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Introduction

Introduction

For many years, stochastic control has been growing and finding many uses in fields like
engineering, economics, and financial mathematics. This area started in mathematics and
is based on the idea that an optimal control decision stays optimal no matter when you
check it. This basic idea has been used to study stochastic control for a long time. The
Hamilton-Jacobi-Bellman (HJB) equations, which are central to modern stochastic control
theory, were made possible by this idea and dynamic programming principles.

Traditional optimal control theory assumes that control strategies are time-consistent,
see [7, 9]. This means that a decision that is optimal today will remain optimal in the
future. Dynamic programming and HJB equations rely on this assumption, making it
easier to solve control problems in a consistent way.

In the real world, however, time inconsistency often occurs. Time inconsistency means
that preferences or decisions change over time in ways that were not planned. Examples
include:

Hyperbolic Discounting [6]: People tend to choose smaller, immediate rewards over
larger, delayed ones. This preference can change over time, leading to inconsistent decision-
making.
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Dynamic Mean-Variance Portfolio Selection Models [3]: Investors’ risk preferences can
change over time, affecting their investment strategies and causing time-inconsistent be-
havior.

To deal with time inconsistency, researchers have looked into equilibrium controls.
Instead of finding one best control, equilibrium controls aim to find a balance where
decisions change over time in a consistent way. This approach considers the entire time
span and looks for strategies that stay balanced over time.

In the area of time-inconsistent optimal control, Ekeland and Lazrak [6] made a big
breakthrough with their work. Later, Bjork and Murgoci [4], and then Bjork, Murgoci,
and Zhou, [5], made important contributions to understanding time-inconsistent problems
in the stochastic (random) setting. Despite these advances, the study of time-inconsistent
control is still quite new.

In this dissertation, we study a general stochastic linear-quadratic (LQ) control problem,
see [1] and [2], adding to the research on time-inconsistent control. Our problem includes
special terms that cause time inconsistency, making it different from traditional problems.
We suggest a new way to look at things using open-loop strategies, which plan the entire
control path from the start, instead of feedback models that adjust controls based on
current states.

To analyze the problem in detail, we use forward-backward stochastic differential equa-
tions (FBSDEs). These equations help us model the dynamic behavior of the system and
the control strategies. By studying these equations carefully, we aim to understand the
equilibrium conditions fully, allowing us to find the best control strategies for systems
that are time-inconsistent.

The next parts of this dissertation are organized as follows:
Chapter 1: Introduces the mathematical basics needed for our study, including forward-

backward stochastic differential equations (FBSDEs) and stochastic processes. We look at
2



optimal control problems in the context of time inconsistency.
Chapter 2: Describes the specific stochastic LQ control problem we are studying. We

present theoretical results on how to find equilibrium control using FBSDEs and other
mathematical tools.

Chapter 3: Provides an example of a general discounting, time-inconsistent LQ model.
We show a specific case to illustrate the concepts and methods developed in the previous
chapters, demonstrating how the theoretical results can be applied to real-world scenarios.
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Chapter 1

Introduction to Stochastic Processes

In this opening chapter, we begin by introducing fundamental terms in stochastic compu-
tation. We’ll keep it straightforward, focusing on key concepts that we’ll expand on later.
We’ll cover the basics you need before delving into more intricate topics like stochastic
calculus and stochastic differential equations in the following chapters. This chapter lays
the foundation for understanding the mechanics of stochastic computation and its signifi-
cance across different fields. For more details about this chapter, the reader can see [10],
[8].

1.1 Stochastic Processes

Definition 1.1.1 (Stochastic Process) A stochastic process, denoted by 𝑋 = (𝑋(𝑡))𝑡∈[0,𝑇], is

a collection of random variables defined on a probability space (Ω,ℱ,ℙ), taking values in ℝ𝑛.

Now we give some terminology:
1. The variable 𝑡 is often interpreted as time.
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2. If 𝑋 = (𝑋(𝑡))𝑡∈{0,1,⋯,𝑛=𝑇}, 𝑋 is a discrete-time stochastic process. For a continuous
index set, it is a continuous-time stochastic process.

3. The typical index set is [0,𝑇], where 𝑇 > 0 (or ℝ+).
4. Each 𝑋(𝑡) is a random variable 𝜔⟶ 𝑋(𝜔,𝑡) for 𝜔 ∈ Ω.
5. Fixing 𝜔 ∈ Ω makes 𝑋(𝜔) a function 𝑡⟶ 𝑋(𝜔,𝑡), referred to as a path of 𝑋.

Definition 1.1.2 (Modification of Process) A stochastic process (𝑋1(𝑡))𝑡∈[0,𝑇] is considered

a modification of another process (𝑋2(𝑡))𝑡∈[0,𝑇] if ℙ(𝑋1(𝑡) = 𝑋2(𝑡)) = 1 for all 𝑡 ∈ [0,𝑇].

Definition 1.1.3 (Indistinguishable Processes) Two stochastic processes (𝑋1(𝑡))𝑡∈[0,𝑇] and

(𝑋2(𝑡))𝑡∈[0,𝑇] are termed indistinguishable if ℙ(𝑋1(𝑡) = 𝑋2(𝑡),∀𝑡 ∈ [0,𝑇]) = 1.

Remark 1.1.1 If two stochastic processes (𝑋1(𝑡))𝑡∈[0,𝑇] and (𝑋2(𝑡))𝑡∈[0,𝑇] are indistinguishable,

they are modifications of each other. However, the converse is not always true.

Definition 1.1.4 (Measurable stochastic process) A stochastic process 𝑋 = (𝑋(𝑡))𝑡∈[0,𝑇]

is measurable if the mapping 𝑋 ∶ Ω×[0,𝑇]→ℝ𝑛 is (ℬ([0,𝑇])⊗ℱ,ℬ) measurable.

Definition 1.1.5 (Filtration) A filtration is a family of 𝜎-algebras {ℱ𝑡}𝑡≥0 defined on a prob-

ability space (Ω,ℱ,ℙ), such that ℱ𝑠 ⊆ℱ𝑡 ⊆ℱ for all 0 ≤ 𝑠 ≤ 𝑡, where ℱ is the 𝜎-algebra of all

events in Ω. And we call
(
Ω,ℱ, {ℱ𝑡}𝑡≥0 ,ℙ

)
a filtered probability space.

• The filtration represents the increasing amount of information available to an ob-
server as time passes, withℱ𝑡 being the set of events that the observer can distinguish
up to time 𝑡.

• A filtration {ℱ𝑡}𝑡≥0is right continuous if ℱ𝑡+ = ∩𝜀>0ℱ𝑡+𝜀 = ℱ𝑡 for all 𝑡 ≥ 0.

• A filtration {ℱ𝑡}𝑡≥0is complete if ℱ0 ⊂ℱ𝑡.
5



• A filtration that is right continuous and complete is said to satisfy the usual condi-
tions.

Definition 1.1.6 (Adapted stochastic process) We say that a stochastic process𝑋= (𝑋(𝑡))𝑡∈[0,𝑇]

is adapted to a filtration 𝔽 = {ℱ𝑡}𝑡≥0 if 𝑋(𝑡) is ℱ𝑡-measurable for each 𝑡.

Definition 1.1.7 (Natural filtration) The collection of 𝜎-algebras {𝒢(𝑡)}𝑡≥0 where

𝒢(𝑡) = 𝜎{𝑋(𝑠) ∶ 0 ≤ 𝑠 ≤ 𝑡},

for all 𝑡 ≥ 0 we call it the natural filtration of a stochastic process (𝑋(𝑡))𝑡∈[0,𝑇].

We define the minimal augmented filtration generated by (𝑋(𝑡))𝑡∈[0,𝑇] to be the smallest

filtration that is right continuous and complete and with respect to which the process (𝑋(𝑡))𝑡∈[0,𝑇]

is adapted.

Definition 1.1.8 (Stopping time) A stopping time 𝜏 with respect to {ℱ𝑡}𝑡≥0 is a random vari-

able 𝜏 ∶ Ω→ [0,+∞] such that for all 𝑡 ∈ [0,𝑇], the event

{𝜏 ≤ 𝑡} = {𝜔 ∈ Ω ∶ 𝜏(𝜔) ≤ 𝑡} ∈ℱ𝑡.

Definition 1.1.9 (𝜎-algebra of events prior to [0,𝑇]) If 𝜏 is a stopping time. The 𝜎-algebra

ℱ𝜏 = {𝐴 ∈ℱ,𝐴∩{𝜏 ≤ 𝑡} ∈ℱ𝑡,∀𝑡 ∈ [0,𝑇]} ,

is called the 𝜎-algebra of events prior to [0,𝑇].
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1.1.1 Brownian Motion

Definition 1.1.10 (Standard Brownian Motion) The Standard Brownian Motion, also known

as Wiener process, is a stochastic process (𝑊(𝑡))𝑡≥0 with independent and identically distributed

increments such that:

1. 𝑊(0) = 0 almost surely.

2. For all 0 ≤ 𝑠 < 𝑡, the increment 𝑊(𝑡) −𝑊(𝑠) is normally distributed with mean 0 and

variance 𝑡− 𝑠 (i.e., 𝑊(𝑡)−𝑊(𝑠) ∼𝑁(0, 𝑡− 𝑠)).

3. The sample paths of 𝑊(𝑡) are almost surely continuous.

Definition 1.1.11 (d-dimensional Brownian Motion) A d-dimensional Brownian motion,

denoted by 𝑊 =
(
𝑊(1),𝑊(2),… ,𝑊(𝑑)), is defined by considering 𝑊(𝑖) as independent standard

Brownian motions for 𝑖 = 1,2,… ,𝑑.

The filtration {ℱ𝑡}𝑡≥0 generated by a Brownian motion 𝑊 is defined as,

ℱ𝑡 = 𝜎(𝑊(𝑠) ∶ 𝑠 ≤ 𝑡), 𝑡 ≥ 0,

and it is called the natural filtration of 𝑊 or Brownian filtration.

1.2 Martingales

Definition 1.2.1 (Martingale) A continuous-time martingale (resp.submartingale, supermartingale)

is a stochastic process {𝑋(𝑡), 𝑡 ≥ 0} satisfying the following conditions:

1. 𝑋(𝑡) is adapted to a filtration {ℱ𝑡}𝑡≥0, i.e., 𝑋(𝑡) is measurable with respect to ℱ𝑡 for all

𝑡 ≥ 0.
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2. 𝑋(𝑡) is integrable for all 𝑡 ≥ 0.

3. For all 0 ≤ 𝑠 ≤ 𝑡, 𝔼 (𝑋(𝑡)|ℱ𝑠) = (resp.≤,≥)𝑋(𝑠) almost surely.

Remark 1.2.1 A process 𝑋 is a martingale if it is both a submartingale and a supermartingale.

If 𝑋 is a martingale, then 𝔼(𝑋(𝑡)) = 𝔼(𝑋(0)) for all 𝑡 ∈ [0,𝑇].

Example 1.2.1 If 𝑊 is a Brownian motion, then 𝑊(𝑡), 𝑊2(𝑡) − 𝑡, and exp(𝜎𝑊(𝑡)− 𝜎2𝑡
2 )

for 𝑡 ∈ [0,𝑇] are martingales. Conversely, if 𝑋 is a continuous process such that {𝑋(𝑡)}𝑡≥0 and
{
𝑋2(𝑡)− 𝑡

}
𝑡≥0 are martingales, then 𝑋 is a Brownian motion.

Definition 1.2.2 (Local Martingale) A stochastic process {𝑀(𝑡)}𝑡∈ℝ+ adapted and caglad

(right-continuous with left limits) is a local martingale if there exists an increasing sequence of

stopping times (𝜏𝑛) such that 𝜏𝑛 → +∞ as 𝑛→∞ and 𝑀 (𝑡∧𝜏𝑛) is a martingale for all 𝑛.

Remark 1.2.2 A positive local martingale is a supermartingale. A locally uniformly integrable

martingale is a martingale.

Definition 1.2.3 (Semimartingale) A semimartingale is a cadlag adapted process 𝑋 admit-

ting a decomposition of the form: 𝑋 = 𝐴+𝑀, where 𝑀 is a cadlag local martingale null at 0

and 𝐴 is an adapted process of finite variation and null at 0.

1.3 Stochastic Integration and Itô’s Formula

In this section, we consider a positive real number 𝑇, and aim to define the integral
I(𝜃) = ∫

𝑇

0
𝜃(𝑡)𝑑𝑊(𝑡). (1.1)

Here, (𝜃(𝑡))𝑡≥0 represents any process, and (𝑊(𝑡))𝑡≥0 denotes a Brownian motion. The
challenge lies in giving meaning to the differential element 𝑑𝑊(𝑠) since the function 𝑠→

𝑊(𝑠) is not differentiable.
8



1.3.1 Wiener Integral

The Wiener integral is an integral of the form (1.1) with 𝜃 being a deterministic function,
meaning it does not depend on the random variable 𝜔. Let

𝐿2([0,𝑇],ℝ) = {𝜃 ∶ [0,𝑇]→ℝ such that, ∫ 𝑇

0
|𝜃(𝑠)|2𝑑𝑠 <∞} .

Suppose 𝜃𝑛 is a deterministic step function defined as,
𝜃𝑛(𝑡) =

𝑝𝑛∑

𝑖=1
𝛼𝑖1[𝑡𝑛𝑖 ,𝑡𝑛𝑖+1

](𝑡),

where 𝑝𝑛 ∈ ℕ, the 𝛼𝑖 are real numbers, and {
𝑡𝑛𝑖
} is an increasing sequence in [0,𝑇]. Then,

the Wiener integral is defined as
I (𝜃𝑛) = ∫

𝑇

0
𝜃𝑛(𝑠)𝑑𝑊(𝑠) =

𝑝𝑛∑

𝑖=1
𝛼𝑖 (𝑊 (𝑡𝑖+1)−𝑊 (𝑡𝑖)) .

Due to the Gaussian nature of Brownian motion and the independence of its increments,
the random variable I (𝜃𝑛) is a Gaussian variable with zero mean and variance

V (I(𝜃𝑛)) = V(
𝑝𝑛∑

𝑖=1
𝛼𝑖 (𝑊 (𝑡𝑖+1)−𝑊 (𝑡𝑖)))

= ∫
𝑇

0
𝜃2𝑛(𝑠)𝑑𝑠.

Remark 1.3.1 We observe that 𝜃 → I(𝜃) is a linear function. Moreover, if 𝑓 and 𝑔 are two

step functions, we have

𝔼 (I(𝑓)I(𝑔)) = ∫
𝑇

0
𝑓(𝑠)𝑔(𝑠)𝑑𝑠.
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We then refer to the isometry property of the Wiener integral. Now let 𝜃 ∈ 𝐿2([0,𝑇],ℝ).
Therefore, there exists a sequence of step functions {𝜃𝑛,𝑛 ≥ 0} that converges in 𝐿2([0,𝑇],ℝ)
to 𝜃. According to the previous paragraph, we can construct the Wiener integrals I (𝜃𝑛),which are centered Gaussians forming a Cauchy sequence by isometry. Since the space
𝐿2([0,𝑇],ℝ) is complete, this sequence converges to a Gaussian random variable denoted
by I(𝜃). It can be shown that the limit does not depend on the choice of the sequence
𝜃𝑛,𝑛 ≥ 0. I(𝜃) is called the Wiener integral of 𝜃 with respect to (𝑊(𝑡))𝑡∈ℝ.

1.3.2 The Itô’s integral

Our objective now is to define the integral given by equation (1.1 ). To achieve this, we
construct I(𝜃) using discretization, similar to the approach used for the Wiener integral.

Let’s start by examining step processes represented by,
𝜃𝑛(𝑡) =

𝑝𝑛∑

𝑖=0
𝛼𝑖𝟏[𝑡𝑛𝑖 ,𝑡𝑛𝑖+1

](𝑡), (1.2)
where 𝑝𝑛 ∈ ℕ, (𝑡𝑛𝑖 ) forms an increasing sequence in [0,𝑇], and 𝛼𝑖 ∈ 𝐿2

(
Ω,ℱ𝑡𝑖 ,ℙ

) for all
𝑖 = 0,⋯ ,𝑝𝑛. We define I (𝜃𝑛) as

I (𝜃𝑛) =
𝑝𝑛∑

𝑖=0
𝛼𝑖 (𝑊 (𝑡𝑖+1)−𝑊 (𝑡𝑖)) .

It can be confirmed that 𝔼 (I (𝜃𝑛)) = 0, and
V (I(𝜃𝑛)) = 𝔼(∫

𝑇

0
𝜃2𝑛(𝑠)𝑑𝑠) .

Let 𝐻 denote the space of caglad (left-continuous and right-limited), ℱ𝑡− adapted pro-
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cesses 𝜃 such that
‖𝜃‖2 = 𝔼(∫

𝑇

0
|𝜃(𝑠)|2𝑑𝑠) <∞.

We can define I(𝜃) for any 𝜃 ∈𝐻. We approximate 𝜃 using a sequence of step processes
given by equation (1.2 ), and the limit exists in 𝐿2(Ω, [0,𝑇]). The integral I(𝜃) is then
defined as lim

𝑛→+∞
I (𝜃𝑛), where 𝔼 (I(𝜃)) = 0, and

V(I(𝜃)) = 𝔼(∫
𝑇

0
𝜃2(𝑠)𝑑𝑠) .

Definition 1.3.1 (Itô Process) An Itô process is defined as a real-valued process (𝑋(𝑡))𝑡∈[0,𝑇]

satisfying the following conditions almost surely,

𝑋(𝑡) = 𝑋(0)+∫
𝑡

0
𝐹(𝑠)𝑑𝑠+∫

𝑡

0
𝐺(𝑠)𝑑𝑊(𝑠), for 0 ≤ 𝑡 ≤ 𝑇. (1.3)

Alternatively, it can be expressed differentially as,

𝑑𝑋(𝑡) = 𝐹(𝑡)𝑑𝑡+𝐺(𝑡)𝑑𝑊(𝑡).

Here, 𝑋(0) is ℱ0-measurable, and 𝐹 and 𝐺 are two progressively measurable processes, which

satisfy almost surely,

∫
𝑇

0
|𝐹(𝑠)|𝑑𝑠 <∞, and ∫

𝑇

0
|𝐺(𝑠)|2𝑑𝑠 <∞.

In other words, 𝐹 ∈ L1ℱ𝑡
[0,𝑇] and 𝐺 ∈ L2ℱ𝑡

[0,𝑇]. The coefficient 𝐹 represents the drift or deriva-

tive, and 𝐺 is the diffusion coefficient.
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Definition 1.3.2 (Integration by Parts Formula) If𝑋1 and𝑋2 are two Itô processes, where

𝑋1(𝑡) = 𝑋1(0)+∫
𝑡

0
𝐹1(𝑠)𝑑𝑠+∫

𝑡

0
𝐺1(𝑠)𝑑𝑊(𝑠),

and

𝑋2(𝑡) = 𝑋2(0)+∫
𝑡

0
𝐹2(𝑠)𝑑𝑠+∫

𝑡

0
𝐺2(𝑠)𝑑𝑊(𝑠),

then the integration by parts formula states that

𝑋1(𝑡)𝑋2(𝑡) = 𝑋1(0)𝑋2(0)+∫
𝑡

0
𝑋1(𝑠)𝑑𝑋2(𝑠)+∫

𝑡

0
𝑋2(𝑠)𝑑𝑋1(𝑠)+ ⟨𝑋1,𝑋2⟩𝑡,

where

⟨𝑋1,𝑋2⟩𝑡 = ∫
𝑡

0
𝐺1(𝑠)𝐺2(𝑠)𝑑𝑠.

Definition 1.3.3 (Itô’s Formula) Let 𝐹 ∈ L1ℱ𝑡
[0,𝑇], 𝐺 ∈ L2ℱ𝑡

[0,𝑇], and let 𝑋 be an Itô pro-

cess defined as in (1.3). Define ⟨𝑋(𝑡)⟩ = ∫
𝑡

0
|𝐺(𝑠)|2𝑑𝑠. If 𝜅 ∈ 𝒞1,2([0,𝑇]×ℝ,ℝ), then

𝑑𝜅(𝑡,𝑋(𝑡)) = 𝜕𝑡𝜅(𝑡,𝑋(𝑡))𝑑𝑡+𝜕𝑥𝜅(𝑡,𝑋(𝑡))𝑑𝑋(𝑡)+
1
2𝜕𝑥𝑥𝜅(𝑡,𝑋(𝑡))𝑑⟨𝑋⟩𝑡,

= (𝜕𝑡𝜅(𝑡,𝑋(𝑡))+𝜕𝑥𝜅(𝑡,𝑋(𝑡))𝐹(𝑡)+
1
2 |𝐺(𝑡)|

2𝜕𝑥𝑥𝜅(𝑡,𝑋(𝑡)))𝑑𝑡

+𝜕𝑥𝜅(𝑡,𝑋(𝑡))𝐺(𝑡)𝑑𝑊(𝑡).

Alternatively, in integral form

𝜅(𝑡,𝑋(𝑡)) = 𝜅(0,𝑋(0))+∫
𝑡

0
𝜕𝑡𝜅(𝑠,𝑋(𝑠))𝑑𝑠

+∫
𝑡

0
(𝜕𝑥𝜅(𝑠,𝑋(𝑠))𝐹(𝑠)+

1
2𝜕𝑥𝑥𝜅(𝑠,𝑋(𝑠))|𝐺(𝑠)|

2)𝑑𝑠
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+∫
𝑡

0
𝜕𝑥𝜅(𝑠,𝑋(𝑠))𝐺(𝑠)𝑑𝑊(𝑠).

1.4 Stochastic Differential Equation

Let𝑊 = (𝑊(𝑡))𝑡≥0 denote a 𝑑-dimensional Brownian motion on a filtered probability space
(Ω,ℱ, (ℱ𝑡)𝑡≥0,ℙ). For 𝑇 > 0, consider two functions 𝐹 ∶ Ω× [0,𝑇] ×ℝ𝑛 → ℝ𝑛 and 𝐺 ∶ Ω×

[0,𝑇] ×ℝ𝑛 → ℝ𝑛×𝑑. Here, ‖𝐺‖ denotes the trace of 𝐺𝐺⊤. We aim to solve the following
stochastic differential equation

𝑑𝑋(𝑡) = 𝐹(𝑡,𝑋(𝑡))𝑑𝑡+𝐺(𝑡,𝑋(𝑡))𝑑𝑊(𝑡).

Definition 1.4.1 A (strong) solution to this stochastic differential equation is a continuous

stochastic process 𝑋 = (𝑋(𝑡))𝑡≥0 that satisfies

𝑋(𝑡) = 𝑋(0)+∫
𝑡

0
𝐹(𝑠,𝑋(𝑠))𝑑𝑠+∫

𝑡

0
𝐺(𝑠,𝑋(𝑠))𝑑𝑊(𝑠), ℙ−𝑎.𝑠.

with the property that

∫
𝑇

0

(
|𝐹(𝑠,𝑋(𝑠))|+‖𝐺(𝑠,𝑋(𝑠))‖2

)
𝑑𝑠 < +∞, ℙ−𝑎.𝑠.

Example 1.4.1 (Black-Scholes-Merton model) Consider the SDE

𝑑𝑋(𝑡) = 𝜂𝑋(𝑡)𝑑𝑡+𝜎𝑋(𝑡)𝑑𝑊(𝑡), 𝑋(0) = 1.
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Take 𝜅(𝑥) = ln𝑥, then 𝜅′(𝑥) = 1∕𝑥 and 𝜅′′(𝑥) = −1∕𝑥2.

𝑑(ln𝑋(𝑡)) = 1
𝑋(𝑡)

𝑑𝑋(𝑡)+ 1
2 (−

1
𝑋2(𝑡)

)𝜎2𝑋2(𝑡)𝑑𝑡

= 1
𝑋(𝑡)

(𝜂𝑋(𝑡)𝑑𝑡+𝜎𝑋(𝑡)𝑑𝑊(𝑡))− 1
2𝜎

2𝑑𝑡

= (𝜂− 1
2𝜎

2)𝑑𝑡+𝜎𝑑𝑊(𝑡).

So that 𝑍(𝑡) = ln𝑋(𝑡) satisfies

𝑑𝑍(𝑡) = (𝜂− 1
2𝜎

2)𝑑𝑡+𝜎𝑑𝑊(𝑡).

Its integral representation gives

𝑍(𝑡) = 𝑍(0)+(𝜂− 1
2𝜎

2) 𝑡+𝜎𝑊(𝑡),

and 𝑋(𝑡) = exp(𝑍(𝑡))

𝑋(𝑡) = 𝑋(0)𝑒
(
𝜂− 1

2
𝜎2
)
𝑡+𝜎𝑊(𝑡).

Existence and Uniqueness of Strong Solutions

Consider the SDE
𝑑𝑋(𝑡) = 𝐹(𝑡,𝑋(𝑡))𝑑𝑡+𝐺(𝑡,𝑋(𝑡))𝑑𝑊(𝑡)

and the following conditions:
(H1) Lipschitz continuity: There exist constants 𝐿,𝐾 > 0 such that for all 𝑡 ≥ 0, 𝑥,𝑦 ∈

ℝ𝑛×ℝ𝑛,
|𝐹(𝑡,𝑥)−𝐹(𝑡,𝑦)|2+‖𝐺(𝑡,𝑥)−𝐺(𝑡,𝑦)‖2 ≤ 𝐿|𝑥−𝑦|2.

14



(H2) Linear growth: For 𝑡 ≥ 0,
|𝐹(𝑡,𝑥)|2+‖𝐺(𝑡,𝑥)‖2 ≤ 𝐾(1+ |𝑥|2).

(H3) 𝑋(0) is independent of 𝑊, and 𝔼 |||𝑋(0)|||
2 <∞.

The following theorem is based on Banach’s fixed point theorem:
Theorem 1.4.1 Under conditions (H1)−(H3), the SDE has a unique solution 𝑋. Additionally,

for every 𝑡 ≥ 0, the solution satisfies

𝔼( sup
𝑡∈[0,𝑇]

|𝑋(𝑡)|2) ≤ 𝐶𝔼
(
1+ |||𝑋(0)|||

2) < +∞.

where constant 𝐶 depends only on 𝐾 and 𝑇.

The proof of existence is carried out by successive approximations (or contraction prin-
ciple), similar to that for ordinary differential equations (Picard iterations). It can be
found in [10]. It is not hard to see, by using Gronwall’s lemma, that the Lipschitz condi-
tion implies uniqueness.

1.5 Backward Stochastic Differential Equation

Let𝑊 = (𝑊(𝑡))𝑡≥0 denote a 𝑑-dimensional Brownian motion on a filtered probability space
(Ω,ℱ, (ℱ𝑡)𝑡∈[0,𝑇] ,ℙ). We go now to the concept of Backward stochastic differential equa-
tions. We recall the martingal representation theorem. First we assume that (ℱ𝑡)𝑡∈[0,𝑇] is
generated by a 𝑑-dimensional standard Brownian motion (𝑊(𝑡))𝑡∈[0,𝑇]. Then, we have

ℱ𝑡 = 𝜎 (𝐵𝑠;𝑠 ≤ 𝑡)∨𝒩,
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where 𝒩 denotes the set of ℙ-null sets, and 𝜎1∨𝜎2 denotes the 𝜎-field generated by 𝜎1∪𝜎2.
The theorem states that

Theorem 1.5.1 Forℱ𝑊
𝑇 -measurable 𝜉 ∶Ω⟶ℝ𝑛, such that 𝔼(|||𝜉|||

2)<∞, there exists a unique

progressively-measurable, ℝ𝑛×𝑑-valued processes such that 𝔼[∫
𝑇

0
‖𝜎(𝑡)‖2𝑑𝑡] < +∞

𝜉 = 𝔼[𝜉]+∫
𝑇

0
𝜎(𝑡)𝑑𝑊(𝑡),

(which is generalized later for any ℱ𝑊-martingale).

The martingale representation theorem turns out to be a special case of backward
stochastic differential equations where the generator is equal to zero. The general case
was studied and proven by Pardoux and Peng.

We consider now the following equation
−𝑑𝑋(𝑡) = 𝐹(𝑡,𝑋(𝑡),𝑍(𝑡))𝑑𝑡−𝑍(𝑡)𝑑𝑊(𝑡), 𝑋(𝑇) = 𝜉, (1.4)

or using the integral form
𝑋(𝑡) = 𝜉+∫

𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊(𝑠),

such that for every (𝑥,𝑧) ∈ℝ𝑛×ℝ𝑛×𝑑, the process (𝐹(𝑡,𝑥,𝑧))𝑡≥0 is progressively measurable.
Definition 1.5.1 (BSDE Solution) A couple (𝑋(𝑡),𝑍(𝑡))𝑡≥0 is said to be a solution to the

backward SDE (1.4) if and only if

(i) 𝑋 and 𝑍 are progressively measurable.

(ii) 𝔼[ sup
0≤𝑡≤𝑇

|𝑋(𝑡)|2]+𝔼[∫
𝑇

0
‖𝑍(𝑡)‖2𝑑𝑡] <∞.
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(iii) We have ℙ-a.s

𝑋𝑡 = 𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊(𝑠), 0 ≤ 𝑡 ≤ 𝑇.

Existence and Uniqueness Theorem

Consider the backward SDE (1.4). We suppose that the following properties hold
(A1) 𝐹 is Lipschitz-continuous in (𝑥,𝑧) : There exists a constant 𝐿, For all (𝑡,𝑥,𝑥′,𝑧,𝑧′) ∈

[0,𝑇]×ℝ𝑛×ℝ𝑛×ℝ𝑛×𝑑 ×ℝ𝑛×𝑑

||||𝐹(𝑡,𝑥,𝑧)−𝐹
(
𝑡,𝑥′,𝑧′

)||||
2
≤ 𝐿(||||𝑥−𝑥

′||||
2
+‖𝑧−𝑧′‖2) .

(A2) The integrability conditionn
𝔼[||||𝜉

2||||+∫
𝑇

0
|𝐹(𝑟,0,0)|2𝑑𝑟] < +∞.

(A3) (Linear growth) There exists a constant 𝐾 such that
|||𝐹(𝑡,𝑥,𝑧)|||

2 ≤ 𝐶1
(
1+ |𝑥|2+‖𝑧‖2

)
; for all 𝑥 ∈ℝ𝑛.

Then we have the following theorem
Theorem 1.5.2 (Pardoux-Peng ) Under conditions (A1)−(A3), the backward SDE (1.4) has

a unique solution.
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Lemma 1.5.1 Consider the following backward SDE

𝑋(𝑡) = 𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊(𝑠), 0 ≤ 𝑡 ≤ 𝑇,

then

𝑋(𝑡) = 𝔼𝑡 [𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠] , 0 ≤ 𝑡 ≤ 𝑇.

Proof. Using conditional expectation
𝔼 [𝑋(𝑡)|ℱ𝑡] = 𝔼𝑡 [𝜉+∫

𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊(𝑠)]

= 𝔼𝑡 [𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠−∫

𝑇

0
𝑍(𝑠)𝑑𝑊(𝑠)+∫

𝑡

0
𝑍(𝑠)𝑑𝑊(𝑠)]

= 𝔼𝑡 [𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠]−𝔼𝑡 [∫

𝑇

0
𝑍(𝑠)𝑑𝑊(𝑠)−∫

𝑡

0
𝑍(𝑠)𝑑𝑊(𝑠)]

= 𝔼𝑡 [𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠]−∫

𝑡

0
𝑍(𝑠)𝑑𝑊(𝑠)+∫

𝑡

0
𝑍(𝑠)𝑑𝑊(𝑠)

= 𝔼𝑡 [𝜉+∫
𝑇

𝑡
𝐹(𝑠,𝑋(𝑠),𝑍(𝑠))𝑑𝑠] .

1.6 Stochastic Maximum Principle

In an attempt to understand and to control stochastic systems, many articles and works
were published, proposing new methods to approach these problems. We mention among
them Bellman’s Dynamical programming principle [1950’s] and Pontryagin’s stochastic
maximum principle, which will be our topic in this section.
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1.6.1 Optimization Problem Formulation

We consider a 𝑑-dimensional brownian motion𝑊 over a filtered probability space (Ω,ℱ,𝔽,ℙ),
where 𝔽 = (ℱ𝑡)𝑡≥0, is the natural filtration of the brownian motion 𝑊.

We define a control function 𝑢 ∶Ω×[0,𝑇]→ Γ. The control function 𝑢 is usually referred
to as a "decision" function. The space Γ represents the control constraint, which is usually a
set to determine the image of the control based on the optimization problem (The amount
of money spent in a month should not overpass the monthly income). Consider now the
following problem

⎧
⎪

⎨
⎪
⎩

𝑑𝑋(𝑡) = 𝑏(𝑡,𝑋(𝑡),𝑢(𝑡))𝑑𝑡+𝜎(𝑡,𝑋(𝑡),𝑢(𝑡))𝑑𝑊(𝑡),

𝑋(0) = 𝑥0,
(1.5)

where 𝑏 ∶ Ω× [0,𝑇] ×ℝ𝑛 ×Γ→ ℝ𝑛, 𝜎 ∶ Ω× [0,𝑇] ×ℝ𝑛 ×Γ→ ℝ𝑛×𝑑. We define the cost
functional 𝐽

𝐽(0,𝑋(0),𝑢(𝑡)) = 𝔼[∫
𝑇

0
𝑓(𝑡,𝑋(𝑡),𝑢(𝑡))𝑑𝑡+ℎ(𝑋(𝑇))] .

Definition 1.6.1 (Admissible control) A control 𝑢 is called an admissible control, and (

𝑋(⋅), .𝑢(⋅). an admissible pair if

(i) 𝑢(⋅) ∈𝒰[0,𝑇], 𝑋(⋅) is the unique solution to the equation (1.5).

(ii) 𝐿(⋅,𝑋(⋅), .𝑢(⋅)) ∈ 𝐿1ℱ([0,𝑇],ℝ), ℎ(𝑋(𝑇)) ∈ 𝐿1 (Ω,ℱ𝑇;ℝ).

1.6.2 Stochastic Maximum Principle

We suppose a finite-horizon stochastic control problem
𝑑𝑋(𝑡) = 𝑏(𝑡,𝑋(𝑡),𝑢(𝑡))𝑑𝑡+𝜎(𝑠,𝑋(𝑡),𝑢(𝑡))𝑑𝑊(𝑡),
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with cost functional
𝐽(0,𝑋(0),𝑢(𝑡)) = 𝔼[∫

𝑇

0
𝐿(𝑠,𝑋(𝑠),𝑢(𝑠))𝑑𝑠+𝑔(𝑋(𝑇))] ,

where 𝐿 ∶ Ω× [0,𝑇] ×ℝ𝑛 ×Γ→ ℝ is a continuous function in (𝑡,𝑥) for every 𝑢 ∈ 𝒰𝑎𝑑, 𝑔 ∶
ℝ𝑛 →ℝ is a 𝐶1-convex function, and both 𝑓,𝑔 are of quadratic growth with respect to 𝑥.
Definition 1.6.2 (Generalized Hamiltonian) The Generalized Hamiltonian is given byℋ ∶

[0,𝑇]×ℝ𝑛×Γ×ℝ𝑛×ℝ𝑛×𝑑 →ℝ

ℋ(𝑡,𝑥,𝑢,𝑝,𝑞) = 𝑏(𝑡,𝑥,𝑢) ⋅𝑝+trace
(
𝜎′(𝑡,𝑥,𝑢) ⋅𝑞

)
+𝐿(𝑡,𝑥,𝑢).

Definition 1.6.3 (Adjoint equation) We call Adjoint Equation the following backward SDE

−𝑑𝑝(𝑡) = 𝐷𝑥𝐻(𝑡,𝑋(𝑡),𝑢(𝑡),𝑝(𝑡),𝑞(𝑡))𝑑𝑡−𝑞(𝑡)𝑑𝑊(𝑡), 𝑋𝑇 = 𝐷𝑥𝑔 (𝑋𝑇) .

Theorem 1.6.1 (Verification theorem) Let �̃� ∈ 𝒰𝑎𝑑 and let �̃� be the controlled diffusion.

Suppose that there exists a solution (�̃�,𝑞) to the corresponding adjoint equation 2.5 such that

a.s

ℋ(𝑡, �̃�(𝑡), �̃�(𝑡), �̃�(𝑡),𝑞(𝑡)) = min
𝑢∈𝒰𝑎𝑑

ℋ(𝑡, �̃�(𝑡),𝑢(𝑡), �̃�(𝑡),𝑞(𝑡)), 0 ≤ 𝑡 ≤ 𝑇

and suppose that

(𝑥,𝑢)⟶ℋ(𝑡,𝑥,𝑢, �̃�(𝑡),𝑞(𝑡)),

is a convex function ∀𝑡 ∈ [0,𝑇]. Then �̃� is an optimal control

𝐽(0,𝑋(0), �̃�(𝑡)) = min
𝑢∈𝒰𝑎𝑑

𝐽(0,𝑋(0),𝑢(𝑡)).

20



Chapter 2

Stochastic Maximum Principle for

Time-Inconsistent LQ Control Problem

Consider a filtered probability space (
Ω,ℱ, (ℱ𝑡)𝑡∈[0,𝑇] ,ℙ

), where: ℱ0 contains all ℙ-null
sets, ℱ𝑇 =ℱ for a fixed finite time horizon 𝑇 > 0, and (ℱ𝑡)𝑡∈[0,𝑇] satisfies the usual condi-
tions. Assume that (ℱ𝑡)𝑡∈[0,𝑇] is generated by a 𝑑-dimensional standard Brownian motion
(𝑊(𝑡))𝑡∈[0,𝑇]. Then, we have ℱ𝑡 = 𝜎 (𝐵𝑠;𝑠 ≤ 𝑡)∨𝒩, where 𝒩 denotes the set of ℙ-null sets,
and 𝜎1∨𝜎2 denotes the 𝜎-field generated by 𝜎1∪𝜎2.
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2.1 Problem Statement

We consider an 𝑛-dimensional non-homogeneous linear controlled diffusion system for
𝑡 ∈ [0,𝑇], 𝜉 ∈ 𝕃2 (Ω,ℱ𝑡,ℙ;ℝ𝑛), 𝑢(⋅) ∈ℒ2

ℱ (𝑡,𝑇;ℝ
𝑚).

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑑𝑋(𝑠) = (𝐴(𝑠)𝑋(𝑠)+𝐵(𝑠)𝑢(𝑠)+𝑏(𝑠))𝑑𝑠

+
𝑑∑

𝑗=1

(
𝐶𝑗(𝑠)𝑋(𝑠)+𝐷𝑗(𝑠)𝑢(𝑠)+𝜎𝑗(𝑠)

)
𝑑𝑊𝑗(𝑠) 𝑠 ∈ [𝑡,𝑇],

𝑋(𝑡) = 𝜉.

(2.1)

Under certain conditions, for any initial situation (𝑡,𝜉) and any admissible control 𝑢(⋅),
the state equation is uniquely solvable. We denote by 𝑋(⋅) = 𝑋𝑡,𝜉(⋅;𝑢(⋅)) its solution for
𝑠 ∈ [𝑡,𝑇]. Different controls 𝑢(⋅) will lead to different solutions 𝑋(⋅). Note that ℒ2

ℱ (𝑡,𝑇;ℝ
𝑚)

is the space of all admissible strategies. Our aim is to minimize the following expected
discounted cost functional

𝐽(𝑡,𝜉,𝑢(⋅))

= 𝔼𝑡 {
1
2 ∫

𝑇

𝑡

(
⟨𝑄(𝑡, 𝑠)𝑋(𝑠),𝑋(𝑠)⟩+

⟨
�̄�(𝑡, 𝑠)𝔼𝑡𝑋(𝑠),𝔼𝑡𝑋(𝑠)

⟩
+ ⟨𝑅(𝑡, 𝑠)𝑢(𝑠),𝑢(𝑠)⟩

)
𝑑𝑠

+
⟨
𝜂1(𝑡)𝜉+𝜂2(𝑡),𝑋(𝑇)

⟩
+ 1
2
(
⟨𝐺(𝑡)𝑋(𝑇),𝑋(𝑇)⟩+

⟨
�̄�(𝑡)𝔼𝑡𝑋(𝑇),𝔼𝑡𝑋(𝑇)

⟩)
} ,

over 𝑢(⋅) ∈ ℒ2
ℱ (𝑡,𝑇;ℝ

𝑚), where 𝑋(⋅) = 𝑋𝑡,𝜉(⋅;𝑢(⋅)) and 𝔼𝑡[⋅] = 𝔼 [⋅ ∣ℱ𝑡]. We need to im-
pose the following assumptions about the coefficients:
(H1) The functions

𝐴(⋅),𝐶𝑗(⋅) ∶ [0,𝑇]→ℝ𝑛×𝑛, 𝐵(⋅),𝐷𝑗(⋅) ∶ [0,𝑇]→ℝ𝑛×𝑚, 𝑏(⋅),𝜎𝑗(⋅) ∶ [0,𝑇]→ℝ𝑛,

22



are continuous and uniformly bounded. The coefficients in the cost functional satisfy
𝑄(⋅, ⋅), �̄�(⋅, ⋅) ∈ 𝒞 (𝒟[0,𝑇];𝑆𝑛) , 𝑅(⋅, ⋅) ∈ 𝒞 (𝒟[0,𝑇];𝑆𝑚) ,

𝐺(⋅), �̄�(⋅) ∈ 𝒞 ([0,𝑇];𝑆𝑛) , 𝜂1(⋅) ∈ 𝒞 ([0,𝑇];ℝ𝑛×𝑛) ,

𝜂2(⋅) ∈ 𝒞 ([0,𝑇];ℝ𝑛) .

(H2) The functions 𝑅(⋅, ⋅), 𝑄(⋅, ⋅), and 𝐺(⋅) satisfy
𝑅(𝑡, 𝑡) ≥ 0, 𝐺(𝑡) ≥ 0, ∀𝑡 ∈ [0,𝑇], and 𝑄(𝑡, 𝑠) ≥ 0, ∀(𝑡, 𝑠) ∈𝒟[0,𝑇].

Theorem 2.1.1 Under (H1), for any (𝑡,𝜉,𝑢(⋅)) ∈ [0,𝑇]×𝕃2 (Ω,ℱ𝑡,ℙ;ℝ𝑛)×ℒ2
ℱ (𝑡,𝑇;ℝ

𝑚), the

state equation (2.1) has a unique solution 𝑋(⋅) ∈ 𝒮2ℱ (𝑡,𝑇;ℝ
𝑛). Moreover, we have the following

estimate:

𝔼[ sup
𝑡≤𝑠≤𝑇

|𝑋(𝑠)|2] ≤ 𝐾
(
1+𝔼

[
|𝜉|2

])
,

for some positive constant 𝐾.

The optimal control problem can be formulated as follows.
Definition 2.1.1 (Stochastic linear quadratic optimal control problems (LQ)) For any

given initial pair (𝑡,𝜉) ∈ [0,𝑇]×𝕃2 (Ω,ℱ𝑡,ℙ;ℝ𝑛), find a control �̂�(⋅) ∈ℒ2
ℱ (𝑡,𝑇;ℝ

𝑚) such that

𝐽(𝑡,𝜉, �̂�(⋅)) = inf
𝑢(⋅)∈ℒ2

ℱ(𝑡,𝑇;ℝ
𝑚)
𝐽(𝑡,𝜉,𝑢(⋅)).
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An example of time-inconsistent optimal control problem

We present a simple illustration of a stochastic optimal control problem which is time-
inconsistent. Our aim is to show that the classical SMP approach is not efficient in the
study of this problem if viewed as time-consistent.

For 𝑛 = 𝑑 = 1, consider the following controlled SDE starting from (𝑡,𝑥) ∈ [0,𝑇]×ℝ:
⎧
⎪

⎨
⎪
⎩

𝑑𝑋𝑡,𝑥(𝑠) = 𝑏𝑢(𝑠)𝑑𝑠+𝜎𝑑𝑊(𝑠), 𝑠 ∈ [𝑡,𝑇],

𝑋𝑡,𝑥(𝑡) = 𝑥,

(2.2)

where 𝑏 and 𝜎 are real constants.
We define the cost functional by

𝐽(𝑡,𝑥,𝑢(⋅)) = 1
2𝔼[∫

𝑇

𝑡
|𝑢(𝑠)|2𝑑𝑠+ℎ(𝑡)

(
𝑋𝑡,𝑥(𝑇)−𝑥

)2
] , (2.3)

where ℎ(⋅) ∶ [0,𝑇]→ (0,∞), is a general deterministic non-exponential discount function
satisfying ℎ(0) = 1, ℎ(𝑠) ≥ 0 and ∫

𝑇

0
ℎ(𝑡)𝑑𝑡 <∞.

We want to address the following stochastic control problem.
Problem 2.1.1 (E) For any given initial pair (𝑡,𝑥) ∈ [0,𝑇]×ℝ, find a control �̄�(⋅) ∈ℒ2

ℱ(𝑡,𝑇;ℝ)

such that

𝐽(𝑡,𝑥, �̄�(⋅)) = inf
𝑢(⋅)∈ℒ2

ℱ(𝑡,𝑇;ℝ)
𝐽(𝑡,𝑥,𝑢(⋅)).

At a first stage, we consider the Problem (E) as a standard time consistent stochastic
linear quadratic problem. Since 𝐽(𝑡,𝑥, ⋅) is convex and coercive, there exists then a unique
optimal control for this problem for each fixed initial pair (𝑡,𝑥) ∈ [0,𝑇]×ℝ.

The usual Hamiltonian associated to this Problem (E) is ℍ ∶ [0,𝑇] ×ℝ4 → ℝ such that
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for every (𝑠,𝑦,𝑣,𝑝,𝑞) ∈ [0,𝑇]×ℝ4 we have
ℍ(𝑠,𝑦,𝑣,𝑝,𝑞) = 𝑝𝑏𝑣+𝜎𝑞− 1

2𝑣
2.

Let 𝑢𝑡,𝑥(⋅) be an admissible control for (𝑡,𝑥) ∈ [0,𝑇]×ℝ.
The corresponding first order and second order adjoint equations are given respectively

by
⎧
⎪

⎨
⎪
⎩

𝑑𝑝𝑡,𝑥(𝑠) = 𝑞𝑡,𝑥(𝑠)𝑑𝑊(𝑠), 𝑠 ∈ [𝑡,𝑇],

𝑝𝑡,𝑥(𝑇) = −ℎ(𝑡)
(
𝑋𝑡,𝑥(𝑇)−𝑥

)
,

and
⎧
⎪

⎨
⎪
⎩

𝑑𝑃𝑡,𝑥(𝑠) = 𝑄𝑡,𝑥(𝑠)𝑑𝑊(𝑠), 𝑠 ∈ [𝑡,𝑇],

𝑃𝑡,𝑥(𝑇) = −ℎ(𝑡),

the last equation has only the solution (𝑃𝑡,𝑥(𝑠),𝑄𝑡,𝑥(𝑠)) = (−ℎ(𝑡),0),∀𝑠 ∈ [𝑡,𝑇].
The corresponding ℋ-function is given by

ℋ(𝑠,𝑦,𝑣) = ℍ
(
𝑠,𝑦,𝑣,𝑝𝑡,𝑥(𝑠),𝑞𝑡,𝑥(𝑠)

)
= 𝑝𝑡,𝑥(𝑠)𝑏𝑣+𝜎𝑞𝑡,𝑥(𝑠)− 1

2𝑣
2,

which is a concave function of 𝑣.
Then according to the sufficient condition of optimality, for any fixed initial pair (𝑡,𝑥) ∈

[0,𝑇] ×ℝ, Problem (E) is uniquely solvable with an optimal control �̄�𝑡,𝑥(⋅) having the
representation

�̄�𝑡,𝑥(𝑠) = 𝑏�̄�𝑡,𝑥(𝑠),∀𝑠 ∈ [𝑡,𝑇],
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such that the process (�̄�𝑡,𝑥(⋅), .�̄�𝑡,𝑥(⋅).) is The unique adapted solution to the backward SDE
⎧
⎪

⎨
⎪
⎩

𝑑�̄�𝑡,𝑥(𝑠) = �̄�𝑡,𝑥(𝑠)𝑑𝑊(𝑠), 𝑠 ∈ [𝑡,𝑇],

�̄�𝑡,𝑥(𝑇) = −ℎ(𝑡)
(
�̄�𝑡,𝑥(𝑠)−𝑥

)
.

By standard arguments, we can show that the processes (�̄�𝑡,𝑥(⋅),𝑞𝑡,𝑥(⋅).) are explicitly
given by

⎧
⎪

⎨
⎪
⎩

�̄�𝑡,𝑥(𝑠) = −𝑀𝑡(𝑠)
(
�̄�𝑡,𝑥(𝑠)−𝑥

)
, 𝑠 ∈ [𝑡,𝑇],

�̄�𝑡,𝑥(𝑠) = −𝜎𝑀𝑡(𝑠), 𝑠 ∈ [𝑡,𝑇],

where �̄�𝑡,𝑥(⋅) is the solution of the state equation corresponding to �̄�𝑡,𝑥(⋅), given by
⎧
⎪

⎨
⎪
⎩

𝑑�̄�𝑡,𝑥(𝑠) = 𝑏2�̄�𝑡,𝑥(𝑠)𝑑𝑠+𝜎𝑑𝑊(𝑠), 𝑠 ∈ [𝑡,𝑇],

�̄�𝑡,𝑥(𝑡) = 𝑥.

and
𝑀𝑡(𝑠) =

ℎ(𝑡)
𝑏2ℎ(𝑡)(𝑇− 𝑠)+1

, ∀𝑠 ∈ [𝑡,𝑇].

A simple computation shows that
�̄�𝑡,𝑥(𝑠) = −

𝑏ℎ(𝑡)
𝑏2ℎ(𝑡)(𝑇− 𝑠)+1

(
�̄�𝑡,𝑥(𝑠)−𝑥

)
, ∀𝑠 ∈ [𝑡,𝑇],

clearly we have
�̄�𝑡,𝑥(𝑠) ≠ 0, ∀𝑠 ∈ (𝑡,𝑇]. (2.4)

In the next stage, we will prove that the Problem (E) is time-inconsistent, for this we
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first fix the initial data (𝑡,𝑥) ∈ [0,𝑇] ×ℝ. Note that, if we assume that the Problem (E)
is time-consistent, in the sense that for any 𝑟 ∈ [𝑡,𝑇] the restriction of �̄�𝑡,𝑥(⋅) on [𝑟,𝑇] is
optimal for Problem (E) with initial pair (𝑟, �̄�𝑡,𝑥(𝑟)

), however as Problem (E) is uniquely
solvable for any initial pair, we should have then ∀𝑟 ∈ (𝑡,𝑇]

�̄�𝑡,𝑥(𝑠) = �̄�𝑟,�̄�𝑡,𝑥(𝑟)(𝑠) = −
𝑏ℎ(𝑟)

𝑏2ℎ(𝑟)(𝑇− 𝑠)+1

(
�̄�𝑟,�̄�𝑡,𝑥(𝑟)(𝑠)− �̄�𝑡,𝑥(𝑟)

)
, ∀𝑠 ∈ [𝑟,𝑇],

where �̄�𝑟,�̂�𝑡,𝑥(𝑟)(⋅) solves the SDE

⎧
⎪

⎨
⎪
⎩

𝑑�̄�𝑟,�̄�𝑡,𝑥(𝑟)(𝑠) = 𝑏2
ℎ(𝑟)

𝑏2ℎ(𝑟)(𝑇− 𝑠)+1

(
�̄�𝑟,�̄�𝑡,𝑥(𝑟)(𝑠)− �̄�𝑡,𝑥(𝑟)

)
𝑑𝑠+𝜎𝑑𝑊(𝑠), ∀𝑠 ∈ [𝑟,𝑇],

�̄�𝑟,�̄�𝑡,𝑥(𝑟)(𝑟) = �̄�𝑡,𝑥(𝑟).

In particular by the uniqueness of solution to the state SDE we should have
�̄�𝑡,𝑥(𝑟) = −

𝑏ℎ(𝑟)
𝑏2ℎ(𝑟)(𝑇− 𝑟)+1

(
�̄�𝑟,�̄�𝑡,𝑥(𝑟)(𝑟)− �̄�𝑡,𝑥(𝑟)

)
= 0,

is the only optimal solution of the Problem (E), this contradicts (2.4). Therefore, the Prob-
lem (E) is not time-consistent, and more precisely, the solution obtained by the classical
SMP is wrong and the problem is rather trivial since the only optimal solution is equal to
zero.

2.2 Characterization of equilibrium strategies

The purpose of this chapter is to characterize open-loop Nash equilibriums rather than
focusing on optimal controls. Here is a detailed description of the game framework we
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will consider:
• We are examining a game where there is one player at each time point 𝑡 within the

interval [0,𝑇]. This player embodies the controller at time 𝑡 and is referred to as
"player 𝑡".

• Player 𝑡 has the ability to control the system exclusively at time 𝑡 by adopting a
strategy 𝑢(𝑡, ⋅) ∶ Ω→ℝ𝑚.

• A control process 𝑢(⋅) is then viewed as a complete description of the chosen strate-
gies of all players in the game.

• The reward to player 𝑡 is given by the functional 𝐽(𝑡,𝜉,𝑢(⋅)), which depends only on
the restriction of the control 𝑢(⋅) to the time interval [𝑡,𝑇].

Noting that, for brevity, in the rest of the chapter, we suppress the subscript (𝑠) for
the coefficients 𝐴(𝑠),𝐵(𝑠),𝑏(𝑠),𝐶𝑗(𝑠),𝐷𝑗(𝑠) and 𝜎𝑗(𝑠). In addition, sometimes we simply call
�̂�(⋅) an equilibrium control instead of open-loop Nash equilibrium control when there is
no ambiguity.

We first consider an equilibrium by local spike variation, given an admissible control
�̂�(⋅) ∈ℒ2

ℱ(0,𝑇;ℝ
𝑚). For any 𝑡 ∈ [0,𝑇], 𝑣 ∈ 𝕃2(Ω,ℱ𝑡,ℙ;ℝ𝑚), and for any 𝜀 > 0, define

𝑢𝜀(𝑠) =

⎧
⎪

⎨
⎪
⎩

�̂�(𝑠)+𝑣, for 𝑠 ∈ [𝑡, 𝑡+ 𝜀),

�̂�(𝑠), for 𝑠 ∈ [𝑡+ 𝜀,𝑇],

(2.5)

we have the following definition.
Definition 2.2.1 (Open-loop Nash equilibrium) An admissible strategy �̂�(⋅) ∈ℒ2

ℱ(0,𝑇;ℝ
𝑚)
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is an open-loop Nash equilibrium control for Problem (LQ) if

lim
𝜀↓0

𝐽(𝑡, �̂�(𝑡),𝑢𝜀(⋅))− 𝐽(𝑡, �̂�(𝑡), �̂�(⋅))
𝜀 ≥ 0, (2.6)

for any 𝑡 ∈ [0,𝑇] and 𝑣 ∈ 𝕃2(Ω,ℱ𝑡,ℙ;ℝ𝑚).

The corresponding equilibrium dynamics solve the following SDE

⎧
⎪

⎨
⎪
⎩

𝑑�̂�(𝑠) = {𝐴�̂�(𝑠)+𝐵�̂�(𝑠)+𝑏}𝑑𝑠+
𝑑∑

𝑗=1

{
𝐶𝑗�̂�(𝑠)+𝐷𝑗�̂�(𝑠)+𝜎𝑗

}
𝑑𝑊𝑗(𝑠),∀𝑠 ∈ [0,𝑇],

�̂�0 = 𝑥0.

2.3 The flow of adjoint equations

We introduce the adjoint equations involved in the stochastic maximum principle which
characterize the open-loop Nash equilibrium controls of Problem (LQ). First, define the
Hamiltonian
Definition 2.3.1 We define the Hamiltonian

ℍ ∶𝒟[0,𝑇]×𝕃1 (Ω,ℱ𝑡,ℙ;ℝ𝑛)×ℝ𝑚×ℝ𝑛×ℝ𝑛×𝑑 →ℝ,

by

ℍ(𝑡, 𝑠,𝑋,𝑢,𝑝,𝑞) = ⟨𝑝,𝐴𝑋+𝐵𝑢+𝑏⟩+
𝑑∑

𝑗=1

⟨
𝑞𝑗,𝐷𝑗𝑋+𝐶𝑗𝑢+𝜎𝑗

⟩
− 1
2⟨𝑅(𝑡, 𝑠)𝑢,𝑢⟩

− 1
2
(
⟨𝑄(𝑡, 𝑠)𝑋,𝑋⟩+

⟨
�̄�(𝑡, 𝑠)𝔼𝑡[𝑋],𝔼𝑡[𝑋]

⟩)
. (2.7)
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Let �̂�(⋅) ∈ℒ2
ℱ (0,𝑇;ℝ

𝑚) and denote by �̂� (⋅) the corresponding controlled state process.
For each 𝑡 ∈ [0,𝑇], we introduce the first order adjoint equation.

Definition 2.3.2 (The first order adjoint equation) The first order adjoint equation is de-

fined on the time interval [𝑡,𝑇], and satisfied by the couple of processes (𝑝(.; 𝑡),𝑞(.; 𝑡)) as follows

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑑𝑝(𝑠; 𝑡) = −𝐴⊤𝑝(𝑠; 𝑡)𝑑𝑠−
𝑑∑

𝑗=1
𝐶⊤𝑗 𝑞𝑗(𝑠; 𝑡)𝑑𝑠

+𝑄(𝑡, 𝑠)�̂�(𝑠)𝑑𝑠+ �̄�(𝑡, 𝑠)𝔼𝑡[�̂�(𝑠)]𝑑𝑠+
𝑑∑

𝑗=1
𝑞𝑗(𝑠; 𝑡)𝑑𝑊𝑗(𝑠), ∀𝑠 ∈ [𝑡,𝑇],

𝑝(𝑇; 𝑡) = −𝐺(𝑡)�̂�(𝑇)− �̄�(𝑡)𝔼𝑡[�̂�(𝑇)]−𝜂1(𝑡)�̂�(𝑡)−𝜂2(𝑡),

(2.8)

where 𝑞(.; 𝑡) = (𝑞1(.; 𝑡),… ,𝑞𝑑(.; 𝑡)).

For each 𝑡 ∈ [0,𝑇], we introduce the second order adjoint equation.
Definition 2.3.3 (The second order adjoint equation) The second order adjoint equation

is defined on the time interval [𝑡,𝑇], and satisfied by the couple of processes (𝑃(.; 𝑡),Λ(.; 𝑡)) as

follows

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑑𝑃(𝑠; 𝑡) = −𝐴⊤𝑃(𝑠; 𝑡)𝑑𝑠−𝑃(𝑠; 𝑡)𝐴𝑑𝑠−
𝑑∑

𝑗=1

(
𝐶⊤𝑗 𝑃(𝑠; 𝑡)𝐶𝑗+Λ𝑗(𝑠; 𝑡)𝐶𝑗+𝐶

⊤
𝑗 Λ𝑗(𝑠; 𝑡)

)
𝑑𝑠

−𝑄(𝑡, 𝑠)𝑑𝑠+
𝑑∑

𝑗=1
Λ𝑗(𝑠; 𝑡)𝑑𝑊

𝑗
𝑠 , 𝑠 ∈ [𝑡,𝑇],

𝑃(𝑇; 𝑡) = −𝐺(𝑡),

(2.9)

where Λ(.; 𝑡) = (Λ1(.; 𝑡),… ,Λ𝑑(.; 𝑡)).
Theorem 2.3.1 Under (H1) the backward SDE (2.8) is uniquely solvable in 𝒮2ℱ (𝑡,𝑇;ℝ

𝑛) ×
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ℒ2
ℱ
(
𝑡,𝑇;ℝ𝑛×𝑑). Moreover there exists a constant 𝐾 > 0 such that

𝔼[ sup
𝑡≤𝑠≤𝑇

|𝑝(𝑠; 𝑡)|2ℝ𝑛]+𝔼[∫
𝑇

𝑡
|𝑞(𝑠; 𝑡)|2ℝ𝑛×𝑑𝑑𝑠] ≤ 𝐾

(
1+ |||𝑥0|||

2) . (2.10)
Remark 2.3.1 Noting that the final data of the equation (2.9) is deterministic, it is straight-

forward to look at a deterministic solution. In addition we have the following representation

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑑𝑃(𝑠; 𝑡) = −𝐴⊤𝑃(𝑠; 𝑡)𝑑𝑠−𝑃(𝑠; 𝑡)𝐴𝑑𝑠−
𝑑∑

𝑗=1
𝐶⊤𝑗 𝑃(𝑠; 𝑡)𝐶𝑗𝑑𝑠

+𝑄(𝑡, 𝑠)𝑑𝑠,∀𝑠 ∈ [𝑡,𝑇],

𝑃(𝑇; 𝑡) = −𝐺(𝑡),

(2.11)

which is a uniquely solvable matrix-valued ordinary differential equation.

Next, for each 𝑡 ∈ [0,𝑇], associated with the 5 -tuple (�̂�(⋅), .�̂�(⋅), .𝑝(.; 𝑡),𝑞(., 𝑡),𝑃(.; 𝑡)).
Definition 2.3.4 We define the ℋ𝑡-function as follows

ℋ𝑡(𝑠,𝑋,𝑢) = ℍ(𝑡, 𝑠,𝑋, �̂�(𝑠)+𝑢,𝑝(𝑠; 𝑡),𝑞(𝑠; 𝑡))+ 1
2𝑢

⊤
⎧

⎨
⎩

𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑃(𝑠; 𝑡)𝐷𝑗

⎫

⎬
⎭

𝑢, (2.12)

where (𝑠,𝑋,𝑢) ∈ [𝑡,𝑇]×𝕃1 (Ω,ℱ,ℙ;ℝ𝑛)×ℝ𝑚.

Remark 2.3.2 In the rest of the chapter, we will keep the following notation, for (𝑠, 𝑡) ∈𝒟[0,𝑇]

𝛿ℍ(𝑡;𝑠) = ℍ(𝑡, 𝑠, �̂�(𝑠), �̂�(𝑠)+𝑢,𝑝(𝑠; 𝑡),𝑞(𝑠; 𝑡))−ℍ(𝑡, 𝑠, �̂�(𝑠), �̂�(𝑠),𝑝(𝑠; 𝑡),𝑞(𝑠; 𝑡)).

31



A stochastic maximum principle for equilibrium controls

In this section, we present a detailed version of Pontryagin’s stochastic maximum prin-
ciple, which characterizes the equilibrium controls for the Problem (LQ). To derive this
result, we use the second-order Taylor expansion in a specific form known as spike vari-
ation (2.5).

The following theorem represents a comprehensive and precise condition that is both
necessary and sufficient for characterizing the open-loop Nash equilibrium controls in the
context of the time-inconsistent Problem (LQ).
Theorem 2.3.2 (Stochastic Maximum Principle For Equilibriums) Let (H1) holds. Then

an admissible control �̂�(⋅) ∈ ℒ2
ℱ (0,𝑇;ℝ

𝑚) is an open-loop Nash equilibrium, if and only if, for

any 𝑡 ∈ [0,𝑇], there exist a unique couple of adapted processes (𝑝(.; 𝑡),𝑞(.; 𝑡)) which satisfy the

backward SDE (2.8) and a deterministic matrix-valued function 𝑃(.; 𝑡) which satisfies the 𝑂𝐷𝐸

(2.11), such that the following condition holds, for all 𝑢 ∈ℝ𝑚

𝛿ℍ(𝑡; 𝑡)+ 1
2𝑢

⊤
⎧

⎨
⎩

𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑃(𝑡; 𝑡)𝐷𝑗

⎫

⎬
⎭

𝑢 ≤ 0, ℙ−𝑎.𝑠. (2.13)

Or equivalently, we have the following two conditions. The first order equilibrium condition

𝑅(𝑡, 𝑡)�̂�(𝑡)−𝐵⊤𝑝(𝑡; 𝑡)−
𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑞𝑗(𝑡; 𝑡) = 0, ℙ−𝑎.𝑠, (2.14)

and the second order equilibrium condition

𝑅(𝑡, 𝑡)−
𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑃(𝑡; 𝑡)𝐷𝑗 ≥ 0. (2.15)
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Remark 2.3.3 Note that for each 𝑡 ∈ [0,𝑇], (2.8) and ( 2.9) are backward stochastic differen-

tial equations. So, as we consider all 𝑡 in [0,𝑇], all their corresponding adjoint equations form

essentially a "flow" of backward SDEs. Moreover, there is an additional constraint (2.13) which

is equivalent to the conditions (2.14) and (2.15) that acts on the flow only when 𝑠 = 𝑡, while

the Pontryagin’s stochastic maximum principle for optimal control involves only one system of

forward-backward stochastic differential equation.

2.3.1 Proof of Theorem 2.3.2

Our goal now is to give a proof of Theorem 2.3.2. The main idea is still based on the
variational techniques in the same spirit of proving the stochastic Pontryagin’s maximum
principle.

Let �̂�(⋅) ∈ ℒ2
ℱ (0,𝑇;ℝ

𝑚) be an admissible control and �̂�(⋅) the corresponding controlled
process solution to the state equation. Consider the perturbed control 𝑢𝜀(⋅) defined by the
spike variation ( 2.5) for some fixed arbitrary 𝑡 ∈ [0,𝑇], 𝑣 ∈ 𝕃2 (Ω,ℱ𝑡,ℙ;ℝ𝑚), and 𝜀 ∈ [0,𝑇−
𝑡]. Denote by 𝑋𝜀(⋅) the solution of the state equation corresponding to 𝑢𝜀(⋅). Since the
coefficients of the controlled state equation are linear, then by the standard perturbation
approach, we have

�̂�𝜀(𝑠) = �̂�(𝑠)+𝑦𝜀(𝑠)+𝑧𝜀(𝑠), 𝑠 ∈ [𝑡,𝑇], (2.16)
where 𝑦𝜀(⋅) and 𝑧𝜀(⋅) solve the following linear stochastic differential equations, respec-
tively

⎧
⎪

⎨
⎪
⎩

𝑑𝑦𝜀(𝑠) = 𝐴𝑦𝜀(𝑠)𝑑𝑠+
𝑑∑

𝑗=1

{
𝐶𝑗𝑦𝜀(𝑠)+𝐷𝑗𝑣1[𝑡,𝑡+𝜀)(𝑠)

}
𝑑𝑊𝑗(𝑠) ∀𝑠 ∈ [𝑡,𝑇],

𝑦𝜀(𝑡) = 0.

(2.17)
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and
⎧
⎪

⎨
⎪
⎩

𝑑𝑧𝜀(𝑠) =
(
𝐴𝑧𝜀(𝑠)+𝐵𝑣1[𝑡,𝑡+𝜀)(𝑠)

)
𝑑𝑠+

𝑑∑

𝑗=1
𝐶𝑗𝑧𝜀(𝑠)𝑑𝑊𝑗(𝑠) ∀𝑠 ∈ [𝑡,𝑇],

𝑧𝜀(𝑡) = 0.

(2.18)

First, we present the following technical lemma needed later in this study,
Lemma 2.3.1 Under assumption (H1), the following estimates hold

𝔼𝑡 [𝑦𝜀(𝑠)] = 0, a.e. 𝑠 ∈ [𝑡,𝑇] and sup
𝑠∈[𝑡,𝑇]

||||𝔼
𝑡 [𝑧𝜀(𝑠)]||||

2
= 𝑂

(
𝜀2
)
, (2.19)

𝔼𝑡 sup
𝑠∈[𝑡,𝑇]

|||𝑦𝜀(𝑠)|||
2 = 𝑂(𝜀) and 𝔼𝑡 sup

𝑠∈[𝑡,𝑇]

|||𝑧𝜀(𝑠)|||
2 = 𝑂

(
𝜀2
)
. (2.20)

Moreover, we have the equality

𝐽
(
𝑡, �̂�(𝑡),𝑢𝜀(⋅)

)
− 𝐽(𝑡, �̂�(𝑡), �̂�(⋅)) (2.21)

= −𝔼𝑡
⎡
⎢
⎣
∫

𝑇

𝑡

⎛
⎜
⎝
𝛿ℍ(𝑡;𝑠)+ 1

2

𝑑∑

𝑗=1
𝑣⊤𝐷⊤

𝑗 𝑃(𝑠; 𝑡)𝐷𝑗𝑣
⎞
⎟
⎠
1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠

⎤
⎥
⎦
+𝑜(𝜀).

Proof. Let 𝑡 ∈ [0,𝑇],𝑣 ∈ 𝕃2 (Ω,ℱ𝑡,ℙ;ℝ𝑚) and 𝜀 ∈ [0,𝑇− 𝑡]. Since 𝔼𝑡 [𝑦𝜀(⋅).] and 𝔼𝑡 [𝑧𝜀(⋅).]

solve the following ODEs, respectively
⎧
⎪

⎨
⎪
⎩

𝑑𝔼𝑡 [𝑦𝜀(𝑠)] = 𝐴𝔼𝑡 [𝑦𝜀(𝑠)]𝑑𝑠, 𝑠 ∈ [𝑡,𝑇],

𝔼𝑡 [𝑦𝜀(𝑡)] = 0,

34



and
⎧
⎪

⎨
⎪
⎩

𝑑𝔼𝑡 [𝑧𝜀(𝑠)] =
{
𝐴𝔼𝑡 [𝑧𝜀(𝑠)]+𝐵𝔼𝑡[𝑣]1[𝑡,𝑡+𝜀)(𝑠)

}
𝑑𝑠, 𝑠 ∈ [𝑡,𝑇],

𝔼𝑡 [𝑧𝜀(𝑡)] = 0.

Thus, it is clear that 𝔼𝑡 [𝑦𝜀(𝑠)] = 0, a.e. 𝑠 ∈ [𝑡,𝑇]. According to Gronwall’s inequality
there exists a positive constant 𝐾 such that

sup
𝑠∈[𝑡,𝑇]

||||𝔼
𝑡 [𝑧𝜀(𝑠)]||||

2
≤ 𝐾𝜀2.

Moreover, by Lemma 2.1. in [11], we obtain ( 2.20). By these estimates, we can
calculate the difference, we consider

𝐽(𝑡, �̂�(𝑡),𝑢𝜀(𝑡))− 𝐽(𝑡, �̂�(𝑡), �̂�(𝑡))

= 𝔼𝑡 {
1
2 ∫

𝑇

𝑡
(⟨𝑄(𝑡, 𝑠)𝑋(𝑠),𝑋(𝑠)⟩− ⟨𝑄(𝑡, 𝑠)�̂�(𝑠), �̂�(𝑠)⟩)𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
(
⟨
�̄�(𝑡, 𝑠)𝔼𝑡𝑋𝜀(𝑠),𝔼𝑡𝑋𝜀(𝑠)

⟩
−
⟨
�̄�(𝑡, 𝑠)𝔼𝑡�̂�(𝑠),𝔼𝑡�̂�(𝑠)

⟩
)𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
(⟨𝑅(𝑡, 𝑠)𝑢𝜀(𝑠),𝑢𝜀(𝑠)⟩− ⟨𝑅(𝑡, 𝑠)�̂�(𝑠), �̂�(𝑠)⟩)𝑑𝑠

+
⟨
𝜂1(𝑡)�̂�(𝑡)+𝜂2(𝑡),𝑋𝜀(𝑇)

⟩
−
⟨
𝜂1(𝑡)�̂�(𝑡)+𝜂2(𝑡), �̂�(𝑇)

⟩

+ 1
2(⟨𝐺(𝑡)𝑋

𝜀(𝑇),𝑋𝜀(𝑇)⟩− ⟨𝐺(𝑡)�̂�(𝑇), �̂�(𝑇)⟩)

+ 1
2(
⟨
�̄�(𝑡)𝔼𝑡𝑋𝜀(𝑇),𝔼𝑡𝑋𝜀(𝑇)

⟩
−
⟨
�̄�(𝑡)𝔼𝑡�̂�(𝑇),𝔼𝑡�̂�(𝑇)

⟩
)} .
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Because, 𝑋𝜀(𝑠)− �̂�(𝑠) = 𝑦𝜀(𝑠)+𝑧𝜀(𝑠), and

𝑢𝜀(𝑠)− �̂�(𝑠) =

⎧
⎪

⎨
⎪
⎩

𝑣, for 𝑠 ∈ [𝑡, 𝑡+ 𝜀)

0, for 𝑠 ∈ [𝑡+ 𝜀,𝑇]

= 𝑣1[𝑡,𝑡+𝜀)(𝑠),

By the fact that ⟨𝑎𝑏,𝑏⟩− ⟨𝑎𝑐,𝑐⟩ = ⟨𝑎(𝑏− 𝑐),𝑏− 𝑐⟩+2 ⟨𝑎𝑐,𝑏− 𝑐⟩ then
𝐽(𝑡, �̂�(𝑡),𝑢𝜀(𝑡))− 𝐽(𝑡, �̂�(𝑡), �̂�(𝑡))

= 𝔼𝑡 {
1
2 ∫

𝑇

𝑡
⟨𝑄(𝑡, 𝑠)

[
𝑦𝜀(𝑠)+𝑧𝜀(𝑠)+2�̂�(𝑠)

]
, [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)]⟩𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
⟨�̄�(𝑡, 𝑠)𝔼𝑡

[
𝑦𝜀(𝑠)+𝑧𝜀(𝑠)+2�̂�(𝑠)

]
,𝔼𝑡 [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)]⟩𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
⟨𝑅(𝑡, 𝑠) [𝑣+2�̂�(𝑠)] ,𝑣⟩1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠

+
⟨
𝜂1(𝑡)�̂�(𝑡)+𝜂2(𝑡), (𝑦𝜀(𝑇)+𝑧𝜀(𝑇))

⟩

+ 1
2
⟨
𝐺(𝑡)

[
𝑦𝜀(𝑇)+𝑧𝜀(𝑇)+2�̂�(𝑡)

]
, [𝑦𝜀(𝑇)+𝑧𝜀(𝑇)]

⟩

+ 1
2
⟨
�̄�(𝑡)𝔼𝑡

[
𝑦𝜀(𝑇)+𝑧𝜀(𝑇))+2�̂�(𝑡)

]
,𝔼𝑡 [𝑦𝜀(𝑇)+𝑧𝜀(𝑇)]

⟩
} .

In the other hand, from (H1) and (2.19) - (2.20) the following estimate holds
𝔼𝑡 [

1
2 ∫

𝑇

𝑡

(
⟨�̄�(𝑡, 𝑠)𝔼𝑡(𝑦𝜀(𝑠)+𝑧𝜀(𝑠)),𝔼𝑡(𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⟩

)
𝑑𝑠

+ 1
2
(
⟨�̄�(𝑡)𝔼𝑡(𝑦𝜀(𝑇)+𝑧𝜀(𝑇)),𝔼𝑡(𝑦𝜀(𝑇)+𝑧𝜀(𝑇))⟩

)
]

= 𝑜(𝜀).
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Then
𝐽(𝑡, �̂�(𝑡),𝑢𝜀(𝑡))− 𝐽(𝑡, �̂�(𝑡), �̂�(𝑡))

= 𝔼𝑡 {
1
2 ∫

𝑇

𝑡
⟨𝑄(𝑡, 𝑠) [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)] , [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)]⟩𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
⟨𝑄(𝑡, 𝑠)

[
2�̂�(𝑠)

]
+ �̄�(𝑡, 𝑠)𝔼𝑡

[
2�̂�(𝑠)

]
, [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)]⟩𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
⟨𝑅(𝑡, 𝑠) [𝑣+2�̂�(𝑠)] ,𝑣⟩1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠

+
⟨
𝜂1(𝑡)�̂�(𝑡)+𝜂2(𝑡)+𝐺(𝑡)�̂�(𝑇)+ �̄�(𝑡)𝔼𝑡[�̂�(𝑇)],𝑦𝜀(𝑇)+𝑧𝜀(𝑇)

⟩

+ 1
2 ⟨𝐺(𝑡) [𝑦

𝜀(𝑇)+𝑧𝜀(𝑇)] , [𝑦𝜀(𝑇)+𝑧𝜀(𝑇)]⟩}

+𝑜(𝜀).

Then, from the terminal conditions (2.8) and (2.9) (in the adjoint equations), it follows
that

𝐽
(
𝑡, �̂�(𝑡),𝑢𝜀(𝑡)

)
− 𝐽(𝑡, �̂�(𝑡), �̂�(𝑡))

= 𝔼𝑡 {
1
2 ∫

𝑇

𝑡
⟨𝑄(𝑡, 𝑠) [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)] , [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)]⟩𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
⟨𝑄(𝑡, 𝑠)

[
2�̂�(𝑠)

]
+ �̄�(𝑡, 𝑠)𝔼𝑡

[
2�̂�(𝑠)

]
, [𝑦𝜀(𝑠)+𝑧𝜀(𝑠)]⟩𝑑𝑠

+ 1
2 ∫

𝑇

𝑡
⟨𝑅(𝑡, 𝑠) [𝑣+2�̂�(𝑠)] ,𝑣⟩1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠

− ⟨𝑝(𝑇; 𝑡),𝑦𝜀(𝑇)+𝑧𝜀(𝑇)⟩

−12 ⟨𝑃(𝑇; 𝑡) (𝑦
𝜀(𝑇)+𝑧𝜀(𝑇)) ,𝑦𝜀(𝑇)+𝑧𝜀(𝑇)⟩}

+𝑜(𝜀). (2.22)
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Recalling that (𝑝(⋅; 𝑡),𝑄(⋅, 𝑡), �̄�(⋅, 𝑡)) solve (2.8). Now, by applying Ito’s formula on [𝑡,𝑇]

to ⟨𝑝(𝑠; 𝑡),𝑦𝜀(𝑠)+𝑧𝜀(𝑠)⟩ and by taking the conditional expectation, we get

𝔼𝑡 [⟨𝑝(𝑇; 𝑡),𝑦𝜀(𝑇)+𝑧𝜀(𝑇)⟩]

= 𝔼𝑡 {∫
𝑇

𝑡

{
𝑣⊤𝐵⊤𝑝(𝑠; 𝑡)1[𝑡,𝑡+𝜀)(𝑠)+ (𝑦𝜀(𝑠)+𝑧𝜀(𝑠))

⊤ (𝑄(𝑡, 𝑠)�̂�(𝑠)+ �̄�(𝑡, 𝑠)𝔼𝑡[�̂�(𝑠)]
)

+
𝑑∑

𝑗=1
𝑣⊤𝐷⊤

𝑗 𝑞𝑗(𝑠; 𝑡)1[𝑡,𝑡+𝜀)(𝑠)
⎫

⎬
⎭

𝑑𝑠
⎫

⎬
⎭

. (2.23)

Again, (𝑝(⋅; 𝑡),𝐷(⋅, 𝑡), �̄�(⋅, 𝑡)) solve (2.11), by applying Ito’s formula to
𝑠↦ ⟨𝑃(𝑠; 𝑡) (𝑦𝜀(𝑠)+𝑧𝜀(𝑠)) ,𝑦𝜀(𝑠)+𝑧𝜀(𝑠)⟩

on [𝑡,𝑇], we get by taking the conditional expectation
𝔼𝑡 [⟨𝑃(𝑇; 𝑡) (𝑦𝜀(𝑇)+𝑧𝜀(𝑇)) ,𝑦𝜀(𝑇)+𝑧𝜀(𝑇)⟩]

= 𝔼𝑡 {∫
𝑇

𝑡

{
2(𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⊤𝑃(𝑠; 𝑡)𝐵𝑣1[𝑡,𝑡+𝜀)(𝑠)

+ (𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⊤𝑄(𝑡, 𝑠) (𝑦𝜀(𝑠)+𝑧𝜀(𝑠))

+
𝑑∑

𝑗=1

{
2(𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⊤𝐶⊤𝑗 +𝑣

⊤𝐷⊤
𝑗

}
𝑃(𝑠; 𝑡)𝐷𝑗𝑣1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠

⎫

⎬
⎭

. (2.24)

Moreover, we conclude from (H1) together with (2.8) and (2.10) that
𝔼𝑡 [∫

𝑇

𝑡
(𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⊤𝑃(𝑠; 𝑡)𝐵𝑣1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠] = 𝑜(𝜀),
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𝔼𝑡 [∫
𝑇

𝑡
(𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⊤𝐶⊤𝑗 𝑃(𝑠; 𝑡)𝐷𝑗𝑣1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠] = 𝑜(𝜀), . (2.25)

Then by invoking (2.25) it holds
1
2𝔼

𝑡 [⟨𝑃(𝑇; 𝑡) (𝑦𝜀(𝑇)+𝑧𝜀(𝑇)) ,𝑦𝜀(𝑇)+𝑧𝜀(𝑇)⟩]

= 1
2𝔼

𝑡 [∫
𝑇

𝑡

{
(𝑦𝜀(𝑠)+𝑧𝜀(𝑠))⊤𝑄(𝑡, 𝑠) (𝑦𝜀(𝑠)+𝑧𝜀(𝑠))

+
𝑑∑

𝑗=1
𝑣⊤𝐷⊤

𝑗 𝑃(𝑠; 𝑡)𝐷𝑗𝑣1[𝑡,𝑡+𝜀)(𝑠)
⎫

⎬
⎭

𝑑𝑠
⎤
⎥
⎥
⎦

+𝑜(𝜀). (2.26)

By taking (2.23) and (2.26) in (2.22), it follows that
𝐽
(
𝑡, �̂�(𝑡),𝑢𝜀(⋅)

)
− 𝐽(𝑡, �̂�(𝑡), �̂�(⋅))

= −𝔼𝑡
⎡
⎢
⎢
⎣

∫
𝑇

𝑡

⎧

⎨
⎩

𝑣⊤𝐵⊤𝑝(𝑠; 𝑡)+
𝑑∑

𝑗=1
𝑣⊤𝐷⊤

𝑗 𝑞𝑗(𝑠, 𝑡)

+12

𝑑∑

𝑗=1
𝑣⊤𝐷⊤

𝑗 𝑃(𝑠; 𝑡)𝐷𝑗𝑣−𝑣
⊤𝑅(𝑡, 𝑠)�̂�(𝑠)− 1

2𝑣
⊤𝑅(𝑡, 𝑠)𝑣

⎫

⎬
⎭

1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠
⎤
⎥
⎥
⎦

+𝑜(𝜀),

which is equivalent to (2.21)
Now, we are ready to give the proof of the Theorem 2.3.2.

Proof of Theorem 2.3.2 . Given an open-loop Nash equilibrium �̂�(⋅), then for any 𝑡∈ [0,𝑇]
and 𝑣 ∈ 𝕃2 (Ω,ℱ𝑡,ℙ;ℝ𝑚), we have clearly

lim
𝜀↓0

1
𝜀
(
𝐽(𝑡, �̂�(𝑡), �̂�(⋅))− 𝐽

(
𝑡, �̂�(𝑡),𝑢𝜀(⋅)

))
≤ 0,

39



which leads from (2.21) to
lim
𝜀→0

1
𝜀𝔼

𝑡 ∫
𝑇

𝑡

⎛
⎜
⎝
𝛿ℍ(𝑡;𝑠)+

⎛
⎜
⎝

1
2

𝑑∑

𝑗=1
𝑣⊤𝐷⊤

𝑗 𝑃(𝑠; 𝑡)𝐷𝑗𝑣
⎞
⎟
⎠
1[𝑡,𝑡+𝜀)(𝑠)𝑑𝑠

⎞
⎟
⎠
≤ 0.

From which we deduce
𝛿ℍ(𝑡; 𝑡)+ 1

2𝑣
⊤
⎛
⎜
⎝

𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑃(𝑡; 𝑡)𝐷𝑗

⎞
⎟
⎠
𝑣 ≤ 0,ℙ−𝑎.𝑠.

Therefore, the inequality (2.13) is ensured by stetting 𝑣 ≡ 𝑢 for an arbitrarily 𝑢 ∈ ℝ𝑚.
Conversely, given an admissible control �̂�(⋅) ∈ℒ2

ℱ (0,𝑇;ℝ
𝑚). Suppose that for any 𝑡∈ [0,𝑇],

the variational inequality (2.13) holds. Then for any 𝑣 ∈ 𝕃2 (Ω,ℱ(𝑡),ℙ;ℝ𝑚) it yields
𝛿ℍ(𝑡; 𝑡)+ 1

2𝑣
⊤
⎛
⎜
⎝

𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑃(𝑡; 𝑡)𝐷𝑗

⎞
⎟
⎠
𝑣 ≤ 0, ℙ−𝑎.𝑠,

consequently
lim
𝜀↓0

1
𝜀𝔼

𝑡⎡⎢
⎣
∫

𝑡+𝜀

𝑡

⎛
⎜
⎝
𝛿ℍ(𝑡;𝑠)+ 1

2𝑣
⊤
⎛
⎜
⎝

𝑑∑

𝑗=1
𝐷⊤
𝑗 𝑃(𝑠; 𝑡)𝐷𝑗

⎞
⎟
⎠
𝑣
⎞
⎟
⎠
𝑑𝑠
⎤
⎥
⎦
≤ 0.

Hence
lim
𝜀↓0

1
𝜀
(
𝐽(𝑡, �̂�(𝑡), �̂�(⋅))− 𝐽

(
𝑡, �̂�(𝑡),𝑢𝜀(⋅)

))
≤ 0.

Thus �̂�(⋅) is an equilibrium control. Easy manipulations show that the variational in-
equality (2.13) is equivalent to

ℋ𝑡(𝑡, �̂�(𝑡),0) = max
𝑢∈ℝ𝑚

ℋ𝑡(𝑡, �̂�(𝑡),𝑢),
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then (2.14) and (2.15) follow respectively from the following first order and second order
conditions at the maximum point 𝑢 = 0 for the quadratic function ℋ𝑡(𝑡, �̂�(𝑡),𝑢)

𝒟𝑢ℋ𝑡(𝑡, �̂�(𝑡),0) = 0 and 𝒟2
𝑢ℋ𝑡(𝑡, �̂�(𝑡),𝑢) ≤ 0,

where we denote by 𝒟𝑢ℋ𝑡 (resp. 𝒟2
𝑢ℋ𝑡 ) the gradient (resp. the Hessian) of ℋ𝑡 with

respect to the variable 𝑢. Then, the required result is directly follows.

2.4 Linear Feedback Stochastic Equilibrium Control

This section focuses on the case where the Brownian motion is one-dimensional (𝑑 = 1)
for ease of presentation, although the results generalize to multidimensional Brownian
motions. Our aim is to derive a state feedback representation of an equilibrium control
for Problem (LQ) using a class of ordinary differential equations. We begin by examining
the following system of coupled generalized Riccati equations for (𝑡, 𝑠) ∈𝒟[0,𝑇]

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝑀
𝜕𝑠

(𝑡, 𝑠)+𝑀(𝑡, 𝑠)𝐴+𝐴⊤𝑀(𝑡, 𝑠)+𝐶⊤𝑀(𝑡, 𝑠)𝐶

−
[
𝑀(𝑡, 𝑠)𝐵+𝐶⊤𝑀(𝑡, 𝑠)𝐷

]
𝒬(𝑠)+𝑄(𝑡, 𝑠) = 0,

𝜕�̄�
𝜕𝑠

(𝑡, 𝑠)+ �̄�(𝑡, 𝑠)𝐴+𝐴⊤�̄�(𝑡, 𝑠)− �̄�(𝑡, 𝑠)𝐵𝒬(𝑠)+ �̄�(𝑡, 𝑠) = 0,

𝜕Υ
𝜕𝑠
(𝑡, 𝑠)+𝐴⊤Υ(𝑡, 𝑠) = 0,

𝜕𝜅
𝜕𝑠
(𝑡, 𝑠)+ (𝑀(𝑡, 𝑠)+ �̄�(𝑡, 𝑠))(𝑏−𝐵𝜓(𝑠))+𝐴⊤𝜅(𝑡, 𝑠)+𝐶⊤𝑀(𝑡, 𝑠)(𝜎−𝐷𝜓(𝑠)) = 0,

𝑀(𝑡,𝑇) = 𝐺(𝑡), �̄�(𝑡,𝑇) = �̄�(𝑡),Υ(𝑡,𝑇) = 𝜂1(𝑡),𝜅(𝑡,𝑇) = 𝜂2(𝑡), 𝑡 ∈ [0,𝑇],

(2.27)
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where
det

(
𝑅(𝑡, 𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝐷

)
≠ 0,∀𝑡 ∈ [0,𝑇].

The functions Ξ(⋅), .𝒬(⋅) and 𝜓(⋅) are given for 𝑡 ∈ [0,𝑇] by
⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

Ξ(𝑡) =
{
𝑅(𝑡, 𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝐷

}−1
,

𝒬(𝑡) = Ξ(𝑡)
(
𝐵⊤(𝑀(𝑡, 𝑡)+ �̄�(𝑡, 𝑡)+Υ(𝑡, 𝑡))+𝐷⊤𝑀(𝑡, 𝑡)𝐶

)

𝜓(𝑡) = Ξ(𝑡)
(
𝐵⊤𝜅(𝑡, 𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝜎

)
.

(2.28)

Theorem 2.4.1 Assuming that conditions (H1)−(H2) are satisfied, if a solution exists for the

system (2.27), then the stochastic control problem (2.6) subject to the stochastic differential

equation (2.1) possesses a feedback Nash equilibrium solution given by

�̂�(𝑡) = −𝒬(𝑡)�̂�(𝑡)−𝜓(𝑡), ∀𝑡 ∈ [0,𝑇]. (2.29)
Proof. Suppose �̂�(𝑡) represents an equilibrium control, and let �̂�(𝑡) denote the correspond-
ing controlled process. According to Theorem 2.3.2, there exists an adapted process that
solves the following forward-backward stochastic differential equation parameterized by
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𝑡 ∈ [0,𝑇]:
⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑑�̂�(𝑠) = {𝐴�̂�(𝑠)+𝐵�̂�(𝑠)+𝑏}𝑑𝑠+{𝐶�̂�(𝑠)+𝐷�̂�(𝑠)+𝜎}𝑑𝑊(𝑠) ∀𝑠 ∈ [0,𝑇],

𝑑𝑝(𝑠; 𝑡) = −
{
𝐴⊤𝑝(𝑠; 𝑡)+𝐶⊤𝑞(𝑠; 𝑡)−𝑄(𝑡, 𝑠)�̂�(𝑠)− �̄�(𝑡, 𝑠)𝔼𝑡[�̂�(𝑠)]

}
𝑑𝑠

+𝑞(𝑠; 𝑡)𝑑𝑊(𝑠), ∀𝑠 ∈ [𝑡,𝑇],

�̂�0 = 𝑥0,𝑝(𝑇; 𝑡) = −𝐺(𝑡)�̂�(𝑇)− �̄�(𝑡)𝔼𝑡[�̂�(𝑇)]−𝜂1(𝑡)�̂�(𝑡)−𝜂2(𝑡), 𝑡 ∈ [0,𝑇],

(2.30)

such that the ensuing condition is satisfied
𝑅(𝑡, 𝑡)�̂�(𝑡)−𝐵⊤𝑝(𝑡; 𝑡)−𝐷⊤𝑞(𝑡; 𝑡) = 0,ℙ−𝑎.𝑠,∀𝑡 ∈ [0,𝑇]. (2.31)

Now, to solve the above stochastic system, we propose a conjecture regarding the rela-
tionship between �̂�(𝑡) and 𝑝(𝑠; 𝑡) for 𝑡 in the interval [0,𝑇). For any pair of times (𝑡, 𝑠)
within this range, we suggest that 𝑝(𝑠; 𝑡)

𝑝(𝑠, 𝑡) = −𝑀(𝑡, 𝑠)�̂�(𝑠)− �̄�(𝑡, 𝑠)𝔼𝑡
[
�̂�(𝑠)

]
−Υ(𝑡, 𝑠)�̂�(𝑡)−𝜅(𝑡, 𝑠), (2.32)

can be expressed as a combination of terms involving �̂�(𝑠), along with specific determin-
istic functions of 𝑡 and 𝑠. These functions belong to the class 𝒞0,1 (𝒟[0,𝑇],ℝ𝑛×𝑛) for 𝑀(., ),
�̄�(., ), Υ(⋅, ⋅), and to 𝒞0,1 (𝒟[0,𝑇],ℝ𝑛) for 𝜅(⋅, ⋅). They satisfy certain conditions at the final
time 𝑇, namely

𝑀(𝑡,𝑇) = 𝐺(𝑡), �̄�(𝑡,𝑇) = �̄�(𝑡),Υ(𝑡,𝑇) = 𝜂1(𝑡),𝜅(𝑡,𝑇) = 𝜂2(𝑡). (2.33)
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By applying Itô’s formula to equation (2.32) and utilizing equation (2.30), we can derive
𝑑𝑝(𝑠; 𝑡) = −𝜕𝑀

𝜕𝑠
(𝑡, 𝑠)�̂�(𝑠)𝑑𝑠− 𝜕�̄�

𝜕𝑠
(𝑡, 𝑠)𝔼𝑡[�̂�(𝑠)]𝑑𝑠− 𝜕Υ

𝜕𝑠
(𝑡, 𝑠)�̂�(𝑡)𝑑𝑠− 𝜕𝜅

𝜕𝑠
(𝑡, 𝑠)𝑑𝑠

−𝑀(𝑡, 𝑠)(𝐴�̂�(𝑠)+𝐵�̂�(𝑠)+𝑏)𝑑𝑠− �̄�(𝑡, 𝑠)
(
𝐴𝔼𝑡[�̂�(𝑠)]+𝐵𝔼𝑡[�̂�(𝑠)]+𝑏

)
𝑑𝑠

−𝑀(𝑡, 𝑠)(𝐶�̂�(𝑠)+𝐷�̂�(𝑠)+𝜎)𝑑𝑊(𝑠)

= −
[
𝐴⊤𝑝(𝑠; 𝑡)+𝐶⊤𝑞(𝑠; 𝑡)−𝑄(𝑡, 𝑠)�̂�(𝑠)− �̄�(𝑡, 𝑠)𝔼𝑡[�̂�(𝑠)]

]
𝑑𝑠

+𝑞(𝑠; 𝑡)𝑑𝑊(𝑠). (2.34)
From the equation above, we can derive the expression for 𝑞(𝑠; 𝑡) as follows:

𝑞(𝑠; 𝑡) = −𝑀(𝑡, 𝑠)(𝐶�̂�(𝑠)+𝐷�̂�(𝑠)+𝜎). (2.35)
Substituting the expression for 𝑞(𝑠; 𝑡) into equation (2.31), we get:

𝑅(𝑡, 𝑡)�̂�(𝑡)+𝐵⊤((𝑀(𝑡, 𝑡)+ �̄�(𝑡, 𝑡)+Υ(𝑡, 𝑡))�̂�(𝑡)+𝜅(𝑡, 𝑡))

+𝐷⊤𝑀(𝑡, 𝑡)(𝐶�̂�(𝑡)+𝐷�̂�(𝑡)+𝜎)

= 𝑅(𝑡, 𝑡)�̂�(𝑡)+𝐵⊤𝑀(𝑡, 𝑡)�̂�(𝑡)+𝐵⊤�̄�(𝑡, 𝑡)�̂�(𝑡)

+𝐵⊤Υ(𝑡, 𝑡)�̂�(𝑡)+𝐵⊤𝜅(𝑡, 𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝐶�̂�(𝑡)

+𝐷⊤𝑀(𝑡, 𝑡)𝐷�̂�(𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝜎

=
(
𝑅(𝑡, 𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝐷

)
�̂�(𝑡)

+
(
𝐵⊤((𝑀(𝑡, 𝑡)+ �̄�(𝑡, 𝑡)+Υ(𝑡, 𝑡))+𝐷⊤𝑀(𝑡, 𝑡)𝐶

)
�̂�(𝑡)

+𝐵⊤𝜅(𝑡, 𝑡)+𝐷⊤𝑀(𝑡, 𝑡)𝜎
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= Ξ(𝑡)−1�̂�(𝑡)+Ξ(𝑡)−1𝒬(𝑡)�̂�(𝑡)+Ξ(𝑡)−1𝜓(𝑡).

With the above notations, we obtain:
Ξ(𝑡)−1(�̂�(𝑡)+𝒬(𝑡)�̂�(𝑡)+𝜓(𝑡)) = 0, ∀𝑡 ∈ [0,𝑇].

Thus, equation (2.29) holds, and for any (𝑡, 𝑠) ∈𝒟[0,𝑇], we have
𝔼𝑡[�̂�(𝑠)] = −𝒬(𝑠)𝔼𝑡[�̂�(𝑠)]−𝜓(𝑠). (2.36)

Next, by comparing the 𝑑𝑠 term in equation (2.34) with the one in the backward SDE from
equation (2.30), and using the expressions in equations (2.29) and (2.36), we obtain:

{𝜕𝑀
𝜕𝑠

(𝑡, 𝑠)+𝑀(𝑡, 𝑠)𝐴+𝐴⊤𝑀(𝑡, 𝑠)+𝐶⊤𝑀(𝑡, 𝑠)𝐶} �̂�(𝑠)

−
{(
𝑀(𝑡, 𝑠)𝐵+𝐶⊤𝑀(𝑡, 𝑠)𝐷

)
𝒬(𝑠)+𝑄(𝑡, 𝑠)

}
�̂�(𝑠)

+ {𝜕�̄�
𝜕𝑠

(𝑡, 𝑠)+ �̄�(𝑡, 𝑠)𝐴+𝐴⊤�̄�(𝑡, 𝑠)− �̄�(𝑡, 𝑠)𝐵𝒬(𝑠)+ �̄�(𝑡, 𝑠)}𝔼𝑡[�̂�(𝑠)]

+ {𝜕Υ
𝜕𝑠
(𝑡, 𝑠)+𝐴⊤Υ(𝑡, 𝑠)} �̂�(𝑡)+ 𝜕𝜅

𝜕𝑠
(𝑡, 𝑠)+ (𝑀(𝑡, 𝑠)+ �̄�(𝑡, 𝑠))(𝑏−𝐵𝜓(𝑠))

+𝐴⊤𝜅(𝑡, 𝑠)+𝐶⊤𝑀(𝑡, 𝑠)(𝜎−𝐷𝜓(𝑠)) = 0.

This suggests that the functions 𝑀(⋅), �̄�(⋅), Υ(⋅, ⋅), and 𝜅(⋅, ⋅) solve the system (2.27 ). Note
that we can verify that 𝒬(⋅) and 𝜓(⋅) in equation (2.28) are both uniformly bounded. Then,
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the following linear SDE for 𝑠 ∈ [0,𝑇] can be derived from equation (2.29):
⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑑�̂�(𝑠) = {(𝐴−𝐵𝒬(𝑠))�̂�(𝑠)+𝑏−𝐵𝜓(𝑠)}𝑑𝑠+{(𝐶−𝐷𝒬(𝑠))�̂�(𝑠)+𝜎−𝐷𝜓(𝑠)}𝑑𝑊(𝑠),

�̂�(0) = 𝑥0,

which is uniquely solvable, and the following estimate holds
𝔼[ sup

𝑠∈[0,𝑇]
|�̂�(𝑠)|2] ≤ 𝐾

(
1+𝑥20

)
.

Therefore, the control �̂� defined by equation (2.29) is admissible.
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Chapter 3

Application: General Discounting

Linear Quadratic Regulator

In this chapter, we delve into an example of a general discounting, time-inconsistent LQ
model. The objective is to minimize the expected cost functional earned during a finite
time horizon:

𝐽(𝑡,𝜉,𝑢(⋅)) = 1
2𝔼

𝑡 [∫
𝑇

𝑡
|𝑢(𝑠)|2𝑑𝑠+ℎ(𝑡)|𝑋(𝑇)−𝜉|2] . (3.1)

Here, ℎ(⋅) ∶ [0,𝑇]→ (0,∞) is a general deterministic non-exponential discount function
satisfying ℎ(0) = 1, ℎ(𝑠)≥ 0, and ∫ 𝑇

0
ℎ(𝑡)𝑑𝑡 <∞. This optimization is subject to a controlled

one-dimensional stochastic differential equation (SDE) parameterized by (𝑡,𝜉) ∈ [0,𝑇] ×

𝕃2(Ω,ℱ𝑡,ℙ;ℝ):
⎧
⎪

⎨
⎪
⎩

𝑑𝑋(𝑠) = {𝑎𝑋(𝑠)+𝑏𝑢(𝑠)}𝑑𝑠+𝜎𝑑𝑊(𝑠), 𝑠 ∈ [0,𝑇],

𝑋(𝑡) = 𝜉,
(3.2)

with, 𝑎 and 𝑏 are real constants. This scenario presents a time-inconsistent version of
the classical linear quadratic regulator problem. The objective is to control the system so
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that the final state 𝑋(𝑇) is close to 𝜉, while simultaneously minimizing the control energy
(formalized by the running cost). It’s noteworthy that in this case, time-inconsistency
arises due to the terminal cost depending explicitly on both the current state 𝜉 and the
current time 𝑡. Consequently, there are two distinct sources of time-inconsistency. For
this example, the system (2.27) reduces, for all (𝑡, 𝑠) ∈𝒟[0,𝑇], to:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝑀
𝜕𝑠

(𝑡, 𝑠)+2𝑎𝑀(𝑡, 𝑠)−𝑏2𝑀(𝑡, 𝑠){𝑀(𝑠, 𝑠)+ �̄�(𝑠, 𝑠)+Υ(𝑠, 𝑠)} = 0,

𝜕�̄�
𝜕𝑠

(𝑡, 𝑠)+2𝑎�̄�(𝑡, 𝑠)−𝑏2�̄�(𝑡, 𝑠){𝑀(𝑠, 𝑠)+ �̄�(𝑠, 𝑠)+Υ(𝑠, 𝑠)} = 0,

𝜕Υ
𝜕𝑠
(𝑡, 𝑠)+𝑎Υ(𝑡, 𝑠) = 0,

𝜕𝜅
𝜕𝑠
(𝑡, 𝑠)+𝑎𝜅(𝑡, 𝑠)−𝑏2{𝑀(𝑡, 𝑠)+ �̄�(𝑡, 𝑠)}𝜅(𝑠, 𝑠) = 0,

𝑀(𝑡,𝑇) = ℎ(𝑡), �̄�(𝑡,𝑇) = 0, Υ(𝑡,𝑇) = ℎ(𝑡), 𝜅(𝑡,𝑇) = 0,∀𝑡 ∈ [0,𝑇].

(3.3)

Certainly, the formulation for the solution to the homogeneous equation is given by:
⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑀(𝑡, 𝑠) = 𝑐1𝑒∫
𝑇
𝑠 [2𝑎−−𝑏2{𝑀(𝜏,𝜏)+�̄�(𝜏,𝜏)+Υ(𝜏,𝜏)}]𝑑𝜏,

�̄�(𝑡, 𝑠) = 𝑐2𝑒∫
𝑇
𝑠 [2𝑎−−𝑏2{𝑀(𝜏,𝜏)+�̄�(𝜏,𝜏)+Υ(𝜏,𝜏)}]𝑑𝜏, ,

Υ(𝑡, 𝑠) = 𝑐3𝑒∫
𝑇
𝑠 𝑎𝑑𝜏,

𝜅(𝑡, 𝑠) = 𝑐3𝑒∫
𝑇
𝑠 𝑎𝑑𝜏,

𝑀(𝑡,𝑇) = ℎ(𝑡), �̄�(𝑡,𝑇) = 0,Υ(𝑡,𝑇) = ℎ(𝑡),𝜅(𝑡,𝑇) = 0,∀𝑡 ∈ [0,𝑇].

(3.4)

By employing the method of "variation of constants, ∀(𝑡, 𝑠) ∈𝒟[0,𝑇], 𝑐′1(𝑡, 𝑠) = 0,, and thus
∀(𝑡, 𝑠) ∈ 𝒟[0,𝑇], 𝑐1(𝑡, 𝑠) = 𝑐1(𝑡, 𝑡). By utilizing the terminal condition, we conclude that
∀(𝑡, 𝑠) ∈ 𝒟[0,𝑇], 𝑐1(𝑡, 𝑠) = 𝑐1(𝑡,𝑇) = 𝑀(𝑡,𝑇) = ℎ(𝑡). Furthermore, we can infer by analogy
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that
⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑀(𝑡, 𝑠) =𝑀(𝑡,𝑇)𝑒∫
𝑇
𝑠 {2𝑎−𝑏2(𝑀(𝜏,𝜏)+�̄�(𝜏,𝜏)+Υ(𝜏,𝜏))}𝑑𝜏,

�̄�(𝑡, 𝑠) = �̄�(𝑡,𝑇)𝑒∫
𝑇
𝑠 {2𝑎−𝑏2(𝑀(𝜏,𝜏)+�̄�(𝜏,𝜏)+Υ(𝜏,𝜏))}𝑑𝜏,

𝜅(𝑡, 𝑠) = 𝜅(𝑡,𝑇)𝑒𝑎(𝑇−𝑠)−𝑏2 ∫
𝑇

𝑠
𝑒𝑎(𝜏−𝑠){𝑀(𝑡,𝜏)+ �̄�(𝑡,𝜏)}𝜅(𝜏,𝜏)𝑑𝜏.

(3.5)

Alternatively, given �̄�(𝑡,𝑇) = 𝜅(𝑡,𝑇) = 0, equation (3.5), simplifies ∀(𝑡, 𝑠) ∈𝒟[0,𝑇] to
⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑀(𝑡, 𝑠) =𝑀(𝑡,𝑇)𝑒∫
𝑇
𝑠 {2𝑎−𝑏2(𝑀(𝑟,𝑟)+Υ(𝑟,𝑟))}𝑑𝑟,

�̄�(𝑡, 𝑠) = 0,

𝜅(𝑡, 𝑠) = −𝑏2 ∫
𝑇

𝑠
𝑒𝑎(𝜏−𝑠)𝑀(𝑡,𝜏)𝜅(𝜏,𝜏)𝑑𝜏.

(3.6)

It’s evident that if 𝑀(𝑡, 𝑠) is the solution to the initial equation (3.6), then:
𝜅(𝑠, 𝑠) = −𝑏2 ∫

𝑇

𝑠
𝑒𝑎(𝜏−𝑠)𝑀(𝑠,𝜏)𝜅(𝜏,𝜏)𝑑𝜏, ∀𝑠 ∈ [0,𝑇].

Thus, there exists some constant 𝐿 > 0 such that |𝜅(𝑠, 𝑠)| ≤ 𝐿∫
𝑇

𝑠
|𝜅(𝜏,𝜏)|𝑑𝜏. By Gronwall’s

Lemma, we conclude that 𝜅(𝑠, 𝑠) = 0,∀𝑠 ∈ [0,𝑇]. Therefore 𝜅(𝑡, 𝑠) = 0,∀(𝑡, 𝑠) ∈𝒟[0,𝑇], is the
unique solution to the last equation in the system (3.6). Now, it remains to solve the first
equation in the system (3.6). Upon examination, the first equation in the system (3.6) can
be rewritten as:

⎧
⎪

⎨
⎪
⎩

𝜕𝑀
𝜕𝑠

(𝑡, 𝑠)+2𝑎𝑀(𝑡, 𝑠)−𝑏2𝑀(𝑡, 𝑠){𝑀(𝑠, 𝑠)+Υ(𝑠, 𝑠)} = 0, ∀(𝑡, 𝑠) ∈𝒟[0,𝑇],

𝑀(𝑡,𝑇) = ℎ(𝑡).

(3.7)
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We propose a solution of the form 𝑀(𝑡, 𝑠) = ℎ(𝑡)𝑁(𝑠), yielding the following ordinary dif-
ferential equation (ODE) for 𝑁(𝑠),

⎧
⎪

⎨
⎪
⎩

𝑑𝑁
𝑑𝑠

(𝑠)+
(
2𝑎+𝑏2Υ(𝑠, 𝑠)

)
𝑁(𝑠)−𝑏2ℎ(𝑠)𝑁(𝑠)2 = 0, 𝑠 ∈ [0,𝑇],

𝑁(𝑇) = 1.

(3.8)

Substituting 𝑁(𝑠) = 1
𝑦(𝑠)

, we obtain an explicitly solvable equation,
⎧
⎪

⎨
⎪
⎩

𝑑𝑦
𝑑𝑠
(𝑠)−

(
2𝑎+𝑏2Υ(𝑠, 𝑠)

)
𝑦(𝑠)+𝑏2ℎ(𝑠) = 0, 𝑠 ∈ [0,𝑇],

𝑦(𝑇) = 1.

Its solution is given by,
𝑦(𝑠) = 𝑒−∫

𝑇
𝑠 {2𝑎+𝑏2Υ(𝜏,𝜏)}𝑑𝜏 (1+𝑏2 ∫

𝑇

𝑠
𝑒∫

𝑇
𝜏 {2𝑎+𝑏2Υ(𝑙,𝑙)}𝑑𝑙ℎ(𝜏)𝑑𝜏) , 𝑠 ∈ [0,𝑇].

In view of Theorem 2.4.1, the representation (2.29) of the Nash equilibrium control gives,
�̂�(𝑠) = −𝑏{Υ(𝑠, 𝑠)+𝑀(𝑠, 𝑠)}�̂�(𝑠), ∀𝑠 ∈ [0,𝑇]. (3.9)

The corresponding equilibrium dynamics solve the following stochastic differential equa-
tion,

⎧
⎪

⎨
⎪
⎩

𝑑�̂�(𝑠) =
{
𝑎−𝑏2(Υ(𝑠, 𝑠)+𝑀(𝑠, 𝑠))

}
�̂�(𝑠)𝑑𝑠+𝜎𝑑𝑊(𝑠), 𝑠 ∈ [0,𝑇],

�̂�(0) = 𝑥0.
(3.10)

50



Conclusion

A game-theoretic method was used in this dissertation, which was about dynamic de-
cision problems with time inconsistency. We were able to get around the problems
caused by time not being consistent by using open-loop Nash equilibrium controls in-
stead of optimal controls. The method was based on the stochastic maximum principle,
which meant that we looked at forward-backward stochastic differential equations in
a planned way when they were at their highest levels. We used real-life examples to
show how well and how widely our suggested study could be used, reaffirming its
importance in solving problem in the real world.
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Abbreviations and Notations

The various abbreviations and notations used throughout this thesis are explained below: Forany Euclidean space 𝐻 =ℝ𝑛,ℝ𝑛×𝑚 or 𝑆𝑛 with Frobenius norm | ⋅ |, we define,
FBSDE ∶ Forward-Backward-Stochastic-Differential-Equation.Problem (LQ) ∶ Problem Linear-Quadratic.(
Ω,ℱ, {ℱ𝑡}𝑡≥0 ,ℙ

)
∶ A filtered probability space.

𝔼(⋅) ∶ Mathematical expectation.
𝔼(⋅|ℱ𝑡) = 𝔼𝑡(⋅) ∶ Mathematical conditional expectation.
COV(⋅, ⋅) ∶ Mathematical covariance of the pair (⋅, ⋅) (V(⋅),Variance).
𝒞([0,𝑇];𝐻) ∶ ∶ the set of 𝑓 ∶ [0,𝑇]→𝐻 such that 𝑓 is continuous.
𝒟[0,𝑇] ∶ the set of (𝑡, 𝑠) ∈ [0,𝑇]× [0,𝑇], such that 𝑠 ≥ 𝑡.
𝒞(𝒟[0,𝑇];𝐻) ∶ the set of 𝑓(., ) ∶𝒟[0,𝑇]→𝐻(𝑡, 𝑠) such that 𝑓(., ) is continuous.
𝒞0,1(𝒟[0,𝑇];𝐻) ∶ ∶ the set of 𝑓(⋅) ∶𝒟[0,𝑇]→𝐻 such that 𝑓(., ) 𝑎𝑛𝑑𝜕𝑓

𝜕𝑠
(., ) are continuous.

𝒞1,2([0,𝑇]×ℝ,ℝ) ∶ 𝜙 ∶ [0,𝑇]×ℝ→ℝ |𝜙 is continuous (in 𝑡), 𝜕𝜙
𝜕𝑥

, 𝜕2𝜙
𝜕𝑥2

, existsand are continuous (in 𝑥).
𝕃𝑝 (Ω,ℱ𝑡,ℙ;𝐻) ∶ the set of 𝜉 ∶ Ω→𝐻 such that 𝜉 𝑖𝑠 ℱ𝑡 measurable and 𝔼 [|𝜉|𝑝] <∞, 𝑝 ≥ 1
.𝒮2ℱ(𝑡,𝑇;𝐻) ∶ the set of 𝑋(⋅) ∶ [𝑡,𝑇]×Ω→𝐻 such that 𝑋(⋅) is (ℱ𝑠)𝑠∈[𝑡,𝑇]−adapted,

𝑠↦ 𝑋(𝑠) is RCLL (right continuous with left limits),and 𝔼 sup
𝑠∈[𝑡,𝑇]

|𝑋(𝑠)|2 <∞.

ℒ2
ℱ(𝑡,𝑇;𝐻) ∶ the set of 𝑋(⋅) ∶ [𝑡,𝑇]×Ω→𝐻 such that 𝑋(⋅) is (ℱ𝑠)𝑠∈[𝑡,𝑇]−adapted,

and 𝔼∫
𝑇

𝑡
|𝑋(𝑠)|2𝑑𝑠 <∞.

𝑆𝑛 ∶ the set of 𝑛×𝑛 symmetric real matrices.
𝐶⊤ ∶ the transpose of the vector (or matrix) 𝐶.
⟨., .⟩ ∶ the inner product in some Euclidean space.
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𝒜bstract
This dissertation looks into a certain type of stochastic linear quadratic dynamic decisionproblems that are different from the usual Bellman optimality principle because they aretime inconsistent. Since general discounting coefficients and quadratic terms are used inboth the running and terminal costs, the situation is time inconsistent. We use the stochasticmaximum principle to choose open-loop Nash equilibrium controls over standard optimalcontrols. We make plans for equilibrium by using a flow of forward-backward stochasticdifferential equations with a maximum condition. We get an explicit representations ofequilibrium strategies in feedback form by separating the flow of the adjoint process. Thismethod is important because it gives both necessary and sufficient conditions for describingequilibrium strategies. This is different from works that was based on dynamic program-ming and extended Hamilton-Jacobi-Bellman equations, which mostly only gave sufficientconditions.
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ℛésumé
Cette thèse examine un certain type de problèmes de décision dynamique linéaire quadra-tique stochastique qui diffèrent du principe d’optimalité de Bellman habituel car ils sont in-consistants dans le temps. En raison de l’utilisation de coefficients d’actualisation générauxet de termes quadratiques dans les coûts courants et terminaux, la situation devient incon-sistante dans le temps. Nous utilisons le principe du maximum stochastique pour choisirdes contrôles d’équilibre de Nash en boucle ouverte plutôt que des contrôles optimaux stan-dards.Pour planifier l’équilibre, nous utilisons un flux d’équations différentielles stochastiquesprogressive rétrograde avec une condition de maximum. Nous obtenons des représentationsexplicites des stratégies d’équilibre sous forme de rétroaction en séparant le flux du proces-sus adjoint. Cette méthode est importante car elle fournit des conditions à la fois nécessaireset suffisantes pour décrire les stratégies d’équilibre. Cela diffère des travaux basés sur laprogrammation dynamique et les équations étendues de Hamilton-Jacobi-Bellman, qui nefournissaient généralement que des conditions suffisantes.
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