
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

MOHAMED KHIDER UNIVERSITY, BISKRA

Faculty of Exact Sciences and Natural and Life Sciences

DEPARTEMENT OF MATHEMATICS

Master dissertation presented with a view to obtaining the Diploma:

MASTER of Mathematics

Option: Statistic

By

Abdelhak Aloui

Title :

The relationship between random variables

Examination Committee Members:
Pr. Benatia Fatah UMKB President

Pr. Brahimi Brahim UMKB Supervisor

Dr. Chine Amel UMKB Examinator (rice)

June 2024



Dedication

I dedicate this modest work to my dear parents,

To my dear brothers and sisters,

To my friends along the path,

To all the family members,

I would like to thank all my dear professors,

For all the knowledge, wisdom, and moral values you have taught me.

Finally, I dedicate this thesis to my colleagues and all those who are dear to me.

i



ACKNOWLEDGEMENTS

Praise be to Allah, Lord of the worlds! I thank Him for the knowledge and faith

He has granted me. I ask Him to benefit me with what I have learned and to make

my knowledge beneficial for me and for others.

The realization of this work would not have been possible without the support of

many people whom I would like to thank.

First and foremost, I thank my parents, because it is thanks to them that I was

able to continue my studies to this advanced level.

I thank my supervisor, Pr:. Brahimi Brahim, who guided me in my project and
helped me find solutions to progress. As well as Professors Benatia Fatah and

Chine Amel, who accepted to preside over the defense committees.

Finally, I thank all the people and friends who contributed directly or indirectly to

the completion of this work.

ii



Contents

Remerciements ii

Table of contents iii

List of Figures v

List of tables vi

Introduction 1

1 Correlation 2

1.1 Types of correlation coeffi cient . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Positive correlation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Negative correlation . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Zero correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Methods for calculating correlation . . . . . . . . . . . . . . . . . . . 5

1.2.1 Pearson correlation coeffi cient . . . . . . . . . . . . . . . . . . 5

1.2.2 Spearman correlation coeffi cient . . . . . . . . . . . . . . . . . 7

1.2.3 Kendall correlation coeffi cient . . . . . . . . . . . . . . . . . . 9

1.3 Interpretation of correlation coeffi cients . . . . . . . . . . . . . . . . . 11

2 Regression 13

2.1 Types of regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Simple linear regression: . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Exponential adjustment: . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Multiple regression: . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



Table des matières

2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Least squares method . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Properties of the OLS estimators . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Properties of simple linear regression . . . . . . . . . . . . . . 22

2.3.2 Properties of multiple regression . . . . . . . . . . . . . . . . . 24

2.4 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Hypothesis tests in simple linear regression . . . . . . . . . . . 25

2.4.2 Hypothesis tests in Multiple linear regression . . . . . . . . . . 28

3 Application 30

3.1 Simple linear regression with R . . . . . . . . . . . . . . . . . . . . . 30

3.2 Multiple regression with R . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion 38

Bibliography 39

iv



List of Figures

1.1 Positive correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Negative correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Zero correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 A plot illustrating the nature of the relationship . . . . . . . . . . . . 12

2.1 Least squares method . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Relationship Between Altitude and Temperature in the Mountains . . 31

3.2 Relationship Between Altitude and Temperature in the Mountains

with Regression Line . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Prediction of Cement Heat Release Values . . . . . . . . . . . . . . . 35

3.4 Prediction of Cement Heat Release Values with Regression Line . . . 36

v



List of Tables

1.1 Distribution Table of Students’Scores in Mathematics and Physics . 6

1.2 Table of Company Sales and Expenses . . . . . . . . . . . . . . . . . 8

1.3 Table of Rank Differencess . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Table of Written and Physical Test Results for Police Academy Ad-

mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Kendall Correlation Calculation Table . . . . . . . . . . . . . . . . . 10

2.1 Analysis of variance table for testing significance of regression in sim-

ple linear regression.t . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Analysis of variance for testing significance of regression in multiple

regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Table of Study on the Duration of the Growing Season in the Mountains 30

3.2 Table of the Relationship between Cement Solidification Heat and Its

Chemical Compositions . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Table of Predicting New Values . . . . . . . . . . . . . . . . . . . . . 36

vi



Introduction

In this thesis has thoroughly explored correlation and regression analyses, which are

essential tools in statistical research for examining relationships between variables,

predicting outcomes, and testing hypotheses. Through the three chapters, we have

achieved our objective of studying the relationship between two quantitative variables

by assessing their strength, direction, and predictive capacity.

In the first chapter, we detailed the different types of correlation coeffi cients, methods

for calculating them, and interpretation of these coeffi cients. This section highlighted

various aspects of correlation measures and their relevance in statistical analysis.

The second chapter was devoted to types of regression, particularly focusing on

estimation using the Ordinary Least Squares method, properties of ordinary least

squares estimators, and hypothesis testing. We demonstrated how regression can be

used to model relationships between variables and provide precise estimates.

Finally, in the third chapter, we applied the concepts of simple and multiple re-

gression to real data using R software. This practical application illustrated the

theoretical principles discussed earlier and showed the importance of using software

tools to conduct robust statistical analyses.

1



Chapter 1

Correlation

In statistical analysis, understanding the relationship between variables is funda-

mental for interpreting data and drawing meaningful conclusions. One of the key

concepts used to explore this relationship is correlation. Correlation measures the

degree of association between two variables and helps in understanding how changes

in one variable relate to changes in another. By quantifying this relationship, corre-

lation analysis provides valuable insights into the patterns and dependencies within

datasets.

Correlation refers to the statistical relationship between two variables. It quantifies

the extent to which changes in one variable are associated with changes in another. In

other words, correlation measures the strength and direction of the linear relationship

between two variables. This relationship can be positive, negative, or zero.

Correlation analysis is commonly used in various fields such as economics, finance,

social sciences, and healthcare to understand the relationships between different

factors or variables. It helps researchers identify patterns, make predictions, and

test hypotheses based on the observed data. By providing insights into the degree of

association between variables, correlation analysis plays a crucial role in statistical

inference and decision-making processes.

Definition 1.0.1 A correlation is a relationship between two variables. The data

can be represented by the ordered pairs (X, Y ) where X is the independent variable

and Y is the dependent variable.

The independent variable is the cause, its value independent of other variables in

such study. The dependent variable is the effect, its value depends on changes in

2



Chapitre 1.Corrélation

the independent variable. We can use a scatter plot to determine whether a linear

(straight line) correlation exists between two variables.

1.1 Types of correlation coeffi cient

Correlation coeffi cients provide a synthetic measure of the intensity of the relation-

ship between two characteristics and its direction when this relationship is monotonic.

The Pearson correlation coeffi cient is used to analyze linear relationships, the Spear-

man correlation coeffi cient for non-linear monotonic relationships, and the Kendall

correlation coeffi cient for concordant and discordant relationships. There are other

coeffi cients for non-linear and non-monotonic relationships.

Definition 1.1.1 (Correlation coeffi cient)The correlation coeffi cient is a mea-
sure of the strength and the direction of a linear relationship between two variables,

denoted by r wich represents the sample correlation coeffi cient.

Note that: The range of the correlation coeffi cient is in [−1, 1].

1.1.1 Positive correlation

• If the value of r > 0 then we can say it is positive correlation.

• In positive correlation both the variables changes in the same direction.

Example 1.1.1 To study relationship between English language proficiency and un-
derstanding of mathematics, we took a dataset that includes 50 students and their

scores in English and mathematics:

3



Chapitre 1.Corrélation

Figure 1.1: Positive correlation

A positive correlation between the two subjects would suggest that students who

perform well in English tend to perform well in Math, and vice versa.

1.1.2 Negative correlation

• If the Value of r < 0 then we can say it is negative correlation.

• Here, Both the variables changes in the opposite direction.

Example 1.1.2 The following data represents the number of classes missed by 24

different students during the first season, along with the student’s final season aver-

age:

Figure 1.2: Negative correlation

4



Chapitre 1.Corrélation

In this example, we can see that as the number of classes missed increases, the final

season average tends to decreases, suggesting a negative relationship between the

two variables.

1.1.3 Zero correlation

• In Zero correlation the estimation of r = 0.

• If whole points spread all over the graph then it is called zero correlation.

Example 1.1.3 The following data represents the number of hours of sleep per day
and the ages of 27 different individuals:

Figure 1.3: Zero correlation

In this example, we can see that people’s ages are not affected by the number of

hours of sleep, indicating no linear relationship between the two variables.

1.2 Methods for calculating correlation

There are several methods for calculating corelation, including: Pearson and Spear-

man, Kendall.

1.2.1 Pearson correlation coeffi cient

The pearson correlation coeffi cient r indicates the degree of linear correlation between

two continuous variables. To calcilate it, you need three different sums of squares

5



Chapitre 1.Corrélation

(S): the sum of squares for variable X, the sum of squares for variable Y , and the

sum of the cross-product of the variables XY .

• The sum of squares for variable X is:

SXX =

n∑
i=1

X2
i −

(
∑n

i=1Xi)
2

n
.

• The sum of squares for variable Y is:

SY Y =
n∑
i=1

Y 2
i −

(
∑n

i=1 Yi)
2

n
.

• Finally, the sum of the cross-products (SXY ):

SXY =
n∑
i=1

XiYi −
∑n

i=1Xi

∑n
i=1 Yi

n
.

• The correlation coffi cient (r) is:

r =
SXY√

SXX
√
SY Y

=
n
∑n

i=1XiYi − (
∑n

i=1Xi)(
∑n

i=1 Yi)√
n
∑n

i=1 X
2
i − (

∑n
i=1Xi)2

√
n
∑n

i=1 Y
2
i − (

∑n
i=1 Yi)

2

whereX represents the values of one variable,Y the values of the other variable,

and n the number of observations.

Example 1.2.1 The exam results for 100 students in the subjects of mathematics

and physics mathematics are displayed in the following table, mathematics (x) physics

(y).

X�Y 3 6 10 14 18 ni,0

3 2 1 0 0 0 3

6 5 12 3 1 0 21

10 2 10 28 5 0 45

14 0 3 12 10 1 26

18 0 0 1 2 2 5

n0,j 9 26 44 18 3 100

Table 1.1: Distribution Table of Students’Scores in Mathematics and Physics

6



Chapitre 1.Corrélation

Using marginal distributions to calculate averages

m(T ) = T̄ =
1

n

n∑
i=1

Ti

⇒ m(X) = 10.36,m(Y ) = 9.2

We calculate the Pearson correlation coeffi cient

• The sum of squares for variable X is: SXX = 12.51

• The sum of squares for variable Y is: SY Y = 14.08

• Finally, the sum of the cross-products (SXY ): SXY = 8.608

• The correlation coffi cient (r) is: r = 8.608√
12.51

√
14.08

= 0.6486

Which tells us that there is a positive relationship between mathematics and physics

1.2.2 Spearman correlation coeffi cient

The Spearman rank corrlation coeffi cient, alsodenoted by rs, is astatistical measure

used to assess the monotonic relationship between two variables using the ranks

of their values themselves. The calculation processe is based on assignin ranks

to each value of X, and likewise to Y , and then considering the bivariate series

{[R(Xi), R(Yi)] i = 1, 2, ..., n}.
The Spearman rank correlation coeffi cient, denoted by rs, is defined as the Pearson

correlation coeffi cient of this latter series.

rs =
cov(X, Y )

σXσY
=

1
n

∑n
i=1 [R(Xi)R(Yi)]−

[
R̄XR̄Y

]√{
1
n

∑n
i=1

[
R(Xi)− R̄X

]2}{ 1
n

∑n
i=1

[
R(Yi)− R̄Y

]2}
We have:

R̄X = R̄Y =
1

n

n∑
i=1

R(Xi) =
n+ 1

2
,

and:

σ2
X = σ2

Y =
n2 − 1

12
,

7



Chapitre 1.Corrélation

and we have too:

n∑
i=1

R(Xi)R(Yi) = −1

2

n∑
i=1

(R(Xi)−R(Yi))
2 +

1

2

n∑
i=1

R2(Xi) +
1

2

n∑
i=1

R2(Yi).

But:
n∑
i=1

R2(Xi) =

n∑
i=1

R2(Yi) =
n (n+ 1) (2n+ 1)

6

The sum of squares of integers is calculated as follows:

rs = −6
∑n

i=1 [R(Xi)−R(Yi)]
2

n(n2 − 1)
+

(n+1)(2n+1)
6

−
(
n+1

2

)2

n2−1
12

The seconde term equals 1 after calculation, and we obtain the practical formula:

rs = 1− 6
∑n

i=1 d
2

n(n2 − 1)
, avec di = R(Xi)−R(Yi)

Example 1.2.2 The table below shows the sales (X) and expenses (Y) of 8 com-
painies in millions of dollar. Calculate the rank correlation coeffi cient:

X 50 62 40 50 71 60 66 70

Y 48 40 35 30 48 55 48 60

Table 1.2: Table of Company Sales and Expenses

First, we calculate the value of di (the difference between the two rankings) by as-

signing ranks to each value of X, as well as Y,

R(Xi) 6.5 4 8 6.5 1 5 3 2

R(Yi) 4 6 7 8 4 2 4 1

di 2.5 −2 1 −1.5 −3 3 −1 1

Table 1.3: Table of Rank Differencess

This implies that

n∑
i=1

[R(Xi)−R(Yi)]
2 = 33.5

n = 8 ⇒ n2 − 1 = 63

rs = 1− (6)(33.5)

(8)(63)
= 0.6012

8



Chapitre 1.Corrélation

Which tells us that there is a positive relationship between expenses and sales

1.2.3 Kendall correlation coeffi cient

this coeffi cient introduces a fundamentally different structure from the previous one,

focusing on the concept of concordant and discordant pairs of observations. Assum-

ing once more that there are no coincidences between the observed values in each

marginal series, let’s consider a pair of observation (Xi, Yi) and (Xj, Yj), where i 6= j,

from a bivariate observed series.

a) Concordant: if Xi < Xj and Yi < Yj or if Xi > Xj and Yi > Yj

b) Discordant: if Xi < Xj and Yi > Yj or if Xi > Xj and Yi < Yj

• Let Nc be the number of concordant pairs and Nd be the number of dicordant

pairs among the n (n− 1) /2 pairs of observation

• The kendall rank correlation coeffi cient, denoted by τ , is defined by the expres-
sion

τ =
Nc −Nd

N
; τ ∈ [−1, 1]

τ =
Nc −Nd

n(n−1
2

)

• The value of the coffi cient τ ranges between 1 and −1:

−1 ≤ τ ≤ 1

Example 1.2.3 The following table illustrates how "Seven individuals underwent
tests for admission to the police academy. These tests included a written exam and

a physical test, and the results were as follows:": Examiners (A,B,C,D,E, F,G):

9



Chapitre 1.Corrélation

Examiners Writtentest(X) Physicaltest(Y )

A 14 18

B 5 17

C 12 13

D 10 11

E 9 15

F 16 14

G 8 12

Table 1.4: Table of Written and Physical Test Results for Police Academy Admission

Calculate the kendall correlation.

Candidate A B C D E F G

R(Xi) 2 7 3 4 5 1 6

R(Yi) 1 2 5 7 3 4 6

ArrangeR(Xi) 1 2 3 4 5 6 7

ArrangeR(Yi) 4 1 5 7 3 6 2

nc(Xi, Yi) 3 5 2 0 1 0 0

nd(Xi, Yi) 3 0 2 3 1 1 0

Table 1.5: Kendall Correlation Calculation Table

For each X, the number nc(Xi, Yi) of concordant pairs {(Xi, Yi) , (Xj, Yj)}, is ob-
tained by counting the ranks R(Yj) greater than R(Yi), wich j > i. Similarly, xe
can define the number nd(Xi, Yi) of discordant pairs by determining the ranks

R(Yj) such that R(Yj) < R(Yi), with j < i. thus, we have:

Nc =

n∑
i=1

nc(Xi, Yi) = 11

Nd =

n∑
i=1

nd(Xi, Yi) = 10

⇒ τa =
11− 10

(7)(6
2
)

= 0.057

10



Chapitre 1.Corrélation

Which indicates no relationship between the written test and the physical test.

1.3 Interpretation of correlation coeffi cients

• The interpretation of the linear correlation coeffi cient can be more complex
than is generally believed.

• The correlation coeffi cient measures the strength and direction of a linear re-
lationship between two variables, X and Y .

• The correlation coeffi cient laways satisfies r ∈ [−1, 1].

−1 ≤ r ≤ 1

• Perfect correlation, corresponding to the case |r| = 1, is very rare in practice

but serves as a benchmark. The closer |r| is to 1, the more closely the variables

X and Y are related.

• If X and Y are independent, then r = 0. However, the converse is not neces-

sarily true.

• If r = 0, we can assert that there is no linear relationshpe between X and Y .

But there may be a relationship of aother type.

Sign of the correlation coeffi cient:

• If the corrlation coffi cient r is positive, it indicates a positive relationship be-
tween the variables X and Y , meaning they vary in the same direction: when

X increases, Y increases. In the graph below, the slope of the line is positive.

Xi > Xj => Yi > Yj

• If the correlation coeffi cient r is negative, it indicates a negative relationship
between the variables X and Y , meaning they vary in opposite directions:

when X increases, Y decreases. In the graph below, the slope of the line is

negative.

11



Chapitre 1.Corrélation

Xi > Xj => Yi < Yj

• The sign of r indicates the direction of the relationship, while the absolute
value of r indicates the strength of the relationship, i.e., its ability to predict

the values of Y based on those of X.

Figure 1.4: A plot illustrating the nature of the relationship

• non-linear data for example, data of the form(y = ex).

• A statistical relationship, detected by the correlation coeffi cient or by a graph,
never demonstrates a causal relationship between two variables. Causality can

only be inferred from a non-statistical analysis of the data.

12



Chapter 2

Regression

In simple regression, we study the relationship between two variables by expressing

one variable as a function of the other.In contrast, in multiple regression, we analyze

the relationship between one variable and multiple other variables. If there in no

relationship between the variables, it is called non-linear regression.

Implementing regression analysis requires the presence of a causal relationship be-

tween the variables included in the model. This method can be applied to quantita-

tive data collected from n individuals.

Definition 2.0.1 Regression is a data analysis process based on observing a random
variable Y , known as the response, exogenous, dependent, or target variable, which

needs to be explained (modeled) by measurements on p explanatory, control, endoge-

nous, or independent variables. These variables can be quantitative or qualitative.

This criterion determines the type of method or model to be used: linear regression,

logistic regression, count data and log-linear models. The equation of regression or

the regressiion model is written as follows:

Y = f(X) + ε

2.1 Types of regression

Based on the type of functions used to represent the relationship between the de-

pendent or output variables, the regression models are categorized into four types.

The regression models are, (Simple linear regression, Multiple regression, Polynomial

regression, Logistic regression)

13



Regression

2.1.1 Simple linear regression:

Statistical modeling

• The equation of simple linear regression is written as follows:

f(X) = aX + b

So:

Yi = aXi + b+ εi, ∀i ∈ {1, ..., n}

a and b: The unknown parameters of the model (are the coeffi cients).

Xi:Is the explanatory and independent variable (input value).

Yi: Is the explained and dependent variable (observed and random value).

n: Is the number of observations.

εi: Is the random error term in the model.

• The distribution of errors:

E(εi) = 0, E(ε2i ) = σ2
ε , i = 1, ..., n

Cov(εi, εj) = δi,jσ
2
ε , ∀(i, j) tel that i 6= j

• The errors are assumed to be centered, have equal variance (homoscedasticity),
and be uncorrelated (δij is the Kronecker symbol, i.e., δij = 1 if i = j, δij = 0

if i 6= j).

In matrix form

• The simple linear regression model, as defined, can be reformulated using ma-
trices:

Y = XB + ε

or:

14



Regression

Y =


Y1

Y2

...

Yn

 , X =


1 X1

1 X2

...
...

1 Xn

 , ε =


ε1

ε2
...

εn

 , B =

[
b

a

]

So: 
Y1

Y2

...

Yn

 =


1 X1

1 X2

...
...

1 Xn


[
b

a

]
+


ε1

ε2
...

εn


Y represnts the response vector of size n× 1.

X represents the explanatory matrix of size n× 2.

ε represents the error vector of size n× 1.

• This vector notaion will be convenient, especially for the grometric interpreta-
tion of the problem.

2.1.2 Exponential adjustment:

When calculating the equation of a linear adjustment line, it is assumed that there is

a linear relationship between the variables, significantly constraining its applicability.

Often, there is a relationship between variable Y and variableX, but this relationship

is not linear. The curve describing variable Y in terms of variable X is not a straight

line.

However, in some cases, we can resort to a linear relationship.

If the scatter plot indicates that the functional relationship between Y and X is of

the form

Y = λβX

Then it is noted that:

ln(Y ) = ln(λ) +X ln(β),

Therefore, it becomes apparent that there is a linear relationship between the vari-

ables ln(Y ) and X. We define Ui = ln(Yi) for all possible values of yi for variable Y ,

and then compute the equation of the line that adjusts to U with respect to X.

15



Regression

This yields the following equation:

U = aX + b.

By replacing the value of U with its value ln(Y ), we obtain the following functional

relationship between Y and X

ln(Y ) = aX + b.

Passing to exponentials, we find:

Y = e(aX+b) = eb(ea)X .

So, returning to the sought relationship

λ = eb and β = ea.

2.1.3 Multiple regression:

Statistical modeling

In practic, the key steps involved in a multiple regression analysis are as follows:

• Define the dependent variable and the explanatory variables.

• Specify the nature of the relationship between the dependent variable and
explanatory variables.

• Estimate the parameters of the model, then quantify its quality and verify its
validity.

• if the model is retained, intrepret its significance inrelation to the proplem at

hand.

• In the section, we will focus on multiple regression within the framework of the
linear model. Multiple linear regression is a generalization of simple linear re-

gression, which considres only one explanatory variable. Consider the multiple

linear ragression model in the following from:

f(X) = f(X1, X2, ..., Xn) = b+ a1X1 + a2X2 + ...+ akXk

16



Regression

So:

Yi = b+ a1Xi,1 + a2Xi,2 + ...+ akXi,k + εi, i = 1, ..., n

Yi = b+

k∑
j=1

ajXi,j + εi, i = 1, ..., n

• For each i, Yi follows a normal distribution with mean 0 and variance σ2. since

(ε1, ε1, ..., εn) are independent and identically distributed (i.i.d), Yi is indepen-

dent of εi.

εi  N (0, σ2)

Xi,j Is the j-th explanatory (independent) variable for individual i (j = 1, ..., k).

εi Is independent of X and follows a normal distribution N (0, σ2).

b and a1, a2, ..., ak are the unknown paramaters of the model.

In matrix form

This model can be written in matrix form as follows:

Y = XB + ε

or:

Y =


Y1

Y2

...

Yn

 , X =


1 X1,1 · · · X1,k

1 X2,1 · · · X2,k

...
...

. . .
...

1 Xn,1 · · · Xn,k

 , ε =


ε1

ε2
...

εn

 , B =


b

a1

...

ak


So: 

Y1

Y2

...

Yn

 =


1 X1,1 · · · X1,k

1 X2,1 · · · X2,k

...
...

. . .
...

1 Xn,1 · · · Xn,k




b

a1

...

ak

+


ε1

ε2
...

εn


Y represents the response vector of size n.

X represents the design matrix of size n× (k + 1)

ε represents the error vector of size n.
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2.2 Estimation

In this section, we use the least squares method to estimate the unknown parameters

of regression model.

2.2.1 Least squares method

The Ordinary Least Squares (OLS) method minimizes the sum of the squared dif-

ferences between the observed values and the values predicted by the regression line.

This method finds the best-fitting regression line (the regression line) that represents

the relationship between the dependent variable Y and the independent variable X,

passing through the mean point G(m(X),m(Y )).

Figure 2.1: Least squares method

Case of simple linear regression

We seek values â and b̂ of the estimators of a and b. We have:

Yi = aXi + b+ εi ⇒ εi = Yi − aXi − b

(
b̂, â
)

= arg min
(b,a)∈R∗R

S (b, a)

S (b, a) = min
b,a

n∑
i=1

ε2i = min
b,a

n∑
i=1

(Yi − aXi − b)2
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We solve the system of two equation with two unknowns

∇S (b, a) = 0

The least squares estimators for b and a, denoted as b̂ and â, respectively, must satify

∂S
∂b

= −2
n∑
i=1

(Yi − âXi − b̂) = 0

∂S
∂a

= −2
n∑
i=1

(Yi − âXi − b̂)Xi = 0

The least squares estimates of the intercept and slope in the simple linear regression

model are

∇S (b, a) = 0⇒
{

b̂ = Ȳ − âX̄
â =

∑n
i=1XiYi−nX̄Ȳ∑n
i=1X

2
i −nX̄2 = SXY

SXX

The fitted or regression line is thereforeS(b, a)

Ŷ = âX + b̂

Note that each pair of observations stissfies the relationship

Yi = âXi + b̂+ εi, i = 1, ..., n

Algebraic perspective Given n data points (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) in R2,

we try to find the equation of a line that passes through the n points.

This equation is Y = aX + b with b, a ∈ R.
b and a should be the solutions of the system Y = XB.

The solution in terms of least squares is(
b̂, â
)

=
(
X tX

)−1
X tY

• Where σ̂2
ε , an estimator of σ

2
ε , is given by:

σ̂2
ε =

1

n− 2

n∑
i=1

ε̂2i =
1

n− 2

n∑
i=1

(Ŷi − Yi)2
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Case of exponential adjustment:

We have:

Y = λβX

We seek values β̂ and λ̂ of the estimators of β and λ.

(
λ̂, β̂

)
= arg min

(λ,β)∈R∗+×R∗+
S (λ, β)

S (λ, β) = min
λ,β

n∑
i=1

ε2i = min
λ,β

n∑
i=1

(ln(Yi)− ln(β)Xi − ln(λ))2

So, returning to the sought relationship:

λ = eb and β = ea.

We solve the system of two equation with two unknowns

∇S (λ, β) = 0

The least squares estimators for λ and β, denoted as λ̂ and β̂, respectively, must

satify

∇S (λ, β) = 0⇒
{

ln(λ̂) = Ū − ln(β̂)X̄

ln(β̂) =
∑n
i=1XiUi−nX̄Ū∑n
i=1X

2
i −nX̄2 = SXU

SXX

, Such as ln(Y ) = U

By replacing the value of U with its value ln(Y ), we conclude that:

λ̂ = eŪ−ln(β̂)X̄

β̂ = e
SXU
SXX

Case of multiple regression

The least squares estimator B̂ of B is defined as follows:

B̂ = arg min
B

n∑
i=1

ε2i
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We then seek the statistic B̂ = (b̂, â1, ..., âk) that minimizes

S(B) = S(b, a1, ..., ak) =
n∑
i=1

ε2i =

n∑
i=1

(
Yi − b−

n∑
i=1

ajXi,j

)2

To calculate B̂, we propose the following matrix expression:

S(B) = εtε

= ‖Y −XB‖2

= (Y −XB)t(Y −XB)

= (Y t −X tBt)(Y −XB)

= Y tY − Y tXB −BtX tY +BtX tXB

And since Y tY B = BtX tY ∈ R, we obtain

S(B) = Y tY − 2BtX tY +BtX tXB

By taking the derivative of S(B) with respect to each parameter b, a1, ..., ak, we

obtain the system of equations:

−2X tY + 2X tXB̂ = 0

⇒ X tY −X tXB̂ = 0

⇒ X tY = X tXB̂

⇒ (X tX)−1X tY = (X tX)−1(X tY )B̂

And from there, we finally deduce

B = (X tX)−1X tY

• The variance of the error σ2
ε is estimated without bias by:

σ̂2
ε =

∑n
i=1 ε̂

2
i

n− k − 1
=

ε̂tε̂

n− k − 1
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2.3 Properties of the OLS estimators

2.3.1 Properties of simple linear regression

The statistical properties of the least squares estimators b̂ and â can be easily de-

scibed. Assuming the error term ε in the model Y = b+aX + ε is a random variable

with a mean of zero and a variance of σ2. since the values of X are fixed, Y is a

random variable with mean of µ = b+ aX and variance σ2. Therefor, the values of b̂

and â depend on the observed y’s, making the least squares estimators of the regres-

sion coeffi cients random variables. We will examine the bias and variance properties

of b̂ and â.

Starting with b̂, as it is a linear combination of the observations Yi, we can use the

properties of expectation to show that the expected value of â is:

Proposition 2.3.1 Unbiased estimators

E(â) = a, E(b̂) = b

Preuve. for â: â = SXY
SXX

⇒ â =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

= a+

∑n
i=1(Xi − X̄)(εi − ε̄)∑n

i=1(Xi − X̄)2

= a+

∑n
i=1(Xi − X̄)εi∑n
i=1(Xi − X̄)2

⇒ E(â) = a

and b̂: b̂ = Ȳ − âX̄

⇒ E(b̂) = E(Ȳ − âX̄) = E(Ȳ )− X̄E(â) = b+ X̄a− X̄a
⇒ E(b̂) = b

Proposition 2.3.2 Variances of the estimators
{
b̂, â
}

V ar(â) =
σ2
ε

SXX
, V ar(b̂) =

σ2
ε

∑n
i=1 X

2
i

nSXX
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Preuve.

V ar(â) = E
[
(â− E(â))2

]
= E

[
(â− a)2

]
= E

[(
a+

∑n
i=1(Xi − X̄)εi

S2
XX

− a
)2
]

=
1

S2
XX

E

( n∑
i=1

(Xi − X̄)εi

)2


=
1

S2
XX

E

[
n∑
i=1

(Xi − X̄)2ε2i +
n∑
i=1

(Xi − X̄)εi(Xj − X̄)εj

]

⇒ V ar(â) =
σ2
ε

SXX

V ar(b̂) = E
[
(b̂− b)2

]
= E

[(
Ȳ − b̂− âX̄

)2
]

= E
[(
b+ aX̄ + ε̄− âX̄ − b

)2
]

= E
[(

(a− â) X̄ + ε̄
)2
]

= E
[(

(a− â)2 X̄2 + ε̄2 + 2ε̄ (a− â) X̄
)]

= X̄2E
[
(b̂− b)2

]
+ E(ε̄2) + 2X̄E [ε̄ (a− â)]

= X̄2V ar(â) + E

( 1

n

n∑
i=1

εi

)2


=
X̄2σ2

ε

SXX
+

1

n
σ2
ε , E

( 1

n

n∑
i=1

εi

)2
 =

1

n2

n∑
i=1

(
E
(
ε2i
))

+
1

n

n∑
i=1

E (εi) =
1

n
σ2
ε

=
nX̄2σ2

ε + σ2
εSXX

nSXX
=
nX̄2σ2

ε +
(∑n

i=1 X
2
i − nX̄2

)
σ2
ε

nSXX
=
nX̄2σ2

ε + σ2
ε

∑n
i=1 X

2
i − nX̄2σ2

ε

nSXX

⇒ V ar(b̂) =
σ2
ε

∑n
i=1X

2
i

nSXX

Proposition 2.3.3 Covariance of the estimators
(
b̂, â
)

Cov(b̂, â) = − σ2
ε X̄∑n

i=1(Xi − X̄)2
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Preuve.
Cov(b̂, â) = Cov

(
Ȳ − âX̄, â

)
= Cov

(
Ȳ, â
)
− X̄V ar(â)

The variance between Ȳ and â is written as:

Cov
(
Ȳ, â
)

= Cov

(
n∑
i=1

Yi
n
,

∑n
i=1(Xi − X̄)εi

S2
XX

)
= 0

We finally conclude:

Cov(b̂, â) = − σ2
ε X̄∑n

i=1(Xi − X̄)2

2.3.2 Properties of multiple regression

The statistical properties of the least squares estimators b̂, â1, ..., âk canbe easily

determined under ceertain assumption on the error terms ε1, ..., εn in the regression

model.We assume that the errors are statistically independent with mean zero and

variance σ2.Under these assumptions, the least squares estimators b̂, â1, ..., âk are

unbiased estimators of the regression coeffi cients b, a1, ..., ak. This property can be

shown as follows:

Proposition 2.3.4 The estimator B̂ est best unbiased estimator of B.

E(B̂) = B

Preuve.

B̂ = (X tX)−1X tY

= (X tX)−1X t(XB + ε)

= B + (X tX)−1X tε

So:

E
[
B̂
]

= B + E
[(
X tX

)−1
X tε

]
= B +

(
X tX

)−1
X tE [ε]
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And Since E [ε] = 0,

E(B̂) = B

Proposition 2.3.5 The variance of B̂ is:

V ar(B̂) = σ2
ε (X

tX)−1

Preuve.

V ar(B̂) = E

[(
B̂ − E

(
B̂
))(

B̂ − E
(
B̂
))t]

= E

[(
B̂ −B

)(
B̂ −B

)t]
= E

[(
X tX

)−1
X tε

((
X tX

)−1
X tε

)t]
= E

[(
X tX

)−1
X tεεtX

(
X tX

)−1
]

=
(
X tX

)−1
X tE

(
εεt
)
X
(
X tX

)−1

=
(
X tX

)−1
X tσ2

ε InX
(
X tX

)−1

= σ2
ε

(
X tX

)−1
X tX

(
X tX

)−1

⇒ V ar(B̂) = σ2
ε (X

tX)−1

2.4 Hypothesis testing

2.4.1 Hypothesis tests in simple linear regression

The complete assumption are that the errors are normally and independently dis-

tributed with mean 0 and variance σ2, abbreviated i.i.d N (0, σ2).

Use of t-test

Suppose that we wish to test the hypothesis that the slop equals a constant, say, β0.

The appropriate hypotheses are

H0 : a = β0, H1 : a 6= β0
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Assuming a two-sided alternative, with errors εi bring i.i.dN (0, σ2), the observations

Yi are directly assumed to be i.i.d N (b+ aXi, σ
2).

The estimator â is a linear combination of independent normal random variables,

making it N (a, σ2

SXX
) based on the bais and variance properties of the slope.

Additionally, (n−2)SSE
σ2

 X 2
n−2, and a is independent of σ

2.

These properties lead to the statistic

Test Statistic for the slope

T0 =
â− β0√
σ̂2/SXX

follows the t distribution with n− 2 degrees of freedom under H0 : a = β0.

We would reject H0 : a = β0 if

|t0| > tα
2
,n−2

We can write the test statistic as follows.

T0 =
â− β0

se(â)

A similar procedure can be used to test hypotheses about the intercept.

To test

H0 : b = β1, H1 : b 6= β1

Test Statistic for the Intercept

T0 =
b̂− β1√

σ̂2
[

1
n

+ X̄2

SXX

] =
b̂− β1

se(b̂)

And reject the null hypothesis if the computed value of this test statistic, t0, is such

that |t0| > tα
2
,n−2.

Note that the denominator of the test statistic in equation is the standard error of

the intercept.

A very important special case of the hypotheses of equation is
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H0 : a = 0, H1 : a 6= 0

these hypotheses pertain to the significance of regression.

Not rejecting H0 : a = 0 equates to concluding that there is no linear relationship

between X and Y .

It should be noted that this may imply that X has little value in explaining the vari-

ance in Y and that the best estimator of Y for X is Y = Ŷ or that true relationship

between X and Y is not linear.

Conversly, if H0 : a = 0 is rejected, this implies that X is valuble in explaining the

variability in Y .

Rejecting H0 : a = 0 could be mean either that the straight-line model is adequate

or that, although there is a linear effect of X, better results could be obtianed by

adding higher oder polynomial terms in X.

Analysis of variance approach to test significance of regression

A method called the analysis of variance can be used to test for significance of

regression.

The procedure partitions the total variability in the response variable into meaningful

components as the basis for the test.

Analysis of variance Identity The analysis of variance identity is as follows:

n∑
i=1

(
Yi − Ȳ

)2
=

n∑
i=1

(
Ŷi − Ȳ

)2

+

n∑
i=1

(
Yi − Ŷi

)2

The two components on the right-hand-side of Equation measure, respectively, the

amount of variability in Yi accounted for by the regression line and the residual

variation left unexplained by the regression line.

We usually call SSE =
∑n

i=1

(
Yi − Ŷi

)2

the error sum of squares and SSR =∑n
i=1

(
Ŷi − Ȳ

)2

the regression sum of squares and SST =
∑n

i=1

(
Yi − Ȳ

)2
the total

corrcted sum of squares.
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Symbolically, Equation may be written as

SST = SSR + SSE

The analysis of variance table is presented in the following format to summarize the

results of the regression test.

Source of Varia. Degr. of Free. Sum of Squares Mean Square F

Regression 1 SSR = âSXY MSR = SSE
1

F = MSR
MSE

Error n− 2 SSE = SST − âSXY MSE = SSE
n−2

Total n− 1 SST

Table 2.1: Analysis of variance table for testing significance of regression in simple

linear regression.t

2.4.2 Hypothesis tests in Multiple linear regression

In multiple linear regression problems, certian tests of hypotheses about the model

parameters are useful in measuring model adequacy.

In this section, we describe several important hypothesis-testing procedures.

As in the simple linear regression case, hypothesis testing requires that the error

terms εi in the regression model are normally and independently distributed with

mean zero and variance σ2.

Test for significance of regression

The test for significance of regression is a test to determine whether a linear relation-

ship exists between the response variable Y and a subset of the regressor variables

X1, X2, ..Xk.

The appropriate hypotheses are

H0 : a1 = a2 = ... = ak = 0

H0 : ak 6= 0 for at least one k
Hypotheses for ANOVA Test

Rejecting the null hypothesis H0 : a1 = a2 = ... = ak = 0 indicates that at least one

of the regressor variables X1, X2, ..Xk contributes significantly to the model.

the test for the significance of regression is an extension.
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The total sum of squares, SST , is divided into a sum of squares, attributable to the

model or regression, and a sum of squares attributable to error.

SST = SSR + SSE

The test statistic for H0 : a1 = a2 = ... = ak = 0 is

Source of Varia. Degr. of Free. Sum of Squares Mean Square F

Regression k SSR MSR F = MSR
MSE

Error n− k − 1 SSE MSE

Total n− 1 SST

Table 2.2: Analysis of variance for testing significance of regression in multiple re-

gression.
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Application

R is a free and open-source software and a statistical processing language that has

been introduced here. The R language (R Development Core Team, 2013) is object-

oriented, like Python or Ruby. One of R’s advantages is its ability to communicate

through written scripts, as it is commonly used in console mode. This avoids concerns

about technical issues arising from the variety of operating system versions and the

need for screenshots, but most importantly, it allows for communicating calculations

and statistical analyses in just a few lines of text.

3.1 Simple linear regression with R

Example 3.1.1 As part of research on the duration of the growing season in the
mountains, meteorological stations are installed at different altitudes. The average

temperature (variable Y in degrees Celsius) and the altitude (variable X in meters)

of each station are given in the table below (see [8]):

Altitude 1040 1230 1500 1600 1740 1950 2200 2530 2800 3100

Temperature 7.4 6 4.5 3.8 2.9 1.9 1 -1.2 -1.5 -4.5

Table 3.1: Table of Study on the Duration of the Growing Season in the Mountains

Scatter plot:

The plot() function produces different default graphics depending on the type of

data. Thus, if we are dealing with the relationship between two variables, we get a

scatter plot.
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Figure 3.1: Relationship Between Altitude and Temperature in the Mountains

Linear correlation expresses the strength of the relationship between two variables.

The function cor(.,.) is used to calculate the correlation coeffi cient between these

two variables.

# Calculating correlation coefficients

> cor(altitude, temperature, method="pearson")

[1] -0.9936053

> cor(altitude, temperature, method="spearman")

[1] -1

> cor(altitude, temperature, method="kendall")

[1] -1

The correlation coeffi cient is an indicator of this relationship. We seek to explain

the variations of Y through the variations of a linear function of X, based on n

observations of each of the variables. In other words, to adjust the data according

to the model.

Yi = aXi + b, i = 1, 2, ..., n

lm() Function

This function creates the relationship model between the predictor and the response

variable.

Syntax

The basic syntax for lm() function in linear regression is -
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lm(formula,data)

Following is the description of the parameters used -

formula is a symbol presenting the relation between x and y.

Data is the vector on which the formula will be applied.

Create relationship model & get the coeffi cients

Call:

lm(formula = y ~x)

Coefficients:

(Intercept) altitude

12.5953 -0.0054

Yi = aXi + b, i = 1, 2, ..., n With, â = −0.0054, b̂ = 12.5953

Get the summary of the relationship

Call:

lm(formula = y ~x)

Residuals:

Min 1Q Median 3Q Max

-0.4613 -0.2289 -0.1283 0.1583 0.9290

Coefficients:

Estimate Std. Error t value Pr(> | t | )
(Intercept) 12.5953 0.4466 28.20 2.70e-09

altitude -0.0054 0.0002 -24.89 7.26e-09

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4395 on 8 degrees of freedom

Multiple R-squared: 0.9873, Adjusted R-squared: 0.9857

F-statistic: 619.5 on 1 and 8 DF, p-value: 7.26e-09

Relationship Between Altitude and Temperature in the Mountains with
Regression Line
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Figure 3.2: Relationship Between Altitude and Temperature in the Mountains with
Regression Line

The analysis reveals a strong negative linear relationship between altitude and tem-

perature. As altitude increases, temperature decreases. The correlation coeffi cients

support this strong inverse relationship. The linear regression model further quanti-

fies this relationship, showing that for every meter increase in altitude, the temper-

ature decreases by approximately 0.0054 degrees Celsius. The high R-squared value

indicates that the model fits the data very well, and the statistical significance of the

coeffi cients suggests that the relationship is robust.

3.2 Multiple regression with R

Multiple regression is an extension of linear regression into relationship between more

than two variables. In simple linear relation we have one predictor and one response

variable, but in multiple regression we have more than one predictor variable and

one response variable.

The general mathematical equation for multiple regression is

Y = b+ a1X1 + a2X2 + ...+ anXn,

Following is the description of the parameters used -

Y is the response variable.

b, a1, ..., an are the coeffi cients.

X1, ..., Xn are the predictor variables.
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com. 1 2 3 4 5 6 7 8 9 10 11 12 13

X1 7 1 11 11 7 11 3 1 2 21 1 11 10

X2 26 29 56 31 52 55 71 31 54 47 40 66 68

X3 6 15 8 8 6 9 17 22 18 4 23 9 8

X4 60 52 20 47 33 22 6 44 22 26 34 12 12

Y 78.5 74.5 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4

Table 3.2: Table of the Relationship between Cement Solidification Heat and Its
Chemical Compositions

We create the regression model using the lm() function in R. The model determines
the value of the coeffi cients using the input data. Next we can predict the value of

the response variable for a given set of predictor variables using these coeffi cients.

lm() Function

This function creates the relationship model between the predictor and the response

variable.

Syntax

The basic syntax for lm() function in multiple regression is -

lm(y ~x1+x2+x3...,data)

Following is the description of the parameters used -

formula is a symbol presenting the relation between the response variable
and predictor variables.

data is the vector on which the formula will be applied.

Example 3.2.1 A certain kind of cement release the heat y (cal/g) when it is so-

lidified is related to four chemical compositions (see [6]). The data are shown in

table

Creating the Regression Model

Extracting the Coeffi cients

After creating the model, we extract the coeffi cients (intercept and coeffi cients for

each predictor variable):

Call:
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Figure 3.3: Prediction of Cement Heat Release Values

lm(formula = Y ~X1 + X2 + X3 + X4, data = compositions)

Coefficients:

(Intercept) X1 X2 X3 X4

63.6759 1.5345 0.4974 0.0872 -0.1556

Creating the Mathematical Equation of the Model

[1] "Y = 63.68 + 1.53 * X1 + 0.5 * X2 + 0.09 * X3 + -0.16 *X4"

Predicting New Values
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Actual_Y Predicted_Y

1 78.5 78.54072

2 74.5 72.85545

3 104.3 105.9978

4 87.6 89.3625

5 95.9 95.6734

6 109.2 105.2765

7 102.7 104.1458

8 72.5 75.7053

9 93.1 91.7536

10 115.9 115.5838

11 83.8 81.8248

12 113.3 112.3036

13 109.4 111.6767

Table 3.3: Table of Predicting New Values

Figure 3.4: Prediction of Cement Heat Release Values with Regression Line

The analysis shows that there is a positive relationship between the factorsX1, X2, X3, X4

and the dependent variable Y. In other words, as the values of X1, X2, X3, X4 in-

crease, the value of Y also increases. The high R-squared value indicates that the
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multiple linear model explains a large proportion of the variance in Y, making it a

good fit for the data used.
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Conclusion

In conclusion, correlation and regression analyses have proven their utility in provid-

ing valuable insights into the underlying dynamics of the studied variables. The use

of these techniques has not only enabled a better understanding of the relationships

between variables but also facilitated informed predictions and rigorous hypothesis

testing. This thesis thus contributes to a better understanding of statistical methods

and their practical application, providing a solid foundation for future research in

this field.
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Conclusion

Notation
rs : Spearman’s Rho

τ : Kendall’s Tau coeffi cient

Nc : number of concordant pairs

Nd : number of dicordant pairs

R(Xi) : The rank of the value Xi{
b̂, â
}

: the estimated values (b, a)

ε : Is the random error termin the model.

δi,j : Kronecker delta, which equals 1 if i = j and 0 otherwise

N (0, σ2) : Normal distribution with mean 0 and variance σ2.

E(X) : Mathematical expectation of a random variable X.

V ar(X) : Variance of a random variable X.

Cov(X, Y ) : Covariance between random variables X and Y .

S (b, a) : Sum of Squares due to Regression

SSR : Sum of Squares due to Regression

SSE : Sum of Squares due to Error

SST : Sum of Squares due to Total

MSR : Mean Square due to Regression

MSE : Mean Square due to Error

T0 : Test Statistic

R : the set of real numbers
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Résumé 

 

Le sujet de recherche "Sur la dépendance entre les variables aléatoires" vise à 

étudier la relation entre les variables aléatoires en utilisant des techniques de 

corrélation et de régression. Nous passerons en revue les types de coefficients de 

corrélation tels que Pearson, Spearman et Kendall, et expliquerons comment les 

calculer et les interpréter. De plus, nous explorerons différents modèles de 

régression, y compris la régression linéaire simple et la régression multiple, en 

mettant l'accent sur l'estimation des coefficients en utilisant la méthode des 

moindres carrés et le test des hypothèses pour assurer la validité du modèle. Enfin, 

en utilisant le programme R, nous fournirons des interprétations graphiques des 

résultats théoriques appliqués à des exemples de régression simple et multiple. 

 
ABSTRACT 
 

The research topic "On the Dependence between Random Variables" aims to study the 

relationship between random variables using correlation and regression techniques. We will 

review types of correlation coefficients such as Pearson, Spearman, and Kendall, and explain 

how to calculate and interpret them. Additionally, we will explore different regression models, 

including simple linear regression and multiple regression, focusing on estimating coefficients 

using the least squares method and testing hypotheses to ensure model validity. Finally, using the 

R program, we will provide graphical interpretations of the theoretical results applied to 

examples of simple and multiple regression. 

. 
 
 

  ملخص
التي تهدف إلѧى دراسѧة العلاقѧة بѧين " حول التبعية بين المتغيرات العشوائية"يتضمن موضوع البحث 

: سѧنقوم بالتѧذكير بѧأنواع معѧاملات الارتبѧاط مثѧل. المتغيرات العشѧوائية باسѧتخدام تقنيѧات الارتبѧاط والانحѧدار

ما نستعرض نماذج الانحدار المختلفة ك. بيرسون، سبيرمان، وكيندال، ونقوم بتوضيح كيفية حسابها وتفسيرها

بمѧѧا فѧѧي ذلѧѧك الانحѧѧدار الخطѧѧي البسѧѧيط والانحѧѧدار المتعѧѧدد، ونركѧѧز علѧѧى تقѧѧدير المعѧѧاملات باسѧѧتخدام طريقѧѧة 

سѧنقوم بإعطѧاء  Rأخيѧرًا، باسѧتخدام البرنѧامج . المربعات الصغرى واختبار الفرضيات لضمان صحة النمѧاذج

 .تفسيرات بيانية للنتائج النظرية المطبقة على أمثلة الانحدار البسيط والانحدار المتعدد


