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Introduction

Linear programming (LP) is considered one of the most significant advancements

in economic theory after World War II, rapidly developing through the combined

efforts of mathematicians, business leaders, military commanders, statisticians, and

economists. It is often cited as one of the greatest successes of operations research.

In essence, a linear program involves optimizing (maximizing or minimizing) a linear

function of several variables, subject to linear constraints. When Klee and Minty

(1972) discovered an example showing that the simplex method could require an

exponential number of iterations, the search for a polynomial algorithm for linear

programming was launched. Khachiyan provided an answer in 1979 by showing that

the ellipsoid method, developed in the early 1970s for nonlinear programming, had

an overall complexity of when applied to linear programming.

In 1984, Karmarkar presented a polynomial algorithm with an efficient complexity

in practice, based on an interior-point method. Interest in these methods, primarily

developed since the 1960s by Dikin (1967) and Fiacco and McCormik (1968), has seen

a revival for nonlinear problems and opened up a new domain for linear problems.

Interior-point methods have proven effective for large-scale optimization problems

due to their polynomial nature. Den Herty (1994) classified interior-point methods

into three categories: affine methods, potential reduction methods, and central path

methods.

Researchers have continued to refine these methods by developing new kernel func-
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Introduction

tions, such as those introduced by Peng et al. in 2001 and Bai et al. in 2004,

which have improved the algorithmic complexity of interior-point methods. More

recently, Bouafia et al. proposed a generalized kernel function in 2016, theoretically

and numerically demonstrating its superior efficiency for large-step methods based

on trigonometric kernel functions.

We present our work in 3 chapters:

Chapter 1: provides a foundation in convex analysis, crucial for understanding the

optimization landscape, including concepts such as convex sets and functions. It also

introduces basic optimization problem types and optimality conditions.

Chapter 2: it covers the general theory of linear optimization, duality, and the

simplex method before delving into the specifics of IPMs, including the primal, dual,

and primal-dual methods.

Chapter 3: introduces the Central Trajectory Method via Kernel Function, a novel

approach that enhances traditional IPMs by leveraging kernel functions. It discusses

the primal-dual method based on kernel functions, the qualifications of kernel func-

tions, the Newton direction, and a generic algorithm for implementation.

2



Chapter 1

Preliminaries and Fundamentals

1.1 Convex Analysis

1.1.1 Convex sets

Definition 1.1.1 A set C is convex if the line segment between any two points in

C lies in C, i.e. ∀x1, x2 ∈ C, ∀θ ∈ [0, 1]

θx1 + (1− θ)x2 ∈ C.

1.286800in4.800600in

Figure 1.1: Example of a convex set (left) and a non-convex set (right).

Simple examples of convex sets are:

• The empty set ∅, the singleton set {x0}, and the complete space Rn;

3
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• Lines {aTx = b}, line segments, hyperplanes {ATx = b}, and halfspaces {ATx ≤ b};

• Euclidian balls B(x0, ϵ) = {x|||x− x0||2 ≤ ϵ}.

We can generalize the definition of a convex set above from two points to any number

of points n. A convex combination of points x1, x2, . . . , xk ∈ C is any point of form

θ1x1 + θ2x2 + . . . + θkxk, where θi ≥ 0, i = 1...k,
k∑

i=1

θi = 1. Then, a set C is convex

if any convex combination of points in C is in C.

2.135200in4.926800in

Figure 1.2: (a) Representation of a convex set as the convex hull of a set of points.
(b) Representation of a convex set as the intersection of a (possibly infinite) number
of halfspaces.

We can take this even further to infinite countable sums: C convex if ∀xi ∈ C, θi ≥

0, i = 1, 2, . . . ,
∞∑
i=1

θi = 1 :

∞∑
i=1

θixi ∈ C,

if the series converges.

1.1.2 Convex functions

A convex function is a function defined on a convex domain such that, for any two

points in the domain, the segment between the two points lies above the function

curve between them. We will show below that this definition is closely connected to
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Chapter 1. Preliminaries and Fundamentals

the concept of a convex set: a function f is convex if and only if its epigraph, the set

of all points above the function graph, is a convex set. We restate these results more

precisely:

Definition 1.1.2 A function f : Rn → R is convex if dom(f) is a convex set and if

∀x, y ∈ dom(f), ∀θ ∈ [0, 1], we have:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

The epigraph of a function f : Rn → R is the set of points

epi(f) = {(x, t)|x ∈ dom(f), t ≥ f(x)}.

Lemma 1.1.1 The function f is convex if the set epi(f) is convex.

1.1.3 Convexity and Derivatives

Definition 1.1.3 Let f : U ⊂ E → F ⊂ R, with U an open subset of E ⊂ Rn and

a a point in U. We say that f is a differentiable function at a if there exists a linear

map L ∈ L(E,F ) such that

lim
x→a

∥f(x)− f(a)− L(x− a)∥F
∥x− a∥E

= 0.

The map L is then unique and is called the differential of f at a, denoted by df(a).

Definition 1.1.4 We say that f is twice differentiable at a if f is differentiable on

a neighborhood of a, and if df is itself differentiable at a.

We say that f is twice differentiable on U if f is twice differentiable at every point

in U.

5
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Definition 1.1.5 Let f be a differentiable function at every point in U ⊂ C ⊂ Rn.

We can consider the mapping

df : U → L(E,F )

x → df(x).

If df is continuous on U, we say that f is continuously differentiable on U, or alter-

natively, that f is of class C1 on U.

Definition 1.1.6 Let f : Rn → R be a continuously differentiable function, its

gradient at the point x is expressed as

∇f(x) =



∂f
∂x1

(x)

∂f
∂x2

(x)

...

∂f
∂xn

(x)


.

Definition 1.1.7 Let U be an open set in Rn, and f, be a function twice differ-

entiable at a, where all second-order partial derivatives are defined at a. Then the

matrix

Hess(a) =



∂2f
∂2x1

(a) ∂2f
∂x1∂x2

(a) · · · ∂2f
∂x1∂xn

(a)

∂2f
∂x2∂x1

(a) ∂2f
∂2x2

(a) · · · ∂2f
∂x2∂xn

(a)

...
...

. . .
...

∂2f
∂xn∂x1

(a) ∂2f
∂xn∂x2

(a) . . . ∂2f
∂2xn

(a)


,

is called the hessian matrix of f at a.

Proposition 1.1.1 Let f : Rn → R be a function that is twice continuously differ-

entiable over a convex domain C.

1. f is a convex function on C if and only if the hessian matrix is positive semi-
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Chapter 1. Preliminaries and Fundamentals

definite, i.e.,

∀x ∈ C, yTHess(x)y ⩾ 0, ∀y ∈ Rn.

2. f is a strictly convex function on C if and only if the hessian matrix is positive

definite.

∀x ∈ C, yTHess(x)y > 0, ∀y ∈ Rn /{0} .

Definition 1.1.8 A function f is said to be coercive on a convex set C if

lim
∥x∥→+∞

f(x)

∥x∥
= +∞, ∀x ∈ C.

1.2 Optimizations Problems

Optimization problems are a fundamental concept in mathematics and are used to

solve a wide range of problems in various fields, including economics, engineering,

and computer science. The goal of optimization is to find the best solution among a

set of possible solutions

1.2.1 Basic concepts

In optimization problems, we seek to find the value of the independent variable(s)

that minimizes or maximizes a function, subject to certain constraints. The objec-

tive function is the function that we want to optimize, and the constraints are the

limitations that the solution must satisfy. The objective function can be either a

linear or nonlinear function, and the constraints can be either equality or inequality

constraints.

Let (x1, x2, ..., xn) be a vector of n variables, and let f(x) be the objective function.

The optimization problem can be written as: Minimize/Maximize f(x) Subject to:

gi(x) ≤ 0, i = 1, ...,m (inequality constraints) hj(x) = 0, j = 1, ..., p (equality

7



Chapter 1. Preliminaries and Fundamentals

constraints) where gi(x) and hj(x) are functions that define the constraints.

1.2.2 Types of optimization problems

There are several types of optimization problems, each with its own unique charac-

teristics and solution techniques.

Unconstrained Optimization Problems

Unconstrained optimization problems are optimization problems where there are no

constraints. The goal is to find the minimum or maximum value of the objective

function without any restrictions.

Example: Find the minimum value of the function f(x) = x2 + 2x+ 1.

Constrained Optimization Problems

Constrained optimization problems are optimization problems where there are con-

straints. The goal is to find the minimum or maximum value of the objective function

subject to the constraints.

Example : Find the minimum value of the function f(x) = x2 + 2x+ 1. subjected

to x ≤ 0.

Linear Programming Problems

Linear programming problems are a type of constrained optimization problem where

both the objective function and the constraints are linear functions.

• Linear Programming (LP): Minimize or maximize a linear function subject

to linear constraints. The linear programming problem can be written as:

8



Chapter 1. Preliminaries and Fundamentals

Minimize/Maximize cTx Subject to: Ax ≤ b, x ≥ 0, where c is a vector of

coefficients, A is a matrix of coefficients, b is a vector of constants, and x is a

vector of variables.

Example: Maximize z = 2x+ 3y subject to x+ y ≤ 10, x ≥ 0, y ≥ 0

• Quadratic Programming (QP):Minimize or maximize a quadratic function

subject to linear constraints. The quadratic programming problem can be

written as: Minimize/Maximize xTQx+ cTx Subject to: Ax ≤ b, x ≥ 0, where

Q is a matrix of coefficients, c is a vector of coefficients, A is a matrix of

coefficients, b is a vector of constants, and x is a vector of variables.

Example: Minimize z = x2 + y2 subject to x+ y ≤ 5, x ≥ 0, y ≥ 0

Non-Linear Programming (NLP )

Minimize or maximize a non-linear function subject to non-linear constraints. The

non-linear programming problem can be written as: Minimize/Maximize f(x) Sub-

ject to: gi(x) ≤ 0, i = 1, ...,m (inequality constraints), hj(x) = 0, j = 1, ..., p

(equality constraints), where f(x) is the objective function, and gi(x) and hj(x) are

functions that define the constraints.

Example: Minimize z = x3 + y2 subject to x2 + y2 ≤ 4, x ≥ 0, y ≥ 0

1.2.3 Optimilaty conditions

Optimality conditions are used to determine whether a given solution is optimal or

not. There are several types of optimality conditions, including:

First-Order Optimality Conditions

The first-order optimality condition states that a necessary condition for a solution

to be optimal is that the gradient of the objective function with respect to the
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variable(s) being optimized is equal to zero at that point. Formally, let f(x) be the

objective function and let x∗ be a candidate solution. Then, x∗ is a local minimizer

(or maximizer) if: ∇f(x∗) = 0. where ∇f(x) is the gradient of f(x).

Second-Order Optimality Conditions

The second-order optimality condition states that a necessary condition for a solu-

tion to be optimal is that the Hessian matrix of the objective function with respect

to the variable(s) being optimized is positive semi-definite (PSD) at that point. For-

mally, let f(x) be the objective function and let x∗ be a candidate solution. Then,

x∗ is a local minimizer (or maximizer) if: Hess(f)(x∗) ≥ 0, where Hess(f)(x∗) is

the Hessian matrix of f(x) at x∗.

10



Chapter 2

Interior Point Methods for Linear

Optimization

2.1 Linear Optimization

A linear program (LP) is an optimization problem that involves maximizing (or

minimizing) a linear objective function of n decision variables subject to a set of

constraints expressed as linear equations or inequalities.

Definition 2.1.1 A linear program is defined as a mathematical program where the

objective function is linear and the set of constraints is affine.

Mathematical notation: There are three forms to express a linear program:

1. Canonical form: 
min
x∈Rn

ctx, 0 ̸= c ∈ Rn (given vector),

Ax ≥ b, A (m× n)−matrix, (given),

x ≥ 0, variable

11
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2. Standard form:  minx c
tx,

Ax = b, x ≥ 0.

3. General form: 

minx c
tx,

Ax ≤ b,

Bx ≥ b′,

B (p× n)−matrix, b′ ∈ Rn.

2.1.1 Duality in Linear Optimization

Consider a linear program in the following standard form

 minx c
tx,

Ax = b, x ≥ 0,
(P )

where A is an (m× n) matrix, b ∈ Rm, c ∈ Rn.

Obviously, any (LP) can be easily converted to this form.

The dual of (P ) is defined by


max

(y,z)∈Rm×Rn
bty,

Aty + z = c,

z ≥ 0, y ∈ Rm.

(D)

We will denote

F(P ) = {x ∈ Rn : Ax = b, x ≥ 0},

F0
(P ) = {x ∈ Rn : Ax = b, x > 0},

12
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and

F(D) = {(y, z) ∈ Rm+n : Aty + z = c, z ≥ 0},

F0
(D) = {(y, z) ∈ Rm+n : Aty + z = c, z > 0},

the sets of feasible and strictly feasible solutions of the two problems of (P ) and (D)

respectively.

Theorem 2.1.1 (Weak duality) Weak duality states that the optimal value of the

primal problem is greater than or equal to the optimal value of the dual problem.

ctx ≥ bty, ∀ x is a feasible for (

P), ∀ y is a feasible for (D).

Theorem 2.1.2 (Strong duality) Strong duality states that the optimal value of

the primal problem is equal to the optimal value of the dual problem.

If x ∈ F(P ) and (y, z) ∈ F(D), where ctx = bty, so x, and (y, z) are optimal solutions

for (P) and (D), respectively.

Theorem 2.1.3 (The complementary slackness theorem) States that for fea-

sible, primal, and dual solutions x and y, respectively z = c−Aty, the vector of slack

variables associated with y, so x and (y, z) are optimal if xizi = 0, ∀i = 1, ..., n.

Theorem 2.1.4 • If one of the problems (P) and (D) has a finite optimal solution,

the same is true for the other, and their corresponding optimal values are equal.

• If one of the problems has an unbounded optimal value, the other has no optimal

solution

If B is a basis of A i.e B is a sub-matrix formed by m linearly independent columns

13



Chapter 2. Interior Point Methods for Linear Optimization

of A., then we introduce these definitions:

• The basic solution associated with B is the point x = (xB, xN) ∈ Rn, such that:

xB = B−1b, xN = 0.

• A basic solution that satisfies xB ≥ 0 is considered a feasible basic solution.

• A point x is a vertex of F(P ) if and only if it is a feasible basic solution.

• A vertex is non-degenerate if xB > 0, and degenerate otherwise (if at least one

component of xB is zero).

2.1.2 Simplex Method

It was developed in the late 1947s by G. Dantzig. It systematically takes into

account previously established results. It evolves on the boundary of the feasible

region from one adjacent vertex to another, reducing the objective value to the

optimum. A simple optimality criterion allows for the recognition of the optimal

vertex. Since the number of vertices is finite, the algorithm thus defined converges

in a finite number of iterations not exceeding the number Cm
n = n!

m!(n−m)!
, assuming

that all visited vertices are non-degenerate.

In the degenerate case, the algorithm may cycle, but there are suitable techniques to

avoid this phenomenon. In general, the simplex method exhibits a very satisfactory

numerical behavior, confirmed by its numerous applications in solving a wide class

of practical problems. In theory, the method is not as successful, as it is considered

inefficient due to its exponential arithmetic complexity, which is of the order of

O(2n) operations. The Simplex Method is a popular algorithm for solving linear

programming problems. It is based on the following steps:

Convert the linear programming problem into standard form by adding slack vari-

ables. Construct the initial tableau by rewriting the problem constraints in matrix

14
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form. Use the simplex method to find the optimal solution.

Step 1: Converting the Problem to Standard Form

Given a linear programming problem:

Maximize/Minimize z = cTx Subject to Ax ≤ b x ≥ 0

where A is a matrix of coefficients, b is a vector of constants, and c is a vector of

coefficients. To convert the problem to standard form, we add slack variables to the

constraints. Let x0 be the slack variable for each constraint. The standard form is:

Maximize/Minimize z = cTx Subject to Ax+ x0 = b x, x0 ≥ 0

where x0 is the slack variable.

Step 2: Constructing the Initial Table

The initial table is constructed by rewriting the problem constraints in matrix form.

Let A be a matrix of coefficients, b be a vector of constants, and x0 be the slack

variable. The initial tableau is:

A b

x0 I 0

x −A c

where I is the identity matrix.

15
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Step 3: Using the Simplex Method

The simplex method uses the following steps to find the optimal solution:

Find an initial basic feasible solution. Check if the current solution is optimal. If

not, pivot and repeat step 2 until an optimal solution is found. An initial basic

feasible solution is a solution that satisfies all constraints and has a non-zero value

for at least one decision variable.

To check if the current solution is optimal, we use the following conditions:

If the current solution is feasible and satisfies all constraints, it is optimal. If the

current solution is not feasible, it is not optimal. To pivot, we select a column with

a positive reduced cost and pivot on that column.

Here is an illustration example:

Consider the following linear programming problem:

Maximize z = 2x1 + 3x2

Subject to x1 + x2 ≤ 4

2x1 + x2 ≤ 6

x1, x2 ≥ 0

We convert the problem to standard form by adding slack variables:

Maximize z = 2x1 + 3x2

Subject to x1 + x2 + x3 = 4

2x1 + x2 + x4 = 6

x1, x2, x3, x4 ≥ 0

16
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We construct the initial tableau:

A b

x3 1 −4

x4 2 −6

x1 1 0

x2 1 0

We find an initial basic feasible solution by setting all non-basic variables to zero.

The current solution is: x1 = x2 = x3 = 0. The reduced cost of each variable is

calculated as follows: rj = cj − cTBAj, where cj is the coefficient of variable j, cTB is

the transpose of the coefficient vector of the basic variables, and Aj is the column of

matrix A corresponding to variable j.

The reduced cost of each variable is:

rx1 = 2− (−4) = −2

rx2 = 3− (−4) = 7

rx3 = −4− (−4) = 0

rx4 = −6− (−4) = −2

We select column x2 with a positive reduced cost and pivot on that column.

The new tableau is:

17



Chapter 2. Interior Point Methods for Linear Optimization

A b

x3 1 −4

x4 2 −6

x1 0 8

x2 −7 −14

We repeat step 3 until an optimal solution is found. The final solution is: x⋆ = (2, 2)

The optimal value of the objective function is:

z⋆ = (2)(2) + (3)(2) = 8 + 6 = 14

This concludes our illustration example of the Simplex Method for Linear Program-

ming.

2.2 Interior Point Method

The Interior Point Method (IPM) is a popular algorithm for solving linear program-

ming problems. It is based on the concept of moving from an interior feasible solution

to the optimal solution by iteratively improving the objective function. The IPM

starts by solving a relaxed problem, which is a linear programming problem with a

perturbation of the constraints. The solution to this relaxed problem is then used

to generate a new iterate, which is closer to the optimal solution. This process is

repeated until the optimal solution is reached.

The IPM has several advantages over other linear programming methods, such as

the Simplex Method. It is more robust and can handle degenerate problems, and it

can solve problems with a large number of variables and constraints. The IPM also

has a faster convergence rate than other methods, making it more efficient.

18



Chapter 2. Interior Point Methods for Linear Optimization

2.2.1 Approach for Interior Point Method

Let us set once and for all the following assumptions

(H1) Sint is non-empty,

(H2) Tint is non-empty,

(H3) A is full rank (rg(A) = m < n)

with

Sint = {x ∈ Rn
+ : Ax = b, x > 0},

Tint = {(y, s) ∈ Rm × Rn
+ : ATy + s = c}.

• These assumptions are necessary for the existence of feasible solutions.

2.2.2 Primal Method

the standard linear program (P) is formulated as:

(P )


min cTx, 0 ̸= c ∈ Rn (given vector),

Ax = b, A (m× n)−matrix, (given),

x ≥ 0.

Many of the new interior point methods can be seen as variants of Frisch’s logarithmic

barrier methods (1955).

Indeed, to problem (P) we associate the following nonlinear problem:

(Pµ)


min cTx− µ

n∑
i=1

lnxi = fµ(x),

Ax = b,

x > 0.

19
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The objective fµ of Pµ is called the logarithmic barrier function, and µ > 0 denotes

the barrier parameter.

The solution of (Pµ) is equivalent to that of (P) in the sense that if x∗
µ is an optimal

solution of (Pµ), then x∗ = lim
µ→0

x∗(µ) is an optimal solution of (P). It is therefore

sufficient to solve (Pµ).

Proposition 2.2.1 Under assumption (H1), for all µ > 0, the set of optimal solu-

tions of (P) is non-empty and bounded.

Proof. The constraints of (Pµ) are linear, and the objective function fµ is strictly

convex since f”(x) = µX−2 is positive definite. Therefore, if the solution exists, it is

unique, global, and completely characterized by the KKT, i.e., x optimality if and

only if ∃y ∈ Rm such that


c− µX−1e− ATy = 0,

Ax = b,

x > 0.

(2.1)

The duality jump is defined by

cTx− bTy = µxTX−1e = nµ

Therefore, as µ tends to zero, cTx and bTy converge to the same optimal value.

Consequently, x and y are optimal solutions of (P) and (D) respectively.

Technical Description

Following the principle of feasible point methods (TC), the nonlinear system 2.1 will

be solved using the Newton method. This can be justified by the magnificent results
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obtained theoretically and by the numerical subtleties offered by this method.

Thus, we limit ourselves to seeking approximate solutions along the central trajectory

by forming a decreasing sequence {µk = (xk)T sk

n
} converging to zero.

More precisely, it is a matter of solving the system F (x, y) = 0 such that

F (x, y) =

 c− µX−1e− ATy

Ax− b

 .

Or, x+ = x+α∆x, y+ = y+∆y, with α > 0, is a displacement introduced to ensure

x+ > 0, and ∆w = (∆x,∆y) is a solution of the linear system

DF (x, y)∆w = −F (x, y), (2.2)

With DF (x, y) being the Jacobian matrix of F at the point (x, y), given by:

DF (x, y) =

 µX−2 −AT

A 0

 .

According to 2.2, we obtain the system:

 µX−2 −AT

A 0


 ∆x

∆y

 =

(
−(c− µX−1e− ATy)

0

)
.

We change µ (µ̂ = σµ, 0 < σ < 1) and iterate until optimality.

The algorithm corresponding to this version can be written as follows:

Algorithm of the primal (TC) method

In this part, we present the prototype algorithm of the primal (TC) method.
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Algorithm start

• Find X0 ∈ Sint, y
0 ∈ Rm, µ0 > 0, k = 0,

• While the optimality test is not satisfied (cTx− bTy > ϵ) do

1. Solve the following linear system

 µk(Xk)−2 −AT

A 0


 ∆xk

∆yk

 =

(
−(c− µk(Xk)−1e− ATyk)

0

)
.

2. Find 0 < α ≤ 1/xk+1 = xk + α∆xk > 0;

3. yk+1 = yk +∆yk > 0;

4. µk+1 = σµk, 0 < σ < 1;

5. k = k + 1;

End while

End Algorithm

2.2.3 Dual Method

Let’s consider the standard linear program (D)

(D)


max bTy

ATy + s = c,

s ≥ 0
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to which we associate the following barrier problem

(Dµ)


max bTy − µ

n∑
i=1

ln si

ATy + s = c,

s > 0,

with, A ∈ Rm×n, b ∈ Rm et c ∈ Rn.

Technical Description

Applying the same techniques used in the primal version, we obtain the following

nonlinear system: 

ATy + s− c = 0,

Ax− b = 0,

µS−1e− x = 0,

s > 0, x > 0.

(2.3)

We solve it using the Newton method starting from a point x ∈ Rn
++ and (y, s) ∈ Tint.

The new iterate is given by:

x+ = x+ α∆x, y+ = y +∆y, s+ = s+ α∆s,

with, α > 0 is the displacement step introduced to maintain the strict positivity of

x+ and s+ (e.i, x+ = x+ α∆x > 0, s+ = s+ α∆s > 0).

Algorithm of the dual (TC) method

The prototype algorithm of this version is written as follows:

Algorithm start

• Choose x0 ∈ Rn
++, µ0 > 0 and find (y0, s0) ∈ Tint, k = 0;
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While the optimality test is not satisfied, do

1. Solve the following linear system


A 0 0

0 AT I

−I 0 µ(Sk)−2




∆xk

∆yk

∆sk

 =


−Axk + b

0

−µ(Sk)−1e+ xk



2. Find 0 < α ≤ 1/xk+1 = xk + α∆xk > 0 and sk+1 = sk + α∆sk > 0;

3. xk+1 = x+, sk+1 = s+, yk+1 = yk +∆yk > 0;

4. µk+1 = σµk, 0 < σ < 1;

5. k = k + 1;

2.2.4 Primal-Dual Method

The primal-dual path-following methods were introduced in the early 1990s. They

have attracted a great deal of attention from researchers worldwide and have gener-

ally shown excellent practical and theoretical behavior (polynomial complexity and

superlinear convergence).

Technical Description

The primal-dual path-following methods are based on solving the following nonlinear

system: 

ATy + s− c = 0,

Ax− b = 0

XSe− µe = 0,

s > 0, x > 0,

(2.4)
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which can be obtained by combining the primal nonlinear system 2.2 and the dual

nonlinear system 2.3. The system has a unique solution if and only if assumptions

(H1) and (H2) are simultaneously satisfied.

Clearly, the system 2.4 is more suitable for numerical treatment than the systems 2.1

and 2.3 (it is less nonlinear). Therefore, the primal-dual version is more interesting

than the two previous versions for the following reasons:

• The theoretical results are more consistent.

• The algorithms are more efficient in practice.

Now, we will solve the system 2.4 using the Newton method, i.e., for each µ > 0, we

solve the following linear system:

DF (x, y, s)∆w = −F (x, y, s),

with

F (x, y, s) =


ATy + s− c

Ax− b

Xs− µ̂e

 , µ̂ = σµ, 0 < σ < 1.

DF (x, y, s) denotes the Jacobian matrix of F at the point (x, y, s) and ∆w denotes

the Newton direction.

Through simple calculations, we can solve the following linear system:


S∆x+X∆s = Xs− µ̂e,

A∆x = 0,

AT∆y +∆s = 0.
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where its solution is

∆x = [S−1 − S−1XAT (AS−1XAT )AS−1](Xs− µ̂e),

∆y = [(AS−1XAT )−1AS−1](Xs− µ̂e),

∆s = −A∆y.

The new iterate is expressed in the form

(x+, y+, s+) = (x, y, s) + α(∆x,∆y,∆s),

iterate until obtain a value µ̂ sufficiently close to zero. Positivity procedure:

We know that the new iterate must be positive, i.e.,

x+ = x+ α∆x > 0, (2.5)

s+ = s+ α∆s > 0, (2.6)

from 2.5, we have

α∆x > −x.

This is equivalent to

α = α1 =

 min( −xi

(∆x)i
), si I0 ̸= ∅,

+∞, si I0 = ∅,

such that

I0 = {i : ∆xi < 0, i = 1, ..., n}.

Similarly for 2.6, we’ve

α∆s > −s.
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This is equivalent to

α = α2 =

 min( −si
(∆s)i

), si I1 ̸= ∅,

+∞, si I1 = ∅,

such that

I0 = {i : ∆si < 0, i = 1, ..., n}.

Then, it suffices to take the following displacement step:

α = ρmin(α1, α2), 0 < ρ < 1.

Centrality Factor

To measure the quality of a found solution, we introduce a so-called ”centrality”

factor defined by the scalar∥XSe− µe∥

In this regard, a point is said to be a neighbor of the central trajectory if it belongs

to the following set:

Scent(σ) = {(x, y, s) ∈ Sint × Tint : ∥XSe− µe∥ ≤ σµ, µ > 0}.

Assumptions: Let δ and σ be two constants such that

0 ≤ σ < 1/2 et 0 < δ <
√
n, (2.7)

σ2δ2

2(1−σ)
≤ σ(1− δ√

n
). (2.8)

These assumptions allow, in particular, to maintain x > 0 and s > 0 during the

iterations while keeping the found solution always close to the trajectory.
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Algorithm of the primal-dual (TC) method

In this section, we present the algorithm of the primal-dual (TC) method, and then

we give some results that are used for the study of convergence and arithmetic

complexity for this version.

Algorithm start

Data: let ϵ > 0 be a precision parameter, δ and σ be two constants satisfying 2.7

and 2.8,

Initialization (x0, y0, s0) ∈ Scent(σ), such that µ0 =
(x0)T s0

n
(major difficulty), k = 0;

While (xk)T sk ≥ ϵ do

1. Take µk+1 = µk(1− δ√
n
);

2. calculate
∆x = [(Sk)−1 − (Sk)−1XkAT (A(Sk)−1XkAT )AS−1](XkSke− µk+1e),

∆y = [−(A(Sk)−1XkAT )−1A(Sk)−1](XkSke− µk+1e),

∆s = −AT∆yk;

3. Set α = ρmin(αk
1, α

k
2), 0 < ρ < 1;

4. Find

xk+1 = xk +∆xk,

sk+1 = sk +∆sk,

yk+1 = yk +∆yk;

5. k = k + 1;

End while
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End Algorithm
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Central Trajectory Method via

Kernel Function

3.1 Primal-dual method based on kernel functions

Let’s recall that the primal-dual central trajectory methods are based on the following

principles:

• We associate the primal problem (P) with the perturbed problem (Pµ).

• By applying the Karush-Kuhn-Tucker (KKT) conditions to the latter, we obtain

the following nonlinear system



ATy + s− c = 0,

Ax− b = 0

XSe− µe = 0,

s > 0, x > 0,

(3.1)

Where we assume that the sets Sint and Tint are non-empty. This condition is also

called the interior point condition (IPC). Under this condition (IPC), the system 3.1
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has a unique solution (x(µ), y(µ), s(µ)) for each µ > 0.

• We solve the system 3.1 using the Newton method, which involves finding the

direction ∆w = (∆x,∆y,∆s) by solving the following linear system.


A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs.

(3.2)

The Newton iteration is written as follows:

x+ = x+ α∆x, s+ = s+ α∆s, y+ = y + α∆y, (3.3)

where α is a positive parameter (α > 0) introduced in such a way as to maintain the

strict feasibility of the new iterates x+ and s+.

3.2 Kernel function and its qualification

In recent years, kernel functions have gained significant popularity. The utilization

of kernel functions has proven to be crucial and highly advantageous in various

domains of mathematical programming research. A kernel function based on IPMs is

considered one of the most effective approaches for conducting interior point analysis

and solving the LO linear optimization,

Definition 3.2.1 Let Ψ(t) : R++ → R+ be a function twice continuously differen-

tiable. Then Ψ is called a kernel function, if it satisfies the following conditions:

1. Ψ′(1) = Ψ(1) = 0,

2. Ψ”(t) > 0,
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3. lim
t→0+

Ψ(t) = lim
t→+∞

Ψ(t) = +∞.

The first two conditions show that Ψ is strictly convex and minimal at 1 with

Ψ(1) = 0, implying that Ψ(t) can be written as follows

Ψ(t) =

∫ t

1

(

∫ x

1

Ψ”(y)dy)dx. (3.4)

Condition (3) indicates that Ψ is a barrier function.

Lemma 3.2.1 Let Ψ(t) be a twice-differentiable function, then the following

properties are equivalent:

(a) Ψ(
√
t1t2) ≤ Ψ(t1)+Ψ(t2)

2
, for all t1, t2 > 0.

(b) tΨ”(t) + Ψ′(t) ≥ 0, t > 0.

(c) Ψ(eϵ) is convex.

In the following table, we provide the different known kernel functions in the litera-

ture [1, 5, 2] and the complexity of their algorithm for small- and large-step interior

point methods
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Kernel function algorithmic complexity algorithmic complexity

Ψi(t) Small step large step

1 1
2
(t2 − 1)− logt O(

√
n log n

ϵ
) O(n log n

ϵ
)

2 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q(q−1)

(t− 1), q > 1 O(q
√
n log n

ϵ
) O(qn

q+1
2q log n

ϵ
)

3 t2−1
2

+ (e−1)2

e
1

e−1
− e−1

e
O(

√
n log n

ϵ
) O(n3/4 log n

ϵ
)

4 1
2
(t2 − 1

t
)2 O(

√
n log n

ϵ
) O(n2/4 log n

ϵ
)

5 t2−1
2

+ e
1

t−1 − 1 O(
√
n log n

ϵ
) O(

√
n(log n)2 log n

ϵ
)

6 t2−1
2

−
∫ t

1
e

1
ξ dξ O(

√
n log n

ϵ
) O(

√
n log2 n log n

ϵ
)

7 t2−1
2

+ t1−q−1
q−1

, q > 1 O(q2
√
n log n

ϵ
) O(qn

q+1
2q log n

ϵ
)

8 t− 1 + t1−q−1
q−1

, q > 1 O(q2
√
n log n

ϵ
) O(q log2 n log n

ϵ
)

9 t1−p−1
p−1

− log t, p ∈ [0, 1] O(
√
n log n

ϵ
) O(n log n

ϵ
)

10 t1−p−1
p−1

+ t1−q−1
q−1

, p ∈ [0, 1], q > 1 O(
√
n log n

ϵ
) O(qn

q+p
q(1+p) log n

ϵ
)

11 t2 − 1 + t1−q−1
q−1

− log t, p > 1, q > 1 O(
√
n log n

ϵ
) O(qn

q+1
2q log n

ϵ
)

12 (m+ 1)t2 − (m+ 2)t+ 1
tm
,m > 4 O(q2

√
n log n

ϵ
) O(m

2m+1
2m log n

ϵ
)

13 t2 − 2t+ 1
sin( πt

1+t
)
, t > 0 O(

√
n log n

ϵ
) O(n3/4 log n

ϵ
)

14 t2−1
2

+ 4
πp
[tanp h(t)− 1], t > 0 O(p2

√
n log n

ϵ
) O(pn

p+2
2(p+1) log n

ϵ
)

Table 3.1: Different known kernel functions.

In the following, we use the kernel function proposed by Bouafia and others [2] as

follows

Ψ(t) =
t2 − 1

2
+

4

πp
[tanp h(t)− 1], h(t) =

π

2t+ 2
, p ≥ 2. (3.5)

3.2.1 Properties of the Bouafia kernel function

In this section, we study properties of the Bouafia function with trigonometric barrier

terms, which are essential for the analysis of algorithmic complexity.
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Now, we give the first three derivatives of this kernel function

Ψ′(t) = t+
4

π
sec 2h(t)(tanp−1 h(t))h′(t), (3.6)

Ψ”(t) = 1 +
4

π
sec 2h(t)


 (p− 1) tanp−2 h(t)+

(p+ 1) tanp h(t)

 (h′(t))2+

[tanp−1 h(t)]h”(t)

 , (3.7)

Ψ′′′(t) =
4

π
sec 2h(t)




(p− 1)(p− 2) tanp−3 h(t)+

2p2 tanp−1 h(t)+

(p+ 1)(p+ 2) tanp+1 h(t)

 (h′(t))3+

 3(p− 1) tanp−2 h(t)+

3(p+ 1) tanp h(t)

h”(t)h′(t)+

[tanp−1 h(t)]h′′′(t)


, (3.8)

with,

h′(t) =
−π

2(t+ 1)2
, h”(t) =

π

(t+ 1)3
, h′′′(t) =

−3π

(t+ 1)4
, (3.9)

and

sech(t) =
1

cosh(t)
.

Lemma 3.2.2 For h(t) defined in 3.5 and p ≥ 1, we have the following properties:

0 < h(t) <
π

2
, t > 0. (3.10)

tanh(t) > 0, t > 0. (3.11)

tanh(t)− 2

(p+ 1)πt
> 0, t > 0. (3.12)

Proof. For 3.10, as long as h(t) is a decreasing function in the interval ]0,+∞[ and
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lim
t→0+

h(t) = π
2
, lim
t→+∞

h(t) = 0, so we have

0 < h(t) <
π

2
, t > 0.

3.11 is an immediate consequence of 3.10.

To prove 3.12, we define the function g as follows:

g(t) = tanh(t)− 2

(p+ 1)πt
,

The first derivative of g is given by:

g′(t) =
h′(t)

cos2 h(t)
+

2

(p+ 1)πt
=

(p+ 1)πt2h′(t) + 2 cos2 h(t)

(p+ 1)πt2 cos2 h(t)
.

We know that sin(π
2
− h(t)) = cosh(t) and sin(π

2
− h(t)) ≤ π

2
− h(t) and by using

3.10, it follows that:

g′(t) =
(p+ 1)πt2h′(t) + 2 cos2 π

2

(p+ 1)πt2 cos2 h(t)
,

=
(p+ 1)πt2h′(t) + 2 sin2(π

2
− h(t))

(p+ 1)πt2 cos2 h(t)
,

≤
(p+ 1)πt2h′(t) + 2(π

2
− h(t))2

(p+ 1)πt2 cos2 h(t)
,

=

−(p+1)π2t2

2(t+1)2
+ 2(π

2

4
− 2π

2
π

2t+2
+ π2

4(t+1)2
)

(p+ 1)πt2 cos2 h(t)

=
−2pπ

(p+ 1) cos2 h(t)(2t+ 2)2
< 0

Therefore, g is a decreasing function in the interval ]0,+∞[ and since lim
t→+∞

g(t) = 0,

we arrive at 3.12.

This completes the proof.
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The following lemma is used to prove the efficiency of Bouafia kernel function 3.5.

Lemma 3.2.3 Let Ψ(t) be the kernel function defined in 3.5. Then, for all t > 0,

we have:

Ψ”(t) > 1. (3.13)

Ψ′′′(t) < 0. (3.14)

tΨ”(t)−Ψ′(t) > 0. (3.15)

tΨ”(t) + Ψ′(t) > 0. (3.16)

Proof. For 3.13, using 3.9 and 3.11 which implies that all terms in the expression

3.7 are positive, we get 3.13.

To prove 3.14, using 3.8, 3.9, and 3.11, we obtain, for all t < 0,Ψ′′′(t) < 0.

For 3.15, we use 3.6 and 3.7, we’ve for all t < 0,

tΨ”(t)−Ψ′(t) =
4

π
sec 2h(t)

 (h′(t)2[(p− 1) tanp−2 h(t) + (p+ 1) tanp h(t)]t+

h”(t)(tanp−1 h(t))t+ (tanp−1 h(t))(−h′(t))


Using 3.9 again for the last equality, all terms are positive, proving 3.15. For the

last inequality 3.16, using 3.6 and 3.7, we’ve

tΨ”(t) + Ψ′(t) = 2t+
4

π
sec 2h(t)


(h′(t)2[(p− 1) tanp−2 h(t)]t+

(tanp−1 h(t))

 (p+ 1)(h′(t)2 tanh(t)t+

h”(t)t+ h′(t)




with,

 (p+ 1)(h′(t)2 tanh(t)t+

h”(t)t+ h′(t)

 =
4π

(2t+ 2)4

 2t2+

π(p+ 1)t(tanh(t)− 2
(p+1)πt

 ,
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according to 3.12, the right-hand side of the above equality is positive, proving 3.16.

This completes the proof of this Lemma.

Lemma 3.2.4 Let Ψ(t) be the kernel function defined in 3.5, if Ψ(t) satisfies prop-

erties 3.13 and 3.15, then

Ψ”(t)Ψ′(βt)− βΨ′(t)Ψ”(βt) > 0,∀t > 1, ∀β > 1.

Lemma 3.2.5 for Ψ(t), the kernel function defined in 3.5, we have

1

2
(t− 1)2 ≤ Ψ(t) ≤ 1

2
[Ψ′(t)]2, t > 0. (3.17)

Ψ(t) ≤ (1 +
π

8
p)(t− 1)2, t > 1. (3.18)

Proof. For 3.17, using 3.13 in 3.4, we obtain,

Ψ(t) =
∫ t

1

∫ x

1
Ψ”(y)dydx ≥

∫ t

1

∫ x

1
dydx,

=
∫ t

1
(x− 1)dx,

= 1
2
[(x− 1)2]t1

= 1
2
(t− 1)2,

where the left-hand side of inequality 3.17. Comes from. Similarly, for the right-hand

side of this inequality, we find

Ψ(t) =
∫ t

1

∫ x

1
Ψ”(y)dydx ≤

∫ t

1

∫ x

1
Ψ”(y)Ψ”(x)dydx,

=
∫ t

1
Ψ”(x)[Ψ”(y)]x1dx,

=
∫ t

1
Ψ”(x)Ψ”(x)dx,

= 1
2
[Ψ′(t)]2.

For 3.18, we use the Taylor expansion at t = 1 with Ψ(1) = Ψ′(1) = 0,Ψ”(1) =
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(2 + π
4
p) and Ψ′′′(t) < 0 we obtain

Ψ(t) = Ψ(1) + Ψ′(1)(t− 1) +
Ψ”(1)

2
(t− 1)2 +

Ψ′′′(ξ)

6
(t− 1)3, 1 ≤ ξ ≤ t

=
Ψ”(1)

2
(t− 1)2 +

Ψ′′′(t)

6
(ξ − 1)3

≤
(2 + π

4
p)(t− 1)2

2

= (1 +
π

8
p)(t− 1)2.

Lemma 3.2.6 Let σ : [0,+∞[→ [1,+∞[ be the inverse function of the function

Ψ(t) for t ≥ 1 and ρ : [0,+∞[→]0, 1] be the inverse function of the function −1
2
Ψ′(t)

for t ∈]0, 1], then we have: 3.19

1 +

√
8

8 + πps
≤ σ(s) ≤ 1 +

√
2s, s ≥ 0, (3.19)

tanh(t) ≤ (4z + 2)
1

p+1 , z ≥ 0. (3.20)

Proof. For 3.19, let s = Ψ(t), according to 3.17, we have,

Ψ(t) ≥ 1

2
(t− 1)2,

which implies,

2s ≥ (t− 1)2, t ≥ 1,

then, for all t ≥ 1, we have,

t− 1 = |t− 1| ≤
√
2s,

where,

σ(s) = t ≤ 1 +
√
2s,
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On the other hand, and according to 3.18, we have,

s = Ψ(t) ≤ (1 +
π

8
p)(t− 1)2, t > 1,

which gives,

8s

(8 + πp)
≤ (t− 1)2,

which implies,

t− 1 = |t− 1| ≥
√

8

8 + πps
,

hence

t = σ(s) ≥ 1 +

√
8

8 + πps
.

For 3.20, let z = −1
2
Ψ′(t), t ∈]0, 1] be equivalent to,

2z = −Ψ′(t),

from 3.6, we find,

2z = −(t+
4

π
[1 + tan 2h(t)][tanp−1 h(t)]h′(t)),

which implies,

[1 + tan 2h(t)] tanp−1 h(t) =
−π(2z + t)

4h′(t)
≤ 2(2z + 1),∀t ∈]0, 1],

and since,

tanp+1 h(t) ≤ [1 + tan 2h(t)] tanp−1 h(t)

we find,

tanp+1 h(t) ≤ 2(2z + 1),
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hence,

tanh(t) ≤ (4z + 2)
1

p+1 , z ≥ 0

which completes the proof.

Lemma 3.2.7 Suppose Ψ(t1) = Ψ(t2) with t1 ≤ 1 ≤ t2 and β ≥ 1, then:

Ψ(βt1) ≤ Ψ(βt2).

The equality holds if and only if β = 1 or t1 = 1 = t2.

The following lemma is a very important lemma, which is valid for any kernel function

satisfying conditions 3.13 and 3.14.

Lemma 3.2.8 Let σ : [0,+∞[→ [1,+∞[ be the inverse function of the function Ψ,

t ≥ 1, then we have:

Φ(βv) ≤ nΨ(βσ(
Φ(v)

n
)), v ∈ R++, β ≥ 1.

Proof. For β > 1, we consider the following maximization problem:

max{Φ(βv) : Φ(v) = z,∀z > 0}.

The first-order optimality conditions (or the Lagrangian) give:

Φ(βv) + y(z − Φ(v)) = 0, (3.21)

where y > 0 is the Lagrange multiplier. By differentiating 3.21 with respect to v, we

obtain:

βΦ′(βv)− yΦ′(v) = 0,
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or equivalently:

β
n∑

i=1

Ψ′(βvi)− y

n∑
i=1

Ψ′(vi) = 0 ⇔
n∑

i=1

βΨ′(βvi)−
n∑

i=1

yΨ′(vi) = 0,

which is equivalent to:

βΨ′(βvi) = yΨ′(vi),∀i = 1, ..., n. (3.22)

Since Ψ′(t) = 0 and Ψ′(β) > 0 for all β > 1, then Ψ′(v) > 0.

So vi ̸= 1, for vi satisfies the constraints of problem 3.22, i.e., Ψ(v) = zi, for all

i = 1, ..., n, with zi given, we distinguish two types of values of vi

vi =

 v+i , si vi > 1,

v−i , si vi < 1,

so

v−i < 1 < v+i .

According to Lemma 3.2.7, we have:

Ψ(βv−i ) ≤ Ψ(βv+i )

so, we take:

vi = v+i > 1,∀i = 1, ..., n.

Since we have a maximization problem, equation 3.22 gives:

βΨ′(βvi) > 0 et yΨ′(vi) > 0, y > 0.
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Now, we define the function g as follows:

g(t) =
Ψ′(t)

Ψ′(βt)
, t ≥ 1,

from equation 3.22, we deduce that:

g(vi) =
β

y
,∀i = 1, ..., n.

So g is a constant function.

We derive g we obtain:

g′(t) =
Ψ”(t)Ψ′(βt)− βΨ′(t)Ψ”(βt)

(Ψ′(βt))2
,∀β > 1,∀t ≥ 1.

According to Lemma 3.2.4, we find that g′(t) > 0. So, g is a strictly increasing

function, hence all vi are equal.

Let vi = t, for all i = 1, ..., n, from the equality Ψ(µ) = z, we deduce that:

n∑
i=1

Ψ(t) = nΨ(t) ⇐⇒ Ψ(t) =
z

n
.

Since σ is the inverse function of the function Ψ, then t = σ( z
n
)

Φ(βv) ≤ maxΦ(βv) = Φ(βt) = nΨ(βt) = nΨ(βσ(
z

n
)) = nΨ(βσ(

Φ(v)

n
)),

so

Φ(βv) ≤ nΨ(βσ(
Φ(v)

n
)),∀β > 1.

The case β = 1 is evident since:

Φ(v)

n
= Ψ(σ(

Φ(v)

n
)).
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Which implies:

Φ(v) = nΨ(σ(
Φ(v)

n
)).

The following theorem allows us to obtain the estimation of Ψ after a µ update.

Theorem 3.2.1 Let 0 ≤ θ < 1, v+ = v/
√

(1− θ), if Φ(v) ≤ τ , then we have

Φ(v+) ≤
θn+ 2τ + 2

√
2τn

2(1− θ)
.

3.3 Newton direction

To facilitate the study of these methods, we need to define the vector v as follows:

v =

√
xs

µ
, xs = (x1s1, x2s2, ..., xnsn), (3.23)

where v is called ”the scaling vector.” Using 3.23, the system 3.1 can be rewritten

as follows:


Adx = 0,

AT∆y + ds = 0,

dx + ds = v−1 − v,

(3.24)

with

A =
1

µ
AV −1X, V = diag(v), X = diag(x),

and

dx =
v∆x

x
, ds =

v∆s

s
, (3.25)

dx and ds are called ”the scaled Newton directions”.

Note that the right-hand side of the third equation in 3.24 is equal to the negative
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gradient of the logarithmic barrier function Φ(v), i.e.,

dx + ds = −∇Φ(v).

In this case, 3.24 becomes:


Adx = 0,

AT∆y + ds = 0,

dx + ds = −∇Φ(v),

(3.26)

Where the barrier function Φ(v) is defined from Rn
++ to Rn

+ by

Φ(v) = Φ(x, s;µ) =
n∑

i=1

Ψc(vi), (3.27)

where Ψc is called the classic kernel function of the logarithmic barrier function Φ(v),

defined by

Ψc(t) =
t2 − 1

2
− log t.

Remark 3.3.1 If (dx,∆y, ds) is a solution of the system 3.26, then dx and ds are

orthogonal.

3.4 Generic algorithm

In this section, we replace the kernel function f of the logarithmic barrier function

Φ with a new function u, which is defined in the following part. Let’s assume that

τ ≥ 1. Then the algorithm proceeds as follows:

Assume we are given a strictly feasible point (x, y, s) that is in a τ−neighborhood

of a µ−center. Then, we decrease µ by a geometric sequence with ratio (1− θ), for

0 < θ < 1, and then solve the Newton system to obtain the descent direction.
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The positivity condition of a new iteration is ensured with the right choice of step

size, which is defined in the following part. This procedure is repeated until we find

a new iteration (x+, y+, s+) that is in a τ−neighborhood of the µ+−center. This

process is repeated until ,i.e., nµ ≤ ε.

The parameters τ, θ, and the step size α must be chosen such that the algorithm is

optimized in the sense that the number of required iterations is minimized.

The choice of parameter θ plays a very important role in the theory and practice of

IPMs. If θ is a constant independent of the problem’s dimension n, then we call

the algorithm a large step algorithm. And if θ depends on the problem’s dimension,

such as θ = 1√
n
then the algorithm is called a small step algorithm.

Algorithm The generic Primal-dual IPMs algorithm for linear optimization is given

as follows:

Initialization:

A threshold parameter 0 < τ < 1;

A precision parameter ε > 0;

A barrier parameter θ 0 < θ < 1;

A proximity function Φ(v);

Begin:

Let (x0, y0, s0) satisfy the IPC (an initial feasible solution) such as:

k = 0;µ0 = 1; v0 =
√

x0s0

µ0 ; Φ(x0, y0, s0) ≤ τ ;

While: nµ > ε do:

µk+1 = (1− θ)µk (outer iteration)

While: Φ(v) > τ do:

(inner iteration)

Solve the system 3.26 to determine (dx,∆y,∆s), then (∆x,∆y,∆s);
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Determine the feasible step size α;

Update:

x = x+ α∆x, y = y + α∆y, s = s+ α∆s,

v =

√
xs

µ
.

End While (inner iteration)

End While (outer iteration)

End Algorithm.
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Conclusion

Interior Point Methods for linear optimization problems have emerged as a powerful

tool in the field of optimization, offering efficient solutions to complex linear pro-

gramming problems. The historical development of IPMs showcases their evolution

from theoretical concepts to practical applications, highlighting their significance in

modern optimization theory.

This thesis has contributed to the understanding and advancement of IPMs for lin-

ear optimization problems by providing a comprehensive overview of their theoreti-

cal foundations and practical implementations. The exploration of convex analysis,

optimization concepts, and the simplex method has laid a solid foundation for un-

derstanding IPMs. The detailed discussion of the primal, dual, and primal-dual

methods has demonstrated the effectiveness of IPMs in solving linear optimization

problems efficiently.
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Annexe: Abreviations et Notations

ε : A precision parameter.

θ : A barrier parameter.

Φ(v) : A barrier function.

τ : A threshold parameter.

Ψc : The classic kernel function

dx, ds : The scaled Newton directions.

σ : The inverse function of the function Ψ.

KKT : The Karush-Kuhn-Tucker

IPC : Interior point condition

LP : Linear programming

IPMs : Interior point methods

Hess : The hessian matrix
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The dissertation addresses the importance of interior point methods in improving 
the performance of algorithms for solving linear optimization problems, as it 
highlights their development from theoretical concepts to practical applications 
and provides a comprehensive overview of the theoretical and applied 
foundations of these methods, confirming their efficiency in complex linear 
optimization problems, as it establishes a strong understanding of interior point 
methods. By initially addressing the concepts of convex analysis and the 
concepts of optimization and its types, and in the end, it sheds light on their 
development through central paths and Newtonian trends using the kernel 
function to improve its performance. 

 

 

الداخلية    النقطة  طرق  أهمية  المذكرة  التحسين  تتناول  مسائل  حل  خوارزميات  أداء  تحسين  في 
الخطية، حيث تبرز تطورها من المفاهيم النظرية الى التطبيقات العملية و تقدم نظرة شاملة على الأسس  

و التطبيقية لهذه الطرق مؤكدة كفاءتها في مسائل التحسين الخطي المعقدة، حيث ترسخ فهما قويا   النظرية
مفاهيم التحليل المحدب و مفاهيم التحسين و أنواعه  الى  التطرق في البداية  من خلال    الداخلية لطرق النقطة  

الدالة باستخدام  ها عن طريق المسارات المركزية و اتجاهات نيوتن  و في الختام تسلط الضوء على تطور 
  النواة في تحسين أدائها 

.   

  

Le mémoire aborde l'importance des méthodes de points intérieurs dans 
l'amélioration des performances des algorithmes de résolution de problèmes 
d'optimisation linéaire, car elle met en évidence leur développement des 
concepts théoriques aux applications pratiques et fournit un aperçu complet 
des fondements théoriques et appliqués de ces méthodes, confirmant leur 
efficacité dans des problèmes d'optimisation linéaire complexes, car il établit 
une solide compréhension des méthodes de points intérieurs. En abordant 
dans un premier temps les concepts d'analyse convexe et les concepts 
d'optimisation et ses types, et au final, il met en lumière leur développement à 
travers des chemins centraux et des tendances newtoniennes en utilisant la 
fonction noyau pour améliorer ses performances . 

ABSTRACT 

ص لخ م   

Résumé 


	Acknowledgements
	Contents
	Figures table
	Tables list
	Introduction
	bluePreliminaries and Fundamentals
	Convex Analysis
	Convex sets
	Convex functions
	Convexity and Derivatives

	Optimizations Problems
	Basic concepts
	Types of optimization problems
	Optimilaty conditions


	blueInterior Point Methods for Linear Optimization
	Linear Optimization
	Duality in Linear Optimization
	Simplex Method

	Interior Point Method
	Approach for Interior Point Method
	Primal Method
	Dual Method
	Primal-Dual Method


	blueCentral Trajectory Method via Kernel Function
	Primal-dual method based on kernel functions
	Kernel function and its qualification
	Properties of the Bouafia kernel function

	Newton direction
	Generic algorithm

	Conclusion
	Bibliographie
	Annexe: Abreviations and Notations

