
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 544

A fast multi-class SVM learning method for huge databases

Djeffal Abdelhamid1, Babahenini Mohamed Chaouki2 and Taleb-Ahmed Abdelmalik3

 1,2 Computer science department, LESIA Laboratory,
Biskra University, Algeria

3 LAMIH Laboratory FRE CNRS 3304 UVHC, Valenciennes university, France

Abstract
In this paper, we propose a new learning method for multi-class
support vector machines based on single class SVM learning
method. Unlike the methods 1vs1 and 1vsR, used in the literature
and mainly based on binary SVM method, our method learns a
classifier for each class from only its samples and then uses these
classifiers to obtain a multiclass decision model. To enhance the
accuracy of our method, we build from the obtained hyperplanes
new hyperplanes, similar to those of the 1vsR method, for use in
classification. Our method represents a considerable
improvement in the speed of training and classification as well
the decision model size while maintaining the same accuracy as
other methods.
Keywords: Support vector machine, Multiclass SVM, One-
class SVM, 1vs1, 1vsR.

1. Introduction and related work

The support vector machine (SVM) method is, in its origin,
binary. It is based on the principle of separation between
the samples of tow classes, one positive and one negative.
In this form, the SVM method is very successful in several
areas of application given the precision it offers. In
practice, we find more applications with multi-class
problems, hence the need to extend the binary model to
meet multi-class problems. Existing methods currently try
mainly to optimize two phases: a training phase and a
classification phase. The first phase constructs the
hyperplane, and the second uses it.
The evaluation of the methods is based on the evaluation
of the performances of the two phases. Among the well
known methods, there are methods for direct solution
without using the binary SVM model as Weston \&
Watkins model [1], but which suffers, always, from some
slowness and weak accuracy. The widely used methods
are based essentially on the extension of the binary model,
namely, the one-against-rest (1vsR) and the one-against-
one (1vs1) methods. The 1vsR method learns for each
class a hyperplane that separates it from all other classes,
considering this class as positive class and all other classes

as negative class, and then assigns a new sample, in the
classification phase, to the class for which it maximizes
the depth. The 1vs1 method learns for each pair of classes
a separating hyperplane, and uses the voting lists or
decision graphs (DAG) to assign a new sample to a class
[2,3].
In [4,5,6,7] comparative studies are conducted to assess
the performances of these methods. According to the
authors, the 1vs1 method is faster while the 1vsR method
is more accurate. \\
In this paper, instead of the binary SVM, we propose to
use the one-class SVM (OC-SVM) that provides a
hyperplane for each class that separates it from the rest of
the space. For each class, we learn a hyperplane from only
its samples. Then in the classification phase, we build for
each class a new two-class hyperplane which separates it
from all other classes. This two-class hyperplane is
calculated from the previous one-class hyperplane and the
closest sample of the other classes. The new two-class
hyperplane is a shift of the one-class hyperplane, it is
situated between the farthest misclassified sample, of the
target class, from the hyperplane, and nearest sample,
belonging to other classes, to the hyperpalne. Our
technique speeds up the training time and classification
time, and reduces the decision model size compared to
classic methods, while keeping very close accuracy. Our
results were validated on toys and then on databases of
UCI site [8]. The rest of the paper is organized as follows:
section 2 introduces the binary SVM and Section 3
introduces the multi-class methods based on the binary
model, namely, 1vsR and 1vs1. In section 4, we present
the OC-SVM model and then we present our method in
Section 5. The results and their discussion are presented in
Section 6, and a conclusion in Section 7.

2. Binary SVM

The binary SVM solves the problem of separation of two
classes, represented by n samples of m attributes each

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 545

[9,10]. Consider the problem of separating two classes
represented by n samples:

Where xi are learning samples and yi their respective
classes. The objective of the SVM method is to find a
linear function f (equation 1), called hyperplane that can
separate the two classes:

Where x is a sample to classify, w is a vector and b is a
bias.
We must therefore find the widest margin between two
classes, which means minimizing w2. In cases where
training data are not linearly separable, we allow errors i
(called slack variables) of samples from boundaries of the
separation margin with a penalization parameter C and the
problem becomes a convex quadratic programming
problem:

The problem of equation 2 can be solved by introducing
Lagrange multipliers i in the following dual problem:

Hence, we can have the following decision function
(hyperplane):

The function K is called Kernel, it is a symmetric function
that satisfies Mercer conditions [4]. It can represent a
transformation of the original input space in which data
could be non-linearly separable to a new larger space
where a linear separator exists. Solving the problem of
equation 3 requires an optimization, especially when the
number of samples is high. Among the optimization
methods most commonly used, there is the SMO
(Sequential Minimal Optimization) where the problem is
broken into several sub-problems, each optimizes two i
[11].

3. Multi-class SVM

Several techniques have been developed to extend binary
SVM method to problems with multiple classes. Each of

these techniques makes a generalization of the abilities of
the binary method to a multi-class field [2,3]. Among the
best known methods, we can cite 1vsR and 1vs1.

3.1 One-against-rest (1vsR)

For each class k we determine a hyperplane Hk(wk, bk)
separating it from all other classes, considering this class
as positive class (+1) and other classes as negative class (-
1), which results, for a problem of K classes, to K binary
SVMs. A hyperplane Hk is defined by the following
decision function:

This function allows to discriminate between the samples
of the class k and the set of all other classes.

Classification: A new sample x is assigned to the class k*
that maximizes the depth of this sample. This class is
determined by the decision rule of the equation
6.

Figure 1 shows an example of separation of three classes.

Fig. 1 One-against-rest approach

Interpreted geometrically, a new sample x is assigned to
the class that corresponds to the farthest hyperplane. Thus,
the space is divided into K convex regions, each
corresponding to a class.

3.2 One-against-one (1vs1)

Training: Instead of learning K decision functions, the
1vs1 method discriminates each class from every other
class. Thus K(K-1)/2 decision functions are learned. The

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 546

one-against-one approach is, thus, to build a classifier for
each pair of classes (k,s).
Classification: For each pair of classes (k, s), the 1vs1
method defines a binary decision function Hks: x  \m

 {-1,+1}. The assignment of a new sample can be done
by two methods; voting list or decision graph.
a.Voting list: We test a new sample by calculating its
decision function for each hyperplane. For each test, we
vote for the class to which the sample belongs. We define,
for this, the binary decision function Hks (x) of equation 7.

Based on the K (K-1)/2 binary decision functions, we
define other K decision functions (equation 8):

The classification rule of a new sample x is given, then, by
the equation 9:

Figure 2 is an example of classification of three classes.

Fig. 2 One-against-one approach

b. Decision graphs: In this method, we define a measure
Eks of the generalization ability of the different obtained
hyperplanes i.e for each pair of classes. This measure
(equation 10) represents the ratio between the number of
support vectors of the hyperplane and the number of
samples of both classes.

Before deciding about new samples, we construct a
decision graph. We start with a list L containing all the
classes, then take the two classes k and s which Eks is
maximum, and we create a graph node labeled (k,s). We
then create, in the same way, a left son of this node from

the list L-{k} and a right son from the list L-{s}, and
continue until the list L contains only one class. This gives
the decision graph of figure 3, whose leaves are the classes
and the internal nodes are the hyperplanes:

Fig. 3 Directed acyclic decision graph for three classes

A new sample x is exposed first to the hyperplane of the
root, if the decision is positive then we continue with the
left son, otherwise with the right son, until a leaf is
reached. The reached leaf represents the class of the
sample x.

4. One-class SVM

In the one-class SVM classification, it is assumed that
only samples of one class, the target class, are available.
This means that only the samples of the target class can be
used and no information on other classes is present. The
objective of the OC-SVM is to find a boundary between
the samples of the target class and the rest of space. The
task is to define a boundary around the target class, so that
it accepts as many target samples as possible [12]. The
one-class SVM classifier considers the origin as the only
instance of negative class, and then tries to find a separator
between the origin and samples of the target class while
maximizing the margin between the two (cf. figure 4).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 547

Fig. 4 One-class SVM with maximum margin

The problem is to find the hyperplane that separates the
target samples of the origin while maximizes the distance
between them. The problem is modeled by the primal
quadratic programming problem of equation 11.

Where N is the number of samples of the target class,
(w,) parameters to locate the hyperplane, i the allowed
errors on samples classification, penalized by the
parameter v and  is a transformation of space similar to
the binary case. Once (w,) determined, any new sample
can be classified by the decision function of equation 12:

x belongs to the target class if f(x) is positive. In fact,
solving the problem of the equation 11 is achieved by the
introduction of Lagrange multipliers in the dual problem
of equation 13:

Where K is a kernel that represents the space
transformation . Once the i are determined using an

optimization such as SMO [11], the decision function for
any sample x is given by equation 14:

Where  can be determined from a training sample xi
having i0 by the equation 15:

5. Multi-class SVM method based on OC-
SVM (OCBM-SVM)

5.1 Training

The method we propose in this paper, extends the OC-
SVM to multi-class classification. We propose to learn for
each class its own hyperplane separating it from the rest of
the space. We learn so for K classes, K hyperplane, but
unlike the 1vsR method, we use to find each hyperplane
Hk only the samples of the class k which speeds up
considerably the training time. Table 1 shows the cost of
different methods in terms of the number of used
hyperplanes, the number of samples used by each
hyperplane, and the estimated time of training depending
on the number of samples of a class Nc. We assume, for
the sake of simplicity, that the classes have the same
number of samples. The estimated time is based on the
fact that each hyperplane Hk using Nk samples requires a
time of Nk

2 ( represents the conditions of
implementation such as CPU speed, memory size,...etc.).

Table 1: Comparative table of the training times of the different methods

- The 1vsR method uses to determine each of the K
hyperplanes all KNc training samples, which leads
to a training time of K3N2, where K represents the
number of classes and  a constant related to the
conditions of implementation, based on the fact that
the SMO algorithm [11] used here is of complexity
O(N2).

- The 1vs1 method calculates a hyperplane for each
pair of classes, i.e K(K-1)/2 hyperplanes, and to
determine a hyperplane separating two classes, we
use the samples of these two classes 2Nc, resulting
in a training time of 2K2Nc

2.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 548

- Our method requires the calculation of K
hyperplanes, each separates a class from the rest of
space. To determine each hyperplane, we use only
the samples of one class, resulting therefore in a
total training time of about 2KNc

2.

It is clear that:

This means that the proposed method optimizes the
training time compared to methods 1VsR and 1vs1.

5.1 Classification

OC-SVM method allows to find a hyperplane separating
one class from the rest of space, this hyperplane allows to
decide on membership of a new sample to this class. If the
sample is above the hyperplane then it belongs to the
class, but if it is below, we have no information on to what
other class the sample belongs. To correct this situation,
we propose to modify the obtained hyperplane to enhance
the decision information in the case where the sample does
not belong to the class. We propose to find for each
hyperplane of a class, the closest sample among the
samples of all other classes, then shift the hyperplane by a
distance equal to half the distance between this sample and
the misclassified sample, of the target class, that
minimizes the decision function (the farthest one from the
hyperplane) (cf. Figure 5).

Fig. 5 Classification in OCBM-SVM method

More formally, let Hk(x) be the decision function using the
hyperplane of the kth class. And let xk

- be the misclassified
sample of the class k farthest from the hyperplane H, and
xk

- the closest sample to the hyperplane H, belonging to a
class different to k. The distance of xk

- from the
hyperplane is given by Hk(xk

-) and the distance between

the hyperplane and xk
- is given by Hk(xk

-). The proposed
shift is [Hk(xk

-) + Hk(xk
-)]/2, and the new decision function

for a sample x can be calculated by the shifted hyperplane
Hdk of the equation 17:

After calculating all the K shifted hyperplanes, the
decision about the class k* of a new sample x can be given
by the discrete decision rule of equation 18:

Table 2 shows a comparison between the time of
classification of a new sample by different methods. This
time is calculated based on the number of support vectors
of each hyperplane, which is equal, to the maximum, the
total number of samples used to find the hyperplane.

Table 2: Comparative table of classification time of the different methods

- The 1vsR method uses K hyperplanes, and to test a
sample, it is evaluated for all hyperplanes. Knowing
that each hyperplane contains a number of support
vectors equal to the maximum total number of
samples, the estimated time to find the class of a
sample is K2Nc, where  is a constant that
represents the conditions of implementation.

- For the method 1vs1 using the voting list, the
classification estimated time is K(K-1) Nc,

- For the method 1vs1 using decision graphs, the
classification estimated time is 2(K-1)Nc.

- The estimated time for our method is KNc, because
it tests the sample for K hyperplanes containing, at
maximum, KNc support vectors.

If we eliminate from the column of estimated time in
Table 2 the factor Nc, we note that the method OCBM-
SVM optimizes the classification time. But this depends
always on the number of support vectors obtained by the
training method which can be very important compared
to the number of classes K. Higher the number of
training samples and the number of classes, the greater
the advantage of the OCBM-SVM method, since it uses
the minimum of samples, making it suitable for large
databases.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 549

5.3 Model size

The method we propose in this paper, extends the OC-
SVM to multi-class classification. We propose to learn
for each class its own hyperplane separating it from the
rest of the space. We learn so for K classes, K
hyperplane, but unlike the 1vsR method, we use to find
each hyperplane Hk only the samples of the class k
which speeds up considerably the training time. Table 1
shows the cost of different methods in terms of the
number of used hyperplanes, the number of samples
used by each hyperplane, and the estimated time of
training depending on the number of samples of a class
Nc. We assume, for the sake of simplicity, that the
classes have the same number of samples. The estimated
time is based on the fact that each hyperplane Hk using
Nk samples requires a time of Hk

2 ( represents the
conditions of implementation such as CPU speed,
memory size,...etc.).

6. Experiments

6.1 Used data

Our method was first tested on examples of Toy type (2
dimensions) that we have chosen of different
complexities. Then we have tested it on benchmarks of
multi-class classification databases from the site
"Machine Learning Repository UCI" [8]. The used
databases are shown in the following Table 3:

Table 3: Databases used for testing

Natt is the number of attributes, Nclass is the number of
classes in the database, Ntrain is the number of samples
used for training and Ntest is the number of samples used
for testing.

6.2 Materials and evaluation criteria

The proposed method was tested on a Dual-core de 1.6
GHZ machine with 1GB of memory. The used kernel is
RBF, and the optimization method is the SMO
algorithm [11]. The evaluation criteria of the
performances of our method are the training time in
seconds Tr(s), the classification time in seconds Tc(s),

the recognition rate R and the size of the obtained
model.

6.3 Results

The first tests have been performed on toys of different
complexities and have shown the advantages of OCBM-
SVM method compared to other metods. In the example
of table 4, we took 642 samples belonging to five
classes. The results show that our OCBM-SVM method
reduced training time to 0.109 second without losing
accuracy, while the 1vs1 and 1vsR methods have given
respectively 0.609 and 28.25 seconds. Even, the size of
the resulting model was reduced to 18.290 KB. The
classification time was 22.625 which is close to that of
the method of decision graphs (DAG) with the remark
that the number of samples and the number of classes
are small.

Table 4: Results on a toy

The tests performed on the databases of the UCI site
also confirm the theoretical results. Table 5 summarizes
the results obtained on testing databases presented in the
table 3.
Indeed, in all tested databases, OCBM-SVM method
greatly improves the training time and model size,
especially in large databases. For the Abalone database,
our OCBM-SVM method reduced the training time
from 3954.047 seconds to 1.5 seconds and the size of
the model from 2996,002 KB to 226,954 KB. In the
case of OptDigits database, training time was reduced
from 16981.984 seconds for 1vs1 method and
68501.407 seconds (over 19 hours) for 1vsR method, to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 550

only 126,593 seconds while maintaining accuracy better
than the method 1vs1. For the same database, the size of
the model was also reduced from 3749.174 KB for the
1vs1 method and 2148,554 KB for 1vsR to 555,314 KB.

Table 5: Results on different databases

The proposed method keeps a classification time, in the
case of large databases, close to that of the method DAG
representing the fastest method in terms of classification
time. Indeed, we note, in databases with a number of
samples less than 1000 (case of PageBlocks, Segment
and Vehicule) that the classification time obtained by
some methods is better than ours. This is due to that in
the databases of small size, the preparation work of
classification structures (lists in DAG and shifts in
OCBM-SVM) is important compared to the essential
task of calculating the decision functions. In large
databases, with number of samples greater than 1000
and number of classes greater than 10 (case of Abalone,
Letter, OptDigits), the improvement of classification
time is remarkable. Indeed, for the Abalone database,
our method yielded a classification time of 5.282
seconds against 6.421 seconds for DAG method the best
of the others.
Also for the Letter database, the classification time was
10,766 seconds against 44.5 seconds for DAG. In the
OptDigits database, the obtained time by the DAG
method was better than the OCBM-SVM method, this
can be explained by the number of support vectors
obtained by each training method which has an
important influence on the classification time.

With all its advantages, our method preserves a
recognition rate in the range of rates obtained by other
methods and sometimes better (case of Abalone
database).

7. Conclusion

In this paper, we presented a new method for multiclass
learning with support vector machine method. Unlike
classic methods such as 1vs1 and 1vsR extending the
principle of binary SVM, our method (denoted OCBM-
SV) extends the principle of one-class SVM method.
And to achieve the generalization ability of binary
SVM, we changed the hyperplanes obtained by the one-
class method to take into account information of other
classes. The obtained results show great improvement in
training time and decision model size. Our method also
allows improving the classification time (decision
making) of new samples by reducing of the number of
support vectors of the decision model. The obtained
accuracy is very close to that of other methods and
sometimes better.

8. References

[1] U. Dogan, T. Glasmachers, C. Igel, "Fast Training of Multi-
class Support Vector Machines", Technical Report no.
03/2011, Faculty of science, university of Copenhagen, 2011.

[2] S. Abe, "Analysis of multiclass support vector machines", In
Proceedings of International Conference on Computational
Intelligence for Modelling Control and Automation
(CIMCA'2003), pp. 385-396, 2003.

[3] Y. Guermeur, "Multi-class Support vector machine, Theory
and Applications", HDR thesis, IAEM Lorraine, 2007.

[4] Y. Liu, R. Wang, Y. Zeng, H. He, "An Improvement of One-
against-all Method for Multiclass Support Vector Machine",
4th International Conference: Sciences of Electronic,
Technologies of Information and telecommunications, March
25-29, 2007, TUNISIA.

[5] N. Seo, "A Comparison of Multi-class Support Vector
Machine Methods for Face Recognition", Research report,
The University of Maryland, Dec 2007.

[6] G. Anthony, H. Gregg, M. Tshilidzi, "Image Classification
Using SVMs: One-against-One Vs One-against-All",
Proccedings of the 28th Asian Conference on Remote
Sensing, 2007.

[7] M. G. Foody,A. Mathur, "A Relative Evaluation of
Multiclass Image Classification by Support Vector
Machines", IEEE Transactions on Geoscience and Remote
Sensing, V. 42 pp. 13351343, 2004.

[8] A. Frank, A. Asuncion, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml], Irvine, CA: University of
California, School of Information and Computer Science, 2010.

