s formula to (Y — Y;%)2, taking expectation and

applying Young’s inequality, to obtain

BV - YiP| +B [ ) 2 - 22 |1 ds]
< B [|h(X5, BIXF)) — h(X3, BXE)P] + 3B [T 1¥e - val ds|

0B || J, (s, X2, BIXE] YE,BIVE], 25, BIZE], w)gs(du)

— [, f(s, X4, B[X1], Y9, B[V, Zg,E[Zg],u)qs(du)\zds] .
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Then,

B Y7 — Y7 P+ Bl | 25— 28 | ds]
< E [|h(X3, B[X5]) — h(X3, E[XZ) ] + JE [LT vz - Vol ds|
+ COB | [ |f, (s, X2, BIXE], YE,BIVE], 25, BIZE], w)gs (du)
— [y S5, X5 BIXE), Y BIVE] 25, BIZ w)as(du)| ds|

Y s

) s

+ COB[ 7| (s, X2, BIXE), Y2 BIVE, 25, B{Z5), w)gy (du)

— [, (s, X9, B[X9), Y3, B[V, Zg,E[Zg],u)qs(du){st].

Y S )

Using the definition of ¢;, we obtain:

Bl Yy~ i P+ B[] ) 25 - 22 | ds)
< E[|n(X7, E[XF]) — h(X7, EIX])[]
B [T ve - P s
£ BIYE, 22, BIZS) w(du)

) S )

+ OB [ [T | [, f(s, X2, BIXZ), Y,
= Jiy £, X2 BIXE] V2 BIYE), 25, B2, w)g (duw) [ ds|
+ COB [ [ | £, X5 BIXE), Y2, BIYS), 25, B[25), w)gu(du)

) S 7

= Jor S (s, X0, BIX), V2 BV, 20, B{Z2), w)gy(du)|” ds]
Since f and h are uniformly Lipschitz with respect to their arguments, we have:

Bl Yy =Y P+ B[] 25 - 20 | ds]
< (5 +COB [ | Yz =Y | ds] (2.7)
+COB [ 25 = 20 12 ds] + o7,

where:

T
— E[| X5 — X% %] + COE [/t X — X9 ds} + 022,
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From (2.4) we can show that

lim0 o7 =0. (2.8)

Choose 6 = 55 > 0, then the inequality (2.7) becomes

Bl Yy =Yy [+ 3B [ f) ) 25 - 22| ds]

< QO+ LB [ ve -V ds] + 65,
we derive from this inequality, two inequalities

T
BV - v s @ospB| [ -vipa] v @9
t

and
T T
E {/ | Zz& — 7z |? ds} < (4C+1E U | YE Y2 ds] + 295 (2.10)
t t

Applying Granwall’s lemma and Burkholder-Davis-Gundy inequality in (2.9) and
using (2.4) and (2.8) to get (2.5). Finally (2.6) derived from (2.5), (2.8) and (2.10).
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21.3 Vaiafion al equafion s

P opoadion 21.2 Let (Xt, Y, Zt), be the solution of the following variational equa-
tions of MF-FBSDE (2.1)

.

dX, = [, bx(t, X{, BIX/), u)q,(du) X,dt + B[, bx (t, X7, BIX]], u)qe(du)E[X,]]dt
+ [ (ox (t, XELBIXE], w) X + Blox (t, X7, BIXT], w)BX,]])gi (du)dW,
+( [y, bt X BIXT], u) g (du) — [, b(t, X7 BIXT], w)pe(du))dt
([, olt, XEBIX, u)g(du) — [, o(t, X BIXT, u)p(du))dW,
dY, = — ([, fx(t, 7l w)q(du) X, + B[ [, fro(t, 7l u)q(du)E[X]]
+ Jy Sy () g (du) Yy + B [y, fro(t, 7, 1) ge(du)JB[Y]
+ [y, F2(t ml w)q(du) Zy + B [, for(t, 7l u)q (du)E[Z)]
H(f, Ft 7l w)g(du) — [ f(E T u)pe(dw)))dt + ZdW,
Xo =0, Yr = hx (X7, BIX{]) X1 + Blhy (X7, BIXI])E[X1]],

\

(2.11)
where (t, 7], u) := (t, X/, B X}, Y, BY)Y], Z{ E[Z]], u).
We have the following estimates:
hmE[mp|4X€_mg—X”1:o, (2.12)
e=0  Jo<i<T €
; 1 q V|2
ImE | sup | =Y =Y =Y, |?| =0, (2.13)
=0 Jo<i<T €
Toq X
h@ﬁ/ﬂ%ﬁ-ﬂp&ﬁﬁ}ﬂ. (2.14)
e— 0 e

P wof For simplicity, denote by:

1 . 1 N 1 N
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i) Let us prove (2.12). From (2.1), (2.11) and notations (2.15), we have:

=[] ooz B ) — [ ot X2 B ) s (210
+%/Ot /U b(s, X7, BIXY], u)q (du) — /Ub 5, X4, B[X1), u)qs(du)] ds
+§/Ot :/Ua(s,xg,m[ w) g (du) — /Ua 5, X0 B )qi(dU)} dw,
+§/Ot /U o (s, X9 BIX], u)qs (du) — /Ua 5, X9, B )qg(du)} dw,
— [ [ et X2 B w0 T
- [ ][ boto.x0 50 WL s
[ /U ox (5, X, BIXY, 1)y (du) X odW,

— — o S S —
S

O—X«s,xz,E[Xz],u>q8<du>E[f<SJ} aw

b, X0 B[, w)an() - [ b<s,X3,E[X3Lu>us<du>) s

~+

A/~ —~ &
S~ —

o(s, X2, B[XI],u)qs(du) — /UU(S,X;Z,E[X;Z],u)MS(du)) dWs.

We have: X§ = %(Xf—Xf)—)A(t , sor Xe4-X, = 1(X;—X{), and using the definition

of ¢::

l/t [/ b(s, X2, B[X5), u)q (du) — /Ub(san,E[X;’],U)qi(du)} ds

# 2 [ ot X2 BOE i) — [ o X BXL 0
! / [ / (b, X, E[X], u) — b(s, X7 BX1), 1)) (g5 + (ste — ) (du)]ds

1 / [ / (o, X2, BIXE], u) — o (s, X9, EX7), 1)) (e + £(pts — 02) (du)] TV,
0 U
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According to the development, we have:

L1 /Ot (/U(b(S’XSE’E[Xﬂ’U) — b(s, XU, B[XY],u))(qs + (ps — C.Is))(du)> ds

15
(2.17)

(0(87 ng E[X§]= u) - U(S, ng E[Xg]v u))(QS + 5( - qs) du)

+
m | =
o\w
=

—%/Ot/ol </UbX(XE+)\(X€—Xq))(XE—Xq)(qure =) )ds
%/;/01 (/(]E[bX/(XE+)\(XE—Xq))E[X — X9 (gs + e(ps — gs)) (du)])
+§[TA1(LJAXf+MXf—X%xX“an%+e .= 02)) )mm
%/;/01 (/UE[O—X,(XwA(XE_Xq))E[X — X (gs + (s — qs))(du) ])
_é/ot/ol (/UbX(Xa+)\e(Xf+Xt)) (X5 + X)) (as + (s — 45))(du) ) ds

41 / t / 1 / B [b (X5 4+ A + X0)eB [(X5 + X)| (a0 + (e — ) (du)ds)

ox (X 4+ Ae(XF + X0))e(XF + Xo)(gs + e(ps — qs))(dU)> AW

—
I~
S~

: /

€Jo Jo

1 t 1 ~ ~

- / / ( / B [0 (X7 4 (] + X)) (%5 + %) (g +2(0n - qs))(du)D aw,
o Jo \Ju

Using publishing and compensation (2.17) in (2.16) and taking expectation, we ob-

tain:

B[] < CB [ fy fi fir | bx(s, A% X5 2 gu(du)dAds]
- CB[fy o fy Bl (s, A%, w)BIS) ” gu(du)drds]
+CE [fot Iy Jo lox (s, A, w) X qs(du)d)\dWs]
+CE | [y Jo Jy [Bloxe(s, A5, w)BIXG]] gu(du)dAdW, | + CBIT; ),

where (s, A%, u) == (5, X9+ Xe(XE + X,), B[X? 4 \e(XE + X,)],u),
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and

bx (s, A5, u — X ps(du)dAds

wm

_|_

|
e

w)BIXT — X{]]ps(du)dAds

[ay

\Q\Q
=
>
>S
CIJ
>m

G

bx(s,AZ,u — X9 qs(du)dAds
Elbx/ (s, AS, w)B[X; — X?]]qs(du)dAds

(bx (s, A%, u) X, + Blbx (s, A, u)E[X,]]) s (du)dAds

+

+

ox (8, AS, u) (X — X ps(du)dAdWy

I o S S
i

~
—_

+

Elox: (s, A5, u)B[XE — X 7| pus(du)dAdWy

ox (s, A5, u) (XS — XT)qs(du)dNdW,

~+

|
S S o
Nﬁﬁﬁ

—_

Elox/(s, AS, u)B[X; — XI]|qs(du)d\dWy

~+
—_

ox (s, A%, u) X, + Elox: (s, AS, u)E[X,]])qs (du)dAdW,

+

—~

-

S— —

=

(5, X, BIXY), u) X,qs(du)ds

Elbx: (s, X, BIXJ], u)B[X,]]gs (du)ds

S— —

ox (s, X9, BIX], 1) X,qs(du)dW,

Elox: (s, X9, B[X], u)E[X,]]qs(du)dW,

| |
N‘N@;
—

G

since bx, by, 0x,0x are continuous and bounded we have:

Bi| % ) = B [ [ 1 as] + Cmirg, (218)
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and

111%E[|F§|2] = 0. (2.19)

By using (2.19), Granwall’s lemma and Burkholder-Davis-Gundy inequality in (2.18),

one can show (2.12).

ii) By the same method as in (2.12), we can prove (2.13) and (2.14).

Proposition 2.1.3 (Variational inequality). Let (H1), holds. Let q. be an optimal
relazed control with associated trajectories (X[, Y, ", Z). Then, for any element p.

of R, we have:

0 < Blax (X2 E[X2) X + Bfo g (X4 E[XI)E[X]] (2.20)
+ B[By (Yo, E[Yy])Yo + B[By (Y, B[Yy])E[Yo]]
L /O ' /U (Ix (.70 )Xo + Bl (£, 7, ) B[X]
+ 1y (8, 7l u) Yy + Bllys (8, 7, u)B[Y]]
+ ly(t, 7l u) Zy + Bl (t, 7, w)E[Z]]) g (du)dt]
vl X B Y B, 2B )

- / I(¢, X7, EIX2), Y B, Z0, BZ0), u)q,(du))d).
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Proof. From the optimality of ¢q. we have:

0 < Bla(X7, BIX7]) — (X7, BIX7])]

LR[OG BYS]) - B B
+M/t/txﬁ[&iWEM%ﬁﬂwﬂwﬂw)
/(MWEWHWEWﬂﬁEM%wﬂMWM
+M/L/tX$[E%WEM%$EM%wﬂw)

A«uWEMHWEWﬂﬁﬂmemem

Let us divide this inequality by ¢ and using the definition of ¢; and from the notation

(2.15), we have:

0Bl [ (ax(h)Xr + Bla (A)BLS1])aN (2.21)
VL[ (GO + A% + To) B+ A<C + T

Bl (¥ + Ac(¥ -+ ¥o), BIYJ + Ac(¥g + V) )BITo )i

+E[/ //lXtAf, )X, + Blly (£, A, w)B[X)]

iy (8, AS W)Y + E[ly (£, AL, w)E[Y;]]

+ 15 (t, A5, u) Zy + B[l (t, A3, u)E[Z]]) g (du)dAdt]
+M/l/tX$[M%WEM%ﬂEM%mm@U

/(uWEWﬂWEWﬂﬂﬂwﬂmemm+W,
U
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where V; is given by:

Vi = Bl (ax(A5)% + Bl (A5)BIRE)N
B| / (B (Y + Me(Yg + Yo), BV + Ae(¥5 + Vo))V;
E[By (Y5 + Ae(Y§ + Y5), BIYy + Ae(Yj + V) )B[YS]])dA]
[ x4 Bl 1, A7 BIXG X7

+ Iy (t, AL, u)(YE =Y + Blly (¢, A7, w)BY — Y]
+17(t, AL u)(Z; — Zf) + Bl (t, A7, w)B[ZF — Z]]]) e (du)dAdt]
/ / / (Ix(t, A%, u)(XE — X9) + Bl (£, A%, u)B[X? — X7

iy (AL ) (Y7 = YY) + Blly (8, A7, w)BlYS — Y]

L AS ) (ZF — Z7) + B[l (t, A%, w)B[ZF — Z9))qu(du)dAdd
+E[/ //zxmi, X2+ Bll (A5, ) B[XE]]
+ lY(ta Aiv U>Y§ + E[ZY' <t7 Aiv U)E[Yﬂ]

+17(t, A7, u)Z; + Bl (t, A, w)E[Z;]]) g:(du)dAdt]
Since the derivatives ax, oy, By, By, Ix,lx, ly, ly+, 17,1, are continuous and bounded,

then by using, (2.4), (2.5), (2.6), (2.12), (2.13), (2.14) and the Cauchy-Schwartz in-

equality we show that

lim B[] V7 *] = 0

Then let € go to 0 in (2.21), we get the variational inequality.
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2.1.4 Necessary optimality conditions for relaxed control.

Let us introduce the adjoint equations of the MF-FBSDE (2.1) and then gives the

maximum principle.

Define the Hamiltonian H from:

[0, 7] x R® x R" x R™ x R™ x R™*% x R™*4 x U x R™ x R",

to R by

Ht, X, X Y)Y 2, Z  1,® 0 %) (2.22)
::@/ b(t,X,X',u)u(duH—E/ o(t, X, X', u)p(du)

U U
+\D/f(t,X,X',Y,Y’,Z,Z’,u)u(du)

U

+/Z(t,t,X,X',Y,Y’,Z,Z’,u)u(du).
U

Theorem 4.4. (Necessary optimality conditions for relaxed control)

Assume that (H1), holds. Let q. € R an optimal relaxed control. Let (X% Y4, Z9)
be the associated solution of MF-FBSDE (2.1). Then there exists a unique solution

(@9, w9 39) of the following adjoint equations of MF-FBSDE (2.1):

d0f = —(Hx (8, ¢, e Xi) + BIH o (¢, ¢ i, xi))dt + S5 dW,
dVi = (Hy (¢, ¢ q, Xi) + BIHy (8¢ i, x3)])dt
+ (Hz(t, ¢ ae xid) + BH 5 (8, ¢ g, x2)]) AW,
vg = By (Y0, BIYS) + Blkx (Y5, B[S,
07 = ax (X7, BIX7]) + Blay (X7, BIX7])] + hx (X7, B[X7])¥7

(2.23)

+E [y (X7, BIX7])E[Y7]],
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such that:

H(t, X BIXT] Y BIYS, 2 BIZE, g, @, W, 5)

S H(t7 Xga E[XgL Y;q> E[Y;qL Zf> E[ZgL oty (I)ga \1137 2?)7

a.e.t, P —a.s, Vu € P(U), where

(¢, ¢ o xi) == (6 X BIXE] YO B, ZE BIZE, g, @F, W9, 5.
Proof. From (2.23), the inequality variational (2.20) becomes

0 < BI(®%, X)) — [B{hx (X2 LX)V
+ Blhx (X7, BIXE])E[W]] + BI(¥E, Vo))
L /0 ' /U (L (1, 7%, w0) X, + Bll (£, 77, w) B
+ 1y (t, 7l u)Yy + Bl (¢, 7, u)BY;]]
+ Iy (t, w8 u) Zy + Bl (t, 78, w)B[Z]]) g (du)dt]
vBL[ [ X BN Y B, 2B )

- / (U(t, X0, BIX), Y, Y], 22 BZ0], u)gu(du))di].

(2.24)

(2.25)

Now applying Itd’s formula to compute (®7, Xt> and (U7, Y}) and taking the expect-
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ations we derive:

d(®f, X)) = O{dX, + X, dD] + d(®, X),
= P! ( /U bx (t, X2, BIX], u)q (du) X,dt
+E [ /U bX/(t,Xf,E[Xf],u)qt(du)E[Xt]] dt
+ /U ox(t, X1 BIXT], u) g (du) X, dW,

1E {

" / b(t, X3, E[X?], w) (gr(du) — puo(du)) e
U

ox (t, X B[X]], u)qt(du)E[Xt]] dW,

S~

+ [ ot X2 B, 1) () — pu(d) W )
U
— Xo (Hx (t, ¢ qe, x3) + BIH o (8, ¢ g, xD)])dt
+24dW,) + f ( / (ox(t, X1, B[X{),u) X,
U
+E[UX’ (t7 Xz?? E[Xz?]’ U)E[Xt”)Qt(du)th

+ [ ot XEBLXL ) () — o) th) |

Integring between 0 to T, taking expectation and using the fact that X, = 0, we
find:
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sifos. 5o =B | [ a1 ( [ ot X B w0,
+E { /U bX/(t,th,E[th],u)qt(du)E[Xt]]
[ b X B0 () = () ) |
— 5] [ R G+ BlA 4G )
s[5t ([ oxt.xtExL a0
+E [ /U ox (t, X1, B[X]), u)qt(du)E[Xt]}

[ (e X2 BN 0 )~ ) ) ]
U
by the definition of the Hamiltonian H, we get

sifo. o) = 8| [ vt [ setent i@,
+E [ /U Fx(t, wg,u)qt(du)E[Xt]D dt
+E /O ' /U (Ix(t, 70, 0) X, + Bl (t,wg,u)E[Xt])dt]

+E /OT (I)f/Ub(t,Xf,E[Xf],u) (qe(du) — pe(du)) dt]

=l B [ ot X0 BX. 0 ) — () ]
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and

(W, Y;) = WdY; + Vid¥{ + d(©,Y),

_ g ( /U P (b7, ) gu(du) X,
+E UU fx'(t,ﬂf,U)qt(dwE[Xt]]
T /U Pt war(du)Y;

48] [ fott at,wadao)sfi|

+ /U f2(t, 7, u)gi(du) Z,

48] [ fotent wadduBiz)]

+ [ sttt atin - wiaw) ) div viza,

+ th ((HY(tJ ggu qt, X?) + E[HY' (ta gga qt, X?)]) dt
+ (HZ(ta thv qt, Xg) + E[HZ/ (t7 thv qt, Xg)]) th)

-+ (HZ(ta gz?v qt, X?) + E[HZ' (ta gz?v qt, X?)]) tht

Integring between 0 to T, taking expectation and using the definition of the Hamilto-
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nian H, we find:

EK\I}g? %>] - EK\P%? YT>]

R T

N / E [ fro(t, 7, B | gu(du))dt]

“E UOT (/U Iy (1, 52, ) () Y

VE| /U Iy (t, 78, 1)) g (du) B [Yt]) dt]

~E UOT (/U lz(t, 7l u) g (du) Z,

+ / Lor (70, 1)) e (du) B [ZtD dt]

U
B[ / F(t 78 w) (go(du) — pa(du)) dt.

Substitute the above equalities in inequality (2.23) to get, for every u € R, we get

T
E| / (H(t, X0, X0, Y, E[YJ), 28, E[Z0), qu, &7, W7, 52))d
0

T
< | / (E(t, X0, BX0), Y, B[V, 20, B[Z0), e, 7, U1, 59))dt),
0

a.e.t, P —a.s, Vu € P(U). Therefore inequality (2.22) follows by a standard argu-

ments.
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Conclusion

We have established in this memory the necessary conditions of optimality for a re-
laxed control problem, for systems governed by nonlinear forward-backward stochastic
differential equations of mean field type (MF-FBSDE). Here the coefficients of the
system depend on the state processes as well as their distribution via the expectation

of state processes. In addition, the cost functional is also of mean field type.

The relaxed control problem is a generalization of the strict control problem. Indeed,
if g;(da) = 0,,(da) is a Dirac measure concentrated at a single point which is the
strict control u; € U, then we obtain that the strict control problem is a particular
case of the relaxed control problem. If the coefficients of the system depend on the
state processes as well as their distribution, in this case the system is called forward-

backward stochastic differential equations of Mckean—Vlasov type (MV-FBSDE).
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Annexe A:

Lemma 2.1.1 (Granwall’s Lemma):

Let g : [0,7] — R be a continuous function verifying:

vt e [0,T],0 < g(t) < alt) + ﬁ/tg(s)ds.

For a constant § > 0 and for a function « : [0, 7] — R integrable with respect to the

Lebesgue measure, we then have:
vt €10,7T),9(T) < ae’,

and if a = 0, we have g = 0.

¢Chebyshev’s inequality

Var(X)
{Pix - B2 1) < L0

eDoop’s inequality:

P(supg<;<r Br > C) = P(supg<icr exp(ABy) > exp(AC))

Elexp(ABr)]
—  exp(AC)

= exp(3A?T — XO)
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Annexe A:

ePicard’s inequality:

| 7@ =T |- [ fs.x(6)ds = [ Flsplods|
< [ 1 ftsate) = [ S I1ds
< [ Llat) - o) | ds

St—a)llz=ylleo-

43



Annexe B: Abreviations et

Notations

Les différentes abréviations et notations utilisées tout au long de ce mémoire sont
expliquées ci-dessous:

E[] : Expectation.

FBSDFE : Forward and backward stochastic differential equation.
Forward and backward stochastic differential equation

MF — FBSDE
of mean-field type

1 : relaxed Control
q : optimal relaxed control
P—p.s : Almost certainly for the probability measure P
lim : limit
J(.) : The cost function to be minimized
H : The Hamiltonian
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/RESUM :

Qléaires de type champ moyen.

Dans ce travail, nous étudions les conditions nécessaires d'optimalité des
controles relaxé pour les équations différentielles stochastique progressives et
rétrogrades (EDSPR) non lin€aires de type champ moyen. Dans le premier
chapitre, nous démontrons un théoreme d'existence et d'unicité de solution des
EDSPR non lin€aires de type champ moyen. Dans le deuxiéme chapitre nous
¢tablirons les conditions nécessaires d'optimalités sous forme d'un principe de
maximum stochastique pour le contrdle relaxé des systémes des EDSPR non

~

/

/ assaact

FBSDEs of mean-field-type.

\_

In this work we study the necessary optimality conditions of relaxed controls
for nonlinear forward-backward stochastic differential equations (FBSDEs) of
mean-field type. In the first chapter, we demonstrate a theorem of existence and
uniqueness of the solutions of nonlinear FBSDEs of mean-field type. In the
second chapter, we establish the necessary optimality conditions in the form of
a stochastic maximum principle for relaxed controls for system of nonlinear

~

J

-

\_
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