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Abstract 
In this paper, we propose a new learning method for multi-class 
support vector machines based on single class SVM learning 
method. Unlike the methods 1vs1 and 1vsR, used in the literature 
and mainly based on binary SVM method, our method learns a 
classifier for each class from only its samples and then uses these 
classifiers to obtain a multiclass decision model. To enhance the 
accuracy of our method, we build from the obtained hyperplanes 
new hyperplanes, similar to those of the 1vsR method, for use in 
classification. Our method represents a considerable 
improvement in the speed of training and classification as well 
the decision model size while maintaining the same accuracy as 
other methods.  
Keywords: Support vector machine, Multiclass SVM, One-
class SVM, 1vs1, 1vsR. 

1. Introduction and related work 

The support vector machine (SVM) method is, in its origin, 
binary. It is based on the principle of separation between 
the samples of tow classes, one positive and one negative.  
In this form, the SVM method is very successful in several 
areas of application given the precision it offers. In 
practice, we find more applications with multi-class 
problems, hence the need to extend the binary model to 
meet multi-class problems. Existing methods currently try 
mainly to optimize two phases: a training phase and a 
classification phase. The first phase constructs the 
hyperplane, and the second uses it. 
The evaluation of the methods is based on the evaluation 
of the performances of the two phases. Among the well 
known methods, there are methods for direct solution 
without using the binary SVM model as Weston \& 
Watkins model [1], but which suffers, always, from some 
slowness and weak accuracy. The widely used methods 
are based essentially on the extension of the binary model, 
namely, the one-against-rest (1vsR) and the one-against-
one (1vs1) methods. The 1vsR method learns for each 
class a hyperplane that separates it from all other classes, 
considering this class as positive class and all other classes 

as negative class, and then assigns a new sample, in the 
classification phase, to the class for which it maximizes 
the depth. The 1vs1 method learns for each pair of classes 
a separating hyperplane, and uses the voting lists or 
decision graphs (DAG) to assign a new sample to a class 
[2,3].  
In [4,5,6,7] comparative studies are conducted to assess 
the performances of these methods. According to the 
authors, the 1vs1 method is faster while the 1vsR method 
is more accurate. \\ 
In this paper, instead of the binary SVM, we propose to 
use the one-class SVM (OC-SVM) that provides a 
hyperplane for each class that separates it from the rest of 
the space. For each class, we learn a hyperplane from only 
its samples. Then in the classification phase, we build for 
each class a new two-class hyperplane which separates it 
from all other classes. This two-class hyperplane is 
calculated from the previous one-class hyperplane and the 
closest sample of the other classes. The new two-class 
hyperplane is a shift of the one-class hyperplane, it is 
situated between the farthest misclassified sample, of the 
target class, from the hyperplane, and nearest sample, 
belonging to other classes, to the hyperpalne. Our 
technique speeds up the training time and classification 
time, and reduces the decision model size compared to 
classic methods, while keeping very close accuracy. Our 
results were validated on toys and then on databases of 
UCI site [8]. The rest of the paper is organized as follows: 
section 2 introduces the binary SVM and Section 3 
introduces the multi-class methods based on the binary 
model, namely, 1vsR and 1vs1. In section 4, we present 
the OC-SVM model and then we present our method in 
Section 5. The results and their discussion are presented in 
Section 6, and a conclusion in Section 7. 

2. Binary SVM 

The binary SVM solves the problem of separation of two 
classes, represented by n samples of m attributes each 
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[9,10]. Consider the problem of separating two classes 
represented by n samples: 

 
Where xi are learning samples and yi their respective 
classes. The objective of the SVM method is to find a 
linear function f (equation 1), called hyperplane that can 
separate the two classes: 

 
Where x is a sample to classify, w is a vector and b is a 
bias.  
We must therefore find the widest margin between two 
classes, which means minimizing w2. In cases where 
training data are not linearly separable, we allow errors  i  
(called slack variables) of samples from boundaries of the 
separation margin with a penalization parameter C and the 
problem becomes a convex quadratic programming 
problem: 

 
The problem of equation 2 can be solved by introducing 
Lagrange multipliers i in the following dual problem: 

 
Hence, we can have the following decision function 
(hyperplane): 

 
The function K is called Kernel, it is a symmetric function 
that satisfies Mercer conditions [4]. It can represent a 
transformation of the original input space in which data 
could be non-linearly separable to a new larger space 
where a linear separator exists. Solving the problem of 
equation 3 requires an optimization, especially when the 
number of samples is high. Among the optimization 
methods most commonly used, there is the SMO 
(Sequential Minimal Optimization) where the problem is 
broken into several sub-problems, each optimizes two i 
[11]. 

3. Multi-class SVM 

Several techniques have been developed to extend binary 
SVM method to problems with multiple classes. Each of 

these techniques makes a generalization of the abilities of 
the binary method to a multi-class field [2,3]. Among the 
best known methods, we can cite 1vsR and 1vs1. 

3.1 One-against-rest (1vsR) 

For each class k we determine a hyperplane Hk(wk, bk) 
separating it from all other classes, considering this class 
as positive class (+1) and other classes as negative class (-
1), which results, for a problem of  K classes, to K binary 
SVMs. A hyperplane Hk is defined by the following 
decision function: 

 

This function allows to discriminate between the samples 
of the class k and the set of all other classes. 
 
Classification: A new sample x is assigned to the class k* 
that maximizes the depth of this sample. This class is 
determined by the decision rule of the equation 
6.

 
Figure 1 shows an example of separation of three classes. 

 

 

 

 
 

 

Fig. 1 One-against-rest approach 

Interpreted geometrically, a new sample x is assigned to 
the class that corresponds to the farthest hyperplane. Thus, 
the space is divided into K convex regions, each 
corresponding to a class. 

3.2 One-against-one (1vs1) 

Training: Instead of learning K decision functions, the 
1vs1 method discriminates each class from every other 
class. Thus K(K-1)/2 decision functions are learned. The 
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one-against-one approach is, thus, to build a classifier for 
each pair of classes (k,s). 
Classification: For each pair of classes (k, s), the 1vs1 
method defines a binary decision function Hks: x  \m 

 {-1,+1}. The assignment of a new sample can be done 
by two methods; voting list or decision graph. 
a.Voting list: We test a new sample by calculating its 
decision function for each hyperplane. For each test, we 
vote for the class to which the sample belongs. We define, 
for this, the binary decision function Hks (x) of equation 7. 

 
Based on the K (K-1)/2 binary decision functions, we 
define other K decision functions (equation 8): 

 
The classification rule of a new sample x is given, then, by 
the equation 9: 

 
Figure 2 is an example of classification of three classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 One-against-one approach 

b. Decision graphs: In this method, we define a measure 
Eks of the generalization ability of the different obtained 
hyperplanes i.e for each pair of classes. This measure 
(equation 10) represents the ratio between the number of 
support vectors of the hyperplane and the number of 
samples of both classes. 

 
Before deciding about new samples, we construct a 
decision graph. We start with a list L containing all the 
classes, then take the two classes k and s which Eks is 
maximum, and we create a graph node labeled (k,s). We 
then create, in the same way, a left son of this node from 

the list L-{k} and a right son from the list L-{s}, and 
continue until the list L contains only one class. This gives 
the decision graph of figure 3, whose leaves are the classes 
and the internal nodes are the hyperplanes: 

 

Fig. 3 Directed acyclic decision graph for three classes 

A new sample x is exposed first to the hyperplane of the 
root, if the decision is positive then we continue with the 
left son, otherwise with the right son, until a leaf is 
reached. The reached leaf represents the class of the 
sample x. 

4. One-class SVM 

In the one-class SVM classification, it is assumed that 
only samples of one class, the target class, are available. 
This means that only the samples of the target class can be 
used and no information on other classes is present. The 
objective of the OC-SVM is to find a boundary between 
the samples of the target class and the rest of space. The 
task is to define a boundary around the target class, so that 
it accepts as many target samples as possible [12]. The 
one-class SVM classifier considers the origin as the only 
instance of negative class, and then tries to find a separator 
between the origin and samples of the target class while 
maximizing the margin between the two (cf. figure 4). 
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Fig. 4 One-class SVM with maximum margin 

The problem is to find the hyperplane that separates the 
target samples of the origin while maximizes the distance 
between them. The problem is modeled by the primal 
quadratic programming problem of equation 11. 

 

Where N is the number of samples of the target class, 
(w,) parameters to locate the hyperplane, i the allowed 
errors on samples classification, penalized by the 
parameter v and  is a transformation of space similar to 
the binary case. Once (w,) determined, any new sample 
can be classified by the decision function of equation 12: 

 

x belongs to the target class if f(x) is positive. In fact, 
solving the problem of the equation 11 is achieved by the 
introduction of Lagrange multipliers in the dual problem 
of equation 13: 

 

Where K is a kernel that represents the space 
transformation . Once the i are determined using an 

optimization such as SMO [11], the decision function for 
any sample x is given by equation 14: 

 

 
Where  can be determined from a training sample xi 
having i0 by the equation 15: 

 

5. Multi-class SVM method based on OC-
SVM (OCBM-SVM) 

5.1 Training 

The method we propose in this paper, extends the OC-
SVM to multi-class classification. We propose to learn for 
each class its own hyperplane separating it from the rest of 
the space. We learn so for K classes, K hyperplane, but 
unlike the 1vsR method, we use to find each hyperplane 
Hk only the samples of the class k which speeds up 
considerably the training time. Table 1 shows the cost of 
different methods in terms of the number of used 
hyperplanes, the number of samples used by each 
hyperplane, and the estimated time of training depending 
on the number of samples of a class Nc. We assume, for 
the sake of simplicity, that the classes have the same 
number of samples. The estimated time is based on the 
fact that each hyperplane Hk using Nk samples requires a 
time of Nk

2 ( represents the conditions of 
implementation such as CPU speed, memory size,...etc.). 

Table 1: Comparative table of the training times of the different methods 

 
 

- The 1vsR method uses to determine each of the K 
hyperplanes all KNc training samples, which leads 
to a training time of K3N2, where K represents the 
number of classes and  a constant related to the 
conditions of implementation, based on the fact that 
the SMO algorithm [11] used here is of complexity 
O(N2).  

- The 1vs1 method calculates a hyperplane for each 
pair of classes, i.e K(K-1)/2 hyperplanes, and to 
determine a hyperplane separating two classes, we 
use the samples of these two classes 2Nc, resulting 
in a training time of 2K2Nc

2.  
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- Our method requires the calculation of K 
hyperplanes, each separates a class from the rest of 
space. To determine each hyperplane, we use only 
the samples of one class, resulting therefore in a 
total training time of about 2KNc

2. 
  

It is clear that: 

 

This means that the proposed method optimizes the 
training time compared to methods 1VsR and 1vs1. 

5.1 Classification 

OC-SVM method allows to find a hyperplane separating 
one class from the rest of space, this hyperplane allows to 
decide on membership of a new sample to this class. If the 
sample is above the hyperplane then it belongs to the 
class, but if it is below, we have no information on to what 
other class the sample belongs. To correct this situation, 
we propose to modify the obtained hyperplane to enhance 
the decision information in the case where the sample does 
not belong to the class. We propose to find for each 
hyperplane of a class, the closest sample among the 
samples of all other classes, then shift the hyperplane by a 
distance equal to half the distance between this sample and 
the misclassified sample, of the target class, that 
minimizes the decision function (the farthest one from the 
hyperplane) (cf. Figure 5). 

 

Fig. 5 Classification in OCBM-SVM method 

More formally, let Hk(x) be the decision function using the 
hyperplane of the kth class. And let xk

- be the misclassified 
sample of the class k farthest from the hyperplane H, and  
xk

- the closest sample to the hyperplane H, belonging to a 
class different to k. The distance of xk

- from the 
hyperplane is given by Hk(xk

-) and the distance between 

the hyperplane and xk
- is given by Hk(xk

-). The proposed 
shift is [Hk(xk

-) + Hk(xk
-)]/2, and the new decision function 

for a sample x can be calculated by the shifted hyperplane 
Hdk of the equation 17: 

 
After calculating all the K shifted hyperplanes, the 
decision about the class k* of a new sample x can be given 
by the discrete decision rule of equation 18: 

 
Table 2 shows a comparison between the time of 
classification of a new sample by different methods. This 
time is calculated based on the number of support vectors 
of each hyperplane, which is equal, to the maximum, the 
total number of samples used to find the hyperplane. 

Table 2: Comparative table of classification time of the different methods 

 
 

- The 1vsR method uses K hyperplanes, and to test a 
sample, it is evaluated for all hyperplanes. Knowing 
that each hyperplane contains a number of support 
vectors equal to the maximum total number of 
samples, the estimated time to find the class of a 
sample is K2Nc, where  is a constant that 
represents the conditions of implementation.  

- For the method 1vs1 using the voting list, the 
classification estimated time is K(K-1) Nc,  

- For the method 1vs1 using decision graphs, the 
classification estimated time is 2(K-1)Nc.  

- The estimated time for our method is KNc, because 
it tests the sample for K hyperplanes containing, at 
maximum, KNc support vectors.  

 
If we eliminate from the column of estimated time in 
Table 2 the factor Nc, we note that the method OCBM-
SVM optimizes the classification time. But this depends 
always on the number of support vectors obtained by the 
training method which can be very important compared 
to the number of classes K. Higher the number of 
training samples and the number of classes, the greater 
the advantage of the OCBM-SVM method, since it uses 
the minimum of samples, making it suitable for large 
databases. 
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5.3 Model size 

The method we propose in this paper, extends the OC-
SVM to multi-class classification. We propose to learn 
for each class its own hyperplane separating it from the 
rest of the space. We learn so for K classes, K 
hyperplane, but unlike the 1vsR method, we use to find 
each hyperplane Hk only the samples of the class k 
which speeds up considerably the training time. Table 1 
shows the cost of different methods in terms of the 
number of used hyperplanes, the number of samples 
used by each hyperplane, and the estimated time of 
training depending on the number of samples of a class 
Nc. We assume, for the sake of simplicity, that the 
classes have the same number of samples. The estimated 
time is based on the fact that each hyperplane Hk using 
Nk samples requires a time of Hk

2 ( represents the 
conditions of implementation such as CPU speed, 
memory size,...etc.). 

6. Experiments 

6.1 Used data 

Our method was first tested on examples of Toy type (2 
dimensions) that we have chosen of different 
complexities. Then we have tested it on benchmarks of 
multi-class classification databases from the site 
"Machine Learning Repository UCI" [8]. The used 
databases are shown in the following Table 3: 

Table 3: Databases used for testing 

 
 
Natt is the number of attributes, Nclass is the number of 
classes in the database, Ntrain is the number of samples 
used for training and Ntest is the number of samples used 
for testing.  

6.2 Materials and evaluation criteria 

The proposed method was tested on a Dual-core de 1.6 
GHZ machine with 1GB of memory. The used kernel is 
RBF, and the optimization method is the SMO 
algorithm [11]. The evaluation criteria of the 
performances of our method are the training time in 
seconds Tr(s), the classification time in seconds Tc(s), 

the recognition rate R and the size of the obtained 
model. 

6.3 Results 

The first tests have been performed on toys of different 
complexities and have shown the advantages of OCBM-
SVM method compared to other metods. In the example 
of table 4, we took 642 samples belonging to five 
classes. The results show that our OCBM-SVM method 
reduced training time to 0.109 second without losing 
accuracy, while the 1vs1 and 1vsR methods have given 
respectively 0.609 and 28.25 seconds. Even, the size of 
the resulting model was reduced to 18.290 KB. The 
classification time was 22.625 which is close to that of 
the method of decision graphs (DAG) with the remark 
that the number of samples and the number of classes 
are small. 

Table 4: Results on a toy 

 
 
The tests performed on the databases of the UCI site 
also confirm the theoretical results. Table 5 summarizes 
the results obtained on testing databases presented in the 
table 3. 
Indeed, in all tested databases, OCBM-SVM method 
greatly improves the training time and model size, 
especially in large databases. For the Abalone database, 
our OCBM-SVM method reduced the training time 
from 3954.047 seconds to 1.5 seconds and the size of 
the model from 2996,002 KB to 226,954 KB. In the 
case of OptDigits database, training time was reduced 
from 16981.984 seconds for 1vs1 method and 
68501.407 seconds (over 19 hours) for 1vsR method, to 
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only 126,593 seconds while maintaining accuracy better 
than the method 1vs1. For the same database, the size of 
the model was also reduced from 3749.174 KB for the 
1vs1 method and 2148,554 KB for 1vsR to 555,314 KB. 

Table 5: Results on different databases 

 
 
The proposed method keeps a classification time, in the 
case of large databases, close to that of the method DAG 
representing the fastest method in terms of classification 
time. Indeed, we note, in databases with a number of 
samples less than 1000 (case of PageBlocks, Segment 
and Vehicule) that the classification time obtained by 
some methods is better than ours. This is due to that in 
the databases of small size, the preparation work of 
classification structures (lists in DAG and shifts in 
OCBM-SVM) is important compared to the essential 
task of calculating the decision functions. In large 
databases, with number of samples greater than 1000 
and number of classes greater than 10 (case of Abalone, 
Letter, OptDigits), the improvement of classification 
time is remarkable. Indeed, for the Abalone database, 
our method yielded a classification time of 5.282 
seconds against 6.421 seconds for DAG method the best 
of the others.  
Also for the Letter database, the classification time was 
10,766 seconds against 44.5 seconds for DAG. In the 
OptDigits database, the obtained time by the DAG 
method was better than the OCBM-SVM method, this 
can be explained by the number of support vectors 
obtained by each training method which has an 
important influence on the classification time. 

With all its advantages, our method preserves a 
recognition rate in the range of rates obtained by other 
methods and sometimes better (case of Abalone 
database). 

7. Conclusion 

In this paper, we presented a new method for multiclass 
learning with support vector machine method. Unlike 
classic methods such as 1vs1 and 1vsR extending the 
principle of binary SVM, our method (denoted OCBM-
SV) extends the principle of one-class SVM method. 
And to achieve the generalization ability of binary 
SVM, we changed the hyperplanes obtained by the one-
class method to take into account information of other 
classes. The obtained results show great improvement in 
training time and decision model size. Our method also 
allows improving the classification time (decision 
making) of new samples by reducing of the number of 
support vectors of the decision model. The obtained 
accuracy is very close to that of other methods and 
sometimes better. 
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