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Abstract

Plant diseases compromise global crop production by 20–40% annually, threatening agri-

cultural sustainability and food security. In developing regions, farmers frequently lack timely

access to phytopathological expertise and advanced diagnostic tools for effective disease man-

agement. This study presents an integrated AI-powered system for plant disease detection that

combines visual analysis and treatment recommendation capabilities to support both indi-

vidual farmers and agricultural enterprises.

The system architecture implements a cascading multi-model approach: a MobileNetV2-

based out-of-distribution (OOD) detection module validates input images as legitimate plant

specimens with 98% accuracy. Valid images then proceed to an EfficientNet-B3 classifier that

identifies the specific crop type (tomato, potato, or pepper) with 99% accuracy. Disease di-

agnosis is then performed by specialized models: DenseNet121 architectures for tomato and

potato diseases, and a ResNet50 model for pepper diseases ensuring precise pathology identi-

fication across different plant families. The final component, a fine-tuned GPT-2 model, gen-

erates contextually appropriate treatment recommendations based on the diagnostic output,

achieving strong linguistic performance metrics (ROUGE-1: 0.82, ROUGE-2: 0.73).

The solution is deployed as a smartphone application. The system offers an analytical plat-

form enabling agricultural companies to monitor disease prevalence patterns and assess treat-

ment efficacy across geographical regions.

This project aims to mitigate crop losses while promoting sustainable agricultural prac-

tices by delivering accessible AI-based disease detection tools and facilitating enhanced collab-

oration among farmers, researchers, and agricultural industry stakeholders.

Keywords: Smart Agriculture, Deep Learning, NLG, Plant Disease Detection, Computer Vi-

sion, Mobile Applications, Out-of-Distribution Detection, EfficientNet, DenseNet121, ResNet50,

MobileNetV2, GPT-2, Agricultural Decision Support Systems
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  ملخص

 

من الإنتاج الزراعي العالمي، مما يهدد  %40% إلى 20تتسبب أمراض النباتات في خسائر سنوية تتراوح بين        

استدامة الزراعة والأمن الغذائي، خاصة في الدول النامية حيث يفتقر المزارعون إلى الخبرة الفيتوباثولوجية 

والأدوات التشخيصية المتقدمة. تهدف هذه الدراسة إلى تقديم نظام متكامل يعتمد على الذكاء الاصطناعي للكشف عن 

 .ت وتقديم توصيات علاجية داعمة، موجهة لكل من المزارعين الأفراد والمؤسسات الزراعيةأمراض النباتا

للكشف عن الحالات الخارجة MobileNetV2 يعتمد النظام على هيكل متعدد المراحل، يبدأ باستخدام نموذج       

مثل عينات نباتية تلضمان أن الصور المدخلة  %،98بدقة تصل إلى  (Out-of-Distribution) عن التوزيع

لتحديد نوع المحصول )مثل الطماطم، البطاطس،  EfficientNet-B3 . تنتقل الصور المقبولة إلى مصنف حقيقية

لأمراض الطماطم  DenseNet121 :بعد ذلك، تشُخّص الأمراض باستخدام نماذج متخصصة %.99أو الفلفل( بدقة 

 .عالية في تحديد الأمراض حسب نوع النبات مما يضمن دقةلأمراض الفلفل،  ResNet50والبطاطس، و

، تم تدريبه خصيصًا لهذا الغرض، توليد توصيات علاجية ملائمة بناءً GPT-2يتولى نموذج لغوي من نوع       

 (ROUGE-1 = 0.82 ,ROUGE-2 = 0.73).  مؤشراتعلى التشخيص، محققاً أداء لغوياً قوياً وفق 

الهواتف الذكية، يوفر منصة تحليلية تساعد الشركات الزراعية على مراقبة انتشار تم تطوير النظام كتطبيق على       

 .الأمراض وتقييم فعالية العلاجات في مناطق جغرافية متعددة

من خلال تقديم أدوات  تقليل خسائر المحاصيل وتعزيز الممارسات الزراعية المستدامةتسعى هذه المساهمة إلى       

ذكاء الاصطناعي يمكن الوصول إليها بسهولة، وتعزيز التعاون بين المزارعين والباحثين تشخيصية قائمة على ال

 .والجهات الفاعلة في القطاع الزراعي

الزراعة الذكية، التعلم العميق، توليد اللغة الطبيعية، كشف أمراض النبات، الرؤية الحاسوبية،  :الكلمات المفتاحية      

، EfficientNet ،DenseNet121شف عن البيانات الخارجة عن التوزيع، تطبيقات الهاتف المحمول، الك

ResNet ،MobileNetV2 ،GPT-2أنظمة دعم القرار الزراعي ،. 
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Chapter 1

General Introduction

1.1 Context and Problem Statement

Agriculture today faces unprecedented challenges due to climate change, depleting resources,

and the increasing prevalence of plant diseases. These diseases contribute to crop losses rang-

ing between 20-40% globally each year, posing significant threats to food security and economic

stability [1]. In Algeria’s Biskra region, where agriculture is a vital economic pillar, annual pro-

ductions reach approximately 3.47 million quintals of tomatoes, 1.33 million quintals of pep-

pers, and 1.2 million quintals of potatoes [2]. Such disease outbreaks directly affect local food

supply and farmer incomes.

Despite the promising advances in artificial intelligence for plant disease detection, several

obstacles hinder the practical deployment of these technologies:

• Technical Limitations: Variability in field conditions makes it difficult to transfer high-

accuracy laboratory models to real-world environments [3]

• Practical Considerations: Limited digital literacy among agricultural practitioners and

insufficient knowledge support create significant barriers [4, 5]

• User Diversity: Current systems often do not accommodate the varied needs of both

smallholder farmers and large-scale agricultural enterprises.

• Pesticide Misuse: The improper application of pesticides due to inaccurate disease iden-

tification leads to environmental degradation, increased resistance in pathogens, and po-

tential health hazards for consumers and agricultural workers [1]

• Delayed Detection: Late identification of plant diseases significantly reduces treatment

efficacy and increases crop losses, highlighting the critical need for early detection sys-

tems that can identify symptoms before widespread damage occurs [5]
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These challenges collectively threaten food security and human health on multiple fronts:

reduced crop yields impact food availability and economic stability, while pesticide misuse can

introduce toxins into the food supply chain and surrounding ecosystems. Early intervention

through accurate disease detection is essential for protecting both agricultural productivity and

public health

1.2 Motivation and Objectives

The need for accessible AI solutions in agriculture is urgent, given the annual global eco-

nomic loss of over $220 billion attributed to plant diseases [1]. This challenge is further am-

plified by the necessity to boost agricultural productivity in anticipation of a global population

nearing 10 billion by 2050 [6]. Advances in mobile technology now enable the widespread adop-

tion of agricultural expertise, potentially reducing agrochemical usage by up to 40% while main-

taining crop protection efficacy.

The primary objectives are:

1. To develop robust computer vision systems that maintain high performance in variable

field conditions.

2. To design intuitive user interfaces accessible to agricultural stakeholders with diverse tech-

nical backgrounds.

3. To integrate actionable treatment recommendations seamlessly into the disease detection

process.

4. To reduce pesticide misuse through accurate disease identification and appropriate treat-

ment guidance.

To achieve these objectives, we have developed a lightweight, end-to-end mobile applica-

tion for plant disease detection and recommendation, leveraging advanced deep learning mod-

els tailored for both efficiency and accuracy. Specifically, we employ MobileNetV2 for out-of-

distribution (OOD) detection and leaf/non-leaf image filtering, EfficientNetB3 for crop classi-

fication, DenseNet121 for identifying diseases in potato and tomato crops, and ResNet50 for

disease detection in pepper plants. For treatment recommendations and pest management ad-

vice, we integrate a GPT-2 based natural language generation module. This model ensemble

ensures that the system remains computationally efficient while providing high-quality disease

diagnosis and context-aware recommendations.
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The system architecture leverages three complementary technological domains:

• Advanced computer vision algorithms for detailed plant image analysis and disease fea-

ture extraction.

• Natural language processing capabilities for delivering multilingual, accessible recom-

mendations.

• Optimized deployment strategies that ensure functionality across various environments.

This integrated approach facilitates early disease detection, ensures timely access to appro-

priate interventions, and supports sustainable agricultural practices. Continuous improvement

is enabled through the iterative incorporation of field-generated data, enhancing accuracy and

contextual relevance over time.

1.3 Outline

This dissertation is organized into the following chapters:

• Chapter 2: Smart Agriculture and AI Applications Reviews the evolution from traditional

to smart agriculture and explores AI applications in agriculture sector.

• Chapter 3: Design and Methodology Details the proposed system architecture and crop

disease detection and recommendation process.

• Chapter 4: Implementation and Results Presents system implementation and evaluation

results.

• Chapter 5: Conclusion and Perspectives Summarizes findings and outlines future direc-

tions.

Through these chapters, this work demonstrates how artificial intelligence can be effectively

adapted to real agricultural environments, offering robust and practical solutions for plant dis-

ease management that promote responsible pesticide use and support early detection to en-

hance food security and protect human health.
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Chapter 2

Smart Agriculture and AI Applications

2.1 Introduction

Agriculture has underpinned human civilization, evolving from manual labor to today’s global,

industrial-scale systems. However, traditional methods now face mounting challenges such

as soil degradation, climate variability, pests, and increased food demand due to population

growth [7, 8].

Modern agriculture must deliver higher yields with greater efficiency and less environmen-

tal impact. Smart farming technologies address these needs by improving yield prediction, re-

source management, and climate resilience [3, 9]. The adoption of digital tools has shifted farm-

ing from reactive to predictive and prescriptive approaches, guiding better decision-making [10,

11]. As shown in Figure 2.1, today’s farms increasingly integrate technology and sustainable

practices to boost productivity and reduce ecological footprint.

Figure 2.1: Modern farm landscape [12].

Central to this transformation is the integration of artificial intelligence (AI) technologies,

which are driving the shift toward data-driven and intelligent farming systems [13, 14]. AI-

powered management increases resilience, optimizes resources, and supports better decision-

making crucial as agriculture faces pests, shrinking farmland, and knowledge gaps [3, 15, 7].
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2.2 History of Farming

Agriculture has evolved through several major technological eras:

1. Early Farming (10,000–15,000 BCE): The Neolithic Revolution transitioned humanity from

hunting to organized farming, with the first crop cultivation and animal domestication

enabling permanent settlements [16] [17].

2. Classical and Medieval Farming: Advances such as metal tools, irrigation, and crop ro-

tation boosted productivity. Agricultural knowledge was systematically recorded in works

like Cato’s De Agricultura and Ibn al-Awwam’s Book of Agriculture [16] [17].

3. Industrial Revolution: Mechanization, including the seed drill, steel plow, and mechani-

cal reaper, transformed farming by increasing yields and reducing manual labor [17] [10].

4. Green Revolution: The mid-20th century saw higher yields from new crop varieties and

synthetic fertilizers, notably through Norman Borlaug’s wheat research. However, these

gains sometimes came with environmental costs [8] [18].

5. Digital Farming Era: Today, agriculture is shaped by digital technologies precision farm-

ing, IoT, remote sensing, big data, and AI enabling data-driven decisions and automation

[3] [19].

2.3 Traditional Agriculture

Traditional agriculture represents farming practices that have been developed and refined

over thousands of years, relying primarily on manual labor, natural processes, and accumulated

knowledge passed down through generations. These methods formed the backbone of agricul-

tural production for most of human history and continue to be practiced by millions of farmers

worldwide, particularly in developing regions [20].

2.3.1 Characteristics of Traditional Farming

Traditional agricultural systems are characterized by several fundamental features that dis-

tinguish them from modern industrial farming approaches [20]:

• Manual Labor Dependency: Traditional farming relies heavily on human and animal la-

bor for most agricultural operations, from land preparation and planting to harvesting

and post-harvest processing.

5



Smart Agriculture and AI Applications

• Experience-Based Decision Making: Farmers make decisions based on accumulated knowl-

edge, seasonal patterns, visual observations, and intuitive understanding of local condi-

tions rather than data-driven analysis.

• Low External Input Use: Traditional systems typically use minimal external inputs such

as synthetic fertilizers, pesticides, or hybrid seeds, instead relying on organic matter, crop

rotation, and natural pest control methods.

• Subsistence-Oriented Production: Many traditional farming systems focus primarily on

producing food for family consumption and local markets rather than commercial export.

• Biodiversity Conservation: Traditional farmers often maintain diverse crop varieties and

farming systems that support local biodiversity and ecosystem services.

2.3.2 Traditional Farming Practices

Traditional agriculture encompasses a wide range of time-tested practices that have evolved

to suit local environmental conditions and cultural preferences [20]:

• Crop Rotation and Intercropping: Farmers rotate different crops seasonally and often

grow multiple crops together to maintain soil fertility, reduce pest pressure, and maximize

land use efficiency.

• Natural Fertilization: Use of animal manure, compost, green manure, and other organic

materials to maintain soil fertility without synthetic chemicals.

• Indigenous Seed Varieties: Cultivation of locally adapted, open-pollinated seed varieties

that have been selected and preserved by farming communities over generations.

• Integrated Pest Management: Traditional methods include companion planting, bene-

ficial insect habitat, botanical pesticides, and cultural practices to control pests and dis-

eases.

• Water Conservation Techniques: Traditional irrigation methods such as terracing, con-

tour farming, and rainwater harvesting that work in harmony with natural water cycles.

• Seasonal Timing: Planting, cultivation, and harvesting activities are timed according to

traditional calendars, lunar cycles, and local weather patterns.

2.3.3 Limitations of Traditional Agriculture

While traditional agriculture has sustained human populations for millennia, it faces signif-

icant challenges in meeting modern agricultural demands [20] [21]:
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• Lower Productivity: Traditional methods generally produce lower yields per unit area

compared to modern intensive farming systems.

• Labor Intensity: Heavy reliance on manual labor makes traditional farming physically

demanding and time-consuming, limiting scalability.

• Weather Vulnerability: Traditional systems are often more vulnerable to extreme weather

events and climate variability due to limited adaptive technologies.

• Limited Market Access: Traditional farmers may face challenges in accessing modern

markets, credit systems, and value-added processing opportunities.

• Knowledge Transfer Challenges: Traditional knowledge may be lost as younger genera-

tions migrate to urban areas or adopt modern practices.

• Pest and Disease Management: Limited options for controlling serious pest outbreaks or

disease epidemics that can devastate entire harvests [22].

• Inconsistent Quality: Lack of standardization in traditional practices can lead to variable

product quality and market acceptance issues.

2.3.4 Traditional Agriculture in the Modern Context

As global agriculture faces sustainability challenges, there is growing recognition of the value

of traditional knowledge and practices. Many researchers and policymakers advocate for in-

tegrating the best aspects of traditional agriculture with modern technologies to create more

sustainable and resilient farming systems [23] [20].

Figure 2.2: Traditional farming landscape showing manual labor and simple tools [24].

This integration approach, often called "agroecology" or "sustainable intensification," seeks

to combine traditional ecological principles with modern scientific understanding to develop

farming systems that are both productive and environmentally sound [25]. Understanding tra-

ditional agriculture provides crucial context for appreciating the revolutionary changes brought

about by smart agriculture technologies, which we will explore in the following section.
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The transition from traditional to smart agriculture represents not just a technological shift,

but a fundamental transformation in how farmers interact with their crops, make decisions,

and manage agricultural systems. While traditional agriculture will continue to play an impor-

tant role, especially in developing regions, the integration of smart technologies offers unprece-

dented opportunities to address the growing challenges of food security, environmental sustain-

ability, and climate adaptation.

2.4 Smart Agriculture

Smart agriculture, also known as Agriculture 4.0, integrates advanced technologies to opti-

mize and transform farming practices [14] [11] by enabling precise monitoring and manage-

ment of crops, soil, and resources. Its primary objectives are to enhance productivity, promote

sustainability, and increase the resilience of agricultural systems.

2.4.1 Traditional vs. Smart Farming

While traditional agriculture relies on manual labor and experience-based decision making,

smart agriculture employs modern information and communication technologies (ICT) such as

cloud computing, big data, robotics, automation, and IoT to enable continuous data collection,

real-time monitoring, automated device communication, and data-driven decisions [4]. This

paradigm shift allows for more efficient resource management and proactive responses to field

challenges, moving from manual intervention to automation, predictive analytics, and precision

management [10] [18].
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Traditional Agriculture

• Relies on manual labor and direct ob-

servation of crops and soil.

• Makes decisions based on farmers’ ex-

perience and intuition.

• Applies water and fertilizers evenly

across all fields.

• Responds to issues only after problems

become visible.

• Collects minimal data, often limited to

simple field notes.

Figure 2.3: Traditional farming practices[12].

Smart Agriculture

• Uses automated sensors to continu-

ously monitor crops and soil.

• Bases decisions on real-time data and

predictive algorithms.

• Delivers water and fertilizers precisely

where and when needed.

• Detects and addresses issues proac-

tively using early warning systems.

• Integrates and analyzes comprehensive

data from multiple sources.

Figure 2.4: Modern smart farming technolo-
gies[26].

Figure 2.5: Comparison between Traditional and Smart Agriculture.

2.4.2 Technologies in Smart Farming

Smart agriculture systems incorporate a range of technologies to improve productivity, re-

source efficiency, and sustainability [9]:

• Internet of Things (IoT): Connects devices such as soil sensors and automated machinery

for real-time monitoring of crop and environmental conditions [19] [13].

• Artificial Intelligence (AI): Applies machine learning and computer vision to analyze data

from sensors and drones, supporting yield prediction, and optimization [27] [28] [29].
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• Drones and Remote Sensing: Provides high-resolution imagery for crop health monitor-

ing and early detection of diseases or nutrient deficiencies [30].

• Farm Automation and Robotics: Includes autonomous tractors, robotic harvesters, and

precision sprayers, reducing manual labor and increasing efficiency [4] [31].

• Communication Networks and Software Solutions: Cloud platforms and farm manage-

ment software integrate and analyze data from various sources, facilitating real-time de-

cision making [13].

• Digital Twins: Virtual models of farms support simulation and optimization of agricul-

tural operations [11] [14].

• Big Data Analytics: Extracts insights from large datasets to inform decisions and reveal

important patterns [3].

• Fusion Data Augmentation: Combines multiple data sources to enhance machine learn-

ing model accuracy, especially for plant disease detection [32].

Figure 2.6: Smart farming technologies [26].

2.4.3 Advantages of Smart Agriculture

Smart agriculture provides several benefits over traditional methods:

• Optimization of Resource and Input Consumption: Automated systems use water, en-

ergy, and fertilizers efficiently, minimizing waste and environmental impact [14] [10].

• Higher Yields at Lower Costs: Precision practices and data-driven decisions increase pro-

ductivity and reduce expenses [3] [18].

• Better Land Utilization: Technology enables efficient use of available space, including

areas otherwise underutilized [9].
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• Reduced Manual Labor: Robotics and automation decrease the need for physical labor,

increasing operational efficiency [4] [31].

• Real-Time Monitoring and Predictive Analytics: Continuous data tracking and analytics

anticipate issues and optimize management [19] [13].

• Improved Decision Making: Big data analytics and AI offer actionable insights for plan-

ning and operations [27] [28].

• Sustainability and Environmental Protection: Smart systems reduce resource consump-

tion and environmental impact, supporting long-term sustainability [11] [25].

2.4.4 Smart Agriculture Challenges

Despite technological progress, agriculture faces ongoing challenges:

• Climate Change: Changing rainfall and more frequent extreme weather reduce crop yields

[15].

• Water and Land Issues: Water scarcity affects 40% of cropland, and arable land declines

due to urbanization and soil degradation [33].

• Crop Diseases: Plant diseases cause global losses exceeding $220 billion annually [34]

[22].

• Population Growth: The global population is projected to reach 9.7 billion by 2050, in-

creasing food demand and straining agricultural systems [7] [6].

Figure 2.7: Smart farming challenges [35].
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2.5 Crop Disease Management

The following examples focus on three economically important crops vulnerable to disease,

where early detection systems can be particularly beneficial.

• Potato

Potatoes, one of the world’s most consumed food crops, are

highly susceptible to diseases that can devastate entire fields

rapidly, making early detection essential [36] [37]. Computer vi-

sion systems have demonstrated efficacy in detecting these dis-

eases early [38] [39].

Figure 2.8: Viral infection in potato [37].

• Tomato

Tomatoes are prone to fungal, bacterial, and viral diseases [40]

[41]. Automated monitoring using computer vision enables early

detection of symptoms, playing a crucial role in preserving yield

and product quality [39].

Figure 2.9: Late blight in tomato [41].

• Pepper

Pepper crops face viral diseases like the mosaic virus, which can

spread rapidly [42]. Early identification of characteristic symptoms

such as leaf mottling is essential for timely intervention.

Figure 2.10: Mosaic virus in pepper [42].

2.6 AI Techniques in Agricultural Applications

As agriculture embraces digital transformation, AI has emerged as a cornerstone technology

for addressing crop disease challenges and enhancing productivity. AI technologies enable pre-

cise monitoring, predictive analysis, and automation of complex tasks traditionally dependent

on manual labor and experiential knowledge.
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2.6.1 Machine Learning

Machine learning, a subset of artificial intelligence that enables systems to learn from data

and improve over time without explicit programming, has substantially advanced data-driven

decision-making in modern agriculture [27] [43] [44].

• Supervised Learning

Supervised learning trains models using labeled datasets to perform classification or re-

gression tasks. These algorithms demonstrate robust performance in agricultural appli-

cations when labeled data is available [45] [46].

– Random Forests (RF): An ensemble learning method used for crop prediction and

disease detection.

– Support Vector Machines (SVM): Effective for plant disease classification and image

analysis, particularly with small datasets [47] [48].

– XGBoost: A gradient boosting framework that has shown success in improving irri-

gation efficiency [28].

• Unsupervised Learning

Unsupervised learning identifies patterns in unlabeled datasets, useful for exploratory

data analysis when labeled data is scarce [49] [30].

– K-Means Clustering: Used in field zoning and soil classification tasks [50] [51].

– Anomaly Detection: Facilitates early identification of irregularities in crop growth or

disease symptoms.

• Semi-supervised Learning

Combines supervised and unsupervised methods using both labeled and unlabeled data.

Applied in remote sensing and plant pathology with reduced manual annotation require-

ments [52] [53].

• Reinforcement Learning

Uses trial-and-error learning where agents maximize cumulative rewards through envi-

ronmental interactions. Applied in autonomous greenhouse control, irrigation schedul-

ing, and precision spraying [54] [55].

• Transfer Learning

Reuses knowledge from pre-trained models for new tasks, particularly valuable when domain-

specific data is limited. Achieves high accuracy with minimal training data for disease

detection and yield estimation [56] [57].
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2.6.2 Deep Learning

Deep learning processes information through hierarchical layers of artificial neural networks,

enabling models to automatically learn complex patterns from large datasets. Recent advances

in computing power have positioned deep learning at the forefront of agricultural AI [58] [59]

[60].

Figure 2.11: Deep neural network architecture [47].

Figure 2.12: Deep learning architecture branches [61].

• Supervised Deep Learning

Deep supervised learning models are trained on labeled datasets with the capacity to au-

tomatically extract hierarchical features from raw data.

– Convolutional Neural Networks (CNNs): Excel at image pattern recognition for plant

disease identification.
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Figure 2.13: CNN architecture for image analysis [61].

– Recurrent Neural Networks (RNNs): Process sequential data for time-series analysis

[62].

* LSTM (Long Short-Term Memory): Effective for long-term pattern recognition

in crop growth prediction [63].

* GRU (Gated Recurrent Units): Faster alternative for irrigation scheduling tasks

[64].

• Unsupervised Deep Learning

Discovers hidden patterns in unlabeled data through neural networks that capture com-

plex, non-linear relationships.

– Self-Organizing Maps (SOMs): Create visual maps grouping similar plant or soil data

[65].

– Autoencoders: Learn data representations by reconstruction, including Restricted

Boltzmann Machines for anomaly detection [66].

• Deep Semi-supervised Learning

Applies neural networks to leverage both labeled and unlabeled data, particularly valuable

for agricultural remote sensing [52].

• Deep Reinforcement Learning

Combines neural networks with reinforcement learning for sophisticated decision-making

in autonomous robots and greenhouse management [54].

• Deep Transfer Learning

Uses CNNs pretrained on large datasets like ImageNet, achieving high performance in

plant disease identification with less labeled data [56].
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2.6.3 Classification vs. Clustering

Classification is a supervised learning process where models predict predefined categories

using labeled datasets. CNNs have demonstrated high efficacy in plant disease diagnosis [67].

Classification types include:

• Binary Classification: Predicting one of two outcomes (healthy vs. diseased plants).

• Multi-class Classification: Assigning inputs to one of multiple exclusive classes (specific

disease types).

• Multi-label Classification: Predicting multiple labels for single inputs (multiple stress fac-

tors).

Figure 2.14: Binary vs. multi classification types [68].

Clustering is an unsupervised learning approach grouping data points based on similarities

without prior class labels [30] [49].

Figure 2.15: Clustering vs. classification approaches [68].

This project uses a multi-model classification pipeline including MobileNetV2-based out-of-

distribution detection, EfficientNet-B3 crop classification, and specialized disease classification

models.
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2.6.4 Natural Language Processing (NLP)

Methods are increasingly integrated into agricultural AI systems, offering powerful tools for

text-based information extraction, decision-making support, and interactive advisory genera-

tion [69] [70]. NLP plays a critical role in tasks such as:

– Text Classification: Categorizing agricultural documents based on topics such as soil

health, pest threats, or advisory urgency [71].

– Named Entity Recognition (NER): Automatically identifying and labeling key entities like

plant varieties, pathogens, chemicals, and geographical locations in scientific texts [72].

– Information Retrieval: Extracting structured knowledge from unstructured data sources

such as journals, manuals, or farm logs to assist agronomists and AI systems alike [70].

As depicted in Figure 2.16, NLP frameworks integrate both Natural Language Under-

standing (NLU) and Natural Language Generation (NLG) components to create comprehensive

systems for processing and generating human language. This architecture is particularly valu-

able for agricultural advisory systems.

Figure 2.16: NLP framework integrating NLU and NLG [73].

• Natural Language Understanding (NLU)

Forms the foundational layer of NLP systems, enabling machines to comprehend the se-

mantics and context of human language. In agricultural AI, NLU helps bridge the gap

between raw text and actionable insights by enabling systems to:

– Intent Detection: Understanding the underlying goals behind farmers’ queries, such

as seeking pest control advice or weather forecasts.

– Entity Linking: Associating detected entities (like crops, diseases, or fertilizers) with

relevant knowledge bases to enrich interpretation.
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– Semantic Parsing: Translating complex natural language inputs into structured for-

mats interpretable by downstream decision-support models.

NLU ensures that agricultural advisory systems correctly interpret the meaning behind

user inputs, enhancing the relevance, personalization, and effectiveness of generated rec-

ommendations [74] [68].

• Natural Language Generation (NLG)

Focuses on automatically producing coherent textual content from structured data or

model outputs. In agriculture, NLG facilitates the translation of complex analytical re-

sults into actionable, farmer-friendly language [75] [76].

Key applications include:

– Automated Report Generation: Producing pest risk summaries, irrigation sched-

ules, or yield forecasts based on sensor data and model predictions.

– Personalized Advisory Generation: Tailoring recommendations to the specific needs,

crop types, or environmental conditions of individual users.

– Multilingual Accessibility: Providing farmers with localized content in their native

language, ensuring better adoption and understanding.

In this project, NLG serves an important role in generating structured recommendation

reports based on model outcomes especially when disease predictions or environmental

readings need to be transformed into practical advice for end users [75] [77] [76].

2.7 Related Works

Recent advancements in artificial intelligence (AI) for agriculture have transitioned from

academic explorations to impactful real-world applications across a spectrum of technical do-

mains. Computer vision and deep learning techniques, for instance, have achieved remarkable

accuracy in plant disease identification. For example, Mohanty et al. (2016)[78] reported 99.35%

accuracy under controlled conditions, but only 31% in real-world field tests. This gap highlights

the persistent challenge of model generalization beyond lab environments.

A significant advancement in plant disease detection was presented at IEEE_ICT (2024)[29],

where researchers developed a tomato disease classification system achieving 95.31% accuracy

while incorporating contextual treatment recommendations for identified pathogens. Comple-

menting this work, Kant et al. (2024)[79] demonstrated that models based on EfficientNetB3

architecture provide an optimal balance between computational efficiency and diagnostic ac-

curacy (92.25%) through a multilabel classification approach. This balance is particularly valu-
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able for real-world agricultural applications where resource constraints exist, making sophisti-

cated disease detection technology increasingly accessible and practical for farmers operating

in diverse environments.

To overcome the constraints of single-model systems, recent research has explored hybrid

architectures. For instance, Shaheed et al. (2023)[80] combined ResNet50 with Vision Trans-

former components, resulting in over 97.65% accuracy for potato disease classification and en-

hanced robustness to image quality variations. Similarly, Wang et al. (2024)[81] proposed a spe-

cialized architecture tailored for greenhouse environments, reporting 92.3% precision in com-

plex backgrounds. However, this approach introduced additional implementation complexity.

Another direction leverages the synergy between IoT sensor data and AI. Sravanthi et al.

(2024)[5] combined real-time IoT data with historical analytics and Natural Language Process-

ing (NLP), achieving 99% accuracy in crop recommendations and a 97.8% comprehension rate

among farmers. This demonstrates the critical role of both data integration and effective com-

munication in agricultural AI systems.

Transfer learning is widely adopted to address the scarcity of labeled agricultural datasets.

Aversano et al. (2020)[82] utilized VGG-based transfer learning for tomato disease classification,

attaining 94.7% accuracy and reducing training time. Likewise, Moid et al. (2021)[56] applied

the Xception architecture within a transfer learning framework, improving generalization across

diverse environmental conditions.
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Study Primary Focus Performance Key Strengths Limitations

[78] Image-based

plant disease

detection

99.35% con-

trolled, 31%

real-world

High accuracy un-

der controlled con-

ditions

Poor generalization

to real-world data

[5] IoT-driven rec-

ommendation

99% accuracy Real-time decision

support system

Depends on opti-

mal sensor place-

ment

[29] Tomato disease

detection on

mobile

95.31% accu-

racy

User-friendly mo-

bile interface,

detailed reports

Execution time bot-

tlenecks

[83] Multi-dataset

DL approach

80.19% Dataset diversity,

improved robust-

ness

Lacks detailed per-

formance metrics

[80] Multi-

architecture

detection

97.65% accu-

racy

Robust to image

quality variations

High computa-

tional demands

[82] Tomato disease

VGG-based

transfer learn-

ing

97.3% accu-

racy

Reduced training

time

Limited generaliza-

tion to field condi-

tions

[84] Multi-level

detection for

potato

99.75% accu-

racy

Early vs. late blight

distinction

Region-specific

training data

[85] Tomato leaf dis-

ease detection

91.2% accu-

racy

Works in varied

lighting

Optimized for

greenhouse only

[38] CNN-based

potato leaf dis-

ease detection

using sequen-

tial model

94.2% accu-

racy

Effective sequential

modeling for im-

proved detection

Evaluation lim-

ited to conference

dataset, needs real-

world validation

[81] Greenhouse de-

tection

92.3% mAP Complex back-

ground handling

Complex imple-

mentation require-

ments

[79] Multilabel plant

disease classifi-

cation

92.25% accu-

racy

Capable of de-

tecting multiple

diseases per image

Potential chal-

lenges in resource-

constrained agri-

cultural settings

Table 2.1: Comparative analysis of AI-Based plant disease detection studies.
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2.8 Synthesis

Modern agriculture is limited by three core challenges that constrain the deployment of AI

systems in real-world field settings. Environmental variability in farms such as inconsistent

lighting, varied backgrounds, and unpredictable disease symptoms reduces the effectiveness

of AI models trained in controlled laboratory conditions. As shown by Mohanty et al. [78], clas-

sification accuracy can drop from 99.35% in the lab to just 31% in field conditions, revealing

a critical gap between research and application. In parallel, widespread digital divides across

agricultural communities hinder access to AI systems. Many farmers lack reliable infrastructure

and experience with digital tools, making it difficult to adopt complex solutions like those in

Shaheed et al. [80], which achieved 97.65% accuracy but are too computationally demanding

for most mobile devices. Moreover, many existing systems stop at disease identification and fail

to provide actionable treatment guidance, limiting their real-world usefulness. Even when sys-

tems like those presented at IEEE_ICT [29] achieve high accuracy, their performance can vary in

different usage environments.

This study proposes a multi-model AI system architecture that addresses these limitations

through careful design and a focus on accessibility, reliability, and usability. The system begins

with an out-of-distribution detection module based on MobileNetV2 to verify that input images

are relevant plant specimens before disease detection is attempted. This component improves

reliability and prevents common misclassifications caused by irrelevant or low-quality inputs.

The next component is a multi-crop classification stage using EfficientNet-B3. This model

distinguishes between tomato, potato, and pepper plants to route the image to the appropriate

disease detection model. This approach builds upon recent advances in multilabel classifica-

tion techniques demonstrated by Kant et al. [79], who achieved 92.25% accuracy with Efficient-

NetB3 for detecting multiple plant diseases simultaneously. Their work highlights the impor-

tance of computational efficiency in real-world agricultural applications, a principle that guides

our multi-model architecture design. Unlike generic multi-dataset classifiers like the one in Kr-

ishna et al. [83], which achieved only 80.19% accuracy, this step ensures that diagnosis is tailored

to the specific crop. For disease detection, the system uses DenseNet121 for tomato and potato

and ResNet50 for pepper diseases. This crop-specific specialization acknowledges the unique

disease patterns of each plant family and improves upon generalized approaches such as that

in Agarwal et al. [85], which reached only 91.2% in greenhouse settings.

The final stage of the system is a bilingual recommendation engine built using a fine-tuned

GPT-2 model. This component translates disease classification results into clear, actionable

treatment suggestions in multiple languages. It addresses the gap left by most reviewed sys-

tems, which fail to provide usable instructions for farmers, leading to improper pesticide use
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and poor intervention decisions.

This proposed system creates an end-to-end workflow from image capture to treatment ad-

vice, aligning AI performance with real-world agricultural needs. While systems like Bonik et al.

[38] achieved 94.2% accuracy without field validation, this study emphasizes practical deploy-

ment from the outset. The approach prioritizes real-world reliability and supports the needs of

smallholder farmers, who represent the majority of the global agricultural workforce.

2.9 Conclusion

The transition to smart agriculture transcends the adoption of new technologies it funda-

mentally reimagines farming practices for the 21st century by merging traditional agricultural

knowledge with modern digital approaches to enhance productivity while promoting sustain-

ability. Early disease detection using artificial intelligence stands out as one of the most promis-

ing applications, where deep learning and computer vision techniques enable identification of

plant diseases at initial stages, thereby reducing crop losses and minimizing pesticide use.

As demonstrated through the visual disease symptoms analysis, AI technologies show sig-

nificant potential in agricultural applications. However, substantial performance gaps persist

between controlled laboratory conditions and real-world field deployment, with additional lim-

itations in computational efficiency, input validation, and actionable guidance provision. While

individual AI components achieve promising results, comprehensive end-to-end systems ad-

dressing both technical robustness and practical usability remain insufficient.

This necessitates the development of integrated AI architectures that bridge laboratory per-

formance with field deployment requirements while providing accessible solutions for diverse

farming contexts. The next chapter details the proposed architecture and its practical, scalable

design to address these identified limitations in agricultural AI systems.
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Chapter 3

Design and Methodology

3.1 Introduction

Following the analysis of existing agricultural challenges and AI-based solutions, we propose

a methodology focuses on developing a modular and scalable plant disease detection and rec-

ommendation system tailored for real-world agricultural use. The design integrates image vali-

dation, crop and disease classification, and bilingual recommendation generation, with an em-

phasis on mobile compatibility, practical usability, and adaptability to diverse crops, diseases,

and user needs.

3.2 Proposed Approach

Traditional agriculture faces mounting pressure from increasing global population demands,

with food security becoming a critical concern as populations continue to grow. Conventional

farming practices, characterized by manual labor, experience-based decision making, and reac-

tive approaches to crop diseases, result in significant global annual losses due to plant diseases

alone. These losses translate to substantial economic damage, threatening both food security

and farmer livelihoods.

The limitations of traditional agricultural practices are particularly evident in disease man-

agement, where farmers often rely on visual inspection and empirical knowledge to identify

plant diseases. Late detection, misdiagnosis, and inappropriate treatment applications fre-

quently occur, resulting in reduced crop yields and increased pesticide usage.

The integration of artificial intelligence into agricultural systems presents unprecedented

opportunities to address these challenges through precision farming, real-time monitoring, and

data-driven decision support. Current AI-based agricultural solutions face significant deploy-
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ment barriers including poor generalization from laboratory to field conditions, limited acces-

sibility for farmers with varying technical literacy levels, and inadequate integration of disease

detection with actionable treatment recommendations.

We aim to develop an integrated solution that brings expert-level plant disease diagnosis

directly to the field through accessible mobile technology. Our approach addresses the critical

need for early disease detection while ensuring practical applicability across diverse agricultural

contexts.

As illustrated in Figure 3.1, our proposed system implements a comprehensive architecture

designed to transform plant leaf images into actionable disease diagnoses and treatment rec-

ommendations.

Figure 3.1: Proposed approach for crop disease detection and recommendation generation sys-
tem.

The proposed system, as shown in Figure 3.1, implements a system architecture designed to

transform plant leaf images into actionable disease diagnoses and treatment recommendations:

• End User Layer: Serves as the primary interface between farmers and the AI system through

an intuitive mobile application designed for agricultural workers with varying levels of

technical literacy. The mobile interface provides:

– Image capture capabilities through the device camera.

– Photo gallery integration for selecting existing plant images.

– Clear visualization of diagnostic results.

– Farmer-friendly presentation of treatment recommendations in accessible language.

– User-centered design with simple navigation and visual feedback.
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• Processing Layer: Functions as the analytical core of the system and contains two primary

components that work sequentially to analyze plant images and generate recommenda-

tions:

– Crop Disease Detection: Implements a sequential analytical pipeline that processes

images through:

* Data Preprocessing: Standardizing image inputs such as resizing and normal-

ization.

* Out-of-Distribution (OOD) Detection: Validating whether the image contains

valid plant leaf material.

* Decision Branching: Routing non-leaf images back to the user with appropriate

feedback.

* Crop Classification: Identifying the specific plant species (tomato, potato, or

pepper).

* Disease Classification: Applying crop-specific disease diagnosis models to iden-

tify pathologies.

– Recommendation Generation: Transforms diagnostic outputs into practical treat-

ment advice through:

* Data Preparation: Structuring diagnostic results for recommendation genera-

tion.

* Entity Extraction: Identifying relevant components such as crop type and dis-

ease name.

* Intent Classification: Determining appropriate recommendation strategies based

on disease context.

* Report Generation: Creating structured treatment guidelines with technical de-

tails.

* Report Translation: Converting technical information into accessible, action-

able language for farmers.

• Data Layer: Provides the knowledge repositories that support both analytical processing

and recommendation generation:

– Images Repository: Contains structured datasets of plant images used for model

training and validation, organized by crop type and disease categories. The reposi-
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tory includes visual examples of healthy and diseased specimens for each supported

crop type.

– Recommendations Knowledge Base: Maintains comprehensive crop-disease-treatment

mappings including causal factors, symptoms progression patterns, treatment op-

tions with effectiveness ratings, and preventive measures. This knowledge base links

specific pathologies to contextually appropriate intervention strategies with support-

ing agricultural science references.

The proposed system architecture facilitates bidirectional data flow from right to left for de-

velopers managing the knowledge repositories and model optimization, and from left to right

for end users submitting images and receiving diagnostic results. This design ensures both op-

erational efficiency and a seamless user experience.

3.3 System Functionalities

To better explain the system’s behavior and structure, we have developed comprehensive

UML diagrams that document both the static structure and dynamic interactions within the

system. These diagrams serve as essential artifacts in the development process, providing a

visual blueprint for implementation while facilitating clear communication between technical

and non-technical stakeholders.

3.3.1 Use Case Analysis

The Use-Case Diagram in Figure 3.2 provides a comprehensive view of our Leafy App’s func-

tional architecture by illustrating two key actor types the farmer (User) and the Google Cloud

Backend and their interactions with the system.

26



Design and Methodology

Figure 3.2: System use case diagram.

For farmers, the diagram showcases essential operations involving the End User Layer in-

cluding:

• Granting permissions (for location, camera, and gallery access).

• Capturing or uploading plant images.

• Viewing diagnostic reports.

• Customizing their experience through language preferences.

The backend services implement the Processing Layer functionality through:

• Image processing and enhancement

• Leaf/Out-of-Distribution (OOD) detection to validate input.

• Crop Disease Classification using specialized models.

• Report generation using GPT-2 to produce a comprehensive output that includes:

– Identified crop.

– Detected disease.

– Likely cause of the disease.
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– Observable symptoms.

– Recommended treatment.

As shown in Figure 3.2, the diagram explicitly shows dependencies, such as how image cap-

ture must precede processing, and how classification determines if the image contains a valid

leaf before identifying the specific crop-disease combination. This representation clearly delin-

eates the distribution of intelligence between the mobile client and cloud backend.

3.3.2 Activity Diagram Analysis

The Activity Diagram in Figure 3.3 details the complete operational workflow of our plant

disease detection application from user initiation to diagnostic results.

Figure 3.3: System activity diagram.

The diagram identifies three critical decision points that determine the user’s path through

the system:

• Permission verification: Ensures the application has necessary access to device resources.

• Image confirmation: Validates that a usable image has been provided.

• Leaf validation: Confirms the image contains analyzable plant material through Out-of-

Distribution (OOD) detection.
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When permissions are denied or images aren’t provided, the system displays appropriate

error messages and terminates processing, preventing wasted computational resources. As il-

lustrated in Figure 3.3, the sequential pipeline operations mirror the architecture described in

Figure 3.1:

1. Image preprocessing for standardization.

2. Classification through the multi-stage Crop Disease Detection process.

3. GPT-2 Recommendation Generation based on knowledge base information.

Upon displaying results, the diagram shows the navigation options available to farmers, en-

abling them to either analyze another plant sample or exit the application. This comprehensive

workflow visualization ensures our implementation delivers a responsive, user-centered expe-

rience that addresses potential failure points while guiding users through the complete disease

diagnosis and recommendation system process.

3.4 Crop Disease Detection and Recommendation Process

As shown above in(Figure 3.1), our solution comprises two key functional components within

the Processing Layer: Crop Disease Detection and Recommendation Generation. These com-

ponents work in concert to transform raw plant images into actionable agricultural advice.

Figure 3.4 illustrates the processing pipeline of the system.

Figure 3.4: Crop disease detection and recommendation generation process.

As shown in Figure 3.4, the workflow begins with raw image data input from the End User

Layer, which undergoes preprocessing to standardize visual information. The processed images

then enter Out-of-Distribution (OOD) detection to validate plant material presence. Crop clas-

sification follows, identifying specific plant species and routing images to specialized disease

detection models optimized for each crop type. Text data undergoes parallel preprocessing to
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structure the knowledge base for recommendations. The Recommendation Generation com-

ponent transforms technical diagnoses into farmer-friendly advice, culminating in a compre-

hensive report combining visual and textual information that is delivered back to the End User

Layer.

Figure 3.5 presents a more detailed view of the technical architecture of the system’s Process-

ing Layer, expanding on the processes outlined in Figure 3.4.

Figure 3.5: Crop disease detection and recommendation generation system detailed process.

As presented in Figure 3.5, the Crop Disease Detection process, starting with image data

from the Data Layer, followed by preprocessing steps: resizing, RGB normalization, augmen-

tation, and standardization. Preprocessed images undergo analysis through neural networks,

beginning with MobileNetV2 for leaf detection to filter out non-leaf images. For confirmed leaf

images, EfficientNetB3 performs crop classification to identify tomato, pepper, or potato plants.

Based on classification results, the system routes images to crop-specific disease classification

models: DenseNet121 for tomato and potato diseases, and ResNet50 for pepper diseases.

The right part of Figure 3.5 details the Recommendation Generation subsystem built around

a fine-tuned GPT-2 language model. Text data passes through cleaning to standardize input,

entity recognition to identify key agricultural elements, and intent classification to determine

recommendation context. The GPT-2 model generates structured treatment recommendations

including disease identification, causes, symptoms, and remediation strategies. The output ap-

pears as a mobile-friendly report for farmers to implement in their fields, delivered through the

End User Layer.
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3.4.1 Data Pipeline

Our data pipeline encompasses the collection and processing of both image and text data to

support the model training and inference processes within the Processing Layer.

• Data Collection

The training data for the Crop Disease Detection models consists of public datasets and

manually collected images stored in the Images Repository of the Data Layer. The collec-

tion includes:

– Tomato Plants: 10,000 images across nine disease categories.

– Potato Dataset: 3,080 images covering seven classes.

– Pepper Dataset: 290 images encompassing 12 disease categories.

An imbalance exists predominantly due to the high volume of tomato samples, this imbal-

ance is addressed using data augmentation and resampling. Two supplementary datasets

are included in the Data Layer:

– Recommendation Dataset: Mapping crop-disease-treatment for GPT-2 fine-tuning

of the Recommendation Generation component.

– Out-of-Distribution (OOD) Detection Dataset: Contains in-distribution and out-of-

distribution samples for training the leaf detection model.

Figure 3.6 illustrates the dataset distribution before augmentation in the Data Layer’s Im-

ages Repository, showing both the combined dataset distribution (Figure 3.6a) and the

overall dataset size distribution (Figure 3.6b).

(a) Combined dataset distribution. (b) Dataset size distribution.

Figure 3.6: Dataset distribution before augmentation.
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Our comprehensive data preprocessing framework within the Processing Layer addresses

two distinct data modalities: images for Crop Disease Detection and text for Recommen-

dation Generation. Each modality follows a specialized pipeline to ensure standardized

inputs and enhanced feature quality.

• Data Preprocessing

Data preprocessing constitutes a critical foundation of our system, ensuring optimal model

performance through systematic preparation of both visual and textual inputs for the crop

disease detection and recommendation pipeline.

– Image Data Processing

We implemented a robust image preprocessing pipeline within the Crop Disease De-

tection component with multiple stages:

* Resizing: All images are resized to 224×224 pixels.

* RGB Conversion: All images are converted to the RGB color space, ensuring

consistent 3-channel representation regardless of original format.

* Normalization: Pixel values are scaled to the [0,1] range.

* Data Augmentation: Techniques such as random flipping, rotation (up to 20%),

zoom, and contrast adjustments are applied.

* Class Balancing: Oversampling is used for underrepresented classes.

Figure 3.7 illustrates our comprehensive image preprocessing workflow within the

Processing Layer. These processes standardize input features while preserving disease-

relevant characteristics essential for accurate Crop Disease Detection.

Figure 3.7: Image preprocessing workflow.
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– Text Data Processing for NLG

For textual data used in the Recommendation Generation component, particularly

focusing on plant disease entities, we implemented a multi-stage preprocessing pipeline:

* Text Cleaning: All text undergoes comprehensive cleaning:

· Lowercasing: All text is converted to lowercase to eliminate case sensitivity.

· Stopword Removal: Non-alphanumeric characters are filtered out using reg-

ular expressions.

· Number Removal: Numeric digits are removed to focus on textual content.

* Tokenization: Text is segmented into individual words or tokens using NLTK’s

word_tokenize function, which intelligently handles contractions and boundary

cases.

* Lemmatization: Word forms are reduced to their base or dictionary form using

NLTK’s WordNetLemmatizer, preserving semantic meaning while normalizing

variations.

* Entity Recognition: Special attention is given to plant and disease entities, which

are preserved during preprocessing to maintain domain-specific knowledge.

* Intent Classification: A dedicated layer categorizes generated text based on in-

tent, including cause identification, crop type, disease naming, symptom de-

scription, and treatment recommendations.

Figure 3.8, our text processing pipeline for handling descriptive metadata within the

Processing Layer includes multiple stages from text cleaning to intent classification.

Figure 3.8: Text preprocessing workflow.
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Figure 3.8 illustrates our text processing pipeline for handling descriptive metadata

within the Processing Layer. This parallel workflow enables our system to extract

named entities related to plants and diseases, enhancing the model’s interpretability

and supporting comprehensive agricultural decision support delivered through the

End User Layer.

• Data Splitting Strategy

Our methodology employs a standard data partitioning approach to ensure robust model

training and evaluation for both Crop Disease Detection and Recommendation Genera-

tion components. The dataset is split into:

– Training set (70%): For model parameter optimization within the Processing Layer.

– Validation set (15%): For hyperparameter tuning and early stopping.

– Test set (15%): For unbiased final evaluation.

Figure 3.9 shows the crop distribution after preprocessing in the Data Layer’s Images Repos-

itory, illustrating the balanced distribution achieved through our preprocessing pipeline.

(a) Crop distribution (bar chart).
(b) Crop distribution (pie
chart).

Figure 3.9: Crop distribution after preprocessing.

This splitting strategy ensures sufficient data for training while reserving independent sets

for validation and testing. Our preprocessing pipeline includes multiple stages before data

splitting occurs, ensuring all subsets benefit from the same standardized preprocessing.

As depicted in Figure 3.9, we achieved a balanced distribution across the three main crop

types (pepper, potato, and tomato), with each category containing approximately 10,000

preprocessed images after augmentation and resampling. This balance is crucial for pre-

venting class bias during model training and ensures the system can recognize diseases

across all target crops with similar efficacy.
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3.4.2 Models Architecture

The Processing Layer of our system architecture see Figure 3.1 implements specialized neural

network models for each stage of the Crop Disease Detection and Recommendation Generation

pipelines. These models are designed to work sequentially, with each component building on

the outputs of previous stages.

• Leaf Detection Model

MobileNetV2 is a convolutional neural network architecture specifically designed for mo-

bile and edge devices, utilizing inverted residual structures and linear bottlenecks to achieve

computational efficiency. In our system, we leveraged this architecture for Out-of-Distribution

(OOD) detection to validate whether input images contain valid plant leaf material before

proceeding to subsequent analytical stages within the Crop Disease Detection pipeline.

As illustrated in Figure 3.10, the MobileNetV2 architecture processes input images of size

224×224×3 through an initial 3×3 standard convolution layer with 32 filters and stride 2,

reducing spatial dimensions to 112×112×32 while extracting initial features.

Figure 3.10: MobileNetV2 architecture.

Following the initial convolution, the network employs a series of bottleneck blocks with

inverted residual structures and shortcut connections. These blocks have varying con-

figurations of expansion factors (t) and strides (s), progressively reducing spatial dimen-

sions through lightweight depthwise convolutions: 112×112×16, 56×56×24, 28×28×32, and

14×14×64. The network then uses a 1×1 convolution to expand to 1280 channels, followed

by global average pooling and fully connected layers for binary leaf/non-leaf classification

with sigmoid activation.

With approximately 3.5 million parameters, the model maintains efficiency for mobile de-

ployment while providing robust OOD detection capability. Training leverages the Adam

optimizer with binary cross-entropy loss, incorporating regularization techniques such as

dropout and batch normalization to prevent overfitting.
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• Crop Classification Model

EfficientNetB3 represents a breakthrough in neural architecture design through compound

scaling, systematically balancing network depth, width, and resolution. We implemented

this architecture for multi-class crop classification to distinguish between tomato, potato,

and pepper plants, providing the critical intermediate stage in our Crop Disease Detection

pipeline within the Processing Layer.

Figure 3.11 shows the EfficientNetB3 architecture for crop classification, highlighting its

use of mobile inverted bottleneck convolution (MBConv) blocks with squeeze-and-excitation

modules.

Figure 3.11: EfficientNetB3 architecture.

The EfficientNetB3 architecture begins with a 3×3 convolution producing feature maps

of 112×112×40, followed by a series of MBConv blocks with varying configurations. These

blocks progressively reduce spatial dimensions (112×112×32, 56×56×48, 28×28×96, 14×14×136)

while integrating depthwise separable convolutions, squeeze-and-excitation (SE) mod-

ules for channel attention, and residual connections for efficient feature transformation.

The network concludes with a 1×1 convolution expanding to 1536 channels, global aver-

age pooling, and dense layers with softmax activation for three-class classification (tomato,

potato, pepper). With approximately 12 million parameters, EfficientNetB3 balances ac-

curacy and efficiency through compound scaling, employing Adam optimizer with cate-

gorical cross-entropy loss alongside regularization methods like batch normalization and

dropout. This architecture ensures precise crop type identification, enhancing diagnostic

accuracy by directing plant images to disease classifiers for specific pathologies.

• Disease Diagnosis Models

Our Processing Layer implements specialized neural network architectures for disease di-

agnosis, each optimized for specific characteristics and disease patterns of target crops.

These models are activated based on crop classification results, ensuring each plant im-

age is analyzed by the most appropriate diagnostic model within Crop Disease Detection.
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– Tomato and Potato Disease Classification: For tomato and potato disease classifica-

tion within the Crop Disease Detection component, we implemented the DenseNet121

architecture shown in Figure 3.12.

Figure 3.12: DenseNet121 architecture.

DenseNet121 employs densely connected convolutional networks where each layer

receives feature maps from all preceding layers, promoting feature reuse and gradi-

ent flow. Processing input images of size 256×256×3, the architecture begins with a

7×7 convolution (64 filters, stride=2) and 3×3 max pooling, followed by four dense

blocks with 6, 12, 24, and 16 layers respectively. Each block implements a bottle-

neck design with batch normalization, ReLU activation, and 1×1 and 3×3 convolu-

tions, while transition layers between blocks reduce feature map dimensions using

1×1 convolutions and 2×2 average pooling.

After global average pooling, the network outputs features through dense layers with

softmax activation, utilizing separate classification heads for tomato (10 classes) and

potato (7 classes) diseases. With approximately 8 million parameters, the model bal-

ances detailed feature recognition with computational efficiency, using Adam op-

timizer with categorical cross-entropy loss and regularization techniques including

batch normalization, dropout, and dense connectivity.

– Pepper Disease Classification: For pepper disease classification within the Crop

Disease Detection component, we implemented the ResNet50 architecture shown

in Figure 3.13. ResNet50 employs deep residual learning with shortcut connections

that perform identity mapping, addressing the vanishing gradient problem for ro-

bust feature extraction.
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Figure 3.13: ResNet50 architecture.

Processing input images of size 256×256×3, the network begins with a 7×7 convolu-

tion (64 filters) and 3×3 max pooling, followed by four stages of residual blocks with

bottleneck designs: 3 blocks (64×64×256), 4 blocks (32×32×512), 6 blocks (16×16×1024),

and 3 blocks (8×8×2048).

After global average pooling producing 2048 features, dense layers with softmax ac-

tivation enable classification across 12 pepper disease classes. With approximately

23 million parameters, ResNet50 balances capacity and efficiency, using Adam op-

timizer with categorical cross-entropy loss alongside regularization techniques in-

cluding batch normalization, dropout, and residual connections.

• Treatment Recommendation Generation Model

GPT-2 (Generative Pretrained Transformer 2) is a transformer-based language model that

generates human-like text through autoregressive prediction. In our system, we imple-

mented a fine-tuned GPT-2 model within the Recommendation Generation component

to generate contextually appropriate agricultural treatment recommendations based on

identified crop-disease combinations, bridging the gap between technical disease identi-

fication and practical remediation actions.

Figure 3.14 illustrates our GPT-2 implementation for treatment recommendation genera-

tion, showing how crop and disease inputs are processed through knowledge-based pro-

cessing before generating structured treatment recommendations.
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Figure 3.14: GPT-2 architecture.

The recommendation system integrates Crop and Disease Inputs from the Crop Disease

Detection component with knowledge base information from the Data Layer. This pro-

cessed information feeds into a GPT-2 architecture featuring 12 transformer blocks with

multi-head self-attention mechanisms (12 attention heads) and position-wise feed-forward

networks. The model architecture includes token embeddings (768-dimensional), posi-

tional encoding, and transformer blocks with Layer Normalization, Attention, Feed-Forward

Networks, and Residual Connections, supporting a vocabulary of 50,257 tokens.

Fine-tuned on a specialized crop-disease-treatment dataset, the model generates struc-

tured reports organized into sections: disease confirmation, cause analysis, symptom de-

scriptions, and treatment recommendations. With approximately 124 million parameters

and a context length of 1024 tokens, it provides comprehensive, actionable advice tailored

for farmers. Optimization employs AdamW with learning rate decay, gradient clipping,

and regularization through layer normalization and residual connections. This final stage

of the analytical pipeline translates disease classifications into farmer-friendly advice to

enhance agricultural decision-making.

3.4.3 Performance Evaluation

To effectively assess the system’s performance in real-world agricultural settings, several met-

rics are essential for evaluating both the Crop Disease Detection and the Recommendation Gen-

eration components in the Processing Layer. This section outlines the key performance metrics

used, grouped by task type.

• General Classification Metrics:

These metrics apply to both binary and multi-class classification tasks in the detection

pipeline[86]:
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– Accuracy: Proportion of correct predictions:

Accuracy = T P +T N

T P +T N +F P +F N

– Precision: Proportion of positive predictions that are correct:

Precision = T P

T P +F P

– Recall (Sensitivity): Proportion of actual positives correctly predicted:

Recall = T P

T P +F N

– F1-Score: Harmonic mean of precision and recall:

F1-Score = 2 · Precision ·Recall

Precision+Recall

– Confusion Matrix: A matrix comparing actual vs. predicted classes to visualize clas-

sification errors.

1. Binary Classification Specific Metric:

- Binary Cross-Entropy Loss (BCE): Standard loss function for binary classifica-

tion[87]:

BCE Loss =− 1

N

N∑
i=1

[
yi log(ŷi )+ (1− yi ) log(1− ŷi )

]
2. Multi-Class Classification Specific Metrics:

- Macro-Averaged Metrics: Compute metrics independently for each class and

take the average, gives equal weight to all classes.

- Micro-Averaged Metrics: Aggregate the contributions of all classes, gives more

weight to frequent classes.

- Categorical Cross-Entropy Loss (CCE): Loss function for multi-class classifica-

tion[87, 88]:

CCE Loss =−
N∑

i=1

C∑
c=1

yi c log(ŷi c )

In the above equations, TP, FP, TN, and FN refer to true positives, false positives, true

negatives, and false negatives, respectively[89].
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• Natural Language Generation Metrics for Recommendation Evaluation:

These metrics are used to evaluate the quality of generated treatment recommendations:

– BLEU (Bilingual Evaluation Understudy): Measures n-gram precision compared to

reference text[90]:

BLEU = BP ·exp

(
N∑

n=1
wn log pn

)
Where pn is the n-gram precision, wn is the weight (usually 1

N ), and BP is the brevity

penalty[91, 92].

– ROUGE Metrics: Compare textual overlap between candidate and reference sequences[91,

93]:

* ROUGE-1: Unigram (single-word) overlap.

* ROUGE-2: Bigram (two-word) overlap.

* ROUGE-L: Longest common subsequence.

– Perplexity: Indicates how well a language model predicts text. Lower values imply

better performance[94]:

Perplexity = 2− 1
N

∑N
i=1 log2 P (wi )

These performance metrics provide a comprehensive framework for evaluating both the

Crop Disease Detection and Recommendation Generation components of our Processing Layer,

ensuring that the system delivers accurate diagnoses and helpful recommendations to farmers

through the End User Layer.

3.5 Conclusion

The system design offers a modular, scalable foundation for AI-powered plant disease de-

tection. Through clear architecture, defined data pipelines, and tailored model structures, it

establishes a practical and adaptable solution. The next chapter focuses on its technical imple-

mentation and real-world performance.
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Chapter 4

Implementation and Results

4.1 Introduction

The implementation of the plant disease detection and recommendation system translates

the designed architecture into a functional solution. Development tools, frameworks, and the

processed data is used to build and integrate the multi-model pipeline into a mobile applica-

tion. The system is tested across various scenarios, and the results highlight its performance,

accuracy, and suitability for real-world agricultural conditions.

4.2 Development Environment and Tools

The implementation leveraged a comprehensive technology stack across multiple domains.

The development environment combined cloud-based platforms for computationally intensive

tasks with local tools for application development and interface design.

• Hardware and System Specifications

Two distinct computing environments were used to optimize different phases of the devel-

opment process. Resource-intensive model training was executed on a high-performance

Ubuntu-based system, while documentation, application development, and testing were

carried out on a secondary Windows-based machine.

Table 4.1 summarizes the specifications of the primary development machine used for

training deep learning models. The system featured a powerful RTX 3060 GPU, which en-

abled efficient parallel computation for neural network operations. The 32GB RAM sup-

ported large-scale data preprocessing and training workflows, while the Ubuntu LTS en-

vironment ensured stability and compatibility with machine learning frameworks.
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Component Specification

CPU Intel Core i5-10400F

GPU NVIDIA GeForce RTX 3060

RAM 32GB DDR4

Operating System Ubuntu LTS 20.04 (Focal Fossa)

Table 4.1: Hardware specifications for model training.

General-purpose development tasks were executed on a secondary Windows-based ma-

chine, whose specifications are listed in Table 4.2. This environment was sufficient for

documentation, UI design using Figma, mobile application development in Android Stu-

dio, and application testing. The Windows platform provided broader compatibility with

design and development tools and allowed for smooth integration of mobile testing work-

flows.

Component Specification

CPU Intel Core i7-3537U @ 2.00GHz (2.50GHz boost)

GPU NVIDIA GeForce GT 740M

RAM 6.00GB

Storage HDD

Architecture 64-bit

Operating System Windows 10 Pro

Table 4.2: Hardware specifications for general development tasks.

• Programming Languages

– Python: Primary language used for all data processing, model development, and

backend services. Python’s extensive ecosystem of scientific and machine learning

libraries made it ideal for implementing the core functionality of the system [95].

Figure 4.1: Python logo.
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– Java: Used for Android mobile application development, providing native perfor-

mance and access to device features like the camera and location services [96].

Figure 4.2: Java logo.

• Design and Documentation

– Figma: User interface design platform used for creating interactive prototypes and

mockups of the mobile application interface [97].

– PlantUML: UML diagram creation tool used for generating system architecture dia-

grams, activity flows, and use case models [98].

Figure 4.3: PlantUML logo.

• Data Processing and Analysis

– NumPy: Fundamental package for scientific computing with Python, used for nu-

merical operations on image data [99].

– Pandas: Data manipulation library used for dataset preparation, cleaning, and anal-

ysis [100].

– Scikit-learn: Machine learning library used for data preprocessing, model evalua-

tion metrics, and traditional machine learning algorithms [101].

– OpenCV (cv2): Computer vision library used for image preprocessing, color analysis,

and leaf detection algorithms [102].

– Albumentations: Image augmentation library used to enhance the diversity of the

training dataset [103].
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– Matplotlib and Seaborn: Visualization libraries used for generating training progress

graphs, confusion matrices, and dataset distribution charts [104, 105].

– NLTK: Natural Language Toolkit, used for text preprocessing such as tokenization,

stopword removal, and lemmatization, particularly for preparing intent classifica-

tion and entity extraction datasets [106].

– SpaCy: Advanced NLP library used for efficient tokenization, named entity recogni-

tion, and part-of-speech tagging, commonly employed in preprocessing for GPT-2

and other language models [107].

• Model Development Tools

– TensorFlow/Keras: Primary deep learning framework used for implementing and

training all classification models, including EfficientNetB3, DenseNet121, and ResNet50

architectures [108, 109].

Figure 4.4: TensorFlow logo.

– PyTorch: Secondary framework used primarily for the GPT-2 recommendation sys-

tem implementation [110].

– TensorFlow Lite: Used to convert and optimize trained models for efficient deploy-

ment on mobile devices with limited computational resources [111].

– Google Colab: Cloud-based Jupyter notebook environment providing GPU acceler-

ation for model training [112].

Figure 4.5: Google Colab logo.
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– PlantVillage Dataset in Kaggle: Primary dataset used for training crop and disease

classification models [113].

Figure 4.6: Kaggle logo.

• Application Development

– Android Studio: Integrated development environment (IDE) used for developing the

native Android application in Java [114].

Figure 4.7: Android Studio logo.

• Cloud Infrastructure and Services

– Google Cloud Platform: Primary cloud infrastructure providing storage (Cloud Stor-

age), serverless computing (Cloud Functions), and machine learning services (AI

Platform) [115].

Figure 4.8: Google Cloud logo.

– Flask: Lightweight Python web framework used to build the API server that handles

image analysis requests from the mobile application [116].

Figure 4.9: Flask logo.
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– Weather API: External service integrated to provide localized weather data for con-

textualizing plant disease diagnoses and recommendations [117].

Figure 4.10: Weather API logo.

– HTTP Communication: Simple HTTP POST requests used to transmit image data

from the Android application to the Flask server for processing, with JSON responses

containing analysis results.

4.3 Models Development

The system implements a cascading multi-model pipeline consisting of four main stages:

OOD detection, crop classification, disease diagnosis, and recommendation generation. Each

stage employs specialized architectures optimized for their specific tasks.

4.3.1 Out-of-Distribution (OOD) Detection Analysis and Results

In plant disease diagnosis systems, ensuring that only relevant images are processed is cru-

cial for accuracy and efficiency. Our system implements an Out-of-Distribution (OOD) detec-

tion mechanism as the first filtering stage, distinguishing between plant leaf material and irrel-

evant inputs before proceeding to disease classification.

The MobileNetV2 model analyzes preprocessed images to determine if they contain valid

plant leaf material. The model’s output layer uses a sigmoid activation function for binary classi-

fication, producing values between 0 and 1 representing the probability of an image containing

leaf material.

As illustrated in Figure 4.11, the OOD detection system serves as the first filtering stage in

our pipeline, ensuring that only relevant plant leaf images proceed to disease classification. This

filtration step is essential for maintaining high accuracy in subsequent classification stages.

47



Implementation and Results

Figure 4.11: OOD detection workflow.

Figure 4.12 provides a detailed view of the model architecture, highlighting the arrangement

of layers that enable efficient feature extraction while maintaining computational efficiency.

The implementation specifics include:

Figure 4.12: Layer structure of the MobileNetV2-based OOD detection model.

• Input: Preprocessed RGB images (224×224).

• Output: Binary classification (leaf or non-leaf).

• Training: 150 epochs, batch size of 32, early stopping for regularization, and Adam opti-

mizer with binary cross-entropy loss function.

• Evaluation: Performance measured using accuracy, precision, recall, F1 score, ROC AUC,

and visualized through confusion matrices and ROC curves.

The MobileNetV2-based OOD detection model demonstrated exceptional discrimination

ability between plant images and non-relevant inputs, serving as the critical first filter in our

pipeline. Training over 150 epochs showed rapid convergence, with significant improvements
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during the first 60 epochs followed by stabilization, as illustrated in Figure 4.13. The training loss

decreased rapidly from approximately 0.27 to 0.01-0.02, while validation loss stabilized around

0.03-0.04. This small gap between training and validation loss indicates excellent generalization

with minimal overfitting.

Both training and validation accuracy improved rapidly from around 50% initially, with train-

ing accuracy reaching nearly 99% and validation accuracy stabilizing at approximately 97-98%.

This close tracking further confirms the model’s strong generalization capabilities.

Figure 4.13: Training and validation curves for the OOD detection model.

Performance evaluation revealed outstanding classification metrics, with particularly strong

results in recall (100 %) and overall accuracy (98.86 %), as detailed in Table 4.3 and visualized in

Figure 4.14.

Metric Value
Accuracy 98.86 %
Precision 97.73 %
Recall 100.00 %
F1-score 98.85 %
AUROC 99.00 %
FPR at 95 % TPR 2.22 %

Table 4.3: Classification metrics for the OOD detection model.

The confusion matrix in Figure 4.15 further illustrates the model’s strong binary classifica-

tion performance, with clear separation between leaf and non-leaf images.

The ROC curve and threshold optimization results shown in Figure 4.16 highlight the model’s

exceptional discriminative ability, with an AUROC of 0.990. As depicted in Figure 4.16(a). The
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Figure 4.14: Performance metrics visualization for OOD detection model.

Figure 4.15: Confusion matrix for the OOD detection model.

curve demonstrates outstanding performance across different threshold settings, hugging the

top-left corner which indicates near-perfect classification. The optimal operating threshold was

determined to be 0.5, effectively balancing false positive and false negative rates for agricultural

applications, as shown in Figure 4.16(b).

The detailed analysis of True/False Positives/Negatives, as presented in Figure 4.17, revealed

perfect performance in avoiding false negatives (0 instances), ensuring that all actual leaf images

proceed to the next stage of disease classification. This is particularly important for a first-stage

filtering model.
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(a) ROC curve.

Parameter Value
Optimal Threshold 0.5
Metrics at Optimal Threshold
Recall 100.00 %
Precision 97.73 %
FPR 2.22 %

(b) Model performance metrics at optimal
threshold.

Figure 4.16: ROC curve analysis and threshold optimization for OOD detection.

Figure 4.17: True/False Positives/Negatives analysis.

The model’s remarkable capability in distinguishing between plant and non-plant images

can be attributed to several factors. The MobileNetV2 architecture provides an excellent balance

between computational efficiency and feature extraction power. The perfect recall score (100 %)
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indicates successful prioritization of avoiding false negatives, which is critical in our pipeline to

ensure no valid plant images are rejected. The ROC curve performance, with an AUC of 0.990,

demonstrates the model can distinguish between leaf and non-leaf images with near-perfect

accuracy. The significant separation between the ROC curve and the diagonal baseline confirms

substantially better-than-random performance.

The low false positive rate (2.22%) suggests the model has effectively learned distinguishing

visual patterns between plant and non-plant images despite the diversity of potential inputs.

These results confirm that our OOD detection model serves as a reliable first filter in the di-

agnosis pipeline, effectively preventing irrelevant images from proceeding while ensuring all

legitimate plant images are properly processed for subsequent disease classification.

4.3.2 Crop Classification Analysis and Results

After confirming that an image contains valid plant leaf material through the OOD detection

stage, our system must determine the specific crop type to enable targeted disease diagnosis.

This critical second stage in our pipeline directs each image to the appropriate crop-specific

disease classifier, ensuring accurate diagnosis across multiple plant species.

The crop classification system serves as the second stage in our pipeline, determining the

plant type before proceeding to disease-specific diagnosis. This sequential approach allows for

specialized disease models tailored to each crop’s unique pathologies, significantly improving

overall diagnostic accuracy compared to a single multi-crop disease classifier.

Figure 4.18: Crop classification workflow.

The EfficientNetB3 model processes images validated by the OOD detection stage to classify

them into specific crop types. The model’s output layer uses a softmax activation function, pro-

ducing normalized probability distributions across the three crop classes ("Tomato," "Potato,"

or "Pepper").

Figure 4.19 provides a detailed view of the model architecture, highlighting the arrangement
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of layers that enable efficient feature extraction while maintaining computational efficiency.

The complex structure shown in this figure demonstrates the sophisticated nature of the Effi-

cientNetB3 architecture used for crop classification.

Figure 4.19: Layer structure of the EfficientNetB3-based crop classification model.

The implementation specifics include:

• Input: Preprocessed RGB images (224×224×3).

• Output: Three-class classification (tomato, potato, or pepper).

• Training: Transfer learning approach with pre-trained weights, followed by fine-tuning

for crop-specific features.

• Dataset: Balanced collection of leaf images across the three target crops.

• Evaluation: Performance measured using accuracy, precision, recall, F1 score, and visu-

alized through confusion matrices and classification reports.

To validate our architectural selection, we evaluated multiple deep learning architectures,

with a focus on MobileNetV2 and EfficientNetB3. Figure 4.20 illustrates the performance of Mo-

bileNetV2 on the crop classification task, revealing significant limitations that influenced our

architectural choice.

During our architecture evaluation, we faced significant challenges with the MobileNetV2

model. Analysis of the learning curves revealed unsatisfactory results, with training accuracy

plateauing at approximately 60% while validation accuracy struggled to exceed 40% after 15
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Figure 4.20: MobileNetV2 performance on crop classification.

epochs. As shown in Figure 4.20, the curves show a concerning pattern - a persistent and widen-

ing gap between training loss (1.2) and validation loss (exceeding 2.0), indicating that this archi-

tecture was unsuitable for our classification task despite extensive hyperparameter tuning.

To address these performance issues, we implemented EfficientNetB3, which demonstrated

remarkably superior learning patterns (Figure 4.22). The EfficientNetB3 model showed valida-

tion and training accuracy both rapidly approaching 100% within the initial training epochs.

Most notably, the validation loss consistently tracked below training loss and approached zero,

demonstrating a dramatically superior learning pattern compared to MobileNetV2. This stark

contrast in performance metrics confirmed that EfficientNetB3’s architectural design was sig-

nificantly more effective for our implementation, prompting its selection as our final model

architecture.

The model was trained using 300 epochs with early stopping after 20 epochs of no improve-

ment, and Adam optimizer with categorical cross-entropy loss function. The training process

demonstrated rapid improvement during the initial epochs, as shown in Figure 4.21, showcasing

the effectiveness of transfer learning. Early stopping was employed, halting training at epoch 74

after the validation loss plateaued, with the complete learning curves displayed in Figure 4.22.

Figure 4.21: Initial training epochs for crop classification model.
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Figure 4.22: Training and validation curves for crop classification.

Figure 4.23 shows the final training epochs for the crop classification model, illustrating how

the training stabilized and converged to an optimal solution. The consistent performance across

training and validation sets demonstrated in this figure indicates strong generalization capabil-

ities.

Figure 4.23: Final training epochs for crop classification model.

The learning curves reveal excellent convergence behavior, with training and validation met-

rics tracking closely throughout the process. This pattern indicates strong generalization capa-

bility without signs of overfitting, despite the model’s considerable depth and capacity.

The early stopping mechanism effectively identified the optimal training duration, preserving

model performance while preventing unnecessary computation.

The model achieved remarkable classification metrics across training, validation, and test

datasets, with test accuracy reaching 99.89 %, as detailed in Table 4.4 and visualized in Fig-

ure 4.24. This exceptional consistency across all dataset splits demonstrates the model’s robust

generalization capabilities.

The confusion matrix in Figure 4.25 highlights the model’s strong diagonal performance,

with minimal cross-crop confusion. As shown in this visualization, the model correctly clas-

sified nearly all samples, with only five potato samples misclassified as pepper. This pattern

suggests that while potato and pepper leaves may share some visual similarities, the model has

largely overcome this potential source of confusion.
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Metric Training Validation Test
Loss 0.0014 0.0013 0.0034
Accuracy 99.93 % 99.93 % 99.89 %
Precision 99.93 % 99.93 % 99.89 %
Recall 99.93 % 99.93 % 99.89 %
F1-score 99.93 % 99.93 % 99.89 %

Table 4.4: Performance metrics for crop classification model.

Figure 4.24: Performance metrics visualization for crop classification.

Figure 4.26 provides visual examples of correct crop classifications, demonstrating the model’s

ability to recognize each crop type under various conditions. This grid of sample predictions of-

fers tangible evidence of the model’s classification performance across different crop types.

The model’s exceptional capability in distinguishing between the three target crops can be

attributed to several factors. The EfficientNetB3 architecture provides an excellent balance be-

tween depth and width, enabling the model to capture subtle visual differences between crop

types while maintaining computational efficiency. The near-perfect consistency between train-

ing, validation, and test metrics (all approximately 99.9 %) indicates the model has successfully

learned generalizable features rather than memorizing the training data.

The minimal misclassifications (only five potato samples misclassified as pepper) suggests

the model has effectively learned to distinguish between crops even when visual similarities

exist. While our experiments with MobileNetV2 showed promising results and faster inference

times, the marginal performance improvement offered by EfficientNetB3 justified its selection,

particularly given the critical nature of this classification stage in the overall pipeline.
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Figure 4.25: Confusion matrix for crop classification model.

Figure 4.26: Prediction grid showing sample classifications.

These results confirm that our crop classification model serves as a reliable router in the

diagnosis pipeline, accurately directing plant images to the appropriate crop-specific disease

classifier. Following the OOD detection stage that filters out non-leaf images, this component

ensures that each leaf image is correctly categorized before proceeding to the specialized disease

classification models, maintaining high diagnostic accuracy throughout the system.
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4.3.3 Tomato Disease Classification Analysis and Results

In plant pathology detection systems, accurate identification of specific disease conditions

is essential for targeted treatment recommendations. Our tomato disease classification model

represents the final analytical stage in the diagnostic pipeline, providing specific disease identi-

fication after crop type determination and validation of leaf material.

The tomato disease model uses the DenseNet121 architecture with dense connections be-

tween layers for improved gradient flow. With 121 layers depth and approximately 8 million

trainable parameters, this model was trained for 300 epochs with early stopping. The archi-

tecture enables detailed feature recognition critical for distinguishing between similar disease

patterns. The model’s output layer uses a softmax activation function for multi-class classifica-

tion, enabling discrimination across 10 distinct tomato disease categories.

As illustrated in Figure 4.27, the disease classification represents the final analytical stage in

our pipeline, providing specific disease identification based on the previously determined crop

type. This targeted approach allows for precise diagnostic outcomes tailored to tomato-specific

pathologies.

Figure 4.27: Tomato disease classification workflow.

Figure 4.28 provides a detailed view of the model architecture, highlighting the dense con-

nections that enable efficient feature extraction. The layered structure shown in this figure

demonstrates how the DenseNet121 architecture processes input images to extract meaning-

ful features for disease classification.
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Figure 4.28: Layer structure of the DenseNet121-based disease classification model.

The implementation specifics include:

• Input: Preprocessed RGB images (256×256×3).

• Output: Multi-class classification (10 classes for tomato: Bacterial spot, Early blight, Late

blight, Leaf mold, Septoria leaf spot, Spider mites, Target spot, Yellow leaf curl virus, Mo-

saic virus, and Healthy).

• Training: 300 epochs with early stopping, two-phase approach with frozen base model

followed by fine-tuning.

• Dataset: 7,000 training samples, 1,500 validation samples, and 1,500 test samples.

• Evaluation: Performance measured using accuracy, precision, recall, F1 score, and con-

fusion matrices.

The DenseNet121-based tomato disease classification model identifies 10 distinct categories

of tomato diseases from a comprehensive and balanced dataset. Training followed a two-phase

approach: initial training with a frozen base model followed by fine-tuning of all layers.

Figure 4.29 shows the initial training epochs for the tomato disease classification model,

demonstrating rapid early improvements in both accuracy and loss metrics.

Figure 4.30 presents the complete learning curves for the tomato disease model, showing

consistent improvement throughout the training process and the effectiveness of the two-phase

training approach.
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Figure 4.29: Initial training epochs for tomato disease classification.

Figure 4.30: Training and validation curves for tomato disease model.

Figure 4.31 displays the final training epochs, illustrating how the model converged to an

optimal solution with stable performance on both training and validation sets.

Figure 4.31: Final training epochs for tomato disease model.
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The training curves demonstrate stable learning progression with consistent improvement

in both accuracy and loss metrics. Early epochs show rapid gains in performance, while later

epochs exhibit the fine-tuning process that helps the model achieve optimal classification ca-

pabilities across all disease categories.

The model achieved exceptional performance in both validation and testing phases, with

metrics consistently above 98.8 %, as shown in Table 4.32. This remarkable consistency between

validation and test results indicates strong generalization capabilities and robust performance

in real-world applications. As illustrated in Table 4.32(a) and Table 4.32(b), the validation and

test metrics show nearly identical performance, confirming the model’s stability.

Metric Value
Accuracy 98.87 %
Precision 98.89 %
Recall 98.87 %
F1 Score 98.87 %

(a) Validation metrics.

Metric Value
Accuracy 98.80 %
Precision 98.82 %
Recall 98.80 %
F1 Score 98.80 %

(b) Test metrics.

Figure 4.32: Tomato disease classification model performance metrics.

Figure 4.33 provides a visual representation of these metrics, demonstrating the model’s bal-

anced performance across all evaluation criteria. The consistently high values across all metrics

indicate strong performance without sacrificing any particular aspect of classification quality.

Figure 4.33: Performance metrics visualization for tomato disease model.

The confusion matrix in Figure 4.34 reveals the model’s excellent performance across all ten

disease categories, with minimal misclassifications as evidenced by the strong diagonal pattern.
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This visualization confirms the model’s ability to correctly distinguish between different tomato

diseases, even those with similar visual characteristics.

Figure 4.34: Confusion matrix for tomato disease classification.

The model’s exceptional capability in classifying tomato diseases can be attributed to sev-

eral factors. The DenseNet121 architecture with its dense connectivity pattern enables efficient

feature reuse and gradient flow, making it particularly effective for the fine-grained visual dis-

tinctions between disease types. The consistent performance between validation (98.87 %) and

test (98.80 %) datasets indicates robust generalization capability without overfitting. The per-

class metrics show remarkably balanced performance across all disease categories, with only

minimal variations in precision.

The high performance metrics correlate strongly with the large, well-balanced dataset of ap-

proximately 1,000 samples per disease category, confirming that adequate data representation is

crucial for effective disease classification. These results establish the tomato disease classifier as

the strongest performer among our crop-specific models, providing reliable disease identifica-

tion that can directly inform treatment and management decisions in agricultural applications.
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4.3.4 Potato Disease Classification Analysis and Results

Following the successful implementation of tomato disease classification, our system also

includes a specialized model for potato disease detection. This component enables accurate

identification of potato-specific pathologies, further extending the diagnostic capabilities of our

agricultural disease detection pipeline.

The potato disease model also uses the DenseNet121 architecture with dense connections

between layers for improved gradient flow. With 121 layers depth and approximately 8 million

trainable parameters, this model was trained for 300 epochs with early stopping. The archi-

tecture enables detailed feature recognition critical for distinguishing between similar disease

patterns. The model’s output layer uses a softmax activation function for multi-class classifica-

tion, enabling discrimination across 7 distinct potato disease categories.

The implementation specifics include:

• Input: Preprocessed RGB images (256×256×3).

• Output: Multi-class classification (7 classes for potato: Bacteria, Fungi, Healthy potato,

Nematode, Pest, Phytophthora, and Virus).

• Training: 300 epochs with early stopping, two-phase approach with frozen base model

followed by fine-tuning.

• Dataset: 4,900 training samples, 1,050 validation samples, and 1,050 test samples (ap-

proximately 700 images per class).

• Evaluation: Performance measured using accuracy, precision, recall, F1 score, and con-

fusion matrices.

The DenseNet121-based potato disease classification model classifies 7 distinct categories

of potato diseases, providing specialized identification capabilities for this important crop. The

training strategy employed a two-phase approach: initial training with a frozen base model to

learn high-level features, followed by careful fine-tuning of all layers to optimize disease-specific

pattern recognition.

Figure 4.35 shows the initial training epochs for the potato disease model, demonstrating

how the model rapidly improved its classification capabilities in the early stages of training.

Figure 4.36 presents the complete learning curves for the potato disease model, illustrating

the overall training progression and the effectiveness of the two-phase approach.

Figure 4.37 displays the final training epochs, showing how the model stabilized and con-

verged to an optimal solution as training progressed.
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Figure 4.35: Initial training epochs for potato disease model.

Figure 4.36: Training and validation curves for potato disease model.

Figure 4.37: Final training epochs for potato disease model.

The learning curves reveal a steady improvement in classification accuracy throughout train-

ing, with the model eventually reaching strong performance levels. The close tracking between

training and validation metrics indicates good generalization capability without significant over-

fitting, despite the more limited dataset compared to the tomato model.

The model achieved strong performance across all seven potato disease categories, with

test accuracy of 95.14 %, as detailed in Table 4.5. These metrics demonstrate the model’s reli-

able classification capabilities, with balanced performance across precision, recall, and F1 score

measurements.

Metric Value
Accuracy 95.14 %
Precision 95.16 %
Recall 95.14 %
F1 Score 95.11 %

Table 4.5: Test metrics for potato disease classification model.

Figure 4.38 provides a visual representation of these performance metrics, highlighting the
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model’s balanced capabilities across different evaluation criteria. The consistently high values

across all metrics indicate effective learning of disease patterns without sacrificing any particu-

lar aspect of classification performance.

Figure 4.38: Performance metrics visualization for potato disease model.

The confusion matrix shown in Figure 4.39 reveals the model’s classification performance

across all seven disease categories. While maintaining strong overall accuracy, some minor con-

fusion between certain disease classes is evident in the matrix’s off-diagonal elements. This vi-

sualization helps identify specific disease pairs that exhibit visual similarities, providing insights

for potential model improvements.

The model demonstrates strong capability in classifying potato diseases (95.14% accuracy),

though slightly lower than the tomato model (98.80%). This performance difference can be at-

tributed to three key factors: the effective feature extraction capabilities of the DenseNet121

architecture, good generalization capability evident in the test metrics, and the correlation be-

tween performance and dataset size (approximately 700 samples per category for potato versus

1,000 for tomato).

The patterns visible in the confusion matrix indicate that additional training data for visually

similar classes could further improve performance. Despite these minor limitations, the potato

disease classification model provides reliable diagnostic capabilities that can inform timely in-

tervention strategies for potato crop management. The training progression shows how the

model effectively learned to distinguish between disease categories despite having a more lim-

ited dataset compared to the tomato classifier.
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Figure 4.39: Confusion matrix for potato disease classification.

4.3.5 Pepper Disease Classification Analysis and Results

To complete our multi-crop disease detection system, we developed a specialized model

for pepper diseases. This component presents unique challenges compared to the tomato and

potato models, primarily due to significant data limitations that affected our architectural choices

and training approach.

Unlike the tomato and potato models, the pepper disease classifier uses ResNet50 archi-

tecture with residual connections for improved gradient propagation. With 50 layers depth and

approximately 23 million trainable parameters, this model was trained for 200 epochs with early

stopping. It can identify twelve different pepper conditions including nutrient deficiency, blos-

som end rot, bacterial spot, and various infestations. The model’s output layer uses a softmax

activation function for multi-class classification, enabling discrimination across 12 distinct pep-

per disease categories.

As illustrated in Figure 4.40, the pepper disease classification follows the same pipeline pat-

tern but employs a different architecture optimized for the unique challenges of pepper disease

identification. This architectural choice was made after extensive experimentation with alter-

native models, as will be discussed later in this section.
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Figure 4.40: Pepper disease classification workflow.

Figure 4.41 provides a detailed view of the ResNet50 architecture, highlighting the residual

connections that allow efficient training even with limited data. The structure shown in this fig-

ure illustrates the key components of the ResNet50 model used for pepper disease classification.

Figure 4.41: Layer structure of the ResNet50-based disease classification model.

The implementation specifics include:

• Input: Preprocessed RGB images (256×256×3).

• Output: Multi-class classification (12 pepper disease classes: Aphid, Bacterial spot, Blos-

som end rot, Burn, Edema, Healthy pepper, Leaf curl, Leaf miners, Mosaic virus, Nutrient

deficiency, Powdery mildew, and Thrips).

• Training: 200 epochs with early stopping, extensive data augmentation to compensate for

limited dataset.

• Dataset: Only 290 total images across all categories, significantly smaller than the tomato

(10,000 images) and potato (3,080 images) datasets, after the data augmentation we have

splitted the pepper images into 8,400 training samples, 1,800 validation samples, and

1,800 test samples.
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• Evaluation: Performance measured using accuracy, precision, recall, F1 score, and con-

fusion matrices.

The pepper model demonstrated a unique training pattern significantly influenced by the

limited dataset size. Despite using data augmentation techniques to artificially expand the

training set, the small sample size created notable challenges.

Figure 4.42 shows the initial training epochs for the pepper disease model, demonstrating

how training progressed in the early stages despite the limited dataset size.

Figure 4.42: Initial training epochs for pepper disease model.

Figure 4.43 presents the complete learning curves for the pepper disease model, revealing

the concerning pattern of divergence between training and validation metrics that suggests

overfitting.

Figure 4.43: Training and validation curves for pepper disease model.

Figure 4.44 displays the final training epochs, showing how the model’s training stabilized

but with significant gaps between training and validation metrics.

The training curves reveal a concerning pattern: while validation accuracy climbs rapidly

and stays consistently high, the divergence between training and validation metrics suggests

potential overfitting despite our regularization efforts. This pattern becomes evident in the ac-

tual test performance.
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Figure 4.44: Final training epochs for pepper disease model.

Despite reaching an impressive 99.55 % validation accuracy during training, the actual test

performance was significantly lower at 59.72 %, as detailed in Table 4.6. This substantial gap be-

tween validation and test performance clearly indicates overfitting due to the extremely limited

dataset.

Metric Value
Accuracy 59.72 %
Precision 59.71 %
Recall 59.73 %
F1 Score 59.72 %

Table 4.6: Test metrics for pepper disease model.

Figure 4.45 visualizes these metrics, highlighting the challenge of achieving balanced perfor-

mance with insufficient training data. The consistent values across all metrics indicate that the

model’s limitations are fundamental rather than specific to particular evaluation criteria.

Figure 4.45: Performance metrics visualization for pepper disease model.

The confusion matrix in Figure 4.46 reveals inconsistent performance across disease cate-

gories, with some diseases showing strong results while others demonstrate significant confu-

sion. This pattern is typical when training examples for certain classes are insufficient to capture

their full visual variation.
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Figure 4.46: Confusion matrix for pepper disease classification.

To confirm our architectural choice and ensure optimal performance given the limited dataset,

we conducted extensive experiments with alternative deep learning architectures. We initially

attempted to use DenseNet121 due to its strong performance in the tomato and potato mod-

els, but encountered severe overfitting similar to our other architectural explorations. We then

compared our ResNet50 implementation with VGG16, as well as DenseNet121, as shown in Fig-

ure 4.47.

Figure 4.47 compares the training between VGG16 (Figure 4.47(a)), ResNet50 (Figure 4.47(b)),

and DenseNet121 (Figure 4.47(c)) architectures, helping to explain our final model selection for

pepper disease classification.

All three models exhibit patterns of overfitting, but with notable differences:

• VGG16 displayed classic symptoms of extreme overfitting, with validation accuracy rising

rapidly to nearly 100 % within the first 25 epochs while training accuracy increased more

gradually. Most concerning, the validation accuracy consistently exceeded training accu-

racy a clear indicator of overfitting to the validation set, likely due to the small and noisy

nature of the dataset.

• DenseNet121 demonstrated a very similar pattern to VGG16. Both training and valida-

tion accuracy rose sharply to nearly 100 %, and again, the validation accuracy consistently

matched or slightly exceeded training accuracy. This is a clear sign of overfitting, with the

model quickly memorizing even the noisy and limited data without learning truly gener-

alizable features.
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(a) VGG16 training and validation curves. (b) DenseNet121 training and validation curves.

(c) ResNet50 training and validation curves.

Figure 4.47: Comparison between VGG16, ResNet50, and DenseNet121 training.

• ResNet50, in contrast, showed a more typical overfitting pattern. While training and vali-

dation accuracy both improved, the training accuracy eventually exceeded validation ac-

curacy, and training loss fell below validation loss in the later epochs. Although overfitting

was still present, these patterns suggest that ResNet50 was able to learn more generaliz-

able features before starting to memorize the training set, reflecting a more realistic sepa-

ration between training and validation performance.

4.3.6 Dataset Size Impact

To better understand the impact of dataset size on model performance, we compared the

performance metrics across the three crop models against their respective training dataset sizes,

as presented in Table 4.7. As shown in this table, there is a clear correlation between dataset size

and model performance, with smaller, noisier datasets leading to more pronounced overfitting

across all architectures.

In summary, while all tested architectures overfit on our limited pepper disease dataset,

ResNet50 demonstrated comparatively more robust generalization and more realistic training

dynamics, justifying its selection as the backbone for our final model.

The pepper model demonstrates a classic case of overfitting. The stark contrast between

near-perfect validation performance (99.55 %) and modest test accuracy (59.72 %) reveals the

model’s inability to generalize beyond its training examples. This behavior can be attributed to

the extremely limited dataset size averaging only 24 images per disease category which forced
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Crop Dataset Size Test Accuracy Disease Categories Samples/Category
Tomato 10,000 98.80 % 10 1,000
Potato 3,080 95.14 % 7 440
Pepper 290 59.72 % 12 24

Table 4.7: Relationship between dataset size and model performance.

the model to learn from an inadequate representation of real-world disease variation. Despite

data augmentation efforts, artificially expanded datasets cannot compensate for the fundamen-

tal lack of natural variation present in larger collections.

This case effectively demonstrates that architectural sophistication cannot overcome data

scarcity in deep learning applications for agricultural disease detection, reinforcing the prin-

ciple that data quality and quantity typically outweigh model complexity in practical machine

learning deployments. Our experiments with DenseNet121, which performed exceptionally well

for tomato and potato classifications, further confirmed this limitation as it also exhibited se-

vere overfitting patterns with the limited pepper dataset. These findings highlight the critical

importance of data collection efforts for less common crops to enable robust disease detection

systems.

4.3.7 Recommendation Generation Analysis and Results

The ultimate goal of our plant disease detection system is to provide actionable advice to

farmers. This final component translates technical disease classifications into practical treat-

ment recommendations, completing the diagnostic pipeline with information farmers can im-

plement immediately in the field.

A fine-tuned GPT-2 model generates contextually appropriate treatment recommendations

based on crop-disease combinations. With 124 million parameters, the model was fine-tuned

for 50 epochs with a batch size of 4, using a specialized dataset that maps crop-disease pairs

to expert-crafted treatment guidelines. The output is natural language text providing action-

able treatment recommendations tailored to the specific crop and disease identified in previous

stages.

As illustrated in Figure 4.48, the recommendation generation system serves as the final stage

in our pipeline, translating technical disease classifications into practical advice that farmers

can implement in the field. This component bridges the gap between advanced computer vision

diagnostics and real-world agricultural interventions.
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Figure 4.48: Recommendation generation workflow.

Figure 4.49 details the transformer architecture parameters that enable contextually aware

text generation. Unlike the convolutional neural networks used in earlier stages for image pro-

cessing, this language model utilizes self-attention mechanisms to generate coherent and rele-

vant text responses. The table provides specific architectural parameters that define the GPT-2

model’s capabilities.

Parameter Value

Model Type gpt2

Vocabulary Size 50257

Hidden Size 768

Number of Layers 12

Number of Heads 12

Intermediate Size -

Max Position Embeddings 1024

Layer Norm Epsilon 1e-05

Activation Function gelu_new

Figure 4.49: Architectural specifications of the GPT-2 recommendation model.

The implementation specifics include:

• Input: Crop-disease classification result from the previous stage.

• Output: Natural language treatment guidelines formatted for mobile application display.

• Training: Fine-tuned for 50 epochs on a specialized dataset of expert-crafted treatment

recommendations.

• Evaluation: Performance assessed through BLEU score, perplexity metrics, ROUGE scores,

and human expert evaluation of recommendation quality and accuracy.
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The fine-tuned GPT-2 model generates actionable, context-appropriate treatment recom-

mendations for identified plant diseases. By leveraging transfer learning from a pre-trained

language model, we were able to adapt it to the specialized agricultural domain with relatively

limited training data.

The training progress shows successful domain adaptation with consistent improvement

throughout the training process, with convergence occurring around epoch 40, as illustrated in

Figure 4.50. The declining loss curve indicates that the model progressively learned to generate

text that matches the patterns and content of expert-created treatment recommendations.

Figure 4.50: Training and validation curves for GPT-2 model.

The model was evaluated using standard natural language generation metrics, with strong

results particularly in semantic recall as shown by the high ROUGE scores in Table 4.8. These

metrics provide a comprehensive assessment of the model’s text generation capabilities from

different perspectives: fluency (perplexity), precision (BLEU), and recall of important informa-

tion (ROUGE).

Metric Value
Perplexity 17.29
BLEU Score 0.60
ROUGE-1 0.82
ROUGE-2 0.73
ROUGE-L 0.78

Table 4.8: Natural language generation metrics for recommendation system.

Figure 4.51 provides a visual representation of these performance metrics, highlighting the

model’s balanced capabilities across different evaluation criteria. The visualization emphasizes

the strong performance in ROUGE scores, which are particularly important for ensuring that

critical treatment information is properly included in the recommendations.

Beyond standard NLP metrics, we conducted a component-wise analysis of recommenda-

tion accuracy. Figure 4.52 reveals that the model performs exceptionally well across all aspects of

disease management advice, with particularly strong performance for prevention recommenda-

tions (91 %). This granular analysis helps ensure that the model provides comprehensive advice

covering immediate treatment, long-term management, and preventive measures.
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Figure 4.51: Performance metrics visualization for recommendation model.

Figure 4.52: Component-wise accuracy breakdown for recommendations.

Examples of generated advice for various crop-disease combinations are presented in Ta-

ble 4.9. These illustrate how the model synthesizes disease information into structured, ac-

tionable recommendations with specific treatment products, application rates, and integrated
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management approaches.

Crop Disease Symptoms Cause Recommendation
Pepper Thrips Silver streaks,

distorted
leaves, fruit
scars

Pest (Thrips) Use blue sticky
traps, apply
spinosad (250
mg/L), ensure
regular inspec-
tion

Tomato Target Spot Circular
spots with
target-like
concentric
rings

Fungal infec-
tion (Coryne-
spora cassi-
icola)

Remove infected
leaves, apply
azoxystrobin
(250 mg/L)

Potato Fungi Dark spots
on leaves,
powdery or
fuzzy growth,
rotting tubers

Fungal in-
fection (e.g.,
Alternaria,
Fusarium)

Apply fungicides
like Mancozeb
(2000 mg/L),
ensure good
drainage, avoid
overhead irriga-
tion

Table 4.9: Sample generated recommendations.

The model’s low perplexity score (17.29) indicates successful adaptation to specialized agri-

cultural vocabulary, while high ROUGE scores (ROUGE-1 at 0.82) confirm strong recall of critical

information from reference recommendations.

Component-wise analysis reveals balanced performance across recommendation aspects,

with prevention advice performing exceptionally well (91%). This balance provides farmers

with comprehensive guidance addressing both immediate control needs and long-term man-

agement strategies.

These results demonstrate that fine-tuned language models like GPT-2 can serve as effective

decision support systems in agriculture. This component completes our plant disease detec-

tion pipeline, transforming smartphone images into actionable farming advice to improve crop

health and productivity.
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4.4 Mobile Application Development and Results

The culmination of our plant disease detection system is an Android mobile application that

brings the entire diagnostic pipeline to farmers’ fingertips. This practical implementation trans-

forms sophisticated deep learning models into an accessible tool that can be used directly in the

field.

The Android application serves as the main user interface, integrating the complete model

pipeline. Our development approach prioritized both technical robustness and user experi-

ence, recognizing that the most accurate disease detection system would be ineffective if farm-

ers found it difficult to use.

Our design approach focused on creating an intuitive interface accessible to users with vary-

ing levels of technological literacy, which is particularly important for agricultural applications.

The UI was designed in Figma with three main screens that guide users through a logical work-

flow, as shown in Figure 4.53. This streamlined approach ensures that users can quickly move

from launching the app to receiving actionable disease management recommendations.
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(a) Welcome Page. (b) Process Page. (c) Report Page.

Figure 4.53: Mobile application interface screens designed in Figma.

As illustrated in Figure 4.53, the interface ensures a logical progression from welcome/in-

troduction to image capture/selection and finally to results/recommendations. Figure 4.53(a)

shows the Welcome Page that introduces the application’s purpose, Figure 4.53(b) displays the

Process Page that handles image capture and analysis visualization, and Figure 4.53(c) presents

the Report Page with diagnosis results and treatment recommendations. Clear visual cues and

multilingual support are integrated throughout the experience to enhance usability for farmers

with diverse backgrounds.

To support the application functionalities, both mobile and server-side components were

implemented. The mobile component handles user interaction, image capture, and on-device
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inference using TensorFlow Lite models, while the server component provides more compre-

hensive analysis capabilities when internet connectivity is available. Figure 4.54 illustrates key

technical aspects of our implementation.

(a) Android manifest permissions and TensorFlow Lite model declarations.

(b) Flask server and Google Cloud Storage configuration.

Figure 4.54: Technical implementation details of the Leafy application.

As shown in Figure 4.54, the technical implementation includes both client-side and server-

side components. Figure 4.54(a) displays the Android manifest permissions and TensorFlow

Lite model declarations necessary for on-device inference, while Figure 4.54(b) shows the Flask

server and Google Cloud Storage configuration that supports the back-end functionality.

Key functionalities implemented in the mobile application include:

• Deep Learning Integration: Inference using MobileNetV2 for OOD detection, Efficient-

NetB3 for crop classification, and specialized models for disease classification.

• Recommendation System: Tailored treatment advice generated by our fine-tuned GPT-2

model, delivering contextually appropriate guidance.

• Camera/Image Upload: Options to capture new images or upload existing ones, with im-

age preprocessing to optimize for model inference.

• Location Integration: GPS functionalities to contextualize the diagnosis with regional in-
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formation that may affect treatment recommendations.

The finalized mobile application, named "Leafy," embodies a user-centric design with acces-

sibility, simplicity, and agricultural relevance as core principles. It follows a clean three-screen

workflow guiding users from start to finish in the plant disease diagnosis process, ensuring that

even users with limited technological experience can successfully navigate the application.

The Leafy application interface supports both English and Arabic, enhancing usability across

diverse agricultural communities, as shown in Figures 4.55 through 4.58. Figure 4.55 displays the

Leafy application icon, featuring a green leaf motif that symbolizes the app’s agricultural focus.

Figure 4.55: Leafy application icon.

This multilingual support, as demonstrated in Figure 4.56, is particularly important for reach-

ing farmers in regions where English proficiency may be limited, making the technology more

inclusive and accessible. Figure 4.56(a) shows the English interface displaying app features

and functionality, while Figure 4.56(b) presents the Arabic interface with identical content for

Arabic-speaking users.
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(a) English interface displaying app features and
functionality.

(b) Arabic interface with identical content for
Arabic-speaking users.

Figure 4.56: Bilingual welcome screens.

The application’s core functionality lies in its image processing capabilities, illustrated in

Figure 4.57. Users can either capture a new photo or upload an existing image of their crops

for instant diagnosis, with the interface seamlessly adapting to their language preference. Fig-

ure 4.57(a) shows the English version with location data and crop imagery, while Figure 4.57(b)

displays the Arabic version maintaining consistent layout and functionality.
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(a) English version showing location data and crop
imagery.

(b) Arabic version maintaining consistent layout
and functionality.

Figure 4.57: Process page for uploading or capturing plant images.

Following image analysis, Figure 4.58 demonstrates how diagnostic results are presented to

users with actionable treatment recommendations. The report screens provide critical infor-

mation about plant health status and specific remedies tailored to identified conditions. Figure

4.58(a) shows the English diagnostic report with detailed analysis and recommendations, while

Figure 4.58(b) displays the Arabic diagnostic report maintaining consistent information struc-

ture.
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(a) English diagnostic report with detailed analysis
and recommendations.

(b) Arabic diagnostic report maintaining consis-
tent information structure.

Figure 4.58: Report screens showing disease diagnosis and treatment recommendations in both
languages.

Extensive testing was conducted to ensure reliable performance across various input con-

ditions including healthy plants, diseased plants, and invalid inputs, with results summarized

in Figure 4.59. These tests, showcasing different user interface screens as seen in Figure 4.59a

through Figure 4.59c, were designed to evaluate the application’s performance across the full

range of scenarios it might encounter in real-world use, ensuring robust performance in diverse

field conditions.
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(a) Welcome interface demonstra-
tion.

(b) Image capture and upload
functionality.

(c) Diagnostic output presenta-
tion.

Figure 4.59: Testing results across different app workflows and scenarios.

As shown in Figure 4.59, the tests demonstrated the system’s robustness in multiple scenar-

ios:

• Healthy Detection: Correctly identified healthy plants with "No disease detected" mes-

sages, minimizing false positives that could lead to unnecessary treatments.

• Disease Detection: Accurately classified diseases such as Target Spot and Powdery Mildew

with detailed treatment recommendations tailored to the specific condition.

• Error Handling: Effectively managed invalid or ambiguous images with appropriate error

messages or fallback prompts, ensuring users understand when inputs are unsuitable for

analysis.
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4.5 Comparison Study

To evaluate the practical value of our system in the agricultural technology landscape, we

conducted a comprehensive benchmarking against both commercial applications and recent

academic research.

Our system was benchmarked against leading mobile agricultural application Plantix [118],

AgriApp [119], and FarmRise [120] focusing on features that directly impact real-world usability

and effectiveness. Table 4.10 summarizes this comparative analysis.

Feature Our System Plantix AgriApp FarmRise
Crop Cover-
age

Tomato,
Potato, Pep-
per

30+ crops 20+ crops 10+ crops

OOD Detec-
tion

Yes (98.86%) Basic filter-
ing

No No

Language
Support

English,
Arabic

10+ lan-
guages

English,
Hindi

8+ lan-
guages

Treatment
Recommen-
dation

AI-
generated
contextual

Template-
based

Static con-
tent

Template-
based

Table 4.10: Feature comparison with existing agricultural applications.

This comparative analysis reveals several key advantages of our system. While our crop

coverage is more focused than mature applications like Plantix, our system distinguishes itself

through several primary innovations. Our Out-of-Distribution (OOD) detection system achieves

98.86% accuracy in distinguishing relevant plant images from irrelevant inputs, a sophisticated

capability either absent or rudimentary in commercial alternatives. This significantly reduces

false positives and improves reliability in uncontrolled field conditions. Additionally, our GPT-

2 based recommendation engine generates adaptive, situation-specific guidance rather than

the static or template-based advice offered by competitors, providing farmers with more per-

sonalized and effective treatment strategies. While our language support is currently limited

to English and Arabic, it is strategically targeted to our primary user demographics, balancing

comprehensiveness with usability.

To situate our results within the scientific literature, we compared our system against re-

cent academic approaches in plant disease detection. Table 4.11 highlights the key features and

improvements of our approach relative to existing research.

Our system demonstrates significant advancements over the current state of the art. Un-

like many academic models that focus on single crops, our modular design achieves superior

performance across multiple plant species through specialized architectures: DenseNet121 for
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Dimension Existing Approaches Our System
Generalization and
Robustness

Models such as [78, 85]
perform well in controlled
environments (99.35%) but
decline dramatically in real-
world conditions (31%).

Integrates Out-of-Distribution
(OOD) detection with 98.86%
accuracy to filter irrelevant
inputs, maintaining consis-
tent performance across var-
ied field conditions.

Practical Deploy-
ment

Systems like [29, 80] demon-
strate high accuracy but suffer
performance degradation on
resource-constrained devices.
Kant et al. [79] achieved
92.25% accuracy with Effi-
cientNetB3 but focused only
on multilabel classification
without end-to-end workflow.

Optimized MobileNetV2 and
EfficientNet-B3 architecture
enables efficient inference
on standard mobile devices
without performance com-
promise, while providing a
complete pipeline from detec-
tion to recommendation.

Recommendation
System

Most systems focus solely on
classification without action-
able guidance, creating a gap
between detection and inter-
vention.

Incorporates a fine-tuned
GPT-2 based recommenda-
tion engine that transforms
technical classifications into
farmer-friendly, contextual
treatment guidance with
strong linguistic metrics (per-
plexity: 17.29, BLEU: 0.60,
ROUGE-L: 0.78).

Multi-language Sup-
port

Academic implementations
typically neglect accessibility
factors critical for real-world
adoption.

Bilingual interface.

Multilabel vs. Tar-
geted Detection

Kant et al. [79] introduced
multilabel classification to de-
tect multiple diseases simulta-
neously but with moderate ac-
curacy (92.25%) and without
crop-specific optimization.

Employs specialized crop-
specific models, improving
accuracy to 98.8% for tomato
diseases and 95.14% for
potato diseases by targeting
each crop’s unique pathologi-
cal characteristics.

Crop-Specific Accu-
racy

Prior studies report lower ac-
curacy for specific crops (e.g.,
91.2% for tomato in [85]).

Achieves improved accuracy
98.8% for tomato diseases
and 95.14% for potato dis-
eases through specialized
architectures (DenseNet121
and ResNet) tailored to each
crop’s unique pathological
characteristics.

Table 4.11: Comparison of findings against existing academic research.
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tomato/potato (98.8% and 95.14% accuracy respectively, compared to 91.2% in [85]) and ResNet

for pepper, each tailored to the unique pathological characteristics of their respective crop fam-

ilies.

While Kant et al. [79] pioneered multilabel classification with EfficientNetB3 (92.25% ac-

curacy), our approach uses specialized crop-specific models that significantly improve accu-

racy while maintaining computational efficiency. Our system also addresses the dramatic field-

setting accuracy decline observed by [78] through explicit OOD detection (98.86% accuracy),

preventing non-plant image misclassification and resolving execution bottlenecks seen in im-

plementations like [29].

By integrating CV-based detection with NLP-based recommendation generation, our sys-

tem bridges the critical gap between technical identification and practical intervention a fea-

ture largely absent in existing academic work. This integration transforms disease classifica-

tions into actionable, context-aware treatment guidance in multiple languages. Our fine-tuned

GPT-2 recommendation engine achieved impressive linguistic metrics (perplexity: 17.29, BLEU:

0.60, ROUGE-1: 0.82, ROUGE-2: 0.73, ROUGE-L: 0.78), indicating strong relevance and fluency

in the generated treatment advice.

4.6 Conclusion

Our plant disease detection and recommendation system demonstrates significant advance-

ments through its multi-model cascading architecture with specialized components for OOD

detection (98.86% accuracy), crop classification (99.89% accuracy), and crop-specific disease

classification (98.80% for tomato, 95.14% for potato). These results address fundamental limi-

tations in current research, particularly regarding generalizability, deployment practicality, and

end-user utility.

Our project revealed a clear relationship between dataset size and model performance, sug-

gesting that agricultural AI development should prioritize collecting adequate samples per dis-

ease category before expanding crop coverage. By combining robust detection capabilities with

contextually-aware recommendations and bilingual support, our system represents a signifi-

cant step toward bridging the gap between academic research and practical agricultural solu-

tions, making sophisticated AI capabilities accessible to farmers across varying technological

and environmental contexts. The strong performance of our recommendation system demon-

strates that AI-generated advice can match human expertise in specificity and relevance, a crit-

ical advancement for practical agricultural applications.
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Conclusion and Perspectives

This project successfully developed an intelligent, multi-model plant disease detection and

recommendation system tailored for modern agriculture. The system achieved strong perfor-

mance across multiple tasks, including image classification and language-based recommenda-

tion generation. For plant image classification, we reached up to 98.86% accuracy with Mo-

bileNetV2 for general detection, 99.89% with EfficientNet-B3 for crop identification, and 98.80%

with DenseNet121 for tomato diseases. Potato diseases were detected with 95.14% accuracy,

while pepper diseases reached 59.72% using ResNet50 due to limited training data. For natural

language recommendations, a fine-tuned GPT-2 model achieved a perplexity of 17.29, a BLEU

score of 0.60, ROUGE-1 of 0.82, ROUGE-2 of 0.73, and ROUGE-L of 0.78 indicating strong rele-

vance and fluency in generated treatment advice.

Our solution combines image classification and natural language processing to filter irrele-

vant inputs, detect crop types, diagnose diseases, and deliver actionable treatment recommen-

dations all within a mobile application. This design ensures advanced agricultural AI is accessi-

ble to farmers using standard smartphones.

The project resulted in several significant observations:

• Dataset size plays a critical role in model performance, with several hundred labeled sam-

ples per disease class necessary for robust results.

• The two-phase transfer learning strategy proved highly effective for agricultural image

classification tasks.

• Fine-tuned language models like GPT-2 can generate context-aware, practical recommen-

dations for farmers.
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While we faced challenges such as limited data for pepper crop diseases, our results show

that focused, specialized models trained with sufficient data can perform reliably in real-world

agricultural settings.

The system is designed to generate significant positive outcomes for smallholder and com-

mercial farmers alike:

• Increased crop yields through timely disease detection and intervention.

• Reduced pesticide use thanks to targeted and accurate diagnoses.

• Democratization of agricultural expertise via easy-to-use mobile interfaces.

• Improved supply chain forecasting by enabling early disease tracking and reporting.

• Valuable field data generation to support continuous model improvement and research.

In future work, we envision the system evolving along several promising directions:

• Enable disease progression tracking over time using temporal image analysis.

• Add multilingual support beyond English and Arabic to broaden accessibility.

• Expand classification capabilities to include a wider range of crops and pest-related con-

ditions.

• Integrate treatment recommendations with local agricultural supply sources to streamline

access to relevant products.

• Facilitate farmer-led knowledge exchange through in-app discussion forums and best-

practice sharing.

• Explore integration with agricultural robotics for autonomous field monitoring and tar-

geted spraying tasks 5.1.

Figure 5.1: Conceptual imagination of a future agricultural robot.
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