

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Mohamed Khider University – BISKRA

Faculty of Exact Sciences

Department of Computer Science

Order N°: SIOD01/M2/2025

Master’s Thesis

Submitted in fulfillment of the requirements for Master’s degree in

Computer science

Specialization: Information Systems, Optimization and Decision (SIOD)

Extraction and generation of metadata for scientific publications: Development

of an automation tool for non-specialists

By

Douha MEGHERBI

Thesis publicly defended on 04/06/2025 in front of a jury composed by:

MRS. Berghida Meryem MAB President

Mrs. Moufida BENCHABANE MAA Supervisor

MR. Kalfali Toufik MAA Examiner

Session 2024-2025

iii

Acknowledgements

 With a heart filled with gratitude and humility, I begin by acknowledging Allah, the Most

Gracious, the Most Merciful. It is by His divine mercy, guidance, and boundless generosity that I

have been granted the strength and perseverance to complete this journey.

 I would like to express my deepest and most sincere appreciation to my supervisor Mrs.

Moufida Benchabane, whose invaluable mentorship, scholarly insight, and unwavering support

have been central to the completion of this master’s thesis. Her patience, encouragement, and belief

in my potential provided me with both the confidence and clarity needed throughout this research.

 I am sincerely grateful to the jury chair, ******, and the reviewer, ******, for their time and

for contributing to the improvement of this manuscript. I also thank all the faculty members and

staff of the Department of Computer Science at the University of Mohamed Khider Biskra; their

guidance, academic expertise, and steadfast support played a significant role in shaping my

intellectual growth and fostering a research-driven mindset.

 I would also like to thank Mr. Mohamed Djebbar, the Manager of Alwaha Scientific

Publishing Services SARL (ASPS), for giving me the opportunity to understand the editorial

process of publishing scientific journals through the completion of my practical internship carried

out mainly at the ASPS in Biskra, at the University of Biskra and at home remotely between

February 15, 2025 and May 25, 2025. During this period, my contact with ASPS staff was mainly

with my internship tutor and co-supervisor Dr. Adel Benchabane, Professor at the University of

Biskra and Publication Director of the ASPS. So, a special note of thanks goes to Prof. Adel

Benchabane for having agreed to supervise my practical training (remote and face-to-face); for

their openness, trust, and cooperation -particularly during the critical stages of data acquisition and

code validation- were essential to the applied dimension of this work. The opportunity to

collaborate with him enriched my practical understanding of metadata indexing via XML files,

especially during the online Crossref event held on 13 March 2025. I had the honor of being the

only representative of the ASPS during this online international event. Once again: thank you very

Professor Adel Benchabane for your trust.

 To my beloved family and friends, I offer my most profound gratitude. Your prayers,

sacrifices, and constant encouragement have been a source of strength through every challenge.

Your belief in me has never wavered, and for that, I am eternally thankful.

iv

 Finally, I wish to recognize all colleagues, peers, and mentors—named or unnamed—who

have contributed in any capacity, whether through technical advice, moral support, or simple words

of encouragement. Every contribution, no matter how small, is deeply appreciated. your generosity

and kindness have not gone unnoticed. This achievement stands not only as a personal milestone

but as a collective testament to the community that surrounded me with inspiration and support.

Dedication

 This master’s thesis is dedicated to the incredible people who lifted me, inspired me, and stood

by my side through every step of this journey. My family’s belief in me has been my armor,

shielding me through the hardest times. My friends' endless encouragement has been my fuel,

constantly reminding me why I began and how far I’ve come. I owe this accomplishment to all of

you.

 To my beloved parents and grandmother,

 To my amazing siblings,

 To all my family,

 To my cherished friends,

 To my amazing classmates

v

Abstract

The main objectives of this master's thesis are: (i) review the state of the art of the computerization

of the editorial process of scientific journals, (ii) Automate DOI (Digital Object Identifier) indexing

through XML Export Plugin of a peer review management software, (iii) Design and develop a

lightweight tool for beginner editors which allows to extract article metadata and generate XML

files ready for indexing, (iv) Test and validate the developed tool by using recent published articles

of an active journal. To achieve these objectives, a practical internship of more than three months

was carried out at Alwaha Scientific Publishing Services SARL (ASPS), an independent

international academic publisher. The metadata of an active scientific journal, titled ‘Energy and

Thermofluids Engineering, ETE, ISSN 2716-8026’, was considered as a case study. Thus, this

manuscript first deals with the state of the art of the digitalization of the scientific journal

publishing process from submission to dissemination. Particular attention was drawn to the system

used by the ASPS. It's about the Open Journal Systems (OJS), an open source and free software for

the management of peer-reviewed academic journals. The second chapter represents a practical

work showing how to automate DOI indexing through OJS by leveraging tools such as the Crossref

XML Export Plugin and DOI Public Identifier. The methodology draws on firsthand experience

gained through the participation in a Crossref-hosted webinar held on 13 March 2025. In this

international event, advanced OJS workflows were implemented on ASPS platform to reduce

processing time by 80% and improve metadata completeness scores from 65% to 98%. The third

chapter presents the design and development of a lightweight XML generation tool tailored for

beginner publishers who lack technical expertise or access to automation. The tool converts

structured CSV inputs into Crossref-compliant XML files, eliminating the need for manual XML

editing. Developed in C++ for efficiency and portability, it allows non-specialist editorial teams to

register DOIs and deposit metadata with minimal effort. The last chapter presents successful stages

of testing and validation of the tool developed. In summary, this work empowers publishers of all

scales to meet global indexing standards. The proposed solutions can enhance the discoverability of

Algerian research and provide a replicable framework for institutions in resource-constrained

regions to participate equitably in open scholarly communication.

Keywords: XML, C++, Metadata, Extraction, Generation, scientific publications

vi

 ملخص

حوسبة عملية تحرير المجلات الخاصة بحدث التقنيات دراسة ببليوغرافية لأ:)أ(لهذه المذكرة فيما يليتلخص الأهداف الرئيسية

الخاص بأحد XML Export Plugin(من خلال DOI) عبر معرف الكائن الرقمي فهرسة الالرقمنة الآلية لعملية العلمية،)ب(

إدارة المجلاتبرامج وتطوير تحرير تصميم)ج(الاستعمال، سهلة رقمية باستخراج وسيلة تسمح والتي المبتدئين للمحررين

ملفات وإنشاء للمقالات التعريف اختبار XMLبيانات)د(للفهرسة، والتحقق البرنامج جاهزة نجاعته من التجريبي المطور

لدى نشطة. لتحقيق هذه الأهداف، تم إجراء تدريب عملي لأكثر من ثلاثة أشهر علمية باستخدام المقالات المنشورة مؤخرًا في مجلة

، وهو ناشر أكاديمي دولي مستقل. تم اعتبار البيانات التعريفية لمجلة علمية نشطة ASPS)الواحة لخدمات النشر العلمي م.ذ.م.م.)

حدث عرض لأأولاً ذكرة " كدراسة حالة. تتناول هذه المETE ،ISSN 2716-8026بعنوان "هندسة الطاقة والسوائل الحرارية،

بالتقنيات من الخاصة العلمية المجلات تحرير عملية المقالات حوسبة مشاريع تم استقبال النشر. إلى التركيز إلى بشكل خاص

تستخدمه الذي بنظو. ASPSالنظام الأمر)ايتعلق المفتوحة المجلات وهOJSم لإدارة و(، ومجاني المصدر مفتوح برنامج

النظراء. يالمجلات الأكاديمية التي الثانييوضح م مراجعتها من قبل فهرسة الرقمنة الآلية لعمليةكيفية من هذه المذكرة الفصل

DOI من خلالOJS أدوات مثل باستعمالCrossref XML Export Plugin على الخبرة المباشرة المتبعة . تعتمد المنهجية

هذا الحدث خلال فعاليات. 2025مارس 13عقدت في Crossref لـعبر الإنترنت دولية المكتسبة من خلال المشاركة في ندوة

تم وتحديث الدولي، منصة OJSعمل تقييم بنسبة ASPSعلى المعالجة وقت البيانات 80لتقليل اكتمال درجات وتحسين ٪

من إلى 65الوصفية توليد ٪98 أداة وتطوير تصميم الثالث الفصل يقدم .٪XML للناشرين خصيصًا مصممة الوزن خفيفة

المُهيكلة إلى CSV. تحُوّل هذه الأداة مُدخلات تحكم في الرقمنة الآلية لعملية فهرسةالمبتدئين الذين يفتقرون إلى الخبرة الفنية أو ال

لضمان ++C. طُوّرت هذه الأداة بلغة XML، مما يغُني عن التحرير اليدوي لـ Crossref مواصفات متوافقة مع XMLملفات

(الرقمية الكائنات مُعرّفات تسجيل المُتخصصة غير التحرير لفرق تتُيح وهي النقل، وسهولة البيانات DOIsالكفاءة وإيداع)

لأداة المُطوّرة. باختصار، يمُكّن هذا العمل ناجحة لمراحل اختبار عرض ل من هذه المذكرة الوصفية بأقل جهد. يقُدمّ الفصل الأخير

العالمية. الفهرسة معايير استيفاء من المستويات جميع من االناشرين إمكانية تسمح من تحُسّن أن المُقترحة نشر لحلول تطير

في التواصل فعالبشكل وبذلك الإسهام محدودة الموارد اللمؤسسات في المناطق مسهل لعمل االأبحاث الجزائرية، وأن توُفّر إطارًا

 العلمي المفتوح.

 ، البيانات الوصفية، الاستخراج، التوليد، المنشورات العلمية++XML ،C الكلمات المفتاحية:

Table of content

vii

Table of Contents

ACKNOWLEDGEMENTS ___ III

DEDICATION __ IV

ABSTRACT ___ V

 VI ___ ملخص

GENERAL INTRODUCTION ___ 1

1 DIGITALIZATION OF JOURNAL PUBLISHING PROCESS: BACKGROUND _______________ 4

1.1 Introduction __ 4

1.2 Historical Evolution of Scholarly Publishing ___ 4

1.3 Core Terminologies and Conceptual Framework __ 5

1.3.1 Publisher (Publishing House) __ 5

1.3.2 Indexing (in Academic Publishing) __ 6

1.3.3 Open Journal Systems (OJS) ___ 6

1.3.4 Metadata ___ 6

1.3.5 Digital Object Identifier (DOI) __ 7

1.4 Functional Roles within Open Journal Systems (OJS) ___ 7

1.4.1 Author __ 8

1.4.2 Production or Managing Editor __ 8

1.4.3 Section Editor __ 8

1.4.4 Layout Editor (Designer)__ 8

1.4.5 Reviewer __ 9

1.4.6 Copyeditor __ 9

1.4.7 Proofreader ___ 9

1.4.8 Reader/Community ___ 9

1.4.9 Indexer (or “Metadata Editor”) ___ 10

1.5 Editorial Workflow: From Submission to Dissemination __ 10

viii

1.5.1 Scientific Evaluation Phase ___ 11

1.5.2 Manuscript Production Phase __ 12

1.6 Comparative Analysis of Print and Digital Production __ 13

1.6.1 Production Workflows in Print Publishing ___ 14

1.6.2 Production Workflows in Digital Publishing ___ 14

1.7 Technical Perspectives on Editorial Processes ___ 15

1.7.1 Scientific Phase: Adaptive and Dynamic Design Needs __ 15

1.7.2 Production Phase: Structured Data and Automation Potential __________________________________ 15

1.7.3 Towards Standardization and Semi-Automation ___ 16

1.8 Critical Role of the Indexer in Scholarly Communication ___ 16

1.9 Functions of the Indexer ___ 17

1.9.1 Types of Indexers __ 17

1.10 .Automation Opportunities and Technical Limitation ___ 19

1.11 Conclusion __ 19

2 CASE STUDY OF AUTOMATED INDEXING USING THE ASPS OJS PLATFORM: THE

CROSSREF XML EXPORT PLUGIN __ 21

2.1 Introduction ___ 21

2.2 Overview of Alwaha Scientific Publishing Services (ASPS) __ 21

2.2.1 Journal Portfolio and Scope __ 22

2.2.2 Open-Access Policy and Global Reach __ 23

2.2.3 ASPS’s Research and Publication Ethics___ 23

2.2.4 ASPS’s Standards for Authors: Responsible Research Publication ________________________________ 23

2.2.5 ASPS’s Privacy Statement __ 24

2.3 Open Journal Systems (OJS) as ASPS’s Publishing Platform ___ 24

2.3.1 Workflow Automation and Metadata Management __ 24

2.3.2 Operational Advantages for ASPS ___ 25

2.4 Challenges and Strategic Directions for OJS Optimization __ 25

2.4.1 Current Technical and Organizational Gaps ___ 25

2.4.2 Strategic Outlook __ 26

2.5 Crossref: Background and Strategic Relevance for ASPS ___ 26

2.6 Capacity Building: ASPS Training and Crossref Webinar__ 27

ix

2.6.1 Scholarship Activities and Skill Development Outcomes _______________________________________ 27

2.6.2 Assessing Metadata Quality with the Crossref Participation Reports Tool _________________________ 28

2.6.3 Crossref Webinar: Technical Training and Strategic Upskilling __________________________________ 32

2.7 Automated Indexing Workflow ___ 33

2.7.1 Manual Indexing ___ 33

2.7.2 Limitations of Manual Indexing at ASPS __ 33

2.7.3 Transition to Automation via OJS Plugins ___ 33

2.7.4 Core OJS Components Configured for Automation ___ 34

2.7.5 OJS Plugins for Indexing Automation ___ 35

2.8 Implementing Automated Indexing in OJS __ 36

2.8.1 Plugin Configuration __ 37

2.8.2 Retro-Assigning DOIs to Previously Published Articles ___ 43

2.10 Recommendations and Improvements __ 47

2.9 2.11 Conclusion __ 47

3 DESIGN AND IMPLEMENTATION OF XML GENERATOR TOOL FOR METADATA

INDEXERS: CASE STUDY OF ASPS JOURNALS __ 49

3.1 Introduction ___ 49

3.2 XML and Metadata Standards __ 49

3.2.1 Evolution of Metadata Standards ___ 50

3.2.2 Schema Analysis: Crossref, JATS, and Dublin Core __ 51

3.3 Indexing Services: Requirements and Strategic Value ___ 51

3.3.1 some indexing services__ 51

3.3.2 Metadata Requirements __ 54

3.3.3 Unified Field Matrix __ 54

3.3.4 Relevance to ASPS: Strategic Metadata Compliance __ 55

3.4 Crossref XML Generator Design ___ 56

3.4.1 Workflow of the Tool ___ 56

3.4.2 Input Data Models and XML Generation Results ___ 58

3.4.3 Data Standardization ___ 67

3.4.4 DOI Automatic Generation___ 68

3.4.5 Overcoming Technical Challenges in Metadata Extraction _____________________________________ 68

3.4.6 UML Diagrams __ 69

3.5 Implementation: Languages and tools for development ___ 71

x

3.5.1 3.5.1 Hardware tools ___ 71

3.5.2 3.5.2 Software tools __ 72

3.5.3 Tool Realization ___ 73

3.6 Conclusion __ 76

4 TESTING, VALIDATION, AND DEPLOYMENT ___ 78

4.1 Introduction ___ 78

4.2 4.2 Real-World Validation __ 78

4.2.1 4.2.1 Initial Submission and Schema Rejection ___ 79

4.2.2 4.2.2 Schema Corrections and Revalidation ___ 80

4.3 4.3 Validation Strategy __ 80

4.4 4.4 Testing Scenarios and Methodology __ 81

4.4.1 4.4.1 Scenario 1: Creating a DOI for a New Journal volume (No Articles) __________________________ 81

4.4.2 4.4.2 Scenario 2: Depositing a DOI for a New Article in an Existing Journal ________________________ 88

4.4.3 4.4.3 Scenario 3: Batch Deposit for Multiple Articles in an Existing Journal ________________________ 90

4.5 4.5 Final Deployment within ASPS ___ 92

4.6 4.6 Deployment Outcomes and Impact at ASPS __ 93

4.7 4.7 Recommendations and Future Work __ 94

4.8 4.8 Conclusion ___ 94

GENERAL CONCLUSION ___ 96

REFERENCES __ 98

APPENDIX ___106

xi

List of Figures

Figure 1.1: Editorial workflow process for OJS [23] ... 13

Figure 2.1: Ecosystem of scholarly services enabled by Crossref metadata APIs—ranging from

author profiling and library discovery to plagiarism detection and collaborative reading [53] 27

Figure 2.2: Comparative Crossref Participation Reports for ASPS ... 29

Figure 2.3: Comparative Crossref Participation Reports for eLife Sciences Publications Ltd 31

Figure 2.4: Accessing the Plugins Tab in OJS via Website Settings for DOI Configuration 37

Figure 2.5: Enabling the DOI Public Identifier Plugin in OJS .. 38

Figure 2.6: Configuring the DOI Plugin in OJS... 38

Figure 2.7: Selecting the XML Export Plugin in OJS ... 39

Figure 2.8: Enabling the Crossref XML Export Plugin in OJS ... 39

Figure 2.9: Enabling Automatic Deposit ... 40

Figure 2.10: Entering depositor credentials in the OJS DOI plugin .. 40

Figure 2.11: Enabling reference metadata under Workflow Settings in OJS 41

Figure 2.12: Crossref Reference Linking plugin activation ... 42

Figure 2.13: Activating the Crossref Reference Linking plugin under Website Plugins 42

Figure 2.14: Locating Back-Issue Articles in the Archives Queue .. 43

Figure 2.15: Precision Search Within Archived Submissions ... 44

Figure 2.16: Opening the Article Workflow for Metadata Editing.. 44

Figure 2.17: Navigating to the Publication Tab ... 45

Figure 2.18: Editing Core Metadata Fields in the Publication Tab ... 45

Figure 2.19: Temporarily Unpublishing to Unlock DOI Controls ... 45

Figure 2.20: Temporarily Unpublishing an article to Unlock DOI Editing 46

Figure 2.21: Generating a DOI in the Identifiers Panel ... 46

Figure 2.22: Saving the Newly Generated DOI ... 46

Figure 2.23: Republishing the Article with Updated Metadata ... 47

xii

Figure 3.1: Representation of the end-to-end workflow .. 58

Figure 3.2: Screenshot of Journals.csv Template in Excel .. 59

Figure 3.3: Screenshot of References.csv Template in Excel .. 59

Figure 3.4: Screenshot: Control block (rows 1–2) ... 59

Figure 3.5: Screenshot: Article block (row 5 onward) ... 60

Figure 3.6: Clarify CSV encoding ... 61

Figure 3.7: XML Declaration ... 63

Figure 3.8: Administrative metadata .. 63

Figure 3.9: Journal metadata .. 64

Figure 3.10: Journal issue .. 64

Figure 3.11: Issue level DOI .. 64

Figure 3.12: Journal article .. 64

Figure 3.13: Contributors ... 65

Figure 3.14: Abstract .. 65

Figure 3.15: Sub-elements ... 66

Figure 3.16: Article level DOI ... 66

Figure 3.17: Closing tags ... 66

Figure 3.18: Class Diagram of the Crossref XML Generator Tool ... 70

Figure 3.19: Class Diagram of the Crossref XML Generator Tool ... 71

Figure 3.20: Visual Studio logo ... 72

Figure 3.21: C++ logo. ... 72

Figure 3.22: MS Excel logo ... 73

Figure 3.23: XML logo .. 73

Figure 3.24: Tool libraries ... 74

Figure 3.25: Doi Parameters .. 75

Figure 3.26: Article Data ... 75

Figure 3.27: Journal Information ... 75

xiii

Figure 3.28: APA citation line ... 76

Figure 4.1: Failed Validation Report ... 79

Figure 4.2: Post-Correction Successful Validation Report .. 80

Figure 4.3: webpage indicating that the DOI is absent from the Crossref registry. 82

Figure 4.4: Journal Metadata Configuration .. 82

Figure 4.5: Control Parameters for Volume-Level DOI .. 83

Figure 4.6: Minimalist XML Output.. 83

Figure 4.7: Metadata Quality Checker Validation ... 84

Figure 4.8: Crossref Member Account Login .. 84

Figure 4.9: Crossref Home Page .. 85

Figure 4.10: Crossref Web Deposit Form .. 85

Figure 4.11: Select XML File to Upload ... 86

Figure 4.12: Crossref Successful Submission Message ... 87

Figure 4.13: JCAM landing page ... 87

Figure 4.14: ETE Journal Metadata Retention ... 88

Figure 4.15: Article-Level Control Parameters .. 88

Figure 4.16: XML Output for Article Integration. ... 89

Figure 4.17: Metadata Quality Checker Validation ... 89

Figure 4.18: CrossRef submission Email ... 90

Figure 4.19: ETE Heat transfer performance analysis Article Landing Page 90

Figure 4.20: Batch Control Parameters .. 91

Figure 4.21: Batch XML Output .. 92

Figure 4.22: Batch Validation Success .. 92

Figure A.1: Certificate of Attendance issued by Crossref………………………………………..107

xiv

List of Tables

Table 0.1: Outlines a proposed end-to-end workflow based on the automation capabilities of these

OJS plugins…………………………………………………………………………………………36

Table 3.1: Comparative Overview of Metadata Schemas…………………………………………51

Table 3.2: Metadata Requirements Across Indexing Services…………………………………….54

Table 3.3: Unified Field Matrix……………………………………………………………………54

Table 3.4: End-to-End Workflow for Crossref XML Generation and DOI Registration………….57

Table 4.1: Pre- and Post-Automation Metrics……………………………………………………..93

1

General Introduction

Context

In today’s scholarly publishing landscape, structured metadata has become the foundation of global

academic visibility. Digital Object Identifiers (DOIs), XML standards, and automated indexing are

no longer optional—they are prerequisites for discoverability, citation tracking, and integration into

global research infrastructures. Yet for many publishers, particularly in under-resourced regions,

these standards remain difficult to meet. In Algeria, the academic publishing ecosystem has yet to

catch up with international metadata practices. As of 2023, only one Algerian journal is indexed in

Scopus (Larhyss Journal), revealing a systemic underrepresentation of national research on the

global stage.

This disparity is not due to a lack of scholarly output, but to infrastructural and technical

limitations. The high demands of indexing platforms like Crossref and DOAJ—both in terms of

schema compliance and metadata management—often exceed the capabilities of local publishers,

who must manage editorial, production, and technical responsibilities without dedicated teams or

automation tools.

In this environment, Open Journal Systems (OJS) has emerged as a transformative platform for

democratizing access to academic publishing. However, its potential remains largely untapped

across much of the Algerian publishing landscape. The system requires a baseline of technical

knowledge and editorial training, especially in the domain of structured metadata and schema

compliance. As a result, only a handful of well-established or technically sophisticated publishers

have been able to fully leverage its features. The majority of smaller or newly established journals

either skip indexing altogether or rely on error-prone, manual methods such as filling in Crossref

XML or JATS templates through web-based deposit forms.

This gap—between what is technically required and what is practically achievable—represents a

critical barrier to the global visibility of Algerian research. It underscores the need for tailored,

accessible solutions that lower the technical threshold for participation in international indexing

systems.

General Introduction

2

Problematic and Motivation

Alwaha Scientific Publishing Services (ASPS) represents the challenges many Algerian publishers

face in achieving global visibility. Manual metadata handling and DOI registration delays—due to

lack of automation—often led to schema errors, rejected Crossref deposits, and limited indexing.

This issue is widespread across Algeria. Most journals hosted on ASJP (the country’s largest

scientific publishing platform) do not register DOIs with Crossref, leaving their content invisible to

global citation databases. ASJP’s proprietary system lacks automated tools for metadata export or

DOI assignment, making modern indexing difficult. Even journals using Open Journal Systems

(OJS), still encounter DOI registration failures due to insufficient training and unclear workflows.

The root of the problem lies not only in technical barriers but also in the absence of affordable,

accessible tools and training. To bridge this gap, this master’s thesis proposes a lightweight XML

generator that enables non-specialist editors to produce Crossref-compliant metadata, automate

DOI deposits, and align with global indexing standards.

The Work’s Purpose

This master’s thesis has two main objectives. First, it explores how to automate DOI indexing

through Open Journal Systems (OJS) By leveraging tools such as the Crossref XML Export Plugin

and DOI Public Identifier, this work demonstrates how large publishers can streamline metadata

deposition, eliminate manual errors, and achieve Crossref compliance at scale. The methodology

draws on firsthand experience gained through my participation in a Crossref-hosted webinar and a

two-month scholarship at Alwaha Scientific Publishing Services (ASPS), where advanced OJS

workflows were implemented to reduce processing time by 80% and improve metadata

completeness scores from 65% to 98%.

Second, the master’s thesis presents the design and development of a lightweight XML generation

tool tailored for beginner publishers who lack technical expertise or access to automation. The tool

converts structured CSV inputs into Crossref-compliant XML files, eliminating the need for

manual XML editing. Developed in C++20 for efficiency and portability, it allows non-specialist

editorial teams to register DOIs and submit metadata with minimal effort.

By bridging advanced OJS plugin utilization with accessible software design, this work empowers

publishers of all scales to meet global indexing standards. The proposed solutions not only enhance

the discoverability of Algerian research but also provide a replicable framework for institutions in

resource-constrained regions to participate equitably in open scholarly communication.

General Introduction

3

Structure of the Dissertation

This work is structured into four chapters, each addressing a key phase in the development and

deployment of the metadata automation tool:

Chapter 1: Background

Provides a historical overview of scholarly publishing, the evolution of metadata standards (Dublin

Core, JATS, Crossref), and the technical roles within OJS. It contrasts print and digital workflows,

emphasizing the growing importance of automation in metadata management.

Chapter 2: Case Study of Automated Indexing at ASPS

Explores ASPS’s operational model, the limitations of its manual indexing practices, and the

strategic adoption of OJS plugins. It evaluates challenges in Crossref compliance, metadata quality,

and capacity building, supported by Crossref webinar training and plugin configuration.

Chapter 3: Engineering a Custom XML Indexing Tool

Presents the design and implementation of a Crossref XML generator. It documents schema

requirements, data models, parsing strategies, and software architecture using C++20 and modular

templates. Illustrated through UML diagrams and code modularization.

Chapter 4: Testing, Validation, and Deployment

Validates the tool through real-world scenarios, including DOI registration for journals, articles,

and batch deposits. It measures the impact of the tool at ASPS and provides recommendations for

future enhancements.

By combining technical innovation with practical implementation, this work offers a blueprint for

open-access publishers striving to gain visibility in the global research ecosystem without

sacrificing autonomy or affordability.

4

1 Digitalization of journal publishing process:

Background

1.1 Introduction

The first chapter of this master’s thesis undertakes a critical examination of the historical,

structural, and technological dimensions that define modern scholarly publishing. From its 17th-

century origins in print-based dissemination of knowledge to today’s metadata-driven, globally

interoperable digital systems, scholarly publishing has undergone a profound transformation—

reshaping not only how research is shared but also how it is evaluated, accessed, and preserved.

This evolution has been propelled by parallel developments in peer review practices, publication

infrastructures, and metadata frameworks, reflecting broader shifts in academic norms,

technological affordances, and institutional priorities.

Central to this transformation is the emergence of open-source platforms like Open Journal

Systems (OJS), which have redefined editorial workflows and democratized journal publishing,

particularly for institutions without access to commercial infrastructure. By simulating end-to-end

publishing processes—from submission and review to metadata indexing—within a single

browser-based system, OJS encapsulates the technical and functional convergence of human

editorial labor and digital automation.

This chapter systematically explores the conceptual and operational underpinnings of scholarly

communication, offering definitions of key terminologies (e.g., DOI, metadata, indexing),

delineating the specific roles embedded within OJS, and contrasting traditional print workflows

with digital production ecosystems. It also highlights the emerging role of the indexer, particularly

in metadata-driven publishing environments, where discoverability and citability are contingent on

schema-compliant, high-quality metadata. The discussion culminates in a technical appraisal of

automation opportunities, underscoring both the benefits and limitations of digital tools in

achieving scalable and semantically accurate scholarly dissemination.

1.2 Historical Evolution of Scholarly Publishing

The history of scholarly publishing is closely intertwined with the evolution of science itself. The

foundations of modern academic communication were laid in the 17th century with the launch of

the first scientific journals—Philosophical Transactions of the Royal Society (1665) and Journal

des sçavans (1665) [1] —which marked a transition from private correspondence among scholars

Chapter 1: Digitalization of journal publishing process: Background

5

to a formalized, public dissemination of research. These journals not only established the precedent

for serial publication but also legitimized the idea of cumulative knowledge, reproducibility, and

citation as cornerstones of scientific integrity.

Throughout the 18th and 19th centuries, the volume and variety of journals expanded dramatically,

particularly through the backing of learned societies and academic institutions. However, editorial

practices remained relatively informal, with reputational authority often replacing structured peer

evaluation. It was not until the mid-20th century that peer review emerged as a standardized

mechanism for quality control [2], particularly in high-impact disciplines like medicine, physics,

and the social sciences. This institutionalization of peer review reshaped publishing workflows,

placing greater emphasis on editorial accountability, reviewer anonymity, and manuscript

evaluation criteria.

The late 20th century introduced a paradigm shift with the rise of digital publishing. The 1990s saw

the widespread adoption of electronic typesetting, email-based submissions, and online journal

hosting [3]. Publishers began digitizing back issues, and new-born digital-native journals

eliminated the need for print runs altogether. This period also witnessed the consolidation of large

commercial publishing houses, which brought both operational efficiency and significant cost

barriers for access—ultimately sparking the open-access movement.

The early 2000s solidified a new era with the emergence of open-access platforms, interoperable

metadata standards, and persistent digital identifiers. Initiatives like the Budapest Open Access

Initiative (2002) challenged traditional access models, while technical frameworks such as the

Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), Crossref’s DOI system,

and JATS XML schemas laid the foundation for machine-readable publishing and automated

indexing. Open-source software such as Open Journal Systems (OJS) further democratized

scholarly publishing by enabling low-cost journal management, peer review, and metadata

integration for institutions lacking commercial infrastructure [4, 5].

Today, scholarly publishing exists within a complex ecosystem that blends legacy practices with

digital innovation. While the peer-reviewed journal remains central, its production, dissemination,

and discoverability are increasingly driven by automation, metadata compliance, and global

interoperability—developments that reflect centuries of technological, institutional, and

epistemological evolution.

1.3 Core Terminologies and Conceptual Framework

1.3.1 Publisher (Publishing House)

Chapter 1: Digitalization of journal publishing process: Background

6

A publisher is the legal entity or organization responsible for acquiring manuscripts, overseeing

peer review, producing the final published version, and ensuring long-term preservation [6].

Today's publishers include several models like Commercial publishers (Elsevier, Wiley, Springer

Nature, Taylor & Francis), Society publishers (like ACS in chemistry or APS in physics), Open

access platforms (PLOS, Frontiers) [7] and University presses (such as Oxford or MIT) [8, 9].

1.3.2 Indexing (in Academic Publishing)

Indexing focuses on making it simpler to locate, access, and monitor scholarly research (articles,

books or journals...) [10]. It's similar to making a structured library catalog, but for journal articles

and scientific research that has been published globally and organizing them in structured databases

or also called indexes like PubMed, Scopus, Web of Science, Google Scholar and DOAJ to help

them to be more likely to seen, read, and cited by other researchers [11, 12].

1.3.3 Open Journal Systems (OJS)

Open Journal Systems created by the Public Knowledge Project, is a prominent open-source

platform that manages everything from initial submission to final publication. It’s a free, toolkit

that lets journal editors run every part of their publication online. Once it’s installed on a regular

web server, editors can use it to collect new submissions, guide papers through peer review, handle

copy-editing and layout, and finally publish finished articles on the journal’s website. OJS

automates the fussy clerical work—sending reminder emails, tracking versions, keeping records—

so editors can focus on the content itself. Because it replaces many of the costs tied to print

production or pricey commercial platforms, OJS makes it far easier (and cheaper) for scholarly

journals to move to an online or open-access model [13, 14].

1.3.4 Metadata

In scholarly publishing, metadata are the structured bits of information that travel with a paper and

tell computers—and therefore search engines, databases, and other journals—exactly what the

work is about and how it should be handled [15]. At a minimum this record captures the familiar

bibliographic details (title, authors, affiliations, abstract, keywords, publication date, journal name,

volume, issue, pages), but well-formed journal metadata usually goes further. It may also include:

• Persistent identifiers (author ORCIDs, funder IDs, clinical-trial numbers)

• Administrative data (submission/acceptance dates, licence, peer-review history)

• Technical data (file formats, checksums)

• Subject classifications drawn from controlled vocabularies such as MeSH, JEL, or PACS

Chapter 1: Digitalization of journal publishing process: Background

7

Most journals express that information in standardized schemas—Dublin Core, JATS XML, or

Crossref’s deposit schema—so that it can be harvested automatically through protocols like OAI-

PMH. Rich, well-structured metadata is what makes an article discoverable in Google Scholar,

Scopus, Web of Science, or library catalogues, and what lets citation managers import a perfect

reference with one click. Without it, even the most brilliant paper is effectively invisible online

[16-18].

1.3.5 Digital Object Identifier (DOI)

Digital Object Identifier is a unique, alphanumeric tag (e.g., 10.1234/abcd.5678) that points to

one—and only one—digital object, typically a journal article. The string is registered with an

agency such as Crossref or DataCite, which stores the object’s current URL and core metadata in a

central resolver [19]. When someone clicks or pastes the DOI into a browser (usually prefixed with

https://doi.org/), the resolver looks up the stored URL and redirects the reader to the article’s

landing page.

Because the DOI is permanent while URLs can change, it solves two chronic problems in digital

scholarship:

• Link rot and content drift – If a journal migrates to a new platform or reorganizes its site, the

publisher simply updates the target URL in the DOI registry; every existing citation that

uses the DOI keeps working [20].

• Reliable citation and tracking – Indexers, reference-managers, and altmetric tools treat the

DOI as the canonical fingerprint of the article, making it possible to unambiguously count

citations, measure online attention, and link related research outputs (datasets, software,

peer-reviews).

Most modern publishing systems—including Open Journal Systems—mint DOIs automatically

during the production workflow and deposit the associated metadata with the chosen registry,

ensuring that every published item is both citable and permanently findable [21].

1.4 Functional Roles within Open Journal Systems (OJS)

Open Journal Systems was built on a simple insight: publishing a journal is really a long

conversation among a handful of people who each have a job to do [22]. Instead of leaving that

conversation hanging across emails and shared drives, OJS suggests one shared online workspace.

The titles that journals give their team members vary, some have managing editors, others

production editors or section editors [23, 24], but overall the customized roles are similar

everywhere, and here are some of the common ones:

Chapter 1: Digitalization of journal publishing process: Background

8

1.4.1 Author

Authors play a foundational role in the Open Journal Systems (OJS) workflow by submitting

manuscripts, appendices, and supplementary data through the platform in diverse file formats (e.g.,

DOCX, PDF, LaTeX) [23]. To ensure consistency and completeness, authors utilize OJS-provided

templates that ensures submission arrives with the same layout and complete metadata (e.g.,

keywords, affiliations, abstracts). Authors receive automated notifications from OJS about

submission status and revisions enabling real-time tracking of their submission’s progress while

minimizing manual follow-up [22]. This structured approach enhances efficiency and ensures

alignment with journal guidelines [25].

1.4.2 Production or Managing Editor

The Production or Managing Editor acts as the central coordinator within Open Journal Systems

(OJS), overseeing the entire editorial workflow from manuscript submission to final publication

[22]. They ensure smooth coordination among section editors. This role involves managing journal-

wide protocols and policies, such as ethical guidelines, peer review criteria, and open access

mandates. Additionally, the editor queues incoming submissions for review, time-stamping each

action—such as reviewer assignments, editorial decisions—to maintain a transparent, harmonized

record of the process [23].

1.4.3 Section Editor

The Section Editor specializes in managing the peer review process for specific submissions within

Open Journal Systems (OJS) like assigning reviewers to each article [22]. Leveraging OJS’s

reviewer database, they identify and assign reviewers with relevant expertise, while tracking review

deadlines and sending automated reminders to ensure timely feedback. This role communicates

editorial decisions to authors, ensuring clarity and constructive guidance. Additionally, the Section

Editor oversees the revision process, facilitating exchanges between authors and reviewers, and

ensures commitment to the journal’s standards.

1.4.4 Layout Editor (Designer)

In Open Journal Systems (OJS), the Layout Editor (Designer) prepares approved submissions for

publishing in output formats such as HTML, PDF, XML, or Postscript. In order to maximize

readability on both digital and print formats, they manage the general appearance of articles, format

text, headings, figure placements, and tables [18]. The Layout Editor's careful attention to detail

ensures that outputs meet technical standards while improving accessibility and aesthetics for

various kinds of reader interfaces [26].

Chapter 1: Digitalization of journal publishing process: Background

9

1.4.5 Reviewer

The Reviewer evaluates submissions through Open Journal Systems (OJS), providing critical

feedback, recommendations and suggestions for improvement to guarantee academic relevance and

quality [22]. By receiving automated invitations via OJS—which include submission details such as

the title, abstract, and deadlines—the Reviewer accesses the manuscript and any supplementary

materials directly within the platform. A unified online submission form (or file upload) is used by

reviewers to send in their reviews, allowing for detailed comments and matching input across

submissions. This procedure creates accountability and transparency by producing a dated, written

record of the evaluation [23]. Reviewers preserve the integrity of the peer review process by

following the journal's requirements and deadlines [25].

1.4.6 Copyeditor

The Copyeditor corrects manuscripts for linguistic precision by fixing grammar, punctuation, and

stylistic coherence to align with the journal’s guidelines. They ensure references follow to the

journal’s chosen citation style (e.g., APA, Vancouver) and verify the accuracy of text citations

against the bibliography. The Copyeditor works closely with authors and editors using OJS,

resolving confusion through a shared workspace and highlighting edits or questions with tracked

changes and comment threads [22]. While preserving the author's voice, this iterative procedure.

1.4.7 Proofreader

In order to remove any remaining typographical, layout, or formatting issues, the proofreader

carefully goes over formatted galleys (such as PDFs and HTML) one last time [23]. They verify

that all editing and design changes are appropriately applied by comparing the galley with the

original text and a correction log using a side-by-side view in Open Journal Systems (OJS). This

position checks that typefaces, headings, figure arrangement, and pagination are all consistent and

reports any inconsistencies to the Layout Editor for correction. The proofreader guarantees that the

publication satisfies professional standards by protecting textual and visual accuracy, reducing

post-publication errors, and boosting reader confidence.

1.4.8 Reader/Community

Through Open Journal Systems (OJS), readers and the larger academic community engage with

published information by discussing articles or exchanging ideas in forums and optional

commenting features. To guarantee prompt access to the most recent research, subscribers receive

automated email alerts when new issues or articles are published. By producing OAI-PMH metadata

feeds, which allow indexing in global repositories (like Crossref and DOAJ) and library catalogs

[22], OJS further improves discoverability. The journal's reach is increased by its twin emphasis on

Chapter 1: Digitalization of journal publishing process: Background

10

accessibility and engagement, which promotes scholarly discourse and makes sure that content is

readily available across platforms.

1.4.9 Indexer (or “Metadata Editor”)

Acting as the bridge between finished copy and global discovery services, the Indexer refines the

descriptive data that travels with every article and ensures it meets the strict syntactic and semantic

requirements of modern indexing systems [27]. Working inside OJS, the indexer reviews the

metadata originally entered by authors—titles, abstracts, keywords, ORCID iDs, funding details—

and enriches it with controlled-vocabulary subject codes, standardized affiliations, and persistent

identifiers such as DOIs [18]. Once the record is complete, the indexer deposits it through OJS’s

built-in channels to Crossref, DOAJ, and other harvesters that rely on protocols like OAI-PMH and

schemas such as Dublin Core or JATS XML, then verifies that each external landing page resolves

correctly and that citation-tracking fields are accurate. By shifting this meticulous work from

authors to a dedicated specialist, the journal not only improves the precision and consistency of its

metadata—critical for search visibility, citation counts, and long-term preservation—but also

lowers the barriers faced by libraries and researchers in resource-constrained settings who depend

on open, well-structured indexes rather than costly commercial abstracting services. [10, 11, 23].

In smaller operations, one person might juggle multiple roles. Larger, more formal publications

often have dedicated specialists for each task. Either way, these functions work together to ensure

each article is thoroughly reviewed, polished, formatted, and properly cataloged.

1.5 Editorial Workflow: From Submission to Dissemination

By simulating every step of the conventional journal workflow in a single browser- based

workspace, Open Journal Systems (OJS) eliminates the need for time-consuming tasks that

formerly required clerical personnel, postal budgets, and physical office space [22]. Author, editor,

reviewer, copy editor, layout editor, proof reader, reader, indexer, host institution, and the open

source community itself are among the many different but interconnected roles that make up its

design [23]. Each of these roles is backed by specific displays, automatic emails, and activity logs.

When combined, these functions show how OJS reduces publication expenses and effort while

maintaining the expert checks and balances that are essential to academic reputation.

OJS's editorial workflow, which is divided into two interrelated phases—the Scientific Evaluation

Phase and the Manuscript Production Phase—not only expedites the publication process but also

preserves the academic integrity of every piece. Intellectual rigor is the main focus of the first step,

during which editors oversee peer review, evaluate originality, guarantee ethical compliance, and

assist authors with any necessary adjustments. In order to support transparency and editorial

Chapter 1: Digitalization of journal publishing process: Background

11

responsibility, OJS provides tools that consolidate reviewer feedback, track all decisions, and

timestamp conversations. A manuscript enters the production stage after being approved on the

basis of its scientific merit. At this point, the focus switches to accurate metadata and high-quality

display. By use of a well-coordinated sequence of proofreading, layout formatting, copy-editing,

and metadata enhancement, OJS guarantees that the finished product satisfies technical and

scholarly requirements. The platform's dedication to efficiency as well as maintaining the

legitimacy and discoverability of published research within the global scholarly ecosystem is

shown in this well-organized, two- phase workflow.

1.5.1 Scientific Evaluation Phase

The workflow begins with the author, who now submits work directly through the journal’s

website instead of mailing hard copies or negotiating email attachments. OJS walks the author

through a step-by-step wizard that captures not only the manuscript but also supplementary files—

datasets, instruments, images—and prompts for rich metadata (title, abstract, keywords, funding

information, ORCID iDs). Because the system validates file formats and completeness on the spot,

many of the delays and queries that used to bounce between authors and editorial assistants simply

disappear. Instantly, the submission is date-stamped, queued for review, and acknowledged by an

automated email, saving clerical labour, postage, and considerable author anxiety [23].

Responsibility then shifts to the editor, whose dashboard lists every active manuscript with colour-

coded alerts for overdue reviews or pending decisions. From this screen the editor can scan

reviewer expertise and workloads, assign new referees with a single click, and trigger personalised

invitation letters that already contain the paper’s title, abstract, and due date. OJS continues to

nudge reviewers with polite reminders and records each acceptance, decline, or completed report in

an audit trail visible to the editor (and, where policy permits, to the author). Because every piece of

correspondence is templated yet editable, the editor retains a human voice while avoiding repetitive

typing. The net effect is a dramatic reduction in the hidden “transaction costs” of peer review that

Fytton Rowland once estimated at roughly US $400 per published article [28].

The peer reviewer benefits from the same economy of effort. After accepting an assignment, the

referee downloads the manuscript from a secure link, completes either a structured online form or

an annotated file upload, and submits the report—all without leaving the platform. Deadlines,

previous reviews, and review histories travel with the reviewer’s profile, giving editors a data-

driven view of reliability and expertise while sparing them the detective work of hunting through

old email threads [6, 22, 25].

Chapter 1: Digitalization of journal publishing process: Background

12

1.5.2 Manuscript Production Phase

Once a manuscript is accepted, OJS hands it to the copy-editor. Here the system’s value is less

about automation than about controlled hand-offs. A shared workspace allows copy-editors to

query authors or editors inline and to lock versions so that everyone is literally “on the same page.”

When textual polishing is complete, the layout editor uploads final galleys in any combination of

PDF, HTML, PostScript, or XML. OJS provides an on-screen preview so that typographical or

encoding glitches can be spotted before publication, and it stores each file with the correct metadata

so that downstream services—Crossref, PubMed Central, institutional repositories—can ingest

them without manual intervention [22].

The proof-reader receives an automatic alert the moment layout is finished. A side-by-side

comparison window links each correction to its location in the galley, eliminating the cryptic “page

7, para 2, line 4” notes that once clogged editorial

inboxes. When proofs are cleared, the editor can schedule the article into a traditional issue or,

increasingly, release it immediately as “publish-ahead-of-print.” Either way, a single confirmation

click flips the work from private workspace to public website, at which point OJS emails table-of-

contents alerts to registered readers and authors [23].

For the wider research ecosystem, OJS acts as its own indexing agent. The platform exposes

Dublin-Core or JATS XML records through the Open Archives Initiative Protocol for Metadata

Harvesting (OAI-PMH), allowing Google Scholar, Scopus, Web of Science, and national library

catalogues to harvest citations without a publisher lifting a finger. When a journal mints Digital

Object Identifiers, OJS can deposit the requisite metadata with Crossref automatically,

guaranteeing permanent links and accurate citation tracking. Readers thus discover, cite, and share

the article within hours of publication, while libraries save the subscription fees normally charged

by commercial indexing services [29].

Behind the scenes, the host library or scholarly society supplies the web server, storage, backups,

and preservation plug-ins such as LOCKSS or Portico. Because OJS is open-source, these

institutions control their own upgrade cycle and data, avoiding the lock-in that accompanies many

proprietary platforms. Meanwhile, an active developer community contributes language packs,

bug fixes, and new plug-ins—everything from altmetrics widgets to subscription paywalls—

keeping software costs close to zero and functionality at the cutting edge.

In short, OJS re-maps the entire editorial landscape onto a coordinated set of roles, each supported

by thoughtful automation. Authors gain a friction-free submission channel; editors reclaim hours

lost to email; reviewers interact through a structured, accountable interface; production staff

Chapter 1: Digitalization of journal publishing process: Background

13

collaborate without version chaos; readers receive immediate, metadata-rich access; and libraries

host content on their own terms. By folding these efficiencies into the scholarly workflow, OJS not

only drives down the marginal cost of publishing but also makes open-access business models

financially and technically attainable for journals of every size and discipline.

Figure 1.1: Editorial workflow process for OJS [23]

1.6 Comparative Analysis of Print and Digital Production

The mode of publication—whether print-based, digital-only, or hybrid—significantly influences

the editorial workflow, metadata requirements, and the distribution strategy of academic journals.

While most contemporary publishers have transitioned to digital platforms for efficiency and reach,

a number of academic societies and heritage journals continue to produce physical issues to meet

institutional archiving requirements or subscriber preferences [30]. This distinction between print

Chapter 1: Digitalization of journal publishing process: Background

14

and digital formats not only affects the production tools used but also the complexity and

automation potential of the publishing process.

1.6.1 Production Workflows in Print Publishing

Traditional print publishing follows a linear and labor-intensive pathway, shaped by the physical

constraints of print output and the expectations for high-fidelity [31], page-formatted publications.

Print workflows typically center around preparing documents for press-quality output, where the

emphasis is placed on visual consistency, typographic clarity, and physically bound distribution.

The main steps include:

• Editorial Acceptance and Copyediting: Final revisions are made to align the manuscript

with journal style guidelines, and images are optimized for high-resolution print output.

• Typesetting and Page Layout: Layout editors generate visually consistent page proofs

using professional publishing software such as LaTeX or Adobe InDesign.

• Proofing and Final Corrections: Proofs are reviewed collaboratively, with final checks for

formatting, disclaimers, and metadata accuracy.

• Distribution: Printed copies are physically delivered to libraries, archives, or subscribers.

Some national libraries still require hard copies for preservation purposes.

In traditional print environments, metadata creation has historically been the domain of librarians,

who catalog articles using systems like MARC 21 or simplified Dublin Core entries [32].

However, the availability of digital source files has gradually introduced schema-based metadata

practices, even in otherwise print-first operations.

1.6.2 Production Workflows in Digital Publishing

In contrast to print workflows, digital production environments emphasize modularity, automation,

and rapid dissemination. These platforms benefit from highly structured submission pipelines and

metadata-driven architectures, enabling both scalability and interoperability with indexing systems

[33].

• Submission and Peer Review: Manuscripts are submitted and processed entirely within a

content management system (CMS), which handles editorial workflows and peer review

communication.

• Copyediting and Layout: Editorial revisions are performed using collaborative tools, with

automated layout generation in formats such as PDF, HTML, or XML.

Chapter 1: Digitalization of journal publishing process: Background

15

• Assignment of Persistent Identifiers: Articles are assigned DOIs via Crossref, and

ORCID iDs are collected to ensure author disambiguation.

• Publication and Indexing: Final articles are published online, and metadata is deposited

with indexing platforms like Crossref, DOAJ, or PubMed using OAI-PMH protocols.

Digital production environments enable high degrees of automation. Platforms like OJS or

Editorial Manager offer direct export of metadata in Crossref XML, JATS, or Dublin Core formats.

Nonetheless, the role of the indexer or metadata editor remains critical. Automated systems may

generate valid XML, but only human oversight ensures alignment with content accuracy,

completeness, and semantic consistency.

1.7 Technical Perspectives on Editorial Processes

For software developers and metadata specialists involved in scholarly publishing, the editorial

process divides into two distinct but interdependent phases: the scientific evaluation phase and the

production phase. Each presents its own set of technical requirements, challenges, and

opportunities for automation.

1.7.1 Scientific Phase: Adaptive and Dynamic Design Needs

The scientific evaluation phase includes peer review, editorial screening, and ethical oversight.

These tasks are inherently human-centric, dynamic, and context-dependent, they require subjective

judgment, disciplinary knowledge, and flexible decision-making systems. From a development

standpoint, this phase requires flexible systems that support role-sensitive interfaces [34, 35]

because editors, reviewers, and authors interact with manuscripts in very different ways. UI/UX

design must reflect this segmentation, ensuring access controls, tailored dashboards, and action-

specific notifications. Additionally, it demands platforms that can manage complex workflows by

anonymizing submissions, matching reviewers based on expertise, knowing that journals may

differ in how they manage review rounds (single-blind, double-blind, open review), ethical checks,

or editorial board hierarchy [23, 36].

1.7.2 Production Phase: Structured Data and Automation Potential

In contrast, the production phase begins once an article is accepted and enters a more structured

domain. The core content is finalized, and the focus shifts to tasks like copyediting, layout

formatting, metadata enrichment, and XML generation. This phase is more conducive to

automation because the information technically becomes more stable and predictable —titles,

author lists, abstracts, and references follow known patterns. Developers can now apply parsing

techniques and field mapping to extract section headers, citations, and tabular data reliably on

Chapter 1: Digitalization of journal publishing process: Background

16

manuscripts may arrived in DOCX, LaTeX… And integrate schema validation to ensure that the

metadata meets the standards required for indexing platforms like Crossref, DOAJ, and Scopus.

However, several technical challenges still emerge in the production phase. One major issue is the

diversity of input formats: authors may submit manuscripts in .docx, .pdf, .odt, LaTeX, or plain

text, each with unique structural conventions. This variation requires developers to implement

custom parsers or conversion routines to extract consistent and accurate metadata. Additionally,

author information is often inconsistently formatted—names, affiliations, ORCIDs, and email

addresses may appear in non-standard ways, complicating automated processing and increasing the

risk of schema validation errors. Furthermore, journals may impose specific metadata requirements,

such as graphical abstracts, funding acknowledgments, or clinical trial registration numbers. These

custom fields demand adaptable data models that maintain schema compliance while

accommodating variability. Finally, metadata standards themselves are not static; platforms like

Crossref regularly update their schemas, introducing new tags or structural rules. Developers must

ensure that their tools remain up-to-date and backward compatible to avoid disruption in indexing

workflows.

1.7.3 Towards Standardization and Semi-Automation

While complete automation is elusive in the scientific phase, the production phase benefits

substantially from:

• Standardized schemas (e.g., JATS XML, Crossref Metadata Deposit): These offer

structured blueprints for machine-readable article representation.

• Open APIs: Platforms like OJS expose APIs that enable external applications to pull and

push data seamlessly, enabling integration with submission portals, institutional

repositories, or analytics tools [37].

• Plugin extensibility: Developers contribute and maintain plugins for citation extraction,

format conversion, alt metrics tracking, and accessibility checks—streamlining repetitive

production steps.

In sum, developers serve as the architects of reliability and scalability in scholarly publishing. They

engineer the quiet precision behind the scenes, ensuring that scholarly work travels from

submission to dissemination smoothly, accurately, and in compliance with the evolving metadata

and visibility demands of the digital age.

1.8 Critical Role of the Indexer in Scholarly Communication

Chapter 1: Digitalization of journal publishing process: Background

17

Among the many roles involved in academic publishing, the indexer—also referred to as the

metadata editor—plays a uniquely strategic role in bridging the gap between article production and

academic discoverability, citability and accessibility. While roles such as author, editor, and

reviewer are often more visible, it is the indexer who ensures that published content is accurately

described, machine-readable, and properly linked to the broader network of research databases,

institutional repositories, and citation systems [22]. In traditional workflows, this responsibility

typically fell to librarians or cataloguers who processed printed issues retrospectively. In the digital

and hybrid era, however, the indexer’s role has evolved into a proactive, technically demanding

function. Metadata must now be verified, structured, and deposited at the point of publication to

comply with indexing standards and enable global integration [32].

1.9 Functions of the Indexer

The functions of the indexer span multiple technical and editorial domains, making this role central

to ensuring that scholarly content is accurately represented across indexing platforms and

institutional repositories. First, the indexer is responsible for metadata extraction, gathering

essential fields either from author-submitted forms or directly from the final article. Once

extracted, this information undergoes metadata standardization, aligning with specific schema

requirements based on the destination indexing platform: Crossref XML for DOI registration,

JATS XML for biomedical repositories, Dublin Core for library systems, and specialized fields

required by platforms like DOAJ. The next critical task is quality assurance, where the indexer

verifies the accuracy and consistency of all metadata elements, recognizing that even small errors

can disrupt proper indexing and citation tracking. Following validation, the indexer handles

submission to indexing platforms through APIs or batch XML deposits using deposit tools or

publisher portals which ensurs that articles are not just published but findable and trackable.

Finally, the indexer manages version control and metadata maintenance post-publication, updating

records in cases of corrections, retractions, or metadata revisions, re-depositing corrected records

and leveraging services like Crossmark to reflect changes transparently across all linked

repositories. Together, these functions position the indexer as an essential figure in scholarly

communication, maintaining the integrity, accessibility, and global reach of published research [22,

23].

1.9.1 Types of Indexers

In the evolving landscape of scholarly publishing, the role of the indexer can be broadly

categorized into two operational typologies: the User Indexer and the Developer Indexer. This

distinction reflects both the scale of the publishing organization and the technological resources

Chapter 1: Digitalization of journal publishing process: Background

18

available for metadata management. While both typologies share the same end goal—accurate,

standards-compliant indexing—their methods, tools, and workflows differ significantly.

1.9.1.1 The User Indexer

Typically operates within large, well-funded publishing houses or university presses that have the

resources to rely on integrated advanced content management systems and automated metadata

workflows. These publishers often rely on platforms like Open Journal Systems (OJS), Editorial

Manager, or ScholarOne, which include plugin-based ecosystems for Crossref XML generation,

JATS exports, ORCID integrations, and direct API submission capabilities. In this environment,

the indexer's role is primarily curatorial and supervisory: validating metadata entered through

editorial interfaces, resolving minor discrepancies, and ensuring platform configurations meet

evolving standards. The technical complexity is abstracted away by built-in tools and vendor

support. These indexers usually benefit from institutional IT teams, training, and access to real-time

support from the platform providers.

1.9.1.2 The Developer Indexer

By contrast, developer indexers are more commonly associated with small journals, university

presses, independent, or emerging publishers, particularly in regions or institutions lacking access

to resources and commercial infrastructure. Without access to automated pipelines or commercial

infrastructure. Here, indexers must build or maintain their own tools to generate structured XML,

and this indexing is a hands-on, code-driven process that requires both editorial proficiency and a

much deeper technical understanding of metadata schemas such as Crossref deposit schema or

JATS. Developer indexers handle the entire production chain manually or semi-automatically:

extracting metadata from spreadsheets or manuscripts, writing custom scripts (often in languages

like Python, C++, or Java), validating against XSD files, and depositing metadata through Web

Deposit interface or API interactions. In many cases, they must also troubleshoot schema errors,

update templates as standards evolve, and manage batch processing for large volumes—all without

formal technical support.

This division reflects not only technical roles but also systemic inequalities in global scholarly

publishing. User indexers benefit from institutional stability, infrastructure, and staff capacity;

developer indexers often juggle multiple roles (editor, layout designer, indexer) within small

editorial teams. However, the developer indexer model also empowers journals in the Global South

and emerging fields by fostering self-sufficiency and open-source innovation.

Both roles are vital. Automation enables scale and consistency; manual workflows ensure

flexibility and metadata fidelity. As indexing standards continue to evolve—particularly in the

areas of open data, funder compliance, and machine readability—future workflows may blend the

Chapter 1: Digitalization of journal publishing process: Background

19

strengths of both roles through modular, hybrid platforms that support both plug-in-based and

code-based metadata submission.

1.10 .Automation Opportunities and Technical Limitation

Automation has become a cornerstone of modern scholarly publishing, particularly in the domain

of metadata processing and indexing. From parsing author manuscripts to generating XML

metadata file, software tools have significantly reduced manual workload, improved turnaround

times, and enabled large-scale metadata consistency [33]. Features such as automated DOI

retrieval, reference linking, and field mapping have become increasingly sophisticated,

empowering indexers to focus on validation rather than manual entry.

However, technical limitations persist. Automation often struggles with structural inconsistencies

across manuscript formats, user-generated metadata errors, and the need for adaptability in

response to evolving schema requirements. Furthermore, heterogeneous input formats, discipline-

specific metadata fields, and differing standards across indexing platforms continue to pose

integration challenges. Issues such as metadata drift during editorial cycles and the lack of

interoperability across APIs and validation systems further complicate full end-to-end automation

[38-40].

While automation can streamline routine processes, it does not replace the need for human

oversight. Skilled indexers and developers remain essential to maintain metadata quality, enforce

compliance, and adapt tools to the nuanced requirements of specific journals and disciplines. The

goal is not to eliminate manual effort entirely, but to elevate human expertise to higher-order tasks

where judgment and contextual understanding are irreplaceable [15].

1.11 Conclusion

This chapter has explored the historical and technical evolution of scholarly publishing—from

early print-based journals to today’s metadata-driven, automated systems. Central to this

transformation is the integration of open-source platforms like OJS, which streamline editorial

workflows and expand access to publishing infrastructure, especially for resource-limited

institutions.

The chapter emphasized the pivotal role of the indexer, whose work ensures research is accurately

described, discoverable, and properly linked to global indexing platforms. By distinguishing

between user and developer indexers, the discussion revealed structural disparities in publishing

capacity—yet also highlighted the potential for open-source innovation to close these gaps.

Editorial processes today combine rigorous peer review with precise production workflows,

anchored by high-quality metadata. As the first Algerian developer of automated indexing

Chapter 1: Digitalization of journal publishing process: Background

20

solutions, this master’s thesis addresses a pressing national issue: according to Scimago, only one

Algerian journal—Larhyss Journal—is currently indexed in Scopus. This underscores the urgent

need for automated, standards-compliant indexing frameworks to boost national research visibility.

Chapter 2 will explore this challenge further through a detailed case study and technical

implementation.

21

2 Case study of automated indexing using the

ASPS OJS platform: The Crossref XML

export plugin

2.1 Introduction

 The global shift toward open-access publishing has intensified the need for scalable, cost-

effective workflows that ensure compliance with international metadata standards. For small

academic publishers like Alwaha Scientific Publishing Services (ASPS) a regional open-access

publisher based in Algeria, manual indexing processes pose significant operational bottlenecks,

limiting their ability to compete in an increasingly automated scholarly ecosystem. This chapter

presents a case study of ASPS’s transition to automated indexing using Open Journal Systems

(OJS), an open-source platform critical for democratizing access to Algerian research while

aligning with global infrastructure like Crossref.

 The chapter begins with an institutional overview of ASPS and its interdisciplinary journal

portfolio, followed by a discussion of its open-access philosophy and operational model. It then

transitions to a technical exploration of OJS as a publishing platform, identifying both the

platform’s advantages and the strategic gaps that existed prior to automation. A central focus is

placed on Crossref's role in enhancing metadata visibility and persistent citation, supported by my

participation in an official Crossref webinar and associated hands-on plugin training.

 Subsequent sections detail the practical implementation of an automated indexing pipeline

using OJS plugins—specifically the DOI Public Identifier, Crossref XML Export, and Reference

Linking plugins—along with annotated screenshots from the ASPS backend. The final part of the

chapter addresses the retroactive assignment of DOIs to previously published articles, highlighting

the procedural steps needed to update archival content for full compliance with Crossref standards.

By combining institutional context, technical detail, and quantitative evaluation, the chapter

delivers an end-to-end narrative of how a resource-constrained publisher can achieve international

metadata standards without proprietary software or prohibitive fees.

2.2 Overview of Alwaha Scientific Publishing Services (ASPS)

 Alwaha Scientific Publishing Services SARL (ASPS) is an Algeria-based international

academic publisher founded to advance scholarly communication, particularly in engineering and

Chapter 2: Case study of automated indexing using the ASPS OJS platform

22

applied sciences. Established in Biskra, Algeria, ASPS operates as an independent entity with an

editorial team comprising global researchers and scientists, positioning itself as a bridge between

Algerian research and the international academic community [41]. The ASPS manages a diverse

portfolio of peer-reviewed journals, including the Energy and Thermofluids Engineering (ISSN

2716-8026). ASPS offers special issue, book, and conference paper publishing services in addition

to online and print journal publishing services. Because ASPS Publisher is a member of Crossref,

all of its documents' content will always be accessible at https://doi.org/10.38208.

2.2.1 Journal Portfolio and Scope

 ASPS’s journal portfolio reflects its commitment to advancing interdisciplinary research while

addressing both theoretical and applied research. Every journal follows the same open-access

format, guaranteeing worldwide exposure and obedience to global academic standards. A

comprehensive look at each ASPS's four major journals is provided below, highlighting each one's

distinctive contributions to its subject [41].

Journal of Energy and Thermofluids Engineering, ETE, ISSN:2716-8026:

2.2.1.1 Objective

 ETE focuses on disseminating advancements in energy systems, bridging renewable and

conventional energy research, and addressing thermofluids engineering challenges. Its

interdisciplinary scope spans mechanical, electrical, chemical, and architectural engineering, with

an emphasis on policy, economics, and environmental sustainability [42].

2.2.1.2 Scope and Thematic Focus:

• Renewable Energy: Solar photovoltaics, wind energy, biomass, hydropower, geothermal

systems, and waste-to-energy technologies.

• Conventional Energy: Nuclear energy, hydrogen fuel cells, electric/hybrid vehicles,

energy storage, and distribution systems.

• Thermofluids Engineering: Thermodynamics, computational fluid dynamics (CFD),

nanofluids, HVAC systems, and automotive engine technologies.

• Cross-Cutting Themes: Energy policy, efficiency audits, clean cooking solutions, and

socio-economic impacts of energy systems [42].

2.2.1.3 Unique Features

 Publishes experimental and computational research alongside comprehensive review articles.

Prioritizes practical applications, such as renewable energy integration into grid systems and

Chapter 2: Case study of automated indexing using the ASPS OJS platform

23

sustainable urban planning [42]. No author fees, aligning with ASPS’s mission to democratize

access for researchers in resource-limited regions.

2.2.1.4 Indexing

Google Scholar, Crossref [42].

2.2.2 Open-Access Policy and Global Reach

 ASPS prioritizes open access (OA) to maximize research impact, aligning with global trends in

scholarly communication. By waiving submission, processing, and publication fees, the publisher

democratizes access for authors and readers, particularly from resource-constrained regions. Its

integration with Crossref ensures persistent identifiers (DOIs) for all content, enhancing

discoverability and citation tracking [41]. While ASPS’s primary focus is Algerian research, its

editorial scope is international, attracting contributions from multidisciplinary fields and fostering

cross-border collaboration.

2.2.3 ASPS’s Research and Publication Ethics

• Responsibilities of Authors (Researchers): Clear and honest presentation of original

research; compliance with legal and ethical standards; accurate attribution of contributions;

and full disclosure of conflicts of interest.

• Responsibilities of Editors: Fair editorial judgment; integrity in peer review; transparency

in handling misconduct; and accountability for maintaining the quality of the published

record.

• Responsibilities of Peer Reviewers: Confidentiality, objectivity, timeliness, and ethical

vigilance in reviewing submissions within their field of expertise [43].

2.2.4 ASPS’s Standards for Authors: Responsible Research Publication

 Based on international declarations and ethical guidelines, this section outlines the key

principles authors must uphold to ensure trustworthy, balanced, and transparent scholarly

communication [44]. Responsible research publication relies on a series of interrelated principles

that uphold the integrity of scholarly communication. These include soundness and reliability,

which emphasize the need for robust methodology, accurate reporting, and rigorous quality control.

Honesty entails truthful representation of data, acknowledgment of all results—favorable or not—

and the use of accurate citations. A sense of balance requires equitable consideration of prior

research, including conflicting or non-confirmatory findings. Originality mandates that submitted

work is genuinely novel, with proper handling of copyrighted materials and transparent disclosure

of any related publications. Transparency involves the open declaration of funding sources, the

Chapter 2: Case study of automated indexing using the ASPS OJS platform

24

role of sponsors, and any potential conflicts of interest. Authorship and acknowledgement must

accurately reflect each individual’s contribution while preventing practices such as guest, gift, or

ghost authorship. Accountability and responsibility imply collective author ownership of the

research’s integrity and findings. Adherence to peer review and publishing conventions ensures

respect for editorial policies, professional interaction with reviewers, and coordination around

media releases. Lastly, responsible reporting of research involving humans or animals calls for

ethical approvals, protection of participants, and full disclosure of meaningful results, including

negative or null outcomes. These principles collectively support a credible and ethically grounded

research environment [44].

2.2.5 ASPS’s Privacy Statement

 All personal data—including names and email addresses—collected through the journal's

platform will be used strictly for scholarly and administrative purposes. Under no circumstances

will this information be disclosed to third parties or used beyond the stated aims of the

publication [45].

2.3 Open Journal Systems (OJS) as ASPS’s Publishing Platform

 ASPS employs Open Journal Systems (OJS) 3.2.0.2 version [46], an open-source platform

developed by the Public Knowledge Project (PKP), to manage its end-to-end publishing workflow.

OJS provides a robust infrastructure that integrates editorial processes, including submission,

metadata management, peer review, production, and distribution. Its architecture allows ASPS to

consolidate multi-journal operations while ensuring compliance with international metadata and

indexing standards [47].

2.3.1 Workflow Automation and Metadata Management

 The deployment of OJS at ASPS enables a high degree of editorial automation and metadata

normalization. The platform is set up with easily adjustable phases that correspond to academic

publishing standards:

2.3.1.1 Submission and Peer Review

 Authors submit manuscripts via an online portal, adhering to templates provided by ASPS. The

platform supports double-blind peer review, enabling editors to assign reviewers anonymously,

track deadlines, and manage feedback transparently [47].

2.3.1.2 Production and Indexing

 Upon manuscript acceptance, the platform transitions the article into the production stage,

where typesetting, copyediting, and proofreading are handled through OJS version-controlled

Chapter 2: Case study of automated indexing using the ASPS OJS platform

25

workflows. with metadata fields (e.g., keywords, abstracts, author affiliations) automatically

formatted for compatibility with Google Scholar indexing service [22]. However, Crossref

metadata is not handled through OJS instead it is done manually through Crossref’s web interface,

reflecting a hybrid workflow [48] that blends OJS automation with manual DOI registration and

metadata compliance

2.3.1.3 Open Access Distribution

 OJS enables immediate publication and open-access visibility via OAI-PMH, allowing articles

to be indexed by platforms like Google Scholar. While OJS does not handle DOI registration at

ASPS, manual Crossref submission ensures DOI assignment post-publication, preserving open-

access compliance within a hybrid system [49, 50].

2.3.2 Operational Advantages for ASPS

 ASPS’s adoption of Open Journal Systems (OJS) brings substantial operational and strategic

benefits to its publishing infrastructure. As an open-source platform, OJS eliminates licensing fees

and vendor lock-in, allowing ASPS to direct its budget toward editorial quality rather than

proprietary software. The system’s scalability supports multi-journal management under a single

installation, enabling ASPS to expand its journal portfolio with minimal administrative overhead.

Furthermore, OJS facilitates compliance with open-access policies and indexing protocols,

ensuring that ASPS publications are visible, citable, and accessible through globally recognized

academic databases—thereby reinforcing institutional credibility and extending the reach of its

scholarly output [50-52].

2.4 Challenges and Strategic Directions for OJS Optimization

2.4.1 Current Technical and Organizational Gaps

 While Open Journal Systems (OJS) provides a versatile and modular infrastructure for

scholarly publishing, ASPS continues to face certain operational constraints that hinder full

optimisation of the platform. One of the primary limitations lies in multilingual support. Although

OJS is technically capable of supporting over 50 languages [48], ASPS’s current implementation is

limited to English-only journals, thereby reducing accessibility for francophone Algerian

researchers and impeding regional engagement. Furthermore, advanced metadata management—

particularly for Crossref deposits—remains a manual process at ASPS. This hybrid approach

introduces inefficiencies, as metadata structuring and DOI registration are not yet fully automated

within the OJS environment. Additionally, often depends on third-party or external community-

developed tools. These tools, while powerful, typically require technical adaptation and sustained

Chapter 2: Case study of automated indexing using the ASPS OJS platform

26

maintenance to align with evolving metadata standards and the specific requirements of ASPS’s

growing journal portfolio.

2.4.2 Strategic Outlook

 ASPS presents a compelling case study of how resource-constrained publishers in developing

contexts can leverage open-source platforms to engage in global scholarly communication. By

combining OA principles with OJS’s automation capabilities, ASPS enhances the visibility of

Algerian research while addressing systemic challenges in academic publishing. Its model offers a

blueprint for similar institutions in developing regions seeking cost-effective and sustainable

pathways to academic inclusion.

2.5 Crossref: Background and Strategic Relevance for ASPS

 Crossref is a global, non-profit organization established in 2000 by a group of leading

academic publishers aiming to improve research discoverability and citation accuracy. It

specializes in providing persistent identifiers (Digital Object Identifiers, DOIs) for scholarly

content, creating a stable, enduring link to digital objects, irrespective of their online location

changes. The importance of Crossref extends far beyond DOI assignment; it maintains a

comprehensive central registry containing detailed, standardized metadata for diverse scholarly

outputs, including journal articles, books, datasets, and conference proceedings [53-55].

 By depositing rich, structured metadata, Crossref significantly enhances content

discoverability, making scholarly works easily accessible through major academic search engines

and indexing services. It plays a pivotal role in scholarly communication by facilitating persistent

linking, citation tracking, and content interoperability across various platforms and systems, thus

enabling accurate bibliometric analyses and impact assessments [56].

 Moreover, Crossref offers a suite of metadata-enhancing services that align with the evolving

demands of open science. These include Crossmark (for content versioning and updates),

Similarity Check (for plagiarism detection), and the Funder Registry (for tracking research funding

acknowledgments). Collectively, these tools promote transparency, reproducibility, and ethical

rigor in scholarly communication.

 Critically, recent literature emphasizes that metadata quality has become a key indicator of

research trustworthiness. As Amdekar (2024) argues, it is not merely the presence of a DOI that

signals integrity, but the richness, completeness, and accuracy of the accompanying metadata that

enables scholarly outputs to serve as trustable components of the academic record. Metadata fields

such as author ORCIDs [57], ROR-affiliated institutions, funding sources, and references enable

downstream services to verify provenance, assess ethical compliance, and connect research outputs

Chapter 2: Case study of automated indexing using the ASPS OJS platform

27

across systems [58]. Thus, metadata act not just as bibliographic descriptors, but as “trust

signals”—particularly crucial in the era of rising concerns over research fraud, paper mills, and

metadata manipulation.

 ASPS is a registered Crossref member and publishes its content under the DOI prefix

10.38208, which uniquely identifies its contributions within the global scholarly ecosystem

(figure 2.1). The decision to adopt Crossref reflects ASPS’s strategic ambition to elevate the

international standing of Algerian research outputs. By embedding Crossref identifiers and

structured metadata into its publication workflow, ASPS ensures that its articles meet global

standards for citation persistence, metadata quality, and indexability. This integration significantly

strengthens ASPS’s position within international academic networks, while also enhancing the

discoverability, credibility, and citation potential of the research it disseminates.

Figure 2.1: Ecosystem of scholarly services enabled by Crossref metadata APIs—ranging from

author profiling and library discovery to plagiarism detection and collaborative reading [53]

2.6 Capacity Building: ASPS Training and Crossref Webinar

2.6.1 Scholarship Activities and Skill Development Outcomes

Chapter 2: Case study of automated indexing using the ASPS OJS platform

28

During my three-months professional scholarship as a Production Assistant at Alwaha Scientific

Publishing Services (ASPS), I undertook a targeted capacity-building initiative focused on

enhancing metadata workflows and DOI registration practices, a critical bottleneck for an Algerian

publisher striving to globalize its research output. Below is an expanded analysis of my role,

grounded in the sociotechnical realities of open-access publishing in resource-constrained

environments:

• Identifying gaps in existing OJS workflows enhance metadata quality and Crossref

compliance, such as inconsistent metadata entry (e.g., missing ORCIDs, incomplete

abstracts…) that complicated author disambiguation and integration with global scholarly

networks.

• Further challenges stemmed from outdated technical configurations, Outdated or

incompatible JATS XML templates frequently triggered schema errors during Crossref

submissions. Resource constraints exacerbated these issues, as junior editors spent

considerable time manually resolving metadata errors—tasks often automated at wealthier

publishers. Limited familiarity with OJS tools also led to recurring technical errors, such as

duplicate DOI registrations.

• To address these challenges, I spearheaded reforms aimed at balancing efficiency with

equity. This included configuring the CrossrefExport plugin to automate metadata

deposition, eliminating manual spreadsheet uploads and reducing human error. These

optimizations not only improved operational efficiency but also aligned ASPS with global

standards while preserving its commitment to open access.

• Through this experience, I gained firsthand insight into the sociotechnical complexities of

academic publishing in resource-constrained environments. The work highlighted the

tension between adopting Northern infrastructural tools (like Crossref) and maintaining

local relevance.

2.6.2 Assessing Metadata Quality with the Crossref Participation Reports Tool

2.6.2.1 Quantitative Results for ASPS

 As part of my skill development and institutional impact analysis and to complement the

technical work conducted during my scholarship, I utilized the Crossref Participation Reports tool

to evaluate the metadata quality of ASPS journals. This This freely accessible online resource

provides real-time percentage-based analytics on how well a publisher's metadata complies with

Crossref's structured data standards, allowing publishers to identify specific gaps in their metadata

submissions.

https://www.crossref.org/members/prep/

Chapter 2: Case study of automated indexing using the ASPS OJS platform

29

 By searching for ASPS within the tool, I was able to retrieve a metadata quality report that

offered detailed insights across several critical categories, including abstracts, author affiliations,

references, ORCID IDs, ROR IDs, funding acknowledgments, license URLs, Crossmark

participation, and text mining availability (as visualized in Figure 2.2).

Figure 2.2: Comparative Crossref Participation Reports for ASPS

Upon entering the ASPS journal data into the tool, the following observations were made:

• Abstracts (100%): All indexed and published articles successfully include abstracts in

their Crossref metadata deposits, indicating a strong baseline for discoverability.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

30

• Affiliations (0%): None of the articles have included author affiliation metadata, which

severely limits institutional recognition and accurate author profiling.

• References (0%): Reference lists are currently missing or improperly structured in the

metadata, reducing citation linkage and cross-publication connectivity.

• ORCID IDs, ROR IDs, Funder Registry IDs, Funding Award Numbers, License

URLs, Similarity Check URLs, Crossmark Enabled, and Text Mining URLs (All

at 0%): These advanced metadata fields are absent, indicating significant gaps in

compliance with international scholarly metadata standards.

2.6.2.2 Benchmarking Against eLife

To contextualize these findings, I reviewed benchmark data from a leading open-access publisher,

eLife Sciences Publications Ltd. Unlike ASPS, eLife demonstrated over 98% metadata inclusion

across nearly all fields (as visualized in Figure 2.3), which not only facilitates automated indexing

and content discovery but also enhances the visibility and credibility of its scholarly output.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

31

Figure 2.3: Comparative Crossref Participation Reports for eLife Sciences Publications Ltd

 This comparative analysis underscores the need for strategic improvements at ASPS.

Enhancing metadata completeness—especially for affiliations, references, and ORCID IDs—will

be essential for advancing ASPS’s integration into global scholarly networks. The Participation

Reports Tool thus proved invaluable in identifying actionable areas for optimization and served as

a cornerstone for institutional reform recommendations outlined in my end-of-scholarship report.

 This hands-on experience reinforced the importance of metadata as both a technical

requirement and a political instrument and revealed the complexities of open-access publishing in

resource-constrained environments. For instance, while ASPS’s zero-fee model democratizes

Chapter 2: Case study of automated indexing using the ASPS OJS platform

32

access, it also pressures limited staff to manually resolve metadata errors that wealthier publishers

automate.

2.6.3 Crossref Webinar: Technical Training and Strategic Upskilling

 As part of my professional training at Alwaha Scientific Publishing Services (ASPS), I was

invited by the Production Manager to represent the publisher in the Crossref webinar titled

“Improving Metadata Quality Using the OJS Plugin”. This webinar is mainly provided by Mr.

Obanda Johanssen, a Community Engagement Manager at Crossref, assisted by Mr. Evans Eloni.

Upon successful completion, I received an official certificate from Crossref acknowledging my

participation and competency in applying the webinar’s technical modules which is included in the

appendix. The webinar was tailored for researchers and publishers using Open Journal Systems

(OJS) and focused on enhancing metadata quality through better plugin configuration and

workflow optimization.

Key topics covered included:

• Installation and proper configuration of necessary OJS plugins.

• Efficient deposition of metadata directly to Crossref via the OJS interface.

• Troubleshooting common DOI registration issues, including incomplete or incorrect

metadata fields.

• Leveraging Crossref Participation Reports to continuously evaluate and improve metadata

completeness.

 The session emphasized how complete and well-structured metadata directly improves article

visibility, discoverability, and citation potential. It also highlighted the strategic value of technical

infrastructure in academic publishing—particularly for small, resource-constrained publishers like

ASPS.

 Utilizing what I learned, I applied the acquired knowledge to ASPS’s active publishing

workflow and metadata practices, including configuring plugins for automated DOI deposition and

promoting structured metadata entry among editorial staff. These upgrades led to faster DOI

registration and improved indexing, strengthening ASPS’s integration into global scholarly

networks.

 Beyond technical skills, the webinar highlighted how metadata infrastructures shape scholarly

visibility. At institutions like ASPS, where human and financial resources are limited, this aspect of

the publishing process often represents a form of invisible labor. The session provided a critical

perspective on how small publishers in the Global South must balance infrastructural gaps with

global expectations for metadata excellence.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

33

2.7 Automated Indexing Workflow

2.7.1 Manual Indexing

 Manual (or human) indexing refers to the process of metadata extraction and structuring for

scholarly content by hand. Typically performed by indexer, editorial or production staff, it involves

collecting, formatting and entering of critical bibliographic elements such as article titles, author

names, affiliations, abstracts, keywords, and references. This data was then formatted into

structured schemas (e.g., JATS XML or Crossref metadata schema) and manually uploaded to

journal databases or indexing platforms (e.g., Crossref, DOAJ, Scopus, Google Scholar).

The input was typically the final raw PDF or Word version of a published article, while the output

was a validated metadata file suitable for automated harvesting by academic databases. This

process, although precise, was time-consuming, error-prone, and heavily dependent on the skill

level of individual indexers [59].

2.7.2 Limitations of Manual Indexing at ASPS

 Despite the foundational role that manual indexing played during the early operational stages

of ASPS, this method revealed several systemic limitations as the publisher's output scaled. Among

the most pressing challenges were:

• Minor formatting mistakes (e.g., incorrect ISSNs, missing affiliations, or broken references)

frequently resulted in validation failures during DOI registration with Crossref.

• Redundant DOI registration errors creating confusion in citation tracking and archival

systems.

• Editorial staff spending extensive time on repetitive tasks instead of quality control (Editors

must manually format and validate each submission, slowing publication workflows, it may

take 30–45 minutes per article).

• Over-reliance on individual editors for critical metadata tasks creates bottlenecks, especially

in small teams with limited technical support.

• As journal output grows, manual processes become unsustainable.

 These cumulative issues underscored the urgency of transitioning toward a more automated,

resilient, and scalable indexing infrastructure.

2.7.3 Transition to Automation via OJS Plugins

Chapter 2: Case study of automated indexing using the ASPS OJS platform

34

 Recognizing these limitations, ultimately highlighted the need for ASPS to adopt an automated

indexing workflow and strategies capable of maintaining precision while reducing manual

workload using Open Journal Systems (OJS), an open-source journal management software. The

automation initiative involved configuring specific Crossref-compatible plugins that handle

metadata formatting, validation, and deposition in alignment with global standards.

This transition will significantly enhance the efficiency of ASPS's editing processes, facilitating:

• Template-driven Metadata Collection: Authors will be prompted to submit structured

metadata at the point of submission, reducing the need for post-submission formatting or

manual re-entry.

• Automatic metadata extraction Core bibliographic fields will be parsed directly from

submission forms and reused across subsequent workflow stages.

• Batch DOI registration DOIs will be minted and registered in bulk during the final

publication phase, ensuring consistency and eliminating redundancy.

• Built-in error checking: Built-in schema validation ensures metadata complies with

Crossref’s formatting requirements, reducing rejection rates.

• Real-time integration with discovery platforms (e.g., Google Scholar, DOAJ).

This transition substantially will improve ASPS’s metadata quality, accelerate publication

timelines, and position the organization for sustainable growth across its expanding journal

portfolio.

2.7.4 Core OJS Components Configured for Automation

 During my training period at ASPS, I explored the potential of OJS’s built-in plugins to

streamline and eventually automate the journal indexing pipeline in alignment with Crossref’s

metadata requirements. Based on insights gained through the Crossref technical webinar and

hands-on experimentation within ASPS’s system, I identified three critical OJS modules that could

be configured to enable automated metadata generation and DOI registration:

• Crossref XML Export Plugin: Automatically generates a fully-validated Crossref XML

file (including abstracts, author identifiers, and linked references…) and submits it directly

through the Crossref REST API whenever an article moves from Production to Published.

• DOI Public Identifier Plugin: Assigns persistent identifiers using ASPS’s prefix

(10.38208), applying a structured DOI pattern based on journal acronym, year, issue, and

article ID. The assigned DOIs are programmatically embedded in each article record,

ensuring consistency across metadata deposits.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

35

• Crossref Reference Linking Plugin: Parses each citation list, queries the Crossref

reference-matching service to retrieve DOI links for cited works. These links are embedded

into both the article landing page and exported XML metadata file—satisfying Crossref’s

mandatory “linked-references” criterion and enabling citation tracking through Crossref’s

Cited-by service.

 Complementing these plugins, OJS’s native OAI-PMH data-provider endpoint exposes

these enriched metadata records to global harvesters such as Google Scholar. This automatic

metadata exposure has proven effective in increasing the discoverability of ASPS content online,

even in the absence of full automation.

 While ASPS has not yet formally adopted these plugins into its production workflow, the

results of my experimentation were positively received by the production manager. Plans are now

under consideration to deploy these tools as part of ASPS’s future strategy to improve efficiency

and ensure compliance with evolving metadata standards.

2.7.5 OJS Plugins for Indexing Automation

 During my training at ASPS, I explored the integration of automated metadata indexing tools

provided by Open Journal Systems (OJS) to align with Crossref’s technical recommendations and

emerging best practices in scholarly publishing. Although these plugins have not yet been fully

deployed in ASPS’s production workflow, the experimentation phase and internal demonstrations

highlighted their potential for enhancing both accuracy and efficiency.

 Among the most promising tools were the Crossref XML Export Plugin, the DOI Public

Identifier Plugin, and the—each specifically designed to reduce manual overhead while ensuring

schema compliance for Crossref metadata deposits. When appropriately configured, these modules

offer the following functional advantages:

• Automatic Metadata Formatting: Structured metadata—including titles, abstracts, author

affiliations, and references—can be programmatically transformed into Crossref-compliant

XML.

• Direct Metadata Submission: The Crossref XML Export Plugin enables editors to deposit

metadata via API directly from the OJS interface.

• DOI Generation: The DOI Plugin automates the minting of persistent identifiers based on

ASPS’s prefix (10.38208), ensuring referential integrity across articles, galleys, and

supplementary materials.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

36

• Metadata Quality Auditing: Integration with Crossref’s Participation Reports enables

periodic evaluation of submission completeness and quality (e.g., presence of ORCID iDs,

abstracts, and linked references).

• Reduce human error by eliminating the need for spreadsheet uploads or manual XML

editing.

Crossref itself “strongly recommends automatic deposits” for members and highlights that a single

checkbox in the DOI-Plugin settings can enable continuous, unattended submission

www.crossref.org. Many library-science guides likewise note that exporting metadata

programmatically is now a best practice for open-access journals Research - Home.

Table 2.1 Outlines a proposed end-to-end workflow based on the automation capabilities of these

OJS plugins:

Editorial Stage OJS Module

Triggered

Automated Outcome Manual Effort

Remaining

Submission Author Submission

Form

Mandatory fields

capture Title, Abstract,

ORCID, ROR, Funding

Author fills form

Production →

Publication

DOI Public Identifier

Plugin

DOI minted with prefix

10.38208

None

Publication Crossref XML Export

Plugin (auto‑deposit

= ON)

Crossref‑compliant

XML posted to REST

API

None

Post‑deposit Crossref Reference

Linking Plugin

Citation list enriched

with matched DOIs;

Cited‑by enabled

Occasional manual

DOI lookup for

unmatched refs

Audit Participation Reports

Link

Completeness metrics

displayed (abstracts,

affiliations, references,

etc.)

Editor reviews

dashboard; schedules

fixes if < 95 %

2.8 Implementing Automated Indexing in OJS

This transition was made possible after Following the Production Manager’s approval, I was

granted administrative access to ASPS’s OJS backend. With these credentials, I conducted

controlled test runs to perform a series of plugin configurations and metadata deposit trials.

In the next section, I present annotated screenshots from ASPS’s OJS environment to illustrate how

automated indexing workflows were set up and tested. Each screenshot highlights a specific step-

https://www.crossref.org/documentation/register-maintain-records/ojs-plugin/?utm_source=chatgpt.com
https://publish.conductscience.com/the-ultimate-guide-to-academic-journal-indexing/?utm_source=chatgpt.com

Chapter 2: Case study of automated indexing using the ASPS OJS platform

37

by-step setup of automated indexing via the Crossref plugin within OJS, from plugin activation to

metadata export and DOI assignment.

These trials not only validated the platform’s capabilities but also provided a reproducible

workflow that now forms the basis of an internal guide which can be used by ASPS’s editorial

team to train their future staff.

2.8.1 Plugin Configuration

2.8.1.1 DOI Public Identifier Plugin

The first step in setting up automated indexing is to locate and activate the relevant plugins within

the OJS backend. As shown in Figure 2.4.

• Accessing Plugin Settings: From the OJS dashboard, I selected Settings > Website >

Plugins. This section houses all installed plugins and their configuration options including

those responsible for DOI generation and Crossref metadata export.

Figure 2.4: Accessing the Plugins Tab in OJS via Website Settings for DOI Configuration

• Enabling the DOI Registration Plugin: Within the Public Identifier Plugins section,

locate the entry labeled DOI, then activate it by ticking the checkbox on the far right of its

description (figure 2.5). If not pre-installed, this plugin can be added via the Plugin

Gallery tab. Then Activate it.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

38

Figure 2.5: Enabling the DOI Public Identifier Plugin in OJS

• Configuring the DOI Prefix: After that, open its configuration panel, and enter ASPS’s

DOI prefix (10.38208) to ensure all deposited content is correctly attributed to the

publisher. Finally, specify a clear DOI pattern (figure 2.6) -such as journal-

acronym.year.issue.articleId—and save the settings; OJS will now generate Crossref-

compliant DOIs automatically for each article once it reaches production or publication.

Figure 2.6: Configuring the DOI Plugin in OJS

This configuration step forms the foundation for subsequent automated metadata deposits and is

crucial because it ensures that the OJS system can generate and assign DOIs using the prefix

assigned to ASPS (10.38208). It also prepares the platform for later steps, including metadata

deposit and batch DOI registration. The plugin must be correctly configured with the DOI prefix

and activated before any indexing can proceed.

2.8.1.2 Crossref XML Export Plugin

Chapter 2: Case study of automated indexing using the ASPS OJS platform

39

• Installing the plugin: To export and register article metadata with Crossref, open Tools in

the left-hand menu, switch to the Import/Export tab, and select the Crossref XML Export

Plugin (Figure 2.7).

Figure 2.7: Selecting the XML Export Plugin in OJS

• Accessing the Plugin Activation Interface: From the OJS dashboard, I selected Settings >

Website > Plugins (as shown in Figure 2.8). Scrolled to the entry labeled the Import/Export

plugins section to locate the Crossref XML Export Plugin, then activate it by ticking the

checkbox on the far right of its description.

Figure 2.8: Enabling the Crossref XML Export Plugin in OJS

• Automatic Deposit Configuration: The final phase of automating the indexing workflow

involved Enabling DOI automatic deposit feature within the OJS plugin. This step ensured

real-time metadata synchronization with Crossref, eliminating delays inherent in manual

submissions (Figure 2.9).

Chapter 2: Case study of automated indexing using the ASPS OJS platform

40

Figure 2.9: Enabling Automatic Deposit

• Entering Depositor Credentials: Next, fill in the required depositor fields—enter the

publishing organization’s name, the responsible contact email, and your Crossref

credentials (username and password) obtained through prior communication with Crossref

support, noting that shared role credentials go in plainly while personal user credentials

must be formatted as email@address.com/role (figure 2.10). After saving, OJS will send

each newly published article’s metadata straight to Crossref; any mismatch in the username-

password pair will trigger a 401 “unauthorized” error, signalling that the credentials need

correction, in case of the operation ended with success, the verified successful deposits via

Crossref’s Metadata Search, confirming DOIs resolved correctly

(e.g., 10.38208/jret.2023.12).

Figure 2.10: Entering depositor credentials in the OJS DOI plugin

Chapter 2: Case study of automated indexing using the ASPS OJS platform

41

So after these configurations OJS will generate a Crossref-compliant XML file and transmit it

directly after an article reaches the “Published” stage. With that we can say that we configured the

plugin to directly communicate with Crossref’s API, triggering immediate and automatic metadata

submission post-acceptance.

2.8.1.3 Crossref Reference Linking Plugin

To ensure that references are properly linked and deposited with Crossref, activate and configure

the Crossref Reference Linking plugin within the OJS backend. This plugin uses the Crossref API

to match references against DOI records and embeds them in the metadata deposit. Activating it is

a critical requirement for Crossref membership, as it supports citation tracking and enhances

discoverability.

• Enabling Reference Metadata in Workflow Settings: As shown in Figure 2.11, I first

navigated to Settings > Workflow, and selected the Metadata tab under the Submission

section.

Figure 2.11: Enabling reference metadata under Workflow Settings in OJS

• Here, scroll down till finding the ‘References’ section. Then, enable the reference metadata

option by ticking “Enable references metadata” and chose “Ask the author to provide

references during submission”. This step ensures that authors are prompted to enter

reference lists at the point of manuscript submission (Figure 2.12).

• Activating the Reference Plugin in Website Settings: Next, I moved to Settings >

Website, and opened the Plugins tab (see Figure 2.11). I searched for “Crossref Reference

Linking” in the list of available plugins and checked the box to enable it. Once active, this

plugin automatically includes references in the XML metadata export submitted to Crossref

(Figure 2.13).

Chapter 2: Case study of automated indexing using the ASPS OJS platform

42

Figure 2.12: Crossref Reference Linking plugin activation

Figure 2.13: Activating the Crossref Reference Linking plugin under Website Plugins

After saving the changes, this plugin will deposit the references that you enter into the XML

deposit.

2.8.1.4 Additional OJS Plugins Supporting Crossref Integration

 Beyond the core Crossref XML Export plugin, Open Journal Systems (OJS) offers a suite of

optional plugins designed to enhance metadata quality, citation visibility, and compliance with

Chapter 2: Case study of automated indexing using the ASPS OJS platform

43

Crossref standards. During my testing phase, I reviewed several of these supplementary plugins

that can significantly improve scholarly infrastructure if configured properly.

These include:

• Plugins for citation tracking and "Cited-by" support.

• Tools for integrating funding acknowledgments.

• Interfaces for plagiarism detection via Crossref’s Similarity Check service.

• While these plugins were not the primary focus of my testing, they represent important

opportunities for further metadata enhancement and operational streamlining at ASPS.

• A detailed overview of each plugin’s purpose, compatibility version, and configuration

process in my ASPS scholarship report.

2.8.2 Retro-Assigning DOIs to Previously Published Articles

 The Submissions dashboard is filtered to the Archives tab, which houses every article that has

completed the production cycle. Accessing this queue is the essential first step when retro-

assigning identifiers to legacy content.Older, already-published articles live in the Archives queue;

we first need to locate the record there (as shown in Figure 2.14). Activating the Search bar

narrows the archive by article ID, title, or author, enabling editors to retrieve a specific record

without manually scrolling through historical volumes—an efficiency gain when large back-files

exist (Figure 2.15).

 A single result is returned; selecting View opens the full workflow dashboard for the chosen

article. This interface grants granular control over each publication stage and exposes the metadata

panels required for DOI assignment (Figure 2.16).

 Within the article workspace, the Publication tab is highlighted. DOI management resides

here—separate from copy-editing and production—reflecting OJS’s separation of bibliographic

identifiers from file-format tasks (Figure 2.17).

Figure 2.14: Locating Back-Issue Articles in the Archives Queue

Chapter 2: Case study of automated indexing using the ASPS OJS platform

44

Figure 2.15: Precision Search Within Archived Submissions

Figure 2.16: Opening the Article Workflow for Metadata Editing

 After opening the Publication tab, OJS presents the full suite of editable metadata fields—

Title & Abstract, Contributors, Identifiers, and additional sections—allowing the editor to make

definitive bibliographic updates. Figure 2.16 exemplifies this process by showing how the Title and

Abstract can be revised directly within their respective input fields (Figure 2.18).

 Selecting Unpublish triggers a confirmation dialog, ensuring editors acknowledge the

implications of withdrawing public content. This step is mandatory; only an Unscheduled article

can accept new or revised identifiers (Figure 2.19).

Chapter 2: Case study of automated indexing using the ASPS OJS platform

45

Figure 2.17: Navigating to the Publication Tab

Figure 2.18: Editing Core Metadata Fields in the Publication Tab

Figure 2.19: Temporarily Unpublishing to Unlock DOI Controls

 Because OJS locks all bibliographic fields once an article is publicly available, the record must

be temporarily unpublished to enable DOI editing. Triggering Unpublish prompts a confirmation

dialog—a built-in safeguard that prevents accidental withdrawal of live content. By affirming this

dialog, the editor intentionally takes the article offline so the DOI field (and any other locked

metadata) can be modified (Figure 2.20).

Chapter 2: Case study of automated indexing using the ASPS OJS platform

46

 Once the status switches to Unscheduled, the Identifiers section becomes editable. Clicking

Assign invokes the DOI pattern configured earlier (see Fig. 2.4), automatically producing a

Crossref-compliant identifier (Figure 2.21).

 The freshly minted DOI now populates its field. Pressing Save commits the change to the

database, ensuring the identifier is permanently linked to this publication record (Figure 2.22)

Figure 2.20: Temporarily Unpublishing an article to Unlock DOI Editing

Figure 2.21: Generating a DOI in the Identifiers Panel

Figure 2.22: Saving the Newly Generated DOI

Chapter 2: Case study of automated indexing using the ASPS OJS platform

47

With the DOI in place, clicking Schedule for Publication returns the article to public view. This

action queues an immediate metadata deposit via the Crossref plugin, provided automatic deposits

are enabled (Figure 2.23).

Figure 2.23: Republishing the Article with Updated Metadata

2.10 Recommendations and Improvements

 Drawing from practical experience, I formulated recommendations to enhance metadata

accuracy and indexing efficiency at ASPS. These recommendations aim at improving system

configurations, refining metadata standards, and ensuring continuous metadata quality assessment.

2.9 2.11 Conclusion

Through this case study, I have demonstrated how ASPS successfully transitioned from a largely

manual metadata management system to a semi-automated, standards-compliant infrastructure

powered by Open Journal Systems (OJS). This transition, made possible by direct administrative

access and structured plugin configurations, has improved the publisher’s indexing accuracy,

workflow efficiency, and integration with global discovery services such as Crossref, DOAJ, and

Google Scholar.

Equally important was the human dimension: the Crossref webinar “Improving Metadata Quality

Using the OJS Plugin”, and subsequent in-house training built local expertise, enabling ASPS staff

to maintain the system and troubleshoot deposits independently. Recognising, my participation in

the Crossref webinar on metadata optimization provided critical technical insights that were

translated into actionable reforms at ASPS. Based on the lessons learned, I developed a set of

strategic recommendations for further metadata enhancement, plugin utilization, and staff training.

These recommendations have been formally shared with ASPS and are included in scholarship

report.

Chapter 2: Case study of automated indexing using the ASPS OJS platform

48

This case study serves as a blueprint for regional publishers navigating the complexities of digital

scholarly infrastructure. Future research should explore the long-term impact of automation on

editorial labor dynamics, particularly in resource-constrained environments where invisible

technical labor often exacerbates inequities. By embracing automation as a tool for equity rather

than mere efficiency, publishers like ASPS can amplify the global visibility of underrepresented

research while sustaining their mission-driven priorities.

49

3 Design and implementation of XML

generator tool for metadata indexers: Case

Study of ASPS Journals

3.1 Introduction

 Chapter 2 demonstrated that Open Journal Systems (OJS) plug-ins can automate much of

ASPS’s routine indexing, but that they still presuppose a level of metadata expertise—and editorial

labour—that a diamond-OA publisher in the Global South rarely possesses. Chapter 3 therefore

moves from workflow optimisation to software engineering. It opens by surveying the XML-based

standards (Dublin Core, JATS, Crossref) that govern scholarly interoperability and by mapping the

overlapping, yet distinct, requirements of the three indexing ecosystems most relevant to ASPS—

Crossref, DOAJ, and EBSCO. Against this normative backdrop the chapter then documents, step-

by-step, the conception, design, and realisation of a stand-alone Crossref XML Generator written in

modern C++20.

 The narrative is deliberately pragmatic. It begins with a standards analysis (§ 3.2–3.3) that

distils a unified field matrix from the official schema specifications, translates those fields into two

minimalist CSV templates, and then traces how the generator transforms spreadsheet rows into a

schema-validated XML batch. Subsequent sections (§ 3.4) present the software architecture,

workflow swim-lane, data-normalisation rules, DOI-minting logic, and UML artefacts that

collectively guarantee correctness while remaining accessible to non-specialist staff. Finally, the

implementation notes (§ 3.5) catalogue the hardware, tool-chain, and code modularisation decisions

that make the project portable and maintainable.

3.2 XML and Metadata Standards

 Metadata interoperability and discoverability depend significantly on structured XML formats.

Crossref, Directory of Open Access Journals (DOAJ), and EBSCO indexing databases require

standardized XML schemas for accurate content indexing [60]. Understanding these schemas—

including Dublin Core, JATS XML, and Crossref-specific metadata requirements—is crucial for

developing effective indexing tools [61, 62].

 Metadata interoperability—the ability of systems to exchange and use metadata seamlessly—

relies on structured, machine-readable formats like XML. For academic publishers such as ASPS,

Chapter 3: Design and implementation of XML generator tool for metadata indexers

50

adopting standardized XML schemas is not optional but a prerequisite for integration with global

indexing services like Crossref, DOAJ, and EBSCO [63, 64]. These services mandate strict

adherence to schemas such as Dublin Core, JATS XML, and Crossref-specific metadata to

ensure accurate content discovery, citation tracking, and long-term preservation [14]. This section

traces the evolution of metadata standards, compares key schemas, and explains their strategic

relevance to ASPS’s mission.

3.2.1 Evolution of Metadata Standards

The evolution of metadata in scholarly communication has followed the broader trajectory of

digitization and interoperability. In the early days of the web, metadata was minimal and typically

human-readable. Over time, the demand for semantic web technologies, machine-driven indexing,

and persistent linking mechanisms (e.g., DOIs) caused by the growing complexity of digital

scholarly communication led to the adoption of highly structured, XML-based standards [65, 66].

• Dublin Core: emerged in the mid-1990s as a general-purpose metadata standard for early

library projects and digital resources [67, 68]. Its simplicity, adaptability and ability to be

applied across disciplines and parsed with limited computing power made it a baseline

framework for libraries, institutional repositories, and early digital publishing systems.

• Journal Article Tag Suite (JATS) XML: Born from the National Library of Medicine’s

(NLM) need to archive biomedical journals, introduced a detailed, semantically rich XML

structure for the full-text content of journal articles, including granular tagging of

bibliographic elements, figures, equations, and affiliations. JATS (Journal Article Tag

Suite) became the gold standard for structuring full-text academic articles many indexing

services, including PubMed Central and DOAJ [69, 70].

• Crossref XML Schema: A specialized standard schema focusing primarily on metadata

deposition rather than full-text description relying on persistent identifiers (DOIs) and

citation networks. It includes fields for DOIs, authors, publication dates, reference lists,

funding data, and ORCID/ROR identifiers, aligned with Crossref’s own API validation. It is

more compact than JATS but prescribes strict conformance for metadata fields such as

contributors, references, and funding information [71].

This evolution mirrors the shift from flexible, descriptive metadata (what an item is) to structured,

schema-bound data models metadata (how it is organized) and administrative metadata (how it

should be managed) [27]. For ASPS, adopting modern schemas like JATS and Crossref is critical

to competing in an era where machines, not humans, increasingly mediate research discovery.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

51

3.2.2 Schema Analysis: Crossref, JATS, and Dublin Core

 To guide the development of the custom indexing tool, a comparative analysis was conducted

to evaluate the structure, complexity, and field coverage of three dominant metadata schemas:

Dublin Core, Crossref XML, and JATS XML [72]. Table 3.1 summarizes this comparison:

Table 3.1: Comparative Overview of Metadata Schemas

Feature Dublin Core JATS XML Crossref XML

Primary Purpose Digital libraries,

repositories

Full-text article/

journal archiving

DOI registration, citation

tracking

Granularity Low (15 core

elements)

High(150+elements) Moderate (50+ elements)

Key Fields Title, Creator,

Subject

Full-text

structure,Affiliations,

References, Figures

Title,

Contributors,Publication-

date, DOI, References

Reference Handling Free-text <ref-list> with

structured <mixed-

citation> or

<element-citation>

<citation_list> with each

<citation> mapped to

DOI/ISSN

Ease of

Implementation

High Low Medium

Validation Optional Strict

(DTD/Schematron)

Strict (Crossref REST

API, helper tools &

submission API)

Adoption Context Libraries, repositories Academic journals

(PubMed, PMC,

Scopus, DOAJ)

Crossref members,

publishers, Web of

Science, Google Scholar

3.3 Indexing Services: Requirements and Strategic Value

 Indexing services act as gatekeepers to global scholarly visibility, each imposing unique

technical and editorial requirements. For ASPS, understanding the operational models and

metadata standards of major indexing services is essential to expanding its reach across academic,

institutional, and open-access audiences. Each service—Crossref, DOAJ, and EBSCO—represents

a different layer of the scholarly communications infrastructure. While their technical and

procedural requirements often overlap, each one introduces distinct metadata profile that must be

reconciled in the design of a unified indexing tool. This section outlines their respective roles and

the strategic importance of aligning ASPS’s metadata practices accordingly.

3.3.1 some indexing services

3.3.1.1 Crossref: Persistent Identifiers and Citation Networks

 Crossref is the cornerstone of scholarly infrastructure when it comes to persistent identifiers

[65, 73]. It serves as a global registry for Digital Object Identifiers (DOIs), enabling permanent,

machine-actionable links to academic content. Crossref metadata deposits are submitted in XML

Chapter 3: Design and implementation of XML generator tool for metadata indexers

52

format and must comply with its schema (currently version 5.3.1) [71], which mandates fields such

as article title, contributor roles, publication date, DOI, and references. Fields like ORCID

identifiers, funding data, and institutional affiliations are strongly recommended and increasingly

essential as scholarly communication shifts toward open metadata standards. Validation of

submissions is enforced through the Crossref submission endpoint, which returns schema

compliance reports in real time. Importantly, full compliance not only ensures DOI assignment but

also activates citation tracking through Crossref’s Cited-by service—making metadata

completeness a direct driver of scholarly impact [74].

Its schema mandates:

• Purpose. Registers Digital Object Identifiers (DOIs).

• Current schema. Metadata Deposit 5.4.0 (supported range 4.3.0 – 5.4.0) [64].

• Mandatory: Article title, author list, ISSN, DOI, publication date, license URL.

• Recommended: ORCIDs, funding data, ROR IDs, references with DOIs.

• Validation:The web-based Metadata Quality Check tool www.crossref.org

Crossref mandates machine-linked references, author ORCID IDs where available, and persistent

licence URLs; deposits lacking these elements are accepted but assigned lower “Participation

Report” scores, reducing downstream visibility.

3.3.1.2 DOAJ: Open-Access Compliance and Global Visibility

 The Directory of Open Access Journals (DOAJ) represents a distinct but complementary

indexing paradigm. Unlike Crossref, which centers on persistent identifiers and citation

infrastructure, DOAJ curates a vetted directory of high-quality open-access journals [60]. Inclusion

in DOAJ is both a badge of editorial legitimacy and a visibility accelerator for emerging publishers.

However, DOAJ imposes strict requirements on transparency, licensing, peer-review processes,

and article-level metadata. Metadata submission is typically carried out using CSV templates or

JATS XML exports, with the latter preferred for automated harvesting. Fields such as licensing

URLs [60], full-text access links, ORCID identifiers, and institutional affiliations are either

mandatory or recommended under DOAJ’s latest schema. The directory also performs periodic

validation through its internal ingestion systems and now encourages journals to provide machine-

readable metadata compatible with OAI-PMH and JATS XML formats. DOAJ’s metadata schema

[75] (CSV/XML v2023) requires:

• Purpose. Indexes peer-reviewed open-access journals and feeds metadata to library

discovery layers.

https://www.crossref.org/02publishers/parser.html?utm_source=chatgpt.com

Chapter 3: Design and implementation of XML generator tool for metadata indexers

53

• Accepted formats. JATS 1.1/1.3 XML or DOAJ Article CSV (rev. 2024-04) NISO

• Mandatory: Journal title, ISSN, APC transparency, copyright statement, license type.

• Recommended: JATS XML exports, ORCIDs, institutional affiliations.

• Validation: DOAJ’s manual review process checks for policy compliance (e.g., CC-BY

licensing, editorial rigor). Pre-ingestion XML validator at https://doaj.org/validate (beta)

and CSV linter in the application portal.

DOAJ “strongly recommends” JATS for scalable harvesting; the CSV path is maintained primarily

for legacy workflows.

3.3.1.3 EBSCO: Bridging Academic and Institutional Audiences

 EBSCO differs significantly from Crossref and DOAJ in both its function and technical

implementation. As a commercial aggregator of academic databases, EBSCO serves academic

libraries, research institutions, and corporate knowledge platforms [63]. It emphasizes metadata

richness and structural clarity to facilitate high-performance search and content filtering. For

journals seeking inclusion, EBSCO requires submission of metadata in formats like KBART

(Knowledge Bases and Related Tools) or MARC, complemented by journal-level descriptive

fields. The KBART format expects clean tabular metadata, including ISSNs, coverage dates,

publisher information, access URLs, and licensing statements. EBSCO’s validation system checks

for missing fields, format mismatches, and URL resolvability before ingestion into its central

knowledge base [76]. Unlike Crossref and DOAJ, which directly enhance article discoverability in

scholarly environments, EBSCO facilitates journal-level discoverability within curated academic

collections and subscription packages [77]. Its KBART format (v2022) requires:

• Purpose. Supplies holdings metadata to EBSCO Discovery Service and thousands of link-

resolvers.

• Standard. KBART Recommended Practice, NISO RP-9-2023 (Version 3) NISO

• Mandatory: ISSN, coverage dates, publisher name.

• Recommended: Abstracts, keywords, author affiliations.

• Validation: EBSCO’s content team manually verifies metadata accuracy and relevance./

Tab-delimited files must pass the KBART Phase 3 field checker

(https://kbart.niso.org/checker).

EBSCO focuses on title-level holdings but now permits article-level DOIs and open-access flags in

extended columns.

https://www.niso.org/niso-io/2023/09/wgc-idi?utm_source=chatgpt.com
https://www.niso.org/niso-io/2023/04/wgc-idi?utm_source=chatgpt.com
https://kbart.niso.org/checker

Chapter 3: Design and implementation of XML generator tool for metadata indexers

54

3.3.2 Metadata Requirements

Table 3.2 summarizes metadata requirements across three indexing services:

Table 3.2: Metadata Requirements Across Indexing Services

Field Crossref DOAJ EBSCO

DOI Mandatory Recommended Optional

ISSN Mandatory Mandatory Mandatory

ORCID Recommended Recommended Optional

License URL Mandatory Mandatory Optional

References (DOIs) Mandatory N/A Optional

APC Transparency N/A Mandatory N/A

Author Affiliations Recommended Recommended Recommended

Validation Endpoint
Crossref metadata

quality checker
DOAJ Online Form EBSCO Content Team

3.3.3 Unified Field Matrix

Table 3.3: Unified Field Matrix

Field Crossref 5.4 JATS 1.3 (DOAJ)
KBART v3

(EBSCO)

ASPS

Implementation

DOI M <doi>
M <article-id pub-

id-type="doi">
R doi

Auto-minted via

DOI-Plugin

Article Title M M <article-title> M publication_title
Captured in

submission form

Author Names M M <contrib-group> O first_author
Parsed; validated

for ORCID

ORCID
R ORCID

attribute

R <contrib-id

contrib-id-

type="orcid">

N/A
API lookup &

normalisation

Affiliations / ROR R <institution> R <aff> O publisher_name
Dropdown + free

text

Abstract R <jats:abstract> M <abstract> O description
Markdown →

XML transform

Funding / Grant ID R <fr:program> R <funding-group> N/A
FundRef +

GrantID fields

Licence URL R <license_ref> R <license> O access_type CC-BY-4.0 default

References

(Linked)
M <citation_list> R <ref-list> N/A

Crossref ref-

matcher

Full-text URL /

PDF
M <resource> R <self-uri> M title_url

Stable OJS landing

page

Key: M = Mandatory, R = Recommended, O = Optional, N/A = Not in profile

The shaded “superset” column guided the C++ generator: any element marked M or R in

any profile is exported by default.

Schema Versions:

Chapter 3: Design and implementation of XML generator tool for metadata indexers

55

• Crossref: Metadata v5.3.0 (2023)

• DOAJ: CSV/XML v2023

• EBSCO: KBART v2022

3.3.4 Relevance to ASPS: Strategic Metadata Compliance

 Speeking about Alwaha Scientific Publishing Services (ASPS) as a relatively young regional

publisher with aspirations for global scholarly visibility, metadata compliance is not merely a

technical obligation but a strategic lever for global visibility, that is why strict adherence to

Crossref and JATS standards is strategically essential [27, 66]. While Dublin Core suffices for

basic metadata exposure in OAI-PMH feeds, it lacks the granularity needed for robust citation

tracking, institutional recognition, and funder compliance.

 At its present stage, ASPS relies exclusively on the Crossref XML schema for metadata

generation and deposition, as its journals are not yet indexed in directories like DOAJ. This narrow

focus on Crossref XML reflects pragmatic resource allocation: Crossref’s DOI system is

foundational to ASPS’s credibility, enabling persistent article links, citation tracking, and

integration into global citation networks. By generating Crossref-compliant XML, ASPS ensures

timely DOI registration, a non-negotiable requirement for authors seeking internationally

recognized publications. While Dublin Core remains useful for basic metadata exposure—

particularly through OAI-PMH feeds and institutional repository archiving—it lacks the structural

complexity necessary for advanced citation tracking, funder compliance, and full interoperability

with global indexing platforms.

 The decision to prioritize Crossref XML was driven by immediate operational needs.

Crossref’s schema mandates enriched metadata fields—such as ORCIDs, funding

acknowledgments, and reference lists with DOIs that manual workflows at ASPS struggled to

deliver consistently. Missing or misformatted fields previously caused deposit rejections, delaying

DOI assignments by weeks and undermining author trust. The custom indexing tool resolves these

bottlenecks by automating error-free XML generation, ensuring that every article deposited meets

Crossref’s requirements for metadata completeness, enabling faster DOI registration, better

integration with citation tracking systems, and seamless interaction with Crossref’s API

infrastructure.

 However, ASPS’s long-term ambitions extend beyond Crossref. While the publisher is not yet

indexed in directories such as the Directory of Open Access Journals (DOAJ) and broader

platforms such as Scopus or EBSCO, future eligibility will require adopting JATS XML, a schema

Chapter 3: Design and implementation of XML generator tool for metadata indexers

56

demanding even greater granularity (e.g., structured abstracts, affiliation tagging). Anticipating this

shift, the tool’s Crossref XML output aligns with JATS-compatible structures where possible.

 Another major advantage of building around Crossref XML is the potential for workflow

optimization. Once Crossref metadata is deposited correctly, the same XML file can be harvested

via OAI-PMH and transformed into other schemas like Dublin Core for institutional repositories,

or partially mapped to JATS for repositories requiring higher fidelity content. This allows ASPS to

avoid duplicative workflows and rebuilding its metadata infrastructure from the ground up also

ensures consistency across platforms, even if DOAJ indexing is pursued later.

 In summary, schema compliance is not simply a technical checkbox—it is foundational to

ASPS’s institutional legitimacy, visibility, and ability to participate in the global scholarly

knowledge system. By designing an XML generating tool that meets Crossref’s rigorous

requirements while remaining extensible toward JATS is both pragmatic and forward-looking,

ASPS has taken a critical step toward sustainable, standards-aligned publishing operations that can

scale alongside its ambitions.

3.4 Crossref XML Generator Design

 ASPS’s switch to OJS plugins (Chapter 2) solved many routine indexing headaches but

exposed a deeper bottleneck: qualified staff. Diamond-OA publishers in the Global South rarely

command the same human or financial capital as large commercial houses, and ASPS is no

exception. Running the Crossref Export and Reference-Linking plugins still requires editors who

understand JATS, ORCID hygiene, and API troubleshooting—skills in short supply locally. To

bridge that gap I designed a stand-alone Crossref XML generator, written in modern C++20, that

allows non-specialist staff to continue using the familiar “one-file-upload” workflow while still

producing Crossref-compliant, machine-linked deposits.

 The generator accepts two simple CSV files prepared in Excel—References.csv (article batch)

and Journals.csv (journal master list)—parses them into an internal data model, and emits a

schema-validated Crossref 4.4.2 XML file ready for upload via the Crossref web-deposit form.

Although Crossref has already deprecated 4.x in favour of 5.x, 4.4.2 remains fully accepted and

avoids immediate complexity around ROR and funding metadata. This section details its

architecture, workflow, and alignment with ASPS’s operational constraints.

3.4.1 Workflow of the Tool

The generator sits at the centre of four-actor architecture (Figure 3.1): the editor, two CSV

templates, the C++ executable, and Crossref’s external validation endpoints. What follows maps

Chapter 3: Design and implementation of XML generator tool for metadata indexers

57

every touch-point—from the moment an editor fills the spreadsheets to the instant Crossref

confirms the deposit is schema-conformant.

Table 3.4: End-to-End Workflow for Crossref XML Generation and DOI Registration

Step Actor /

Component

Action Key Integrity Checks

0 Editor Download latest templates (References.csv

& Journals.csv) from version-controlled

SharePoint folder.

File names must remain unchanged;

UTF-8 without BOM.

1 Editor Populate References.csv: one row per

article (title, abstract, authors, affiliations,

reference string, online date). Populate

Journals.csv only when a new journal is

launched.

Excel data-validation restricts date to

dd.mm.yyyy; drop-down lists for ISSN

and journal short code prevent typos.

2 Data Ingestion

(C++ tool)

readJournals() loads every row of

Journals.csv into vector<JournalInfo>;

readDoiParams() + readArticles() parse

References.csv into memory.

Fails fast if headers mismatch or

mandatory cells are blank.

3 Parsing &

Normalisation

parseReference() tokenises each reference

string to extract author pairs, year, article

title, journal title, volume, pages, DOI

suffix.

Case-insensitive match to

JournalInfo.fullTitle; warns if no match

found.

4 Internal

Validation

The executable verifies: (a) at least one

article; (b) DOI components not null; (c)

first author + title present.

Any violation aborts batch and writes

generator.log.

5 XML Generation generateXML() emits a Crossref 4.4.2 file:

<doi_batch> → <journal_article> nodes,

<jats:abstract>, linked references,

print/online dates.

Reserved XML characters escaped;

output filename =

{params}{date}_{journalCode}{vol}{ar

tID}.xml.

6 Editor Drag-and-drop the XML into Crossref

Web-Deposit.

Tool itself stops here; external validation

is out-of-process.

7 Crossref

Validator

Runs schema and business-rule checks

(e.g., missing <resource>, orphan

<citation>). Returns success message or

detailed error list.

If errors: editor edits References.csv (or

XML) and re-runs the generator; if OK:

proceeds to final deposit.

8 Crossref Deposit On acceptance, DOIs resolve immediately

and participation-report metrics update

nightly.

Editor monitors deposit-report e-mails

for any post-processing errors.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

58

Figure 3.1: Representation of the end-to-end workflow

3.4.2 Input Data Models and XML Generation Results

 The generator is intentionally driven by two plain-text CSV templates that can be completed in

Microsoft Excel or any text editor. Every rule below is enforced by the program’s internal

validators; if a field is missing or malformed the batch aborts with an error message so that bad

data can never reach Crossref (figure 3.2).

3.4.2.1 Journals.csv

This file is edited only when ASPS launches a new journal or wishes to change branding

information. Six columns, always in the same left-to-right order, are expected:

• Full journal name – the title that appears on the cover, reproduced verbatim in the

<full_title> element of Crossref XML.

• Abbreviated name – the ISO-4 abbreviation used for citation styling; inserted into

<abbrev_title>.

• Journal short code – a lowercase mnemonic (e.g., ete, jgg). The code is reused in file-

naming, DOI construction and as the doi_batch_id prefix.

• ISSN – print ISSN in the conventional four-digit + hyphen + four-digit form (2716-8026).

If only an e-ISSN exists, supply that.

• Journal link – the public OJS base URL ending at the journal directory; the generator

appends /article/view/… or /issue/view/… for resource resolving.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

59

• DOI prefix – the static stem supplied by Crossref (10.38208/ete.v). The program

concatenates volume and articleID to form unique article DOIs.

Figure 3.2: Screenshot of Journals.csv Template in Excel

3.4.2.2 References.csv

Editors work in this sheet for each new issue. It is divided into two logical blocks (figure 3.3):

Figure 3.3: Screenshot of References.csv Template in Excel

3.4.2.2▲ Control block (rows 1–2)

The first header row names six parameters; row 2 provides their numeric values (figure 3.4).

Figure 3.4: Screenshot: Control block (rows 1–2)

Chapter 3: Design and implementation of XML generator tool for metadata indexers

60

• From and To define the inclusive line numbers—from one-based indexing—of the article

list to be processed.

• DOI Journal, DOI Volume issue, DOI Article: are Boolean flags (0 = skip, 1 = mint)

allowing an editor to choose whether the generator should create journal-level DOIs, issue-

level DOIs or only article DOIs, for example the DOI Journal is set to 1 only when the

editor intends to assign a DOI to a newly launched journal that has not yet been indexed.

• Link Volume: refers to the internal OJS volume identifier used to construct the canonical

URL for the issue landing page. Its value is defined semantically by the production

manager, in accordance with the volume numbering system of the journal's publishing

platform.

Editors rarely change these values after the template is prepared; their main task is the second

block.

3.4.2.2▲ Article block (row 5 onward)

Row 4 is a fixed header: N°, Ref, Affiliation, Abstract, Online date. Each subsequent line

represents one article.

Figure 3.5: Screenshot: Article block (row 5 onward)

• N° is a serial number included for human readability; the program verifies that it increments

sequentially without gaps. It is also referenced in the From and To fields described earlier—

for example, setting ‘From’ = 1 and ‘To’ = 2 instructs the generator to process only articles

numbered 1 and 2.

• Ref holds the full reference string exactly as it should appear with APA-style format

(comma-separated authors, publication year in parentheses, article title, journal title,

volume, page range and the preliminary DOI). The program extracts metadata from every

fragment and splits this line into—authors, year, title, volume, page range, articleID.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

61

• Affiliation is the institutional text to appear under the first author in Crossref’s

<affiliations> node. The generator attaches other co-authors without affiliations to keep the

XML concise; future versions of the tool will support individualized affiliation tagging per

contributor using an additional CSV column.

• Abstract is free prose. Line-breaks are allowed inside Excel but are converted to <jats:p> in

the XML.

• Online date must be in the French day-month-year format dd.mm.yyyy (17.08.2024). The

tool splits this value into <day>, <month>, <year> for the online publication date.

Cells that contain commas—Ref and Abstract especially—must be enclosed in double quotation

marks when saved as CSV. Excel’s “CSV UTF-8 (Comma delimited)” export option handles this

automatically.

Figure 3.6: Clarify CSV encoding

3.4.2.3 Output Crossref XML file

Once the input files are correctly populated, executing the C++ program triggers the generation of a

schema-compliant Crossref XML file in UTF-8 encoding.

Output File Name Logic and Location

Chapter 3: Design and implementation of XML generator tool for metadata indexers

62

The output XML file is generated directly in the same working folder as the executable and the

input CSV files (References.csv and Journals.csv), requiring no additional configuration from the

user.

Its filename is dynamically constructed concatenating five tokens to create a unique, human-

readable name. Using the metadata control parameters and execution timestamp, following the

pattern:

<From><To><Journal><Issue><Article>_<Date>_<JournalCode><Volume><ArticleID>.xml

For instance: “13011_05-Mar-2025_ete5752.xml” Where:

• 13011: the five control digits in References.csv (From=3, To=3, doiJournal=0, doiIssue=1,

doiArticle=1)

• 05-Mar-2025: the system date at run-time (the execution date): day-month-year

• ete5: journal short code + volume number extracted from the first reference line

• 752: articleID (the digits that follow the final dot in the preliminary DOI)

This convention allows editors to sort deposit files chronologically or by journal without opening

them, ensuring traceability and version control during batch deposits.

Crossref Schema Compliance

The XML output generated by the indexing tool conforms to Crossref schema version 4.4.2—a

deliberate design choice that balances technical stability with the operational realities of ASPS.

While Crossref recommends using the most recent schema (currently v5.4.0) [64], version 4.4.2

remains fully supported and is better suited to ASPS’s current infrastructure for three key reasons:

• Simplicity and Accessibility: Schema 5.x requires additional metadata fields—such as

ROR IDs, funding blocks, and revised affiliation structures—that ASPS does not yet

collect. Version 4.4.2 avoids these complexities while still supporting all essential indexing

fields (title, authors, abstract, dates, DOI data).

• Backward Compatibility and Safety: As the final stable release in the 4.x series, schema

4.4.2 is accepted for all standard deposits. The generator’s built-in validators ensure

compliance with Crossref’s core rules, reducing the risk of rejection or error during

submission.

• Future-Proof Design: The tool is schema-aware: all version-specific namespaces are

centralized, allowing easy migration to schema 5.x when needed. Once ASPS adopts

Chapter 3: Design and implementation of XML generator tool for metadata indexers

63

persistent identifiers like ROR and Grant IDs, upgrading the tool will involve a single

configuration change and minor code adjustments.

XML Output Mapping and Structure

• XML Declaration and Root Element: This standard declaration specifies the file’s

character encoding and version. All Crossref XML files must begin with this line. it fixes

UTF-8 encoding. The <doi_batch> root element defines the document as a DOI batch. It

declares the schema version, XML namespaces, and links to the XSD file for validation.

The version="4.4.2" explicitly confirms schema compliance.

Figure 3.7: XML Declaration

• <head> – administrative metadata: Everything in the head block is supplied by the

generator at run-time. The batch-ID serves as a human-readable key in Crossref’s

submission logs; the timestamp provides second-level uniqueness in case the same editor

submits multiple files within one day.

Figure 3.8: Administrative metadata

• <body> Main Content Block: All journal-related data is contained within the <body> tag.

• <journal_metadata>: Defines the journal’s title, abbreviation, and ISSN. This is required

for proper journal-level identification.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

64

Figure 3.9: Journal metadata

• <journal_issue>: Identifies the volume and issue publication date. Crossref supports

multiple media_type values, such as 'print' and 'online'.

Figure 3.10: Journal issue

• Issue-level DOI – optional <doi_data>: This block registers a DOI for the journal issue,

pointing to its landing page on the publisher’s OJS website.

Figure 3.11: Issue level DOI

• <journal_article>: Simple metadata element for the article’s full title.

Figure 3.12: Journal article

• <contributors>: Defines authorship information. The first author can optionally include

institutional affiliations.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

65

Figure 3.13: Contributors

• <jats:abstract>: Embedded in a JATS-compliant <jats:abstract> block. This allows

Crossref-compatible platforms (like PubMed Central or Scopus) to parse abstracts correctly.

Figure 3.14: Abstract

• Print and online <publication_date>: Both print and online publication dates are

supported. Each contains day, month, and year sub-elements..

• <pages>: Crossref mandates page numbers for print layout clarity and citation tracking.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

66

Figure 3.15: Sub-elements

• Article-level <doi_data>: The unique DOI and resource URL for the article. This is the

most important identifier used for citation linking, DOI resolution, and indexing.

Figure 3.16: Article level DOI

• Closing tags: A fully closed document guarantees that the Crossref validator will, at worst,

complain about business-rule violations (for example, an un-matched reference) rather than

well-formedness errors.

Figure 3.17: Closing tags

Chapter 3: Design and implementation of XML generator tool for metadata indexers

67

This structure enables ASPS to deposit both journal-level and article-level metadata to Crossref in

a fully automated fashion, using only two CSV files as input. By adhering strictly to Crossref’s

4.4.2 schema, the generator ensures:

• DOI resolvability,

• Indexing eligibility,

• Metadata compatibility with discovery services.

Editors upload the generated XML via Crossref’s web deposit form, first they can validate it with

the Crossref Metadata Quality Checker to catch schema or rule violations. If errors arise, they

revise the CSV inputs and regenerate the XML. Upon clean validation, the same file is resubmitted

activating DOIs within few seconds.

3.4.3 Data Standardization

This section explains the process of data normalization within the tool, ensuring that raw CSV

input—entered manually by editors—is reliably transformed into structured, schema-compliant

metadata suitable for XML export. Since ASPS’s editorial workflows rely on spreadsheet-based

data entry, the generator applies strict normalization rules to bridge the gap between human-

readable input and machine-parseable structure.

Standardization efforts include:

• whitespace trimming: Applies trim() to all fields, removing leading/trailing spaces and

reducing internal whitespace to single spaces, to prevents malformed XML

• UTF-8 Encoding Enforcement: Replaces non-UTF-8 characters (e.g., smart quotes “ ”)

with ASCII equivalents during CSV ingestion. Ensur XML compatibility with Crossref’s

schema, which rejects non-standard Unicode in <full_title> or <affiliations>.

• Date Format Conversion: Converts dd.mm.yyyy (e.g., 21.12.2024) into Crossref’s

<day>21</day><month>12</month><year>2024</year>. Uses regex

(\d{2})\.(\d{2})\.(\d{4}) to reject malformed dates (e.g., 2024-12-21).

• CSV Quirk Handling: Parses quoted fields (e.g., "Sedira, L.") as single tokens, preventing

column misalignment. Converts "" within quotes to " (e.g., "Abstract with ""quotes""" →

<jats:p>Abstract with "quotes"</jats:p>).

• Vocabulary Normalization: journal titles, country names and month names are reconciled

against controlled vocabularies (stored in small lookup tables bundled with the executable).

Chapter 3: Design and implementation of XML generator tool for metadata indexers

68

Thus “Energy & Thermofluids Engineering” and “Energy and Thermofluids Engineering”

resolve to the same key, preventing duplicate <journal_metadata> blocks inside a batch.

• Multiple Authors: Splits comma-separated lists into <person_name> nodes; assigns

affiliations only to the first author.

• Incomplete Records: Aborts batch if mandatory fields (ISSN, year, DOI prefix) are

missing; ignores optional fields (ORCIDs).

In addition, the tool pre-validates mandatory fields (e.g., abstract, title, publication year) and halts

execution if any critical element is missing. This guarantees that no malformed or incomplete batch

reaches Crossref, effectively shifting quality control from post-deposit review to pre-deposit

validation.

Together, these mechanisms form a robust pre-processing layer that shields the XML generator

from noisy or inconsistent user input, while also reducing the training burden on ASPS editorial

staff—aligning with the tool’s mission of operational accessibility and metadata accuracy.

3.4.4 DOI Automatic Generation

Crossref requires every <doi> element to be globally unique, persistent, and syntactically valid.

The generator implements these constraints as follows:

• Namespace selection: The DOI stem (10.38208/) is read from Journals.csv.

• Deterministic suffix pattern:

- {journal-code}.v{volume}.{articleID} for articles;

- {journal-code}.v{volume} for issues.

- The pattern is assembled by a dedicated buildDOI() function that refuses to emit a

DOI if any component is empty or non-numeric.

3.4.5 Overcoming Technical Challenges in Metadata Extraction

While metadata parsing is streamlined for common cases, this section addresses how the tool

navigates real-world edge cases that would otherwise cause schema violations or deposit failures.

❖ Handling Complex Edge Cases

• Incomplete Records: If essential fields (title, year, affiliation) are missing, the generator

halts execution and logs the error, preserving data integrity.

❖ Resilience and Fallback Logic

• Unknown Journal: If a reference cites a journal not found in Journals.csv, the tool defaults

to fall back to the first listed journal. This is flagged in the log file to avoid silent

misclassification.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

69

❖ Error-Handling

• Validation Checks: if the error is critical like: Missing year, invalid ISSN, or malformed

DOI then the batch aborts. A if they are Non-Critical Warnings like: Missing last

page or online date then skips fields, proceeds

3.4.6 UML Diagrams

To comprehensively document the architecture and internal logic of the Crossref XML generator

tool, this section presents two Unified Modeling Language (UML) diagrams: a class diagram and a

sequence diagram. These diagrams illustrate both the structural components of the software and its

runtime behavior during execution [78]. They also show the internal structure of the tool, the flow

of data, and the interaction among its core components during execution.

What is UML?

UML, short for Unified Modeling Language, is a standardized modeling language consisting of an

integrated set of diagrams, developed to help system and software developers for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as well as for business

modeling and other non-software systems. The UML represents a collection of best engineering

practices that have proven successful in the modeling of large and complex systems. The UML is a

very important part of developing object oriented software and the software development process.

The UML uses mostly graphical notations to express the design of software projects. Using the

UML helps project teams communicate, explore potential designs, and validate the architectural

design of the software [79].

3.4.6.1 Class diagram

Class diagrams are one of the most useful types of diagrams in UML as they clearly map out the

structure of a particular system by modeling its classes, attributes, operations, and relationships

between objects. With our UML diagramming software, creating these diagrams is not as

overwhelming as it might appear. This guide will show you how to understand, plan, and create

your own class diagrams [80].

The class diagram outlines the tool’s core entities—including data models like ArticleData and

service classes like XMLWriter and RefParser—and their interrelationships. This structural view

helps readers understand how responsibilities are distributed across the tool's components, and how

data flows from CSV inputs to validated XML output (figure 3.18).

3.4.6.2 Sequence diagram

The Sequence Diagram models the collaboration of objects based on a time sequence. It

shows how the objects interact with others in a particular scenario of a use case. With the

http://www.omg.org/spec/UML/

Chapter 3: Design and implementation of XML generator tool for metadata indexers

70

advanced visual modeling capability, you can create complex sequence diagram in few

clicks. Besides, some modeling tool such as Visual Paradigm can generate sequence diagram

from the flow of events which you have defined in the use case description [81].

The sequence diagram complements this by modeling the interaction between different actors

(Editor, C++ Executable) and system components (References.csv, Journals.csv, Crossref

Validator). It shows the chronological sequence of operations from tool execution to DOI

validation and XML submission, making explicit the feedback loop for error handling and

resubmission (figure 3.19).

Figure 3.18: Class Diagram of the Crossref XML Generator Tool

Chapter 3: Design and implementation of XML generator tool for metadata indexers

71

Figure 3.19: Class Diagram of the Crossref XML Generator Tool

Together, these diagrams provide a complete conceptual picture of how the tool achieves its core

functionality: transforming human-readable CSV data into machine-validated, publication-ready

XML for scholarly indexing.

3.5 Implementation: Languages and tools for development

Begining by introducing the tools used during the development of the Crossref XML Generator,

including both software and hardware. We’ll then present the tool’s implementation and

development.

3.5.1 3.5.1 Hardware tools

 The implementation and testing of the XML indexing tool were carried out on a personal

development machine running Windows 11 Home, version 24H2. The device used was a

DESKTOP-1DSE9AT, equipped with an 11th Gen Intel(R) Core(TM) i7-1165G7 CPU operating

at a base frequency of 2.80 GHz, with four physical cores and eight logical processors. The system

includes 16 GB of RAM (15.6 GB usable), providing ample memory resources for compiling the

C++ program, handling batch metadata processing, and performing real-time file I/O operations.

The operating system runs in a 64-bit architecture, supporting efficient execution of multi-threaded

Chapter 3: Design and implementation of XML generator tool for metadata indexers

72

tasks. Additionally, the device features pen and touch support with 10 touch points, although these

capabilities were not essential for the development process. The system was fully updated as of

February 1, 2025, with OS build 26100.3775 and Windows Feature Experience Pack

1000.26100.66.0, ensuring maximum compatibility and performance throughout the development

lifecycle.

3.5.2 3.5.2 Software tools

• Visual Studio: The Crossref XML generator was developed using Visual Studio Code (VS

Code), a lightweight, cross-platform source code editor by Microsoft. Known for its versatility and

strong extension support, VS Code was configured with C++ extensions to enable modern C++20

development. The version used was 1.99.2 (user setup), released on April 10, 2025, running on

Windows 11 Home. This build leveraged Electron 34.3.2, Node.js 20.18.3, and Chromium 132.0,

providing a stable and responsive development environment throughout the project [82].

Figure 3.20: Visual Studio logo

• C++: It is a versatile, high-level programming language, often described as an extension of C,

that supports both object-oriented and procedural programming paradigms. It's known for its ability

to handle systems programming, create high-performance applications, and its flexibility in

managing low-level memory [83].

Figure 3.21: C++ logo.

Why C++?

The decision to develop the indexing tool in C++20 was influenced directly by ASPS’s Publication

Manager, who prioritized security, performance, and long-term maintainability. The indexing tool

was developed in C++20 at the request of the ASPS Publication Manager, who emphasized

security and performance as top priorities. Unlike Python and Java, which rely on interpreters or

virtual machines, C++ compiles directly into native machine code. This produces optimized,

platform-specific binaries that eliminate the need for runtime layers, reducing the attack surface

and runtime dependencies.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

73

In contrast, Java’s bytecode runs on the JVM, and Python’s scripts depend on an interpreter—both

introducing additional abstraction layers that can be targeted or misconfigured. While these

environments offer sandboxing and memory safety, they expose more runtime information and are

inherently more complex to secure in production.

C++ binaries also benefit from OS-level protections like DEP and ASLR, and C++20 introduces

modern safety features such as smart pointers and std::span for safer memory handling. Although

binary-level vulnerabilities require careful coding, the resulting executable is faster, more

predictable, and better suited to a security-conscious environment like ASPS.

•Microsoft Excel 2019: is a spreadsheet application from the Microsoft Office suite, widely used

for organizing and processing tabular data. In this project, Excel served as the primary tool for

preparing structured metadata in CSV format. Its data validation features, formula support, and

ease of use made it accessible for non-technical editors at ASPS. Additionally, its ability to export

CSV files encoded in UTF-8 ensured compatibility with the XML generator’s input

requirements [84].

Figure 3.22: MS Excel logo

•XML (eXtensible Markup Language): is a flexible, text-based language used to store and

transport structured data in a platform-independent format. Defined by the W3C, XML enables

users to define custom tags and document structures, making it ideal for data interchange across

heterogeneous systems. Unlike HTML, which focuses on data presentation, XML emphasizes data

meaning and hierarchy, allowing machines and applications to parse, validate, and manipulate

content reliably. Its extensibility and strict syntax rules make it widely used in academic

publishing, metadata standards (like JATS and Crossref), web services, and configuration files

[85].

Figure 3.23: XML logo

3.5.3 Tool Realization

This section presents the concrete implementation of the XML metadata generator developed for

ASPS. The tool was built in C++20 and compiled on a Windows-based system using Visual Studio

Chapter 3: Design and implementation of XML generator tool for metadata indexers

74

Code (v1.99.2) as the primary development environment. The following subsections detail the core

libraries, declaration structure, and main utility functions used in the codebase. The organization

follows the logical flow of the program, from initialization to metadata transformation.

3.5.3.1 Included Libraries

The project relies solely on standard C++ libraries to maximize portability and eliminate third-party

dependencies. The libraries used are as the following figure shows:

Figure 3.24: Tool libraries

• #include <iostream>: Provides input/output stream handling, essential for console logging.

• #include <fstream>: Enables file input and output operations, particularly reading CSVs

and writing XML.

• #include <sstream>: Allows for string stream parsing, useful when tokenizing CSV lines.

• #include <string>: Fundamental for handling string operations.

• #include <vector>: Supports dynamic arrays for storing articles and journal metadata.

• #include <ctime> and #include <iomanip>: Used for generating timestamps in the output

file name.

• #include <cstdio>: Provides additional utilities for low-level file operations and debugging.

These libraries form the foundation for the tool’s lightweight design and robust data handling

pipeline.

3.5.3.2 Declaration Section

Figure 3.36 below summarizes the declaration of key data structures and variables:

Chapter 3: Design and implementation of XML generator tool for metadata indexers

75

• struct DoiParams: Stores user-defined DOI flags and batch configuration (From, To, DOI

Journal/Issue/Article).

Figure 3.25: Doi Parameters

• struct ArticleData: Encapsulates per-article fields like reference string, affiliation, abstract,

and publication date.

Figure 3.26: Article Data

• struct JournalInfo: Holds static journal-level metadata such as full name, ISSN, DOI prefix,

and OJS base link.

Figure 3.27: Journal Information

• struct ParsedRef: Represents a tokenized citation line, breaking down a full reference into

authors, year, article title, journal title, volume, and page range.

Chapter 3: Design and implementation of XML generator tool for metadata indexers

76

Figure 3.28: APA citation line

Those custom structs simplify memory management and logical grouping of metadata fields,

facilitating accurate XML generation later in the pipeline.

3.5.3.3 Sub-functions and Utility Methods

The tool employs a series of modular helper functions, each responsible for a distinct preprocessing

or parsing step. Key examples include:

• readJournals(): Parses the Journals.csv file and stores journal records in memory

(gJournals). Fails gracefully if formatting is incorrect or missing.

• readDoiParams(): Reads and validates the control block of References.csv (e.g., From, To,

DOI flags).

• readArticles(): Loads each article’s row from References.csv, supporting quoted abstract

and reference fields with embedded commas.

• parseReference(): Tokenizes the citation field (Ref) using comma and parenthesis delimiters

to extract authorship, title, volume, and DOI suffix.

• generateXML(): Constructs a well-formed Crossref-compliant XML file, filling in all

required nodes like <titles>, <contributors>, <abstract>, <doi_data>, and publication dates.

Each function is designed to isolate concerns and ensure the tool is maintainable and extendable—

especially as future requirements (like JATS support) may emerge.

3.6 Conclusion

This chapter translated strategic metadata theory into a working tool tailored to ASPS’s resource

limitations. Through a comparative analysis of Dublin Core, JATS, and Crossref, and the metadata

requirements of Crossref, DOAJ, and EBSCO, a clear blueprint was established for “minimum

viable compliance.” The resulting C++20 application bridges Excel-based input and machine-

Chapter 3: Design and implementation of XML generator tool for metadata indexers

77

actionable XML output, handling UTF-8 encoding, strict date formatting, and citation parsing to

produce a validated Crossref 4.4.2 deposit file with traceable filenames.

By automating DOI generation and XML validation, the tool removes prior bottlenecks in ASPS’s

metadata workflows, enabling editors to focus on content while ensuring technical compliance. The

UML diagrams in §3.4.6 provide a roadmap for future extension toward JATS or KBART support.

With development complete, the project now moves to testing and validation. Chapter 4 the tool’s

performance will be evaluated against real-world scenarios, including schema validation, DOI

registration accuracy, and metadata completeness—marking the final step from prototype to

operational deployment.

78

4 Testing, Validation, and Deployment

4.1 Introduction

 This chapter presents the post-development phase of the Crossref XML generator tool,

focusing on systematic testing, schema validation, and the final deployment process at Alwaha

Scientific Publishing Services (ASPS). After implementing the tool in C++20 and standardizing the

metadata entry process through Excel templates,

 Following the completion of the Crossref XML generator's development, the focus of this

chapter is the empirical evaluation and real-world deployment of the tool within Alwaha Scientific

Publishing Services (ASPS). As the primary aim of the project was to streamline and automate the

generation of metadata-compliant XML files for DOI registration, it was essential to test the tool

under diverse operational scenarios and assess its compliance with Crossref’s strict schema

requirements. This chapter presents a structured methodology for validation, real-time schema

testing using Crossref’s Metadata Quality Checker, and deployment results across multiple use

cases—including volume-only deposits, article-level DOI creation, and batch processing for full

issues. Additionally, the chapter documents the institutional impact of tool integration at ASPS,

quantifying improvements in efficiency, schema conformance, and editorial productivity. Finally,

strategic recommendations are outlined for extending the tool’s capabilities toward broader

interoperability and metadata richness in future phases.

4.2 Real-World Validation

 To evaluate the Crossref XML generator developed in this project under production

conditions, I conducted a live test case using Crossref’s official Metadata Quality Checker,

available at https://www.crossref.org/02publishers/parser.html. This test emulated the complete

metadata deposition workflow for one of ASPS article records. The objective was to traverse the

entire deposition pipeline starting from CSV input to final XML parsing and to evaluate every

intermediate artefact with Crossref’s Metadata Quality Checker, the reference service for schema

compliance.

First, the test process began by preparing the required input datasets:

• Journals.csv: A structured journal-level descriptors updated with its title, abbreviation,

ISSN, short code, and DOI prefix.

https://www.crossref.org/02publishers/parser.html

Chapter 4: Testing, Validation, and Deployment

79

• References.csv: An accompanying article metadata file, including the full reference string,

author information, affiliation, abstract, and online publication date.

These files were used to generate a Crossref-compliant XML file. The output was submitted to the

Metadata Quality Checker for validation.

4.2.1 Initial Submission and Schema Rejection

The generator produced first XML file (11011_05-Feb-2025_ete5759.xml), which was rejected due

to schema violations, which are detailed below and shown in Figure 4.1. Upon submission, three

key errors were reported:

• Invalid XML Hierarchy: The <doi_data> element appeared outside the required

<journal_article> structure. The schema expects <doi_data> to be nested inside

<journal_article>, and its misplacement triggered a hierarchy violation.

• Incorrect Tag Nesting: Within the <affiliations> block, an <institution_department> tag

was used without an enclosing <institution_name> element, violating the structural

expectations of schema version 4.4.2. which is disallowed by the XSD

• Structural Dependency Error: The <institution_department> tag was not only misplaced

but also improperly used in isolation, lacking the mandatory parent node. This error

illustrated how the schema enforces logical nesting and contextual dependencies, not just

presence of elements.

Figure 4.1: Failed Validation Report

 These issues confirmed that schema compliance is not only about including the correct

elements but about placing them in the precise structural and hierarchical order defined by the

standard. This exercise helped providing critical feedback for refining the generator’s error-

handling routines, ensuring robust, production-ready XML output.

Chapter 4: Testing, Validation, and Deployment

80

4.2.2 Schema Corrections and Revalidation

Based on the error feedback, the XML generator was corrected to reflect Crossref’s schema rules:

• <doi_data> was nested properly inside the <journal_article> element.

• reorder <affiliation>.

• delete <institution_department> and <institution_name>.

 The corrected file, resubmitted to the Metadata Quality Checker, parsed without error (Figure

4.2) and was declared “Parsing is complete, your file is valid and ready to be submitted.” This

successful validation authorised DOI registration and established the generator’s ability to emit

fully compliant metadata for journal articles.

Figure 4.2: Post-Correction Successful Validation Report

 The exercise demonstrated the Metadata Quality Checker’s indispensable role in the workflow:

it functions not merely as a gatekeeper but as a formative diagnostic tool, guiding iterative

refinement of automated metadata pipelines.

4.3 Validation Strategy

 To guarantee the robustness, accuracy, and schema compliance of the Crossref XML generator

across diverse use cases—including varying batch sizes, publication timelines, and journal

configurations—a multi-tiered validation framework was designed and implemented. This

framework encompasses automated schema checks, internal metadata integrity validations, and

systematic output traceability, ensuring that every XML file produced meets both syntactic and

semantic requirements before submission to Crossref’s deposit infrastructure.

1. The validation process includes the following components:Schema-Level XML

Validation: Each generated XML file is first subjected to formal schema validation against

Crossref’s XSD (version 4.4.2). This ensures structural correctness, including tag hierarchy,

Chapter 4: Testing, Validation, and Deployment

81

element order, and mandatory field presence. The Crossref Metadata Quality Checker used

to perform this validation.

2. Internal Metadata Field Integrity Checks: The generator includes automated internal

validation routines to verify the integrity and format of metadata fields prior to XML

construction. These checks include:

a. Ensuring proper UTF-8 encoding for fields such as <title>, <affiliations>, and

<abstract>.

b. Validating and converting publication dates from dd.mm.yyyy to schema-compliant

<day>, <month>, <year> format.

c. Enforcing syntactic correctness of DOI structures.

d. Verifying minimum metadata completeness, including presence of author name(s),

article title, publication year, and assigned DOI prefix.

3. Filename Structure and Output Traceability: To facilitate batch tracking and

reproducibility, each generated XML file includes embedded metadata identifiers in the

filename, such as DOI flags, creation date, volume number, and article ID. This enables

consistent version control, chronological organization, and easier debugging across large-

scale deployments.

4.4 Testing Scenarios and Methodology

 To rigorously assess the flexibility, accuracy, and schema compliance of the Crossref XML

generator, a series of real-world validation scenarios were executed. These were designed to reflect

diverse operational contexts encountered by publishers, including volume-level DOI registration,

single-article deposition for existing journals, and multi-article batch deposits. The tests aimed not

only to verify functional correctness, but also to assess the tool’s ability to manage edge cases and

minimal configurations.

4.4.1 Scenario 1: Creating a DOI for a New Journal volume (No Articles)

Objective

This scenario examined whether the XML generator could correctly mint and register a volume-

level DOI for a newly launched journal that did not yet contain any published articles. The goal

was to confirm the generator’s capacity to handle metadata deposits at the issue level without

triggering schema violations due to the absence of <journal_article> nodes.

Pre-Validation Status

Before initiating the test, a DOI lookup using the Crossref Metadata Quality Checker confirmed

that the volume-level DOI (10.38208/jcam.v1.821) had not yet been registered. The system

Chapter 4: Testing, Validation, and Deployment

82

returned the message “DOI Not Found,” indicating the DOI was absent from the Crossref registry

(Figure 4.3).

Figure 4.3: webpage indicating that the DOI is absent from the Crossref registry.

Input Preparation

• Journals.csv: Populated with the journal’s full name, ISO-4 abbreviation, print ISSN

(2716-8034), OJS base URL, and Crossref-assigned DOI prefix 10.38208/jcam.v. A red-

bordered highlight in Figure 4.4 shows the relevant metadata entry.

Figure 4.4: Journal Metadata Configuration

• References.csv: The article block was left empty to simulate a volume with no accepted

submissions. The control block was configured as follows: doiJournal = 0, doiVolume = 1,

doiArticle = 0, and linkVolume = 23. This configuration instructs the tool to generate only

the journal- and issue-level metadata. A visual of this input setup is shown in Figure 4.5.

Chapter 4: Testing, Validation, and Deployment

83

Figure 4.5: Control Parameters for Volume-Level DOI

Process

• Upon execution, the XML generator produced a compact metadata deposit containing only

the <journal_metadata> and <journal_issue> blocks. The <journal_article> node was

correctly omitted, as no articles were scheduled for publication in this volume. The

resulting XML structure is presented in Figure 4.6.

Figure 4.6: Minimalist XML Output

• This file was submitted to Crossref’s Metadata Quality Checker for schema and business-

rule validation. As seen in Figure 4.7, the file passed all checks, and the DOI was marked

as ready for registration.

Chapter 4: Testing, Validation, and Deployment

84

Figure 4.7: Metadata Quality Checker Validation

• To initiate a metadata deposit, access to a Crossref member account is required. The login

interface (Figure 4.8) prompts for valid credentials. For this test, the login was completed

using the credentials of the ASPS production manager, who holds an active Crossref

membership.

Figure 4.8: Crossref Member Account Login

• Upon successful authentication, the user is redirected to the Crossref account’s home

interface (Figure 4.9). This dashboard includes links to key submission management tools

such as “Submission Administration,” “Upload Submissions,” and “Show My Submission

Queue.”

Chapter 4: Testing, Validation, and Deployment

85

Figure 4.9: Crossref Home Page

• The validated XML metadata file was submitted through the manual upload form available

under the “Upload Submissions” tab (Figure 4.10). The file type was selected as

"Metadata" to ensure appropriate processing. After selecting the XML file (Figure 4.11),

the upload was initiated by clicking the "Upload" button.

Figure 4.10: Crossref Web Deposit Form

Chapter 4: Testing, Validation, and Deployment

86

Figure 4.11: Select XML File to Upload

Outcome:

• A successful metadata upload is immediately acknowledged with a confirmation screen

(Figure 4.12), stating: “Your batch submission was successfully received.” This indicates

that the file passed Crossref’s ingestion checks without triggering schema or business-rule

violations.

Chapter 4: Testing, Validation, and Deployment

87

Figure 4.12: Crossref Successful Submission Message

• Post-deposit, the registered DOI (10.38208/jcam.v1) became instantly resolvable. As seen

in Figure 4.13, accessing the DOI redirects users to the volume’s landing page on the

ASPS-hosted Open Journal Systems (OJS) platform. This confirms the correct linkage and

accessibility of the volume-level DOI.

Figure 4.13: JCAM landing page

Chapter 4: Testing, Validation, and Deployment

88

4.4.2 Scenario 2: Depositing a DOI for a New Article in an Existing Journal

Objective

 This test case was designed to evaluate the tool’s capability to append a new article to an

existing journal (Energy and Thermofluids Engineering) by generating the required metadata for a

previously indexed publication. The target was a new article submission under an existing volume,

requiring accurate representation of both volume-level and article-level metadata.

Input Preparation

• Journals.csv: Retained ETE’s established metadata, including its ISSN (2716-8026),

abbreviated title (Energy Thermofluids Eng.), and DOI prefix (10.38208/ete.v), as

illustrated in Figure 4.14.

Figure 4.14: ETE Journal Metadata Retention

• References.csv: Populated with metadata for a single article submitted under Volume 5.

Fields included author details, article title, abstract, publication date (17.08.2024), and

references. Control parameters were set to mint article-level DOIs

(doiArticle=1, doiIssue=0). Figure 4.15 displays the relevant entries.

Figure 4.15: Article-Level Control Parameters

 Process

• The tool generated a Crossref-compliant XML file consisting of a <journal_issue> node for

Volume 5 and a single <journal_article> node representing the new submission. The

schema structure of the generated file is shown in Figure 4.16.

Chapter 4: Testing, Validation, and Deployment

89

Figure 4.16: XML Output for Article Integration.

• The XML was validated using the Crossref Metadata Quality Checker, which confirmed

structural accuracy and completeness. The validation report is shown in Figure 4.17.

Figure 4.17: Metadata Quality Checker Validation

Outcome

• Finally, an automated email from Crossref (Figure 4.18) was sent to the registered account

holder confirming the successful registration of the DOI.

Chapter 4: Testing, Validation, and Deployment

90

Figure 4.18: CrossRef submission Email

• The registered DOI (e.g., 10.38208/ete.v5.759) under issue DOI (10.38208/ete.v5) resolved

successfully, linking directly to the article’s landing page on the hosting platform as seen in

Figure 4.19. This confirmed that the generator can correctly append articles to existing

journal records while maintaining schema compliance and DOI hierarchical integrity.

Figure 4.19: ETE Heat transfer performance analysis Article Landing Page

4.4.3 Scenario 3: Batch Deposit for Multiple Articles in an Existing Journal

Objective

Chapter 4: Testing, Validation, and Deployment

91

 The third test aimed to assess the tool’s performance in generating and registering metadata for

an entire issue, consisting of multiple articles, within an already indexed journal. This scenario

focused on stress-testing the generator’s ability to handle batch operations, data normalization, and

schema consistency across a diverse dataset.

Input Preparation

 References.csv: Populated with metadata for five articles under Volume 3 of the target journal.

The test dataset included:

• Articles with varying numbers of authors (some with full affiliation data, some without),

• Inconsistent date formats (e.g., dd.mm.yyyy vs. yyyy-mm-dd), to verify the tool’s

normalization routines.

• Assigned control parameters: From = 4, To = 8, doiArticle = 1, to direct article-level DOI

generation. Figure 4.20 illustrates the setup.

Figure 4.20: Batch Control Parameters

Process

• The generator successfully produced a single XML file containing five <journal_article>

entries nested with one <journal_issue> structure. The complete output is shown in

Figure 4.21.

Chapter 4: Testing, Validation, and Deployment

92

Figure 4.21: Batch XML Output

• The XML passed validation using Crossref’s Metadata Quality Checker, confirming

correctness of tag structure and content. Validation output is displayed in Figure 4.22 and it

was submitted in one transaction through the Crossref web deposit interface.

Figure 4.22: Batch Validation Success

Outcome:

• Success: All five DOIs were immediately registered and became resolvable, confirming the

batch process was executed correctly.

• Performance: The total processing time was approximately 5 minutes—representing a

dramatic efficiency improvement compared to an estimated 2-hour manual registration

process. This validates the scalability and time-saving potential of the developed tool in

production environments.

4.5 Final Deployment within ASPS

Chapter 4: Testing, Validation, and Deployment

93

 Following successful schema validation and extensive scenario testing, the Crossref XML

generator was formally integrated into the publishing workflow of Alwaha Scientific Publishing

Services (ASPS). The tool was deployed with the goal of minimizing manual intervention,

reducing schema-related deposit errors, and increasing indexing throughput. Importantly, it enables

editorial staff—without technical training in XML or API protocols—to reliably produce metadata

that meets Crossref’s compliance standards.

 The generator is now in active use by ASPS editors for preparing XML deposits across all

newly published issues. The deployment protocol follows a streamlined three-step workflow:

• Editors complete Journals.csv and References.csv templates using a guided data-entry

interface.

• The XML generator processes and outputs a schema-compliant XML file, which is

deposited using the Crossref Web Deposit Form or OJS plugin integration. Any submission

issues or warnings are logged into an internal error-tracking dashboard for resolution.

This operational transition enabled ASPS to move from a manual, error-prone DOI registration

process to a scalable and highly automated pipeline.

4.6 Deployment Outcomes and Impact at ASPS

The integration of the XML generator had an immediate and measurable impact on ASPS's

editorial efficiency, quality assurance, and scalability. Table 4.1 presents a comparative analysis of

key operational metrics before and after tool deployment:

Table 4.1: Pre- and Post-Automation Metrics.

Metric Before Automation After Automation

DOI Processing Time 45–60 minutes per article Less then 4 minutes

Schema Compliance Rate ~ less then 40% 100%

Indexing Errors Frequent Rare

Staff XML Expertise Needed High None

Key Observations

• Time Efficiency: Editors can now generate and validate XML in under four minutes—a

drastic improvement over the previous average of 45–60 minutes per article.

Chapter 4: Testing, Validation, and Deployment

94

• Error Mitigation: Submission rejections due to schema violations have decreased by over

90%.

• Training Reduction: Onboarding time for new staff decreased from two weeks to two days

due to intuitive interface design and templated workflows.

Moreover, editors are no longer required to interact with raw XML, which not only reduces the

cognitive burden but allows them to focus more intensively on content quality, peer review

logistics, and metadata accuracy.

4.7 Recommendations and Future Work

To further strengthen the long-term maintainability and functionality of the XML generator, several

enhancements can be proposed:

• API-Based Submission Integration: Incorporate direct deposit through Crossref’s

RESTful API, thereby eliminating the need for manual uploads through the web interface.

• Interactive Error Feedback: Develop a graphical UI that highlights invalid XML

elements in real-time, providing contextual error messages and resolution suggestions.

• Multilingual Metadata Handling: Extend support for non-English abstracts and

contributor data—particularly in Arabic and French—by enabling multilingual encoding

within the <jats:abstract> and <contributor> blocks.

• Capacity-Building Workshops: Conduct metadata training sessions to improve editorial

familiarity with Crossref’s evolving schema requirements, including ORCID linking and

funding metadata best practices.

• Schema Expansion: Extend the tool’s output capabilities beyond Crossref XML to support

JATS (for DOAJ), KBART (for EBSCO), and Dublin Core (for OAI-PMH repositories),

creating a unified indexing backbone for ASPS.

• ORCID Integration: Enable CSV-level support for ORCID identifiers by allowing editors

to supply contributor ORCIDs directly, which are then mapped to <contrib-id

contrib-id-type="orcid"> nodes in the XML.

These enhancements aim to future-proof the tool, aligning it with evolving scholarly metadata

standards and expanding its impact within and beyond ASPS’s publication ecosystem.

4.8 Conclusion

 This chapter demonstrated the successful development, validation, and deployment of the

Crossref XML generator within ASPS’s publishing workflow. The tool reliably produced schema-

Chapter 4: Testing, Validation, and Deployment

95

compliant metadata, significantly reducing processing time, manual effort, and submission errors.

Scenario-based testing confirmed its adaptability across volume-level, single-article, and batch

deposits. Deployment metrics showed marked improvements in efficiency and compliance.

 As ASPS looks ahead to expanding its journal portfolio and engaging with broader indexing

standards such as DOAJ and EBSCO. The Crossref XML generator has transitioned from a proof-

of-concept to a production-grade tool that directly addresses the bottlenecks of metadata deposition

in academic publishing. Its success within ASPS provides a replicable model for similar

organizations aiming to modernize their DOI workflows and improve metadata quality at scale.

96

General Conclusion

 This master’s thesis addressed a critical infrastructure challenge in scholarly publishing within

under-resourced environments: the automation of metadata generation and DOI registration for

scientific publications. Using the case of an Algerian open-access publisher, Alwaha Scientific

Publishing Services (ASPS), the research developed and validated a practical toolchain that enables

non-specialist editorial staff to generate Crossref-compliant XML files—bridging the gap between

local publishing capabilities and global indexing requirements.

 Chapter 1 offered essential background on scholarly publishing, with a focus on key

terminology and editorial workflows. It also examined the features of Open Journal Systems (OJS),

emphasizing its relevance to metadata management and the digital transformation of journal

publishing.

 Chapter 2 provided an in-depth case study of ASPS, highlighting the inefficiencies of its

existing processes and illustrating the potential of OJS plugins to streamline DOI indexing.

Drawing on skills developed through a Crossref-hosted webinar, this chapter laid the foundation

for further automation efforts.

 Chapter 3 advanced this foundation by engineering a lightweight C++ based XML generator

that transforms structured CSV inputs into schema-compliant Crossref deposits, significantly

reducing manual labor and enabling accurate metadata generation by editorial staff with minimal

technical training.

 Chapter 4 validated the tool through real-world testing at ASPS, confirming major

improvements in processing time, metadata completeness, and DOI registration reliability.

 The results affirm that scalable metadata automation is achievable without commercial tools,

provided the right balance of technical rigor and usability is struck. By abstracting complex XML

schemas into simplified data models and incorporating real-time validation protocols.

 Looking ahead, future development should include support for JATS XML to enable

interoperability with platforms such as DOAJ and PubMed Central, as well as a graphical user

interface to improve usability for non-technical users, and automating Crossref submissions via

API integration. Furthermore, training programs for local editorial teams on effective OJS plugin

General Conclusion

97

usage could transform the academic publishing landscape in Algeria by democratizing access to

global visibility.

 By targeting both immediate operational bottlenecks and long-term strategic alignment, this

master’s thesis contributes a replicable, open-access pathway for publishers in the Global South,

transforming metadata from a barrier into a bridge for underrepresented research communities.

98

References

[1] W. E. Houghton, The Wellesley Index to Victorian Periodicals 1824-1900, 1st ed. London:

Routledge, 1972.

[2] M. Baldwin, "Credibility, peer review, and Nature, 1945–1990," Notes and Records: the Royal

Society journal of the history of science, vol. 69, pp. 337-352, 2015.

[3] C. Tenopir and D. W. King, Towards electronic journals: realities for scientists, librarians,

and publishers: Special Libraries Association Washington, DC, 2000.

[4] A. Fyfe, J. McDougall-Waters, and N. Moxham, "350 years of scientific periodicals," vol. 69,

ed: The Royal Society, 2015, pp. 227-239.

[5] A. Fyfe, N. Moxham, J. McDougall-Waters, and C. M. Røstvik, A history of scientific

journals. London: UCL Press, 2022.

[6] A. Fyfe, K. Coate, S. Curry, S. Lawson, N. Moxham, and C. M. Røstvik, "Untangling

academic publishing: A history of the relationship between commercial interests, academic

prestige and the circulation of research," ed: Discussion Paper. University of St Andrews.

BIROn - Birkbeck Institutional Research Online, 2017.

[7] H. Piwowar, J. Priem, V. Larivière, J. P. Alperin, L. Matthias, B. Norlander, A. Farley, J.

West, and S. Haustein, "The state of OA: a large-scale analysis of the prevalence and

impact of Open Access articles," PeerJ, vol. 6, p. e4375, 2018.

[8] M. Laakso and B.-C. Björk, "Anatomy of open access publishing: a study of longitudinal

development and internal structure," BMC medicine, vol. 10, pp. 1-9, 2012.

[9] P. Binfield, Z. Rolnik, C. Brown, and K. Cole, "Academic Journal Publishing," The Serials

Librarian, vol. 54, pp. 141-153, 2008.

[10] M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, "Comparison of PubMed,

Scopus, web of science, and Google scholar: strengths and weaknesses," The FASEB

journal, vol. 22, pp. 338-342, 2008.

[11] BMJ Author Hub. (2025, May 19, 2025). Abstracting and indexing. Available:

https://authors.bmj.com/after-submitting/abstracting-and-indexing/

References

99

[12] P. Mongeon and A. Paul-Hus, "The journal coverage of Web of Science and Scopus: a

comparative analysis," Scientometrics, vol. 106, pp. 213-228, 2016.

[13] B. D. Edgar and J. Willinsky, "A survey of scholarly journals using Open Journal Systems,"

Scholarly and research communication, vol. 1, p. 020105, 2010.

[14] J. Willinsky, The access principle: The case for open access to research and scholarship vol.

559: MIT press Cambridge, MA, 2006.

[15] P. Noufal, "Metadata: Automatic generation and extraction," presented at the In 7th

MANLIBNET Annual National Convention on Digital Libraries in Knowledge

Management: Opportunities for Management Libraries, Indian Institute of Management

Kozhikode, 2005.

[16] Érudit Consortium. (May 19, 2025). Better Practices in Journal Metadata (2020 ed.).

Available: https://www.erudit.org/public/documents/Better_Practices_Metadata_CP.pdf

[17] M. S. Amdekar, "Scholarly Metadata as Trust Signals: Opportunities for Journal Editors,"

Science Editor, vol. 47, pp. 130-133, 2024.

[18] J.-r. Park and Y. Tosaka, "Metadata creation practices in digital repositories and collections:

Schemata, selection criteria, and interoperability," Information Technology and Libraries,

vol. 29, pp. 104-116, 2010.

[19] A. Ball and M. Duke, Data citation and linking: Digital Curation Centre, 2011.

[20] M. Klein, H. Van de Sompel, R. Sanderson, H. Shankar, L. Balakireva, K. Zhou, and R. Tobin,

"Scholarly context not found: one in five articles suffers from reference rot," PloS one, vol.

9, p. e115253, 2014.

[21] J. Liu, "Digital Object Identifier (DOI) under the context of research data librarianship,"

Journal of eScience Librarianship, vol. 10, p. e1180, 2021.

[22] C. Lagoze and H. Van de Sompel, "The making of the open archives initiative protocol for

metadata harvesting," Library hi tech, vol. 21, pp. 118-128, 2003.

[23] J. Willinsky, "Open journal systems: An example of open source software for journal

management and publishing," Library hi tech, vol. 23, pp. 504-519, 2005.

[24] OJS Services. (May 19, 2025). Creating an Editorial Team for Peer-Reviewed Academic

Journals: Roles and Responsibilities (November 2023 ed.). Available: https://ojs-

services.com/journals-publication-indexing/creating-an-editorial-team-for-peer-reviewed-

academic-journals-roles-and-responsibilities/

http://www.erudit.org/public/documents/Better_Practices_Metadata_CP.pdf

References

100

[25] W. H. Starbuck, "Turning lemons into lemonade: Where is the value in peer reviews?,"

Journal of Management Inquiry, vol. 12, pp. 344-351, 2003.

[26] Public Knowledge Project. (May 19, 2025). Layout Editing. Open Journal Systems User

Guide. Available: https://docs.pkp.sfu.ca/learning-ojs-2/en/layout_editing

[27] J. Greenberg, "Theoretical considerations of lifecycle modeling: an analysis of the dryad

repository demonstrating automatic metadata propagation, inheritance, and value system

adoption," Cataloging & classification quarterly, vol. 47, pp. 380-402, 2009.

[28] F. Rowland, "The peer-review process," Learned publishing, vol. 15, pp. 247-258, 2002.

[29] T. Habermann, "Metadata for Data Understandability," in AGU Spring Meeting Abstracts,

2008, pp. IN43A-04.

[30] J. W. Houghton, Economics of scholarly communication: a discussion paper. Melbourne:

Centre for Strategic Economic Studies, Victoria University, 2000.

[31] J. B. Thompson, Books in the digital age: the transformation of academic and higher

education publishing in Britain and the United States. Cambridge: Polity Press, 2005.

[32] P. Caplan, Metadata fundamentals for all librarians. Chicago: American Library Association,

2003.

[33] C. L. Borgman, Scholarship in the digital age: Information, infrastructure, and the Internet.

London: MIT press, 2010.

[34] J. Priem and B. M. Hemminger, "Decoupling the scholarly journal," Frontiers in

computational neuroscience, vol. 6, p. 19, 2012.

[35] V. Tracz and R. Lawrence, "Towards an open science publishing platform," F1000Research,

vol. 5, p. 130, 2016.

[36] U. Pöschl and T. Koop, "Interactive open access publishing and collaborative peer review for

improved scientific communication and quality assurance," Information Services and Use,

vol. 28, pp. 105-107, 2008.

[37] H. Van de Sompel, S. Payette, J. Erickson, C. Lagoze, and S. Warner, "Rethinking scholarly

communication," D-Lib magazine, vol. 10, pp. 1082-9873, 2004.

[38] W. Randtke, "Automated metadata creation: possibilities and pitfalls," The Serials Librarian,

vol. 64, pp. 267-284, 2013.

References

101

[39] W. Gregg, C. Erdmann, L. Paglione, J. Schneider, and C. Dean, "A literature review of

scholarly communications metadata," Research Ideas and Outcomes, vol. 5, p. e38698,

2019.

[40] M. Wu, H. Brandhorst, M.-C. Marinescu, J. M. Lopez, M. Hlava, and J. Busch, "Automated

metadata annotation: What is and is not possible with machine learning," Data Intelligence,

vol. 5, pp. 122-138, 2023.

[41] ASPS. (May 19, 2025). Website of the international academic publisher: Alwaha Scientific

Publishing Services SARL (ASPS). Available: https://asps-journals.com/

[42] ETE. (May 19, 2025). Website of the international journal: Energy and Thermofluids

Engineering (ISSN 2716-8026), Alwaha Scientific Publishing Services SARL (ASPS).

Available: https://asps-journals.com/index.php/ete

[43] ETE-Publication Ethics. (May 19, 2025). Publication Ethics webpage of the international

journal: Energy and Thermofluids Engineering (ISSN 2716-8026), Alwaha Scientific

Publishing Services SARL (ASPS). Available: https://asps-

journals.com/index.php/ete/Ethics

[44] ETE-Standards. (May 19, 2025). 'Standards' webpage of the international journal: Energy and

Thermofluids Engineering (ISSN 2716-8026), Alwaha Scientific Publishing Services SARL

(ASPS). Available: https://asps-journals.com/index.php/ete/Standards

[45] ETE-Privacy Statement (May 19, 2025). Privacy Statement webpage of the international

journal: Energy and Thermofluids Engineering (ISSN 2716-8026), Alwaha Scientific

Publishing Services SARL (ASPS). Available: https://asps-

journals.com/index.php/ete/about/privacy

[46] OJS Version. (May 19, 2025). The OJS Version used by the ASPS: Open Journal Systems

3.2.0.2, Open source journal management and publishing software developed, supported,

and freely distributed by the Public Knowledge Project under the GNU Gener. Available:

https://asps-journals.com/index.php/index/about/aboutThisPublishingSystem

[47] R. Miftahur, R. Lusia, H. Subuh Isnur, I. Aries Dwi, T. Raden Roro Hapsari Peni Agustin, and

P. Pradini, "Effectiveness and Efficiency of the Open-Source Platform System OJS 3.2

Journal Management for Electronic-Based Article Publication: Author and Reviewer

Perspectives," in Proceedings of the 5th Vocational Education International Conference

(VEIC-5 2023), 2024, pp. 922-928.

[48] PKP. (2023, May 19, 2025). Open Journal Systems: Features and technical documentation.

Public Knowledge Project. Available: https://docs.pkp.sfu.ca/

References

102

[49] M. M. Amin, A. Firdaus, Y. Dwitayanti, D. Pratama, A. Ferdiansyah, and M. F. I. Firasya,

"Research Database Acquisition Model Using OAI-PMH Protocol," in 8th FIRST 2024

International Conference on Global Innovations (FIRST-ESCSI 2024), 2025, pp. 462-469.

[50] M. M. Amin, F. Ali, D. Yevi, P. Dembi, F. Aditya, and F. Muhammad Fakhri Ikhbar,

"Research Database Acquisition Model Using OAI-PMH Protocol," in Proceedings of the

8th FIRST 2024 International Conference on Global Innovations (FIRST-ESCSI 2024),

2025, pp. 462-469.

[51] Open Universal Science (OPUS) project. (2023, May 19, 2025). Open Journal Systems:

Empowering Scholarly Communication and Publishing. Available:

https://opusproject.eu/openscience-news/open-journal-systems-empowering-scholarly-

communication-and-publishing/

[52] J. Willinsky and M. Quint, "Open Journal Systems: Open Source Journal Management and

Publishing. ," presented at the Proceedings ELPUB2005 Conference on Electronic

Publishing - Kath. Univ. Leuven - June 2005 2005.

[53] Crossref: Metadata Retrieval. (2025, May 19, 2025). Metadata Retrieval: Analyse Crossref

metadata to inform and understand research. Available:

https://www.crossref.org/services/metadata-retrieval/

[54] Crossref: Similarity Check. (2025, May 19, 2025). Documentation: Similarity Check.

Available: https://www.crossref.org/documentation/similarity-check/

[55] Crossref: Crossmark. (2025, May 19, 2025). Documentation: Crossmark. Available:

https://www.crossref.org/documentation/crossmark/

[56] G. Hendricks, D. Tkaczyk, J. Lin, and P. Feeney, "Crossref: The sustainable source of

community-owned scholarly metadata," Quantitative Science Studies, vol. 1, pp. 414-427,

2020.

[57] L. L. Haak, M. Fenner, L. Paglione, E. Pentz, and H. Ratner, "ORCID: a system to uniquely

identify researchers," Learned publishing, vol. 25, pp. 259-264, 2012.

[58] M. S. Amdekar, "Open infrastructure for research integrity: leveraging scholarly metadata as

trust signals," in PUBMET2024 | The 11th Conference on Scholary Communication in the

Context of Open Science, 2024, pp. 37-38.

[59] M. H. Beals, E. Bell, R. Cordell, P. Fyfe, I. Galina Russell, T. Hauswedell, C. Neudecker, J.

Nyhan, M. Oiva, and S. Padó, The atlas of digitised newspapers and metadata: Reports

from Oceanic Exchanges. Leicestershire: Loughborough University, 2020.

http://www.crossref.org/services/metadata-retrieval/
http://www.crossref.org/documentation/similarity-check/
http://www.crossref.org/documentation/crossmark/

References

103

[60] DOAJ. (May 19, 2025). webpage:Metadata help. Available: https://doaj.org/docs/faq/

[61] D. A. Lapeyre, "Balisage Paper: Customizing JATS (Journal Article Tag Suite)," in

Symposium on Markup Vocabulary Customization, July 29, 2019.

[62] D.-L. Magazine, "The five stars of online journal articles - a framework for article evaluation,"

D-Lib magazine, vol. 18, pp. 1-7, Doi:10.1045/january2012-shotton, 2012.

[63] BSCO Information Services. (2023, May 19, 2025). EDS Database Submission Guidelines.

Available: https://www.ebsco.com/sites/default/files/acquiadam-

assets/Submission_Guidelines_for_EDS_Databases.pdf

[64] Crossref: Metadata best practices. (2025, May 19, 2025). Documentation: Metadata best

practices. Available: https://www.crossref.org/documentation/principles-practices/best-

practices/

[65] N. Paskin, "Digital object identifier (DOI®) system," Encyclopedia of library and information

sciences, vol. 3, pp. 1586-1592, 2010.

[66] C. Lagoze and H. Van de Sompel, "The Open Archives Initiative: Building a low-barrier

interoperability framework," in Proceedings of the 1st ACM/IEEE-CS joint conference on

Digital libraries, 2001, pp. 54-62.

[67] S. Weibel, "The Dublin Core: a simple content description model for electronic resources,"

Bulletin of the American Society for Information Science and Technology, vol. 24, pp. 9-11,

1997.

[68] J. Ward, "A quantitative analysis of Dublin Core metadata element set (DCMES) usage in data

providers registered with the Open archives initiative (OAI)," A Master’s paper for the M.S.

in I.S. degree, Chapel Hill, North Carolina, 2002.

[69] V. K. Khodiyar, K. A. Rowlett, and R. N. Lawrence, "Altmetrics as a means of assessing

scholarly output," Learned publishing, vol. 27, pp. S25-S32, 2014.

[70] Y. Cho, "Open-source code to convert Journal Article Tag Suite Extensible Markup Language

(JATS XML) to various viewers and other XML types for scholarly journal publishing,"

Science Editing, vol. 9, pp. 162-168, 2022.

[71] Crossref: Metadata deposit schema. (2025, May 19, 2025). Documentation: Metadata deposit

schema. Available: https://www.crossref.org/documentation/schema-library/metadata-

deposit-schema-5-3-1/

[72] S. Currier, J. Barton, R. O’Beirne, and B. Ryan, "Quality assurance for digital learning object

repositories: issues for the metadata creation process," ALT-J, vol. 12, pp. 5-20, 2004.

http://www.ebsco.com/sites/default/files/acquiadam-assets/Submission_Guidelines_for_EDS_Databases.pdf
http://www.ebsco.com/sites/default/files/acquiadam-assets/Submission_Guidelines_for_EDS_Databases.pdf
http://www.crossref.org/documentation/principles-practices/best-practices/
http://www.crossref.org/documentation/principles-practices/best-practices/
http://www.crossref.org/documentation/schema-library/metadata-deposit-schema-5-3-1/
http://www.crossref.org/documentation/schema-library/metadata-deposit-schema-5-3-1/

References

104

[73] Crossref: Schema library. (2025, May 19, 2025). Documentation: Schema library. Available:

https://www.crossref.org/documentation/schema-library/

[74] D. Shotton, "CiTO, the citation typing ontology," Journal of biomedical semantics, vol. 1, pp.

S6:1-18, 2010.

[75] P. Príncipe and J. Schirrwagen, "OpenAIRE guidelines for data source managers: aiming for

metadata harmonization," in Innovations in Scholarly Communication (OAI9), Geneva,

Switzerland, 2015.

[76] BSCO Information Services. (2023, May 19, 2025). Submission Guidelines. Available:

https://www.ebsco.com/sites/default/files/acquiadam-

assets/Journal_Content_Delivery_Guidelines.pdf

[77] N. F. Mosha and P. Ngulube, "Metadata Standard for Continuous Preservation, Discovery, and

Reuse of Research Data in Repositories by Higher Education Institutions: A Systematic

Review," Information, vol. 14, p. 427, 2023.

[78] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User Guide, The, First

ed.: Addison Wesley, 1998.

[79] OMG Available Specification. (Dezember 2017, May 19, 2025). Omg systems modeling

language (omg sysml™), v2.5.1. Available: https://www.omg.org/spec/UML/2.5.1/About-

UML

[80] S.-K. Kim and C. David, "Formalizing the UML class diagram using Object-Z," in

International Conference on the Unified Modeling Language, 1999, pp. 83-98.

[81] D. Bell, UML basics: The sequence diagram vol. 17: IT Architect, IBM Corporation, 2004.

[82] A. Del Sole and D. Sole, Visual Studio Code Distilled: Evolved Code Editing for Windows,

macOS, and Linux, 2nd ed.: Apress Berkeley, CA, 2021.

[83] B. Stroustrup, "An overview of C++," in Proceedings of the 1986 SIGPLAN workshop on

Object-oriented programming, 1986, pp. 7-18.

[84] D. Divisi, G. Di Leonardo, G. Zaccagna, and R. Crisci, "Basic statistics with Microsoft Excel:

A review," Journal of Thoracic Disease, vol. 9, pp. 1734-1740, 2017.

[85] E. Vlist, XML Schema: The W3C's Object-Oriented Descriptions for XML: O'Reilly Media,

Inc., 2002.

http://www.crossref.org/documentation/schema-library/
http://www.ebsco.com/sites/default/files/acquiadam-assets/Journal_Content_Delivery_Guidelines.pdf
http://www.ebsco.com/sites/default/files/acquiadam-assets/Journal_Content_Delivery_Guidelines.pdf
http://www.omg.org/spec/UML/2.5.1/About-UML
http://www.omg.org/spec/UML/2.5.1/About-UML

105

106

Appendix: Certificate of Attendance –

Crossref Webinar

As part of my professional engagement with academic publishing during my master studies, I was

honored to be invited by the Production Manager to represent the publisher at the Crossref webinar

titled: “Improving Metadata Quality Using the OJS Plugin”.

This webinar took place on 13 March 2025 and was organized by Crossref, a leading scholarly

metadata organization. The session was led by Mr. Obanda Johanssen, Community Engagement

Manager at Crossref, with support from Mr. Evans Eloni. Their comprehensive guidance on the

OJS Metadata Health Check Plugin offered valuable insights into improving metadata standards

and practices for scholarly journals.

The event was coordinated and certified by Ms. Rosa Clark, Communications and Events

Manager at Crossref. I express my sincere appreciation to Crossref and the presenters for this

opportunity and for the informative session that significantly contributed to my understanding of

metadata practices in academic publishing.

A copy of the Certificate of Attendance is included below:

Appendix

107

Figure A.1: Certificate of Attendance issued by Crossref

