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This handout of lessons in Physics 2 is aimed at first-year students of combined Earth and 

Cosmological Sciences specializing in Geography and Regional Development. Its goal is to acquire basic 

notions of Electricity and Magnetism, including Electrostatics, Electrokinetics, Electromagnetism, and 

relationships between radiation and magnetism (Photoelectric Effect, Compton Effect, and 

Materialization Effect). 

This handout on Physics 2 consists of two chapters. Distributed each chapter as follows: 

Chapter I: Electricity and magnetism: 

1°- Electrostatics 

- Electric field and potential 

- Conductor balance 

- Capacitors 

2°- Electrokinetics 

      - Electrical conduction 

- Ohm's law, Joule's law 

- Electrical circuits 

- Theorems of Thévenin and Norton 

3°- Electromagnetism 

  - Definition of the magnetic field 

  - Current-field interaction (Laplace's law) 

   - Ampere formula 

Chapter II: Radiation: 

1°- Generality 

- Electromagnetic radiation, 

- Particle radiation 

- Detection of radiation 

- Energy spectrum of radiation 

- Photoemissive Cell 

2°- Production of X-rays 

3°- Radiation – matter interactions 

- Photoelectric effect 

- Compton Effect 



- Materialization effect 

  - Attenuation – Protective screen. 



 

 

Lessons in Physics 2 will allow students to consolidate their abilities and practice 

applying the rules provided in the course reminders distributed. I hope this handout will 

be of valuable assistance to Earth and Cosmological Sciences students in understanding 

and mastering the Physics 2 unit and thus completing the first year of Geography and 

Regional Development. 
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Introduction 

Electricity and magnetism represent two of Western civilization's most profound areas of study. 

While early in human history, these subjects were thought to be independent of each other, it is 

clear now that they are intimately related. This subject encompasses an enormous number of 

experimental observations and theoretical developments, to the point that modern applications 

of electricity and magnetism cannot be imagined without them. Electric and magnetic fields, 

which in nature are simultaneously pervasive and subtle, permeate our everyday lives. 

However, physical phenomena as diverse as plasma displays, accelerators, fluorescent lights, 

absorption and emission spectra, and Hall voltage are no exception. Here, we begin our study 

of electricity and magnetism, focusing on the experimental facts and our basic search for 

mechanisms. We begin by exploring electric charge and force, symmetries in the law of 

electrostatics, and electric potential, among other topics. These basic principles will carry us 

through our detailed explorations. This subject is one of the most integrated with other fields in 

physics. 

 

I.1°- Electrostatics 

 Electricity and magnetism represent two of Western civilization's most profound areas 

of study. While early in human history, these subjects were thought to be independent of 

each other, it is clear now that they are intimately related. This subject encompasses many 

experimental observations and theoretical developments. Electrostatic is a compound word 

called electric, meaning something to do with an electric charge and static, meaning 

stationary. Electrostatics is the study of the behavior of electric charges at rest. Unlike 

charges, when electric currents flow, they can cause a variety of exciting electrical and 

magnetic phenomena. Electrostatics is essential because many practical and vital devices 

and physical systems contain stationary electric charges that do not move. 

The electric force analysis demonstrates that forces are vital for describing and analyzing 

electromagnetic systems. It is much more efficient to use a scalar field called the electric 

potential in place of electric force to analyze the performance of electrostatic systems. 

Therefore, the section on fundamental concepts of electricity and magnetism begins with 

electrostatics, dealing with how charges exert force on other charges via an electric field. 

The following chapter provides an overview of the material. 
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I.1.1°- Electric field and potential 

I.1.1.a°- Coulomb's law 

Consider two point charges q1 and q2 placed in a vacuum. The first exerts a force 

proportional to its charge q1 on the second. Conversely, the second exerts a force 

proportional to its charge q2 on the first. We deduce that the force between two-point 

charges called electrostatic force is proportional to the product of their charges q1 q2. 

which is expressed by: 

𝐹𝑒
⃗⃗  ⃗ = 𝐾.

𝑞1. 𝑞2

𝑟2
. �⃗⃗� ………………… . . (𝐼. 1) 

This expression is Coulomb's law. 

With r: the distance separating the two charges. 

The relation defines K in the international system: 

𝐾 =
1

4𝜋𝜀0
 where 𝜀0 represents the permittivity of vacuum, including its experimental 

value: 

K= 8.9875 109 Nm 2 C -2 

We will often use the approximate value: 9.109  

�⃗⃗� ⃑: unit vector of direction joining the charge q1 to the charge q2 , directed from q1 to q2 

such that: 

�⃗⃗� =
𝑟 

𝑟
 

Application: Calculate the force exerted by the charge q1 = 3.10-3 C on a charge  

q2 = - 5.10-4 C separated by a distance of 20 mm. 

Solution: 

𝐹𝑒
⃗⃗  ⃗ = 𝐾.

𝑞1. 𝑞2

𝑟2
= 9. 109

3.5. 10−7

4. 10−4
= 33,75.106𝑁 

I.1.1.b°- Electric field 

By definition, we say that there is an electric field (�⃗� ) at a given point in space if there 

is a charge 𝑄0 and if this charge is subjected to a force 𝐹𝑒
⃗⃗  ⃗ such that: 

�⃗� =
𝐹𝑒
⃗⃗  ⃗

𝑄0
…………………………………………(𝐼. 2) 

In the international system unit of [E], it is N.C-1. 

�⃗�  is parallel to 𝐹𝑒
⃗⃗  ⃗. 

The meaning of �⃗�  depends on the sign of 𝑄0: 
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If 𝑄0 > 0  ⟹ �⃗�  and 𝐹𝑒
⃗⃗  ⃗ same direction. 

If 𝑄0 < 0  ⟹ �⃗�  and 𝐹𝑒
⃗⃗  ⃗ are opposite in direction. 

 The field created by a point charge: 

When a charge Q is at point O, it then creates, at any point M in the space surrounding 

it, a vector field, called an electrostatic field, expressed by the relation: 

𝐸𝑀
⃗⃗ ⃗⃗  ⃗ =

𝐹𝑒
⃗⃗  ⃗

𝑞0
=

1

4𝜋𝜀0
.
𝑄

𝑟2
�⃗⃗� ………………………… . . (𝐼. 3) 

 Q: the charge present at point O. 

 𝑞0: a test charge placed at point M, it undergoes the action of force 𝐹𝑒
⃗⃗  ⃗. 

 The electric field is created by a set of point charges: 

Now, let us consider n charges qi located at points P i. What would then be the electric 

field produced by this set of charges at point M? 

As with forces, the superposition principle is also valid for electric fields. The total field 

𝐸𝑀𝑇
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the vector sum of all contributions due to each of the charges (Figure I.1). We 

therefore have: 

𝐸𝑀𝑇
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑

1

4𝜋𝜀0

𝑛

𝑖=0

.
𝑞𝑖

𝑟𝑖
2 𝑈𝑖
⃗⃗  ⃗ ………………………………(𝐼. 3) 

 

 

 

 

 

                                   M 

 

Figure I.1: Composition of fields at a point (M). 

 A continuous distribution of charges creates the electric field: 

Consider a continuous distribution of charges within a certain volume, on a surface, or 

along a straight line. 

 

 Volume case:  

The distribution is characterized at each point P of volume by the data of the volume 

charge density 𝜌(𝑃) =
𝑑𝑞

𝑑𝑉
, where 𝑑𝑞 denotes the electric charge contained in the volume 

element 𝑑𝑉 surrounding point P. In the case where the charge distribution is uniform, 

𝐸𝑀𝑇
⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝐸2
⃗⃗⃗⃗  
 

𝐸1
⃗⃗⃗⃗  

 

P1(q1) 

 

P2(q2) 
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𝑑𝑞 is sufficiently small to be considered as punctate; therefore, the field 𝑑𝐸⃗⃗⃗⃗  ⃗ created at 

a point M by the charge 𝑑𝑞 has the expression: 

 

𝑑𝐸⃗⃗⃗⃗  ⃗ =
1

4𝜋𝜀0
.
𝑑𝑞

𝑟2
�⃗⃗� ……… . .………………… . . (𝐼. 4) 

 

𝑑𝐸⃗⃗⃗⃗  ⃗ =
1

4𝜋𝜀0
.
𝜌𝑑𝑉

𝑟2
�⃗⃗� ……… . . ………………… . . (𝐼. 5) 

With 𝑟 = 𝑃𝑀̅̅̅̅̅ and �⃗⃗� = 𝑃𝑀⃗⃗⃗⃗ ⃗⃗ 
𝑟⁄ . We therefore write for the entire distribution: 

 

 

⇒ �⃗� =
1

4𝜋𝜀0
.∰𝜌

𝑑𝑉

𝑟2
�⃗⃗� …………………(𝐼. 6) 

 

 Surface case: 

For a surface distribution of charges characterized by the data of the surface 

density 𝜎 =
𝑑𝑞

𝑑𝑆
⁄  at each point of a surface S, we will write similarly:  

 

�⃗� =
1

4𝜋𝜀0

∯𝜎
𝑑𝑆

𝑟2
�⃗⃗� ……………………(𝐼. 7) 

 

 Case of a straight line: 
For a linear load distribution characterized at each point of a curve by the linear density      

 𝜆 =
𝑑𝑞

𝑑𝑙
⁄  : 

�⃗� =
1

4𝜋𝜀0

∮𝜆
𝑑𝑞

𝑑𝑙
�⃗⃗� ……………… . . (𝐼. 8) 

 

 

 

 Field lines: 

An electrostatic field line is a curve tangent at each point to the electrostatic field vector 

defined at that point. 

The set of field lines defines a mapping of the field. 

Properties: 

1. Two field lines never intersect at a point M unless the field E is zero at M. 

2. An electrostatic field line is not closed. It starts from a charge q and ends on a charge of opposite 

sign. 

3. To know the direction of the field at point M of a field line, you have to place a positive charge 

there and look at the direction and sense of the electrostatic force it undergoes. These directions 

and senses are the same as those of the field. 
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In the case of a point charge, the field lines are half-lines that intersect at the point where the charge is 

located. If the charge is positive, the field is directed outwards; it is said to be outgoing. The same goes 

for the field lines. The opposite is true for the negative charge; the field lines converge towards the 

charge, and the field, in this case, is directed towards the charge (Figure I.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.2 Field lines for the two types of separated charges. 

 

I.1.1.b°- Electrostatic potential: 

 

 Circulation of the electric field of a point charge: 

Consider a region of space where an electric field prevails. Any charged particle 𝑞0 in 

this field is subject to an electric force. 𝐹 =  𝑞0�⃗�  

The elementary work dW to move the charge 𝑞0 an elementary displacement 𝑑𝑙 is: 

𝑑𝑊 =  𝐹 . 𝑑𝑙⃗⃗  ⃗  ⇒ 𝑑𝑊 =  𝑞0. �⃗� . 𝑑𝑙⃗⃗  ⃗ 

If we want to move the charge 𝑞0 along any path ab, we must provide work Wab: 

𝑊𝑎𝑏 = ∫𝐹 . 𝑑𝑙⃗⃗  ⃗ ⇒  𝑊𝑎𝑏 = 𝑞0 ∫ �⃗� . 𝑑𝑙⃗⃗  ⃗

𝑏

𝑎

𝑏

𝑎

……………………………… . . (𝐼. 9) 

The integral ∫ �⃗� . 𝑑𝑙⃗⃗  ⃗𝑏

𝑎
 is called the circulation of the electric field along the entire curve from a to b. 

 Electrical potential: 

In the example shown in Figure I.3, we have 

∫ �⃗� . 𝑑𝑙⃗⃗  ⃗ =

𝑏

𝑎

∫ �⃗� . 𝑑𝑙⃗⃗  ⃗ =

𝑏

𝑎

∫ �⃗� . 𝑑𝑙⃗⃗  ⃗

𝑏

𝑎

 

     𝐶1                  𝐶2                𝐶3 

 

 

 

 

Q > 0   𝑄 < 0   
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Figure I.3: Work independent of the path followed by the load 
 

This means that the work required to move the charge from point a to point b is independent 

of the path followed. When the flow of the field along the curve does not depend on the path 

followed but depends only on the starting point and the arrival point, we say that this field is 

conservative in this case. We set 𝑑𝑉 = − �⃗� . 𝑑𝑙⃗⃗  ⃗  More generally, in Cartesian coordinates, 

 

�⃗�  (−
𝜕𝑉

𝜕𝑥
, −

𝜕𝑉

𝜕𝑦
, −

𝜕𝑉

𝜕𝑧
)……………………… . . (𝐼. 10) 

More concisely, 

�⃗� =  −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉………………………… . (𝐼. 11) 

 

 

V is a scalar quantity called electric potential; in this case, we say that the electric field derives 

from the potential V. The energy required to move 𝑞0  between a and b is therefore: 

𝑊𝑎𝑏 = −∫ 𝑞0

𝑏

𝑎

𝑑𝑉 = −𝑞0𝑉 = −(𝑉𝑏 − 𝑉𝑎)𝑞0 ……………… . . (𝐼. 12) 

 

The quantity 𝑉𝑏 − 𝑉𝑎  is called voltage or potential difference between points b and a, 

𝑈𝑎𝑏notes it, such that: 

𝑈𝑎𝑏 = 𝑉𝑏 − 𝑉𝑎 =
𝑊𝑎𝑏

𝑞0
…………………… . . (𝐼. 13) 

 

This brings us to the definition of potential difference. 

Definition: The potential difference (𝑈𝑎𝑏 = 𝑉𝑏 − 𝑉𝑎) equals the work provided to the unit 

charge transporting it from point a to point b. 

 The electric potential produced by a point charge: 

We have seen that the field E produced by a charge q is radial: 

𝐸(𝑟) =  
1

4𝜋𝜀0
.
𝑞

𝑟2 

To obtain the potential V, we first calculate the circulation of the field 

a 

b 

C1 

C2 C3 

Field lines 
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along any ray. 

We have 𝑑𝑉 = �⃗� . 𝑑𝑟⃗⃗⃗⃗  

𝑑𝑉 =  −
𝑞

4𝜋𝜀0
.
𝑑𝑟

𝑟2
 ⇒ 𝑉 =  −

𝑞

4𝜋𝜀0
∫

𝑑𝑟

𝑟2
= 

𝑞

4𝜋𝜀0𝑟
+ 𝐶𝑠𝑡 …… . (𝐼. 14) 

 

Assuming V = 0 when r tends towards infinity we will have 𝐶𝑠𝑡 = 0 volts. 

We obtain: 

𝑉 =  −
𝑞

4𝜋𝜀0
.
1

𝑟
…………………… . (𝐼. 15) 

The potential is constant on spheres of radius r whose center is the charge q. We say that 

these spheres constitute equipotential surfaces. 

 The potential created by several distinct point charges: 

We start from the link between E and the potential V, more precisely from 

the differential relation: 

𝑉(𝑟) =  𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑑𝑙⃗⃗  ⃗ 

For a set of charges 𝑞𝑖   concentrated at bridge M and using the superposition 

theorem: 

𝑑𝑉 =  −𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑑𝑙⃗⃗  ⃗ = − ∑[𝐸𝑖(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]

𝑁

𝑖=1

. 𝑑𝑙⃗⃗  ⃗ = ∑[−𝐸𝑖(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]

𝑁

𝑖=1

. 𝑑𝑙⃗⃗  ⃗  = ∑𝑑𝑉𝑖

𝑁

𝑖=1

 

The sum of a set of differentials being the differential of the sum: 

𝑑𝑉 =   ∑𝑑𝑉𝑖

𝑁

𝑖=1

  = 𝑑 [∑𝑉𝑖

𝑁

𝑖=1

] 

 

𝑉(𝑀) =  ∑𝑉𝑖

𝑁

𝑖=1

= 
1

4𝜋𝜀0
.∑

𝑞𝑖

𝑟𝑖

𝑁

𝑖=1

…………… (𝐼. 16) 

Where 𝑟𝑖 is the distance between qi and point M. The charge 𝑞𝑖  can be positive or 

negative, which is why it must be taken with its sign. 

 The electric potential created by a continuous distribution of charge: 

In this case, we must carry out an integration after having chosen a corresponding 

elementary charge, with the same procedure as that of the electric field for a similar 

case. 
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𝑑𝑉 =  
1

4𝜋𝜀0
.
𝑑𝑞

𝑟
 

𝑉(𝑀) =  
1

4𝜋𝜀0
∫

𝑑𝑞
𝑟

………………(𝐼. 17) 

 

 

In general, it is preferable to calculate the potential first and then deduce the electric field by 

derivation. We assume that the charge distribution is uniform throughout our study. 

a) If the distribution is volumetrically concentrated at point P: 

𝑉(𝑀) =  ∭
𝜌𝑑𝑉

4𝜋𝜀0𝑟
………………………… . . (𝐼. 18) 

𝜌 volume density 

 

b) If the distribution is surface: 

𝑉(𝑀) =  ∬
𝜎𝑑𝑆

4𝜋𝜀0𝑟
………………………… . . (𝐼. 19) 

𝜎 surface density. 

c) If the distribution is linear: 

𝑉(𝑀) =  ∫
𝜆𝑑𝑙

4𝜋𝜀0𝑟
………………………… . . (𝐼. 20) 

𝜆 linear density. 

I.1.1.d°- Applications: 

 Field and potential created by a ring: 

A ring with center O and radius R, carries a charge q distributed uniformly with a linear 

density λ >0. 

1. Calculate the potential created at point M on the (oy) axis and located at distance y from O. 

2. Deduce the field vector at point M. 

Solution: 

The quantities r, y, and R are constant for the given point M. Starting from Figure I.4 and 

setting K = 
1

4𝜋𝜀0
  we can write: 
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𝑑𝑉 = 𝐾
𝑑𝑞

𝑟
→ ∫ 𝑑𝑉 =

𝐾

𝑟
∫𝑑𝑞 → 𝑉 =

𝐾𝑞

𝑟
+ 𝐶𝑠𝑡 

In the figure we can see that: 𝑟 = √𝑅2 + 𝑦2 

After replacing K and q = λ. 2π R we arrive at the 

expression: 

𝑉 =
𝜆

2𝜀0
.

𝑅

√𝑅2 + 𝑦2
+ 𝐶𝑠𝑡 

It now remains to determine the module E. To do this, 

it is sufficient to derive the expression of V for y by 

exploiting the relation: 

�⃗� =
𝑑𝑉

𝑑𝑦
→  �⃗� =

𝜆𝑅

2𝜀0
.

𝑦

√𝑅2 + 𝑦23
�⃗⃗�  

 

 Figure I.4: Electrostatic field 

created by a charged ring at point M 

 Field and potential created by a disk: 

Let us consider a disk with center O, radius R, uniformly charged on the surface. The 

surface charge density is σ (σ>0) (figure I.5). 

1. Calculate the electric field and the potential created by this distribution, at a point M on the 

axis (Oz). 

Solution: 

To do this, let us decompose the disk into radius 𝜌 and width 𝑑𝜌 rings. Let P be a point on the 

ring and P’ the symmetric of P for O. 

 

 

Figure I.5:  Electrostatic field created by a charged disk at point  
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Let us first examine the symmetry of the problem: the distribution has a symmetry of 

revolution around OZ. Any plane containing the OZ axis is a plane with even distribution 

symmetry. Therefore the field E at point M on the OZ axis is carried by �⃗� : 

�⃗� = 𝐸(0,0, 𝑧) = 𝐸(𝑍). �⃗�  

A charge element dq = σ dS, centred at P (figure I.5), creates at a point M on the axis of the 

disk an elementary field 𝑑𝐸⃗⃗⃗⃗  ⃗ given by: 

 

𝑑𝐸⃗⃗⃗⃗  ⃗ =  
1

4. 𝜋𝜀0
.
𝑑𝑞

𝑟2
. �⃗⃗�  

With, dS= 𝜌d𝜌d𝜃 and 𝑟 = √𝜌2 + 𝑍2 

the charged disk has a symmetry of revolution around its axis, for example the Z'Z axis, the 

field is then carried by this axis. We have: 

𝑑𝐸⃗⃗⃗⃗  ⃗ =
𝜎

4. 𝜋𝜀0
.
𝜌𝑑𝜌𝑑𝜃

𝜌2 + 𝑍2 . �⃗⃗�   

𝑑𝐸𝑧
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑𝐸⃗⃗⃗⃗  ⃗. cos𝛼 =

𝜎

4. 𝜋𝜀0
.
𝜌𝑑𝜌𝑑𝜃

𝜌2 + 𝑍2 . cos𝛼 �⃗⃗�  

 

𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝜎

4. 𝜋𝜀0

∬
𝜌𝑑𝜌𝑑𝜃

𝜌2 + 𝑍2 . cos𝛼 �⃗�        𝑤𝑖𝑡ℎ       cos𝛼 =
𝑍

𝑟
   

𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝜎

4. 𝜋𝜀0

∬
𝜌𝑑𝜌𝑑𝜃

𝜌2 + 𝑍2 .
𝑍

√𝜌2 + 𝑍2
�⃗�  

𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝜎. 𝑍

4. 𝜀0
. ∫

𝜌𝑑𝜌

√𝜌2 + 𝑍23

𝑅

0

(∫ 𝑑𝜃
2𝜋

0

)�⃗�  

𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝜎.

2. 𝜀0
(

𝑍

|𝑍|
−

𝑍

√𝑅2 + 𝑍2
) . �⃗�  

 

When Z is large the field weakens, on the other hand, when R >>Z, M very close to the disk 

the field becomes: 

𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ±
𝜎.

2. 𝜀0
. �⃗�  

The potential at a point M is deduced from the field by integration: 

𝐸(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  −𝑔𝑟𝑎𝑑 𝑉(𝑀)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  −
𝑑𝑉

𝑍
. �⃗�  

So, 
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𝑉 =
𝜎.

2. 𝜀0
. (𝑍 − √𝑅2 + 𝑍2) 

I.1.2°- Driver conductor: 

Let us first recall that a conductor is a body inside which charges can move under the action 

of an electric field, even a feeble one. 

I.1.2.1-Definition: 

A conductor is said to be in electrostatic equilibrium if its charges are in a state of rest. 

I.1.2.2- Properties of a conductor in equilibrium: 

1- Since the charges inside the conductor in equilibrium are at rest, the force exerted on the 

charges must be zero, which means that the electric field inside the conductor is also zero. 

𝐹 = 𝑞. �⃗� =  0⃗  ⇒ �⃗� = 0⃗ ………………… . (𝐼. 21) 

2- The general relation �⃗� =  −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉 shows that the potential is constant inside the 

conductor and by continuity, on its surface. In other words, a conductor in equilibrium is an 

equipotential surface: 

Vi = Cst which proves that the field is perpendicular to the conductor's surface. 

3- The charge in the conductor in equilibrium is zero, it is concentrated on the surface of the 

conductor. Indeed, since the number of protons equals the number of electrons, the total 

charge inside the conductor is zero. 

I.1.2.3°- Electrostatic pressure: 

Let us now calculate the forces to which the electric charges located on the surface of a 

conductor in equilibrium are subjected. Many experiments show these forces are typically 

directed to these conductors' surfaces. 

The expression of the elementary force df is applied to the external elementary surface dS of a 

conductor, which carries an elementary charge d q égal à , sigma on its surface carries on its 

surface an elementary charge 𝑑𝑞 =  𝜎. 𝑑𝑆 is: 

𝑑𝑓⃗⃗ ⃗⃗ = 𝑑𝑞. �⃗� = 𝜎. 𝑑𝑆⃗⃗⃗⃗ .
𝜎

2𝜀0
…………………… . (𝐼. 22) 

From where: 

𝑑𝑓⃗⃗ ⃗⃗ =
𝜎2

2𝜀0
. 𝑑𝑆⃗⃗⃗⃗  ⇒

𝑑𝑓⃗⃗ ⃗⃗ 

𝑑𝑆⃗⃗⃗⃗ 
=  

𝜎2

2𝜀0
= 𝑃𝑒𝑙𝑒𝑐 ……………… . . (𝐼. 23) 

𝑃𝑒𝑙𝑒𝑐  is the electrostatic pressure, it is a scalar quantity, it is always positive. 

This pressure can also be considered as the force capable of tearing the charges from the 

conductor. 
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I.1.2.4- Capacity of a conductor: 

Consider an isolated conductor in electrostatic equilibrium, placed at a point O in space and 

carrying a charge Q, distributed on its external surface with a surface density σ such that: 

𝑄 =  ∬𝜎.𝑑𝑆 ………………(𝐼. 24) 

If the charge Q increases, the surface density σ increases proportionally: 

This is due to the linearity of the equations governing the problem of conductor equilibrium. 

The potential created by Q, at a point M in space such that 𝑂𝑀̅̅ ̅̅ ̅  =  𝑟, is written 

𝑉 = 𝐾.∬𝜎
𝑑𝑆

𝑟
       𝑒𝑖𝑡ℎ𝑒𝑟       𝑉 = 𝐾. 𝑄 ∬𝛼

𝑑𝑆

𝑟
…………………(𝐼. 25) 

This result remains valid for any point on the surface of the conductor. The integral depends 

only on the geometry and dimensions of the conductor. 

We deduce that the ratio between the charge and the potential to which the conductor is 

carried, 

𝐶 =
𝑄

𝑉
……………… . (𝐼. 26) 

depends only on the geometry of the conductor, it is called the conductor's capacitance. The 

expression gives this: 

𝑄 = 𝐶. 𝑉 ………… . (𝐼. 27) 

The capacitance C is a positive quantity, with its unit called the Farad (F). The farad is 

defined as the capacitance of an isolated conductor with a potential of 1 volt when receiving a 

charge of 1 coulomb. The farad is a very large unit, so smaller subunits are typically used: 

 Microfarad: 1 μF = 10−6 F 

 Nanofarad: 1 nF = 10−9 F 

 Picofarad: 1 pF = 10−12 F 

Example : 

The case of a spherical conductor, placed in a vacuum, of radius R, if it carries the charge Q, 

the potential inside the sphere is: 

𝑉 = 
1

4𝜋𝜀0
.𝑄
𝑅

  

which identifies with the general relation Q = C V provides the expression of C:  
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 𝐶 = 4𝜋𝜀0. 𝑅 

For the earth, considering that the radius is R = 6400 km, its capacity is C = 70 μF. 

For a sphere of radius r = 10cm, the potential V = 1000V relative to the earth, and its capacity 

is C = 10 pF. 

I.1.2.5- Phenomena of influence : 

 Partial influence : 

Consider an electrically neutral conductor A (figure I.6). Let us approach the latter, a 

positively charged conductor B, as shown in the figure. Conductor B creates an 

electric field 𝐸𝐵
⃗⃗ ⃗⃗   in space, particularly in conductor A. 

 

 

 

Figure I.6: Partial influence   

 

 

The free electrons of conductor A will, under the action of this field, move in the opposite 

direction of 𝐸𝐵
⃗⃗ ⃗⃗  . These electrons gradually accumulate on the face opposite B and form negative 

charges at equilibrium, resulting in –Q. Conversely, positive charges, the resultant of which is 

+Q, will appear on the other face due to a lack of electrons, as shown in the figure. These 

charges, which result from electrification by influence, contribute to the electric field inside and 

outside the conductor. They create an induced field 𝐸𝑖𝑛
⃗⃗ ⃗⃗  ⃗, which opposes the inducing field 𝐸𝐵

⃗⃗ ⃗⃗   

and thus reduces the total field. The free electrons stop their movement inside conductor A 

when the total electric field is zero. The system formed by the two conductors then reaches a 

state of equilibrium. 
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Field lines: The topography of the electric space, represented in the figure, shows that only certain field 

lines, which emanate from the inducing body B, end at the conductor A. By the theorem of 

corresponding elements, it follows that the charge Q created by influence is less than the inducing charge 

of the conductor B. This type of influence is said to be partial. 

 

 Total influence : 

We speak of total influence when all the field lines start from B and end at A. This is 

obtained when A surrounds B (figure I.7). 

 

 

 

Figure I.7: Total influence. 

 

Applying the corresponding element theorem shows that the charge appearing on the internal 

surface of A is equal and opposite to the charge on conductor B. 

𝑄𝐵 = 𝑄𝑖𝑛𝑡  

I.1.3°- Capacitors: 

I.1.3.1°- Introduction: 

A capacitor is a device comprising two conductive plates separated by an insulating 

material (called a dielectric). When a voltage is applied, the capacitor stores electric 

charge on its plates, creating an electric field between them. The electrical symbol 

represents it . 

Capacitors of one sort or another are included in almost any electronic device. Physically, 

there is a wide variety of shapes, sizes, and construction, depending on their application. 
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In addition to their practical uses in electronic circuits, more importantly, they help 

students understand the concepts of and the relationships between electric fields E and F, 

potential difference, permittivity, energy, and so on. 

 Capacitance (C) 

If a potential difference is maintained across the two plates of a capacitor (for 

example, by connecting the plates across the poles of a battery), a charge +Q will be 

stored on one plate and −Q on the other. The ratio of the charge stored on the plates to 

the potential difference V across them is called the capacitance C of the capacitor. 

 

 Definition: Capacitance is the ability of a capacitor to store charge per unit voltage 

applied across its plates. It’s measured in farads (F). 

 Formula: 𝐶 =
𝑄

𝑉⁄ , where: 

o C is the capacitance, 

o Q is the charge stored (in coulombs, C), 

o V is the voltage across the plates (in volts, V). 

For example, a capacitor with 1 farad of capacitance stores 1 coulomb of charge when 1 

volt is applied across it. 

 How Does a Capacitor Work? 

 Charging: When a voltage source (like a battery) is connected to a capacitor, 

electrons accumulate on one plate while the other loses electrons. This separation 

of charge creates an electric field. 

 Discharging: When the capacitor is connected to a circuit without a voltage source, 

it releases the stored charge, providing current to the circuit. 

 Series and Parallel Capacitors 

 Series: The charge is the same on each, and the potential difference across the 

system is the sum of the potential differences across the individual capacitances. 

Hence : 
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1

𝐶𝑇𝑜𝑡𝑎𝑙
=

1

𝐶1
+

1

𝐶2
+

1

𝐶3
………………(𝐼. 28) 

 

 

 

 

Figure I.8: Capacitors in Series. 

 

 Parallel: The potential difference is the same across each, and the total 

charge is the sum of the charges on the individual capacitor. Therefore: 

𝐶𝑇𝑜𝑡𝑎𝑙 = 𝐶1 + 𝐶2 + 𝐶3 …………………(𝐼. 29) 

 

 Energy Stored in a Capacitor: 

Let us imagine (figure I.7) that we have a capacitor of capacitance C, which sometimes 

has a charge of +q on one plate and a charge of −q on the other. The potential difference 

across the plates is then 
𝑞

𝐶
. Let us now take a charge of +δq from the bottom plate (the 

negative one) and move it up to the top plate. We have to do work to do this, in the 

amount of  
𝑞

𝐶
. δq . The total work required, then, starting with the plates completely 

uncharged until we have transferred a charge Q from one plate to the other is 

1

𝐶
∫ 𝑞𝑑𝑞

𝑄

0
=

𝑄2

2𝐶
 This is, then, the energy 𝐸𝑒𝑛𝑒𝑟𝑔𝑦  stored in the capacitor, and, by 

application of Q = CV it can also be written, 𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =
1

2
𝑄. 𝑉 or, more usually. 

𝐸 =
1

2
. 𝐶𝑉2 ………………… . . . (𝐼. 30) 
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Figure I.9: the energy 𝐸𝑒𝑛𝑒𝑟𝑔𝑦  stored in the capacitor 

 

 

I.2°- Electrokinetics: 

Electrokinetics is the study of electric currents, electric charges moving in material media called 

conductors, and electrical circuits and networks. 

Example : 

You are given three capacitors of values 1, 3, and 6 Farads. You connect them as shown in 

Figure I.10. Find the total capacitance of the circuit and the charge on each capacitor. 

1) We can add the ”6” and ”3” that are in series first, then add the result in parallel with 

the 1. Adding the series capacitors gives 

1

𝐶36
= 

1

3
+

1

6
    →     𝐶36 = 2𝐹 

Adding this combination with the ”1” in parallel 

yields 𝐶𝑇𝑜𝑡𝑎𝑙 = 2 + 1 = 3𝐹 

2) Since there is 6 volts across the ”1” Farad 

capacitor, the plates have a net charge of 

𝑄1 = 𝐶. 𝑉 = 1. (6) = 6𝐶 

The net charge on the plates of the series ”3” and 

”6” Farad capacitors is 𝑄36  =  𝐶𝑉 =  2. (6)  =  12 𝐶 

 

Figure I.10: Series of mixed-connected 

capacitors 
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Note that the total charge supplied by the battery is 𝑄 =  𝐶𝑉 = (2 + 1). (6) =  3(6)  =  18 𝐶, also 

equals (6+ 12) Coulombs. 

 

I.2.1°- Electrical conduction:  

Electrical conduction in solids involves the movement of electrons or ions under the influence 

of an electric field. This movement generates an electric current. For conduction by electrons, 

when an electric field is applied, the electrons accelerate, colliding with atoms and statistical 

imperfections, and lose energy, thus giving out a part of it to the atoms. The atoms then make 

an oscillation. This ion oscillation is nothing but the lattice vibration of the material. Electrons 

can be treated as free by the system when they interact weakly. When the electrons interact only 

weakly, they collide many times while traversing a mean-free path. However, when they 

interact with each other, in many cases, there are not too many collisions with the impurities. 

Although this sounds very unusual, it effectively represents a metal's conduction process. On 

the other hand, in semiconductors and insulators, the number of impurities is low, and the 

electron-electron interactions are not considered. 

Conductive materials include metals, electrolytes (or ionic solutions) and plasmas. Since perfect 

conductors do not exist, ohmic conductors are used, the best of which are silver, gold and 

aluminum. 

I.2.1.1°-  Electric current: 

Electric current is a collective and organized movement of charge carriers (electrons or ions). 

This flow of charges can occur in a vacuum (electron beams in cathode ray tubes, etc.), or in 

conductive matter (electrons in metals, or ions in electrolytes). An electric current appears in a 

conductor when a potential difference is established between its terminals. 

Intensité du courant électrique : 

 

  Intensity of electric current: 

Electric current intensity describes the flow of electric charge through a given surface, 

such as the cross-section of an electric wire. 

𝐼(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
…………… . (𝐼. 31) 

o Where: I is the current intensity. 

o q the electric charge. 

o t the time. 
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The International System of Units measures current intensity in amperes, a base unit 

whose standard symbol is A. One ampere corresponds to a charge flow of one coulomb 

per second. 

The intensity is measured using an ammeter that must be connected to the circuit in series. 

 Current density: 

Current density is a vector describing the electric current on a local scale. Its direction 

indicates the movement of charge carriers (but its direction can be opposite for negative 

carriers), and its norm corresponds to the intensity of the current per unit area. It is related 

to the electric current by: 

𝐼 = ∫ 𝑗 . 𝑑𝑆⃗⃗⃗⃗ ……………(𝐼. 32) 

where: I is the current intensity; S is the surface area, 𝐽 is the current density; and dS is 

the elementary surface vector. 

In the international system of units, current density is measured in amperes per square 

meter (A.m -2). 

I.2.2°-   Ohm's law, Joule's law: 

I.2.2.1°-   Ohm's law: 

The potential difference or voltage U (in volts) across a resistor R (in ohms) is proportional 

to the intensity of the electric current I (in amperes) flowing through it (figure I.11). 

𝑈 = 𝑅. 𝐼 ……………… . (𝐼. 33) 
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Figure I.11: Resistance crossed by a current I under a voltage U. 

 

Resistance is the body's opposition to the passage of an electric current, measured in 

ohms. 

I.2.2.2°-   Joule's law: 

The Joule effect is a heat production effect that occurs when an electric current passes 

through a conductor with resistance. It manifests itself by an increase in the thermal 

energy of the conductor and its temperature. Indeed, this type of conductor transforms 

electrical energy into heat energy (energy dissipated in the form of heat). The power 

dissipated by this conductor is equal to: 

𝑃 = 𝑅𝐼2 ……………(𝐼. .34) 

The unit of power is the watt (W). 

R: the resistance of the conductor. 

I: the intensity of the current flowing through the conductor. 

According to the definition of energy, we deduce that the energy consumed by a resistor 

during time t is equal to: 

𝐸 = 𝑈. 𝐼. 𝑡 = 𝑅. 𝐼2. 𝑡 =
𝑈2

𝑅
. 𝑡 ……………(𝐼. .35) 

The unit of energy is the joule (J). 

 Grouping of resistors: 

There are two cases for grouping resistors: 

 Grouping in series: 
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All resistors Ri are traversed by the same electric current I, and each of them has only 

one end in common with another resistor (figure I.12). The voltage UAB = U is equal to 

the sum of the voltages of the resistors. 

 

 

Figure I.12: Series grouping of resistors 

𝑈 = 𝑈1 + 𝑈2 + 𝑈3 + ⋯… . . +𝑈𝑛 = 𝑅𝑒𝑞 . 𝐼 …… . .……………(𝐼. 36) 

𝑈 = 𝑅1 . 𝐼 + 𝑅2 . 𝐼 + 𝑅3 . 𝐼 + ⋯…𝑅𝑛. 𝐼 = 𝑅𝑒𝑞 . 𝐼 ………………(𝐼. .37) 

 

Thus, we obtain the equivalent resistance of all the resistances grouped in series. 

𝑅𝑒𝑞 =  ∑ 𝑅𝑖

𝑛

𝑖=1
………………(𝐼. .38) 

 Parallel grouping: 

This grouping is characterized by all the resistors having common terminals, two by 

two (figure I.13). The voltage is the same between the ends of any resistor Ri. 

 

Figure I.13 : Parallel grouping of resistors 
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The electric current that supplies the circuit portion is distributed between the 

resistors, such that: 

𝐼 = 𝐼1 + 𝐼2 + 𝐼3 + ⋯+ 𝐼𝑛 … . .……………(𝐼. 39) 

𝐼 =
𝑈

𝑅𝑒𝑞
=

𝑈

𝑅1
+

𝑈

𝑅2
+

𝑈

𝑅3
+ ⋯+

𝑈

𝑅𝑛
⇒

𝑈

𝑅𝑒𝑞
= [

1

𝑅1
+

1

𝑅2
+

1

𝑅3
+ ⋯+

1

𝑅𝑛
] 𝑈 ……… . . (𝐼. 40) 

Thus, we obtain the equivalent resistance, in this case, is always smaller than that of 

the smallest of the resistors mounted in the derivation: 

1

𝑅𝑒𝑞
= [

1

𝑅1
+

1

𝑅2
+

1

𝑅3
+ ⋯+

1

𝑅𝑛
]  ⇒

1

𝑅𝑒𝑞
=  ∑

1

𝑅𝑖

𝑛

𝑖=1
…… …………(𝐼. .41) 

 

I.2.3°-   Electrical circuits: 

An electrical circuit is a set of conductors (wires) and electrical components (sockets, 

switches, ....) or electronic components (household appliances, .....) through which an 

electric current flows. 

The electrokinetic study of an electrical circuit consists of determining the intensity of the 

current and the voltage at each location. 

 

 Elements of the electrical circuit: 

The electrical circuit is essentially composed of the following elements (figure I.14): 

1 The node: is a point where more than two conductors end. 

2 The branch: a portion of the circuit inserted between two nodes. 

3 The mesh: any closed contour formed by a series of branches. 
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Figure I.14: Any electrical circuit. 

 

 Generators: 

Energy must be supplied to the circuit to obtain a continuous electric current in a 

closed circuit. Devices called generators do this. They are sources of 

electromotive forces that transport charges. 

There are two types of generators: 

1. Generators or voltage sources: 

The voltage source, or voltage generator, is a dipole characterized by a 

constant voltage between its terminals, regardless of the variable current it 

supplies. In what follows, we will focus mainly on direct current (DC) 

generators. This type of generator is characterized by an electromotive 

force (e) and a low internal resistance (r) (Figure I.15).  

It is possible to replace a voltage generator, with characteristics (e, r), with 

an ideal source with an electromotive force (e) in series with an ohmic 

conductor with resistance (r), as shown in Figure I.15. 

The electromotive force of a voltage generator is equal to the potential 

difference between its terminals when it is not supplying any current: 

𝐼 = 0 ⇒ 𝑒 =  𝑈𝐴𝐵  
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Figure I.15: representation of the voltage generator. 

 

2. Generators or current sources: 

The current source, or current generator, is a dipole that supplies a constant 

current, regardless of the variable potential difference between its 

terminals. In what follows, we will focus mainly on direct current (DC) 

generators. The diagram in Figure I.16 represents this type of generator. A 

current generator can be replaced by an ideal current that supplies a 

constant current and is connected in parallel with an ohmic conductor with 

resistance, as shown in Figure I.16. 

 

 

 

Figure I.16: representation of the current generator. 
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Example : 

This combination of resistors can be broken up into parallel and series sections (see Figure 

I.17). This is nice because one can calculate the equivalent resistance of the whole circuit and 

find the current delivered by the battery. Once this is done, one can go piece by piece to 

determine the currents and voltages across the resistors. 

 

Figure I.17: Series of mixed-connected resistances  

 First, we determine the resistance of the whole circuit. The 6Ω and 3Ω resistors in parallel 

are equivalent to      
1

𝑅36
=

1

3
+

1

6
  →  𝑅36 = 2Ω 

This 2Ω parallel combination is in series with the other two resistors, so the total resistance of the 

circuit, RT , is      𝑅𝑇 = 1 + 2 + 3 = 6Ω 

The current that is supplied by the battery is    I = V/RT, or   Ibattery = 12/ 6 = 2A  

Thus, 2A flows through the 1Ω resistor and the 3Ω resistor in series. Now the voltages across all the 

resistors can be determined. Across the 1Ω resistor, V = IR = 2(1) = 2 V. Across the 3Ω resistor in 

series with the battery, V = IR = 2(3) = 6 V. The voltage across the 3Ω and 6Ω resistors in parallel are 

V = 12 − 2 − 6 = 4 V. The current through the 6Ω resistor is therefore I = V/R = 4/6 = 2/3 A. The 

current through the 3Ω resistor (in the parallel combination) is I = V/R = 4/3 A. 

I.2.4°-   Kirchhoff's laws 

I.2.4.1°-    Components of a circuit 

An electric circuit is simply an assembly of dipoles (electrical components) connected by 

conductive wires. 
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 Branch 

A branch is a portion of a circuit that does not contain any branches (or the components are 

simply in series one after the other). 

 

A node is a point in the circuit where several branches meet. AB is a branch, all the components 

of the same branch are traversed by the same current. 

 Junction 

A junction is a point in the circuit where several branches meet. 

 

 Loop 

A loop is a series of branches that return to the same starting point. 

 

Loop ABCD. An arrow specifies the direction of travel of a loop. 

I.2.4.2°-     Kirchhoff’s first law 

 Circuit network analysis can be carried out using Kirchhoff’s laws. Kirchhoff’s first law 

applies to currents at a junction in a circuit. It states that at a junction in an electrical circuit, the 
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sum of currents flowing into the junction is equal to the sum of currents flowing out of the 

junction. 

 

Figure I.18: Currents of known direction of flow into and out of a junction 

 

In Figure I.18 the directions of the currents are known. Kirchhoff’s first law states that: 

 I1 + I2 = I3 + I4 + I5 

Not: current cannot flow into the junction from all directions without current flowing out. 

I.2.4.3°-  Kirchhoff’s second law 

Kirchhoff’s second law applies to voltage drops across components in a circuit. It states that 

around any closed loop in a circuit, the directed sum of potential differences across components 

is zero. The meaning of ‘directed sum’ in this definition is explained in Figure I.19. 

 

Figure I.19: Two closed loops with a power supply (a), without a power supply assumed 

current direction (b) and without a power supply with actual current direction (c). 
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Remember:  

• For cells, the assumed positive is where the current flows out of the cell. 

 • For components, the assumed positive is where it flows into the component. 

 In Figure I.19 (a), Kirchhoff’s second law states:  

V1 − V2 − V3 − V4 = 0  

The same principle applies in Figure I.19 (b), where an assumed current flow has been added. 

In this case, the diagram has added wires to indicate that it is joined to a larger circuit. This 

helps clarify that in this case, as there is no dc supply, current must enter and exit the loop. 

 V1 + V2 + V3 + V4 = 0  

Note, for the above to be true either all the values must be zero (which means your circuit isn’t 

turned on or is made of exotic superconductors!), or at least one of the values must be negative, 

for example, the current flows in the opposite direction to that shown by arrow in that (or those) 

components.  

For the case where V2 = V3 = V4 = 2 V, V1 must be −6 V, indicating that the current flowing 

through the resistor associated with V1 is as shown in Figure I.19 (c), rather than I.19 (b). 

Exercise: 

In the circuit below, determine the current flowing in each resistor  

We have e = 17V, e' = 6V, R1 = 1Ω, R2 = 4Ω and R3 = 3Ω. 

 

We start by choosing a direction and a name for the current in each of the branches (this choice 

is arbitrary, you can choose something different): 
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We then name the voltages at the terminals of each dipole, we orient them in the direction 

opposite to the current. 

 

We use the characteristics associated with each dipole to relate current and voltage in each 

component. 

· U0 = −e 

· U1 = R1I1 

· U2 = R2I1 

· U3 = R3I3 

· U4 = e’ 

• We use the Node Law in B, C, D (we can also apply it in A, A’ and A”, but this does not 

provide any new information): 

 I0 + (−I1) = 0 ⇒ I0 = I1 
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· I3 = I4 

· and finally: I1 = I2 + I3 …………..(1) 

• We use the law of loops on AA’BC and ACDA’’: 

·•  Following AA’BC: 

UAA’ + UA’B + UBC + UCA = 0  

0 − U0 − U1 − U2 = 0  

e − R1I1 − R2I2 = 0…………………. (2) 

• Following ACDA'':       

UAC + UCD + UDA'' + UA''A = 0 

 U2 − U3 − U4 + 0 = 0  

R2I2 − R3I3 + e' = 0 ………………..(3) 

• Finally (1), (2) and (3) form a linear system with 3 equations and 3 unknowns, which we solve 

to find: 

𝐼2 =
𝑒 +

𝑅1

𝑅3
𝑒′

𝑅1 + 𝑅2 +
𝑅1𝑅2

𝑅3

= 3𝐴 

𝐼3 =
𝑅2𝑒 +

𝑅1𝑅2

𝑅3
𝑒′

𝑅1𝑅3 + 𝑅2𝑅3 + 𝑅1𝑅2
+

𝑒′

𝑅3
= 2𝐴 

𝐼1 = 𝐼2 + 𝐼3 = 5𝐴 

I.2.4°- Theorems of Thevenin and Norton: 

Thévenin's and Norton's theorems are applied to simplify the analysis of complex 

electrical circuits. Thévenin's theorem replaces a multi-element circuit with a 
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single voltage source and a resistor, while Norton's theorem uses a current source 

and a resistor. These theorems facilitate the understanding of the behaviour of a 

circuit by reducing it to a more straightforward form. 

I.2.4.1°- Theorems of Thevenin: 

Thévenin’s theorem allows us to transform a circuit composed of multiple loops, 

multiple voltage sources, and multiple current sources into a single-loop circuit 

consisting of an equivalent resistance (Thévenin resistance 𝑅𝑡ℎ) and an equivalent 

voltage source (Thévenin voltage 𝑉𝑡ℎ). 

 Calculating Thévenin Voltage: 

To calculate the Thévenin voltage of a circuit, mentally remove the load resistance, 

and then calculate the voltage across 𝑅𝐿. 

In a practical setup, remove the load resistance (𝑅𝐿) and place a voltmeter in its place. 

This way, the Thévenin voltage is measured as the open-circuit voltage of the 

setup. 

Make sure that the value of 𝑅𝐿 is much lower than the input impedance of the 

voltmeter. For reference, the input impedance of a voltmeter is typically in the MΩ 

range. 

 

 Calculating Thévenin Resistance: 

To calculate Thévenin resistance: 

 Remove the current sources and replace them with open circuits. 

 Remove the voltage sources and replace them with short circuits. 

 Remove the load resistance 𝑅𝐿. 

Next, calculate the equivalent resistance of the setup, which is the Thévenin resistance 𝑅𝑡ℎ . In a 

practical setup, use an ohmmeter to measure the resistance as seen from the load resistance 

terminals. 

Example 1:  

How to mount it:  
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Thévenin tension calculation 

 When the charge is withdrawn, we will leave the circuit at once: 

 

 

 

The voltage resistance is higher than that of the 500 Ω. When using the different scheme: 

 

 

  

After this calculation, the calculations U₁ puis U2 
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These 2 resistors are in series   Req3=3k Ω 

𝑅𝑒𝑞2 = [
1

2
+

1

3
]
−1

= 1.2𝑘Ω 

𝑅𝑒𝑞1 = [
1

2
+

1

1 + 𝑅𝑒𝑞2

]

−1

𝑒𝑖𝑡ℎ𝑒𝑟  𝑅𝑒𝑞1 = [
1

2
+

1

2.2
]
−1

= 1.04762𝑘Ω 

We have: 𝑈1 =
𝑅𝑒𝑞1

2+𝑅𝑒𝑞1
. 72 𝑒𝑖𝑡ℎ𝑒𝑟 𝑈1 =

1.04762

2+1.04762
. 72 = 24.75𝑉  

In the same way, we have 𝑈2 =
𝑅𝑒𝑞2

1+𝑅𝑒𝑞2
. 𝑈1 𝑒𝑖𝑡ℎ𝑒𝑟 𝑈2 = 24.45.

1.2

2.2
= 13.5𝑉 

We can calculate the Thévenin tension:  𝑈𝑡ℎ =
2

1+2
. 𝑈2 = 9𝑉 

 

Calculation of Thévenin resistance 

We replace the voltage source (72V) with a short circuit and remove the load resistance 𝑅𝐿. 

We have the following circuit: 

 

These 2 resistors are in parallel 

The equivalent resistance is Req=1kΩ 

The diagram becomes: 

 

Req2 Req1 
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The two resistors are in series 1kΩ. We have an equivalent resistor of 2kΩ, parallel 

to the 2kΩ resistor. The equivalent resistance is 1kΩ. 

 

The schema becomes 

In the same way as before we have an equivalent resistance of 1kΩ. The Thévenin resistance 

is 1+0.5 or 1.5kΩ. 

𝑅𝑡ℎ=1.5ΚΩ 

The equivalent diagram of our circuit is: 

 

I.2.4.2°- Theorems of Norton: 

Norton's theorem is derived from Thévenin's theorem. 
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We note that Norton's resistance is identical to Thévenin's resistance. Finally, we replace 

Thévenin's voltage with Norton's pure current source. This current source supplies a current 

(I) such that  𝐼 =
𝑉𝑡ℎ

𝑅𝑡ℎ
. 

Example 2:  

Find the Thevenin equivalent of the circuit shown below across terminals a-b. Then find the current 

through RL = 6Ω and 36Ω respectively. 

 

Soln:  

Step 1: Find RTh by turning off the 32V voltage source (replacing it with a short circuit) and 

the 2A current source (replacing it with an open circuit). 

𝑅𝑇ℎ =  
4.12

16
+ 1 = 4Ω 

 

Step 2: Make a-b open circuit. Find VTh by applying mesh/node analysis. 
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−32 + 4  𝑖1 + 12(𝑖1 − 𝑖2) = 0; 𝑖2 = −2𝐴 → 𝑖1 = 0.5𝐴 

𝑉𝑇ℎ = 12((𝑖1 − 𝑖2) = 12(0.5 + 2) = 30𝑉 → 𝑉𝑇ℎ = 30𝑉 

LFinding current through R :Step 3 

 

𝐼𝐿 =
𝑉𝑇ℎ

𝑅𝑇ℎ + 𝑅𝐿
 

= 6Ω La) When R 

𝐼𝐿 =
30

4 + 𝑅𝐿
= 

30

10
= 3𝐴 

= 36Ω Lb) When R 

𝐼𝐿 =
30

4+𝑅𝐿
= 

30

40
= 0.75𝐴                                  

                                                                                        Thevenin equivalent circuit 

 

I.3°- Electromagnetism 

The word "magnetism" derives from the name of the region "Magnesia," located on the western 

coast of present-day Turkey, where the magnetic phenomenon was observed a long time ago. 

This region contained deposits of the mineral called "magnetite," which has specific properties. 

Indeed, it was observed that two pieces of this mineral (called magnets) either attract or repel 

each other and can also transfer their properties to a nearby piece of iron. This magnetic 

phenomenon remained unexplained until the year 1819. In that year, the Swedish physicist 

Ørsted demonstrated for the first time the effect of an electric current on a magnet: a straight 

conductor wire was placed above and parallel to a magnetized needle mounted on a pivot; when 

an electric current passed through the conductor, the needle oriented itself perpendicular to the 

wire, and the direction of the orientation changed with the direction of the current. This proved 

the existence of a magnetic force resulting from the passage of electric current. This experiment 

showed that a wire carrying an electric current acquires magnetic properties very similar to 

those of a natural magnet. 
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I.3.1°- Definition of the magnetic field 

Whatever magnetic effects are observed at a point in space, a single quantity is necessary to 

describe them: a vector field called the magnetic field, which we will denote by B (also referred 

to as the magnetic induction field). 

Compared with the electric field, a charge or a group of moving charges creates a magnetic 

field in the region where they are located. This magnetic field acts on an external electric charge 

q with a force 𝐹𝐵
⃗⃗⃗⃗ . The same applies to an electric current since by definition, it consists of a 

group of charges. 

 

Like the electric field �⃗� , the magnetic field is also a vector quantity, and it is characterized by 

the vector �⃗� . 

The unit of magnetic induction in the International System of Units (SI) is the Tesla (T). 

 Superposition Property: 

If multiple magnetic fields:  𝐵1
⃗⃗⃗⃗ , 𝐵2

⃗⃗ ⃗⃗ , ……… . , 𝐵𝑛
⃗⃗ ⃗⃗  .act simultaneously on a moving electric 

charge or on a magnetized needle, the equivalent magnetic field �⃗� .is equal to the vector 

sum of all the acting fields. 

�⃗� = 𝐵1
⃗⃗⃗⃗ + 𝐵2

⃗⃗ ⃗⃗ +  ……… .+𝐵𝑛
⃗⃗ ⃗⃗   

 Magnetic field lines 

The magnetic field lines are a visual and intuitive realization of the magnetic field. 

 

 

Figure I.18: The magnetic field lines 

 

 Properties of magnetic field lines:  

1- Magnetic field lines form a closed loop. 

2- The tangent to the field lines at a given point represents the direction of the net magnetic 
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field B at that point. 

3- Closer the field lines, the stronger is the magnetic field B⃗⃗ .   

4- Magnetic field lines never intersect each other. 

 Magnetic field at point P is present on the axis of the solenoid 

 

 

 The direction of the magnetic field: 
‘’Right-hand thumb rule ‘’ 

Curl lingers on the right hand in the direction of the current. 

 

Figure I.19: The direction of the magnetic field 

I.3.2 °- Current-field interaction (Laplace's law) 

  Laplace’s law describes the force experienced by a current-carrying conductor placed within a 

magnetic field. This interaction, also called the Lorentz force when considering electric charges in 

motion, is fundamental in electromagnetism and underpins many applications, such as in electric motors. 
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I.3.2.1 °- Mathematical Formulation Laplace's Law  

The mathematical formulation of Laplace’s Law describes the force exerted on a current-

carrying conductor placed within a magnetic field. The law quantifies the magnetic force 𝐹  

acting on the conductor segment 𝐹  (where L is the length of the conductor within the field) and 

relates it to the current I and magnetic field �⃗�  as follows:    

𝐹 = 𝐼(�⃗� Λ�⃗� )…………… . . (𝐼. 42)  

 𝐹 : The magnetic force (in newtons, N) acting on the conductor. 

 I: The electric current (in amperes, A) passing through the conductor. 

 �⃗� : A vector representing the length and direction of the conductor within the magnetic 

field. 

 �⃗� : The magnetic flux density or magnetic field (in teslas,T). 

 Cross Product: 

The force direction is determined by the right-hand rule for the cross product �⃗� Λ�⃗�  : 

1. Point your right hand’s fingers along the direction of �⃗�  (conductor length). 

2. Rotate your fingers toward �⃗�  (magnetic field direction). 

3. Your thumb then points in the direction of 𝐹 . 

 Magnitude of the Force: 

The magnitude of 𝐹  can be expressed as: 

𝐹 =  𝐼. 𝐿. 𝐵. 𝑠𝑖𝑛𝜃 ……… . (𝐼. 43) 

where: 

 𝐹 is the magnitude of the force. 

 𝜃 is the angle between �⃗�  and  �⃗� . 

This formulation shows that the force is strongest when  �⃗�  is perpendicular to  �⃗�  (θ=90°, 

sin(90∘)=1) and zero when �⃗�  is parallel to �⃗�  (θ=0°, where sin(0°)=0). 
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I.3.2.2 °- Lorentz force 

Dutch physicist Hendrik Lorentz gives the expression for the force 𝐹 exerted on a point charge 

q, moving at speed �⃗�  in electric and magnetic fields �⃗� and �⃗� : 

𝐹 = 𝑞. (�⃗� + �⃗� ⋀�⃗� )……………… . .… . . (𝐼.  ) 

In the presence of only the magnetic field �⃗�  ( �⃗� = 0⃗ ), the Lorentz force becomes: 

𝐹 = 𝑞. (�⃗� ⋀�⃗� )………………… . . . (𝐼.  ) 

A magnetic field is a region of space where, in the absence of the electric field �⃗� , a charge q 

moving at a speed �⃗�   , is subjected to the action of a force: 

𝐹 = 𝑞. (�⃗� ⋀�⃗� ) 

This new definition of the magnetic field is obtained from the Lorentz force. This force: 

1- has the following modulus: 𝐹 = 𝑞. 𝑉. 𝐵|sin (�⃗� , �⃗� )| 

2- its direction is perpendicular to the plane formed by �⃗�  and �⃗�  

3- Its meaning is such that, in the case of a positive charge, the vectors �⃗� ,�⃗�  and 𝐹  form a direct 

trihedron (right-hand rule). When the charge is negative, the force changes direction. 

The meaning of this force is also given by Ampere's stickman rule: 

 

Figure I.:  The figure shows Ampère's man, crossed from head to toe by the charge (+q) 

animated by a speed V, seeing the field lines flee, and the force to his left. 
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I.3.2.3 °- Movement of a particle in a magnetic field 

A particle, of mass m carrying an electric charge q, moves in a uniform magnetic field B with 

a constant speed V perpendicular to B. It is therefore subject to a force whose expression is: 

𝐹 = 𝑞. (�⃗� ⋀�⃗� ) 

This force is perpendicular to �⃗�  and �⃗�  and its modulus is:  

F = q.V.B         (1) 

It remains perpendicular to �⃗�  during the movement. There is therefore no tangential 

acceleration. The acceleration being centripetal (a=aN); 

The fundamental relationship of dynamics allows the modulus of the force to be expressed in 

the form: 

 𝐹 = 𝑚
𝑉2

𝑅
       (2) 

R is the radius of the circular path. With (1) and (2), it comes: 

q. V. B   = 𝑚
𝑉2

𝑅
       

From this expression, we obtain: 

- The radius of the circle described by the particle:   R   =
𝑚𝑉

𝑞.𝐵
       

Note that the more intense the magnetic field, the smaller the trajectory radius. 

- The modulus of the angular velocity of the movement 𝜔 =
𝑉

𝑅
 which is written: 𝜔 =

𝑞

𝑚
. 𝐵 

depends only on the ratio q/m and the intensity of the magnetic field 𝐵. 

 Direction of angular velocity:  

In a uniform circular motion, the fundamental relation of dynamics is written: 

𝐹 = 𝑚. 𝑎 = 𝑚(�⃗⃗� ⋀�⃗� ) 
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𝑚(�⃗⃗� ⋀�⃗� ) = 𝑞(�⃗� ⋀�⃗� ) 𝑒𝑖𝑡ℎ𝑒𝑟 �⃗⃗� ⋀�⃗� = −
𝑞

𝑚
(�⃗� ⋀�⃗� )  

From where �⃗⃗� = −
𝑞

𝑚
(�⃗� ) 

 

mFigure I.:  Direction of angular velocity 

o If the particle's charge is positive (q > 0) ω and 𝐵 have opposite directions. 

o Otherwise (q < 0) ω and 𝐵 have the same direction. 

 Case where the initial velocity is not perpendicular to the field: 

In this case, we break down the speed into two 

components: �⃗� = 𝑉//
⃗⃗ ⃗⃗  ⃗ + 𝑉┴

⃗⃗⃗⃗  

𝑉//
⃗⃗ ⃗⃗  ⃗ is parallel to �⃗� : this component is not affected by �⃗� , 

the particle takes a rectilinear and uniform motion. 𝑉┴
⃗⃗⃗⃗  is 

perpendicular to �⃗� : the motion of the particle is circular 

and uniform. 

The resulting motion is helical 

 The trajectory is a helix. 
 

 Figure I. : Movement 

helical 
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I.3.2.4 °- The magnetic field created by a current 

 Biot and Savart's law 

French physicists Biot and Savart found the expression for 

the magnetic field obtained during Oersted's experiment. 

A straight conductive wire of infinite length, carrying a 

current I, creates, at a point M in space located at a distance 

r from the wire, a magnetic field whose: 

 

 Figure I. : Oersted's experiment. 

 The direction is such that the field lines are circles centred on the wire. 

  Ampère's stickman rule gives the direction: when he is traversed by I, from the feet to 

the head, he sees in M the field to his left (figure I.). 

 - the modulus is:      𝐵 =
𝜇0

2𝜋
.
𝐼

𝑟
 

where 𝜇0 is the magnetic permeability of the vacuum. 

In the MKSA system, 𝜇0= 4 π10 – 7 henry per meter: H/m. 

In the case of a closed circuit of any shape, each current element. I dl, creates in M an 

elementary field: 𝑑𝐵⃗⃗⃗⃗  ⃗ =
𝜇0

4𝜋
.
𝐼.𝑑𝑙⃗⃗⃗⃗ ⋀�⃗⃗� 

𝑟2     

This is the expression of the Biot and Savart law in the 

general case. 

The vector �⃗�  is oriented, as shown in the figure, from the 

source to point M.  

  

  I.3.3 °- Ampere formula: 

Ampère's formula, often used in the context of Ampère's Law, relates the integrated magnetic 

field around a closed loop to the current passing through the loop. It is fundamental to 

understanding how currents generate magnetic fields. 

I.3.1°- Ampère’s Law 

The mathematical form of Ampère’s Law is: 
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∮𝐵.⃗⃗  ⃗ 𝑑𝑙⃗⃗  ⃗ = 𝜇0. 𝐼𝐸𝑛𝑐  

where: 

 ∮𝐵 .⃗⃗ ⃗⃗  𝑑𝑙⃗⃗  ⃗ represents the line integral of the magnetic field 𝐵 ⃗⃗  ⃗ around a closed path. 

 𝜇0 is the permeability of free space (4π×10−7 T.m/ A). 

 𝐼𝐸𝑛𝑐  is the total current enclosed by the path. 

I.3.2°- Applications of Ampère’s Law 

1. Magnetic Field Around a Straight Current-Carrying Wire 

o For a long, straight wire carrying a current I, Ampère’s Law gives: 

𝐵 =
𝐼𝜇0

4𝜋𝑟
 

where: 

 𝐵 is the magnetic field at a distance 𝑟 from the wire. 

 𝑟 is the radial distance from the wire. 

 Diagram: Magnetic field lines form concentric circles around the wire, with the 

direction given by the right-hand rule (curl your fingers in the direction of the field 

lines, and your thumb points in the direction of the current). 

2. Magnetic Field Inside a Solenoid 

 A solenoid is a coil of wire with many turns, creating a nearly uniform magnetic field 

inside when current flows through it. 

 Ampère’s Law gives: 

𝐵 = 𝜇0. 𝑛. 𝐼 

where: 

 𝐵 is the magnetic field inside the solenoid. 

 𝑛 is the number of turns per unit length. 

 𝐼 is the current flowing through the solenoid. 
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 Diagram: The magnetic field lines inside the solenoid are parallel and evenly spaced, 

indicating a uniform magnetic field. Outside the solenoid, the field lines spread out and are 

much weaker. 

I.3.3°- Using Ampère’s Law in Symmetric Cases 

Ampère’s Law is particularly useful for calculating magnetic fields in cases with a high 

degree of symmetry, such as: 

 A long, straight conductor 

 A solenoid or toroid 

 A coaxial cable 

Important Note: Ampère’s Law is analogous to Gauss’s Law in electrostatics. While Gauss’s 

Law relates electric fields to enclosed charges, Ampère’s Law relates magnetic fields to 

enclosed currents. 

Example: Magnetic Field Around a Long, Straight Wire 

Problem: Calculate the magnetic field 𝐵 at a distance 𝑟 from a long, straight wire carrying a 

steady current 𝐼. 

Setup and Assumptions 

1. We assume the wire is infinitely long, which ensures that the magnetic field �⃗�  is the 

same at every point equidistant from the wire. 

2. By symmetry, the magnetic field lines are circular, centered around the wire, and 

perpendicular to the wire. 

3. We choose a circular path of radius 𝑟 around the wire as our Amperian loop. 

Diagram: 

The wire runs vertically, and the magnetic field lines form concentric circles around it. We 

use the right-hand rule: if you point the thumb of your right hand in the direction of the 

current, your fingers curl in the direction of the magnetic field. 

I.3.4°- Applying Ampère’s Law 

Ampère’s Law states: 

∮𝐵.⃗⃗  ⃗ 𝑑𝑙⃗⃗  ⃗ = 𝜇0. 𝐼𝐸𝑛𝑐  

Since the magnetic field �⃗�  is tangential to the Amperian loop and has the same magnitude at every 

point on the loop, the dot product 𝐵.⃗⃗  ⃗ 𝑑𝑙⃗⃗  ⃗ simplifies to 𝐵 𝑑𝑙, where B is the magnitude of the magnetic 

field, and 𝑑𝑙 is the infinitesimal length along the loop. 

Thus, the line integral becomes: 
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∮ �⃗� . 𝑑𝑙⃗⃗  ⃗ = 𝐵 ∮𝑑𝑙 = 𝐵. (2𝜋𝑟) 

where 2𝜋𝑟 is the circumference of the circular loop. 

I.3.5°- Calculating the Magnetic Field 

Substituting into Ampère’s Law: 

𝐵. (2𝜋𝑟) = 𝜇0. 𝐼 

Solving for 𝐵: 

𝐵 =
𝜇0. 𝐼

2𝜋𝑟
 

Explanation 

1. The magnetic field BBB decreases as you move further from the wire (B∝
1

𝑟
 ). 

2. The right-hand rule gives the direction of the magnetic field: if you wrap your right 

hand around the wire with your thumb pointing toward the current, your fingers curl 

toward the magnetic field lines. 

Numerical Example 

Suppose the wire carries a current of 10 A, and you want to find the magnetic field 𝐵 at a 

distance of 0.1m from the wire. 

1. Given: 

  I=10A 

  r=0.1 m 

  𝝁𝟎= 4π×10−7 T m/A 

2. Calculation:  

𝐵 =
𝜇0. 𝐼

2𝜋𝑟
=

(4𝜋. 10−7). 10

2𝜋. 0,1
 

Simplifying: 

𝐵 =
4. 10−6

0,2
= 2. 10−5𝑇 

⟹ 𝐵 = 20𝜇𝑇 
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II.1°- Generality 

 

Radiation is the process by which energy is emitted or transmitted in the form of waves or 

particles through space or a medium. It can occur in various forms, including electromagnetic 

waves (such as light or radio waves) and particle radiation (such as alpha and beta particles). 

Radiation is an essential phenomenon in many fields, including physics, medicine, and 

environmental science. 

 Types of Radiation 

Radiation is typically classified into two main categories: 

 Ionizing Radiation: Radiation with enough energy to remove tightly bound 

electrons from atoms, thus creating ions. Examples include X-rays, gamma rays, and 

high-energy particles. 

 Non-Ionizing Radiation: Radiation that doesn’t have enough energy to ionize 

atoms but can still excite electrons to higher energy states. Examples include radio 

waves, microwaves, and visible light. 

 

II.1.1°- Electromagnetic radiation (EMR) 

II.1.1.1°- Definition and Characteristics  

Electromagnetic radiation consists of oscillating electric and magnetic fields 

propagating through space at the speed of light. This type of radiation does not 

require a medium to travel and includes a broad spectrum of frequencies, from 

low-energy radio waves to high-energy gamma rays. 

 Electromagnetic (EM) radiation is a form of energy propagated through free 

space or a material medium through electromagnetic waves. EM radiation is 

so-named because it has electric and magnetic fields that simultaneously 

oscillate in planes mutually perpendicular to each other and to the direction of 

propagation through space. 
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Figure II.1: Electromagnetic waves. 

 

• Waves are characterized by frequency, wavelength, speed, and phase.  

 Frequency is the number of waves (cycles) per second that pass a given point in space 

(symbolized by �̅�). 
  Wavelength is the distance between two consecutive peaks or troughs in a wave 

(symbolized by the λ) 
 
 

 

Figure II.2: Wavelength 

 

 Relation between λ and �̅�:  

    𝜆. �̅� = 𝑐 ……………………………(𝐼𝐼. 1) 

  

• Since all types of electromagnetic radiation travel at the speed of light, short-wavelength 

radiation must have a high frequency. 

• Unlike the speed of light and wavelength, which change as electromagnetic energy is 

propagated through media of different densities, the frequency remains constant and is 

a more fundamental property.  

 Wavenumber is defined as a count of the number of wave crests (or troughs) in a given 

unit of length (symbolized by 𝜈): 
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 𝜈 =  �̅� 𝑐⁄ = 1 𝜆⁄ …………………………… . (𝐼𝐼. 2) 

 Wavenumber units: inverse length (often in cm-1) 

 Frequency units: unit cycles per second 1/s (or s-1) is called hertz (abbreviated Hz) 

 

II.1.1.1°- Electromagnetic Spectrum   

The electromagnetic spectrum is divided based on wavelength and frequency: 

- Radio waves: are used in broadcasting and communications. 

- Microwaves: Applied in radar and cooking technologies. 

- Infrared Radiation: Utilized in thermal imaging and remote sensing. 

- Visible Light: The narrow range detectable by the human eye. 

- Ultraviolet (UV) Light: Used in sterilization and chemical processes. 

- X-rays and Gamma Rays: High-energy radiation used in medical imaging and cancer 

treatment. 

 

II.1.2°- Particle Radiation 

II.1.2.1°- Nature of Particle Radiation   

Particle radiation consists of subatomic particles that carry energy through space, such as 

protons, neutrons, and electrons. Unlike electromagnetic radiation, particle radiation requires a 

medium to travel and is often produced by radioactive materials or nuclear reactions. 

 

 Types of Particle Radiation   

 Alpha Particles: Heavy, positively charged particles emitted by certain radioactive 

elements. 

 Beta Particles: High-speed electrons or positrons emitted during radioactive decay. 

 Neutrons: Uncharged particles released in nuclear reactions, especially in fission 

processes. 

   

Each type of particle radiation has unique properties and varying penetration capabilities, 

influencing its application in fields like medicine, industry, and nuclear energy. 
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II.1.3°- Detection of Radiation 

 Techniques and Instruments   

etecting radiation is essential for monitoring and measuring radiation in various settings, from 

medical facilities to nuclear plants. Critical detection devices include: 

 

 Geiger-Müller Counters: Detect ionizing radiation by measuring gas 

ionization within a tube. 

 Scintillation Counters: Use scintillating materials that emit light when 

radiation strikes, which is then converted into an electrical signal. 

 Photographic Film: Historically used in dosimeters to measure accumulated 

radiation exposure by detecting changes in film opacity. 

 

Each detector is tailored to specific types of radiation, whether ionizing or non-ionizing, and 

is crucial for maintaining safety and regulatory compliance. 

II.1.4°- Energy Spectrum of Radiation 

The electromagnetic (EM)spectrum is the distribution of electromagnetic radiation according 

to energy or, equivalently, according to the wavelength or frequency. The members of the 

Electromagnetic spectrum in order are:  

Radio, TV, Microwaves, Infra-Red, Visible Light, Ultraviolet, X-Rays and Gamma Rays. 

 

  

Increasing Frequency 

   

Increasing Wavelength 

 

Radio waves have the longest wavelength and the lowest frequency of any member and 

Gamma Rays have the highest frequency and the shortest wavelength. 

Gamma Rays are the highest energy electromagnetic (EM) waves as they have the highest 

frequency. 
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Every electromagnetic (EM) spectrum member travels at the same speed in a vacuum. They 

all travel at the speed of light in the air. 

II.1.4.1°- The Visible Spectrum 

Visible light is the only member of the EM spectrum which can be seen without special 

equipment. All other members of the visible spectrum are invisible and have another detection 

method. This part of the spectrum is the only part the human eye can see. The colors in order 

are: Red, Orange, Yellow, Green, Blue, Indigo, and Violet. 

 

 
 

 Figure II.3: Schematic representation of the radiation (electromagnetic) spectrum. 

 

NOTE: In remote sensing, the sensor’s spectral bands in the visible are often called by their 

color (e.g., blue, green, and red channels). 

Red light has the longest wavelength. 

Violet light has the shortest wavelength. 
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As you go from Red to Violet light, the wavelength decreases, and the frequency and energy 

increase. 

Note: It is referred to as the Visible Spectrum and not a Rainbow!! 

 

 

 

 Particulate nature of radiation: 

Radiation can also be described in terms of energy particles called photons. The energy of a 

photon is given as: 𝜺𝑃ℎ𝑜𝑡𝑜𝑛 = ℎ�̅�=ℎ𝑐 𝜆⁄ =ℎ𝑐𝜈 

where h is Plank’s constant (h = 6.6256x10-34 J s).  

• This equation relates the energy of each photon of the radiation to the electromagnetic wave 

characteristics (�̅� and λ). 

 • Photon has energy but it has no mass and no charge.  

Example 1: A light bulb of 100 W emits at 0,5 µm. How many photons are emitted per 

second?  

Solution 1: The energy of one photon is 𝜀𝑃ℎ𝑜𝑡𝑜𝑛  = ℎ𝑐 𝜆⁄ , thus, using that 100 W = 100 J/s, the 

number of photons per second, N, is: 

𝜀 = 𝑁𝜀𝑃ℎ𝑜𝑡𝑜𝑛 =⟹ 𝑁 = 𝜀 𝜀𝑃ℎ𝑜𝑡𝑜𝑛⁄ =
𝜀

ℎ𝑐
λ

⇒ 𝑁 =
𝜀(J.s-1 )λ(m)

ℎ(J.s)𝑐(𝑚.s-1)
= 

⇒ 𝑁(𝑠−1) =
100.0,5. 10−6

6,6256.10−34. 2,9979.108
 

⇒ 𝑁 = 2,517𝑥1020 

Example 2: Another light bulb at a wavenumber of 2 µm-1 and the number of photons is 3,187.10+21. 

What is the energy of a light bulb? 

Solution 2: 

The energy of a light bulb is 



 

56 

𝜺 = 𝑵𝜺𝑃ℎ𝑜𝑡𝑜𝑛 = N.
ℎ𝑐

𝜆
 

⟹ 𝜀 =  3,187. 10+21. 6,6256. 10−34. 2. 10+6 2,9979.10+8 

⟹     𝜀 = 1266 J 

Example 3: 

A third light bulb for 110 J.s-1 energy and the number of photons per second is 2,89.10+20. 

What is the wavelength of a light bulb? 

Solution 3: 

the wavelength of a light bulb is 

𝜀 = 𝑁. 𝜀𝑝ℎ𝑜𝑡𝑜𝑛= N.
ℎ𝑐

𝜆
⟹ 𝜆 =

𝑁.ℎ.𝑐

𝜀
 

⟹  𝜆 =
2,89. 1020. 6,6256. 10−34. 2,9979. 108

110
 

⟹  𝜆 =0,518𝜇𝑚 

II.1.4.2°- Practical Uses of Electromagnetic Radiation: 

Electromagnetic 

Radiation 

Application 

Radio waves Radio Telescopes. 

Wireless radio transmission. 

TV waves Terrestrial TV signals. 

Microwaves Cooking food. 

Speaking on mobile phones. 

Infra-Red Thermal imaging cameras for the Police and Fire 

Services. 

Physiotherapists are used to treat muscle Injuries. 

Visible Light Needed to see anything. 

Ultraviolet Used to treat skin conditions. 

Vitamin D3 for the brain. 

Security markings on property. 

X-Rays Checking for broken bones. 

Scanning airport luggage. 
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Gamma rays (𝛾 − 𝑅𝑎𝑦𝑠) Radioactive tracers in medicine and leaking underground 

pipes. 

Sterilizing hospital equipment. 

 

Examples of these electromagnetic radiation applications are shown below: 

 

 

 

 

 

 

 

 

 

Radio and TV 

transmission. 

Microwave Oven 

cooking 

A firefighter 

uses an 

Infrared 
camera at the 

A UV pen can be 

used on property. 
This marking can 

only be seen when 

illuminating with a 

UV light. 
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II.1.4.3°- EM Radiation Detectors: 

Visible light is the only member of the EM spectrum which can be seen without special 

equipment. All other members of the spectrum are invisible and have another method of 

detection. 

Radiation Detector 

Radio & TV Aerial, Radio Telescope 

Microwaves Aerial, Radio Telescope 

Infrared Thermometer, Skin 

Visible Light Eyes, Solar Cell 

Ultraviolet Photographic Film 

X-Rays Photographic Film 

Gamma Rays Geiger – Muller Tube 

 

Examples of these electromagnetic Radiation Detector applications are shown below: 

A person going through 
airport 

security and having their 

baggage scanned by an X-

Ray machine. 

Putting Gamma 
Radiation 

through a 

cracked water 
pipe 

to find the 

location of a 

leak. 
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II.1.4.4°- Safety Precautions with Electromagnetic (EM) Radiation: 

Gamma Radiation should not be handled with your bare hands, tongs or forceps should be 

used. It should not be pointed at your body, particularly your eyes.  

Radiographers stand behind a lead-glass screen when they are taking an X-ray. This is to reduce 

their exposure to the radiation emitted. 

 

Too much exposure to ultraviolet radiation over some time can lead to skin cancer. 

Looking directly into sunlight (visible light) can damage your sight. 

Too much exposure to Infrared radiation (heat radiation) can burn bare skin. 

Radio Telescopes are used to 

pick up radio, TV and 

microwaves. 
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Microwaves used in mobile telephone communication can affect sperm levels. It is 

recommended that men do not walk about with their mobile phones in their trouser 

pockets. 

 

II.1.5°- Photoemissive Cell 

Photoemissive cells are of two types (a) vacuum type and (b) gas-filled type. 

The features in photoemissive cells are. 

(i) A sensitive surface for the cathode 

(ii) The anode at high potential 

(iii) A suitable gas for the gas-filled photoelectric cells.  

 

The vacuum-type photo-emissive cell consists of a thin glass or quartz bulb that is highly 

evacuated and contains a semi-cylindrical plate C coated with potassium or cesium which 

serves as a photocathode and a nickel or platinum wire A which serves as the anode. The 

positive potential is applied to the anode by the battery B which is connected between the anode 

and cathode through a rheostat R and a galvanometer (or microammeter) G. When light of 

frequency greater than the threshold frequency is incident on photocathode C, photoelectrons 

are emitted and attracted by the anode A. The photoelectric current thus produced in the circuit 

is tiny and detected by the galvanometer G. As the potential of the anode is increased, the 

photoelectric current increases until saturation occurs. As the number of electrons emitted 

depends upon the intensity of incident light, the variation in light intensity produces a 

corresponding change in the photoelectric current. 



 

61 

The vacuum cells are extremely accurate in their response to incident light and the 

photoelectric current is proportional to the intensity of the incident beam. Such cells are 

generally employed for photoelectric measurements, where no lag of time should occur between 

the incidence of light and the response of the photoelectric cells. They are suitable for the 

accurate comparison of intensities of light and are used in television and photometry.  

         In a vacuum-type cell, the photoelectric current is usually minimal. To enhance this 

current, the cell can be filled with an inert gas, such as helium or neon, at a pressure ranging 

between 0.1 to 1 mmHg. In gas-filled photoelectric cells, the presence of the gas amplifies the 

current due to the ionization process that occurs when ejected photoelectrons collide with gas 

molecules, generating additional electrons. However, a limitation of these cells is that the 

photoelectric current does not always vary linearly with light intensity, which can affect 

measurement accuracy. 

In industrial applications, gas-filled cells with cesium oxide are commonly preferred for their 

superior sensitivity. These cells consist of a cylindrical silver cathode with a thin layer of 

cesium, approximately one molecule thick, applied in an oxygen atmosphere. The anode is a 

rod positioned parallel to the cylinder’s axis, optimizing the cell’s response to light exposure. 

 

 

Figure II.4: Schematic representation of the Photoemissive Cell 
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II.1.5.1°- Principle and Function   

A photoemissive cell is a device that converts light into an electric current by exploiting the 

photoelectric effect. When photons strike a photoemissive material, they can transfer enough 

energy to electrons to cause their emission, generating a current that can be measured. 

 

II.1.5.2°- Applications of Photoemissive Cells  

- Photometry: Measuring light intensity for various scientific and industrial applications. 

- Automatic Lighting: Used in light-sensitive switches for street lighting. 

- Photomultipliers: Used in scientific instruments to amplify weak light signals, crucial in 

fields such as astronomy and particle physics. 

 

II.2°- Production of X-ray 

II.2.1°- Discovery of X-ray 

• Discovered in 1895 by a German physicist named Wilhelm Conrad Röntgen. 

• while studying cathode rays (stream of electrons) in a gas discharge tube. 

• He observed that another type of radiation was produced (presumably by the interaction of 

electrons with the glass walls of the tube) that could be detected outside the tube.  

 

 

 

• This radiation could penetrate opaque substances, produce fluorescence, blacken a 

photographic plate, and ionize a gas. 

 

• He named his discovery "x rays" because "x" stands for an unknown. 
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II.2.2°- Properties of X-ray 

 

✓ X-rays are invisible. 

✓ X-rays have no mass. 

 

✓ X-rays travel at the speed of light in a vacuum 

 

✓ X-rays travel in straight lines. 

 

✓ They have a very short wavelength 

 

✓ They are unaffected by electric and magnetic fields 

 

✓ They cannot be refracted.  

 

✓ They cause ionization (adding or removing electrons in atoms and molecules) 

✓ They are transmitted by (pass through) healthy body tissue 

 

✓ They affect photographic film in the same way as visible light (turning it black) 

 

✓ They are absorbed (stopped) by metal and bone 

 

✓ They can cause photoelectric emission 

 

✓ They are produced when a beam of high-energy electrons strikes a metal target 

 
• These properties make X-rays very useful for medical diagnosis and treatment. 

 

II.2.3°- X-ray Tube 

• X-rays are produced in the X-ray tube, which is located in the x-ray tube head. 

• X-rays are generated when electrons from the filament cross the tube and interact with the 

target. 

• The two main components of the X-ray tube are the cathode and the anode. 

 

 
 

Figure II.5: Schematic representation of the X-ray Tube 
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II.2.3.1°- Cathode  

 
• The cathode is composed of tungsten filament centered in a focusing cup. 

 

• Electrons are produced by the filament and are focused on the target of the anode where the 

X-rays are produced. 

 

• The focusing cup has a negative charge, like the electrons and helps direct the electrons to 

the target (focuses them, electrons can be focused -ray cannot). 

 

 
 

Figure II.6: Schematic representation Cathode of the X-ray Tube 

 
II.2.3.1°- Anode 

 
• The anode in the X-ray tube is composed of a tungsten target embedded in a copper stem. 

 

• When electrons from the filament enter the target and generate X-rays a lot of heat is produced. 

 
• The copper helps to take some of the heat away from the target so that it doesn't get too hot. 

 

 
 

Figure II.7: Schematic representation Anode of the X-ray Tube 

 
 

 

 



 

65 

II.2.4°- Why Tungsten? 

 
• The choice of tungsten as the target material in conventional X-ray tubes is based on the 

criteria that the target must have a high atomic number and high melting point. 

 

• The efficiency of X-ray production depends on the atomic number, and for that reason, 

tungsten with Z = 74 is a good target material. 

 

• It has a melting point of 3370°C and is the element of choice for standing intense heat 

 produced in the target by the electronic bombardment. 

 
 
 

II.2.5°- Production of X-rays 

 

■ X-rays are produced when rapidly moving electrons accelerated through a potential 

difference of order 1 kV to 1 MV strike a metal target. 

 

■Electrons from a hot element are accelerated onto a target anode. 

 

■The source of electrons is the cathode or negative electrode. Electrons are stopped or 

decelerated by the anode or positive electrode. Electrons move between the cathode and the 

anode because there is a potential difference in charge between the electrodes. 

 

■ When the electrons suddenly decelerate on impact, some kinetic energy is converted into 

EM energy, such as X-rays. 

Less than 1% of the energy supplied is converted into X-rays during this process. The rest is 

converted into the target's internal energy. 

 
  

 

 

Figure II.8: Schematic representation of the production of X-rays 
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II.2.6°- Characteristics X-ray 

 

• When the energy of an electron incident on the target exceeds the binding energy of an 

electron of a target atom, it is energetically possible for a collision interaction to eject the 

electron and ionize the atom. 

 

• The unfilled shell is energetically unstable, and an outer shell electron with less binding 

energy will fill the vacancy. 

 

• As this electron transitions to a lower energy state, the excess energy can be released as a 

characteristic x-ray photon with an energy equal to the difference between the binding 

energies of the electron shells 

 

• With higher-atomic-number targets and the transitions involving inner shells such as K, L, 

M, and N.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.9: Schematic representation of the production of X-rays as electrons transition 

 

 Characteristic Cascade 

• The shell capturing the electron designates the characteristic x-ray transition, and a subscript 

of 𝛼 or 𝛽 indicates whether the transition is from an adjacent shell (𝛼) or nonadjacent shell (𝛽). 
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• A  𝐾𝛽 x-ray is more energetic indices 𝐾𝛼 an x-ray. 

 

• Within each shell (other than the K shell), there are discrete energy sub-shells, which result 

in the fine energy splitting of the characteristic x-rays. 

 

• For tungsten, three prominent lines on the Bremsstrahlung spectrum arise from the 𝐾𝛼1,  𝐾𝛼2 

and 𝐾𝛽1 transitions. 

 

• The filtered spectrum of Bremsstrahlung and characteristic radiation from a tungsten target. 

 

• The specific characteristic radiation energies from 𝐾𝛼and 𝐾𝛽  transitions. 

 

^é&a²

 

Figure II.10: Plot of the characteristic radiation energies for 𝐾𝛼and 𝐾𝛽  transitions. 

The spectral study of the emitted X-rays shows that they are formed by the superposition of a 

continuous spectrum and a line spectrum. These two components correspond to two very 

distinct emission mechanisms. 

- Interaction of accelerated electrons with the target nuclei (continuous spectrum or 

Bremsstrahlung spectrum). 

- Ionization of the deep layers of the target atoms (line spectrum). 

 The Continuous X-ray Spectrum 

Imagine an electron with an initial kinetic energy of E0 colliding with (interacting with) one of 

the target atoms, as shown in Figure 3. The electron may lose energy Δ𝐸, which can result in 

the emission of an X-ray photon that radiates away from the collision site. (There is very little 
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energy transferred to the recoil of the atom because of its relatively large mass so it can be 

neglected.) This continuous X-ray spectrum is called the Bremsstrahlung. 

 The spectrum of characteristic rays (line spectrum) 

These peaks are generated in a two-part process. First, an energetic electron hits an atom of 

the target and expels an electron from a deep shell (low value of n) of the atom during its 

scattering. If the electron of the atom were in the shell defined by n = 1 (called for historical 

reasons the K shell), it would leave a hole in this shell. Second, an electron in one of the 

higher energy shells fills the hole in the K shell. During this transition, the atom emits a 

characteristic X-ray photon. 

If the electron that fills the K shell vacancy comes from the shell where n = 2 (called the L 

shell), the radiation emitted is the 𝐾𝛼line; if it comes from the shell where n = 3 (called the M 

shell), it produces the 𝐾𝛽 line ...etc. The hole left in the L or M layer will be filled by an electron 

coming from a higher layer of the atom, figure II.9. 

II.2.7°- Tungsten 74 

 

Figure II.11: Schematic representation of the Tungsten 74 and binding energies. 
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𝑬𝑷 𝑿𝒓𝒂𝒚 = 𝑬𝑲 − 𝑬𝑳 

II.2.8°- X-ray Emission Spectrum 

 
 If a relative number of x-ray photons were plotted as a function of their energies we 

can analyze the x-ray emission spectrum. 

 

 Understanding the X-ray emission spectra is key to understanding how changes in kV, 

mA, time, and filtration affect the optical density and contrast of the radiograph.. 

 

 

Figure II.12: Plot of the X-ray spectrum. 

Exercise  

X-rays  

A metal emits an X-ray photon due to specific electronic transitions between two energy 

levels. The energy level diagram of molybdenum is given below.
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1. Electronic transitions. 

1.a. Reproduce the diagram above and indicate with arrows all the Possible transitions that are 

accompanied by the emission of a photon.  

1.b. Calculate in electron volts (eV) the energy variations corresponding to these transitions. 

2 The energy E transported by an X-ray photon associated with radiation of frequency v is 

given by the Planck relation: 𝐸 =  ℎ. 𝑣. 

2.a. Knowing the energy E transported by an X-ray photon gives the relation allowing the 

wavelength 2 of the associated radiation to be determined. 

2.b. Which of the transitions is considered to produce the X-ray photon associated with the 

radiation with the smallest wavelength? Justify. 

2.c. Calculate the value of this wavelength. 

Solution: 

1.a. All the Possible transitions that are accompanied by the emission of a photon.   

 

1.b. We calculate in electron volts (eV) the energy variations corresponding to these 

transitions 

𝑎: 𝐸𝑎ℎ𝜈 = 𝐸1 − 𝐸0 = 17430𝑒𝑉 
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𝑏: 𝐸𝑏ℎ𝜈 =  𝐸2 − 𝐸1 = 2170𝑒𝑉 

𝑐: 𝐸𝑐ℎ𝜈 = 𝐸2 − 𝐸0 = 19600𝑒𝑉 

2.a. We give the relation allowing the wavelength 

𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
   ⟹  𝜆 =

ℎ. 𝑐

𝐸
 

2.b The smallest wavelength corresponds to the highest energy since a is inversely 

proportional to E. It is therefore that of the transition 𝑐: 𝐸𝑐ℎ𝜈 = 𝐸2 − 𝐸0 = 19600𝑒𝑉 

 

2.c  𝐸𝑐ℎ𝜈 = 19600𝑒𝑉 =  h. c 19600x1.6 x10
−19  =  3.14 10 − 15 J  

 

therefore 𝜆 =
ℎ.𝑐

𝐸
=  6.3 x10−11m   

Note: This is an X-ray photon since 5 .10-12m < 𝜆 < 10-8 m 

 

II.2.8°- Industrial applications of X-rays 

Let us recall their main uses: 

- X-ray generators and gamma graphs are used for non-destructive testing of parts, welded 

structures, or engineering structures; 

- accelerators are used in particular for sterilizing medical products, modifying polymer 

properties, initiating the polymerization of resins, sterilizing food; 

- gamma irradiators are mainly used for food preservation. 

Numerous other applications involve artificial radioelements, so only a few examples will be 

given here. 

 Thickness measurements 

Thickness measurements are carried out using equipment that can use two different 

techniques, depending on the applications: 

- beta or gamma transmission, 

- beta or gamma backscattering. 

In the first case, the source and the detector are on either side of the part to be tested; in the 

other, they are on the same side. Transmission measurement is the most commonly used. The 

other is generally used only when there is difficulty in accessing both sides of the sample or 

when measuring deposit thicknesses. The most frequently used radioelements are cobalt 60, 

krypton 85, strontium 90, caesium 137, promethium 147 and americium 241. Activities can 

vary from 1 GBq to a few hundred GBq or tens of millicuries to a few curies. 

 Level measurements 
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A gamma radiation source and a detector are placed on either side of the container whose 

level is to be controlled. The intensity of the radiation received by the detector decreases 

when the container's contents are located between the source and the detector, which makes it 

possible to trigger the desired actions, such as an alarm, stopping the filling, or starting a 

manufacturing process. More sophisticated systems make it possible to create high- and low-

level servo controls or alarms. 

Level measurements involving radioactive sources are used in the implementation of 

very varied processes when: 

- high precision in level measurement is required (bottling of beverages, perfumes); 

- the containers are opaque (chemical industry, filling of gas tanks, filling of metal 

cans with beverages, .....etc.); 

- the levels are challenging to assess by conventional means (solid material hoppers). 

 Soil moisture and density measurement 

Americium-beryllium sources emit neutrons, and cesium-137 sources emit gamma rays, 

determining the nature of soils in civil engineering or subsoils in prospecting activities. The 

neutrons emitted by Am-Be sources are slowed down by collisions with light atoms present in 

the environment, mainly hydrogen. Their detection makes it possible to determine the presence 

of water or hydrocarbons. The detection of gamma rays emitted by cesium makes it possible to 

determine the density of soil or rocks. 

 X-ray fluorescence alloy analyzers 

X-ray fluorescence analyzers are widely used in the field to determine the composition of alloys 

and sort them quickly. They are also used in the laboratory for sample assays, particularly for 

impurity detection, given the devices' high sensitivity and high precision when adapted to a 

particular problem. These devices are based on detecting X-ray lines characteristic of atoms 

whose fluorescence is excited by low-energy photons. Therefore, the energies of the detected 

X-ray lines indicate the elements present in the analyzed sample, while the heights of the peaks 

give the quantities present. 

 Electron capture detectors 

Electron capture detectors are widely used in gas chromatography. The gas from the 

chromatograph passes into an ionization chamber that contains a source of nickel-63 or tritium, 

which emit beta rays. When a compound with a high affinity for electrons passes through the 

chamber, the ionization current drops. 

 Various uses of radionuclides in sealed sources 
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Some applications, such as smoke detectors or surge protector tubes, are widespread since 

several hundred thousand devices are sold yearly. Smoke detectors are equipped with a 

harmless source of americium 241 of about 37 kBq (1 u.Ci) in a device placed on the ceiling 

of a room. However, to keep these devices under control, their sale to the general public is 

prohibited. 

 Use of radionuclides in unsealed sources 

The use of unsealed sources in the non-medical field is highly varied, both in research and 

industrial or earth science applications. They can be used as markers to carry out hydrology 

studies, process controls in the chemical industry, monitor the wear of mechanical parts or 

search for pipeline leaks. 

 

II.3°- Radiation–matter interactions (Photon-matter interaction) 

When a beam of photons penetrates matter, we see that the number of photons that constitute it 

decreases.  Photons interact with electrons in matter.  During a photon-electron interaction, part 

of the photon's energy is transferred to the electron.  The processes concerning the fate of the 

electron, which recedes, will be described subsequently: collision and braking.  The remaining 

energy is found in the form of scattered photons, which are different from the energy and 

direction of the incident photons. 

These absorption and attenuation phenomena are the basis of the applications of X-ray and Y-

ray beams, whether in radiodiagnosis or radiotherapy.  We will first study the different modes 

of photon-electron interaction and then the associated probabilities. 

 

II. .13 °- Photoelectric effect 

It is a process of absorption by an atom of the entire energy of the incident photon.  This energy 

𝐸𝜈  is correlated and communicated to a deep electron of connection energy 𝐸𝑐𝑖 which is ejected 

from its electronic shell.  The excess energy if accident there is an appeal form of kinetic energy 

 𝐸𝑘  communicated to the electron: 

 

𝐸𝑘 = 𝐸𝜈 − 𝐸𝑐𝑖 ……………………… . . (𝐼𝐼. 3) 

 

 The photoelectric effect can only exist if the energy provided by the photon is greater than the 

electron's binding energy, and it is all the more likely that these two energies are close.  The 
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ionization of the layer is followed by an atomic reorganization in which fluorescence X-ray 

photons and (or) Auger electrons are emitted. 

 As electrons have relatively short paths in matter, we can consider that their energy is 

completely deposited in the medium.  Furthermore, the photons accompanying the atomic 

reorganization have relatively low energies and in any case in the range of binding energies of 

the electrons in the medium and have a significant probability of interaction.  It is therefore 

possible to recover almost all or even all of the energy of the incident photon in the form of 

kinetic energy of electrons. 

 

 Photoelectrons are emitted in all directions in space, but with a preferential direction which 

depends on the energy hv of the incident photon.  For low-energy photons, the distribution is 

practically symmetrical at about  𝜃 = 90°, where 𝜃 is the angle between the direction of the 

incident photon and that of the emitted electron.  As ℎ𝑣 increases, 𝜃 tends towards zero. 

 

  

II. .23 °- Compton effect (incoherent diffusion) 

 

 The incident photon of energy 𝐸𝜈  interacts with a quasi-free electron (loosely bound) which 

carries away part of the incident energy.  A scattered photon carries away the remaining energy. 

 

 

 

 
 

Figure II.13: Schematic representation of the Compton effect. 

 

 The conservation of energy and momentum allows us to derive practical formulas: 
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𝐸𝜈 = 𝐸𝜈′ + 𝑇𝑒 ………………………(𝐼𝐼. 4) 
 

𝑃𝜈
→=

𝑃𝜈′
→ +

𝑃𝑒
→ 

 

 We set Eo = mec², we end up with: 
𝐸0
𝐸𝜈′
−
𝐸0
𝐸𝜈
= 1 − cos 𝜃 ………………………(𝐼𝐼. 5) 

 

 

from where : 

 

 
𝑐

𝜈′
−
𝑐

𝜈
= 𝜆′ − 𝜆 =

ℎ

𝑚𝑒𝑐
(1 − cos𝜃) = 𝜆𝑐 (1 − cos𝜃) 

 

 With 𝜆𝑐 =
ℎ

𝑚𝑒𝑐
 called Compton wavelength, aver 𝜆𝑐 = 2.426 . 10

−12𝑚 

 

 if 𝜃 = 0 then Te = Ev - Ev = 0 

 

 if  𝜃 = 𝜋 then 𝑇𝑒,𝑚𝑎𝑥 = 𝐸𝑛𝑢 + 𝐸𝜈′, in this case, we speak of retro diffusion of the photon to 

the electron. 

 

Example: In the diagram below, which angle is an angle 𝜃? 

 
 

Answer: One must extend the incidence line from A to B to E (refer to the diagram below). 

The angle 𝜃 is between incidence (ABE) and deflection (ABD), that is, angle EBD. There is 

no reason to assume that angle EBC and angle EBD are equal, even though they appear in the 

diagram.  
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II. .33 °- Materialization effect  

 

In the intense electric field that reigns near a nucleus, the photon can materialize as an electron 

and a positron, one with a positive charge and the other with a negative charge.  The 

conservation of energy is then written as: 

𝐸𝜈 = 2𝐸0 + 𝑇𝑒+ + 𝑇𝑒− ………………………(𝐼𝐼. 6) 

 

 It is therefore necessary to verify E, ≥ 2Eo = 2×511 keV = 1.022 MeV.  This reaction cannot 

take place in a vacuum. 

This reaction cannot take place in a vacuum. The electron and positron then lose their kinetic 

energy in the medium.  When the latter finds itself at rest, we then have a phenomenon of 

annihilation of the positron with an electron in the middle: 

  
𝑒+ + 𝑒−⟶ 2𝛾 (511𝑘𝑒𝑉) 

 
 There is then the emission of two photons of 511 keV at 180° from each other. 

 

Quiz question 1: True/False: In Pair Production, the electron pair is emitted at a 180o angle 

to each other 

Answer: False. The angle is indeterminate. 

Quiz question 2: True/False: High kinetic energy positrons immediately annihilate electrons 

in matter 

Answer: False. A highly energetic positron will collide with whatever is in its path, undergoing 

ionization events as it loses energy. It can undergo annihilation only when its kinetic energy 

has been reduced to a shallow level. 
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 II.4°- Attenuation – Protective screen: 

We are interested in the interaction of a set of photons (photon beam 𝛾 𝑜𝑟 𝑋) with matter, by 

characterizing their attenuation as a function of thickness. 

II.4.1°- Law of exponential attenuation: 

In the case of a collimated monochromatic beam (thin, parallel) of 𝛾 𝑜𝑟 𝑋 rays, the number of 

emerging rays N(x) having undergone no interaction in crossing a protective screen of thickness 

x(cm) is linked to the number of incident rays N0 by the relation: 

𝑵(𝒙) = 𝑵𝟎. 𝒆
−𝝁𝒙 ………………………(𝐼𝐼. 7) 

1) 𝜇 is the linear attenuation coefficient, or: the probability of interaction per unit of 

length its unit is cm-1. 

𝜇 depends on: The energy of the incident photons: the higher E, the higher μ of the nature of 

the material: Z, ρ (bone ≠ water ≠ tissues………….). 

Remarks : 

 The number of photons having interacted with matter is therefore: 

 

𝑁𝑖𝑛𝑡𝑒𝑟(𝑥) = 𝑁0 − 𝑁0𝑒
−𝜇𝑥 = 𝑁0(1 − 𝑒

−𝜇𝑥)𝑵(𝒙) = 𝑵𝟎. 𝒆
−𝝁𝒙 ………………………(𝐼𝐼. 8) 

 

 Since the photons considered are monochromatic, an analogous relationship links the 

incident energy (I0) of the beam and its energy after passing through a thickness x: 

 

𝐼𝑥 = 𝐼0𝑒
−𝜇𝑥 ………………………(𝐼𝐼. 9) 

 

 
Figure II.14: Schematic representation of the exponential attenuation. 

 

 If the beam passes through several media with different attenuation coefficients: 

𝜇1, 𝜇2, 𝜇3……… . . , 𝜇𝑖, over thicknesses 𝑥1, 𝑥2, 𝑥3…… . , 𝑥𝑖, the number of emerging 

rays will be: 
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𝑁(𝑥) = 𝑁0. 𝑒
−(𝜇1.𝑥1+𝜇2.𝑥2+⋯+𝜇𝑖.𝑥𝑖)⟹𝑁(𝑥) = 𝑁0. 𝑒

−∑𝜇𝑖.𝑥𝑖𝐼𝑥 = 𝐼0𝑒
−𝜇𝑥 …………(𝐼𝐼. 10) 

 

2) Mass attenuation coefficient: To consider a material's density, it is practical to use the 

mass attenuation coefficient, which is the density of the material: 
𝜇
𝜌⁄  where 𝜌 is the 

density of the material. The mass attenuation coefficient can be independent of the 

material's solid, liquid, or gaseous state. In this case, the law of attenuation is written:  

 

𝑁(𝑥) = 𝑁0. 𝑒
−
𝜇
𝜌
𝑚
………………… .… (𝐼𝐼. 11) 

 

with  𝜌. 𝑥, mass per unit surface of the material considered (unit: kg.m-2) 

 

Note: in a vacuum, a beam of electromagnetic radiation emitted from a source loses its intensity 

because of the divergence in space of this beam; at the distance d from the source, the intensity 

is:  

𝐼𝑥 =
𝐼0
𝑑2
……………………… . . (𝐼𝐼. 11) 

 

 

II. 24. °- Half-attenuation layer: 

We call the half-attenuation layer (HAL) or half-thickness (𝑥1
2

, expressed in cm) the thickness 

of material necessary to attenuate by a factor of 2 (halve) the initial number of photons (or their 

energy initial) : 

𝐻𝐴𝐿 = 𝑥1
2
= 𝑙𝑛2 𝜇⁄      (𝑢𝑛𝑖𝑡: 𝑚) ……………………… . . (𝐼𝐼. 12) 

The thickness of the protective screen depends on its nature, the nature of the ionizing radiation 

( 𝑋 𝑜𝑟 𝛾 photons) and its energy. 

II. 34. °- Other relation for attenuation law: 

{
𝑁(𝑥) = 𝑁0𝑒

−𝜇𝑥

𝐻𝐴𝐿 = 𝑙𝑛2 𝜇⁄
⟹ 𝜇 = 𝑙𝑛2 𝐻𝐴𝐿⁄         ⟹𝑁(𝑥) =  𝑁0. 𝑒

𝑙𝑛2.𝑥
𝐻𝐴𝐿⁄  
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𝑁(𝑥) =  𝑁0(𝑒
𝑙𝑛2)

−𝑥
𝐻𝐴𝐿 = 

𝑁0

(𝑒𝑙𝑛2)
𝑥
𝐻𝐴𝐿

 

⟹    𝑵(𝒙) =
𝑵𝟎

𝟐
𝒙
𝑯𝑨𝑳

……………………… . . (𝐼𝐼. 13) 

 

Example:   

A laboratory technician is using an X-ray device that emits X-rays with an initial intensity 

𝐼0=1000 mR/h (milli-Roentgen per hour). The technician places a protective lead screen in front 

of the device to reduce the intensity of the X-rays. 

The lead screen is 2 mm thick, and the half-attenuation layer (HAL) for the lead for X-rays is 

known to be 1.5 mm. 

Calculate the remaining intensity 𝐼 of the X-rays after passing through the lead screen. 

 

    If the technician wants to further reduce the intensity of the X-rays to 10 mR/h, what 

additional thickness of lead (or equivalent) must be placed in front of the device? 

Solution: 

 

1. Calculate the Remaining Intensity after The First Screen: 

The intensity of radiation after passing through a material can be calculated using the formula: 

𝐼(𝑥) =  𝐼0. 𝑒
𝑙𝑛2.𝑥

𝐻𝐴𝐿⁄  

 

Where: 

   𝐼0 is the initial intensity. 

    𝑥 is the thickness of the material in mm. 

    𝐻𝐴𝐿 is the half-attenuation layer in mm. 

Substitute the values provided into the formula to find the remaining intensity I after passing 

through 2 mm of lead. 

𝐼(2𝑚𝑚) =  1000. 𝑒
𝑙𝑛2.2

1.5⁄ = 2519.8421 𝑚𝑅/ℎ 

2. Determine Additional Thickness needed for Further Reduction: 

To find the additional thickness needed to reduce the intensity from the obtained value to 

10mR/h, rearrange the formula for (I):  

𝑰(𝒙) =
𝑰𝟎

𝟐
𝒙
𝑯𝑨𝑳

   → 𝟐
𝒙

𝑯𝑨𝑳 = 
𝑰𝟎

𝑰(𝒙)
    → 𝟐

𝒙

𝟎.𝟓 =
𝟏𝟎𝟎𝟎

𝟏𝟎
= 𝟏𝟎𝟎 → 𝟐𝒙 = 𝟏𝟎𝟎𝟏.𝟓 = 𝟏𝟎𝟎𝟎 
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𝑥 =
𝑙𝑛1000

𝑙𝑛2
→ 𝑥 ≈ 10𝑚𝑚 
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