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Abstract

Plant diseases compromise global crop production by 20-40% annually, threatening agri-
cultural sustainability and food security. In developing regions, farmers frequently lack timely
access to phytopathological expertise and advanced diagnostic tools for effective disease man-
agement. This study presents an integrated Al-powered system for plant disease detection that
combines visual analysis and treatment recommendation capabilities to support both indi-
vidual farmers and agricultural enterprises.

The system architecture implements a cascading multi-model approach: a MobileNetV2-
based out-of-distribution (OOD) detection module validates input images as legitimate plant
specimens with 98% accuracy. Valid images then proceed to an EfficientNet-B3 classifier that
identifies the specific crop type (tomato, potato, or pepper) with 99% accuracy. Disease di-
agnosis is then performed by specialized models: DenseNet121 architectures for tomato and
potato diseases, and a ResNet50 model for pepper diseases ensuring precise pathology identi-
fication across different plant families. The final component, a fine-tuned GPT-2 model, gen-
erates contextually appropriate treatment recommendations based on the diagnostic output,
achieving strong linguistic performance metrics (ROUGE-1: 0.82, ROUGE-2: 0.73).

The solution is deployed as a smartphone application. The system offers an analytical plat-
form enabling agricultural companies to monitor disease prevalence patterns and assess treat-
ment efficacy across geographical regions.

This project aims to mitigate crop losses while promoting sustainable agricultural prac-
tices by delivering accessible Al-based disease detection tools and facilitating enhanced collab-
oration among farmers, researchers, and agricultural industry stakeholders.

Keywords: Smart Agriculture, Deep Learning, NLG, Plant Disease Detection, Computer Vi-
sion, Mobile Applications, Out-of-Distribution Detection, EfficientNet, DenseNet121, ResNet50,
MobileNetV2, GPT-2, Agricultural Decision Support Systems
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Chapter 1

General Introduction

1.1 Context and Problem Statement

Agriculture today faces unprecedented challenges due to climate change, depleting resources,
and the increasing prevalence of plant diseases. These diseases contribute to crop losses rang-
ing between 20-40% globally each year, posing significant threats to food security and economic
stability [1]. In Algeria’s Biskra region, where agriculture is a vital economic pillar, annual pro-
ductions reach approximately 3.47 million quintals of tomatoes, 1.33 million quintals of pep-
pers, and 1.2 million quintals of potatoes [2]. Such disease outbreaks directly affect local food
supply and farmer incomes.

Despite the promising advances in artificial intelligence for plant disease detection, several

obstacles hinder the practical deployment of these technologies:

e Technical Limitations: Variability in field conditions makes it difficult to transfer high-

accuracy laboratory models to real-world environments [3]

* Practical Considerations: Limited digital literacy among agricultural practitioners and

insufficient knowledge support create significant barriers [4, 5]

* User Diversity: Current systems often do not accommodate the varied needs of both

smallholder farmers and large-scale agricultural enterprises.

* Pesticide Misuse: The improper application of pesticides due to inaccurate disease iden-
tification leads to environmental degradation, increased resistance in pathogens, and po-

tential health hazards for consumers and agricultural workers [1]

* Delayed Detection: Late identification of plant diseases significantly reduces treatment
efficacy and increases crop losses, highlighting the critical need for early detection sys-

tems that can identify symptoms before widespread damage occurs [5]

1



General Introduction

These challenges collectively threaten food security and human health on multiple fronts:
reduced crop yields impact food availability and economic stability, while pesticide misuse can
introduce toxins into the food supply chain and surrounding ecosystems. Early intervention
through accurate disease detection is essential for protecting both agricultural productivity and
public health

1.2 Motivation and Objectives

The need for accessible Al solutions in agriculture is urgent, given the annual global eco-
nomic loss of over $220 billion attributed to plant diseases [1]. This challenge is further am-
plified by the necessity to boost agricultural productivity in anticipation of a global population
nearing 10 billion by 2050 [6]. Advances in mobile technology now enable the widespread adop-
tion of agricultural expertise, potentially reducing agrochemical usage by up to 40% while main-
taining crop protection efficacy.

The primary objectives are:

1. To develop robust computer vision systems that maintain high performance in variable

field conditions.

2. To design intuitive user interfaces accessible to agricultural stakeholders with diverse tech-

nical backgrounds.

3. Tointegrate actionable treatment recommendations seamlessly into the disease detection

process.

4. Toreduce pesticide misuse through accurate disease identification and appropriate treat-

ment guidance.

To achieve these objectives, we have developed a lightweight, end-to-end mobile applica-
tion for plant disease detection and recommendation, leveraging advanced deep learning mod-
els tailored for both efficiency and accuracy. Specifically, we employ MobileNetV2 for out-of-
distribution (OOD) detection and leaf/non-leaf image filtering, EfficientNetB3 for crop classi-
fication, DenseNet121 for identifying diseases in potato and tomato crops, and ResNet50 for
disease detection in pepper plants. For treatment recommendations and pest management ad-
vice, we integrate a GPT-2 based natural language generation module. This model ensemble
ensures that the system remains computationally efficient while providing high-quality disease

diagnosis and context-aware recommendations.
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The system architecture leverages three complementary technological domains:

e Advanced computer vision algorithms for detailed plant image analysis and disease fea-

ture extraction.

* Natural language processing capabilities for delivering multilingual, accessible recom-

mendations.

* Optimized deployment strategies that ensure functionality across various environments.

This integrated approach facilitates early disease detection, ensures timely access to appro-
priate interventions, and supports sustainable agricultural practices. Continuous improvement
is enabled through the iterative incorporation of field-generated data, enhancing accuracy and

contextual relevance over time.

1.3 Outline

This dissertation is organized into the following chapters:

e Chapter 2: Smart Agriculture and Al Applications Reviews the evolution from traditional

to smart agriculture and explores Al applications in agriculture sector.

e Chapter 3: Design and Methodology Details the proposed system architecture and crop

disease detection and recommendation process.

¢ Chapter 4: Implementation and Results Presents system implementation and evaluation

results.

* Chapter 5: Conclusion and Perspectives Summarizes findings and outlines future direc-

tions.

Through these chapters, this work demonstrates how artificial intelligence can be effectively
adapted to real agricultural environments, offering robust and practical solutions for plant dis-
ease management that promote responsible pesticide use and support early detection to en-

hance food security and protect human health.



Chapter 2

Smart Agriculture and Al Applications

2.1 Introduction

Agriculture has underpinned human civilization, evolving from manual labor to today’s global,
industrial-scale systems. However, traditional methods now face mounting challenges such
as soil degradation, climate variability, pests, and increased food demand due to population
growth [7, 8].

Modern agriculture must deliver higher yields with greater efficiency and less environmen-
tal impact. Smart farming technologies address these needs by improving yield prediction, re-
source management, and climate resilience [3, 9]. The adoption of digital tools has shifted farm-
ing from reactive to predictive and prescriptive approaches, guiding better decision-making [10,
11]. As shown in Figure 2.1, today’s farms increasingly integrate technology and sustainable

practices to boost productivity and reduce ecological footprint.

Figure 2.1: Modern farm landscape [12].

Central to this transformation is the integration of artificial intelligence (AI) technologies,
which are driving the shift toward data-driven and intelligent farming systems [13, 14]. Al-
powered management increases resilience, optimizes resources, and supports better decision-

making crucial as agriculture faces pests, shrinking farmland, and knowledge gaps [3, 15, 7].
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2.2 History of Farming

Agriculture has evolved through several major technological eras:

1.

Early Farming (10,000-15,000 BCE): The Neolithic Revolution transitioned humanity from
hunting to organized farming, with the first crop cultivation and animal domestication

enabling permanent settlements [16] [17].

Classical and Medieval Farming: Advances such as metal tools, irrigation, and crop ro-
tation boosted productivity. Agricultural knowledge was systematically recorded in works

like Cato’s De Agricultura and Ibn al-Awwam’s Book of Agriculture [16] [17].

Industrial Revolution: Mechanization, including the seed drill, steel plow, and mechani-

cal reaper, transformed farming by increasing yields and reducing manual labor [17] [10].

. Green Revolution: The mid-20th century saw higher yields from new crop varieties and

synthetic fertilizers, notably through Norman Borlaug’s wheat research. However, these

gains sometimes came with environmental costs [8] [18].

Digital Farming Era: Today, agriculture is shaped by digital technologies precision farm-
ing, IoT, remote sensing, big data, and Al enabling data-driven decisions and automation
(3] [19].

2.3 Traditional Agriculture

Traditional agriculture represents farming practices that have been developed and refined

over thousands of years, relying primarily on manual labor, natural processes, and accumulated

knowledge passed down through generations. These methods formed the backbone of agricul-

tural production for most of human history and continue to be practiced by millions of farmers

worldwide, particularly in developing regions [20].

2.3.1 Characteristics of Traditional Farming

Traditional agricultural systems are characterized by several fundamental features that dis-

tinguish them from modern industrial farming approaches [20]:

* Manual Labor Dependency: Traditional farming relies heavily on human and animal la-

bor for most agricultural operations, from land preparation and planting to harvesting

and post-harvest processing.
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* Experience-Based Decision Making: Farmers make decisions based on accumulated knowl-
edge, seasonal patterns, visual observations, and intuitive understanding of local condi-

tions rather than data-driven analysis.

¢ Low External Input Use: Traditional systems typically use minimal external inputs such
as synthetic fertilizers, pesticides, or hybrid seeds, instead relying on organic matter, crop

rotation, and natural pest control methods.

* Subsistence-Oriented Production: Many traditional farming systems focus primarily on

producing food for family consumption and local markets rather than commercial export.

* Biodiversity Conservation: Traditional farmers often maintain diverse crop varieties and

farming systems that support local biodiversity and ecosystem services.

2.3.2 Traditional Farming Practices

Traditional agriculture encompasses a wide range of time-tested practices that have evolved

to suit local environmental conditions and cultural preferences [20]:

e Crop Rotation and Intercropping: Farmers rotate different crops seasonally and often
grow multiple crops together to maintain soil fertility, reduce pest pressure, and maximize

land use efficiency.

e Natural Fertilization: Use of animal manure, compost, green manure, and other organic

materials to maintain soil fertility without synthetic chemicals.

* Indigenous Seed Varieties: Cultivation of locally adapted, open-pollinated seed varieties

that have been selected and preserved by farming communities over generations.

* Integrated Pest Management: Traditional methods include companion planting, bene-
ficial insect habitat, botanical pesticides, and cultural practices to control pests and dis-

eases.

e Water Conservation Techniques: Traditional irrigation methods such as terracing, con-

tour farming, and rainwater harvesting that work in harmony with natural water cycles.

* Seasonal Timing: Planting, cultivation, and harvesting activities are timed according to

traditional calendars, lunar cycles, and local weather patterns.

2.3.3 Limitations of Traditional Agriculture

While traditional agriculture has sustained human populations for millennia, it faces signif-

icant challenges in meeting modern agricultural demands [20] [21]:

6
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* Lower Productivity: Traditional methods generally produce lower yields per unit area

compared to modern intensive farming systems.

* Labor Intensity: Heavy reliance on manual labor makes traditional farming physically

demanding and time-consuming, limiting scalability.

e Weather Vulnerability: Traditional systems are often more vulnerable to extreme weather

events and climate variability due to limited adaptive technologies.

e Limited Market Access: Traditional farmers may face challenges in accessing modern

markets, credit systems, and value-added processing opportunities.

* Knowledge Transfer Challenges: Traditional knowledge may be lost as younger genera-

tions migrate to urban areas or adopt modern practices.

* Pest and Disease Management: Limited options for controlling serious pest outbreaks or

disease epidemics that can devastate entire harvests [22].

* Inconsistent Quality: Lack of standardization in traditional practices can lead to variable

product quality and market acceptance issues.

2.3.4 Traditional Agriculture in the Modern Context

As global agriculture faces sustainability challenges, there is growing recognition of the value
of traditional knowledge and practices. Many researchers and policymakers advocate for in-
tegrating the best aspects of traditional agriculture with modern technologies to create more

sustainable and resilient farming systems [23] [20].

Figure 2.2: Traditional farming landscape showing manual labor and simple tools [24].

This integration approach, often called "agroecology" or "sustainable intensification," seeks
to combine traditional ecological principles with modern scientific understanding to develop
farming systems that are both productive and environmentally sound [25]. Understanding tra-
ditional agriculture provides crucial context for appreciating the revolutionary changes brought

about by smart agriculture technologies, which we will explore in the following section.

7
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The transition from traditional to smart agriculture represents not just a technological shift,
but a fundamental transformation in how farmers interact with their crops, make decisions,
and manage agricultural systems. While traditional agriculture will continue to play an impor-
tant role, especially in developing regions, the integration of smart technologies offers unprece-
dented opportunities to address the growing challenges of food security, environmental sustain-
ability, and climate adaptation.

2.4 SmartAgriculture

Smart agriculture, also known as Agriculture 4.0, integrates advanced technologies to opti-
mize and transform farming practices [14] [11] by enabling precise monitoring and manage-
ment of crops, soil, and resources. Its primary objectives are to enhance productivity, promote

sustainability, and increase the resilience of agricultural systems.

2.4.1 Traditional vs. Smart Farming

While traditional agriculture relies on manual labor and experience-based decision making,
smart agriculture employs modern information and communication technologies (ICT) such as
cloud computing, big data, robotics, automation, and IoT to enable continuous data collection,
real-time monitoring, automated device communication, and data-driven decisions [4]. This
paradigm shift allows for more efficient resource management and proactive responses to field
challenges, moving from manual intervention to automation, predictive analytics, and precision

management [10] [18].
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Figure 2.4: Modern smart farming technolo-
gies[26].

Figure 2.3: Traditional farming practices[12].

Figure 2.5: Comparison between Traditional and Smart Agriculture.

2.4.2 Technologies in Smart Farming
Smart agriculture systems incorporate a range of technologies to improve productivity, re-
source efficiency, and sustainability [9]:
¢ Internet of Things (IoT): Connects devices such as soil sensors and automated machinery
for real-time monitoring of crop and environmental conditions [19] [13].

* Artificial Intelligence (AI): Applies machine learning and computer vision to analyze data

from sensors and drones, supporting yield prediction, and optimization [27] [28] [29].
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* Drones and Remote Sensing: Provides high-resolution imagery for crop health monitor-

ing and early detection of diseases or nutrient deficiencies [30].

¢ Farm Automation and Robotics: Includes autonomous tractors, robotic harvesters, and

precision sprayers, reducing manual labor and increasing efficiency [4] [31].

¢ Communication Networks and Software Solutions: Cloud platforms and farm manage-
ment software integrate and analyze data from various sources, facilitating real-time de-

cision making [13].

 Digital Twins: Virtual models of farms support simulation and optimization of agricul-

tural operations [11] [14].

* Big Data Analytics: Extracts insights from large datasets to inform decisions and reveal

important patterns [3].

e Fusion Data Augmentation: Combines multiple data sources to enhance machine learn-

ing model accuracy, especially for plant disease detection [32].
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Figure 2.6: Smart farming technologies [26].

2.4.3 Advantages of Smart Agriculture

Smart agriculture provides several benefits over traditional methods:
e Optimization of Resource and Input Consumption: Automated systems use water, en-
ergy, and fertilizers efficiently, minimizing waste and environmental impact [14] [10].

* Higher Yields at Lower Costs: Precision practices and data-driven decisions increase pro-

ductivity and reduce expenses [3] [18].

* Better Land Utilization: Technology enables efficient use of available space, including

areas otherwise underutilized [9].

10



Smart Agriculture and Al Applications

* Reduced Manual Labor: Robotics and automation decrease the need for physical labor,

increasing operational efficiency [4] [31].

¢ Real-Time Monitoring and Predictive Analytics: Continuous data tracking and analytics

anticipate issues and optimize management [19] [13].

e Improved Decision Making: Big data analytics and Al offer actionable insights for plan-
ning and operations [27] [28].

* Sustainability and Environmental Protection: Smart systems reduce resource consump-

tion and environmental impact, supporting long-term sustainability [11] [25].

2.4.4 Smart Agriculture Challenges
Despite technological progress, agriculture faces ongoing challenges:

* Climate Change: Changingrainfall and more frequent extreme weather reduce crop yields
[15].

e Water and Land Issues: Water scarcity affects 40% of cropland, and arable land declines

due to urbanization and soil degradation [33].

* Crop Diseases: Plant diseases cause global losses exceeding $220 billion annually [34]
[22].

e Population Growth: The global population is projected to reach 9.7 billion by 2050, in-

creasing food demand and straining agricultural systems [7] [6].

Figure 2.7: Smart farming challenges [35].
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2.5 Crop Disease Management

The following examples focus on three economically important crops vulnerable to disease,

where early detection systems can be particularly beneficial.

o Potato

Potatoes, one of the world’s most consumed food crops, are
highly susceptible to diseases that can devastate entire fields
rapidly, making early detection essential [36] [37]. Computer vi-
sion systems have demonstrated efficacy in detecting these dis-

eases early [38] [39].

Figure 2.8: Viral infection in potato [37].

« Tomato

Tomatoes are prone to fungal, bacterial, and viral diseases [40]
[41]. Automated monitoring using computer vision enables early
detection of symptoms, playing a crucial role in preserving yield

and product quality [39].

Figure 2.9: Late blight in tomato [41].

» Pepper

Pepper crops face viral diseases like the mosaic virus, which can
spread rapidly [42]. Early identification of characteristic symptoms

such as leaf mottling is essential for timely intervention.

Figure 2.10: Mosaic virus in pepper [42].

2.6 Al Techniques in Agricultural Applications

As agriculture embraces digital transformation, Al has emerged as a cornerstone technology
for addressing crop disease challenges and enhancing productivity. Al technologies enable pre-
cise monitoring, predictive analysis, and automation of complex tasks traditionally dependent

on manual labor and experiential knowledge.

12



Smart Agriculture and Al Applications

2.6.1 Machine Learning

Machine learning, a subset of artificial intelligence that enables systems to learn from data
and improve over time without explicit programming, has substantially advanced data-driven

decision-making in modern agriculture [27] [43] [44].

* Supervised Learning
Supervised learning trains models using labeled datasets to perform classification or re-
gression tasks. These algorithms demonstrate robust performance in agricultural appli-

cations when labeled data is available [45] [46].

— Random Forests (RF): An ensemble learning method used for crop prediction and

disease detection.

— Support Vector Machines (SVM): Effective for plant disease classification and image

analysis, particularly with small datasets [47] [48].

- XGBoost: A gradient boosting framework that has shown success in improving irri-

gation efficiency [28].

* Unsupervised Learning
Unsupervised learning identifies patterns in unlabeled datasets, useful for exploratory

data analysis when labeled data is scarce [49] [30].
- K-Means Clustering: Used in field zoning and soil classification tasks [50] [51].

- Anomaly Detection: Facilitates early identification of irregularities in crop growth or

disease symptoms.

* Semi-supervised Learning
Combines supervised and unsupervised methods using both labeled and unlabeled data.
Applied in remote sensing and plant pathology with reduced manual annotation require-
ments [52] [53].

* Reinforcement Learning
Uses trial-and-error learning where agents maximize cumulative rewards through envi-
ronmental interactions. Applied in autonomous greenhouse control, irrigation schedul-

ing, and precision spraying [54] [55].

* Transfer Learning
Reuses knowledge from pre-trained models for new tasks, particularly valuable when domain-
specific data is limited. Achieves high accuracy with minimal training data for disease

detection and yield estimation [56] [57].
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2.6.2 Deep Learning

Deep learning processes information through hierarchical layers of artificial neural networks,
enabling models to automatically learn complex patterns from large datasets. Recent advances
in computing power have positioned deep learning at the forefront of agricultural Al [58] [59]
(60].
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Figure 2.11: Deep neural network architecture [47].
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Long Short-Term Memory

Gated Recurrent Unit

Figure 2.12: Deep learning architecture branches [61].

* Supervised Deep Learning
Deep supervised learning models are trained on labeled datasets with the capacity to au-

tomatically extract hierarchical features from raw data.

- Convolutional Neural Networks (CNNs): Excel at image pattern recognition for plant

disease identification.
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Figure 2.13: CNN architecture for image analysis [61].

— Recurrent Neural Networks (RNNs): Process sequential data for time-series analysis
[62].

+ LSTM (Long Short-Term Memory): Effective for long-term pattern recognition
in crop growth prediction [63].

+ GRU (Gated Recurrent Units): Faster alternative for irrigation scheduling tasks
(64].

* Unsupervised Deep Learning
Discovers hidden patterns in unlabeled data through neural networks that capture com-

plex, non-linear relationships.

- Self-Organizing Maps (SOMs): Create visual maps grouping similar plant or soil data
[65].

— Autoencoders: Learn data representations by reconstruction, including Restricted

Boltzmann Machines for anomaly detection [66].

* Deep Semi-supervised Learning
Applies neural networks to leverage both labeled and unlabeled data, particularly valuable

for agricultural remote sensing [52].

* Deep Reinforcement Learning
Combines neural networks with reinforcement learning for sophisticated decision-making

in autonomous robots and greenhouse management [54].

* Deep Transfer Learning
Uses CNNs pretrained on large datasets like ImageNet, achieving high performance in

plant disease identification with less labeled data [56].
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2.6.3 Classification vs. Clustering

Classification is a supervised learning process where models predict predefined categories
using labeled datasets. CNNs have demonstrated high efficacy in plant disease diagnosis [67].

Classification types include:

* Binary Classification: Predicting one of two outcomes (healthy vs. diseased plants).

e Multi-class Classification: Assigning inputs to one of multiple exclusive classes (specific
disease types).

e Multi-label Classification: Predicting multiple labels for single inputs (multiple stress fac-

tors).

Binary Classification Multi-class Classification

O
> O
0O >> 0O
X2 ) X2 00O
O
X4 X

Figure 2.14: Binary vs. multi classification types [68].

Clustering is an unsupervised learning approach grouping data points based on similarities

without prior class labels [30] [49].

.9 @
G

Figure 2.15: Clustering vs. classification approaches [68].

This project uses a multi-model classification pipeline including MobileNetV2-based out-of-
distribution detection, EfficientNet-B3 crop classification, and specialized disease classification

models.
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2.6.4 Natural Language Processing (NLP)

Methods are increasingly integrated into agricultural Al systems, offering powerful tools for
text-based information extraction, decision-making support, and interactive advisory genera-

tion [69] [70]. NLP plays a critical role in tasks such as:

- Text Classification: Categorizing agricultural documents based on topics such as soil
health, pest threats, or advisory urgency [71].

— Named Entity Recognition (NER): Automatically identifying and labeling key entities like

plant varieties, pathogens, chemicals, and geographical locations in scientific texts [72].

— Information Retrieval: Extracting structured knowledge from unstructured data sources

such as journals, manuals, or farm logs to assist agronomists and Al systems alike [70].

As depicted in Figure 2.16, NLP frameworks integrate both Natural Language Under-
standing (NLU) and Natural Language Generation (NLG) components to create comprehensive
systems for processing and generating human language. This architecture is particularly valu-

able for agricultural advisory systems.

NLP

Natural Language Processing

NLU

Natural
Natural Language

Language Understanding
Generation

NLG

Figure 2.16: NLP framework integrating NLU and NLG [73].

* Natural Language Understanding (NLU)
Forms the foundational layer of NLP systems, enabling machines to comprehend the se-
mantics and context of human language. In agricultural Al, NLU helps bridge the gap

between raw text and actionable insights by enabling systems to:

- Intent Detection: Understanding the underlying goals behind farmers’ queries, such

as seeking pest control advice or weather forecasts.

- Entity Linking: Associating detected entities (like crops, diseases, or fertilizers) with

relevant knowledge bases to enrich interpretation.
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- Semantic Parsing: Translating complex natural language inputs into structured for-

mats interpretable by downstream decision-support models.

NLU ensures that agricultural advisory systems correctly interpret the meaning behind
user inputs, enhancing the relevance, personalization, and effectiveness of generated rec-

ommendations [74] [68].

e Natural Language Generation (NLG)
Focuses on automatically producing coherent textual content from structured data or
model outputs. In agriculture, NLG facilitates the translation of complex analytical re-
sults into actionable, farmer-friendly language [75] [76].

Key applications include:

- Automated Report Generation: Producing pest risk summaries, irrigation sched-

ules, or yield forecasts based on sensor data and model predictions.

— Personalized Advisory Generation: Tailoring recommendations to the specific needs,

crop types, or environmental conditions of individual users.

— Multilingual Accessibility: Providing farmers with localized content in their native

language, ensuring better adoption and understanding.

In this project, NLG serves an important role in generating structured recommendation
reports based on model outcomes especially when disease predictions or environmental

readings need to be transformed into practical advice for end users [75] [77] [76].

2.7 Related Works

Recent advancements in artificial intelligence (Al) for agriculture have transitioned from
academic explorations to impactful real-world applications across a spectrum of technical do-
mains. Computer vision and deep learning techniques, for instance, have achieved remarkable
accuracy in plant disease identification. For example, Mohanty et al. (2016)[78] reported 99.35%
accuracy under controlled conditions, but only 31% in real-world field tests. This gap highlights
the persistent challenge of model generalization beyond lab environments.

A significant advancement in plant disease detection was presented at IEEE_ICT (2024)[29],
where researchers developed a tomato disease classification system achieving 95.31% accuracy
while incorporating contextual treatment recommendations for identified pathogens. Comple-
menting this work, Kant et al. (2024)[79] demonstrated that models based on EfficientNetB3
architecture provide an optimal balance between computational efficiency and diagnostic ac-

curacy (92.25%) through a multilabel classification approach. This balance is particularly valu-
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able for real-world agricultural applications where resource constraints exist, making sophisti-
cated disease detection technology increasingly accessible and practical for farmers operating
in diverse environments.

To overcome the constraints of single-model systems, recent research has explored hybrid
architectures. For instance, Shaheed et al. (2023)[80] combined ResNet50 with Vision Trans-
former components, resulting in over 97.65% accuracy for potato disease classification and en-
hanced robustness to image quality variations. Similarly, Wang et al. (2024)[81] proposed a spe-
cialized architecture tailored for greenhouse environments, reporting 92.3% precision in com-
plex backgrounds. However, this approach introduced additional implementation complexity.

Another direction leverages the synergy between IoT sensor data and Al. Sravanthi et al.
(2024)[5] combined real-time IoT data with historical analytics and Natural Language Process-
ing (NLP), achieving 99% accuracy in crop recommendations and a 97.8% comprehension rate
among farmers. This demonstrates the critical role of both data integration and effective com-
munication in agricultural Al systems.

Transfer learning is widely adopted to address the scarcity of labeled agricultural datasets.
Aversano et al. (2020)[82] utilized VGG-based transfer learning for tomato disease classification,
attaining 94.7% accuracy and reducing training time. Likewise, Moid et al. (2021)[56] applied
the Xception architecture within a transfer learning framework, improving generalization across

diverse environmental conditions.
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Study Primary Focus | Performance | Key Strengths Limitations
(78] Image-based 99.35% con- | High accuracy un- | Poor generalization
plant  disease | trolled, 31% | der controlled con- | to real-world data
detection real-world ditions
(5] IoT-driven rec- | 99% accuracy | Real-time decision | Depends on opti-
ommendation support system mal sensor place-
ment
[29] Tomato disease | 95.31% accu- | User-friendly mo- | Execution time bot-
detection on | racy bile interface, | tlenecks
mobile detailed reports
[83] Multi-dataset 80.19% Dataset  diversity, | Lacks detailed per-
DL approach improved robust- | formance metrics
ness
[80] Multi- 97.65% accu- | Robust to image | High computa-
architecture racy quality variations tional demands
detection
(82] Tomato disease | 97.3%  accu- | Reduced training | Limited generaliza-
VGG-based racy time tion to field condi-
transfer learn- tions
ing
[84] Multi-level 99.75% accu- | Early vs. late blight | Region-specific
detection  for | racy distinction training data
potato
[85] Tomato leaf dis- | 91.2%  accu- | Works in varied | Optimized for
ease detection | racy lighting greenhouse only
[38] CNN-based 94.2%  accu- | Effective sequential | Evaluation lim-
potato leaf dis- | racy modeling for im- |ited to conference
ease detection proved detection dataset, needs real-
using sequen- world validation
tial model
[81] Greenhouse de- | 92.3% mAP Complex back- | Complex  imple-
tection ground handling mentation require-
ments
[79] Multilabel plant | 92.25% accu- | Capable of de- | Potential chal-
disease classifi- | racy tecting multiple | lenges in resource-
cation diseases per image | constrained agri-
cultural settings
Table 2.1: Comparative analysis of Al-Based plant disease detection studies.
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2.8 Synthesis

Modern agriculture is limited by three core challenges that constrain the deployment of Al
systems in real-world field settings. Environmental variability in farms such as inconsistent
lighting, varied backgrounds, and unpredictable disease symptoms reduces the effectiveness
of Al models trained in controlled laboratory conditions. As shown by Mohanty et al. [78], clas-
sification accuracy can drop from 99.35% in the lab to just 31% in field conditions, revealing
a critical gap between research and application. In parallel, widespread digital divides across
agricultural communities hinder access to Al systems. Many farmers lack reliable infrastructure
and experience with digital tools, making it difficult to adopt complex solutions like those in
Shaheed et al. [80], which achieved 97.65% accuracy but are too computationally demanding
for most mobile devices. Moreover, many existing systems stop at disease identification and fail
to provide actionable treatment guidance, limiting their real-world usefulness. Even when sys-
tems like those presented at IEEE_ICT [29] achieve high accuracy, their performance can vary in
different usage environments.

This study proposes a multi-model Al system architecture that addresses these limitations
through careful design and a focus on accessibility, reliability, and usability. The system begins
with an out-of-distribution detection module based on MobileNetV2 to verify that input images
are relevant plant specimens before disease detection is attempted. This component improves
reliability and prevents common misclassifications caused by irrelevant or low-quality inputs.

The next component is a multi-crop classification stage using EfficientNet-B3. This model
distinguishes between tomato, potato, and pepper plants to route the image to the appropriate
disease detection model. This approach builds upon recent advances in multilabel classifica-
tion techniques demonstrated by Kant et al. [79], who achieved 92.25% accuracy with Efficient-
NetB3 for detecting multiple plant diseases simultaneously. Their work highlights the impor-
tance of computational efficiency in real-world agricultural applications, a principle that guides
our multi-model architecture design. Unlike generic multi-dataset classifiers like the one in Kr-
ishnaetal. [83], which achieved only 80.19% accuracy, this step ensures that diagnosis is tailored
to the specific crop. For disease detection, the system uses DenseNet121 for tomato and potato
and ResNet50 for pepper diseases. This crop-specific specialization acknowledges the unique
disease patterns of each plant family and improves upon generalized approaches such as that
in Agarwal et al. [85], which reached only 91.2% in greenhouse settings.

The final stage of the system is a bilingual recommendation engine built using a fine-tuned
GPT-2 model. This component translates disease classification results into clear, actionable
treatment suggestions in multiple languages. It addresses the gap left by most reviewed sys-

tems, which fail to provide usable instructions for farmers, leading to improper pesticide use
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and poor intervention decisions.

This proposed system creates an end-to-end workflow from image capture to treatment ad-
vice, aligning Al performance with real-world agricultural needs. While systems like Bonik et al.
[38] achieved 94.2% accuracy without field validation, this study emphasizes practical deploy-
ment from the outset. The approach prioritizes real-world reliability and supports the needs of

smallholder farmers, who represent the majority of the global agricultural workforce.

2.9 Conclusion

The transition to smart agriculture transcends the adoption of new technologies it funda-
mentally reimagines farming practices for the 21st century by merging traditional agricultural
knowledge with modern digital approaches to enhance productivity while promoting sustain-
ability. Early disease detection using artificial intelligence stands out as one of the most promis-
ing applications, where deep learning and computer vision techniques enable identification of
plant diseases at initial stages, thereby reducing crop losses and minimizing pesticide use.

As demonstrated through the visual disease symptoms analysis, Al technologies show sig-
nificant potential in agricultural applications. However, substantial performance gaps persist
between controlled laboratory conditions and real-world field deployment, with additional lim-
itations in computational efficiency, input validation, and actionable guidance provision. While
individual AI components achieve promising results, comprehensive end-to-end systems ad-
dressing both technical robustness and practical usability remain insufficient.

This necessitates the development of integrated Al architectures that bridge laboratory per-
formance with field deployment requirements while providing accessible solutions for diverse
farming contexts. The next chapter details the proposed architecture and its practical, scalable

design to address these identified limitations in agricultural Al systems.
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Chapter 3

Design and Methodology

3.1 Introduction

Following the analysis of existing agricultural challenges and Al-based solutions, we propose
a methodology focuses on developing a modular and scalable plant disease detection and rec-
ommendation system tailored for real-world agricultural use. The design integrates image vali-
dation, crop and disease classification, and bilingual recommendation generation, with an em-
phasis on mobile compatibility, practical usability, and adaptability to diverse crops, diseases,

and user needs.

3.2 Proposed Approach

Traditional agriculture faces mounting pressure from increasing global population demands,
with food security becoming a critical concern as populations continue to grow. Conventional
farming practices, characterized by manual labor, experience-based decision making, and reac-
tive approaches to crop diseases, result in significant global annual losses due to plant diseases
alone. These losses translate to substantial economic damage, threatening both food security
and farmer livelihoods.

The limitations of traditional agricultural practices are particularly evident in disease man-
agement, where farmers often rely on visual inspection and empirical knowledge to identify
plant diseases. Late detection, misdiagnosis, and inappropriate treatment applications fre-
quently occur, resulting in reduced crop yields and increased pesticide usage.

The integration of artificial intelligence into agricultural systems presents unprecedented
opportunities to address these challenges through precision farming, real-time monitoring, and

data-driven decision support. Current Al-based agricultural solutions face significant deploy-
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ment barriers including poor generalization from laboratory to field conditions, limited acces-
sibility for farmers with varying technical literacy levels, and inadequate integration of disease
detection with actionable treatment recommendations.

We aim to develop an integrated solution that brings expert-level plant disease diagnosis
directly to the field through accessible mobile technology. Our approach addresses the critical
need for early disease detection while ensuring practical applicability across diverse agricultural
contexts.

As illustrated in Figure 3.1, our proposed system implements a comprehensive architecture
designed to transform plant leaf images into actionable disease diagnoses and treatment rec-

ommendations.

1
1
1
d

Not Leaf

Crop-Disease
Recommendation Generation

S —————

L
End User Layer )

Processing Layer

Figure 3.1: Proposed approach for crop disease detection and recommendation generation sys-
tem.

The proposed system, as shown in Figure 3.1, implements a system architecture designed to

transform plant leaf images into actionable disease diagnoses and treatment recommendations:

* End User Layer: Serves as the primary interface between farmers and the Al system through
an intuitive mobile application designed for agricultural workers with varying levels of

technical literacy. The mobile interface provides:

Image capture capabilities through the device camera.

Photo gallery integration for selecting existing plant images.

Clear visualization of diagnostic results.

Farmer-friendly presentation of treatment recommendations in accessible language.

User-centered design with simple navigation and visual feedback.
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* Processing Layer: Functions as the analytical core of the system and contains two primary

components that work sequentially to analyze plant images and generate recommenda-

tions:

— Crop Disease Detection: Implements a sequential analytical pipeline that processes

images through:

*

Data Preprocessing: Standardizing image inputs such as resizing and normal-

ization.

Out-of-Distribution (OOD) Detection: Validating whether the image contains

valid plant leaf material.

Decision Branching: Routing non-leaf images back to the user with appropriate
feedback.

Crop Classification: Identifying the specific plant species (tomato, potato, or
pepper).

Disease Classification: Applying crop-specific disease diagnosis models to iden-

tify pathologies.

- Recommendation Generation: Transforms diagnostic outputs into practical treat-

ment advice through:

*

Data Preparation: Structuring diagnostic results for recommendation genera-

tion.

Entity Extraction: Identifying relevant components such as crop type and dis-

ease name.

Intent Classification: Determining appropriate recommendation strategies based

on disease context.

Report Generation: Creating structured treatment guidelines with technical de-

tails.

Report Translation: Converting technical information into accessible, action-

able language for farmers.

e Data Layer: Provides the knowledge repositories that support both analytical processing

and recommendation generation:

- Images Repository: Contains structured datasets of plant images used for model

training and validation, organized by crop type and disease categories. The reposi-
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tory includes visual examples of healthy and diseased specimens for each supported
crop type.

- Recommendations Knowledge Base: Maintains comprehensive crop-disease-treatment
mappings including causal factors, symptoms progression patterns, treatment op-
tions with effectiveness ratings, and preventive measures. This knowledge base links
specific pathologies to contextually appropriate intervention strategies with support-

ing agricultural science references.

The proposed system architecture facilitates bidirectional data flow from right to left for de-
velopers managing the knowledge repositories and model optimization, and from left to right
for end users submitting images and receiving diagnostic results. This design ensures both op-

erational efficiency and a seamless user experience.

3.3 System Functionalities

To better explain the system’s behavior and structure, we have developed comprehensive
UML diagrams that document both the static structure and dynamic interactions within the
system. These diagrams serve as essential artifacts in the development process, providing a
visual blueprint for implementation while facilitating clear communication between technical

and non-technical stakeholders.

3.3.1 Use Case Analysis

The Use-Case Diagram in Figure 3.2 provides a comprehensive view of our Leafy App’s func-
tional architecture by illustrating two key actor types the farmer (User) and the Google Cloud

Backend and their interactions with the system.
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Figure 3.2: System use case diagram.

For farmers, the diagram showcases essential operations involving the End User Layer in-

cluding:
e Granting permissions (for location, camera, and gallery access).
e Capturing or uploading plant images.

* Viewing diagnostic reports.

* Customizing their experience through language preferences.

The backend services implement the Processing Layer functionality through:

* Image processing and enhancement

e Leaf/Out-of-Distribution (OOD) detection to validate input.

* Crop Disease Classification using specialized models.

* Report generation using GPT-2 to produce a comprehensive output that includes:

— Identified crop.
- Detected disease.
— Likely cause of the disease.
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— Observable symptoms.

— Recommended treatment.

As shown in Figure 3.2, the diagram explicitly shows dependencies, such as how image cap-
ture must precede processing, and how classification determines if the image contains a valid
leaf before identifying the specific crop-disease combination. This representation clearly delin-

eates the distribution of intelligence between the mobile client and cloud backend.

3.3.2 Activity Diagram Analysis

The Activity Diagram in Figure 3.3 details the complete operational workflow of our plant

disease detection application from user initiation to diagnostic results.
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Figure 3.3: System activity diagram.
The diagram identifies three critical decision points that determine the user’s path through

the system:

e Permission verification: Ensures the application has necessary access to device resources.
* Image confirmation: Validates that a usable image has been provided.

¢ Leaf validation: Confirms the image contains analyzable plant material through Out-of-
Distribution (OOD) detection.
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When permissions are denied or images aren’t provided, the system displays appropriate
error messages and terminates processing, preventing wasted computational resources. As il-
lustrated in Figure 3.3, the sequential pipeline operations mirror the architecture described in

Figure 3.1:

1. Image preprocessing for standardization.
2. Classification through the multi-stage Crop Disease Detection process.

3. GPT-2 Recommendation Generation based on knowledge base information.

Upon displaying results, the diagram shows the navigation options available to farmers, en-
abling them to either analyze another plant sample or exit the application. This comprehensive
workflow visualization ensures our implementation delivers a responsive, user-centered expe-
rience that addresses potential failure points while guiding users through the complete disease

diagnosis and recommendation system process.

3.4 Crop Disease Detection and Recommendation Process

As shown above in(Figure 3.1), our solution comprises two key functional components within
the Processing Layer: Crop Disease Detection and Recommendation Generation. These com-
ponents work in concert to transform raw plant images into actionable agricultural advice.

Figure 3.4 illustrates the processing pipeline of the system.
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Figure 3.4: Crop disease detection and recommendation generation process.

As shown in Figure 3.4, the workflow begins with raw image data input from the End User
Layer, which undergoes preprocessing to standardize visual information. The processed images
then enter Out-of-Distribution (OOD) detection to validate plant material presence. Crop clas-
sification follows, identifying specific plant species and routing images to specialized disease

detection models optimized for each crop type. Text data undergoes parallel preprocessing to
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structure the knowledge base for reccommendations. The Recommendation Generation com-
ponent transforms technical diagnoses into farmer-friendly advice, culminating in a compre-
hensive report combining visual and textual information that is delivered back to the End User
Layer.

Figure 3.5 presents a more detailed view of the technical architecture of the system’s Process-

ing Layer, expanding on the processes outlined in Figure 3.4.
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Figure 3.5: Crop disease detection and recommendation generation system detailed process.

As presented in Figure 3.5, the Crop Disease Detection process, starting with image data
from the Data Layer, followed by preprocessing steps: resizing, RGB normalization, augmen-
tation, and standardization. Preprocessed images undergo analysis through neural networks,
beginning with MobileNetV2 for leaf detection to filter out non-leaf images. For confirmed leaf
images, EfficientNetB3 performs crop classification to identify tomato, pepper, or potato plants.
Based on classification results, the system routes images to crop-specific disease classification
models: DenseNet121 for tomato and potato diseases, and ResNet50 for pepper diseases.

The right part of Figure 3.5 details the Recommendation Generation subsystem built around
a fine-tuned GPT-2 language model. Text data passes through cleaning to standardize input,
entity recognition to identify key agricultural elements, and intent classification to determine
recommendation context. The GPT-2 model generates structured treatment recommendations
including disease identification, causes, symptoms, and remediation strategies. The output ap-
pears as a mobile-friendly report for farmers to implement in their fields, delivered through the

End User Layer.
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3.4.1 DataPipeline

Our data pipeline encompasses the collection and processing of both image and text data to
support the model training and inference processes within the Processing Layer.

* Data Collection
The training data for the Crop Disease Detection models consists of public datasets and

manually collected images stored in the Images Repository of the Data Layer. The collec-
tion includes:

— Tomato Plants: 10,000 images across nine disease categories.
- Potato Dataset: 3,080 images covering seven classes.
— Pepper Dataset: 290 images encompassing 12 disease categories.

An imbalance exists predominantly due to the high volume of tomato samples, this imbal-

ance is addressed using data augmentation and resampling. Two supplementary datasets
are included in the Data Layer:

- Recommendation Dataset: Mapping crop-disease-treatment for GPT-2 fine-tuning

of the Recommendation Generation component.

— Out-of-Distribution (OOD) Detection Dataset: Contains in-distribution and out-of-

distribution samples for training the leaf detection model.

Figure 3.6 illustrates the dataset distribution before augmentation in the Data Layer’s Im-

ages Repository, showing both the combined dataset distribution (Figure 3.6a) and the
overall dataset size distribution (Figure 3.6b).

Dataset Size Distribution

Before_Combined - Bar Chart

Tomato_Spider_mites Two-sp

(a) Combined dataset distribution. (b) Dataset size distribution.

Figure 3.6: Dataset distribution before augmentation.
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Our comprehensive data preprocessing framework within the Processing Layer addresses
two distinct data modalities: images for Crop Disease Detection and text for Recommen-
dation Generation. Each modality follows a specialized pipeline to ensure standardized

inputs and enhanced feature quality.

Data Preprocessing
Data preprocessing constitutes a critical foundation of our system, ensuring optimal model
performance through systematic preparation of both visual and textual inputs for the crop

disease detection and recommendation pipeline.

— Image Data Processing
We implemented a robust image preprocessing pipeline within the Crop Disease De-

tection component with multiple stages:

+ Resizing: All images are resized to 224x224 pixels.

+ RGB Conversion: All images are converted to the RGB color space, ensuring

consistent 3-channel representation regardless of original format.
+ Normalization: Pixel values are scaled to the [0,1] range.

+ Data Augmentation: Techniques such as random flipping, rotation (up to 20%),

zoom, and contrast adjustments are applied.

+ Class Balancing: Oversampling is used for underrepresented classes.

Figure 3.7 illustrates our comprehensive image preprocessing workflow within the
Processing Layer. These processes standardize input features while preserving disease-

relevant characteristics essential for accurate Crop Disease Detection.
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Figure 3.7: Image preprocessing workflow.
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- Text Data Processing for NLG
For textual data used in the Recommendation Generation component, particularly

focusing on plant disease entities, we implemented a multi-stage preprocessing pipeline:
+ Text Cleaning: All text undergoes comprehensive cleaning:

- Lowercasing: All text is converted to lowercase to eliminate case sensitivity.

- Stopword Removal: Non-alphanumeric characters are filtered out using reg-

ular expressions.
- Number Removal: Numeric digits are removed to focus on textual content.

+ Tokenization: Text is segmented into individual words or tokens using NLTK’s
word_tokenize function, which intelligently handles contractions and boundary

cases.

+ Lemmatization: Word forms are reduced to their base or dictionary form using
NLTK’s WordNetLemmatizer, preserving semantic meaning while normalizing

variations.

+ Entity Recognition: Special attention is given to plant and disease entities, which

are preserved during preprocessing to maintain domain-specific knowledge.

+ Intent Classification: A dedicated layer categorizes generated text based on in-
tent, including cause identification, crop type, disease naming, symptom de-

scription, and treatment recommendations.

Figure 3.8, our text processing pipeline for handling descriptive metadata within the

Processing Layer includes multiple stages from text cleaning to intent classification.
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Figure 3.8: Text preprocessing workflow.
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Figure 3.8 illustrates our text processing pipeline for handling descriptive metadata
within the Processing Layer. This parallel workflow enables our system to extract
named entities related to plants and diseases, enhancing the model’s interpretability
and supporting comprehensive agricultural decision support delivered through the

End User Layer.

e Data Splitting Strategy
Our methodology employs a standard data partitioning approach to ensure robust model
training and evaluation for both Crop Disease Detection and Recommendation Genera-

tion components. The dataset is split into:
- Training set (70%): For model parameter optimization within the Processing Layer.
- Validation set (15%): For hyperparameter tuning and early stopping.
— Test set (15%): For unbiased final evaluation.

Figure 3.9 shows the crop distribution after preprocessing in the Data Layer’s Images Repos-

itory, illustrating the balanced distribution achieved through our preprocessing pipeline.

Pie Chart - After Preprocessing - Crops

Bar Plot - After - Crops
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£
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Figure 3.9: Crop distribution after preprocessing.

This splitting strategy ensures sufficient data for training while reserving independent sets
for validation and testing. Our preprocessing pipeline includes multiple stages before data
splitting occurs, ensuring all subsets benefit from the same standardized preprocessing.
As depicted in Figure 3.9, we achieved a balanced distribution across the three main crop
types (pepper, potato, and tomato), with each category containing approximately 10,000
preprocessed images after augmentation and resampling. This balance is crucial for pre-
venting class bias during model training and ensures the system can recognize diseases

across all target crops with similar efficacy.
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3.4.2 Models Architecture

The Processing Layer of our system architecture see Figure 3.1 implements specialized neural
network models for each stage of the Crop Disease Detection and Recommendation Generation
pipelines. These models are designed to work sequentially, with each component building on

the outputs of previous stages.

* Leaf Detection Model
MobileNetV2 is a convolutional neural network architecture specifically designed for mo-
bile and edge devices, utilizing inverted residual structures and linear bottlenecks to achieve
computational efficiency. In our system, we leveraged this architecture for Out-of-Distribution
(OOD) detection to validate whether input images contain valid plant leaf material before
proceeding to subsequent analytical stages within the Crop Disease Detection pipeline.
As illustrated in Figure 3.10, the MobileNetV2 architecture processes input images of size
224x224x3 through an initial 3x3 standard convolution layer with 32 filters and stride 2,

reducing spatial dimensions to 112x112x32 while extracting initial features.

Bottieneck Bottleneck Bottleneck Bottleneck
‘;g"‘? [ erer |l ess=2 || ese2 || ess2 || Conv2D
B DW Conv x2 repeat 3 repeat x4 repeat [x5)

224%224x3 M2x112232 M2x112%16 Sex56x24 28x78x32 14x14x64 Tx7%1280

Leafi Sigmoid
Non-Leaf a
(7=n)
Classification Output FC Layer 1280 1280 1280

Figure 3.10: MobileNetV2 architecture.

Following the initial convolution, the network employs a series of bottleneck blocks with
inverted residual structures and shortcut connections. These blocks have varying con-
figurations of expansion factors (t) and strides (s), progressively reducing spatial dimen-
sions through lightweight depthwise convolutions: 112x112x16, 56x56x24, 28x28x32, and
14x14x64. The network then uses a 1x1 convolution to expand to 1280 channels, followed
by global average pooling and fully connected layers for binary leaf/non-leaf classification
with sigmoid activation.

With approximately 3.5 million parameters, the model maintains efficiency for mobile de-
ployment while providing robust OOD detection capability. Training leverages the Adam
optimizer with binary cross-entropy loss, incorporating regularization techniques such as

dropout and batch normalization to prevent overfitting.
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* Crop Classification Model
EfficientNetB3 represents a breakthrough in neural architecture design through compound
scaling, systematically balancing network depth, width, and resolution. We implemented
this architecture for multi-class crop classification to distinguish between tomato, potato,
and pepper plants, providing the critical intermediate stage in our Crop Disease Detection
pipeline within the Processing Layer.
Figure 3.11 shows the EfficientNetB3 architecture for crop classification, highlighting its
use of mobile inverted bottleneck convolution (MBConv) blocks with squeeze-and-excitation

modules.

MEConv1 MEBEConvé
CO;I’:&ZD - t=1.5=1 | »] 6,572
@33 *2 blocks *3 blocks.

224x224x3 M2x112=40 M2x112x32

28x23x36 14x14x136

Classification 3 512 512 1536

Figure 3.11: EfficientNetB3 architecture.

The EfficientNetB3 architecture begins with a 3x3 convolution producing feature maps
of 112x112x40, followed by a series of MBConv blocks with varying configurations. These
blocks progressively reduce spatial dimensions (112x112x32, 56x56x48, 28x28x96, 14x14x136)
while integrating depthwise separable convolutions, squeeze-and-excitation (SE) mod-

ules for channel attention, and residual connections for efficient feature transformation.

The network concludes with a 1x1 convolution expanding to 1536 channels, global aver-
age pooling, and dense layers with softmax activation for three-class classification (tomato,
potato, pepper). With approximately 12 million parameters, EfficientNetB3 balances ac-
curacy and efficiency through compound scaling, employing Adam optimizer with cate-
gorical cross-entropy loss alongside regularization methods like batch normalization and
dropout. This architecture ensures precise crop type identification, enhancing diagnostic

accuracy by directing plant images to disease classifiers for specific pathologies.

* Disease Diagnosis Models
Our Processing Layer implements specialized neural network architectures for disease di-
agnosis, each optimized for specific characteristics and disease patterns of target crops.
These models are activated based on crop classification results, ensuring each plant im-

age is analyzed by the most appropriate diagnostic model within Crop Disease Detection.
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- Tomato and Potato Disease Classification: For tomato and potato disease classifica-
tion within the Crop Disease Detection component, we implemented the DenseNet121

architecture shown in Figure 3.12.

Dense
6 layers

256x256x3 128x128x64 B4x64x236

32x32%128 16=162312 ExBx1024

236 236 2 2 2 1024

Figure 3.12: DenseNet121 architecture.

DenseNet121 employs densely connected convolutional networks where each layer
receives feature maps from all preceding layers, promoting feature reuse and gradi-
ent flow. Processing input images of size 256x256x3, the architecture begins with a
7x7 convolution (64 filters, stride=2) and 3x3 max pooling, followed by four dense
blocks with 6, 12, 24, and 16 layers respectively. Each block implements a bottle-
neck design with batch normalization, ReLU activation, and 1x1 and 3x3 convolu-
tions, while transition layers between blocks reduce feature map dimensions using
1x1 convolutions and 2x2 average pooling.

After global average pooling, the network outputs features through dense layers with
softmax activation, utilizing separate classification heads for tomato (10 classes) and
potato (7 classes) diseases. With approximately 8 million parameters, the model bal-
ances detailed feature recognition with computational efficiency, using Adam op-
timizer with categorical cross-entropy loss and regularization techniques including

batch normalization, dropout, and dense connectivity.

- Pepper Disease Classification: For pepper disease classification within the Crop
Disease Detection component, we implemented the ResNet50 architecture shown
in Figure 3.13. ResNet50 employs deep residual learning with shortcut connections
that perform identity mapping, addressing the vanishing gradient problem for ro-

bust feature extraction.
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Figure 3.13: ResNet50 architecture.

Processing input images of size 256x256x3, the network begins with a 7x7 convolu-
tion (64 filters) and 3x3 max pooling, followed by four stages of residual blocks with
bottleneck designs: 3 blocks (64x64x256), 4 blocks (32x32x512), 6 blocks (16x16x1024),
and 3 blocks (8x8x2048).

After global average pooling producing 2048 features, dense layers with softmax ac-
tivation enable classification across 12 pepper disease classes. With approximately
23 million parameters, ResNet50 balances capacity and efficiency, using Adam op-
timizer with categorical cross-entropy loss alongside regularization techniques in-

cluding batch normalization, dropout, and residual connections.

¢ Treatment Recommendation Generation Model

GPT-2 (Generative Pretrained Transformer 2) is a transformer-based language model that
generates human-like text through autoregressive prediction. In our system, we imple-
mented a fine-tuned GPT-2 model within the Recommendation Generation component
to generate contextually appropriate agricultural treatment recommendations based on
identified crop-disease combinations, bridging the gap between technical disease identi-
fication and practical remediation actions.

Figure 3.14 illustrates our GPT-2 implementation for treatment recommendation genera-
tion, showing how crop and disease inputs are processed through knowledge-based pro-

cessing before generating structured treatment recommendations.
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Figure 3.14: GPT-2 architecture.

The recommendation system integrates Crop and Disease Inputs from the Crop Disease
Detection component with knowledge base information from the Data Layer. This pro-
cessed information feeds into a GPT-2 architecture featuring 12 transformer blocks with
multi-head self-attention mechanisms (12 attention heads) and position-wise feed-forward
networks. The model architecture includes token embeddings (768-dimensional), posi-
tional encoding, and transformer blocks with Layer Normalization, Attention, Feed-Forward

Networks, and Residual Connections, supporting a vocabulary of 50,257 tokens.

Fine-tuned on a specialized crop-disease-treatment dataset, the model generates struc-
tured reports organized into sections: disease confirmation, cause analysis, symptom de-
scriptions, and treatment recommendations. With approximately 124 million parameters
and a context length of 1024 tokens, it provides comprehensive, actionable advice tailored
for farmers. Optimization employs AdamW with learning rate decay, gradient clipping,
and regularization through layer normalization and residual connections. This final stage
of the analytical pipeline translates disease classifications into farmer-friendly advice to

enhance agricultural decision-making.

3.4.3 Performance Evaluation

To effectively assess the system’s performance in real-world agricultural settings, several met-
rics are essential for evaluating both the Crop Disease Detection and the Recommendation Gen-
eration components in the Processing Layer. This section outlines the key performance metrics

used, grouped by task type.

* General Classification Metrics:
These metrics apply to both binary and multi-class classification tasks in the detection

pipeline[86]:
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Accuracy: Proportion of correct predictions:

TP+TN
TP+TN+FP+FN

Accuracy =

Precision: Proportion of positive predictions that are correct:

TP

Precision = ————
TP+ FP

Recall (Sensitivity): Proportion of actual positives correctly predicted:

TP

Recall= ———
TP+FN

F1-Score: Harmonic mean of precision and recall:

Precision - Recall
F1-Score=2-

Precision + Recall

Confusion Matrix: A matrix comparing actual vs. predicted classes to visualize clas-

sification errors.

1. Binary Classification Specific Metric:
- Binary Cross-Entropy Loss (BCE): Standard loss function for binary classifica-
tion[87]:

1 N
BCE Loss=—— )_ [yilog(y) + (1 - y)log(1 - )]
i=1

2. Multi-Class Classification Specific Metrics:

- Macro-Averaged Metrics: Compute metrics independently for each class and

take the average, gives equal weight to all classes.

- Micro-Averaged Metrics: Aggregate the contributions of all classes, gives more

weight to frequent classes.
- Categorical Cross-Entropy Loss (CCE): Loss function for multi-class classifica-
tion[87, 88]:
N C
CCELoss=-)_ > yiclog(ic)

i=1c=1
In the above equations, TP, FP, TN, and FN refer to true positives, false positives, true

negatives, and false negatives, respectively[89].
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e Natural Language Generation Metrics for Recommendation Evaluation:

These metrics are used to evaluate the quality of generated treatment recommendations:

- BLEU (Bilingual Evaluation Understudy): Measures n-gram precision compared to

reference text[90]:
N

BLEU =BP-exp ( wylog Pn)

n=1

Where p,, is the n-gram precision, w,, is the weight (usually %), and BP is the brevity
penalty[91, 92].

— ROUGE Metrics: Compare textual overlap between candidate and reference sequences[91,
93]:

* ROUGE-1: Unigram (single-word) overlap.
+ ROUGE-2: Bigram (two-word) overlap.
+ ROUGE-L: Longest common subsequence.

- Perplexity: Indicates how well a language model predicts text. Lower values imply

better perfo rmance[94]:
P —— -1 Zl-\l log, P(w;)
Perplex1ty =2 N&i=1 82 i

These performance metrics provide a comprehensive framework for evaluating both the
Crop Disease Detection and Recommendation Generation components of our Processing Layer,
ensuring that the system delivers accurate diagnoses and helpful recommendations to farmers

through the End User Layer.

3.5 Conclusion

The system design offers a modular, scalable foundation for Al-powered plant disease de-
tection. Through clear architecture, defined data pipelines, and tailored model structures, it
establishes a practical and adaptable solution. The next chapter focuses on its technical imple-

mentation and real-world performance.
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Chapter 4

Implementation and Results

4.1 Introduction

The implementation of the plant disease detection and recommendation system translates
the designed architecture into a functional solution. Development tools, frameworks, and the
processed data is used to build and integrate the multi-model pipeline into a mobile applica-
tion. The system is tested across various scenarios, and the results highlight its performance,

accuracy, and suitability for real-world agricultural conditions.

4.2 Development Environment and Tools

The implementation leveraged a comprehensive technology stack across multiple domains.
The development environment combined cloud-based platforms for computationally intensive

tasks with local tools for application development and interface design.

e Hardware and System Specifications

Two distinct computing environments were used to optimize different phases of the devel-
opment process. Resource-intensive model training was executed on a high-performance
Ubuntu-based system, while documentation, application development, and testing were
carried out on a secondary Windows-based machine.

Table 4.1 summarizes the specifications of the primary development machine used for
training deep learning models. The system featured a powerful RTX 3060 GPU, which en-
abled efficient parallel computation for neural network operations. The 32GB RAM sup-
ported large-scale data preprocessing and training workflows, while the Ubuntu LTS en-

vironment ensured stability and compatibility with machine learning frameworks.
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Component Specification

CPU Intel Core i5-10400F

GPU NVIDIA GeForce RTX 3060
RAM 32GB DDR4

Operating System | Ubuntu LTS 20.04 (Focal Fossa)

Table 4.1: Hardware specifications for model training.

General-purpose development tasks were executed on a secondary Windows-based ma-

chine, whose specifications are listed in Table 4.2. This environment was sufficient for

documentation, Ul design using Figma, mobile application development in Android Stu-

dio, and application testing. The Windows platform provided broader compatibility with

design and development tools and allowed for smooth integration of mobile testing work-

flows.
Component Specification
CPU Intel Core i7-3537U @ 2.00GHz (2.50GHz boost)
GPU NVIDIA GeForce GT 740M
RAM 6.00GB
Storage HDD
Architecture 64-bit
Operating System | Windows 10 Pro

Table 4.2: Hardware specifications for general development tasks.

* Programming Languages

— Python: Primary language used for all data processing, model development, and

backend services. Python’s extensive ecosystem of scientific and machine learning

libraries made it ideal for implementing the core functionality of the system [95].

Figure 4.1: Python logo.
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- Java: Used for Android mobile application development, providing native perfor-

mance and access to device features like the camera and location services [96].

S

—

Figure 4.2: Java logo.

* Design and Documentation

- Figma: User interface design platform used for creating interactive prototypes and

mockups of the mobile application interface [97].

- PlantUML: UML diagram creation tool used for generating system architecture dia-

grams, activity flows, and use case models [98].

¢
PlantU L

Figure 4.3: PlantUML logo.

e Data Processing and Analysis

- NumPy: Fundamental package for scientific computing with Python, used for nu-

merical operations on image data [99].

- Pandas: Data manipulation library used for dataset preparation, cleaning, and anal-
ysis [100].

- Scikit-learn: Machine learning library used for data preprocessing, model evalua-

tion metrics, and traditional machine learning algorithms [101].

— OpenCV (cv2): Computer vision library used for image preprocessing, color analysis,

and leaf detection algorithms [102].

- Albumentations: Image augmentation library used to enhance the diversity of the

training dataset [103].
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— Matplotlib and Seaborn: Visualization libraries used for generating training progress

graphs, confusion matrices, and dataset distribution charts [104, 105].

- NLTK: Natural Language Toolkit, used for text preprocessing such as tokenization,
stopword removal, and lemmatization, particularly for preparing intent classifica-

tion and entity extraction datasets [106].

— SpaCy: Advanced NLP library used for efficient tokenization, named entity recogni-
tion, and part-of-speech tagging, commonly employed in preprocessing for GPT-2

and other language models [107].
* Model Development Tools

- TensorFlow/Keras: Primary deep learning framework used for implementing and
training all classification models, including EfficientNetB3, DenseNet121, and ResNet50
architectures [108, 109].

Figure 4.4: TensorFlow logo.

- PyTorch: Secondary framework used primarily for the GPT-2 recommendation sys-

tem implementation [110].

- TensorFlow Lite: Used to convert and optimize trained models for efficient deploy-

ment on mobile devices with limited computational resources [111].

— Google Colab: Cloud-based Jupyter notebook environment providing GPU acceler-

ation for model training [112].

(

Figure 4.5: Google Colab logo.
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- PlantVillage Dataset in Kaggle: Primary dataset used for training crop and disease

classification models [113].

Figure 4.6: Kaggle logo.

* Application Development

— Android Studio: Integrated development environment (IDE) used for developing the

native Android application in Java [114].

Figure 4.7: Android Studio logo.

¢ Cloud Infrastructure and Services

- Google Cloud Platform: Primary cloud infrastructure providing storage (Cloud Stor-
age), serverless computing (Cloud Functions), and machine learning services (Al
Platform) [115].

Figure 4.8: Google Cloud logo.

— Flask: Lightweight Python web framework used to build the API server that handles

image analysis requests from the mobile application [116].

Figure 4.9: Flask logo.
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- Weather API: External service integrated to provide localized weather data for con-

textualizing plant disease diagnoses and recommendations [117].

Figure 4.10: Weather API logo.

— HTTP Communication: Simple HTTP POST requests used to transmit image data
from the Android application to the Flask server for processing, with JSON responses

containing analysis results.

4.3 Models Development

The system implements a cascading multi-model pipeline consisting of four main stages:
OOD detection, crop classification, disease diagnosis, and recommendation generation. Each

stage employs specialized architectures optimized for their specific tasks.

4.3.1 Out-of-Distribution (O0OD) Detection Analysis and Results

In plant disease diagnosis systems, ensuring that only relevant images are processed is cru-
cial for accuracy and efficiency. Our system implements an Out-of-Distribution (OOD) detec-
tion mechanism as the first filtering stage, distinguishing between plant leaf material and irrel-
evant inputs before proceeding to disease classification.

The MobileNetV2 model analyzes preprocessed images to determine if they contain valid
plantleaf material. The model’s output layer uses a sigmoid activation function for binary classi-
fication, producing values between 0 and 1 representing the probability of an image containing
leaf material.

As illustrated in Figure 4.11, the OOD detection system serves as the first filtering stage in
our pipeline, ensuring that only relevant plant leaf images proceed to disease classification. This

filtration step is essential for maintaining high accuracy in subsequent classification stages.
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Preprocessed image

Figure 4.11: OOD detection workflow.

The implementation specifics include:

Model: "sequential 3"

MobileNetV2

- Inverted Residual Blocks

+ Linear Bottlenecks

« Depth: 53 Layers

« Lightweight Design: Optimized for
Mobile

+ Binary Classifier: Leaf or Non-Leaf

Training Setup:

+ Epochs: 150

- Batch Size: 32

« Early Stopping

- Dropout: For Regularization

« Loss Function: Binary Cross-Entropy
Loss

+ Optimizer: Adam

<

Leaf

Non Leaf

Figure 4.12 provides a detailed view of the model architecture, highlighting the arrangement

of layers that enable efficient feature extraction while maintaining computational efficiency.

Layer (type)

output Shape

Param #

mobilenetv2_1.88 224

(Functional}

{ 2 T, 7, 1288)

global_average_pooling2d 3 { , 12z8) e |
(GlobalAveragePooling2D)

dropout_3 (Dropout) { , 128 a |
dense_3 (Dense) { , 1) 1,281 |

Total params: 2,25
Trainable params: 1,281 (5.88 KB)

9,265 (8.62 MB)

Non-trainable params: 2,2

57,384 (8.61 MB)

Input: Preprocessed RGB images (224x224).

Output: Binary classification (1eaf or non-1leaf).

mizer with binary cross-entropy loss function.
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and visualized through confusion matrices and ROC curves.

Figure 4.12: Layer structure of the MobileNetV2-based OOD detection model.

Training: 150 epochs, batch size of 32, early stopping for regularization, and Adam opti-

Evaluation: Performance measured using accuracy, precision, recall, F1 score, ROC AUC,

The MobileNetV2-based OOD detection model demonstrated exceptional discrimination
ability between plant images and non-relevant inputs, serving as the critical first filter in our

pipeline. Training over 150 epochs showed rapid convergence, with significant improvements
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during the first 60 epochs followed by stabilization, as illustrated in Figure 4.13. The training loss
decreased rapidly from approximately 0.27 to 0.01-0.02, while validation loss stabilized around
0.03-0.04. This small gap between training and validation loss indicates excellent generalization
with minimal overfitting.

Both training and validation accuracy improved rapidly from around 50% initially, with train-
ing accuracy reaching nearly 99% and validation accuracy stabilizing at approximately 97-98%.

This close tracking further confirms the model’s strong generalization capabilities.
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Figure 4.13: Training and validation curves for the OOD detection model.

Performance evaluation revealed outstanding classification metrics, with particularly strong
results in recall (100 %) and overall accuracy (98.86 %), as detailed in Table 4.3 and visualized in

Figure 4.14.

Metric Value

Accuracy 98.86 %
Precision 97.73 %
Recall 100.00 %
F1-score 98.85 %
AUROC 99.00 %
FPRat95% TPR | 2.22%

Table 4.3: Classification metrics for the OOD detection model.

The confusion matrix in Figure 4.15 further illustrates the model’s strong binary classifica-
tion performance, with clear separation between leaf and non-leaf images.

The ROC curve and threshold optimization results shown in Figure 4.16 highlight the model’s
exceptional discriminative ability, with an AUROC of 0.990. As depicted in Figure 4.16(a). The
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00D Detection Model Performance Metrics
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Figure 4.14: Performance metrics visualization for OOD detection model.
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Non-Leaf

True

20

-15

-10

l
Non-Leaf Leaf
Predicted

Figure 4.15: Confusion matrix for the OOD detection model.

curve demonstrates outstanding performance across different threshold settings, hugging the
top-left corner which indicates near-perfect classification. The optimal operating threshold was
determined to be 0.5, effectively balancing false positive and false negative rates for agricultural
applications, as shown in Figure 4.16(b).

The detailed analysis of True/False Positives/Negatives, as presented in Figure 4.17, revealed
perfect performance in avoiding false negatives (0 instances), ensuring that all actual leaf images
proceed to the next stage of disease classification. This is particularly important for a first-stage
filtering model.
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True Positive Rate

ROC Curve for Leaf Classification
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(a) ROC curve.

Parameter Value

Optimal Threshold 0.5

Metrics at Optimal Threshold

Recall 100.00 %
Precision 97.73%
FPR 2.22%

(b) Model performance metrics at optimal
threshold.

Figure 4.16: ROC curve analysis and threshold optimization for OOD detection.

MobileNetV2 Detailed Analysis of True/False Positives/Negatives

True Positives (TP)

Count: 43

Leaf correctly identified as leaf

True Negatives (TN)

Count: 44

Non-leaf correctly identified as non-leaf

False Positives (FP)

Count: 1

Non-leaf incorrectly identified as leaf

False Negatives (FN)
No sample

Count: 0

Leaf incorrectly identified as non-leaf

o sample

No sample.

Figure 4.17: True/False Positives/Negatives analysis.

The model’s remarkable capability in distinguishing between plant and non-plant images

can be attributed to several factors. The MobileNetV2 architecture provides an excellent balance

between computational efficiency and feature extraction power. The perfect recall score (100 %)
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indicates successful prioritization of avoiding false negatives, which is critical in our pipeline to
ensure no valid plant images are rejected. The ROC curve performance, with an AUC of 0.990,
demonstrates the model can distinguish between leaf and non-leaf images with near-perfect
accuracy. The significant separation between the ROC curve and the diagonal baseline confirms
substantially better-than-random performance.

The low false positive rate (2.22%) suggests the model has effectively learned distinguishing
visual patterns between plant and non-plant images despite the diversity of potential inputs.
These results confirm that our OOD detection model serves as a reliable first filter in the di-
agnosis pipeline, effectively preventing irrelevant images from proceeding while ensuring all

legitimate plant images are properly processed for subsequent disease classification.

4.3.2 Crop Classification Analysis and Results

After confirming that an image contains valid plant leaf material through the OOD detection
stage, our system must determine the specific crop type to enable targeted disease diagnosis.
This critical second stage in our pipeline directs each image to the appropriate crop-specific
disease classifier, ensuring accurate diagnosis across multiple plant species.

The crop classification system serves as the second stage in our pipeline, determining the
plant type before proceeding to disease-specific diagnosis. This sequential approach allows for
specialized disease models tailored to each crop’s unique pathologies, significantly improving

overall diagnostic accuracy compared to a single multi-crop disease classifier.

EfficientNetB3

Preprocessed image

Tomato
<»Potato
Pepper

ugmentation: Random Flipping,
otation, Zoom, and Centrast

Figure 4.18: Crop classification workflow.

The EfficientNetB3 model processes images validated by the OOD detection stage to classify
them into specific crop types. The model’s output layer uses a softmax activation function, pro-
ducing normalized probability distributions across the three crop classes ("Tomato," "Potato,"
or "Pepper").

Figure 4.19 provides a detailed view of the model architecture, highlighting the arrangement
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of layers that enable efficient feature extraction while maintaining computational efficiency.
The complex structure shown in this figure demonstrates the sophisticated nature of the Effi-

cientNetB3 architecture used for crop classification.

Model: "sequential 1"

Layer (type) Output Shape Param #
Ccequential (Sequential) | (None, 224, 224, 3) 0
efficientnetb3 (Functional) (Mone, 7, 7, 1536) 18783535

global average pooling2d (G (MNone, 1536) ]
lobalAveragePooling2D)

dense (Dense) (Mone, 512) 786944
dropout (Dropout) (None, 512) 8
dense_1 (Dense) (None, 3) 1539

Total params: 11,572,018
Trainable params: 788,483
Non-trainable params: 16,783,535

Figure 4.19: Layer structure of the EfficientNetB3-based crop classification model.

The implementation specifics include:

e Input: Preprocessed RGB images (224x224x3).
* Output: Three-class classification (tomato, potato, or pepper).

* Training: Transfer learning approach with pre-trained weights, followed by fine-tuning

for crop-specific features.
* Dataset: Balanced collection of leaf images across the three target crops.

e Evaluation: Performance measured using accuracy, precision, recall, F1 score, and visu-

alized through confusion matrices and classification reports.

To validate our architectural selection, we evaluated multiple deep learning architectures,
with a focus on MobileNetV2 and EfficientNetB3. Figure 4.20 illustrates the performance of Mo-
bileNetV2 on the crop classification task, revealing significant limitations that influenced our
architectural choice.

During our architecture evaluation, we faced significant challenges with the MobileNetV2
model. Analysis of the learning curves revealed unsatisfactory results, with training accuracy

plateauing at approximately 60% while validation accuracy struggled to exceed 40% after 15
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Figure 4.20: MobileNetV2 performance on crop classification.

epochs. As shown in Figure 4.20, the curves show a concerning pattern - a persistent and widen-
ing gap between training loss (1.2) and validation loss (exceeding 2.0), indicating that this archi-
tecture was unsuitable for our classification task despite extensive hyperparameter tuning.

To address these performance issues, we implemented EfficientNetB3, which demonstrated
remarkably superior learning patterns (Figure 4.22). The EfficientNetB3 model showed valida-
tion and training accuracy both rapidly approaching 100% within the initial training epochs.
Most notably, the validation loss consistently tracked below training loss and approached zero,
demonstrating a dramatically superior learning pattern compared to MobileNetV2. This stark
contrast in performance metrics confirmed that EfficientNetB3’s architectural design was sig-
nificantly more effective for our implementation, prompting its selection as our final model
architecture.

The model was trained using 300 epochs with early stopping after 20 epochs of no improve-
ment, and Adam optimizer with categorical cross-entropy loss function. The training process
demonstrated rapid improvement during the initial epochs, as shown in Figure 4.21, showcasing
the effectiveness of transfer learning. Early stopping was employed, halting training at epoch 74

after the validation loss plateaued, with the complete learning curves displayed in Figure 4.22.

Epoch 1/300
329/329 [ ] - ETA: 0s - loss: 0.1336 -

accuracy: 0.9458 - precision: 0.9482 - recall: 0.8%437

Epoch 1: val loss improved from inf to 0.03352, saving model to
/home/octane/sara_bitam/leafy/data/crops/checkpoints/EfficientNetB3_20250
502_181745.h5

329/329 [ ] - 51s 129ms/step - loss: 0.1236
- accuracy: 0.%458 - precision: 0.9482 - recall: 0.%437 - val loss:
0.0335 - val_accuracy: 0.9853 - val precision: 0.9856 - val recall:
0.9853

Epoch 2/300

328/329 [ >.] - ETA: 0s - loss: 0.0741 -
accuracy: 0.9709 - precision: 0.9711 - recall: 0.5707

Epoch 2: val_loss improved from 0.03352 to 0.02227, saving model to
/home/octane/sara_bitam/leafy/data/crops/checkpoints/EfficientNetB3_20250
502 181745.h5

329/329 [ ] - 38s llems/step - loss: 0.0741
- accuracy: 0.%70% - precision: 0.9711 - recall: 0.2707 - val_loss:
0.0223 - val_accuracy: 0.9929 - val precision: 0.9931 - val_recall:
0.9927

Figure 4.21: Initial training epochs for crop classification model.
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Figure 4.22: Training and validation curves for crop classification.

Figure 4.23 shows the final training epochs for the crop classification model, illustrating how
the training stabilized and converged to an optimal solution. The consistent performance across
training and validation sets demonstrated in this figure indicates strong generalization capabil-
ities.

328/329 [cemsssssssssssssssssssssss==, | ETA: 0s loss: 0.0134

accuracy: 0,9951 precision: 00,9951 recall: 0.9951Restoring model
weights from the end of the best epoch: 54.

Epoch 74: val loss did not improve from 0.00131

329/329 [s===ssssssss=ss===sss==s=ss====] - 385 ll4ms/step - leoss: (.0134
= accuracy: 0.9951 - precisicn: 0.8951 - recall: 0.9951 - val loss:
0.0025 - val_accuracy: 0.9987 - val precision: 0.9987 - val_recall:

0.9987
Epoch 74: early stopping

Figure 4.23: Final training epochs for crop classification model.

The learning curves reveal excellent convergence behavior, with training and validation met-
rics tracking closely throughout the process. This pattern indicates strong generalization capa-
bility without signs of overfitting, despite the model’s considerable depth and capacity.

The early stopping mechanism effectively identified the optimal training duration, preserving
model performance while preventing unnecessary computation.

The model achieved remarkable classification metrics across training, validation, and test
datasets, with test accuracy reaching 99.89 %, as detailed in Table 4.4 and visualized in Fig-
ure 4.24. This exceptional consistency across all dataset splits demonstrates the model’s robust
generalization capabilities.

The confusion matrix in Figure 4.25 highlights the model’s strong diagonal performance,
with minimal cross-crop confusion. As shown in this visualization, the model correctly clas-
sified nearly all samples, with only five potato samples misclassified as pepper. This pattern
suggests that while potato and pepper leaves may share some visual similarities, the model has

largely overcome this potential source of confusion.
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Metric Training | Validation | Test

Loss 0.0014 0.0013 0.0034
Accuracy | 99.93 % 99.93 % 99.89 %
Precision | 99.93 % 99.93% | 99.89%
Recall 99.93 % 99.93% | 99.89%
F1l-score | 99.93 % 99.93% | 99.89 %

Table 4.4: Performance metrics for crop classification model.

Crop Classification Model Performance Metrics

100.0% - 99.89% 99.89% 99.89% 99.89%

99.0% o

98.0%

97.0%

96.0%

95.0% 4
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93.0%

92.0% 4

91.0%

90.0%
Accurac y Precision Recall Fl-Score

Figure 4.24: Performance metrics visualization for crop classification.

Figure 4.26 provides visual examples of correct crop classifications, demonstrating the model’s
ability to recognize each crop type under various conditions. This grid of sample predictions of-
fers tangible evidence of the model’s classification performance across different crop types.

The model’s exceptional capability in distinguishing between the three target crops can be
attributed to several factors. The EfficientNetB3 architecture provides an excellent balance be-
tween depth and width, enabling the model to capture subtle visual differences between crop
types while maintaining computational efficiency. The near-perfect consistency between train-
ing, validation, and test metrics (all approximately 99.9 %) indicates the model has successfully
learned generalizable features rather than memorizing the training data.

The minimal misclassifications (only five potato samples misclassified as pepper) suggests
the model has effectively learned to distinguish between crops even when visual similarities
exist. While our experiments with MobileNetV2 showed promising results and faster inference
times, the marginal performance improvement offered by EfficientNetB3 justified its selection,

particularly given the critical nature of this classification stage in the overall pipeline.
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Confusion Matrix - EfficientNetB3

1400

pepper

1200

1000

True
potato

- 600

- 400

tomato

potato tomato
Predicted

pepper

Figure 4.25: Confusion matrix for crop classification model.

Figure 4.26: Prediction grid showing sample classifications.

These results confirm that our crop classification model serves as a reliable router in the
diagnosis pipeline, accurately directing plant images to the appropriate crop-specific disease
classifier. Following the OOD detection stage that filters out non-leaf images, this component
ensures that each leaf image is correctly categorized before proceeding to the specialized disease

classification models, maintaining high diagnostic accuracy throughout the system.
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4.3.3 Tomato Disease Classification Analysis and Results

In plant pathology detection systems, accurate identification of specific disease conditions
is essential for targeted treatment recommendations. Our tomato disease classification model
represents the final analytical stage in the diagnostic pipeline, providing specific disease identi-
fication after crop type determination and validation of leaf material.

The tomato disease model uses the DenseNet121 architecture with dense connections be-
tween layers for improved gradient flow. With 121 layers depth and approximately 8 million
trainable parameters, this model was trained for 300 epochs with early stopping. The archi-
tecture enables detailed feature recognition critical for distinguishing between similar disease
patterns. The model’s output layer uses a softmax activation function for multi-class classifica-
tion, enabling discrimination across 10 distinct tomato disease categories.

As illustrated in Figure 4.27, the disease classification represents the final analytical stage in
our pipeline, providing specific disease identification based on the previously determined crop
type. This targeted approach allows for precise diagnostic outcomes tailored to tomato-specific
pathologies.

DenseNetl2l

I P Tomato___Target_Spot
Preprocessed image e Tomato__Spider_mites
N [ Tomato_mosaic_virus

P Tomato_Yellow_Leaf_Curl Virus

epth: 121 Layers

o S LI Yy Tomato___Septoria_leaf_spot
::q‘mw Stopping Applied) e Tomato___Early_blight
[ Tomato__heealthy
[P Tomato__Leaf Mold
PTomato__Bacterial_spot

—PTomato___Late_blight

ction: Categorieal Cross-

Entropy
+ Optimizer: Adam

Figure 4.27: Tomato disease classification workflow.

Figure 4.28 provides a detailed view of the model architecture, highlighting the dense con-
nections that enable efficient feature extraction. The layered structure shown in this figure
demonstrates how the DenseNet121 architecture processes input images to extract meaning-

ful features for disease classification.
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training approach.

Model: "seguential"

Layer (type) Cutput Shape Param ¥
cast input (Lambda) (None, 256, 256, 3) 0
densenetl?] (Functional) (None, &, &, 1024) 7037504
global_pooling (GlobalAvera (None, 1024) 0
gePoaling2D)

batch norm 1 (BatchNormaliz (None, 1024) 4096
ation)

dense_1 (Dense) (Hone, 512) 524800
dropaut_1 (Dropout) (Noene, 512) 0
bateh_nerm_2 (BatchNermaliz  (None, 512) 2048
ation)

dense_2 (Dense) (Hone, 256) 131328
dropout_2 (Dropout) (Hone, 256) o
cutput (Dense) (Hone, 10) 2570
Total params: 7,702,346

Trainable params: 681,770

Non-trainable params: 7,040,576

saic virus, and Healthy).

followed by fine-tuning.

fusion matrices.

The implementation specifics include:

Input: Preprocessed RGB images (256x256x3).
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Figure 4.28: Layer structure of the DenseNet121-based disease classification model.

Output: Multi-class classification (10 classes for tomato: Bacterial spot, Early blight, Late

blight, Leaf mold, Septoria leaf spot, Spider mites, Target spot, Yellow leaf curl virus, Mo-

Training: 300 epochs with early stopping, two-phase approach with frozen base model

Dataset: 7,000 training samples, 1,500 validation samples, and 1,500 test samples.

Evaluation: Performance measured using accuracy, precision, recall, F1 score, and con-

The DenseNet121-based tomato disease classification model identifies 10 distinct categories
of tomato diseases from a comprehensive and balanced dataset. Training followed a two-phase
approach: initial training with a frozen base model followed by fine-tuning of all layers.

Figure 4.29 shows the initial training epochs for the tomato disease classification model,
demonstrating rapid early improvements in both accuracy and loss metrics.

Figure 4.30 presents the complete learning curves for the tomato disease model, showing

consistent improvement throughout the training process and the effectiveness of the two-phase
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Phase 1: Training with frozen base model...

Epnch 1/100

2187218 [ ] - ETA: 0s - loss: 2.9564 -
accuracy: 0.3307 - precision: 0.5271 - recall: 0.1564

Epoch l: val_ accuracy improved from -inf ta 0,64878, saving model tao
/home/cctane/sara bitam/leafy/models/tomate 20250502 230727/best model.hb
218/218 [ 1 - 130s 56lms/step - loss: 2.9564
- accuracy: 0.3307 - precision: 0.5271 - recall: 0.1564 - val loss:
2.1792 - wval accuracy: 0.6488 - wval precision: 0.87B6 - val recall:
0.2262 - lr: 1.0000e-04

Epoeh 2/100

218/218 | ] = ETA: Us - loss: 2.11898 -
accuracy: 0.5730 - precisicn: 0.7340 - recall: 0.4123

Epoch 2: val accuracy improved from O,64878 to 0.75068, saving model to
/home/octane/sara bitam/leafy/models/tomato 20250502 230727/best model . hb
218/218 | ] - 945 433ms/step - loss: 2.1198
- accuracy: 0.5730 - precision: 0.7340 - recall: 0.4123 - val loss:
1.68487 - val_accuracy: 0.7507 - val precisicn: 0.8629 - val recall:
0.5885 - lr: 1.0000e-04

Epoch 3/100

218/218 | ] = ETA: Us - loss: 1,H037 -
accuracy: 0.6691 - precision: 0.7814 - recall: 0.5432

Epcch 3: val_accuracy impraoved from O.75068 to 0.80095, saving madel to
/home/ecctane/sara bitam/leafy/models/tomata 20250502 230727 /best model . h&

218/218 | ] = 92s 424ms/step - loss: 1.B037
- accuracy: 0.6691 - precision: 0,7814 - recall: 0.5432 - wval loss:
1.4310 - val_accuracy: 0,B010 - wval precisicn: 0.8679 - val recall:

0.7140 = 1lr: 1.0000e-04

Figure 4.29: Initial training epochs for tomato disease classification.

Model Accuracy Model Loss
104 —— Train Loss
35 1 —— validation Loss
0.8
>
9
£ 0.6
5
o
£
0.4
02 —— Train Accuracy
N —— Validation Accuracy
T T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 o] 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 4.30: Training and validation curves for tomato disease model.

Figure 4.31 displays the final training epochs, illustrating how the model converged to an

optimal solution with stable performance on both training and validation sets.

218/218 [ ] = ETA: 0= - loss: 00,0434 -
accuracy: 0.9999 - precislen 1: 0.9999 - recall 1: 0.959%

Epocn 299: wval accuracy did not improve from 0.99660

218/218 | ] - 108s 496ms/step - loss: 0.0434
- accuracy: 0,2999 - precision_1: 0,9999 - recall 1: 0.,999% - val loss:
0.0630 - val accuracy: 0.983% - val precision 1: 0.9946 - val recall 1:

0.9932 - 1lr: 2.0000e-06
Epoch 300/300
218/218 [ ] - ETA: Os - loss: 0.0439 -

accuracy: 0.9999 - precision 1: 00,9999 - recall 1: 0,959

Epoch 300: wal accuracy did not improve from 0.99660

21a/218 | ] - 108s 493ms/step - loss: 0.0439
- accuracy: 0.9999 - preclision 1: 0.9999 - recall 1: 0.5996 - val loss:
0.0630 - val_accuracy: 00,9932 - val precisien_1: 0.9938 - val_recall 1:
0.9932 - lr: 2.0000e-06

Figure 4.31: Final training epochs for tomato disease model.
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The training curves demonstrate stable learning progression with consistent improvement
in both accuracy and loss metrics. Early epochs show rapid gains in performance, while later
epochs exhibit the fine-tuning process that helps the model achieve optimal classification ca-
pabilities across all disease categories.

The model achieved exceptional performance in both validation and testing phases, with
metrics consistently above 98.8 %, as shown in Table 4.32. This remarkable consistency between
validation and test results indicates strong generalization capabilities and robust performance
in real-world applications. As illustrated in Table 4.32(a) and Table 4.32(b), the validation and

test metrics show nearly identical performance, confirming the model’s stability.

Metric Value Metric Value
Accuracy | 98.87 % Accuracy | 98.80%
Precision | 98.89 % Precision | 98.82 %
Recall 98.87 % Recall 98.80 %
F1 Score | 98.87% F1 Score | 98.80 %
(a) Validation metrics. (b) Test metrics.

Figure 4.32: Tomato disease classification model performance metrics.

Figure 4.33 provides a visual representation of these metrics, demonstrating the model’s bal-
anced performance across all evaluation criteria. The consistently high values across all metrics

indicate strong performance without sacrificing any particular aspect of classification quality.

Tomato Disease Classification Model Performance Metrics

100.0%
99.5%

99.0% 98.8% 98.82% 98.8% 98.8%

98.5%

98.0%

97.5%

Value (%)

97.0%

96.5%

96.0%

95.5%

95.0%
Accuracy Precision Recall F1-Score

Figure 4.33: Performance metrics visualization for tomato disease model.

The confusion matrix in Figure 4.34 reveals the model’s excellent performance across all ten

disease categories, with minimal misclassifications as evidenced by the strong diagonal pattern.
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This visualization confirms the model’s ability to correctly distinguish between different tomato

diseases, even those with similar visual characteristics.

Confusion Matrix

Tomato__Bacterial_spot

Tomato_Early_blight -

Tomato_Late_blight -

Tomato__Leaf_Mold -

Tomato_Septoria_leaf_spot - 0

True Label

Tomato_Spider_mites_Two-spotted_spider_mite -

Tomato_Target_Spot -

Tomato__Tomato_Yellow_Leaf_Curl_Virus -

Tomato__Tomato_mosaic_virus -

Tomato_healthy -

Predicted Label

Figure 4.34: Confusion matrix for tomato disease classification.

The model’s exceptional capability in classifying tomato diseases can be attributed to sev-
eral factors. The DenseNet121 architecture with its dense connectivity pattern enables efficient
feature reuse and gradient flow, making it particularly effective for the fine-grained visual dis-
tinctions between disease types. The consistent performance between validation (98.87 %) and
test (98.80 %) datasets indicates robust generalization capability without overfitting. The per-
class metrics show remarkably balanced performance across all disease categories, with only
minimal variations in precision.

The high performance metrics correlate strongly with the large, well-balanced dataset of ap-
proximately 1,000 samples per disease category, confirming that adequate data representation is
crucial for effective disease classification. These results establish the tomato disease classifier as
the strongest performer among our crop-specific models, providing reliable disease identifica-

tion that can directly inform treatment and management decisions in agricultural applications.
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4.3.4 Potato Disease Classification Analysis and Results

Following the successful implementation of tomato disease classification, our system also
includes a specialized model for potato disease detection. This component enables accurate
identification of potato-specific pathologies, further extending the diagnostic capabilities of our
agricultural disease detection pipeline.

The potato disease model also uses the DenseNet121 architecture with dense connections
between layers for improved gradient flow. With 121 layers depth and approximately 8 million
trainable parameters, this model was trained for 300 epochs with early stopping. The archi-
tecture enables detailed feature recognition critical for distinguishing between similar disease
patterns. The model’s output layer uses a softmax activation function for multi-class classifica-
tion, enabling discrimination across 7 distinct potato disease categories.

The implementation specifics include:

e Input: Preprocessed RGB images (256x256x3).

e Output: Multi-class classification (7 classes for potato: Bacteria, Fungi, Healthy potato,

Nematode, Pest, Phytophthora, and Virus).

* Training: 300 epochs with early stopping, two-phase approach with frozen base model

followed by fine-tuning.

e Dataset: 4,900 training samples, 1,050 validation samples, and 1,050 test samples (ap-

proximately 700 images per class).

e Evaluation: Performance measured using accuracy, precision, recall, F1 score, and con-

fusion matrices.

The DenseNet121-based potato disease classification model classifies 7 distinct categories
of potato diseases, providing specialized identification capabilities for this important crop. The
training strategy employed a two-phase approach: initial training with a frozen base model to
learn high-level features, followed by careful fine-tuning of all layers to optimize disease-specific
pattern recognition.

Figure 4.35 shows the initial training epochs for the potato disease model, demonstrating
how the model rapidly improved its classification capabilities in the early stages of training.

Figure 4.36 presents the complete learning curves for the potato disease model, illustrating
the overall training progression and the effectiveness of the two-phase approach.

Figure 4.37 displays the final training epochs, showing how the model stabilized and con-

verged to an optimal solution as training progressed.
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Phase 1: Training with frozen base model...
Epoch 1/100

153/153 - ETA: @s - loss: 3.4283 - accuracy: 0.1925 - precision: 0.2349 - recall: 0.0678

Epoch 1: to 0.45410, saving model to /home/octane/sara_bitam/leafy/models/potato_20250504_080829/best_model.hS
153/153 - 925 561ms/step - loss: 3.4283 - accuracy: 0.1925 - precision: ©.2349 - recall: .0678 - val_loss: 2.7569
Epoch 2/

153/153 - ETA: @5 - loss: 3.0094 - accuracy: 8.3141 - precision: 0.4574 - recall: 0.1479

Epoch 2: val_accuracy improved from 8.45410 to 0.54590, saving model to /home/octane/sara_bitam/leafy/models/potato_20250504_080829/best_model.hs
153/153 - 675 adems/step - loss: 3.0094 - accuracy: 0.3141 - precision: 0.4574 - recall: .1479 - val_loss: 2.4343

Epoch 3/:

153/153 - ETA: @5 - loss: 2.7889 - accuracy: 0.3782 - precision: 0.5281 - recall: 0.2030

Epoch 3: 90 to 0.58789, saving model to /home/octane/sara_bitam/leafy/models/potato_20250504_080829/best_model.hs
153/153 - 675 436ms/step - loss: 2.7889 - accuracy: 0.3782 - precision: 0.5281 - recall: 0.2030 - val_loss: 2.2284

Figure 4.35: Initial training epochs for potato disease model.

Model Accuracy Model Loss
o 1= Train Accuracy ,./-——"‘""Nw 351 —— Train Loss
Validation Accuracy — Validation Loss
0.9 4
3.0
0.8 4
2.5 4
0.7
>
2 064 @ 2.0
g 0.6 g2
%
05
15
0.4
1.0
03
0.2 0.5 1 M=
0 25 0 75 100 125 150 175 200 0 25  s0 75 100 125 150 175 200
Epoch Epoch

Figure 4.36: Training and validation curves for potato disease model.

Epoch 198: val_accuracy did not improve from 0.95605

153/153 775 S@lms/step - loss: 0.4841 - accuracy: 0.9774 - precision_1: 0.9814 - recall 1: 0.9749 - val_loss: 0.56
Epoch 19

153/153 - ETA: s - loss: 0.4788 - accuracy: 0.9807 - precision_1: 0.9826 - recall 1: 0.9770

Epoch 19 rom 0.95605

- 76s Seems/step - loss: 0.4788 - accuracy: .9867 - precision_1: ©.9826 - recall 1: 0.9770 - val_loss: 0.57

153/153 =] - ETA: @s - loss: 0.4818 - accuracy: 0.9772 - precision_1: 0.9810 - recall 1: ©.9745
Epoch 20 e from 0.95605
153/153 =] - 765 498ms/step - loss: ©.4818 - accuracy: 0.9772 - precision_1: 0.9810 - recall_1: 0.9745 - val_loss: .56

Figure 4.37: Final training epochs for potato disease model.

The learning curves reveal a steady improvement in classification accuracy throughout train-
ing, with the model eventually reaching strong performance levels. The close tracking between
training and validation metrics indicates good generalization capability without significant over-
fitting, despite the more limited dataset compared to the tomato model.

The model achieved strong performance across all seven potato disease categories, with
test accuracy of 95.14 %, as detailed in Table 4.5. These metrics demonstrate the model’s reli-
able classification capabilities, with balanced performance across precision, recall, and F1 score

measurements.

Metric Value

Accuracy | 95.14 %
Precision | 95.16 %
Recall 95.14 %
F1 Score | 95.11 %

Table 4.5: Test metrics for potato disease classification model.

Figure 4.38 provides a visual representation of these performance metrics, highlighting the
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model’s balanced capabilities across different evaluation criteria. The consistently high values
across all metrics indicate effective learning of disease patterns without sacrificing any particu-

lar aspect of classification performance.

Potato Disease Classification Model Performance Metrics
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95.0%
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Figure 4.38: Performance metrics visualization for potato disease model.

The confusion matrix shown in Figure 4.39 reveals the model’s classification performance
across all seven disease categories. While maintaining strong overall accuracy, some minor con-
fusion between certain disease classes is evident in the matrix’s off-diagonal elements. This vi-
sualization helps identify specific disease pairs that exhibit visual similarities, providing insights
for potential model improvements.

The model demonstrates strong capability in classifying potato diseases (95.14% accuracy),
though slightly lower than the tomato model (98.80%). This performance difference can be at-
tributed to three key factors: the effective feature extraction capabilities of the DenseNet121
architecture, good generalization capability evident in the test metrics, and the correlation be-
tween performance and dataset size (approximately 700 samples per category for potato versus
1,000 for tomato).

The patterns visible in the confusion matrix indicate that additional training data for visually
similar classes could further improve performance. Despite these minor limitations, the potato
disease classification model provides reliable diagnostic capabilities that can inform timely in-
tervention strategies for potato crop management. The training progression shows how the
model effectively learned to distinguish between disease categories despite having a more lim-

ited dataset compared to the tomato classifier.
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Figure 4.39: Confusion matrix for potato disease classification.

4.3.5 Pepper Disease Classification Analysis and Results

To complete our multi-crop disease detection system, we developed a specialized model
for pepper diseases. This component presents unique challenges compared to the tomato and
potato models, primarily due to significant data limitations that affected our architectural choices
and training approach.

Unlike the tomato and potato models, the pepper disease classifier uses ResNet50 archi-
tecture with residual connections for improved gradient propagation. With 50 layers depth and
approximately 23 million trainable parameters, this model was trained for 200 epochs with early
stopping. It can identify twelve different pepper conditions including nutrient deficiency, blos-
som end rot, bacterial spot, and various infestations. The model’s output layer uses a softmax
activation function for multi-class classification, enabling discrimination across 12 distinct pep-
per disease categories.

As illustrated in Figure 4.40, the pepper disease classification follows the same pipeline pat-
tern but employs a different architecture optimized for the unique challenges of pepper disease
identification. This architectural choice was made after extensive experimentation with alter-

native models, as will be discussed later in this section.
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Figure 4.40: Pepper disease classification workflow.

Figure 4.41 provides a detailed view of the ResNet50 architecture, highlighting the residual
connections that allow efficient training even with limited data. The structure shown in this fig-

ure illustrates the key components of the ResNet50 model used for pepper disease classification.

Layer (type) Output Shape Param #

cast_input (Lambda) (None, 256, 256, 3) [
resnetse (Functional) (None, 8, 8, 2048) 23587712

global_pooling (GlobalAvera (None, 2048) [
gePooling2D)

batch_norm_1 (BatchNormaliz (None, 2048) 8192
ation)

dense_512 (Dense) (None, 512) 1049088
dropout_1 (Dropout) (None, 512) [

batch_norm_2 (BatchNormaliz (None, 512) 2048
ation)

dense_256 (Dense) (None, 256) 131328
dropout_2 (Dropout) (None, 256) [

batch_norm_3 (BatchNormaliz (None, 256) 1024
ation)

dense_128 (Dense) (None, 128) 3289
dropout_3 (Dropout) (None, 128) [

output (Dense) (None, 12) 1548

Figure 4.41: Layer structure of the ResNet50-based disease classification model.

The implementation specifics include:
* Input: Preprocessed RGB images (256x256x3).

e Output: Multi-class classification (12 pepper disease classes: Aphid, Bacterial spot, Blos-
som end rot, Burn, Edema, Healthy pepper, Leaf curl, Leaf miners, Mosaic virus, Nutrient

deficiency, Powdery mildew, and Thrips).

e Training: 200 epochs with early stopping, extensive data augmentation to compensate for

limited dataset.

e Dataset: Only 290 total images across all categories, significantly smaller than the tomato
(10,000 images) and potato (3,080 images) datasets, after the data augmentation we have
splitted the pepper images into 8,400 training samples, 1,800 validation samples, and

1,800 test samples.
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e Evaluation: Performance measured using accuracy, precision, recall, F1 score, and con-

fusion matrices.

The pepper model demonstrated a unique training pattern significantly influenced by the
limited dataset size. Despite using data augmentation techniques to artificially expand the
training set, the small sample size created notable challenges.

Figure 4.42 shows the initial training epochs for the pepper disease model, demonstrating

how training progressed in the early stages despite the limited dataset size.

Figure 4.42: Initial training epochs for pepper disease model.

Figure 4.43 presents the complete learning curves for the pepper disease model, revealing
the concerning pattern of divergence between training and validation metrics that suggests

overfitting.
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Figure 4.43: Training and validation curves for pepper disease model.

Figure 4.44 displays the final training epochs, showing how the model’s training stabilized
but with significant gaps between training and validation metrics.

The training curves reveal a concerning pattern: while validation accuracy climbs rapidly
and stays consistently high, the divergence between training and validation metrics suggests
potential overfitting despite our regularization efforts. This pattern becomes evident in the ac-

tual test performance.
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Figure 4.44: Final training epochs for pepper disease model.

Despite reaching an impressive 99.55 % validation accuracy during training, the actual test
performance was significantly lower at 59.72 %, as detailed in Table 4.6. This substantial gap be-
tween validation and test performance clearly indicates overfitting due to the extremely limited

dataset.

Metric Value

Accuracy | 59.72%
Precision | 59.71 %
Recall 59.73 %
F1 Score | 59.72 %

Table 4.6: Test metrics for pepper disease model.

Figure 4.45 visualizes these metrics, highlighting the challenge of achieving balanced perfor-
mance with insufficient training data. The consistent values across all metrics indicate that the

model’s limitations are fundamental rather than specific to particular evaluation criteria.

Pepper Disease Classification Model Performance Metrics
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Figure 4.45: Performance metrics visualization for pepper disease model.

The confusion matrix in Figure 4.46 reveals inconsistent performance across disease cate-
gories, with some diseases showing strong results while others demonstrate significant confu-
sion. This pattern is typical when training examples for certain classes are insufficient to capture

their full visual variation.
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Figure 4.46: Confusion matrix for pepper disease classification.

To confirm our architectural choice and ensure optimal performance given the limited dataset,
we conducted extensive experiments with alternative deep learning architectures. We initially
attempted to use DenseNet121 due to its strong performance in the tomato and potato mod-
els, but encountered severe overfitting similar to our other architectural explorations. We then
compared our ResNet50 implementation with VGG16, as well as DenseNet121, as shown in Fig-
ure 4.47.

Figure 4.47 compares the training between VGG16 (Figure 4.47(a)), ResNet50 (Figure 4.47(b)),
and DenseNet121 (Figure 4.47(c)) architectures, helping to explain our final model selection for
pepper disease classification.

All three models exhibit patterns of overfitting, but with notable differences:

* VGG16 displayed classic symptoms of extreme overfitting, with validation accuracy rising
rapidly to nearly 100 % within the first 25 epochs while training accuracy increased more
gradually. Most concerning, the validation accuracy consistently exceeded training accu-
racy a clear indicator of overfitting to the validation set, likely due to the small and noisy

nature of the dataset.

* DenseNetl21 demonstrated a very similar pattern to VGG16. Both training and valida-
tion accuracy rose sharply to nearly 100 %, and again, the validation accuracy consistently
matched or slightly exceeded training accuracy. This is a clear sign of overfitting, with the
model quickly memorizing even the noisy and limited data without learning truly gener-

alizable features.
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(a) VGG16 training and validation curves. (b) DenseNet121 training and validation curves.
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(c) ResNet50 training and validation curves.

Figure 4.47: Comparison between VGG16, ResNet50, and DenseNet121 training.

* ResNet50, in contrast, showed a more typical overfitting pattern. While training and vali-
dation accuracy both improved, the training accuracy eventually exceeded validation ac-
curacy, and training loss fell below validation loss in the later epochs. Although overfitting
was still present, these patterns suggest that ResNet50 was able to learn more generaliz-
able features before starting to memorize the training set, reflecting a more realistic sepa-

ration between training and validation performance.

4.3.6 Dataset Size Impact

To better understand the impact of dataset size on model performance, we compared the
performance metrics across the three crop models against their respective training dataset sizes,
as presented in Table 4.7. As shown in this table, there is a clear correlation between dataset size
and model performance, with smaller, noisier datasets leading to more pronounced overfitting
across all architectures.

In summary, while all tested architectures overfit on our limited pepper disease dataset,
ResNet50 demonstrated comparatively more robust generalization and more realistic training
dynamics, justifying its selection as the backbone for our final model.

The pepper model demonstrates a classic case of overfitting. The stark contrast between
near-perfect validation performance (99.55 %) and modest test accuracy (59.72 %) reveals the
model’s inability to generalize beyond its training examples. This behavior can be attributed to

the extremely limited dataset size averaging only 24 images per disease category which forced
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Crop Dataset Size | Test Accuracy | Disease Categories | Samples/Category
Tomato 10,000 98.80 % 10 1,000
Potato 3,080 95.14 % 7 440
Pepper 290 59.72 % 12 24

Table 4.7: Relationship between dataset size and model performance.

the model to learn from an inadequate representation of real-world disease variation. Despite
data augmentation efforts, artificially expanded datasets cannot compensate for the fundamen-
tal lack of natural variation present in larger collections.

This case effectively demonstrates that architectural sophistication cannot overcome data
scarcity in deep learning applications for agricultural disease detection, reinforcing the prin-
ciple that data quality and quantity typically outweigh model complexity in practical machine
learning deployments. Our experiments with DenseNet121, which performed exceptionally well
for tomato and potato classifications, further confirmed this limitation as it also exhibited se-
vere overfitting patterns with the limited pepper dataset. These findings highlight the critical
importance of data collection efforts for less common crops to enable robust disease detection

systems.

4.3.7 Recommendation Generation Analysis and Results

The ultimate goal of our plant disease detection system is to provide actionable advice to
farmers. This final component translates technical disease classifications into practical treat-
ment recommendations, completing the diagnostic pipeline with information farmers can im-
plement immediately in the field.

A fine-tuned GPT-2 model generates contextually appropriate treatment recommendations
based on crop-disease combinations. With 124 million parameters, the model was fine-tuned
for 50 epochs with a batch size of 4, using a specialized dataset that maps crop-disease pairs
to expert-crafted treatment guidelines. The output is natural language text providing action-
able treatment recommendations tailored to the specific crop and disease identified in previous
stages.

As illustrated in Figure 4.48, the recommendation generation system serves as the final stage
in our pipeline, translating technical disease classifications into practical advice that farmers
can implement in the field. This component bridges the gap between advanced computer vision

diagnostics and real-world agricultural interventions.
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Figure 4.48: Recommendation generation workflow.

Figure 4.49 details the transformer architecture parameters that enable contextually aware
text generation. Unlike the convolutional neural networks used in earlier stages for image pro-
cessing, this language model utilizes self-attention mechanisms to generate coherent and rele-
vant text responses. The table provides specific architectural parameters that define the GPT-2
model’s capabilities.

Parameter Value
Model Type gpt2
Vocabulary Size 50257
Hidden Size 768
Number of Layers 12
Number of Heads 12

Intermediate Size -
Max Position Embeddings 1024

Layer Norm Epsilon le-05

Activation Function gelu_new

Figure 4.49: Architectural specifications of the GPT-2 recommendation model.

The implementation specifics include:

 Input: Crop-disease classification result from the previous stage.
e Qutput: Natural language treatment guidelines formatted for mobile application display.

* Training: Fine-tuned for 50 epochs on a specialized dataset of expert-crafted treatment

recommendations.

 Evaluation: Performance assessed through BLEU score, perplexity metrics, ROUGE scores,

and human expert evaluation of recommendation quality and accuracy.
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The fine-tuned GPT-2 model generates actionable, context-appropriate treatment recom-
mendations for identified plant diseases. By leveraging transfer learning from a pre-trained
language model, we were able to adapt it to the specialized agricultural domain with relatively
limited training data.

The training progress shows successful domain adaptation with consistent improvement
throughout the training process, with convergence occurring around epoch 40, as illustrated in
Figure 4.50. The declining loss curve indicates that the model progressively learned to generate

text that matches the patterns and content of expert-created treatment recommendations.

Training Progress by Epoch

Figure 4.50: Training and validation curves for GPT-2 model.

The model was evaluated using standard natural language generation metrics, with strong
results particularly in semantic recall as shown by the high ROUGE scores in Table 4.8. These
metrics provide a comprehensive assessment of the model’s text generation capabilities from
different perspectives: fluency (perplexity), precision (BLEU), and recall of important informa-
tion (ROUGE).

Metric Value
Perplexity 17.29
BLEU Score | 0.60
ROUGE-1 0.82
ROUGE-2 0.73
ROUGE-L 0.78

Table 4.8: Natural language generation metrics for reccommendation system.

Figure 4.51 provides a visual representation of these performance metrics, highlighting the
model’s balanced capabilities across different evaluation criteria. The visualization emphasizes
the strong performance in ROUGE scores, which are particularly important for ensuring that
critical treatment information is properly included in the recommendations.

Beyond standard NLP metrics, we conducted a component-wise analysis of recommenda-
tion accuracy. Figure 4.52 reveals that the model performs exceptionally well across all aspects of
disease management advice, with particularly strong performance for prevention recommenda-
tions (91 %). This granular analysis helps ensure that the model provides comprehensive advice

covering immediate treatment, long-term management, and preventive measures.
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Figure 4.51: Performance metrics visualization for recommendation model.

GPT-2 Recommendation Component Accuracy

Prevention Recommendations Accuracy 0.91

Timing Recommendations Accuracy 0.85

Application Method Accuracy

Treatment Dosage Accuracy

Overall Recommendation Accuracy
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Figure 4.52: Component-wise accuracy breakdown for recommendations.
Examples of generated advice for various crop-disease combinations are presented in Ta-

ble 4.9. These illustrate how the model synthesizes disease information into structured, ac-

tionable recommendations with specific treatment products, application rates, and integrated
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management approaches.

Crop Disease Symptoms Cause Recommendation
Pepper Thrips Silver streaks, | Pest (Thrips) | Use blue sticky
distorted traps, apply
leaves, fruit spinosad (250
scars mg/L), ensure
regular inspec-
tion
Tomato Target Spot | Circular Fungal infec- | Remove infected
spots with | tion (Coryne- | leaves, apply
target-like spora cassi- | azoxystrobin
concentric icola) (250 mg/L)
rings
Potato Fungi Dark  spots | Fungal in- | Apply fungicides
on leaves, | fection (e.g., | like Mancozeb
powdery or | Alternaria, (2000 mg/L),
fuzzy growth, | Fusarium) ensure good
rotting tubers drainage, avoid
overhead irriga-
tion

Table 4.9: Sample generated recommendations.

The model’s low perplexity score (17.29) indicates successful adaptation to specialized agri-
cultural vocabulary, while high ROUGE scores (ROUGE-1 at 0.82) confirm strong recall of critical
information from reference recommendations.

Component-wise analysis reveals balanced performance across recommendation aspects,
with prevention advice performing exceptionally well (91%). This balance provides farmers
with comprehensive guidance addressing both immediate control needs and long-term man-
agement strategies.

These results demonstrate that fine-tuned language models like GPT-2 can serve as effective
decision support systems in agriculture. This component completes our plant disease detec-
tion pipeline, transforming smartphone images into actionable farming advice to improve crop

health and productivity.
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4.4 Mobile Application Development and Results

The culmination of our plant disease detection system is an Android mobile application that
brings the entire diagnostic pipeline to farmers’ fingertips. This practical implementation trans-
forms sophisticated deep learning models into an accessible tool that can be used directly in the
field.

The Android application serves as the main user interface, integrating the complete model
pipeline. Our development approach prioritized both technical robustness and user experi-
ence, recognizing that the most accurate disease detection system would be ineffective if farm-
ers found it difficult to use.

Our design approach focused on creating an intuitive interface accessible to users with vary-
ing levels of technological literacy, which is particularly important for agricultural applications.
The Ul was designed in Figma with three main screens that guide users through a logical work-
flow, as shown in Figure 4.53. This streamlined approach ensures that users can quickly move

from launching the app to receiving actionable disease management recommendations.
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Figure 4.53: Mobile application interface screens designed in Figma.

As illustrated in Figure 4.53, the interface ensures a logical progression from welcome/in-

troduction to image capture/selection and finally to results/recommendations. Figure 4.53(a)

shows the Welcome Page that introduces the application’s purpose, Figure 4.53(b) displays the

Process Page that handles image capture and analysis visualization, and Figure 4.53(c) presents

the Report Page with diagnosis results and treatment recommendations. Clear visual cues and

multilingual support are integrated throughout the experience to enhance usability for farmers

with diverse backgrounds.

To support the application functionalities, both mobile and server-side components were

implemented. The mobile component handles user interaction, image capture, and on-device
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inference using TensorFlow Lite models, while the server component provides more compre-
hensive analysis capabilities when internet connectivity is available. Figure 4.54 illustrates key

technical aspects of our implementation.

While using the app
Only this time

Don't allow

(a) Android manifest permissions and TensorFlow Lite model declarations.

(b) Flask server and Google Cloud Storage configuration.

Figure 4.54: Technical implementation details of the Leafy application.

As shown in Figure 4.54, the technical implementation includes both client-side and server-
side components. Figure 4.54(a) displays the Android manifest permissions and TensorFlow
Lite model declarations necessary for on-device inference, while Figure 4.54(b) shows the Flask
server and Google Cloud Storage configuration that supports the back-end functionality.

Key functionalities implemented in the mobile application include:

* Deep Learning Integration: Inference using MobileNetV2 for OOD detection, Efficient-

NetB3 for crop classification, and specialized models for disease classification.

e Recommendation System: Tailored treatment advice generated by our fine-tuned GPT-2

model, delivering contextually appropriate guidance.

e Camera/Image Upload: Options to capture new images or upload existing ones, with im-

age preprocessing to optimize for model inference.

* Location Integration: GPS functionalities to contextualize the diagnosis with regional in-
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formation that may affect treatment recommendations.

The finalized mobile application, named "Leafy," embodies a user-centric design with acces-
sibility, simplicity, and agricultural relevance as core principles. It follows a clean three-screen
workflow guiding users from start to finish in the plant disease diagnosis process, ensuring that
even users with limited technological experience can successfully navigate the application.

The Leafy application interface supports both English and Arabic, enhancing usability across
diverse agricultural communities, as shown in Figures 4.55 through 4.58. Figure 4.55 displays the

Leafy application icon, featuring a green leaf motif that symbolizes the app’s agricultural focus.

!

Figure 4.55: Leafy application icon.

This multilingual support, as demonstrated in Figure 4.56, is particularly important for reach-
ing farmers in regions where English proficiency may be limited, making the technology more
inclusive and accessible. Figure 4.56(a) shows the English interface displaying app features
and functionality, while Figure 4.56(b) presents the Arabic interface with identical content for

Arabic-speaking users.
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(a) English interface displaying app features and  (b) Arabic interface with identical content for
functionality. Arabic-speaking users.

Figure 4.56: Bilingual welcome screens.

The application’s core functionality lies in its image processing capabilities, illustrated in
Figure 4.57. Users can either capture a new photo or upload an existing image of their crops
for instant diagnosis, with the interface seamlessly adapting to their language preference. Fig-
ure 4.57(a) shows the English version with location data and crop imagery, while Figure 4.57(b)

displays the Arabic version maintaining consistent layout and functionality.
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Figure 4.57: Process page for uploading or capturing plant images.

Following image analysis, Figure 4.58 demonstrates how diagnostic results are presented to
users with actionable treatment recommendations. The report screens provide critical infor-
mation about plant health status and specific remedies tailored to identified conditions. Figure
4.58(a) shows the English diagnostic report with detailed analysis and recommendations, while
Figure 4.58(b) displays the Arabic diagnostic report maintaining consistent information struc-

ture.
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(b) Arabic diagnostic report maintaining consis-
tent information structure.

Figure 4.58: Report screens showing disease diagnosis and treatment recommendations in both
languages.

Extensive testing was conducted to ensure reliable performance across various input con-
ditions including healthy plants, diseased plants, and invalid inputs, with results summarized
in Figure 4.59. These tests, showcasing different user interface screens as seen in Figure 4.59a
through Figure 4.59c, were designed to evaluate the application’s performance across the full
range of scenarios it might encounter in real-world use, ensuring robust performance in diverse

field conditions.
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EN/AR @

-2 Plant Category:
Unknown Plant

2 Health Status:

Not a Leaf

Switch to Offline Processing

Plant Report:
" Date: 17/05/2025

Analysis Summary:

The image does not appear to contain a plant
leaf.

Recommendation:

Please upload an image of a plant leaf for
analysis.

Additional Tips:

® Analysis completed using online
processing

Back

EN/AR @

-3 Plant Category:

2 Health Status:

Healthy

Switch to Online Processing

Plant Report:
™ Date: 17/05/2025

Symptoms
Glossy leaves; firm fruits; no symptoms

Recommendation:
Continue good hygiene and regular checks

Additional Tips:
+ Prune dead or yellowing leaves to encourage
growth.

+ Rotate crops yearly to maintain soil health.

EN/AR @

-2 Plant Category:
Potato

2 Health Status:

Healthy

Switch to Online Processing

Plant Report:
™ Date: 17/05/2025

Symptoms
Plant appears healthy with no visible symptoms
of disease

Recommendation:

« Continue regular care: proper watering,
appropriate fertilization, and regular monitoring
for signs of disease

Additional Tips:
+ Prune dead or yellowing leaves to encourage
growth.

+ Rotate crops yearly to maintain soil health.

() Analysis completed using online

processing

(a) Welcome interface demonstra- (b) Image capture and upload (c) Diagnostic output presenta-

tion.

functionality.

tion.

Figure 4.59: Testing results across different app workflows and scenarios.

As shown in Figure 4.59, the tests demonstrated the system’s robustness in multiple scenar-

ios:

e Healthy Detection: Correctly identified healthy plants with "No disease detected" mes-

sages, minimizing false positives that could lead to unnecessary treatments.

* Disease Detection: Accurately classified diseases such as Target Spot and Powdery Mildew

with detailed treatment recommendations tailored to the specific condition.

* Error Handling: Effectively managed invalid or ambiguous images with appropriate error

messages or fallback prompts, ensuring users understand when inputs are unsuitable for

analysis.
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4.5 Comparison Study

To evaluate the practical value of our system in the agricultural technology landscape, we
conducted a comprehensive benchmarking against both commercial applications and recent
academic research.

Our system was benchmarked against leading mobile agricultural application Plantix [118],
AgriApp [119], and FarmRise [120] focusing on features that directly impact real-world usability

and effectiveness. Table 4.10 summarizes this comparative analysis.

Feature Our System | Plantix AgriApp FarmRise
Crop Cover- | Tomato, 30+ crops 20+ crops 10+ crops
age Potato, Pep-

per
OOD Detec- | Yes (98.86%) | Basic filter- | No No
tion ing
Language English, 10+ lan- | English, 8+ lan-
Support Arabic guages Hindi guages
Treatment Al- Template- Static con- | Template-
Recommen- | generated based tent based
dation contextual

Table 4.10: Feature comparison with existing agricultural applications.

This comparative analysis reveals several key advantages of our system. While our crop
coverage is more focused than mature applications like Plantix, our system distinguishes itself
through several primary innovations. Our Out-of-Distribution (OOD) detection system achieves
98.86% accuracy in distinguishing relevant plant images from irrelevant inputs, a sophisticated
capability either absent or rudimentary in commercial alternatives. This significantly reduces
false positives and improves reliability in uncontrolled field conditions. Additionally, our GPT-
2 based recommendation engine generates adaptive, situation-specific guidance rather than
the static or template-based advice offered by competitors, providing farmers with more per-
sonalized and effective treatment strategies. While our language support is currently limited
to English and Arabic, it is strategically targeted to our primary user demographics, balancing
comprehensiveness with usability.

To situate our results within the scientific literature, we compared our system against re-
cent academic approaches in plant disease detection. Table 4.11 highlights the key features and
improvements of our approach relative to existing research.

Our system demonstrates significant advancements over the current state of the art. Un-
like many academic models that focus on single crops, our modular design achieves superior

performance across multiple plant species through specialized architectures: DenseNet121 for
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Dimension Existing Approaches Our System

Generalization and | Models such as [78, 85] | Integrates Out-of-Distribution

Robustness perform well in controlled | (OOD) detection with 98.86%
environments (99.35%) but | accuracy to filter irrelevant
decline dramatically in real- | inputs, maintaining consis-
world conditions (31%). tent performance across var-

ied field conditions.

Practical Deploy- | Systems like [29, 80] demon- | Optimized MobileNetV2 and

ment strate high accuracy but suffer | EfficientNet-B3 architecture
performance degradation on | enables efficient inference
resource-constrained devices. | on standard mobile devices
Kant et al. [79] achieved | without performance com-
92.25% accuracy with Effi- | promise, while providing a
cientNetB3 but focused only | complete pipeline from detec-
on multilabel classification | tion to recommendation.
without end-to-end workflow.

Recommendation Most systems focus solely on | Incorporates a fine-tuned

System classification without action- | GPT-2 based recommenda-

able guidance, creating a gap
between detection and inter-
vention.

tion engine that transforms
technical classifications into
farmer-friendly, = contextual
treatment guidance with
strong linguistic metrics (per-
plexity: 17.29, BLEU: 0.60,
ROUGE-L: 0.78).

Multi-language Sup-
port

Academic implementations
typically neglect accessibility
factors critical for real-world

Bilingual interface.

adoption.
Multilabel vs. Tar- | Kant et al. [79] introduced | Employs specialized crop-
geted Detection multilabel classification to de- | specific models, improving

tect multiple diseases simulta-
neously but with moderate ac-
curacy (92.25%) and without
crop-specific optimization.

accuracy to 98.8% for tomato
diseases and 95.14% for
potato diseases by targeting
each crop’s unique pathologi-
cal characteristics.

Crop-Specific Accu-
racy

Prior studies report lower ac-
curacy for specific crops (e.g.,
91.2% for tomato in [85]).

Achieves improved accuracy
98.8% for tomato diseases
and 95.14% for potato dis-
eases through specialized
architectures (DenseNetl121
and ResNet) tailored to each
crop’s unique pathological
characteristics.

Table 4.11: Comparison of findings against existing academic research.
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tomato/potato (98.8% and 95.14% accuracy respectively, compared to 91.2% in [85]) and ResNet
for pepper, each tailored to the unique pathological characteristics of their respective crop fam-
ilies.

While Kant et al. [79] pioneered multilabel classification with EfficientNetB3 (92.25% ac-
curacy), our approach uses specialized crop-specific models that significantly improve accu-
racy while maintaining computational efficiency. Our system also addresses the dramatic field-
setting accuracy decline observed by [78] through explicit OOD detection (98.86% accuracy),
preventing non-plant image misclassification and resolving execution bottlenecks seen in im-
plementations like [29].

By integrating CV-based detection with NLP-based recommendation generation, our sys-
tem bridges the critical gap between technical identification and practical intervention a fea-
ture largely absent in existing academic work. This integration transforms disease classifica-
tions into actionable, context-aware treatment guidance in multiple languages. Our fine-tuned
GPT-2 recommendation engine achieved impressive linguistic metrics (perplexity: 17.29, BLEU:
0.60, ROUGE-1: 0.82, ROUGE-2: 0.73, ROUGE-L: 0.78), indicating strong relevance and fluency

in the generated treatment advice.

4.6 Conclusion

Our plant disease detection and recommendation system demonstrates significant advance-
ments through its multi-model cascading architecture with specialized components for OOD
detection (98.86% accuracy), crop classification (99.89% accuracy), and crop-specific disease
classification (98.80% for tomato, 95.14% for potato). These results address fundamental limi-
tations in current research, particularly regarding generalizability, deployment practicality, and
end-user utility.

Our project revealed a clear relationship between dataset size and model performance, sug-
gesting that agricultural Al development should prioritize collecting adequate samples per dis-
ease category before expanding crop coverage. By combining robust detection capabilities with
contextually-aware recommendations and bilingual support, our system represents a signifi-
cant step toward bridging the gap between academic research and practical agricultural solu-
tions, making sophisticated Al capabilities accessible to farmers across varying technological
and environmental contexts. The strong performance of our recommendation system demon-
strates that Al-generated advice can match human expertise in specificity and relevance, a crit-

ical advancement for practical agricultural applications.
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Chapter 5
Conclusion and Perspectives

This project successfully developed an intelligent, multi-model plant disease detection and
recommendation system tailored for modern agriculture. The system achieved strong perfor-
mance across multiple tasks, including image classification and language-based recommenda-
tion generation. For plant image classification, we reached up to 98.86% accuracy with Mo-
bileNetV2 for general detection, 99.89% with EfficientNet-B3 for crop identification, and 98.80%
with DenseNet121 for tomato diseases. Potato diseases were detected with 95.14% accuracy,
while pepper diseases reached 59.72% using ResNet50 due to limited training data. For natural
language recommendations, a fine-tuned GPT-2 model achieved a perplexity of 17.29, a BLEU
score of 0.60, ROUGE-1 of 0.82, ROUGE-2 of 0.73, and ROUGE-L of 0.78 indicating strong rele-
vance and fluency in generated treatment advice.

Our solution combines image classification and natural language processing to filter irrele-
vant inputs, detect crop types, diagnose diseases, and deliver actionable treatment recommen-
dations all within a mobile application. This design ensures advanced agricultural Al is accessi-
ble to farmers using standard smartphones.

The project resulted in several significant observations:
» Dataset size plays a critical role in model performance, with several hundred labeled sam-
ples per disease class necessary for robust results.

* The two-phase transfer learning strategy proved highly effective for agricultural image

classification tasks.

* Fine-tuned language models like GPT-2 can generate context-aware, practical recommen-

dations for farmers.
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While we faced challenges such as limited data for pepper crop diseases, our results show
that focused, specialized models trained with sufficient data can perform reliably in real-world
agricultural settings.

The system is designed to generate significant positive outcomes for smallholder and com-

mercial farmers alike:

Increased crop yields through timely disease detection and intervention.

Reduced pesticide use thanks to targeted and accurate diagnoses.

* Democratization of agricultural expertise via easy-to-use mobile interfaces.

Improved supply chain forecasting by enabling early disease tracking and reporting.

Valuable field data generation to support continuous model improvement and research.
In future work, we envision the system evolving along several promising directions:

* Enable disease progression tracking over time using temporal image analysis.
¢ Add multilingual support beyond English and Arabic to broaden accessibility.

* Expand classification capabilities to include a wider range of crops and pest-related con-

ditions.

* Integrate treatment recommendations with local agricultural supply sources to streamline

access to relevant products.

 Facilitate farmer-led knowledge exchange through in-app discussion forums and best-

practice sharing.

* Explore integration with agricultural robotics for autonomous field monitoring and tar-

geted spraying tasks 5.1.

Figure 5.1: Conceptual imagination of a future agricultural robot.
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