

Mohamed Khider University of Biskra Faculty of exact sciences Matter sciences department

MASTER MEMORY

Domaine: Matter sciences
Spinneret: Chemistry

Field: Pharmaceutical Chemistry

Réf: Entrez la référence du document

Presented by:

SEBAA ZINEB

THE:

Molecular docking studies of small molecules for targeting Estrogen Receptor (ER)

Jury:

Ms.	Harkati Dalal	Pr.	University Mohamed Khider- Biskra	Supervisor
Mr.	Daoud Ismail	Pr.	University Mohamed Khider- Biskra	President
Ms.	Mellaoui Malika	Dr.	University Mohamed Khider- Biskra	Examiner

AcademicYear:2025/2026

Acknowledgment

I thank Allah Almighty for the blessing of knowledge and the joy of learning, and for granting me health, strength, and patience to complete this humble work.

I would like to express my sincere gratitude to **Dr. Harakati Dalal** for her invaluable support throughout this journey. Her careful supervision, wise guidance, and constant encouragement have been essential. She has been an exemplary mentor, always generous with her knowledge and patient in answering my questions. I am truly thankful for her dedication and kindness.

I would like to thank my committee members **Mr. Daoud Ismail** and **Ms. Mellaoui Malika** for agreeing to judge this work.

To my beloved parents. You have always been my source of strength. Your love, support, and prayers accompanied me at every step. To my dear father, who taught me patience, resilience, and independence .To my precious mother, who has been not only a mother but also a friend, a sister, and a refuge in all moments. You are the warmth, the kind words, and the light of my life. I dedicate this work to you from the depths of my heart. May Allah reward you for every sacrifice and every prayer, and keep you as a crown on my head always.

To my dear brothers, **Zakaria**, **Ilyes**, **and Anis**. You have been my unwavering support and true companions. Your presence and encouragement mean the world to me. I dedicate this work to you with love and appreciation. You will always be a part of every success I achieve.

To those who brought warmth and joy into our family. To **Hanane**, my dear brother's wife, who has always been like a sister with her kind heart and warm presence, and to **Amina**, my brother's fiancée, whose gentle nature and sincerity have already made her a beloved part of our lives. I dedicate this work to you both in appreciation and gratitude. May Allah bless our bond and keep our hearts united in love and goodness.

To the joy and light of our home. **Taim Al-Rahman** and **Mais**, your smiles brighten our days, and your innocence fills our hearts with happiness. You've added a special magic to our lives. I pray Allah blesses you both and keeps your joy always shining in our lives.

To those who planted the most beautiful memories of university residence to **Soumia** and **Yasmine**, who left an unforgettable mark on my heart thank you for every moment of genuine friendship, for every bit of support, and for all the little details that made our days truly unforgettable

To my study companions, **Chaima** and **Tasnim**. Thank you for the unforgettable moments we shared: the rushed lectures, the laughter, and the friendship. These memories will always remain in my heart. I pray Allah grants you success and happiness in your future.

Abstract

Selective Estrogen Receptor Degraders (SERDs) represent a promising therapeutic strategy for the treatment of estrogen receptor-positive (ER+) breast cancer. This study focuses on the design and evaluation of coumarin-based small molecules as potential oral SERDs using advanced computational approaches. Molecular docking and ADME (Absorption, Distribution, Metabolism, and Excretion) prediction, were employed to assess the physicochemical properties, pharmacokinetics, and safety profiles of selected compounds.

Two lead candidates, previously reported in the literature, were further optimized based on their structural and pharmacological features. The compounds were evaluated for their ability to bind and degrade $ER\alpha$, while maintaining properties suitable for oral administration. The results revealed promising drug-like profiles, including favorable absorption and metabolic stability.

This work provides valuable insights into the development of next-generation, orally bioavailable SERDs with improved efficacy and safety, potentially overcoming the limitations of current treatments such as fulvestrant. The findings contribute to the advancement of hormone therapy options for patients with ER+ breast cancer.

Keywords: SERDs; Estrogen receptor alpha; Breast cancer; Molecular docking; Coumarin derivatives; ADME-T Prediction.

Résumé

Les dégradeurs sélectifs du récepteur aux œstrogènes (SERDs) représentent une stratégie thérapeutique prometteuse pour le traitement du cancer du sein exprimant le récepteur aux œstrogènes alphas (ER+). Cette étude porte sur la conception et l'évaluation de petites molécules dérivées de la coumarine comme SERDs oraux potentiels, en utilisant des approches computationnelles avancées. Des techniques de molecular docking et de prédiction ADME (Absorption, Distribution, Métabolisme et Excrétion) ont été utilisées pour analyser les propriétés physico-chimiques, les paramètres pharmacocinétiques et les profils de sécurité

des composés sélectionnés.

Deux candidats principaux, déjà rapportés dans la littérature, ont été optimisés sur la base de leurs caractéristiques structurales et pharmacologiques. Leur capacité à se fixer au récepteur ER α et à induire sa dégradation a été analysée, tout en veillant à conserver des propriétés compatibles avec une administration orale. Les résultats ont révélé des profils prometteurs en termes de propriétés médicamenteuses, notamment une bonne absorption et une stabilité

métabolique favorable.

Ce travail apporte des éléments précieux pour le développement de SERDs de nouvelle génération, biodisponibles par voie orale, avec une efficacité et une sécurité améliorée. Il contribue à surmonter les limites des traitements actuels, tels que le fulvestrant, et à faire progresser les options de thérapie hormonale pour les patientes atteintes de cancer du sein ER+.

Mots-clés : SERDs ; Récepteur aux œstrogènes alphas ; Cancer du sein ; Molecular docking ; Dérivés de la coumarine ; Prédiction ADME-T.

iii

ملخص

يمثل تطوير مثبطات مستقبلات الإستروجين الانتقائية (SERDs) نهجًا علاجيًا واعدًا لعلاج سرطان الثدي، لا سيما الأنواع الفرعية الإيجابية لمستقبلات الإستروجين (+ER).

تركز هذه الأطروحة على تصميم وتقييم مشتقات الكومارين كعوامل محتملة تتناول عن طريق الفم من مثبطات مستقبلات الإستروجين الانتقائية، وذلك باستخدام منهجيات حسابية متقدمة. تم استخدام تقنيات الإرساء الجزيئي (molecular) والتنبؤ بخواص الامتصاص، التوزيع، الأيض، الإخراج (ADME-T) لتحليل الخصائص الفيزيائية الكيميائية، والحركية الدوائية، ومعايير الأمان لمجموعة مختارة من المركبات.

استُند في هذه الدراسة إلى مركبين رئيسيين تم ذكر هما سابقًا في الأدبيات العلمية، حيث خضعا لمزيد من التحسين البنيوي والدوائي. وقد تم تقييم قدرة هذه المركبات على الارتباط بمستقبل Era وتحفيز عملية تكسيره، مع الحفاظ على الخصائص الضرورية للامتصاص الفموي. أظهرت النتائج أن هذه المركبات تمتلك خصائص دوائية واعدة، بما في ذلك قابلية امتصاص جيدة وثباتًا أيضيًا عاليًا.

تقدم هذه الدراسة رؤى مهمة لتطوير مثبطات مستقبلات الإستروجين الانتقائية القابلة للتناول عن طريق الفم، ذات فعالية وأمان محسنين، والتي قد تساعد في تجاوز القيود المرتبطة بالعلاجات الحالية مثل الفولفسترانت. كما تسهم النتائج في إثراء جهود تطوير علاجات هرمونية أكثر تقدمًا للمريضات المصابات بسرطان الثدي الإيجابي لمستقبلات الإستروجين. الكلمات المفتاحية :مستقبل الإستروجين ألفا ; مثبطات مستقبلات الإستروجين الانتقائية ; سرطان الثدي ; الإرساء الجزيئي ; مشتقات الكومارين ; التنبؤ بـADME.T.

Contents

Acknowledgement	1
Abstract	ii
Résumé	
ملخص	1V
Contents	v
List of abbreviations	vi
List of figures	
List of tables	X1
Genetal Introduction.	1
References	3
Chapter I: An overview	
TOPIC 1: Molecular Modeling	
I. Molecular Docking	3
I.1.Types of molecular docking	
I.2. Typical steps in molecular docking	5
II. In silico assessment of ADME-Toxicity profiling prediction	5
1. Absorption	6
2. Distribution	6
3. Metabolism	7
4. Excretion	7
5. Toxicity	7
TOPIC 2: Estrogen Receptor Alpha In Breast Cancer	
I. Types of receptors in breast cancer	10
I.1.Progesterone Receptor (PR)	10
I.2.Human Epidermal Growth Factor Receptor 2 (HER2)	10
I.3.Estrogen Receptor (ER)	10
II. Estrogen Receptor alpha (ERα)	11
II.1. Targeted mechanisms for activating ERα	11
a) Aromatase inhibitors (AIs)	11
b) Selective Estrogen Receptor Modulators (SERMs)	11
c) Selective Estrogen Receptor Degraders (SERDs)	11
III. Mechanism of action of SERDs in breast cancer treatment	12
IV. The new treatment for breast cancer	12
References	14
CHAPTER II: Materials and Methods	
I. Computer system and web servers	19
II. Molecular Docking	19

II.1. Preparation of receptor	19
II.2 Active site selection	20
II.3. Validation of receptor	21
II.4. Ligand preparation	21
II.2.5. Docking execution (Protocol)	24
III. In silico study of ADME-Tox properties	25
III.1.ADME-Toxicity evaluation of coumarin derivatives using ADMETlab 3.0	25
References	27
CHAPTER III: Results and Discussion	
I. Molecular docking studies	30
II.Evaluation of ADME-Toxicity prediction	38
CONCLUSION	41
APPENDIX	43

LIST OF ABBREVIATIONS

```
\mathbf{A}
    ADMET: Absorption, Distribution, Metabolism, Elimination, and Toxicity
В
    BBB: Blood-Brain Barrier
    BC: Breast Cancer
C
    CADD: Computer Aided Drug Design
    Caco-2: Human colorectal adenocarcinoma cells
    CL: Clearance
\mathbf{E}
    ER: Estrogen Receptor
    ERα: Estrogen Receptor alpha
    EREs: Estrogen Response Elements
Η
    hERG: human ether-à-go-go-Related Gene
    HER2: Human Epidermal growth factor Receptor 2
    Hyd: Hydrophobic
\mathbf{L}
     LBD: ligand-binding domain
P
    PPB: Plasma Protein Binding
    PR: Progesterone Receptor
    PDB: Protein Data Bank
R
    RMSD: Root-Mean Square Deviation
 S
    SERD: Selective Estrogen Receptor Degrader
    SERM: Selective Estrogen Receptor Modulator
\mathbf{T}
    T1/2: Half-Life
```

VD: Volume of Distribution

List of figures

Introduction:
Figure 1.Different forms of Breast Cancer along.
Figure 2.Chemical structure of fulvestrant.
Chapter I:
Figure 1 : Overview of virtual screening process
Figure 2: Schematic representation of docking
Figure 3: Comparison of rigid and flexible docking methods
Figure 4: An illustration showing the ADME properties
Figure 5: Mechanism of action of the different ET: aromatase inhibitors, SERMs and
SERDs. ER and its activity modulated by AI, SERMs and SERDs: AI block estrogen
production by inhibiting the aromatization of androgens to estrogens. SERMs
(tamoxifen) competitively inhibit the binding of estrogen to ER. SERDs produce a
reduction of SERD-bound ER ability to translocate to the nucleus, inhibiting
transcription of ER-regulated genes. SERD-bound ER undergoes degradation as a
consequence of impaired mobility
Figure 6: The impact of Selective Estrogen Receptor Degraders (SERDs) on the estrogen
receptor pathway. SERDs degrade ER, blocking ER signaling
Chapter II:
Figure 1: 3D Structure of ERα complexed with OHM (PDB ID: 3ERT)20
Figure 2: Active site residues of 3ERT.
Figure3: Validation of the docking by re-docking in 3ERT.
Figure 4: Lead compounds A and B selected.
Chapter III:
Figure 1: Molecular interactions of ligand 2 with the estrogen receptor alpha (ERα) (PDB:
3ERT) 2D (a) ;3D (b)
Figure 2:Molecular interactions of ligand 19 with the estrogen receptor alpha (ER α) (PDB:
3ERT) 2D (a);3D (b)
Figure 3:Molecular interactions of ligand 23with the estrogen receptor alpha (ER α) (PDB:
3ERT) 2D (a);3D (b)
Figure 4:Molecular interactions of ligand 27 with the estrogen receptor alpha (ER α) (PDB:
3ERT) 2D (a) ;3D (b)
Figure 5: Molecular interactions of ligand 31 with the estrogen receptor alpha (ER α)
(PDB:3ERT) 2D (a);3D (b)
Figure 6: Molecular interactions of ligand 35 with the estrogen receptor alpha (ER α) (PDB:
3ERT) 2D (a);3D (b)
Figure 7: Molecular interactions of ligand 40 with the oestrogen receptor alpha (ERα) (PDB:
3ERT) 2D (a);3D (b)
Figure 8: Molecular interactions of ligand 42 with the estrogen receptor alpha (ERα) (PDB:
3FRT) 2D (a) ·3D (b) 35

List of figures

List of Tables

Chapter I:	
Table 1: List of notable selective estrogen receptor degraders	13
Chapter II:	
Table1: Properties of the selected protein (PDB ID: 3ERT)	20
Table 2: Characteristics of the active site in 3ERT.	20
Table 3: Comarine core derivatives used in molecular docking studies	22
Chapter III:	
Table 1: Molecular docking results most promising coumarin derivatives at the a	ctive site
of the3ERTprotein	30
Table 2: ADME Properties and drug-likeness of the 9 best degraders	40

Genetal Introduction

Breast cancer (BC) is the most commonly diagnosed malignancy among women and remains a leading cause of cancer-related mortality worldwide. ¹ While many benign tumors can be effectively treated with surgery, a significant proportion of BC cases are biologically aggressive, with the potential for silent progression and rapid metastasis. Recurrence is common and contributes substantially to the high fatality rate of the disease. BC is a heterogeneous condition, classified into molecular subtypes using specific biomarkers that guide diagnosis, prognosis, and treatment strategies. ² Approximately 70% of BCs are Hormone Peceptor-positive (HR+), meaning they express Estrogen Receptors (ER) and/or Progesterone Receptors (PR), with 65% being PR-positive. These subtypes respond well to endocrine therapy. In contrast, 20% of cases overexpress the Human epidermal growth factor (HER2+) oncogene, and about 10% are Triple-negative, lacking ER, PR, and HER2+ expression both associated with poorer outcomes and fewer treatment options. Endocrine therapy is a cornerstone in the treatment of ER-positive breast cancer. It includes Aromatase Inhibitors (AIs), Selective Estrogen Receptor Modulators (SERMs) and Selective Estrogen Receptor Degraders (SERDs) in Figure 1. ^{3.4.5}

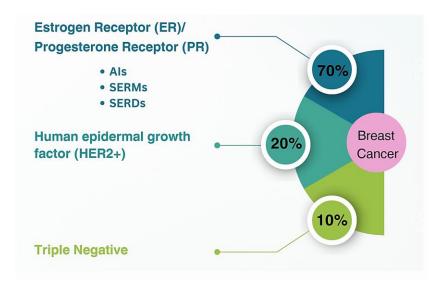


Figure 1. Different forms of Breast Cancer along.

Among these, SERDs such as fulvestrant (Figure 2) have shown effectiveness in degrading ER α and inhibiting its signaling pathway. However, fulvestrant's poor oral bioavailability and intramuscular administration limit its clinical utility.^{6, 7, 8}

Figure 2. Chemical structure of fulvestrant.

In recent years, there has been significant interest in the development of novel, orally bioavailable SERDs to overcome the limitations of current therapies and improve patient outcomes. This study focuses on the design and evaluation of coumarin-based SERD candidates using computational tools, including molecular docking and ADME-Tox prediction, to identify promising compounds with improved pharmacological and pharmacokinetic profiles for the treatment of ER+ breast cancer. ^{9.10.11.12.13}

Research Objective

SERDs are a promising treatment for estrogen receptor-positive (ER+) breast cancer. This study focuses on designing and evaluating coumarin-based small molecules as potential oral SERDs using Molecular Docking and ADME- Tox prediction. The study aims to assess the physicochemical properties, pharmacokinetics, and safety profiles. The results suggest promising drug-like profiles with favorable absorption and metabolic stability, advancing the development of next-generation SERDs that could overcome the limitations of current treatments like fulvestrant.

Thesis structure

- Chapter 1: This chapter discusses the role of computational techniques in drug discovery, emphasizing molecular docking for predicting compound-protein interactions. It also highlights the importance of evaluating drug-likeness and ADME-Tox profiles to assess efficacy and safety before laboratory testing. The chapter focuses on estrogen receptor alpha (ERα) as a key target in breast cancer therapy and explores the mechanism of action of SERDs, along with promising candidates for overcoming hormone therapy resistance.
- Chapter 2: This chapter details the computational methods used to evaluate SERD candidates, including receptor preparation, active site identification, and docking validation. It also covers ligand preparation and the execution of docking simulations. An ADME-Tox analysis is conducted using specialized software to assess the pharmacokinetics and toxicity profiles of the compounds.
- Chapter 3: This chapter presents the results of the computational analysis of 101 coumarin derivatives, with a focus on ADME-Tox properties. The findings identify the most promising molecules as potential therapeutic agents.

References

- 1. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010 Apr;1(2):109–26.
- 2. Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, et al. Correction: Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol. 2024;13(1):7.
- 3. Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem. 2023 Aug;256:115422.
- 4. Johnston SRD. Endocrinology and hormone therapy in breast cancer: selective oestrogen receptor modulators and downregulators for breast cancer have they lost their way? Breast Cancer Res. 2005;7(3):119–30.
- 5. Zheng LH, Zhao YH, Feng HL, Liu YJ. Endocrine resistance in breast cancer. Climacteric. 2014;17(5):522–8.
- 6. Robertson JFR, Harrison M. Fulvestrant: pharmacokinetics and pharmacology. Br J Cancer. 2004 Mar;90 Suppl 1(Suppl 1):S7-10.
- 7. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016 Apr;17(4):425–39.
- 8. Ellis MJ, Llombart-Cussac A, Feltl D, Dewar JA, Jasiówka M, Hewson N, et al. Fulvestrant 500 mg Versus Anastrozole 1 mg for the First-Line Treatment of Advanced Breast Cancer: Overall Survival Analysis From the Phase II FIRST Study. J Clin Oncol Off J Am Soc Clin Oncol. 2015 Nov;33(32):3781–7.
- 9. Scott JS, Moss TA, Balazs A, Barlaam B, Breed J, Carbajo RJ, et al. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J Med Chem. 2020 Dec;63(23):14530–59.
- 10. Wang L, Sharma A. SERDs: a case study in targeted protein degradation. Chem Soc Rev. 2022 Oct;51(19):8149–59.
- 11. Zekri A, Harkati D, Kenouche S, Saleh BA, Alnajjar R. A computational study of potent series of selective estrogen receptor degraders for breast cancer therapy. J Biomol Struct Dyn. 2023 Dec;41(20):11078–100.
- 12. Zekri A, Harkati D, Kenouche S, Saleh BA. QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. J Mol Struct. 2020;1217:128442.
- 13. Lu Y, Gutgesell LM, Xiong R, Zhao J, Li Y, Rosales CI, et al. Design and Synthesis of Basic Selective Estrogen Receptor Degraders for Endocrine Therapy Resistant Breast Cancer. J Med Chem. 2019 Dec;62(24):11301–23.

Chapter I:

An overview

Chapter I: An overview

TOPIC 1: Molecular Modeling

I. Molecular Docking	3
I.1.Types of molecular docking	4
I.2.Typical steps in molecular docking	5
II. In silico assessment of ADME-Toxicity profiling prediction	5
1. Absorption	6
2. Distribution	6
3. Metabolism	7
4. Excretion	7
5. Toxicity	7
TOPIC 2: Estrogen Receptor Alpha In Breast Cancer	
I. Types of receptors in breast cancer	10
I.1.Progesterone Receptor (PR)	10
I.2.Human Epidermal Growth Factor Receptor 2 (HER2)	10
I.3.Estrogen Receptor (ER)	10
II. Estrogen Receptor alpha (ERα)	11
II.1. Targeted mechanisms for activating ERα	11
a) Aromatase inhibitors (AIs)	11
b) Selective Estrogen Receptor Modulators (SERMs)	11
c) Selective Estrogen Receptor Degraders (SERDs)	11
III. Mechanism of action of SERDs in breast cancer treatment	
IV. The new treatment for breast cancer	12
References	14

TOPIC 1: Molecular Modeling

Computational chemistry has become a widely used method for developing new drugs in a short and cost-effective manner¹. It has been employed for modeling molecular interactions, predicting the physical and chemical properties of compounds, and optimizing drug design using chemical databases and data processing algorithms.²

Docking and ADMET are important tools in the field of Computer-Aided Drug Design (CADD). Both contribute to understanding how drug compounds interact with their biological targets in the body, which helps in improving the drug's effectiveness and reducing side effects.

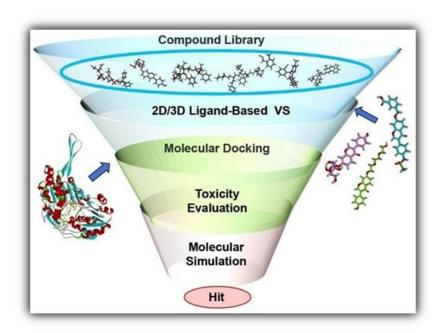



Figure I-1: Overview of virtual screening process³

I. Molecular Docking:

Molecular docking has become a key tool in computer-aided drug design to predict the interaction and binding of molecules through various methods for studying the interactions between large molecules (such as proteins) and small molecules. The main objective is to adjust the conformation that defines the appropriate binding site and relative orientation, particularly at the receptor level. 4.5

This process involves complementary interactions with protected architectural features and forces that may be steric, electronic, or dipole in nature, with contributions from non-covalent interactions and electrostatic bonds. Protein-protein interactions and binding play a crucial role in regulating biological systems, contributing to the regulation of certain biological processes, signal transduction, or activation of biochemical reactions.

Molecular docking is a computational study of the mechanisms and interactions between potential drug compounds and the body's proteins, aiming to predict and reconstruct the complex structure formed by the binding of receptors and ligands, and to identify the active site for the development of selective and potent drugs.^{5.6}

Figure I-2: Schematic representation of docking ⁷

I.1. Types of molecular docking:

Molecular docking can be categorized into several types based on the methods and features being focused on. Here are the main types of molecular docking:

1-Rigid docking:

It is more commonly used and simpler for modeling protein-protein docking. The protein and the ligand are considered rigid entities, meaning they retain their internal geometry fixed during the docking process.^{8,9}

2-Flexible docking:

Both the ligand and the protein undergo conformational changes during the docking process. Unlike rigid docking, flexible docking allows for the adjustment of the protein and ligand shapes to better fit together, accommodating flexibility in both molecules. This approach is particularly useful when dealing with proteins or ligands that undergo significant conformational changes upon binding.⁸

3- Semi-flexible docking:

This is the middle ground between rigid and fully flexible docking. Typically, the ligand is allowed some flexibility (such as rotating around its bonds), but the receptor (protein) remains rigid. This is often more computationally feasible than fully flexible docking while still allowing some flexibility in the ligand, which is usually important for achieving better accuracy in predicting binding.⁹

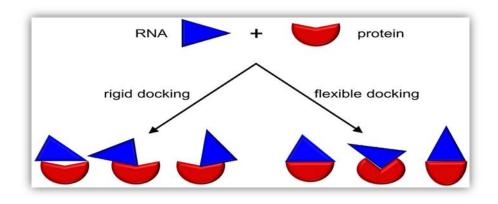


Figure I-3: Comparison of rigid and flexible docking methods ¹

I.2.Typical steps in molecular docking:

The docking protocol can be divided into several stages, as follows:

- ♣ Obtaining the future structure using X-ray crystallography or modeling techniques used to determine protein structures¹¹. The majority of protein structures are available through the Protein Data Bank.¹²
- The preparation of structures: The docking of future structures can only be performed after the relevant structures have been determined. To do this, it is essential to resolve issues related to steric clashes, as well as protonation state problems. The initial conformation of the docking is usually modified and refined during the docking process, and therefore, in principle, it is not extremely crucial.¹³
- ♣ In the field of molecular modeling, docking is a technique that determines the optimal orientation of one molecule relative to another when they bind to form a stable complex.¹⁴
- ♣ Once the molecular docking parameters are established, the docking software suggests one or more potential binding poses, which we use to predict and then evaluate them.¹³

II. In silico assessment of ADME-Toxicity profiling prediction:

In the drug development process, the activities of candidate drugs are evaluated based on their properties, drug kinetics, and toxicity¹⁵. This leads to a small number of drugs, often just one that successfully pass the final stage (good in terms of efficacy and safety). This is usually the result of factors such as absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.¹⁶

In recent years, in vitro and in vivo prediction methods for ADMET properties have become common, but the tests were complex, expensive, and challenging to perform on a large number of drugs. As a cost-effective and high-throughput alternative to experimental testing methods, in silico ADMET prediction has become particularly attractive .¹⁷

We will explore the aspects of ADME-Tox to understand its importance and familiarize ourselves with some of the tools and techniques used to assess it: 18-24

Figure I-4: An illustration showing the ADME properties

1. Absorption:

Absorption refers to how well and how quickly a drug is absorbed into the bloodstream (for example, from the stomach or intestines for orally administered drugs) after ingestion. It is an important factor that directly affects the drug's bioavailability, which is the portion that reaches the systemic circulation from the given dose.

The criteria for absorption are:

- Caco-2 permeability: refers to the ability of a drug to pass through a monolayer of Caco-2 cells, which are human colon cancer cells commonly used in laboratory studies to model the intestinal barrier. Caco-2 cells express conjugating enzymes, efflux proteins, and transport proteins, and their permeability is often used to predict how a drug will be absorbed in the human gastrointestinal system.
- Intestinal absorption (human): refers to the process through which drugs or other substances are absorbed into the bloodstream after crossing the walls of the intestines. It is a crucial step for drugs that are taken orally, as it determines how much of the drug will enter the systemic circulation and influences its therapeutic effect.
- Skin permeability: refers to the ability of a substance, such as a drug, to pass through the skin and enter the bloodstream. The skin serves as a protective barrier, and its permeability is an important factor in determining the effectiveness of topical or transdermal drug delivery systems.

2. Distribution:

Refers to the process by which a drug or active ingredient is dispersed throughout the body after being absorbed into the bloodstream. Once the drug enters the bloodstream, it is carried to various tissues and organs after binding to plasma proteins. The parameters of Distribution are:

- VDss (human): It is a measure used to determine the extent of a drug's distribution throughout the body after it reaches equilibrium between its concentration in the blood and tissues. It reflects how the drug is distributed in the body; the higher the VDss, the more extensively the drug is distributed in tissues, especially those with high fat content.
- o **BBB permeability:** refers to the ability of a drug to cross the blood-brain barrier, which is a semi-permeable barrier separating the bloodstream from the brain tissue. This barrier serves to protect the brain from harmful substances and toxins, while preventing many large molecules and compounds that are not lipophilic (fat-soluble) from entering the brain.
- Fraction unbound (human): The portion of the drug present that is not bound to proteins is known as the free fraction or fraction unbound.

Assuming a plasma protein binding (PPB) of 90%, the fraction that remains unbound is 10%, or 0.1 of the total. Assuming no active processes, the free concentration will be the same throughout the body at equilibrium. The fraction that is deemed free is thought to be accessible for distribution in order to interact with receptors, metabolize enzymes, and perform renal filtration, among other functions.

3. Metabolism:

Is the process through which a drug is chemically altered in the body this transformation, which is typically carried out by liver enzymes, aims to make the drug more water-soluble to facilitate its elimination. Metabolism can also render the drug either active, inactive, or toxic.

The parameters of Metabolism are:

o CYP2D6 substrate:

The second-highest number of drugs metabolized by P450 enzymes are attributed to CYP2D6. Because of its genetic polymorphism, CYP2D6 is an especially difficult enzyme to comprehend and research.

- o CYP1A2 inhibitor.
- o CYP2C19 inhibitor.
- o CYP2C9 inhibitor.
- o CYP2D6 inhibitor.
- O CYP3A4 inhibitor.

4. Excretion:

Is the process by which drugs or other substances that have not been used or metabolized are removed from the body. This is primarily done through the kidneys via urine, but it can also occur through feces, sweat, breath, or breast milk.

The parameters of Excretion are:

- o **Total clearance:** It is a measure used to determine the body's ability to remove a drug from the bloodstream. It represents the volume of plasma that is completely cleared of the drug per unit of time (typically in milliliters per minute or liters per hour). Total clearance is an important measure to understand how a drug is eliminated from the body, depending on its removal by the liver, kidneys, and all other tissues combined.
- o **T1/2 (half-life):** is the time it takes for the systemic concentration of a drug to decrease by 50%. It is also the time it takes to reach 50% of the steady-state concentration of the drug.
- o Renal OCT2 substrate.

5. Toxicity:

Is the condition in which harmful or poisonous effects occur as a result of the body's exposure to a substance, such as drugs or chemicals .Toxicity can occur when the concentrations of the

substance in the body exceed the safe threshold, which is why it is one of the most important criteria for toxicity assessment in ADME-Tox evaluation. It involves identifying the potential harmful effects of the drug on living organisms. The criteria for toxicity include:

- AMES toxicity: The Ames test is a bacterial assay used to assess the potential for mutations in chemical substances. Named after its inventor, Dr. Bruce N. Ames, it is a fast and cost-effective screening tool for identifying mutagens and potential carcinogens. It helps evaluate the genotoxicity of chemicals and supports regulatory decision-making processes.
- o Skin sensitisation.

TOPIC 2: Estrogen Receptor Alpha In Breast Cancer

Breast cancer is one of the most common cancers among women, accounting for approximately 25% of new cases and 16% of cancer-related deaths worldwide. This disease is highly heterogeneous, containing various subtypes that can be identified through molecular biomarkers, which also help predict prognosis and treatment response. Among these subtypes, luminal breast cancer is the most common, characterized by the presence of estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+). In contrast, HER2-positive breast cancer is defined by overexpression of the HER2 gene, while triplenegative breast cancer is characterized by the lack of expression of ER/PR and HER2. ^{25,26,39}

In cases of metastatic breast cancer, the luminal subtype accounts for more than 65% of cases. The recommended treatment for this subtype is endocrine-based therapy, as numerous studies and recommendations have concluded that chemotherapy is not the best option for hormone-sensitive disease, except in cases such as visceral crisis. These biological classifications play a significant role in guiding optimal treatment and achieving the best outcomes for patients.

I. Types of receptors in breast cancer:

There are several types of receptors in breast cancer that play a significant role in the growth of the tumor and its response to treatment. These include:

I.1.Progesterone Receptor (PR):

Are intracellular proteins that undergo a conformational change upon binding with progesterone, becoming transcription factors. This receptor regulates the transcription of specific genes depending on the cellular and hormonal context. PR plays a critical role in several physiological processes, including fertility, regulation of the menstrual cycle, initiation and maintenance of pregnancy, and response to sex steroids. There are two isoforms of the receptor: PR-A and PR-B, which have slightly different roles in transcriptional regulation and in interacting with other transcription factors.

I.2. Human Epidermal Growth Factor Receptor 2 (HER2):

HER2 is a membrane protein. The HER-2/neu oncogene belongs to the erbB-like oncogene family and is associated with the epidermal growth factor receptor, although it differs from it. In some forms of cancer, particularly breast cancer, HER2 overexpression is observed, indicating an excess of HER2 receptors on the surface of cancer cells. This acts as a stimulant and may also lead to abnormal behavior.²⁷

I.3.Estrogen Receptor (ER):

The estrogen receptor (ER) is a protein found on the surface of cells in certain types of cancer, including breast cancer. This receptor binds with the hormone estrogen, and the ER plays an important role in the biology of breast cancer. It is an accepted factor that predicts favorable disease outcomes and response to treatment.²⁸

• Estrogen receptors (ERs) are primarily classified into two main types: ER α and ER β ²⁹, with particular reference to membrane receptors that involve rapid (nongenomic) effects. I will focus on ER α for further study.

II. Estrogen Receptor alpha (ERα):

Is a member of the nuclear receptor superfamily of transcription factors whose activity is primarily regulated by binding of estrogen/estradiol (E2). E2 plays an indispensable role in growth, development, reproduction and maintenance of numerous physiological systems in mammals.³⁰

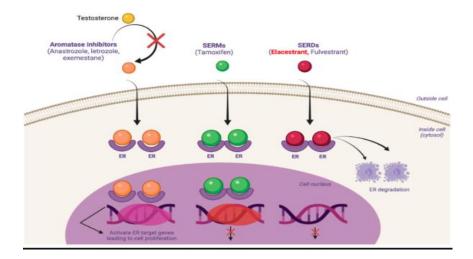
II.1. Targeted mechanisms for activating ERα:

The estrogen receptor alpha (ER α) plays a central role in cell proliferation, survival, and tumor progression in ER-positive (ER+) breast cancers, which represent the majority of breast cancers. Here are the key steps of the mechanism of action of ER α in this context:

- Activation by estrogen: Estrogen, the primary ligand for the ERα receptor, binds to the ligand-binding domain (LBD) of the receptor. This process leads to a conformational change in the receptor, enabling its activation. After binding to estrogen, the estrogen-ERα complex dimerizes and binds to estrogen response elements (EREs) on DNA, allowing the transcriptional activation of target genes³¹
- The three current categories of approaches specifically targeting estrogen receptor alpha (ERα) signaling in breast cancer, chosen based on disease progression, are:

a) Aromatase inhibitors (AIs):

Third-generation aromatase inhibitors have become the cornerstone in the treatment of breast cancer in postmenopausal women with ER+ tumors. Drugs such as anastrozole, letrozole, and exemestane have proven effective in lowering estrogen levels, thereby reducing the growth and spread of estrogen-dependent breast cancer. However, despite offering better outcomes compared to older treatments, their side effects, particularly regarding bone health and joint pain, must be carefully managed.^{32,33}


b) Selective Estrogen Receptor Modulators (SERMs):

SERMs are compounds that selectively modulate the activity of ER α . They act as agonists in some tissues and antagonists in others, or modulators depending on their structure and the tissue environment³⁴. An example is the drug tamoxifen, which is one of the widely used SERMs in the treatment of estrogen receptor-positive (ER+) breast cancer. It selectively blocks the receptors by preventing estrogen binding and ER signaling. It inhibits the activating function of the AF2 domain but leaves the AF1 domain of ER α open, which may cause agonist activity in some tissues (such as the uterus), potentially leading to tumor growth. ^{35,36}

c) Selective Estrogen Receptor Degraders (SERDs):

Selective Estrogen Receptor Degraders (SERDs) are nonsteroidal small molecules with an ER binding motif and an amino base terminal or acrylic acid side chain that provides antiestrogenic and ER-degrading activity³⁷. Selective Estrogen Receptor Down regulators (SERDs) are a class of targeted therapeutic agents that not only block estrogen receptors (ER) but also promote the degradation of the receptors themselves (thereby inhibiting growth and proliferation). For this reason, our study has focused on them. Given the urgent need for new

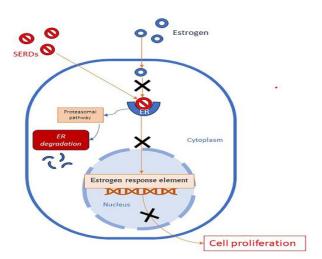

and effective treatments for breast cancer, we will focus on discovering a new compound that allows oral drug delivery by utilizing toxic properties and other techniques in the treatment of breast cancer.

Figure I-5: Mechanism of action of the different ET: aromatase inhibitors, SERMs and SERDs. ER and its activity modulated by AI, SERMs and SERDs: AI block estrogen production by inhibiting the aromatization of androgens to estrogens. SERMs (tamoxifen) competitively inhibit the binding of estrogen to ER. SERDs produce a reduction of SERD-bound ER ability to translocate to the nucleus, inhibiting transcription of ER-regulated genes. SERD-bound ER undergoes degradation as a consequence of impaired mobility.³⁹

III. Mechanism of action of SERDs in breast cancer treatment:

Selective Estrogen Receptor Degraders (SERDs) work by binding to the estrogen receptor (ER α) in the cytoplasm of cancer cells, causing a structural change in the receptor. This structural change destabilizes the receptor and triggers its degradation by proteasomes associated with the nuclear matrix, leading to its complete destruction. As a result, the receptor is unable to activate target genes that contribute to cancer cell proliferation, effectively halting tumor growth. This mechanism makes SERDs an effective treatment option for estrogen receptor-positive breast cancer, especially in resistant cases. $^{38.40}$

Figure I-6: The impact of Selective Estrogen Receptor Degraders (SERDs) on the estrogen receptor pathway. SERDs degrade ER, blocking ER signaling.⁴⁰

IV. The new treatment for breast cancer:

Selective Estrogen Receptor Down regulators (SERDs) are a new class of therapies for the treatment of estrogen receptor-positive (ER+) breast cancer. These drugs work by destroying

estrogen receptors on cancer cells, preventing estrogen from stimulating the growth of cancer cells. While previous treatments such as tamoxifen and aromatase inhibitors have been effective, oral SERDs represent the new generation that offers additional advantages.³⁸

One of the prominent drugs in this field is Fulvestrant, which acts as an estrogen receptor antagonist by binding to it and degrading it using the ubiquitin-proteasome system⁴¹. There are also new non-steroidal drugs that contain an acrylic acid side chain, which are effective at degrading ER in specific cell lines, but may not be as effective in all ER+ cell lines. Notable examples include GDC-0810 and AZD9496^{42,43}. Other drugs contain a basic amino side chain, which have been optimized for more efficient ER α degradation across multiple cell lines, have oral bioavailability, and can reach the brain, making them more effective in overcoming hormonal therapy resistance. An example of such a drug is RAD1901 (Elacestrant) .^{44,45}.

Table I-1: List of notable selective estrogen receptor degraders.⁴⁶

Compound	Structure	Company	Effects
Fulvestrant	OH H H HO HO	AstraZeneca	-development of resistance -Low bioavailability.
GDC-0927	OH ON F	Seagon pharmaceuticals/genetic Inc.	High Bioavailability. Highly active in Tam-resistant cells.
AZD9496	NH F OH	AstraZeneca	High Bioavailability. Cross-resistant to fulvestrant.
Elacestrant	HO HN	Radius pharmaceutical	High Bioavailability Dose dependent SERM/SERD hybrid.

References

- 1. Heifetz A. Quantum Mechanics in Drug Discovery. 2020.
- 2. Frédéric Wieber AH. Méthodes de modélisation en chimie computationnelle : pluralisme et pragmatisme, software et benchmarking. Philos la Chim . 2020;(ffhal-02490889).
- 3. Jiang W, Chen J, Zhang P, Zheng N, Ma L, Zhang Y, et al. Repurposing Drugs for Inhibition against ALDH2 via a 2D/3D Ligand-Based Similarity Search and Molecular Simulation. Molecules. 2023;28(21).
- 4. Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl. 2002 Aug;41(15):2644–76.
- 5. Soudani W. RHAZES: Green and Applied Chemistry. 2022;(January):4–7.
- 6. Dnyandev KM, Babasaheb GV, Chandrashekhar KV, Chandrakant MA, Vasant OK. A Review on Molecular Docking. Int Res J Pure Appl Chem. 2021 May 20;22(3 SE-Review Article):60–8.
- 7. Thiriot E. Modélisation de la reconnaissance et de la catalyse enzymatiques : Développements méthodologiques et détermination du mécanisme des Métionine Sulfoxyde Réductases de classe A Eddy Thiriot To cite this version : HAL Id : tel-01748459 soutenance et mis à di. 2018;
- 8. Monika G, Punam G, Sarbjot S, D. GG. An overview on Molecular Docking International Journal of Drug Development & Research. Int J Drug Dev Res. 2010;2(2):219–31.
- 9. Chevrollier N. Développement et application d'une approche de docking par fragments pour modéliser les interactions entre protéines et ARN simple-brin. Biol Struct. 2019;38–56.
- 10. Nithin C, Ghosh P, Bujnicki JM. Bioinformatics Tools and Benchmarks for Computational Docking and 3D Structure Prediction of RNA-Protein Complexes. Genes (Basel). 2018 Aug;9(9).
- 11. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000 Jan;28(1):235–42.
- 12. Howard GC, Brown WE. MODERN PROTEIN Edited by. 2002.
- 13. Grosdidier A. Conception d'un logiciel de docking et applications dans la recherche de nouvelles molécules actives. 2007;(January):91.
- 14. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001 Mar;46(1–3):3–26.
- 15. Tian S, Wang J, Li Y, Xu X, Hou T. Drug-likeness Analysis of Traditional Chinese Medicines: Prediction of Drug-likeness Using Machine Learning Approaches. Mol Pharm. 2012 Oct 1;9(10):2875–86.
- 16. Selick HE, Beresford AP, Tarbit MH. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today. 2002 Jan;7(2):109–16.
- 17. Caldwell GW, Yan Z, Tang W, Dasgupta M, Hasting B. ADME optimization and toxicity assessment in early- and late-phase drug discovery. Curr Top Med Chem. 2009;9(11):965–80.
- 18. Moroy G, Martiny V, Vayer P, Villoutreix B, Miteva M. Toward in silico structure-

- based ADMET prediction in drug discovery. Drug Discov Today. 2011 Oct 29;17:44–55.
- 19. Segall M, Champness E, Obrezanova O, Leeding C. Beyond profiling: using ADMET models to guide decisions. Chem Biodivers. 2009 Nov;6(11):2144–51.
- 20. Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017 Apr;7:46277.
- 21. Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, et al. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging. 2023 Mar;50(4):1051–83.
- 22. Miteva MA, Villoutreix BO. Computational Biology and Chemistry in MTi: Emphasis on the Prediction of Some ADMET Properties. Mol Inform. 2017 Oct;36(10).
- 23. Toutain PL, Bousquet-Mélou A. Plasma clearance. J Vet Pharmacol Ther. 2004;27(6):415–25.
- 24. Martinez MN. Use of pharmacokinetics in veterinary medicine. Article. II: Volume, clearance, and half-life. J Am Vet Med Assoc. 1998 Oct;213(8):1122–7.
- 25. Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019 May;24(5):1157–65.
- 26. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010 Apr;1(2):109–26.
- 27. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233–47.
- 28. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan;235(4785):177–82.
- 29. Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997 Mar;138(3):863–70.
- 30. Zhao C, Dahlman-Wright K, Gustafsson JA. Estrogen receptor beta: an overview and update. Nucl Recept Signal. 2008 Feb;6:e003.
- 31. Hamilton KJ, Arao Y, Korach KS. Estrogen hormone physiology: Reproductive findings from estrogen receptor mutant mice. Reprod Biol. 2014;14(1):3–8.
- 32. Howell A, Dowsett M. Aromatase inhibitors versus antioestrogens. Breast Cancer Res. 2004;6(6):269–74.
- 33. Riggs BL, Hartmann LC. Selective estrogen-receptor modulators -- mechanisms of action and application to clinical practice. N Engl J Med. 2003 Feb;348(7):618–29.
- 34. McDonnell DP, Norris JD. Connections and regulation of the human estrogen receptor. Science. 2002 May;296(5573):1642–4.
- 35. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov. 2003 Mar;2(3):205–13.
- 36. Mehrotra R, Yadav K. Breast cancer in India: Present scenario and the challenges ahead. World J Clin Oncol. 2022 Mar;13(3):209–18.
- 37. Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol. 2011 May;125(1–2):13–22.

- 38. Wardell SE, Marks JR, McDonnell DP. The turnover of estrogen receptor α by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochem Pharmacol. 2011 Jul;82(2):122–30.
- 39. Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, et al. Oral Selective Estrogen Receptor Degraders (SERDs) as a Novel Breast Cancer Therapy: Present and Future from a Clinical Perspective. Int J Mol Sci. 2021 Jul;22(15).
- 40. Guglielmi G, Del Re M, Gol LS, Bengala C, Danesi R, Fogli S. Pharmacological insights on novel oral selective estrogen receptor degraders in breast cancer. Eur J Pharmacol. 2024;969(September 2023):176424.
- 41. Kornblum N, Zhao F, Manola J, Klein P, Ramaswamy B, Brufsky A, et al. Randomized Phase II Trial of Fulvestrant Plus Everolimus or Placebo in Postmenopausal Women With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer Resistant to Aromatase Inhibitor Therapy: Results of PrE0102. J Clin Oncol Off J Am Soc Clin Oncol. 2018 Jun;36(16):1556–63.
- 42. Lai A, Kahraman M, Govek S, Nagasawa J, Bonnefous C, Julien J, et al. Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts. J Med Chem. 2015 Jun;58(12):4888–904.
- 43. Kazi A, Goloubeva O, Schech A, Yu S, Sabnis GJ. Efficacy of a novel orally active SERD AZD9496 against hormone dependent post-menopausal breast cancer depends on inhibition of cellular aromatase activity. J Steroid Biochem Mol Biol. 2020 Sep;202:105697.
- 44. Bardia A, Kaklamani V, Wilks S, Weise A, Richards D, Harb W, et al. Phase I Study of Elacestrant (RAD1901), a Novel Selective Estrogen Receptor Degrader, in ER-Positive, HER2-Negative Advanced Breast Cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2021 Apr;39(12):1360–70.
- 45. Chandarlapaty S, Dickler MN, Perez Fidalgo JA, Villanueva-Vázquez R, Giltnane J, Gates M, et al. An Open-label Phase I Study of GDC-0927 in Postmenopausal Women with Locally Advanced or Metastatic Estrogen Receptor-Positive Breast Cancer. Clin cancer Res an Off J Am Assoc Cancer Res. 2023 Aug;29(15):2781–90.
- 46. Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-aided ligand discovery for estrogen receptor alpha. Int J Mol Sci. 2020;21(12):1–49.

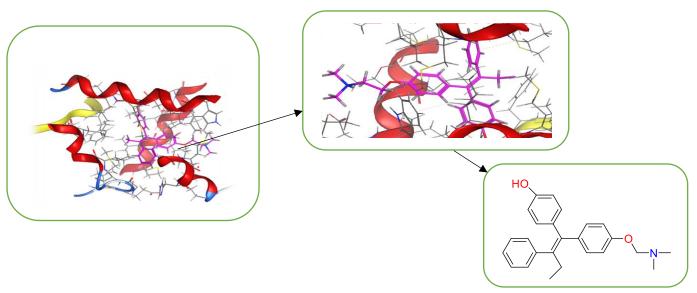
CHAPTER II: Materials and Methods

CHAPTER II: Materials and Methods

I. Computer system and web servers	19
II. Molecular Docking	19
II.1. Preparation of receptor	19
II.2 Active site selection	20
II.3. Validation of receptor	21
II.4. Ligand preparation	21
II.2.5. Docking execution (Protocol)	24
III. In silico study of ADME-Tox properties	25
III.1.ADME-Toxicity evaluation of coumarin derivatives using ADMETlab 3.0	25
References	27

This study investigated the interaction of 101 coumarin-based Selective Estrogen Receptor Down-regulators (SERDs) featuring obtained from the ChEMBL database ¹ ²(https://www.ebi.ac.uk/chembl/), with the Estrogen Receptor Alpha (ERα) using the Molecular Operating Environment (MOE) 2019 software ³. Additionally, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) analysis was conducted using the ADMETlab⁴ (https://admetmesh.scbdd.com/) and SwissADME⁵ (http://www.swissadme.ch/) web servers, revealing favorable pharmacokinetic and safety profiles for the SERDs, thereby enhancing their potential as drug candidates. However, some compounds exhibited poor oral bioavailability due to extensive first-pass metabolism, high plasma protein binding, or low intestinal permeability, highlighting the need for further structural modifications to optimize their pharmacokinetic properties. ^{6.7}

I. Computer system and web servers:


For theoretical quantum chemical calculations, we utilized a performance computing system with the following specifications: Processor: AMD Ryzen 5 5600, 6-Core, Memory (RAM): 32.0 GB and Operating System: Windows 11 Pro (Version 10.0.22631).

To investigate the interaction mechanisms between SERDs and ERα, we employed the following specialized software and web servers: ChemDraw Ultra 12.0 software ⁸ for molecular structure visualization and modification, MOE 2019 software ³ for molecular docking and interaction analysis. Pharmacokinetic parameters were estimated using ADMETlab ⁴ and Swiss ADME ⁵ web servers which revealed favorable pharmacokinetic and safety profiles for the SERDs.

II. Molecular Docking:

II.1. Preparation of receptor:

To conduct the docking study, we selected the Estrogen Receptor Alpha ⁹ (ERα) (PDB ID: 3ERT) from the Protein Data Bank ¹⁰ (PDB) (https://www.rcsb.org) and downloaded. The 3D structure of (PDB ID: 3ERT) was co-crystallized ligand with 4-Hydroxytamoxifen (OHT), as shown in Figure 1.

Figure II-1: 3D Structure of ERα complexed with OHT (PDB ID: 3ERT).

> The three-dimensional structure of 3ERT was obtained through X-ray diffraction. The properties of the ERα selected for this study are summarized in Table II.1

Table II.1: Properties of the selected protein (PDB ID: 3ERT).

Receptor	Co-crystallized ligand OHT	Classification	Chain	Resolution (Å)	Molecular mass (KDa)	Polymer (Å)
REα PDB ID:	НО	Nuclear receptor	A	1.9	30.24	1
3ERT	N	_				

After downloading the enzyme receptors, the structures were simplified by: removing water molecules, ions, and catalysts, performing 3D protonation and assigning partial atomic charges and determining the active site using the site finder tool in MOE software.

II.2 Active site selection:

To identify the most suitable active site for docking, we used the Site Finder tool in MOE software, which detected a total of 23 cavities in the 3ERT protein. For this study, we selected the first cavity based on its co-crystallization with the ligand OHT. Table II.2 and Figure II.2 summarize the active site residues of 3ERT.

Table II.2: Characteristics of the active site in 3ERT

PDB	Size	PLB	Hyd	Side	Residues
3ERT	218	4.45	74	118	1:(GLU323 PRO324 PRO325 ILE326 LEU327 MET343 LEU346
					THR347 LEU349 ALA350 ASP351 GLU353 HIS356 MET357
					TRP360 GLU380 TRP383 LEU384 ILE386 LEU387 MET388
					GLY390 LEU391 TRP393 ARG394 PHE404 ALA405 PRO406
					GLU419 GLY420 MET421 ILE424 LEU428 PHE445 LYS449
					GLY521 MET522 HIS524 LEU525 TYR526 MET528 LYS529
					CYS530 VAL533 VAL534 PRO535 LEU536)

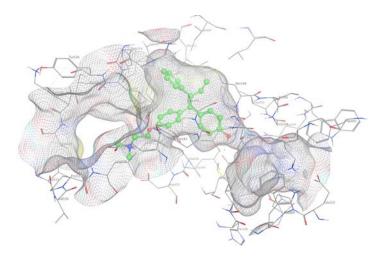
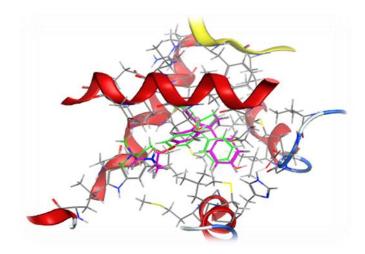



Figure II-2: Active site residues of 3ERT.

II.3. Validation of receptor:

To validate the precision and reliability of our docking protocol, we conducted a re-docking experiment by reintroducing the co-crystallized ligand 4-Hydroxytamoxifen (OHT) into its active site within the 3ERT complex. The resulting Root Mean Square Deviation (RMSD) values were below 2.5 Å, indicating a high degree of consistency between the predicted and experimental binding conformations, thus, confirming the reliability and effectiveness of the docking method.

Figure II-3: Validation of the docking by re-docking in 3ERT.

II.4. Ligand preparation:

Based on the findings from scientific literature ¹¹, we selected the two most promising compounds, A and B, for further optimization represented in Figure II.4. Compound A, a potent 7-hydroxycoumarin derivative, demonstrated strong estrogen receptor down-regulation but suffered from poor oral bioavailability. Compound B, where the 7-hydroxy group was removed, resulting in improved pharmacokinetic properties and enhanced bioavailability while retaining SERD potency. These lead compounds serve as valuable candidates for further development in the pursuit of orally active SERDs with enhanced therapeutic potential.

$$HO_2C$$
 HO_2C
 OCF_3
 OCF_3
 B

Figure II-4: Lead compounds A and B selected.

For this study, we used 101 SERDs, specifically coumarin-based derivatives, obtained from the ChEMBL database $^{1\,2}$ (https://www.ebi.ac.uk/chembl/) represented in Table II.3. These SERDs were selected based on their potential interaction with ER α .

Ligand preparation process:

- 1. Chemical structures were drawn using ChemDraw and saved in MDL. mol format.
- 2. Structural optimization was performed using MOE.

Table II.3: Comarine core derivatives used in molecular docking studies.

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_7

				K ₇						
entry	code	X	Y	\mathbf{R}_1	\mathbf{R}_2	\mathbb{R}_3	\mathbb{R}_4	\mathbf{R}_5	R_6	\mathbb{R}_7
1	CHEMBL3427400	/	ОН	1-fluoro-3-	$C_3H_2O_2H$	Н	Н	Н	Н	Н
				methylbenzene						
2	CHEMBL113712	/	ОН	Ph	Н	$OC_3H_6NC_5H_{10}$	Н	Н	Н	Н
3	CHEMBL115000	/	OH	Ph	Н	$OC_4H_8NC_5H_{10}$	Н	Н	Н	Н
4	CHEMBL325889	/	ОН	Ph	$OC_5H_{10}NC_5H_{10}$	Н	Н	Н	Н	Н
5	CHEMBL115194	/	OH	Ph	$OC_3H_6NC_5H_{10}$	Н	Н	Н	Н	Н
6	CHEMBL421892	/	OH	Ph	$OC_6H_{12}NC_5H_{10}$	Н	Н	Н	Н	Н
7	CHEMBL115489	/	OH	Ph	Н	$OC_5H_{10}NC_5H_1$	Н	Н	Н	Н
						0				
8	CHEMBL117263	/	ОН	Ph	$OC_2H_4NC_5H_{10}$	Н	Н	Н	Н	Н
9	CHEMBL115060	/	OH	Ph	$OC_4H_8NC_5H_{10}$	Н	Н	Н	Н	Н
10	CHEMBL262042	/	OH	Ph	Н	$OC_2H_4NC_5H_{10}$	Н	Н	Н	Н
11	CHEMBL3427389	CH_2	OH	PhF	$C_3H_2O_2H$	Н	Н	Н	Н	Н
12	CHEMBL3427396	CH_2	ОН	1-fluoro-3-	$C_3H_2O_2H$	Н	Н	Н	Н	Н
				methoxybenzene						
13	CHEMBL3427394	CH_2	ОН	1,3-difluorobenzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
14	CHEMBL3427408	CH_2	ОН	(trifluoromethoxy)b	$C_3H_2O_2H$	Н	Н	Н	Н	CH_3
				enzene						
15	CHEMBL3427398	CH_2	ОН	1-chloro-3-	$C_3H_2O_2H$	Н	Н	Н	Н	Н
				methylbenzene						
16	CHEMBL3427387	CH_2	ОН	anisole	$C_3H_2O_2H$	Н	Н	Н	Н	Н
17	CHEMBL3425530	CH_2	ОН	(trifluoromethoxy)b	$C_3H_2O_2H$	Н	Н	Н	CH_3	Н
				enzene						
18	CHEMBL3427395	CH_2	ОН	1-chloro-3-	$C_3H_2O_2H$	Н	Н	Н	Н	Н
				fluorobenzene						

Page | 22

CHAPTER II: Materials and Methods

19	CHEMBL3427407	CH_2	ОН	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	Н	F
20	CHEMBL3427399	CH ₂	ОН	1-methyl-3- (trifluoromethoxy)b enzene	C ₃ H ₂ O ₂ H	Н	Н	Н	Н	Н
21	CHEMBL3427393	CH_2	ОН	(trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
22	CHEMBL3427397	CH_2	ОН	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
23	CHEMBL3427385	CH_2	OH	Ph	$C_3H_2O_2H$	Н	Н	Н	Н	Н
24	CHEMBL3427390	CH_2	ОН	PhCl	$C_3H_2O_2H$	Н	Н	Н	Н	Н
25	CHEMBL3427388	CH_2	ОН	(trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
26	CHEMBL3427386	CH_2	ОН	toluene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
27	CHEMBL3427392	CH_2	ОН	anisole	$C_3H_2O_2H$	Н	Н	Н	Н	Н
28	CHEMBL3427391	CH_2	ОН	(trifluoromethyl)be nzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
29	CHEMBL3427412	CH_2	OCH ₃	(trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
30	CHEMBL3427409	CH_2	Н	(trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
31	CHEMBL3427413	CH_2	F	(trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
32	CHEMBL115303	CH_2	ОН	Ph	$OC_4H_8NC_5H_{10}$	Н	Н	Н	Н	Н
33	CHEMBL326146	CH_2	ОН	Ph	$OC_3H_6NC_5H_{10}$	Н	Н	Н	Н	Н
34	CHEMBL439967	CH_2	ОН	Ph	$OC_2H_4NC_5H_{10}$	Н	H	Н	Н	Н
35	CHEMBL3427403	NH	ОН	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
36	CHEMBL3427404	NCH ₃	ОН	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
37	CHEMBL4063544	NH	ОН	anisole	NHC_2H_3	Н	Н	Н	Н	Н
38	CHEMBL3427500	О	HCF ₂	1,2-dimethyl-4- (trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
39	CHEMBL3427501	O	OC ₂ H ₅	1-methyl-3- (trifluoromethoxy)b enzene	C ₃ H ₂ O ₂ H	Н	Н	Н	Н	Н
40	CHEMBL3427414	O	Н	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
41**	CHEMBL3427415	О	Н	1-methyl-3- (trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
42	CHEMBL3427406	O	ОН	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	F	Н
43	CHEMBL3427401	O	ОН	1-fluoro-3- methylbenzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
44*	CHEMBL3427402	O	ОН	1-methyl-3- (trifluoromethoxy)b enzene	$C_3H_2O_2H$	Н	Н	Н	Н	Н
45	CHEMBL4166688	O	ОН	PhOH	$OC_2H_4N(CH_3)_2$	Н	Н	Н	Н	Н
46	CHEMBL4170100	O	ОН	PhOH	$OC_2H_4NC_4H_8$	Н	Н	Н	Н	Н
47	CHEMBL4162191	O	ОН	PhOH	$OC_2H_4NC_5H_{10}$	Н	Н	Н	Н	Н
48	CHEMBL4173553	О	ОН	fluorobenzene	OC_2H_4N $(CH_3)_2$	Н	Н	Н	Н	Н
49	CHEMBL4177322	O	ОН	phOH	$OC_2H_4N(C_2H_5)_2$	Н	Н	Н	Н	Н
50	CHEMBL4176917	O	ОН	fluorobenzene	$OC_2H_4NC_4H_8$	Н	Н	Н	Н	Н
51	CHEMBL4169053	O	ОН	fluorobenzene	$OC_2H_4NC_5H_{10}$	Н	Н	Н	Н	Н
52	CHEMBL4165622	O	ОН	fluorobenzene	$OC_2H_4N(C_2H_5)_2$	Н	Н	Н	Н	Н
53	CHEMBL4177323	O	OCH ₃	anisole	$OC_2H_4N(C_2H_5)_2$	Н	Н	Н	Н	Н
54	CHEMBL4169469	O	OCH_3	anisole	OC_2H_4N $(CH_3)_2$	Н	Н	Н	Н	Н
55	CHEMBL1504784	CH ₃	ОН	Ph	/	/	/	Н	Н	Н
56	CHEMBL3114441	/	ОН	PhOH	Н	Н	Н	Н	Н	Н

					,					
57	CHEMBL1255978	CH ₃	OH	PhOH	/	/	/	Н	Н	Н
58	CHEMBL5284565	OH	OH	PhOH	/	/	/	Н	Н	Н
59	CHEMBL1548614	CH ₃	OH	PhOCH ₃	/	/	/	H	Н	Н
60	CHEMBL1988509	/	Н	OPhC1	OH	Н	Н	Н	Н	Н
61	CHEMBL2333797	C_2H_2	ОН	Ph	OCH ₃	H	Н	H	Н	Н
62	CHEMBL2413913	/	OH	Ph	OH	Н	H	H	Н	H
63	CHEMBL4081061	NH	OH	PhOCH ₃	OCH ₃	Н	Н	H	Н	Н
64	CHEMBL2413896	/	ОН	PhOH	ОН	Н	Н	H	Н	H
65	CHEMBL2413901	/	OC ₂ H ₄ NC ₄ H ₈ O	Ph	ОН	Н	Н	Н	Н	Н
66	CHEMBL2333799	C_2H_2	ОН	Ph	$OC_2H_4NC_5H_{10}$	Н	Н	Н	Н	Н
67	CHEMBL2333806	C_2H_2	OCH_3	Ph	OCOCH ₃	Н	Н	Н	Н	Н
68	CHEMBL4282511	ОН	Н	COC ₂ H ₂ PhOH	/	/	/	Н	Н	Н
69	CHEMBL4102487	NH	ОН	PhOCH ₃	OCH_3	OCH_3	OCH_3	Н	Н	Н
70	CHEMBL1980963	/	OCH_3	OPh	ОН	Н	Н	Н	Н	Н
71	CHEMBL1258302	CH_3	ОН	C_2H_2PhOH	/	/	/	Н	Н	Н
72	CHEMBL4285469	ОН	ОН	$COC_2H_2Ph_2$	/	/	/	Н	Н	Н
73	CHEMBL1969472	/	ОН	CONHPhBr	Н	Н	Н	Н	Н	Н
74	CHEMBL1968491	/	Н	OPh	ОН	Н	Н	Н	Н	Н
75	CHEMBL1974086	C_2H_5	ОН	PhOCH ₃	/	./	/	Н	Н	Н
76	CHEMBL2413903	/	$OC_2H_4NC_5H_{10}$	Ph	ОН	Н	Н	H	Н	Н
77	CHEMBL2413895	/	OCH_3	Ph	ОН	Н	Н	H	Н	Н
78	CHEMBL79777	CH_3	OCON(CH ₃) ₂	Н	Н	Н	Н	Н	Н	Н
79	CHEMBL1596578	CH_3	OCH ₂ COCH ₃	Ph	/	/	/	Н	Н	Н
80	CHEMBL1588517	CH_3	Н	Ph	/	/	/	Н	ОН	Н
81	CHEMBL1258415	C_2H_2COPh	ОН	Н	Н	Н	Н	Н	Н	Н
82	CHEMBL1972786	/	OCH_3	OPhCl	ОН	Н	Н	Н	Н	Н
83	CHEMBL3114453	/	$OC_2H_4N(CH_3)_2$	$PhOC_2H_4N(CH_3)_2$	Н	Н	Н	Н	Н	Н
84	CHEMBL3612755	/	Н	PhOCOCH ₃						
85	CHEMBL2070342	OCH_2	Н	Ph	Н	Н	Н	Н	Н	Н
86	CHEMBL2333798	C_2H_2	OCH_3	Ph	$OCH(CH_3)CH_2N(CH_3)_2$	Н	Н	Н	Н	Н
87	CHEMBL1996594	/	OCOCH ₃	OPhC1	Н	Н	Н	H	Н	Н
88	CHEMBL2413902	/	$OC_2H_4NC_4H_8$	Ph	ОН	Н	Н	Н	Н	Н
89	CHEMBL12580	$C_2H_2CO_2H$	OCH_3	Н	/	/	/	H	Н	
90	CHEMBL4878531	OH	ОН	NHCOPhOPh	/	/	/	Н	Н	Н
91	CHEMBL2112018	OCH_3	ОН	CHPhC ₂ H ₂ OCH ₃	/	/	/	Н	Н	Н
92	CHEMBL1526978	/	Н	Н	Н	Н	Н	Н	Н	Н
93	CHEMBL2413904	/	$OC_2H_4N(C_2H_5)_2$	Ph	ОН	Н	Н	Н	Н	Н
94	CHEMBL2333800	C_2H_2	OCH_3	Ph	$OC_2H_4NC_5H_{10}$	Н	Н	Н	Н	Н
95	CHEMBL145263	CH_3	OCH_2Ph	Ph	/	/	/	Н	Н	Н
96	CHEMBL2112874	OCH_3	ОН	CHPhCH ₂ COCH ₃	/	/	/	H	Н	Н
97	CHEMBL5287553	OH	ОН	(Z)-4,7-dihydroxy-3	/	/	/	Н	Н	Н
				-(4-styrylbenzyl)-						
				2H-chromen-2-one						
98	CHEMBL5277698	ОН	OCH_3	Ph	/	/	/	Н	Н	Н
99	CHEMBL2333807	C_2H_2	OCH ₃	Ph	ОН	Н	Н	Н	Н	Н
100	CHEMBL193518	CH_2	ОН	PhCl	Н	Н	Н	Н	Н	Н
101	CHEMBL1526978									
		но	~o~o							
							omnound A **:	~	15: 0	** .

Note: *: Compound A, **: Compound B in figure II.4

II.2.5. Docking execution (Protocol):

All molecular docking calculations and scoring were performed using the MOE software. A total of 30 docking poses were generated to explore the most suitable binding conformation at the active site of the 3ERT, justifying the formation of various types of interactions between the SERDs and $ER\alpha$.

The potential degradation was evaluated using key molecular features such as binding site interactions, receptor backbone (amino acid residues), interaction types, bond lengths, internal energies, and docking scores. The docking procedure was carried out using the following parameters: Triangle Matcher for pose generation and London dG for rescoring.

III. In silico study of ADME-Tox properties:

ADME-Tox analysis is a crucial step in drug development, as it helps optimize compound efficacy and minimize adverse effects, ultimately contributing to the production of safer and more stable drugs. For this analysis, the chemical structures of SEDRs were submitted in Canonical Simplified Molecular Input Line Entry System (SMILES) format to estimate pharmacokinetic parameters using the SwissADME (SwissADME). ADME-Tox properties were further predicted using ADMETlab (ADMETlab 3.0).

The following pharmacokinetic parameters were analyzed:

4 Absorption:

- Caco-2 permeability (> -5.15)
- P-glycoprotein (Pgp) inhibition and substrate classification
- Human intestinal absorption (HIA)

Distribution:

- Plasma protein binding (PPB)
- Volume of distribution (Vd)
- Blood-brain barrier (BBB) penetration

Metabolism:

• Interaction with **CYP450 enzymes** (1A2, 3A4, 2C9, 2C19, and 2D6) as inhibitors or substrates

Excretion:

- Half-life (T1/2)
- Clearance (CL)

4 Toxicity:

- hERG inhibition (cardiotoxicity)
- Human hepatotoxicity (H-HT)
- Ames mutagenicity test
- LD50 (lethal dose 50)

III.1.ADME-Toxicity evaluation of coumarin derivatives using ADMETlab 3.0:

Using the online platform **ADMETlab 3.0**. These derivatives were selected based on their favorable results obtained during molecular docking with the target protein, which indicated promising biological activity. The goal of this step was to predict the pharmacokinetic and toxicity profiles of the selected compounds, focusing on the following key properties:

- Absorption
- Distribution
- Metabolism
- Excretion
- Toxicity

> Methodology:

- 1. Preparation of the chemical structures of the selected derivatives in SMILES format.
- 2. Individual submission of each structure into the ADMETlab 3.0 web platform.
- 3. Running the predictive analysis for each compound to retrieve ADMET-related data.
- 4. Compilation and comparison of the results in order to identify the most promising compounds in terms of drug-likeness and safety.

References

- 1. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7.
- 2. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014 Jan;42(Database issue):D1083-90.
- 3. Chemical Computing Group ULC. Chemical Computing Group ULC. 2019. Molecular Operating Environment (MOE), Version 2024.0601. Available from: https://www.chemcomp.com/
- 4. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 Jul;49(W1):W5–14.
- 5. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar;7:42717.
- 6. Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, et al. Oral Selective Estrogen Receptor Degraders (SERDs) as a Novel Breast Cancer Therapy: Present and Future from a Clinical Perspective. Int J Mol Sci. 2021 Jul;22(15).
- 7. Downton T, Zhou F, Segara D, Jeselsohn R, Lim E. Oral Selective Estrogen Receptor Degraders (SERDs) in Breast Cancer: Advances, Challenges, and Current Status. Drug Des Devel Ther. 2022;16:2933–48.
- 8. Cousins KR. Computer review of ChemDraw Ultra 12.0. J Am Chem Soc. 2011 Jun;133(21):8388.
- 9. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998 Dec;95(7):927–37.
- 10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000 Jan;28(1):235–42.
- 11. Degorce SL, Bailey A, Callis R, De Savi C, Ducray R, Lamont G, et al. Investigation of (E)-3-[4-(2-Oxo-3-aryl-chromen-4-yl)oxyphenyl]acrylic Acids as Oral Selective Estrogen Receptor Down-Regulators. J Med Chem. 2015 Apr 23;58(8):3522–33.

CHAPTER III:

Results and Discussion

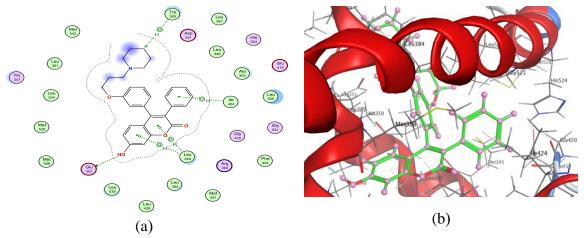
CHAPTER III: Results and Discussion

I. Molecular docking studies	30
II. Evaluation of ADME-Toxicity prediction	38

I. Molecular docking studies:

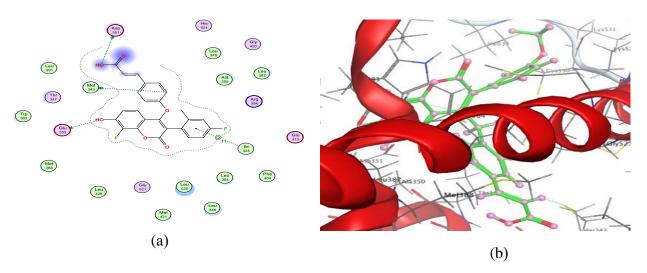
A molecular docking study was conducted on 101 coumarin derivatives within the active site of the estrogen receptor alpha (ER α) (PDB ID: 3ERT) to evaluate their potential as Selective Estrogen Receptor Degraders (SERDs) for breast cancer treatment. The docking simulations were carried out using the Molecular Operating Environment (MOE) software, and the results were analyzed based on binding affinity scores, interaction types, and Root Mean Square Deviation (RMSD) values. Table III. 1 presents the docking results, highlighting the most promising compounds based on their binding interactions and stability within the active site. The molecular docking results are shown in the following table (the supplement contains the results of the remaining comarins \underline{A}):

Table III.1: Molecular docking results most promising coumarin derivatives at the active site of the 3ERT protein

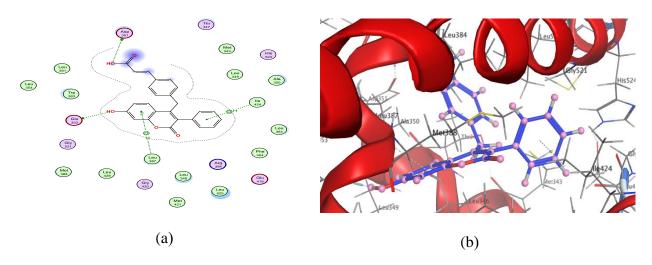

Ligands	S score (kcal/mol)	RMSD (Å)			onding between atoms			
			Atom of compounds	Atom of receptor	Evolved receptor residue	Type of interaction bond	Distance (Å)	E (kcal/mol)
Ref.	-6.4041	1.0328	N 47 6-ring	NH ₂ CD1	ARG 394 ILE 424	H-acceptor pi-H	2.27 4.11	-0.8 -0.6
2	-8.8868	1.7101	O 15 C 55 6-ring 6-ring 6-ring	OE2 6-ring CD1 CD2 CD1	GLU 353 TRP 383 LEU 346 LEU 346 ILE 424	H-donor H-pi pi-H pi-H pi-H	2.77 3.76 3.90 4.11 4.01	-4.9 -0.5 -0.8 -0.5 -0.5
19	-9.1465	1.7454	C 17 O 32 O 43 6-ring	SD OD1 OE2 CD1	MET 343 ASP 351 GLU 353 ILE 424	H-donor H-donor H-donor pi-H	3.52 2.85 2.76 3.98	-0.6 -6.5 -6.5 -0.5
23	-8.1748	1 .4934	O 39 O 47 6-ring 6-ring	OE2 OD1 CB CD1	GLU 353 ASP 351 LEU 387 ILE 424	H-donor H-donor pi-H pi-H	2.77 2.90 4.61 4.03	-5.7 -3.1 -0.5 -0.6
27	-7.8816	1.4600	O 38 O 46 C 49 6-ring 6-ring	O OD1 OE1 CD1 CA	GLY 521 ASP 351 GLU 353 LEU 346 THR 347	H-donor H-donor H-donor pi-H pi-H	3.21 3.00 3.13 4.31 4.42	-1.8 -6.1 -0.6 -0.5 -0.7
31	-7.0948	1.3088	C 22 C 41 O 47 6-ring	SD SD N 6-ring	MET 343 MET 343 CYS 530 TRP 383	H-donor H-donor H-acceptor pi-pi	3.67 3.73 2.99 3.82	-0.5 -0.5 -0.6 -0.0
35	-8.8539	2.5992	O 19 C 28 O 36 6-ring 6-ring	OE2 SD OD1 CB CD1	GLU 353 MET 343 ASP 351 LEU 387 ILE 424	H-donor H-donor H-donor pi-H pi-H	2.77 3.58 2.86 4.75 3.93	-5.8 -0.5 -5.8 -0.5 -0.6
40	-8.3162	1.5238	O 26 O 34 6-ring 6-ring	SD OD1 CB CDA	MET 343 ASP 351 LEU 387 ILE 424	H-donor H-donor pi-H pi-H	3.51 2.85 4.56 3.97	-0.6 -6.6 -0.7 -0.5
42	-8.6161	1.5399	O 15 C 26 O 34 6-ring 6-ring	O SD OD1 CA CD1	LEU 387 MET 343 ASP 351 THR 347 ILE 424	H-donor H-donor H-donor pi-H pi-H	3.31 3.45 2.86 4.22 3.89	-0.7 -0.5 -6.5 -0.5 -0.6
51	-9.5932	2.1670	O 36	O	LEU 387	H-donor	3.10	-1.3

41 ** 44* 56	-7.1140 -7.8225 -7.9100	2.2182 1.5178 0.8470	C 25 6-ring F 48 6-ring 6-ring O 36 O 36 O 36 O 38 6-ring 6-ring	6-ring CD1 NH ₂ CE CA OE1 OE2 OE2 O CB CA	TRP 383 ILE 424 ARG 394 MET 343 THR 347 GLU 353 GLU 353 GLU 353 GLY 420 LEU 346 THR 347	H-pi pi-H H-donor pi-H pi-H H-donor H-donor H-donor H-donor H-donor pi-H pi-H	3.78 3.77 2.80 4.30 4.67 2.84 2.74 2.70 3.06 4.75 4.55	-0.5 -0.5 -0.9 -0.6 -0.5 -29 -4.0 -4.6 -0.5 -0.5 -0.5
62	-7.9780	1.0456	O16 C23 O27 6-ring 6-ring	OE2 SD OG1 CD1 CD1	GLU353 MET343 THR 347 LEU 387 ILE 424 Note: *: 4	H-donor H-donor H-donor pi-H pi-H Compound A, **: Com	2.85 3.57 3.29 4.38 3.92 pound B in figu	-5.5 -0.5 -0.5 -0.5 -0.5 are II.4

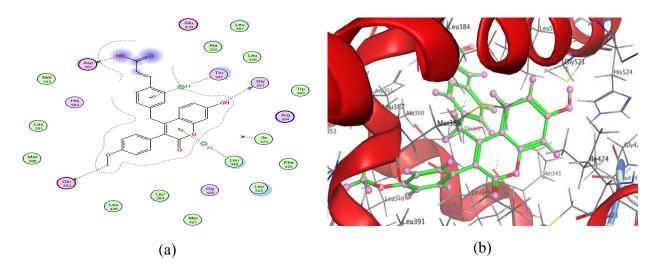
The molecular docking analysis revealed that the binding energy of the tested compounds ranged from -6.9013 to -9.9030 kcal/mol. The most promising compounds forming stable complexes with the 3ERT protein were identified as ligands 2, 19, 23, 27, 31, 35, 40, 41 **, 42, 44*, 51, 56 and 62. Their corresponding Root Mean Square Deviation (RMSD) values were 1.7101, 1.7454, 1.4934, 1.4600, 1.3088, 2.5992, 1.5238, 1.5399, 2.1670, 2.2182, 1.5178, 0.8470 and 1.0456 Å, respectively, while their binding energy values were -8.8868, -9.1465, -8.1748, -7.8816, -7.0948, -8.8539, 8.3162, -8.6116, -9.5932, -7.1140, -7.8225, -7.9100 and -7.9780 kcal/mol.


Key interactions of selected ligands (interaction of remaining coumrins are in the supplement **B**).

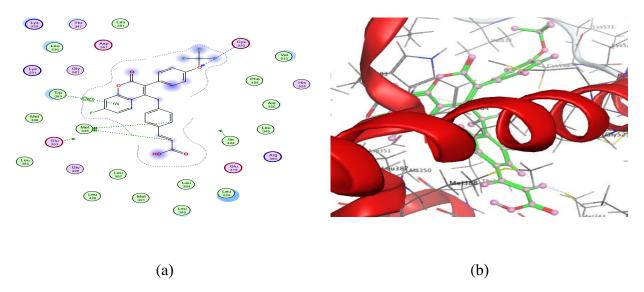
• **Ligand 2:** Forms hydrogen bonds with **GLU 353** (H-donor, 2.77 Å) and **TRP 383** (H-Pi, 3.76 Å). Additionally, it interacts via Pi-H bonds with **LEU 346** and **ILE 424** (3.90, 4.11, and 4.01 Å). (*Figure III.1*)


Figure.1: Molecular interactions of **ligand 2** with the estrogen receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

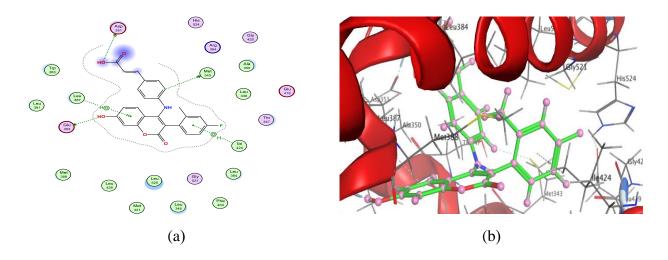
• Ligand 19: Engages in hydrogen bonding with MET 343 (3.52 Å), ASP 351 (2.85 Å), and GLU 353 (2.76 Å). A Pi-H interaction is observed with ILE 424 (3.98 Å). (Figure III.2)


Figure. III-2:Molecular interactions of **ligand 19** with the estrogen receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

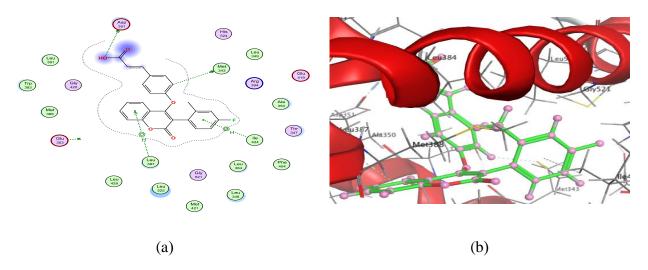
• **Ligand 23:** Interacts via hydrogen bonding with **GLU 353** (2.77 Å) and **ASP 351** (2.90 Å), while Pi-H interactions occur with **LEU 387** and **ILE 424** (4.61 and 4.03 Å). (*Figure III.3*)


Figure -3:Molecular interactions of **ligand 23**with the estrogen receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

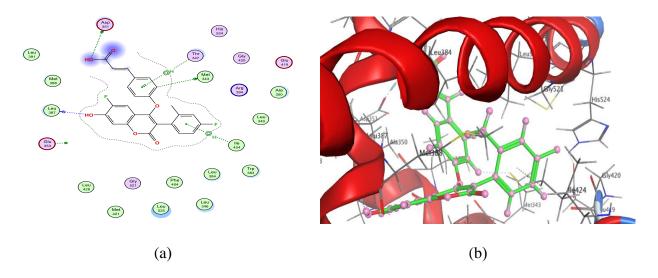
• Ligand 27: Exhibits hydrogen bonding with GLY 521 (3.21 Å), ASP 351 (3.00 Å), and GLU 353 (3.13 Å). Additional Pi-H interactions occur with LEU 346 and THR 347 (4.31 and 4.42 Å). (Figure III.4)


Figure.III-4:Molecular interactions of **ligand 27** with the estrogen receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

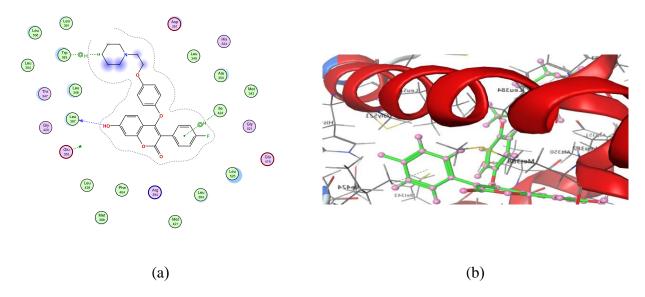
• Ligand 31: Forms hydrogen bonds with MET 343 (3.67 and 3.73 Å) and CYS 530 (2.99 Å). It also exhibits pi-pi interactions with TRP 383 (3.82 Å). (Figure III.5)


Figure III-5: Molecular interactions of **ligand 31** with the estrogen receptor alpha (ER α) (PDB:3ERT) 2D (a);3D (b)

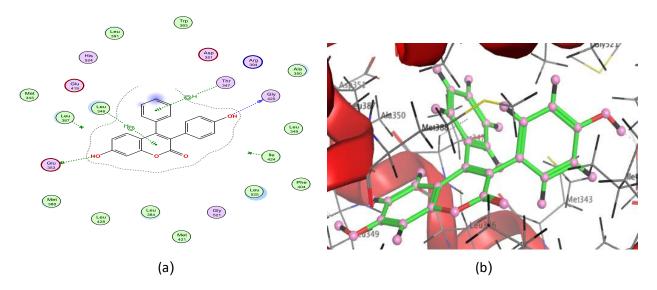
• Ligand 35: Interacts via hydrogen bonds with GLU 353 (2.77 Å), MET 343 (3.58 Å), and ASP 351 (2.86 Å). It also forms Pi-H interactions with LEU 387 and ILE 424 (4.75 and 3.93 Å). (Figure III.6)


Figure.III-6: Molecular interactions of **ligand 35** with the estrogen receptor alpha (ERα) (PDB: 3ERT) 2D (a);3D (b)

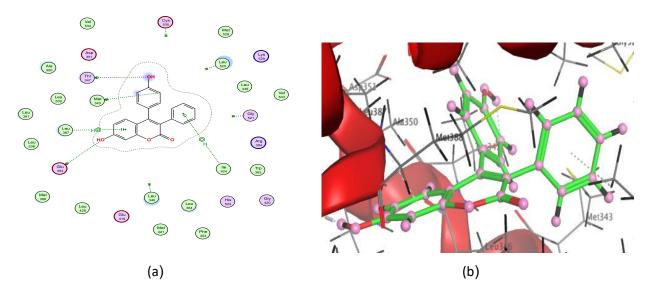
• Ligand 40: Forms hydrogen bonds with MET 343 (3.51 Å) and ASP 351 (2.85 Å), alongside Pi-H interactions with LEU 387 and ILE 424 (4.56 and 3.97 Å). (*Figure III.7*)


Figure -7:Molecular interactions of **ligand 40** with the oestrogen receptor alpha (ER α) (PDB: 3ERT) 2D (a) ;3D (b)

• Ligand 42: Exhibits hydrogen bonding with LEU 387 (3.31 Å), MET 343 (3.45 Å), and ASP 351 (2.86 Å). Pi-H interactions are observed with THR 347 and ILE 424 (4.22 and 3.89 Å). (Figure III. 8)


Figure. III-8: Molecular interactions of **ligand 42** with the estrogen receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

• **Ligand 51**: Forms hydrogen bonds with **LEU 387** (3.10 Å), **TRP 383** (H-Pi, 3.78 Å), and **ILE 424** (Pi-H, 3.77 Å). (*Figure III. 9*)


Figure.III-9: Molecular interactions of **ligand 51** with the estragon receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

• **Ligand 56:** Forms hydrogen bonds with **GLU 353** and **GLY** 420 (2.70 and 3.06 Å), alongside Pi-H interactions with **LEU 346** and **THR 347** (4.75 and 4.55 Å). (*Figure III.12*)

Figure.III-10: Molecular interactions of **ligand 56** with the estragon receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

• Ligand 62: Forms hydrogen bonds with GLU 353 and MET 343 and THR 347(2.85 and 3.57 and 3.29 Å), alongside Pi-H interactions with LEU 387 and ILE 424 (4.38 and 3.92 Å). (Figure III.13)

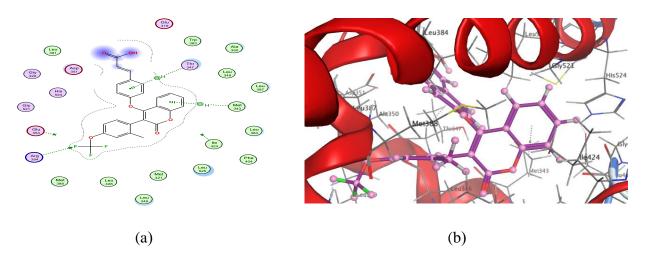
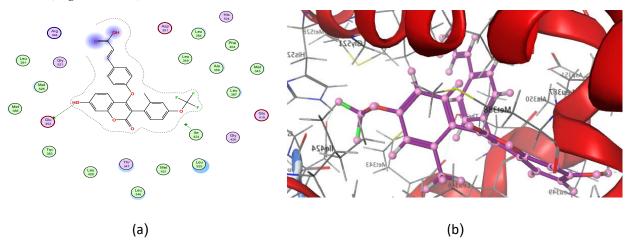


Figure .III- 11: Molecular interactions of **ligand 62** with the estragon receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

These findings suggest that the selected ligands exhibit strong binding affinity and stability within the active site of 3ERT, highlighting their potential as effective degraders targeting ERα.


Comparison with Literature-Reported Compounds

• **Ligand B** (41**): Forms hydrogen bonds with **ARG 394** (2.80 Å), alongside Pi-H interactions with **MET 343** and **THR 347** (4.30 and 4.67 Å). (*Figure III.10*)

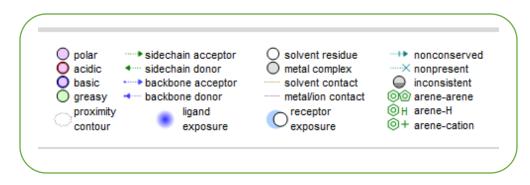


Figure.III-12: Molecular interactions of **ligand 41**** with the estragon receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

• **Ligand A** (44*): Forms hydrogen bonding with **GLU 353**(H-donor, 2.84 and 2.74 Å). (*Figure III.11*)

Figure.III-13: Molecular interactions of **ligand 44*** with the estragon receptor alpha (ER α) (PDB: 3ERT) 2D (a);3D (b)

Page | 37

II. Evaluation of ADME-Toxicity prediction:

The ADMET properties of the top nine comarine derivatives based on docking results are summarized in Table III.2.

• Absorption:

Ligand 51, had a Caco-2 permeability value close to the desired threshold (Caco-2 > -5.15). None of the compounds were classified as **P-gp substrates** or **P-gp inhibitors**. Additionally, none of the compounds achieved **human intestinal absorption** (HIA). Regarding **oral bioavailability**, compounds 23, 27, and 31 exhibited F < 20%, while compounds 19, 23, and 27 achieved F < 30%.

• Distribution:

All ligands had **plasma protein binding (PPB) values > 90%**, indicating strong binding to plasma proteins, which can reduce the free active drug fraction but may also prolong drug action. Only **ligand 1** met the **blood-brain barrier (BBB) permeability criteria** ¹, while the rest did not. Regarding the **volume of distribution (VD)**:

 \circ VD < 0.07 L/kg: High hydrophilicity

o **0.07–0.7 L/kg**: Even distribution

 \circ VD > 0.7 L/kg: High lipophilicity

Ligands 2 and 51 were evenly distributed, while the remaining ligands were highly hydrophilic.

• Metabolism:

None of the ligands inhibited the enzymes CYP1A2, CYP2C9 (substrate), or CYP3A4 (inhibitor). However:

- o CYP3A4 substrate: Ligands 2, 31, and 51 were substrates, while the others were not.
- o **CYP2C9 inhibitors**: All ligands except **2 and 51** were inhibitors.
- O CYP2C19 inhibitors: Ligands 40 inhibitor, while ligand 2 was not a substrate for CYP2C19.

• Excretion:

All ligands had half-life (T1/2) > 0.5h and clearance (CL) < 5 mL/min/kg, comparable to canertinib.

• Toxicity:

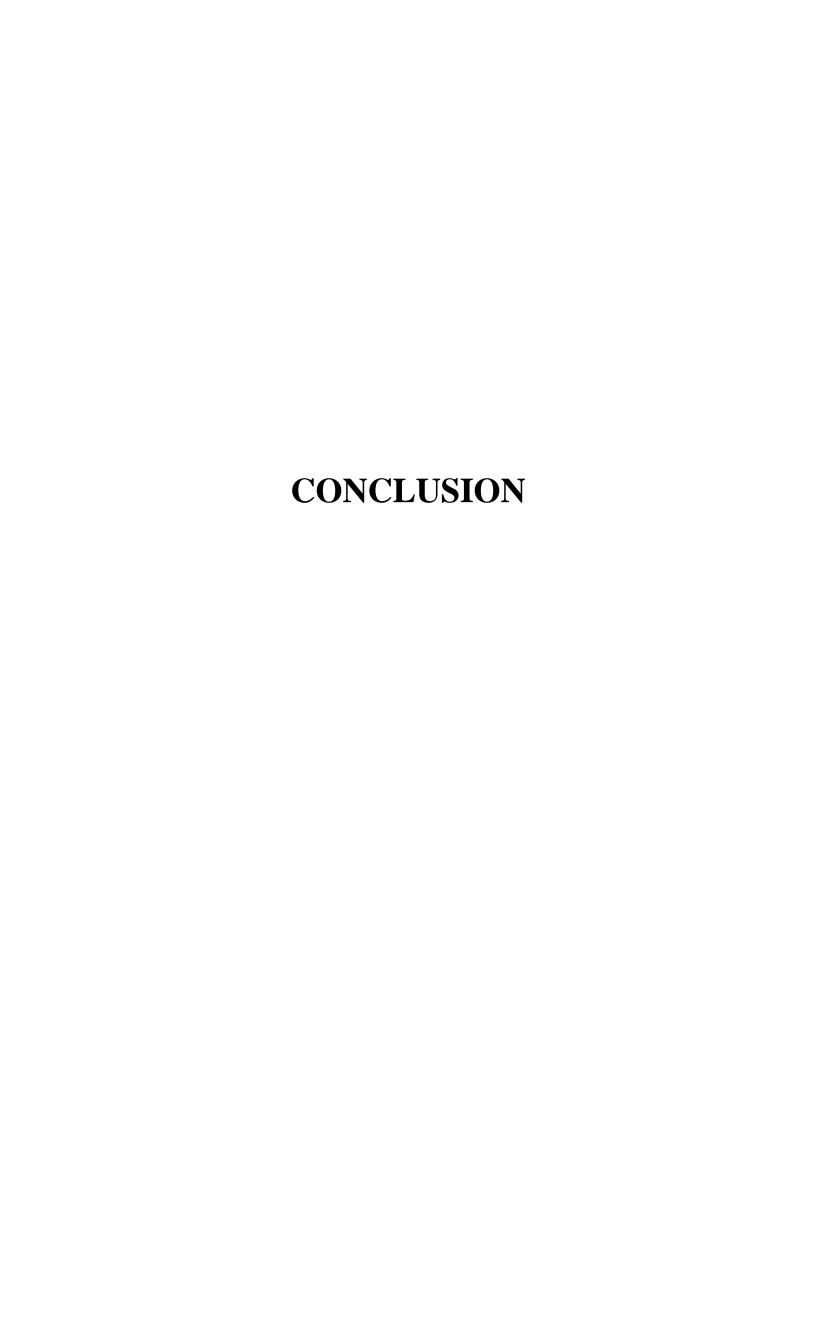
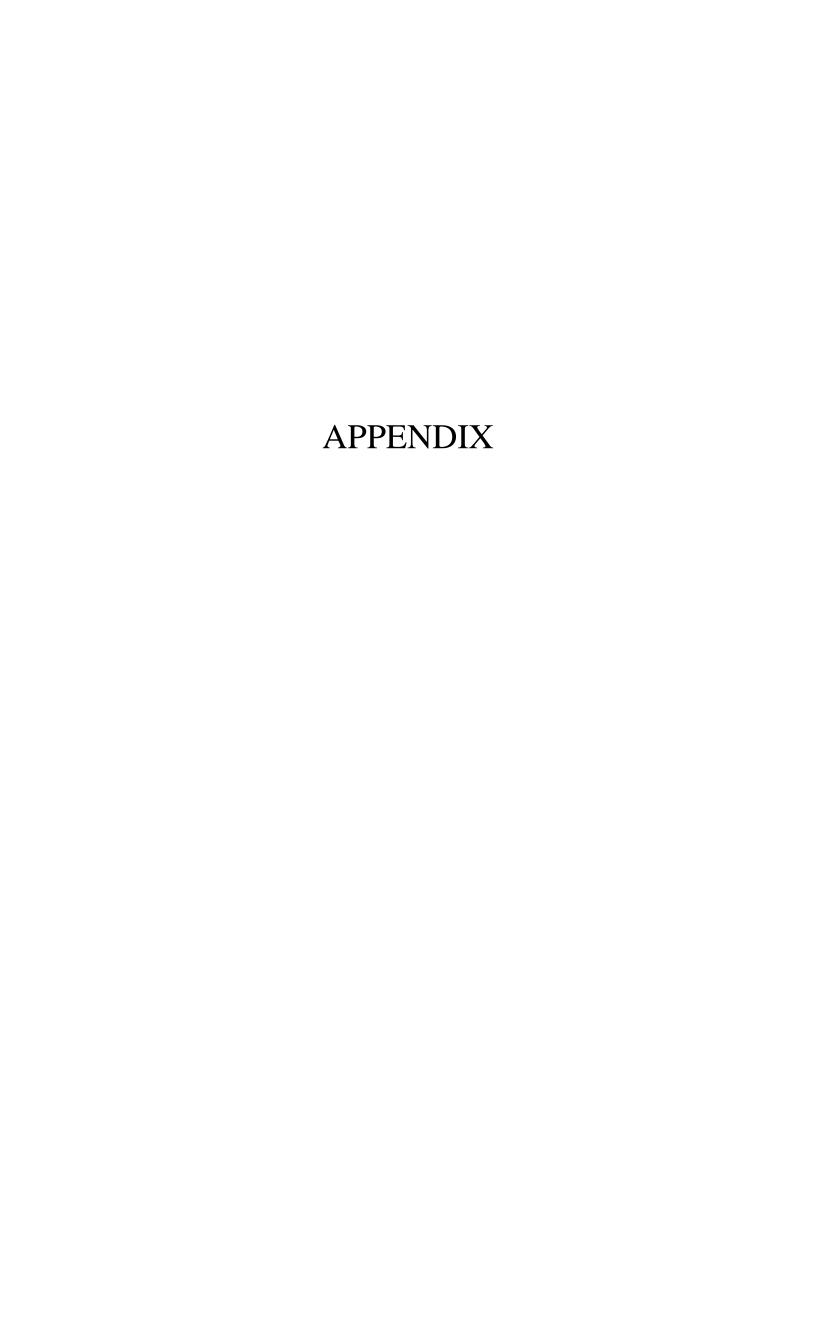

- All ligands were classified as hepatotoxic (H-HT).
- Ligands19, 23, 27, 35, 40, 42, 56and 62 were not HERG hormone blockers, while the rest were.
- o Ligands 23 and 31 did not exhibit Ames mutagenicity.
- o Acute lethal dose 50 (LD50) classification:
 - >500 mg/kg: Low toxicity (ligands 23,27, 35, and 40)
 - **50–500 mg/kg**: Moderate toxicity
 - <50 mg/kg: High toxicity</p>

Table III.2: ADME properties and drug-likeness of the 9 best degraders.

N°	Absorpt	ion					Distrib			Meta	abolis	mCY	P450					Excreti	on	Toxicit	У		
	Caco-2 permeability	P-gp inhibitor	P-gp substrate	HIA	f-20%	f-30%	PPB%	BBB	VD(L/kg)	1A2-inhibitor	1A2-substrat	3A4-inhibitor	CYP3A4substrate	CYP2C9inhibior	CYP2C9substrate	CYP2C19inhibitor	CYP2C19substrate	T1/2(h)	CL(ml/min/kg)	hERG	ННТ	AMES	LD50 (>500mg/kg)
2	-4.992	yes	yes	yes	yes	yes	97.3	-	0.323				+++				+++	0.557	4.682	0.958	0.715	0.306	0.618
19	-4.629	yes	yes	yes	NO	NO	99.0		-0.539					+++		-		1.139	2.722	0.093	0.932	0.378	0.347
23	-4.88	yes	yes	yes	NO	NO	97.8		-0.632					+++				1.249	1.869	0.067	0.8	0.221	0.109
27	-4.893	yes	yes	yes	NO	NO	98.2		-0.667					+++				1.305	1.922	0.103	0.782	0.317	0.093
31	-4.64	yes	yes	yes	NO	yes	99.5		-0.409				+	+++				1.111	1.933	0.429	0.957	0.076	0.434
35	-4.758	yes	yes	yes	NO	NO	98.5		-0.656					+++				1.357	0.952	0.087	0.879	0.406	0.292
40	-4.288	yes	yes	yes	NO	NO	99.1		-0.625					+++		+		1.186	1.372	0.137	0.886	0.343	0.219
42	-4.505	NO	yes	yes	yes	yes	99.1		-0.556					+++				1.296	1.367	0.128	0.916	0.4	0.373
51	-5.127	yes	yes	yes	yes	yes	98.0		0.253				+++					0.92	3.735	0.918	0.756	0.601	0.621
56	-4.925	yes	yes	yes	yes	yes	98.2		-0.5	+++				+++		-		1.024	3.818	0.2	0.54	0.41	0.389
62	-4.925	yes	yes	yes	yes	yes	98.1		0.583	+++			+	++	++			0.978	3.847	0.193	0.532	0.406	0.381

Tips:

- For the classification endpoints, the prediction probability values are transformed into six symbols: 0-0.1 (---), 0.1-0.3 (--), 0.3-0.5 (-), 0.5-0.7 (+), 0.7-0.9 (++), and 0.9-1.0 (+++).
- Additionally, the corresponding relationships of the three labels are as follows: excellent ; medium ; poor ;

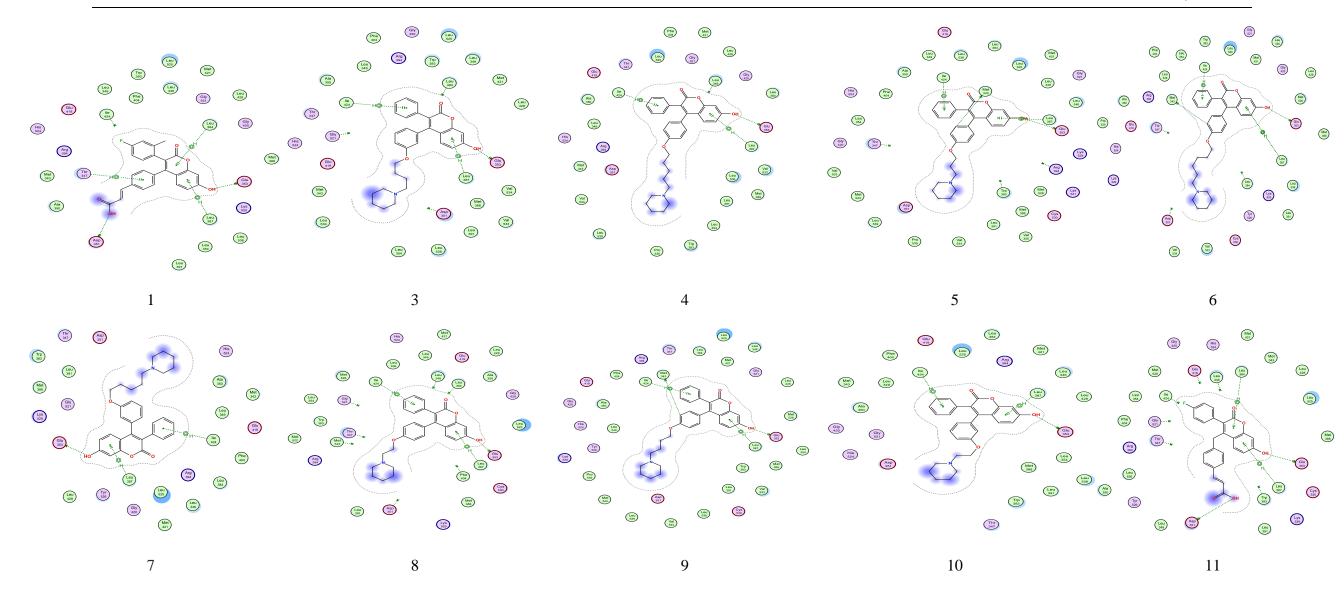


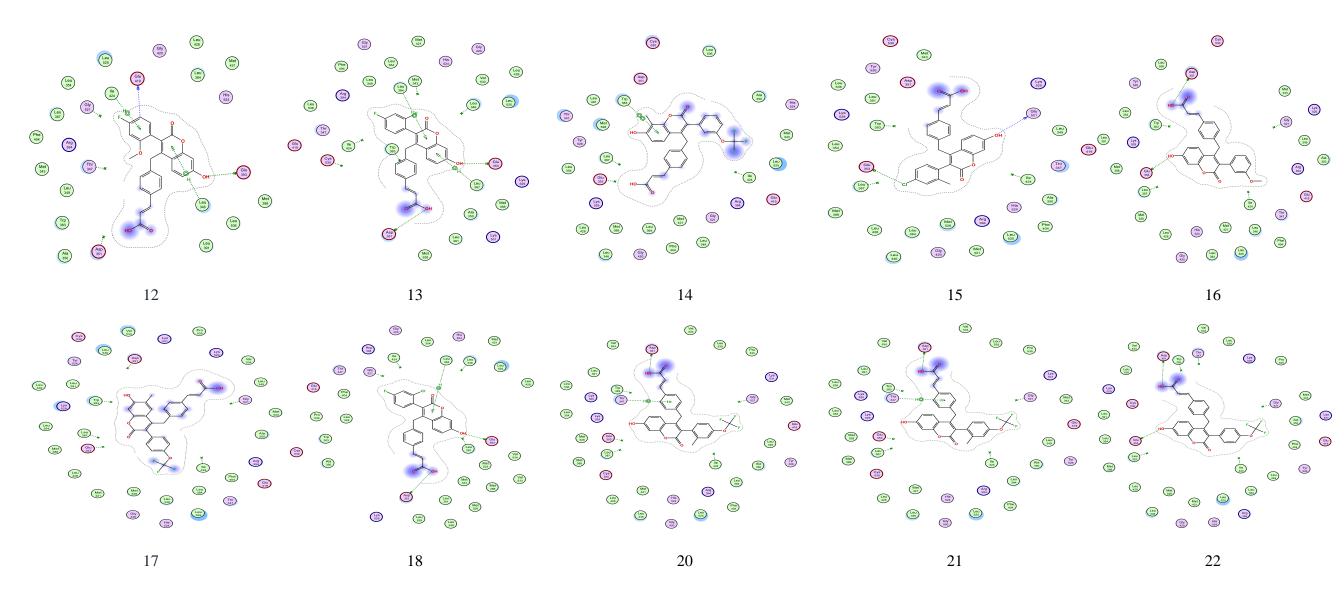
The objective of this work was to search for a compound with properties that could achieve oral bioavailability in breast cancer and understand the interaction between comarine derivatives and the 3ERT receptors (**Pdb ID: 3ERT**) using docking. The docking results suggest that some of the compound's bonds may have the potential to inhibit ERα receptors.

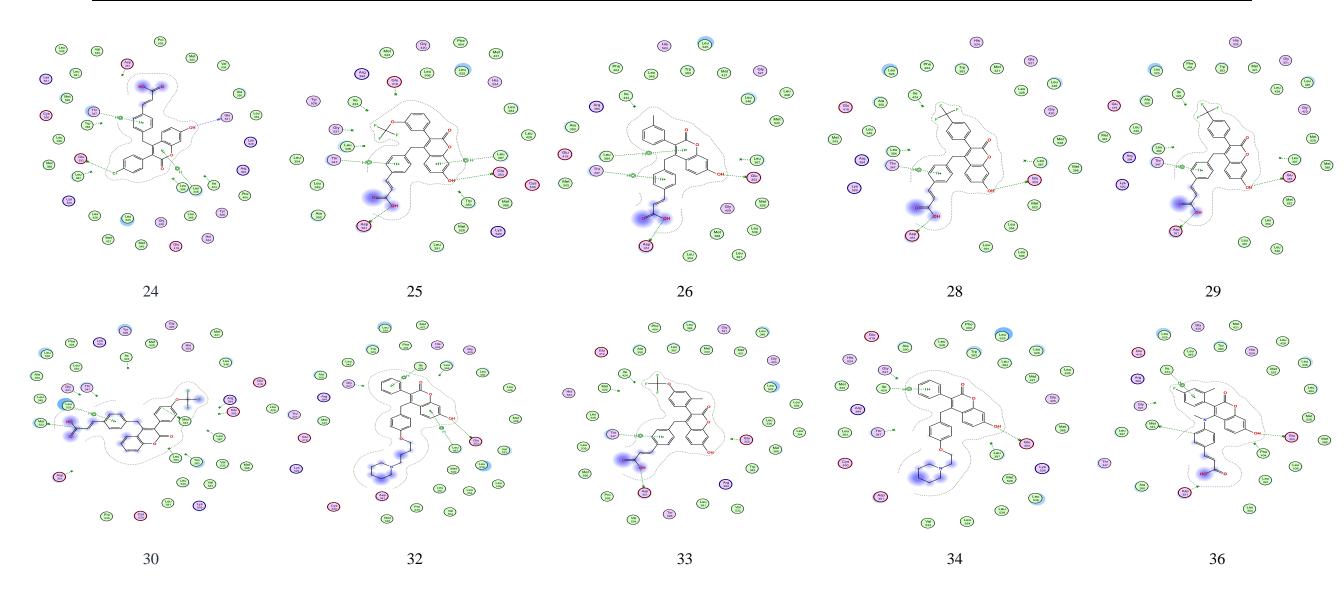
Molecular docking results revealed that among all the comarine-derived compounds studied, **compounds 2, 19, 23, 27, 31, 35, 40, 42,51,56 and 62** showed a high affinity for the ERα target (Pdb ID: 3ERT), which was confirmed through the formation of strong hydrogen bonds and hydrophobic interactions with residues of the active site of the target. ADMET predictions for the selected compounds, composed of 9 comarine, based on docking results, indicated that compounds 1 and 90 have the most favorable pharmaceutical properties.

Molecular docking results revealed that among all the Coumarine-derived compounds studied, **compounds 2, 19, 23, 27, 31, 35, 40, 42,51,56 and 62** showed a high affinity for the ERα target (**Pdb ID: 3ERT**), which was confirmed through the formation of strong hydrogen bonds and hydrophobic interactions with residues of the active site of the target. ADMET predictions for the selected compounds, consisting of 11 coumarin compounds based on docking results, indicated that compounds **2** and **51**have the most favorable pharmaceutical properties, promising oral bioavailability.

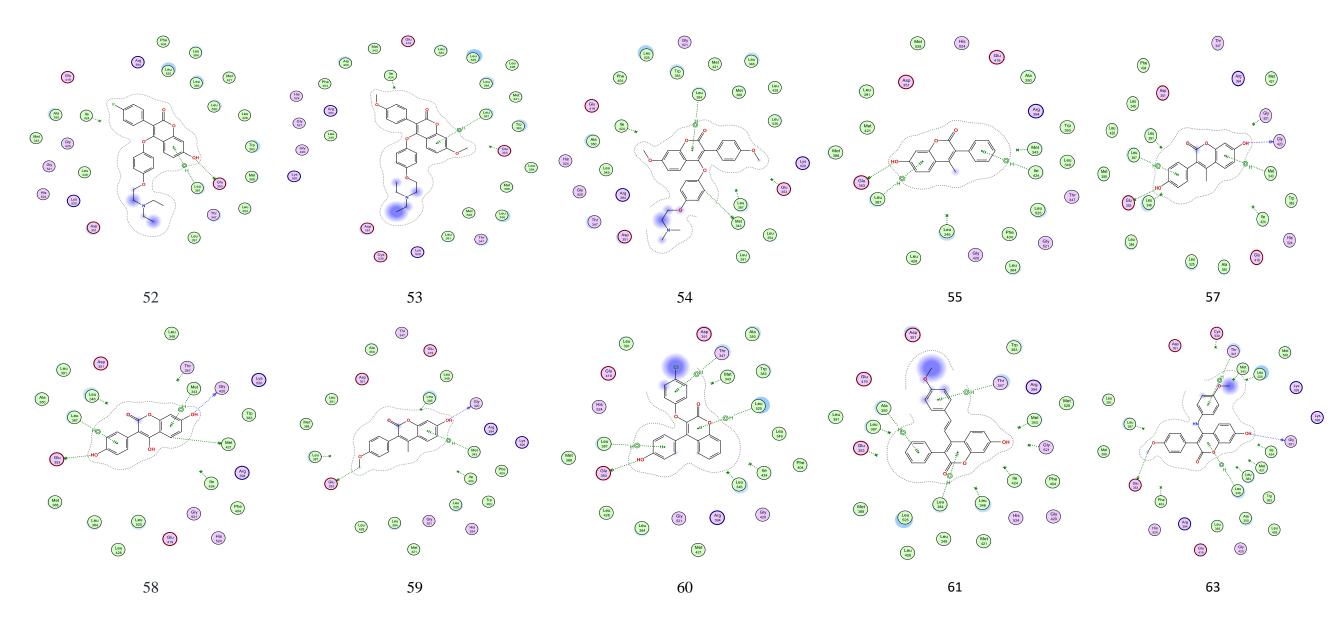
Finally, the integrated computational approach, which includes molecular docking, ADMET characterization, and drug-likeness prediction, provided a good and validated drug candidate, where our study showed that compounds 2 and 51 inhibit breast cancer.

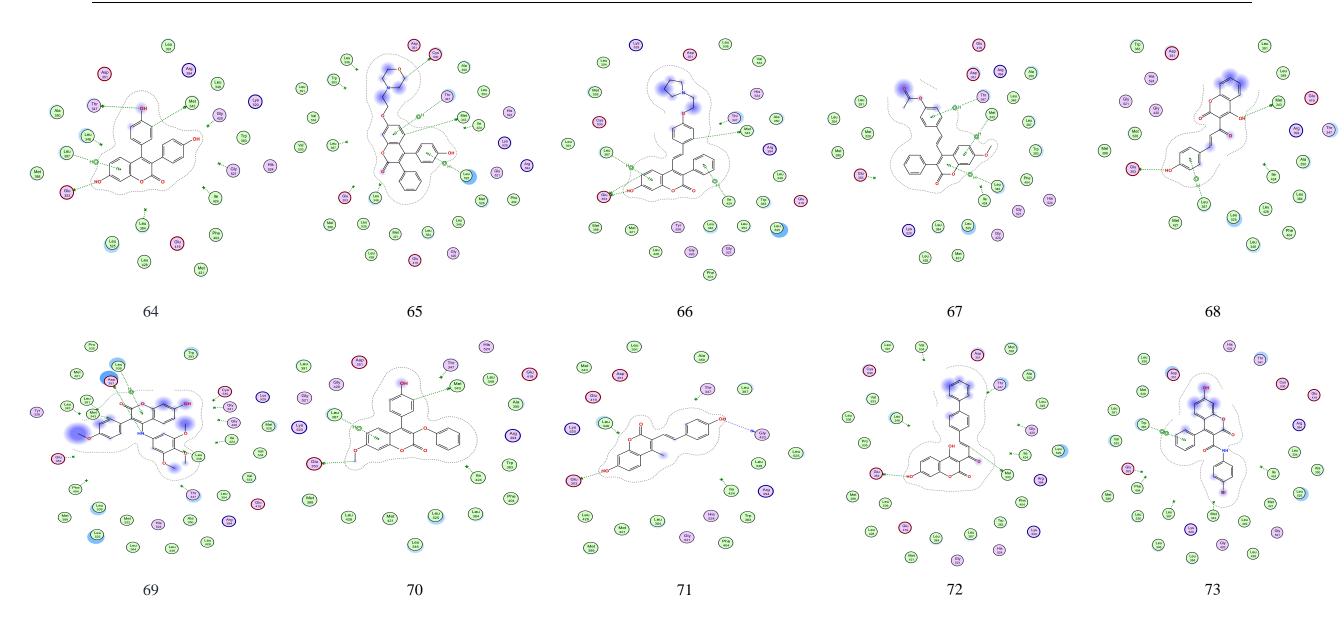


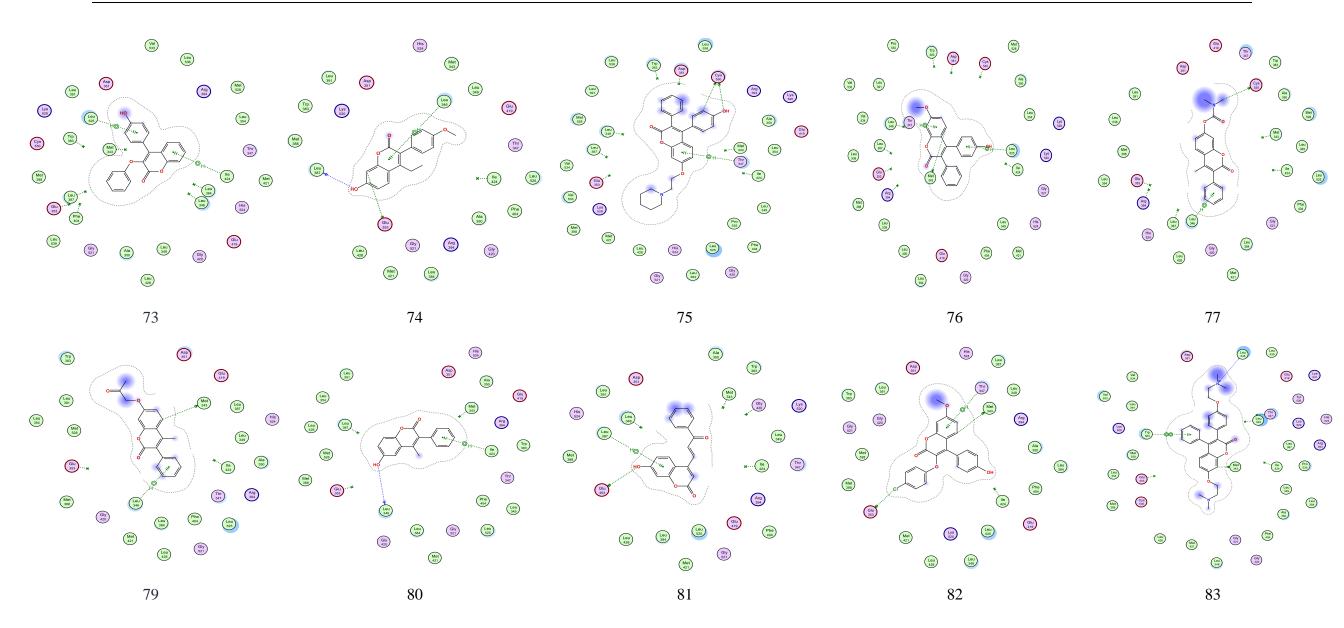

Table A: Molecular docking results of all coumarin derivatives at the active site of the 3ERT protein.

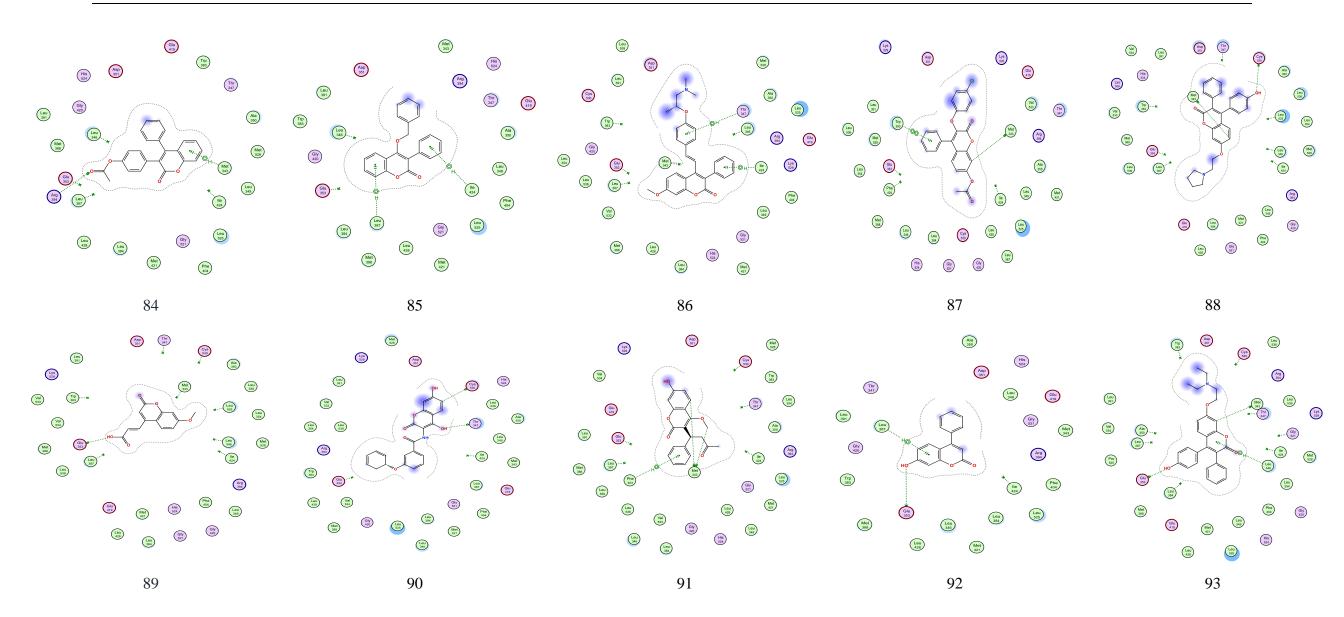

protein.								
Ligands	S score	RMSD	Bonding betw	een atoms ar	nd active site residues			
	(kcal/mol)	(Å)	A4	A 4	E de la constant	T	D' 4	.
			Atom of compounds	Atom of receptor	Evolved receptor residue	Type of interaction bond	Distance (Å)	E (kcal/mol)
Ref.	-6.4041	1.0328	N 47	NH_2	ARG 394	H-acceptor	2.27	-0.8
			6-ring	CD1	ILE 424	pi-H	4.11	-0.6
1	-8.7255	1.2168	O 17	OE2	GLU 353	H-donor	2.73	-5.9 5.0
			O 47 6-ring	OD1 CA	ASP 351 THR 347	H-donor pi-H	2.92 4.67	-5.9 -0.5
			6-ring	CD1	LEU 384	pi-H pi-H	4.07	-0.5
			6-ring	CD1	LEU 387	pi-H	4.23	-0.6
3	-9.5561	2.0755	O 17	OE2	GLU 353	H-donor	2.85	-5.5
			6-ring	CD1	LEU 387	pi-H	4.32	-0.5
			6-ring	CD1	ILE 424	pi-H	3.91	-0.5
4	-9.7177	1.7945	O 17	OE2	GLU 353	H-donor	2.86	-5.5
			6-ring 6-ring	CD1 CD1	LEU 387 ILE 424	pi-H pi-H	4.41 3.94	-0.5 -0.5
5	-9.3565	1.2481	O-1111g	OE2	GLU 353	H-donor	2.85	-5.5
			C 24	SD	MET 343	H-donor	3.66	-0.5
			6-ring	CD1	LEU 387	pi-H	4.44	-0.5
			6-ring	CD1	ILE 424	pi-H	3.87	-0.5
6	-9.7466	1.4924	O 17	OE2	GLU 353	H-donor	2.81	-5.7
			C24 6-ring	SD CB	MET 343 LEU 387	H-donor pi-H	3.61 4.34	-0.5 -0.5
			6-ring 6-ring	CB CD1	LEU 387	pi-H pi-H	4.34	-0.5 -0.5
			6-ring	CD1	ILE 424	pi-H pi-H	3.97	-0.5
7	-9.7799	1.9845	O 17	OE2	GLU 353	H-donor	2.84	-5.6
			6-ring	CD1	LEU 387	pi-H	4.32	-0.5
			6-ring	CD1	ILE 424	pi-H	3.95	-0.5
8	-9.1543	1.5606	O 17	OE2	GLU 353	H-donor	2.84	-5.5
			6-ring 6-ring	CD1 CD1	LEU 387 ILE 424	pi-H pi-H	4.33 3.92	-0.5 -0.5
9	-9.5768	1.6517	O 17	OE2	GLU 353	H-donor	2.86	-5.4
			C 24	SD	MET 343	H-donor	3.62	-0.5
			6-ring	CD1	LEU 387	pi-H	4.41	-0.5
			6-ring	CD1	ILE 424	pi-H	3.91	-0.5
10	-9.0155	2.1324	O 17	OE2	GLU 353	H-donor	2.84 4.25	-5.5 0.5
			6-ring 6-ring	CD1 CD1	LEU 387 ILE 424	pi-H pi-H	3.94	-0.5 -0.5
11	-8.3396	1.7308	O 14	OE2	GLU 353	H-donor	2.77	-5.8
			O 37	OD1	ASP 351	H-donor	2.87	-5.4
			6-ring	CD1	LEU 384	pi-H	4.14	-0.5
			6-ring	CD1	LEU 387	pi-H	4.23	-0.5
12	-8.2937	2.5100	O 14 C 43	OE2 O	GLU 353	H-donor H-donor	2.71 3.41	-5.1 -0.5
			6-ring	CD1	GLU 419 LEU 346	pi-H	4.16	-0.5 -0.5
			6-ring	CD1	ILE 424	pi-H	3.60	-0.5
13	-8.4455	1.7574	O 14	OE2	GLU 353	H-donor	2.77	-5.8
			O 37	OD1	ASP 351	H-donor	2.85	-5.6
			6-ring	CD1	LEU 384	pi-H	4.14	-0.5
14	6.0215	1.5150	6-ring	CD1	LEU 387	pi-H	4.23	-0.5 -0.0
15	-6.9315 -7.8018	1.4604	6-ring O 19	6-ring O	TRP 383 GLY 521	pi-pi H-donor	3.98 3.01	-2.9
10	7,0010	11.00	CL 47	OE1	GLU 353	H-donor	3.52	-0.7
16	-8.0786	2.1230	O 18	OE2	GLU 353	H-donor	2.77	-5.7
			O 37	OD1	ASP 351	H-donor	2.87	-6.2
17	-6.9013 9.2490	2.1033	/ O 25	OD1	/ ASD 251	/ U donor	2 95	6.0
18	-8.3480	1.3720	O 35 O 46	OD1 OE2	ASP 351 GLU 353	H-donor H-donor	2.85 2.71	-6.0 -5.9
			6-ring	CD1	GLU 353	pi-H	4.04	-0.5
20	-7.0943	2.2700	O 46	OD1	ASP 351	H-donor	3.02	-4.0
			6-ring	CA	THR 347	pi-H	4.28	-0.5
21	-7.1600	2.0160	O 39	0	ASP 351	H-donor	3.30	-0.5
22	-8.1894	1.9158	O 38	OE2	GLV 521	H-donor	2.70	-5.9 1.5
24	-8.0397	0.8230	O 38 CL 48	O OE1	GLY 521 GLU 353	H-donor H-donor	3.27 3.44	-1.5 -0.9
			6-ring	CD1	LEU 346	pi-H	4.18	-0.5
			6-ring	CA	THR 347	pi-H	2.32	-0.5
25	-7.4177	2.2190	O 38	OE2	GLU 353	H-donor	2.61	-2.4
			O 46	OD1	ASP 351	H-donor	3.81	-6.0
			6-ring	CA	THR 347	pi-H	4.35	-0.5
26	-8.0633	1.8120	6-ring O 38	CB OE2	LEU 387 GLU 353	pi-H H-donor	4.54 2.70	-0.5 -4.0
26	-0.0055	1.0120	O 38 O 46	OE2 OD1	ASP 351	H-donor	2.70	-4.0 -4.4
			6-ring	CA	THR 347	pi-H	4.20	-0.5
			6-ring	CD1	LEU 384	pi-H	4.32	-0.5

28	-8.3790	1.4597	O 38	OE2	GLU 353	H-donor	2.62	-5.2
20	-0.5790	1.4397	O 46	OD1	ASP 351	H-donor	2.82	-5.9
			6-ring	CA	THR 347	pi-H	4.32	-0.5
29	-7.0950	2.1263	C 32	SD	MET 343	H-donor	3.67	-0.5
			6-ring	6-ring	TRP 383	pi-pi	3.91	-0.0
30	-6.8543	1.9017	C 32	SD	MET 522	H-donor	3.77	-0.9
30	-0.0545	1.9017	C 40	SD		H-donor		
					MET 343		3.81	-0.6
			6-ring	CB	LEU 525	pi-H	3.76	-0.6
32	-8.8304	1.7612	O 49	OE2	GLU 353	H-donor	2.86	-5.4
			6-ring	CD1	LEU 387	pi-H	4.24	-0.5
			6-ring	CD1	ILE 424	pi-H	3.96	-0.5
33	-9.0620	1.4664	O 40	OE2	GLU 353	H-donor	2.78	-5.2
33	7.0020	1.4004	6-ring	CD1	ILE 424	pi-H	3.67	-0.5
24	0.7606	2 1262	-			•		
34	-8.7686	2.1263	O 39	0	GLY 521	H-donor	3.28	-1.3
36	-8.5879	1.3076	C 25	SD	MET 343	H-donor	3.79	-0.5
			O 36	OE2	GLU 353	H-donor	2.72	-5.9
			6-ring	CD1	ILE 424	pi-H	3.87	-0.6
37	-8.4141	1.5460	O 39	OE2	GLU 353	H-donor	2.68	-5.8
			6-ring	CD1	ILE 424	pi-H	3.83	-0.5
			_			_		
38	-7.2509	1.2288	O 35	OG1	THR 347	H-donor	3.26	-0.6
39	-7.1713	1.7568	C 1	SD	MET 343	H-donor	3.65	-0.5
			6-ring	CB	LEU 525	pi-H	4.77	-0.5
43	-8.9242	1.3929	O 14	OE2	GLU 353	H-donor	2.71	-5.1
	0.7242	1.3727	C 43	0	GLU 419	H-donor	3.41	-0.5
			6-ring	CD1	LEU 346	pi-H	4.16	-0.5
			6-ring	CD1	ILE 424	pi-H	3.60	-0.5
45	-8.6718	1.9878	O 14	OE2	GLU 353	H-donor	2.66	-5.3
				OEZ		ri-uonor		
46	-8.9885	1.0563	O 14	OE2	GLU 353	H-donor	2.75	-5.8
			6-ring	CB	LEU 387	pi-H	4.09	-0.5
4=	0	4 0	0.11		OT TT SS:	_	2 : 2	0.0
47	-8.9989	1.3577	O 14	O	GLY 521	H-donor	3.40	-0.9
			O 46	OE2	GLU 353	H-donor	2.81	-5.2
			6-ring	CD1	LEU 346	pi-H	4.27	-0.5
			6-ring	CA	THR 347	pi-H	4.39	-0.5
40	0.57.60	1 6517	0.27	OFO	CLILOSO	TT 1	276	5 0
48	-9.5768	1.6517	O 37	OE2	GLU 353	H-donor	2.76	-5.8
			6-ring	CB	LEU 387	pi-H	4.53	-0.5
			6-ring	CD1	ILE 424	pi-H	3.73	-0.5
49	-8.9894	1.8144	O 44	O	GLY 521	H-donor	3.32	-1.3
								1.2
			O 60	O	LEU 387	H-donor	3.07	-1.3
			O 60 6-ring	O CD1	LEU 387 LEU 346	H-donor pi-H	3.07 4.24	-1.5 -0.5
			6-ring	CD1			4.24	-0.5
50	-9.7834	1.4191	6-ring O 37					-0.5 -5.8
50	-9.7834	1.4191	6-ring	CD1	LEU 346	pi-H	4.24	-0.5
50	-9.7834	1.4191	6-ring O 37	CD1 OE2	LEU 346 GLU 353	pi-H H-donor	4.24 2.77	-0.5 -5.8
50 52	-9.7834 -9.9030	1.4191 1.0128	6-ring O 37	CD1 OE2	LEU 346 GLU 353	pi-H H-donor	4.24 2.77	-0.5 -5.8
			6-ring O 37 C 53	CD1 OE2 6-ring OE2	LEU 346 GLU 353 TRP 383	pi-H H-donor pi-H	2.77 3.73	-0.5 -5.8 -0.7
			6-ring O 37 C 53 O 45	CD1 OE2 6-ring	GLU 353 TRP 383 GLU 353	pi-H H-donor pi-H H-donor	2.77 3.73 2.78	-0.5 -5.8 -0.7
			6-ring O 37 C 53 O 45	CD1 OE2 6-ring OE2	GLU 353 TRP 383 GLU 353	pi-H H-donor pi-H H-donor	2.77 3.73 2.78	-0.5 -5.8 -0.7
52 53	-9.9030 -8.1065	1.0128 1.7739	6-ring O 37 C 53 O 45 6-ring 6-ring	CD1 OE2 6-ring OE2 CB CB	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387	pi-H H-donor pi-H H-donor pi-H pi-H	4.24 2.77 3.73 2.78 4.50 4.52	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5
52	-9.9030	1.0128	6-ring O 37 C 53 O 45 6-ring 6-ring C 27	CD1 OE2 6-ring OE2 CB CB SD	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343	pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5
52 53	-9.9030 -8.1065	1.0128 1.7739 1.2917	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring	CD1 OE2 6-ring OE2 CB CB SD CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387	pi-H H-donor pi-H H-donor pi-H pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6
52 53	-9.9030 -8.1065	1.0128 1.7739	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353	pi-H H-donor pi-H H-donor pi-H pi-H H-donor pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7
52 53 54	-9.9030 -8.1065 -7.7910	1.0128 1.7739 1.2917	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 MET 343 LEU 384 GLU 353 LEU 387	pi-H H-donor pi-H H-donor pi-H pi-H H-donor pi-H H-donor pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54	-9.9030 -8.1065 -7.7910	1.0128 1.7739 1.2917	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353	pi-H H-donor pi-H H-donor pi-H pi-H H-donor pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7
52 53 54	-9.9030 -8.1065 -7.7910	1.0128 1.7739 1.2917	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 OE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 MET 343 LEU 384 GLU 353 LEU 387	pi-H H-donor pi-H H-donor pi-H pi-H H-donor pi-H H-donor pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55	-9.9030 -8.1065 -7.7910 -6.75011	1.0128 1.7739 1.2917 0.7182	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 OE2 CB CD1 O OE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353	pi-H H-donor pi-H pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5
52 53 54 55	-9.9030 -8.1065 -7.7910 -6.75011	1.0128 1.7739 1.2917 0.7182	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O E2 CCB CD1 O CE2 CCB CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.7
52 53 54 55	-9.9030 -8.1065 -7.7910 -6.75011	1.0128 1.7739 1.2917 0.7182	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 OE2 CB CD1 O OE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353	pi-H H-donor pi-H pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 OC2 CCB CD1 OC2 CCB CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387	pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor pi-H pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.7 -0.5
52 53 54 55	-9.9030 -8.1065 -7.7910 -6.75011	1.0128 1.7739 1.2917 0.7182	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring C8	OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 OE2 CB CD1 O OE2 CB CD1 O OE2 CB CD1 O OE2 CB CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLU 353 MET343 LEU 387 MET343 LEU 387 MET421	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor H-donor H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.7 -0.5
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring C8 O 18	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CCB CD1 O OE2 CE CD1 SD O	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET343 LEU 387 MET421 GLY 42	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor H-donor H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.7 -0.5
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring C8 O 18 O29	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CB CD1 O OE2 CC CD1 SD O OE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET343 LEU 387 MET421 GLY 42 GLU 353	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor H-donor H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.7 -0.5 -0.6 -5.4
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 29 6-ring O 19 O 31 6-ring C 8 O 18 O 29 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 OOE2 CCB CD1 OOE2 CCE CD1 SD OOE2 CE CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET343 LEU 387	pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor pi-H pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.7 -0.5 -0.7 -0.7 -0.7
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring O19 O31 6-ring C8 O 18 O29 6-ring 6-ring C8 O 18 O29 6-ring 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 OOE2 CCB CD1 OOE2 CE CD1	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET421 GLY 42 GLU 353 MET421 GLY 42 GLU 353 MET343 LEU 387	pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.6 -0.7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring O19 O31 6-ring 6-ring C8 O 18 O 29 6-ring 6-ring O19 O18	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 OOE2 CCB CD1 OOE2 CE CD1 SD OOE2 CE CD1 OOE2 CE CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLY 42 GLU 353 MET343 LEU 387 GLY 420	pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor pi-H pi-H H-donor H-donor H-donor H-donor H-donor H-donor H-donor H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.7 -0.5
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O19 O31 6-ring 6-ring C8 O 18 O29 6-ring 6-ring O18 O29 6-ring C8 O 18 O29 6-ring C8 O 18 O29 6-ring C8 O 18 O29	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 O OE2 CCE CD1 SD O OE2 CE CD1 SD O OE2 CE CD1 OOE2	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5
52 53 54 55 57	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553	1.0128 1.7739 1.2917 0.7182 0.6456	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring O19 O31 6-ring 6-ring C8 O 18 O 29 6-ring 6-ring O19 O18	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 OOE2 CCB CD1 OOE2 CE CD1 SD OOE2 CE CD1 OOE2 CE CD1	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLY 42 GLU 353 MET343 LEU 387 GLY 420	pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor H-donor H-donor pi-H pi-H H-donor H-donor H-donor H-donor H-donor H-donor H-donor H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.7 -0.5
52 53 54 55 57 58	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 29 6-ring 6-ring C 8 O 18 O 29 6-ring 6-ring C 18 O 29 6-ring 6-ring C 31 6-ring O 18	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 O OE2 CE CD1 O OE2 CE CD1 SD O OE2 CE CD1 O OE2 CE CD1 CE CD1 CE	LEU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343	pi-H H-donor pi-H H-donor pi-H pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -0.5 -0.6 -0.7 -0.5 -0.6 -1.3 -0.5 -0.7
52 53 54 55 57 58	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring C8 O 18 O29 6-ring 6-ring C8 O 18 O29 6-ring 6-ring O19 O31 6-ring O31 6-ring O31 6-ring O31 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CE CD1 O OE2 CE CD1 SD O OE2 CE CD1	GLU 346 GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 GLU 353 MET343 GLU 353 MET343 GLU 353 MET343 GLU 353	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.6 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.7 -3.3
52 53 54 55 57 58 59	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring C8 O 18 O29 6-ring 6-ring O18 C23 6-ring O37 6-ring 6-ring 6-ring O37 6-ring 6-ring	OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CCB CD1 O OE2 CE CD1 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CG2 CG2 CD1 CD2	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor Pi-H Pi-H H-donor H-donor Pi-H Pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.6 -5.7 -0.5 -0.6 -5.7 -0.5 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.7 -3.3 -0.5 -0.5 -1.0
52 53 54 55 57 58	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring C8 O 18 O29 6-ring 6-ring O18 C23 6-ring O37 6-ring 6-ring 6-ring G-ring G-ring O18 C30 G-ring O18 C30 G-ring O37 G-ring G-ring G-ring G-ring	OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CCB CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CE CD1 O OE1 CE OE2 CG2 CG2 CD1 CD2 CA	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 525 THR 347	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.6 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5
52 53 54 55 57 58 59	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 29 6-ring O 19 O 31 6-ring C 8 O 18 O 29 6-ring 6-ring O 18 C 23 6-ring O 37 6-ring 6-ring G 6-ring O 18 C 18 C 29 6-ring O 19 C 29 6-ring O 19 C 29 6-ring O 19 C 37 6-ring O 37 6-ring C 38 6-ring C 3	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 CE CD1 CE CD1 CE CD1 CE CD1 CE CD2 CA CB	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 525 THR 347 ALA 350	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H H-donor pi-H Pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.7 -3.3 -0.5
52 53 54 55 57 58 59 60	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 39 6-ring 6-ring O 19 O 31 6-ring 6-ring C 8 O 18 O 29 6-ring 6-ring O 18 C 23 6-ring O 37 6-ring 6-ring 6-ring 6-ring 6-ring 6-ring 6-ring	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 O OE2 CE CD1 SD O OE2 CE CD1 O OE2 CE CD1 CE CD1 CE CE CD1 CE CD2 CA CB CD1	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 387 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 387 LEU 387 LEU 3884	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H Pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.7 -3.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57 58 59	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 39 6-ring O 19 O 31 6-ring 6-ring C 18 O 29 6-ring 6-ring O 18 C 23 6-ring O 18 C 23 6-ring O 18 C 23 6-ring O 37 6-ring 6-ring 6-ring 6-ring 6-ring 6-ring 6-ring	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 O OE2 CE CD1 O OE2 CE CD1 CD2 CE CD1 CCE CD1 CCE CCD1 CCE CCD1 CCE CCD1 CCE CCD1 CCE CCD1 CCE CCD1 CCD2 CCA CCB CCD1 CD2 CA CCB CCD1 O	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 387 LEU 387 GLY 420 GLU 353 MET343 GLY 420 GLY 353 MET343 GLY 420 GLY 353 MET343 GLY 420 GLY 353 MET343 GLY 353 MET343 GLY 420 GLY 353	pi-H H-donor pi-H H-donor pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4,71 3.86 3.38	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.7 -3.3 -0.5 -0.5 -0.5 -1.0 -0.5 -0.5 -1.0
52 53 54 55 57 58 59 60	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 39 6-ring O 19 O 31 6-ring 6-ring C 29 6-ring 6-ring O 18 O 29 6-ring 6-ring O 18 C 23 6-ring O 37 6-ring	CD1 OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 O OE2 CE CD1 O OE2 CE CD1 CCE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CG2 CG2 CD1 CD2 CA CB CD1 O OE1	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86 3.38 3.11	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.6 -0.7 -5.5 -0.6 -0.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.7 -0.5 -0.5 -0.6 -1.0 -0.6 -0.7 -0.5 -0.6 -0.7 -0.5 -0.6 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57 58 59 60	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 29 6-ring 6-ring 6-ring C 8 O 18 O 29 6-ring 6-ring O 18 C 23 6-ring O 18 C 23 6-ring	OE2 6-ring OE2 CB CB SD CD1 OE2 CB CD1 O OE2 CCB CD1 O OE2 CCE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CG2 CD1 CD2 CA CB CD1 O OE1 CD1 O OE1 CD1 O OE1 CD2 CA CB CD1 O OE1 CD1	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 387 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 LEU 387 GLY 420 GLU 353 LEU 387 LEU 3	pi-H H-donor pi-H H-donor pi-H Pi-H H-donor pi-H pi-H H-donor Di-H H-donor H-donor Di-H Pi-H Pi	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86 3.38 3.11 4.28	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57 58 59 60 61 63	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971 -7.3536	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659 0.9682	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O 29 6-ring 6-ring C 18 O 18 O 29 6-ring 6-ring O 18 C 23 6-ring 6-ring O 18 C 23 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 OOE2 CE CD1 OOE2 CE CD1 SD OOE2 CE CD1 CE CD1 OOE1 CE CG2 CG2 CD1 CD2 CA CB CD1 OOE1 CCB CD1 OOE1 CCD1 OOE1 CCD1 OOE1 CCD1 OOE1 CCD1 OOE1 CCD1 OOE1 CCD1 CCD1 CCD1 CCD1 CCD1 CCD1 CCD1 CC	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 LEU 387 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 LEU 387 GLY 420 GLU 353 LEU 387 LEU 3	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor Pi-H Pi-H Pi-H Pi-H Pi-H Pi-H Pi-H Pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86 3.38 3.11 4.28 4.40	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57 58 59 60	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring C8 O 18 O29 6-ring 6-ring O18 C23 6-ring O18 C23 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CC CC CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CG2 CD1 CD2 CA CB CD1 O OE1 CD2 CA CB	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLU 353 MET343 LEU 387 MET421 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 GLU 353 THR 347 LEU 387 LEU 387 LEU 387 LEU 387 LEU 387 LEU 387 GLY 420 GLU 353 MET343 GLU 353 THR 347 LEU 387	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86 3.38 3.11 4.28 4.40 2.79	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57 58 59 60 61 63	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971 -7.3536	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659 0.9682	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring C8 O 18 O29 6-ring 6-ring O18 C23 6-ring G-ring 6-ring G-ring 6-ring C38 C44 6-ring 6-ring O16 C20	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CE CD1 SD O OE2 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CG2 CD1 CD2 CA CB CD1 O OE1 CD2 CA CB CD1 O OE1 CD2 CA CB CD1 O OE2 CA CB CD1 O OE2 CA CB CD1 O OE1 CD2 CA CB CD1 O OE2 CA CB CD1 CD2 CA OE2 SD	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLY 420 GLU 353 MET343 LEU 387 MET421 GLY 42 GLU 353 MET343 LEU 387 GLY 420 GLU 353 MET343 LEU 387 LEU 387 GLY 420 GLU 353 MET343 LEU 387	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H Pi-H H-donor Pi-H Pi-H	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86 3.38 3.11 4.28 4.40 2.79 3.62	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.6 -5.7 -0.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
52 53 54 55 57 58 59 60 61 63	-9.9030 -8.1065 -7.7910 -6.75011 -6.8553 -6.6522 -6.3465 -7.0560 -7.1971 -7.3536	1.0128 1.7739 1.2917 0.7182 0.6456 0.9064 1.0541 2.1394 1.3659 0.9682	6-ring O 37 C 53 O 45 6-ring 6-ring C 27 6-ring O29 6-ring 6-ring O19 O31 6-ring 6-ring C8 O 18 O29 6-ring 6-ring O18 C23 6-ring O18 C23 6-ring	CD1 OE2 6-ring OE2 CB SD CD1 OE2 CB CD1 O OE2 CC CC CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE2 CE CD1 O OE1 CE OE2 CG2 CD1 CD2 CA CB CD1 O OE1 CD2 CA CB	GLU 353 TRP 383 GLU 353 LEU 387 LEU 387 MET 343 LEU 384 GLU 353 LEU 387 ILE 424 GLU 353 MET343 LEU 387 MET421 GLY 420 GLU 353 MET343 LEU 387 GLY 420 GLU 353 THR 347 GLU 353 THR 347 LEU 387 LEU 387 LEU 387 LEU 387 LEU 387 LEU 387 GLY 420 GLU 353 MET343 GLU 353 THR 347 LEU 387	pi-H H-donor pi-H Pi-H H-donor pi-H H-donor pi-H pi-H H-donor	4.24 2.77 3.73 2.78 4.50 4.52 3.77 4.16 2.80 4.44 3.88 3.26 2.76 4.49 4.26 3.76 2.27 2.75 4.46 4.29 3.07 3.15 4.45 3.10 4.47 4.11 4.29 4/37 4.71 3.86 3.38 3.11 4.28 4.40 2.79	-0.5 -5.8 -0.7 -5.8 -0.5 -0.5 -0.5 -0.6 -5.7 -0.5 -0.6 -0.7 -5.5 -0.6 -5.4 -0.7 -0.5 -1.3 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5


	T - 100		G 0	an	1 FFF 0.40	** 1	2.04	0.7
65	-7.6429	1.2554	C8	SD	MET 343	H-donor	3.86	-0.5
			C49 6-ring	SG CA	CYS 530 THR 347	H-donor pi-H	3.85 4.32	-1.0 -0.5
			6-ring	CD2	LEU 525	pi-H	3.92	-0.5
66	-9.0683	1.9115	C1	OE2	GLU353	H-donor	3.92	-5.3
UU	-9.0003	1.9113	O18	OE2	GLU353	H-donor	2.89	-0.5
			C40	SD	MET343	H-donor	3.75	-0.5
			6-ring	CD1	LEU 387	pi-H	4.39	-0.5
			6-ring	CD1	ILE 424	pi-H	4.03	-0.5
67	-7.2321	1.4406	6-ring	CE	MET 343	pi-H	4.53	-0.7
	,,2021	1	6-ring	CD1	LEU346	pi-H	4.13	-0.5
			6-ring	CA	THR 347	pi-H	4.27	-0.5
68	-6.1131	1.6671	O32	SD	MET343	H-donor	3.01	-1.0
			O34	EO2	GLU353	H-donor	3.07	-3.8
			6-ring	CB	LEU 387	pi-H	4.54	-0.5
59	-7.1357	1.8976	N14	OD1	ASP 351	H-donor	3.38	-1.4
			6-ring	CG	LEU 536	pi-H	3.99	-0.5
70	-7.5418	1.0890	C18	OE1	GLU353	H-donor	3.11	-0.5
			C35	SD	MET343	H-donor	3.47	-0.5
			6-ring	CB	LEU 387	pi-H	4.34	-0.6
71	-6.0339	1.5862	O19	OE1	GLU 353	H-donor	2.90	-3.4
			O19	OE2	GLU 353	H-donor	2.88	-3.2
			O35	О	GLY 420	H-donor	2.57	-1.9
72	-6.5382	0.9559	O17	OE2	GLU353	H-donor	3.49	-0.6
			C20	SD	MET343	H-donor	4.04	-0.5
		1 =			mp p cos		2	0.0
73	-6.4718	1.7836	6-ring	6-ring	TRP 383	pi-pi	3.68	-0.0
74	-7.1412	1.2231	6-ring	CD1	ILE 424	pi-H	4.30	-0.6
15	67404	1.0150	6-ring	CD1	LEU 525	pi-H	3.84	-0.5
75	-6.7484	1.0158	C12	OE2	GLU 353	H-donor	3.28	-0.5
			O36	O	LEU 387	H-donor	3.22	-1.0
16	7 0610	0.7520	6-ring	CB	LEU 346	pi-H	4.23	-0.6
76	-7.8648	0.7528	C29	SG SG	CYS 530	H-donor	4.90	-0.6
			O36 6-ring	SG CA	CYS 530 THR 347	H-donor	3.24 4.45	-7.7 -0.5
77	-6.7364	0.8968	6-ring C7	SD	MET 343	pi-H H-donor	3.90	-0.5 -0.5
, ,	-0.7304	0.0708	6-ring	CA	THR 347	n-donor pi-H	4.33	-0.5 -0.6
			6-ring	CD2	LEU 525	рі-п pi-H	3.92	-0.6 -0.5
78	-6.1648	1.3891	C38	SG	CYS 530	H-donor	4.20	-0.8
	0.1010	1.5071	6-ring	CD1	LEU 346	pi-H	4.33	-0.6
79	-6.2790	1.0844	C7	SD	MET 343	H-donor	3.39	-0.6
	0.2770	1.00	6-ring	CD1	LEU 346	pi-H	4.40	-0.5
30	-6.4762	1.4500	O30	0	LEU 346	H-donor	3.23	-1.5
			6-ring	CD1	ILE 424	pi-H	3.80	-0.7
81	-6.8071	1.2572	O16	OE2	GLU 353	H-donor	2.81	-5.5
			6-ring	CD1	LEU 387	pi-H	4.45	-0.5
82	-7.5450	2.9769	C7	SD	MET 343	H-donor	3.67	-0.6
			CL43	OE1	GLU 353	H-donor	3.35	-0.6
			6-ring	CA	THR 347	pi-H	4.23	-0.5
83	-7.6727	1.4400	C12	SD	MET 343	H-donor	3.76	-0.8
			N42	N	LEU 536	H-acceptor	3.39	-1.8
			6-ring	6-ring	TRP 383	pi-H	3.86	-0.0
84	-6.9005	1.2432	O 34	NH2	ARG 394	H-acceptor	2.77	-5.0
0.5	7.6106	1 0000	6-ring	CE	MET 343	pi-H	4.25	-0.7
85	-7.6196	1.0222	6-ring	CB	LEU 387	pi-H	4.53	-0.8
06	0 1 425	1 2001	6-ring	CD1	ILE 424	pi-H	3.38	-0.5
86	-8.1435	1.3891	6-ring	CA CD1	THR 347 ILE 424	pi-H	4.02 3.92	-0.5 -0.6
87	-6.6369	2.0626	6-ring C12	SD	MET 343	pi-H H-donor	3.67	-1.0
9 7	-0.0309	2.0020	6-ring	6-ring	TRP 383	pi-pi	3.81	-0.0
88	-7.5505	2.0310	C1	o-ring SD	MET 343	pı-pı H-donor	3.81	-0.0
	-1.5505	2.0310	O56	SG	CYS 530	H-donor	3.44	-0.3 -6.9
89	-6.0763	0.6462	O27	OE2	GLU 353	H-donor	2.82	-0.9
90	-6.9930	1.0198	O17	0	GLU 553 GLY 521	H-donor	3.26	-1.4
	0.7730	1.0170	CL41	OE1	GLT 321 GLU 353	H-donor	3.36	-1.0
			6-ring	CD1	LEU346	pi-H	4.32	-0.5
91	-6.9962	1.5454	C8	SD	MET 343	H-donor	3.88	-0.7
			C29	SD	MET 343	H-donor	3.49	-0.5
			6-ring	CD1	PHE 404	pi-H	4.45	-0.5
92	-6.1454	0.4962	017	OE2	GLU 353	H-donor	2.87	-5.4
			6-ring	CD1	LEU 387	pi-H	4.34	-0.5
93	-7.6239	1.3208	C4	SD	MET 343	H-donor	3.65	-0.5
			O47	OE2	GLU 353	H-donor	2.82	-4.6
			6-ring	CB	LEU 346	pi-H	3.79	-0.6
94	-8.8068	1.6027	C5	OE2	GLU 353	H-donor	3.31	-0.6
			C28	SD	MET 343	H-donor	3.74	-1.5
			O31	0	LEU 387	H-donor	2.89	-0.5
			6-ring	CD1	LEU 387	pi-H	4.43	-0.5
15	C 0070	1.5261	6-ring	CD1	ILE 424	pi-H	4.02	0.7
95	-6.8070	1.5361	C37	SG CD1	CYS 530	H-donor	4.02	-0.7
06	7.4000	1.5004	6-ring	CD1	LEU 346	pi-H	4.48	-0.6
96	-7.4090	1.5904	C14	SD	MET 343	H-donor	3.65	-0.5
97	-6.5661	2.3501	O30 6-ring	O CA	LEU 387 THR 347	H-donor	2.88 4.17	-0.9 -0.6
71	-0.3001	2.5501		CA N	THR 347 CYS 530	pi-H	4.17	-0.6 -0.6
98	-6.1470	0.9214	6-ring C16	OE1	GLU 353	pi-H H-donor	3.25	-0.6 -0.6
70	-0.14/0	0.9214	6-ring	CD1	GLU 353 ILE 424	H-donor pi-H	3.25 4.05	-0.6 -0.5
99	-7.7704	1.0262	6-ring 6-ring	CA	THR 347	рі-H pi-H	4.05	-0.5 -0.5
, ,	-7.7704	1.0202	6-ring	CD1	ILE 424	рі-п рі-Н	3.93	-0.3 -0.7
100	/	/	/	/	/	ρι-11 /	J.73 /	-0.7
		2.0310	O 17	O	GLY 521	H-donor	3.26	-1.5
	-7.0763	2.0110				** GOHO!		
101	-7.0763	2.0310	CL 41	OE1	GLU 353	H-donor	3.36	-1.0







Page | 52

Page | 53

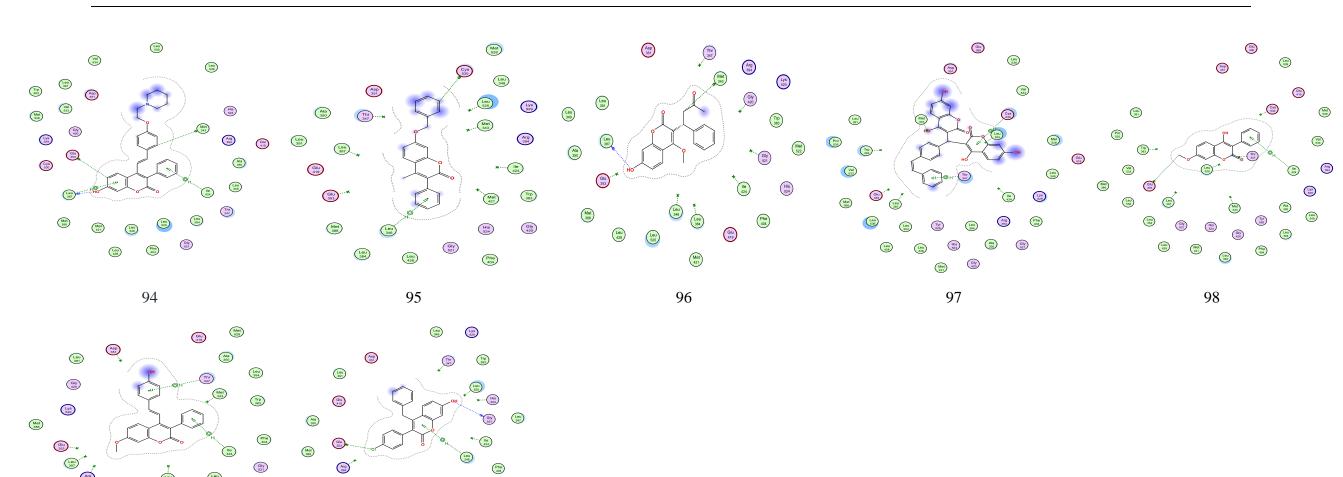


Figure B:Molecular interactions of ligands with estrogen receptors alpha (ERα) (PDB: 3ERT) in 2D

100

99

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Med Khider Biskra

الجمهورية الجزاءرية الديموقراطية الشعبية الزارة التطيم العالي و البحث الطمي جامعة محمد خيضر بسكرة

كلية العلوم النقيقة قسم علوم العادة شعبة الكيمياء

Faculté des Sciences Exactes Département des Sciences de la Matière

Filière de Chimie

تصريح شرفيي
خاص بالالتزام بقواعد النزاهة العلمية لإنجاز بحث حمد خدر
(ملحق القرار 1082 المؤرخ في 2021/12/27)
خاص بالالتزام بقواعد النزاهة الطمية لإنجاز بحث ومد خيدر (ملحق الغرار 1082 المؤرخ في 2021/12/27 في 2021/12/27 المؤرخ في 2021/12/27 المؤ
الصفة: طالب سنة ثانية ماستر كيمياء تخصص:ك.محيد هربيد الله ميد
الحامل(ة) لبطاقة التعريف الوطنية رقم: كري كري كري كري كري كري الصادرة بتاريخ: و المادرة باريخ: و الم
المسجل بكلية: عملوم الديِّهِ وَمَمَّ قَصْمَ عَسْمَ علوم الطمادية على والمكلف
Habeaular Da King Stuckes of Small waterles significants. Las geting Estroyen Rec ptar (ER)
for targeting Estroyen Rec ptor (ER)
أصرح بشرفي أني ألترزم بمراعات المعايير العلمية والمنهجية ومعايير الأخلاقيات المهنية والنزاهة الاكاديمية المطلوبة في انجاز البحث المذكور أعلاه وفق ما ينص عليه القرار رقم 1082 المؤرخ في 2021/12/27 المحدد للقواعد المتعلقة بالوقاية من السرقة العلمية ومكافحتها.
2025 105/26 := 151

