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Abstract

The transition to smart grids is revolutionizing the way energy is generated, distributed,
and consumed, introducing both opportunities and challenges. This work addresses two
critical issues in modern smart grid systems: electric load forecasting and energy theft
detection, both of which are essential for efficient grid operation and security. Tradi-
tional centralized machine learning approaches, while effective, raise concerns about data
privacy, scalability, and robustness in distributed environments. To overcome these limi-
tations, this project proposes a Federated Learning framework that enables collaborative
model training across multiple decentralized data sources without sharing raw data. We
begin by exploring the architecture and challenges of smart grids, followed by a com-
prehensive state-of-the-art review on forecasting techniques, theft detection mechanisms,
and recent advances in FL. The proposed methodology integrates real-world consumption
data, thorough preprocessing, and tailored deep learning models, including LSTM and
GRU, optimized for both forecasting and classification tasks. Several federated aggrega-
tion algorithms are implemented and evaluated using the Flower framework. Experimen-
tal results demonstrate that the federated models can achieve comparable, and in some
cases superior, performance to centralized models, while preserving data privacy and im-
proving generalizability. Moreover, mitigation strategies for non-1ID data and client drift
are explored to enhance FL robustness. This work highlights the feasibility and effective-
ness of applying Federated Learning to critical smart grid applications and paves the way
for privacy-aware, distributed intelligence in future energy systems.

Keywords: Smart Grids, Federated Learning, Load Forecasting, Energy Theft Detec-
tion, Data Privacy, LSTM, GRU, Non-IID Data, Distributed Machine Learning, Flower
Framework.



Résumé

La transition vers les réseaux électriques intelligents révolutionne la maniéere dont lénergie
est produite, distribuée et consommée, en introduisant a la fois des opportunités et des dé-
fis. Ce travail aborde deux problématiques essentielles des systemes de réseaux intelligents
modernes : la prévision de la charge électrique et la détection de la fraude énergétique,
toutes deux cruciales pour assurer une exploitation efficace et sécurisée du réseau. Les ap-
proches traditionnelles dapprentissage automatique centralisé, bien quefficaces, soulevent
des préoccupations liées a la confidentialité des données, a la scalabilité et a la robustesse
dans des environnements distribués. Pour surmonter ces limitations, ce projet propose
un cadre basé sur lapprentissage fédéré qui permet lentrainement collaboratif de modeles
a partir de multiples sources de données décentralisées, sans partage des données brutes.
Nous commencons par explorer larchitecture et les défis des réseaux intelligents, suivis
dune revue approfondie de 1état de lart concernant les techniques de prévision, les mécan-
ismes de détection de la fraude, ainsi que les avancées récentes en apprentissage fédéré.
La méthodologie proposée integre des données réelles de consommation, un prétraitement
rigoureux et des modeles dapprentissage profond adaptés, notamment les réseaux LSTM
et GRU, optimisés pour les taches de prévision et de classification. Plusieurs algorithmes
dagrégation fédérée sont implémentés et évalués a laide du framework Flower. Les résul-
tats expérimentaux montrent que les modeles fédérés peuvent atteindre des performances
comparables, voire supérieures, a celles des modeles centralisés, tout en préservant la
confidentialité des données et en améliorant leur capacité de généralisation. En outre,
des stratégies datténuation des effets liés a la non-IID des données et a la dérive des
clients sont explorées afin de renforcer la robustesse de lapprentissage fédéré. Ce travail
met en évidence la faisabilité et lefficacité de lapplication de lapprentissage fédéré aux
applications critiques des réseaux intelligents et ouvre la voie a une intelligence distribuée
respectueuse de la vie privée dans les systémes énergétiques du futur.

Mots-clés : Réseaux électriques intelligents, Apprentissage fédéré, Prévision de la charge,
Détection de fraude énergétique, Confidentialité des données, LSTM, GRU, Données non-
I1D, Apprentissage automatique distribué, Framework Flower.
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General Introduction

The global energy landscape is undergoing a significant transformation driven by the
increasing need for sustainable energy solutions. Traditional energy systems are facing
growing challenges, particularly as renewable energy sources become more integrated into
the grid. This transition requires advanced infrastructure capable of handling both the
environmental impact of energy generation and the increasing electricity demand. Smart
grids have emerged as a solution to these challenges, offering a modernized approach to
electricity distribution. Unlike traditional grids, which rely on centralized power genera-
tion, smart grids leverage advanced information and communication technologies (ICT)
to optimize energy distribution, integrate renewable sources, and enable real-time com-
munication between utilities and consumers. This results in a more flexible, reliable, and
efficient energy system. One of the main advantages of smart grids is their ability to
manage the fluctuating nature of renewable energy. Solar and wind energy, for example,
are subject to variability based on environmental factors such as weather and time of day.
Smart grids can accommodate these fluctuations by integrating energy storage systems
and employing sophisticated forecasting methods to ensure a consistent supply of power.
Energy load forecasting plays a crucial role in the operation of smart grids. Accurate
forecasting is necessary to balance supply and demand, minimize energy waste, and avoid
grid instability. As the proportion of renewable energy in the grid increases, the complex-
ity of load forecasting also increases. Advanced methodologies, such as machine learning
and Federated Learning, are increasingly being used to improve the accuracy of these
forecasts by analyzing large datasets from diverse sources. As the energy sector continues
to evolve, the role of smart grids in enhancing the efficiency, reliability, and sustainability
of the electrical grid becomes increasingly important. Through the application of cutting-
edge technologies, smart grids are set to play a key role in the transition toward a more
sustainable and resilient energy future.
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Chapter 1

Introduction of Smart Grid

1.1 Introduction

Smart Grid represents a significant technological advancement in managing electrical net-
works. By integrating communication and automation technologies, they optimize energy
production, distribution, and consumption, while facilitating the integration of renewable
energy sources. This evolution allows for more efficient responses to demand fluctuations
and addresses challenges related to the energy transition, such as the decentralization of
production and improving system resilience.

1.2 From Traditional Grid to Smart Grid

o Traditional Electrical Grid:

Conventional electrical grids, often referred to as centralized grids, have long been
the backbone of electricity distribution. These systems rely on large-scale power
plants, high-voltage transmission lines, and distribution networks to deliver elec-
tricity to end users. Operated by public or private utility companies, these grids
function through a centralized model that facilitates widespread power distribution.
However, this model also presents significant limitations, including vulnerability to
blackouts, high maintenance costs, and minimal flexibility in managing energy pro-
duction and consumption. With the growing integration of renewable energy sources
and the shift toward decentralized energy systems, the traditional grid model is un-
dergoing significant transformation [1].

e Smart Grid:

Smart grid represents the modern evolution of electrical infrastructure, integrating
digital technologies to enhance grid performance, reliability, and security. Through
real-time monitoring and control enabled by sensors, communication systems, and
advanced algorithms, smart grids allow for dynamic energy management and im-
proved efficiency. These systems can quickly detect and respond to outages, reducing
their impact, while also providing stronger protection against cyber threats through
robust security measures. Unlike traditional grids, smart grids promote connectivity
and communication across all components of the system, supporting decentralized
energy sources and automated control. This interconnectivity facilitates adaptive,
data-driven decision-making and enables automation of key grid operations, making
energy distribution more intelligent and responsive to consumer demand [2].
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Figure 1.1: Traditional Electrical Grids Vs Smart Grids

1.3 Modern Architecture of a Smart Grid

The architecture of a smart grid can be analyzed through four key functional layers:

1.3.1 Generation Level

The generation level represents the starting point of the energy flow in an electrical
network. In a Smart Grid, this layer is no longer limited to large centralized power
plants but also incorporates decentralized and renewable energy sources. Generation thus
becomes more diverse, including solar, wind, hydro, and biomass energy. These sources,
often intermittent and weather-dependent, present new challenges in terms of management
and forecasting. However, they significantly reduce greenhouse gas emissions and enhance
system resilience, especially when combined with energy storage solutions.

1.3.2 Transmission and Distribution Level

This level ensures the delivery of electricity from producers to consumers. In Smart
Grids, transmission and distribution infrastructures are modernized through intelligent
technologies that enable real-time monitoring of the grids status. Sensors and monitoring
systems are deployed to quickly detect outages, balance loads, and prevent energy losses.
Distribution thus becomes more dynamic and capable of adapting to instant demand and
local production. The automation and digitalization of this layer improve the overall
reliability and robustness of the electrical system.
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1.3.3 Consumption Level

The consumption level represents the interaction between the grid and end users. In a
Smart Grid, consumers become active participants in the energy system, especially with
the implementation of smart meters. These devices continuously measure energy usage
and transmit data to providers for real-time billing or demand-based supply adjustments.
Users can also produce their own energy, for instance, via photovoltaic panels. This
promotes more responsible, flexible, and grid-agnostic consumption.

1.3.4 Communication and Control Systems

Communication and control systems are the core components that interconnect all other
levels. They enable fast and secure data exchange between producers, grid operators, and
consumers. Technologies such as the Internet of Things (IoT), Artificial Intelligence (AI),
and Cloud Computing are used to process large volumes of information, make automated
decisions, and forecast grid behavior. These systems make it possible to detect anomalies,
optimize production and consumption, and continually improve energy efficiency [3], [4].
Without this layer, the coordination and intelligence of the Smart Grid would not be
possible.

1.4 Main Challenges of Smart Grid

1.4.1 Renewable Energy
Renewable Sources

Renewable energies, also known as green power sources, include wind, hydro, solar,
biomass, as well as ocean and tidal energy. These environmentally friendly and widely
available resources play a key role in the development of smart grids, which are designed
to efficiently integrate and manage diverse energy sources to ensure a more sustainable
and resilient power system [5].

o Solar Energy: Solar energy provides one of the most viable answers to meeting
demand for clean, safe, reliable power. Solar radiation on the Earths land surface is
more than 200 times higher than the total annual commercial energy consumption.
Various incentive programs were initiated to promote the use of solar technology.
For example, those who install solar panel systems on their homes can often sell
excess electricity that their home generates back to the local utility grid [6].

e Wind Energy: Wind energy, generated by air movement caused by the uneven
heating of the Earth by the sun, is an indirect form of solar power. Unlike solar
panels, wind turbines can function under cloudy or rainy conditions. Typically
installed on 30-meter towers to capture stronger winds, turbines are spaced 5 to 15
blade diameters apart to minimize interference. Wind energy is a clean, renewable
source with no emissions or harmful byproducts, making it a sustainable solution
for power generation [6].

« Biomass Energy: Biomass energy is derived from organic materials such as plant
residues, animal dung, and municipal biodegradable waste. Biomass collects solar
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energy stored in chemical bonds and releases it in processes such as burning, fer-
mentation, and anaerobic digestion. Waste is broken down by microorganisms in
the absence of oxygen during digestion to give biogas, predominantly methane and
carbon dioxide. It is an environmentally friendly process, cheap, and byproducts
can be utilized as fertilizers [6].

o Tidal Power: Tidal energy captures the kinetic energy of ocean water movement
to produce electricity. In optimal coastal locations, wave energy density can reach
up to 65 MW per mile. One of the most efficient methods involves oscillating
water columns, where incoming waves compress air in a vertical chamber to drive
a turbine. Despite its potential, tidal power systems remain sensitive to extreme
weather conditions such as cyclones and strong storms [6].

e Geothermal Energy: Geothermal energy taps into the Earth’s internal heat.
Ground source heat pumps can provide heating in winter and cooling in summer by
exploiting the consistent underground temperature range of 10rC to 167C (50¢F to
607F). This source is clean, sustainable, and available almost everywhere [6].

Challenges Related to Renewable Energy Integration

Integrating renewable energy into the Smart Grid (REI - Renewable Energy Integration)
enhances the overall capability of the grid and helps meet growing consumer demand.
Nevertheless, this integration process faces several significant challenges:

o Storage: Energy storage is a major challenge in modern electrical engineering.
While current systems enable renewable energy integration, their efficiency and ca-
pacity need improvement to support widespread decentralized generation. Econom-
ically, the cost-effectiveness of storage depends on its role in generation, distribution,
or consumer use. Renewable sources like solar and wind are intermittent, with solar
energy unavailable at night. Effective energy storage systems are essential to ensure
a stable and continuous power supply and prevent grid instability caused by supply

gaps [7].

« Voltage Fluctuations: One of the major issues in integrating solar and wind
energy is voltage fluctuation, which results from variations in solar radiation and
wind speed. These fluctuations can lead to instability in power delivery and require
advanced control mechanisms to manage effectively [8].

o Environmental Impacts: Although renewable sources are cleaner than traditional
fuels, their large-scale deployment can still have environmental effects. For instance,
land use for solar farms or the ecological impact of wind turbines must be considered
during the integration process [8].

Overall, while renewable energy integration into Smart Grids presents many benefits, it
also requires addressing technical, environmental, and infrastructural challenges to ensure
efficiency and stability.
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1.4.2 Load forecasting
Definition

Load forecasting is the process of estimating the amount of electricity that will be needed
at a specific time and how this demand will impact the distribution network. It is used
to ensure that a sufficient supply of energy is available to meet consumption needs while
minimizing waste and inefficiency. It is a critical component of the operational planning
of power systems and plays a vital role in preventing outages. Load forecasts can range
from short-term to long-term. The accuracy of these forecasts directly affects the cost and
reliability of the entire power supply system. Load forecasting is also part of a broader
energy forecasting framework, which includes projections of the availability and cost of
fuels like oil and gas, as well as renewable energy sources [9)].

Differences Based on Time Scales

There are several methods for load forecasting, each analyzing historical data and relevant
inputs to predict electricity demand over different time horizons.

o Short-term load forecasting (up to one week) :relies heavily on recent load
data and weather forecasts. It supports real-time grid operations by helping system
operators decide how much electricity to generate and where to route it. Accuracy
is critical, as even small errors can cause energy waste or grid overloads [9)].

« Medium-term forecasting (one week to one year):is used for maintenance
planning and fuel reserve management. It considers seasonal demand variations
and scheduled outages [9].

» Long-term forecasting (beyond one year): incorporates factors such as demo-
graphic shifts, economic growth, and energy policies. It focuses on system planning
and investment decisions, especially regarding capacity expansion and balancing
traditional vs. renewable energy sources [9].

Importance in Smart Grid Operation

Load forecasting is a fundamental component of smart grid operation, as it enables efficient
planning, real-time decision making, and optimal resource allocation. Accurate demand
forecasts, across various time horizons (short term, medium term, and long term), are
essential for balancing electricity supply and demand, minimizing operational costs, and
maintaining grid stability.

In traditional power systems, forecasting was primarily used for generation scheduling.
However, in Smart Grids characterized by distributed energy resources and active con-
sumer participation, load forecasting plays an even more strategic role. It supports:

o Optimal Dispatch of Generation Units: Precise forecasts help determine which
energy sources should be activated or deactivated, reducing reliance on expensive
reserve power.

o Integration of Renewable Energy: Since renewable sources like solar and wind
are variable, accurate demand forecasting helps align generation with consumption,
avoiding overproduction or shortages.
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« Demand Response and Grid Flexibility: Smart Grids use forecasts to activate
demand-side strategies, such as shifting or reducing consumption during peak hours.

o Infrastructure Planning: Long-term forecasts guide investments in grid expan-
sion, reinforcement, or modernization.

By improving the accuracy and resolution of load forecasting through advanced data an-
alytics and machine learning, Smart Grids become more intelligent, resilient, and capable
of adapting to dynamic energy environments.

1.4.3 Energy theft
Unlawful Electricity Consumption and Its Impact on Smart Grid Integrity

Energy theft, often referred to as electricity or power theft, remains a critical issue for
utility companies around the world. It consists of illegally accessing and using electricity
without proper authorization or payment.

The motivations behind energy theft are diverse. Financial hardship often pushes in-
dividuals or businesses to steal electricity, while in other cases, organized crime exploits
it for activities such as cryptocurrency mining or operating unauthorized facilities. Re-
gardless of the reason, energy theft disrupts the integrity and proper functioning of the
electrical grid.

The impacts of energy theft are far-reaching. Utility providers face significant finan-
cial losses, which hinder investments in infrastructure improvement and modernization.
This degradation can lead to a decline in the reliability and resilience of power systems.
Consumers ultimately bear part of the burden through increased energy prices meant to
offset losses. Additionally, energy theft introduces serious safety hazards: unauthorized
modifications to the electrical network can lead to fires, electrocution, and equipment
failures [10].

In the context of Smart Grids, the issue becomes even more complex. The integration
of advanced technologies provides new opportunities to detect and prevent theft, but it
also introduces new vulnerabilities that malicious actors can exploit. Thus, energy theft
remains one of the major challenges for the future of smart, sustainable, and secure power
systems [11].

Techniques of Electric Energy Theft

Electric energy theft is a significant issue for energy suppliers, with reports indicating
over 300 different methods used to illegally consume electricity. These techniques are
often highly inventive and are employed by individuals to reduce their electricity bills.
Collectors and meter readers are trained to identify these fraudulent activities, but some
methods are challenging to detect. Below are the main categories of energy theft and the
most common techniques [10]:
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1. Classic Energy Theft

Classic energy theft primarily involves illegal connections made before the meter. This
method is often seen in older buildings with outdated electrical systems. The goal is to
connect additional installations to the line before the metering system. There are two
types of theft in this category [12]:

o« Complete Use of an Illegal Source: This involves consuming energy entirely
without passing through the meter, which is easier to detect.

« Partial Use of an Illegal Source: The energy consumption is partial, making
it harder to detect. This type of theft is often seasonal, such as during winter for
heating purposes.

2. Modification of Meter Operation

This category includes several methods that alter the functioning of the electric meter.
The most common techniques include [12]:

e Tampering with Terminals or Bridging: In a three-phase system, experienced
consumers may disconnect the neutral wire, creating an imbalance in consumption,
which causes the meter to understate the energy usage by as much as 30%. This
type of fraud is difficult to detect unless specialized meters are used.

« Magnetic Interference: Strong magnets, often neodymium magnets, are used to
slow down or stop the meters counting wheel, leading to inaccurate readings and
lower bills.

o Photographic Film: A strip of photographic film is inserted between the back
housing and the front glass of the meter. This blocks the movement of the wheel,
effectively hiding the energy consumption without leaving visible traces, making
detection difficult.

o Drilling the Meter Housing: A small hole, typically less than 1mm in diameter,
is drilled into the meters housing, allowing for the insertion of elastic materials or
other objects that interfere with the meters operation, reducing energy readings.

3. Modification of Digital Meter Software

This technique is more advanced and less common. It involves altering the software or
variables stored in digital meters, specifically through manipulation of Object Identifica-
tion System (OBIS) codes. These variables are responsible for tracking energy usage and
billing. Changing these variables can affect the recorded consumption and, therefore re-
duce the amount billed. This form of fraud is rare because it requires high-level expertise
and is time-consuming to execute [12].

4. Other Methods of Theft

In addition to the techniques mentioned above, there are other ways to steal electricity
that include both physical tampering with the meter and illegal modifications to the
electrical network [12]:
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o Illegal Network Modifications: Professional thieves may install unauthorized
branches on the electrical network, bypassing the meter entirely. These illegal con-
nections are often hidden within walls or concealed in furniture. A well-known
case involved a hidden socket installed in a nightstand to power a heater at night,
avoiding the metered consumption.

o« Tampering with the Meters Bearings: Some individuals unscrew the meters
bearings to slow down the counting wheel, which decreases the recorded energy
consumption.

5. Collusion with Employees

A more complex form of energy theft involves collusion with an employee of the energy
supplier. The employee might assist in manipulating meter readings or in the collection
and billing process, making this type of theft difficult to detect as it involves insider help
[12].

1.4.4 Cybersecurity Threats

As smart grids become more interconnected and digitalized, they face growing cybersecu-
rity threats. Hackers constantly seek to exploit vulnerabilities, putting the security and
stability of energy networks at risk. Several forms of attacks threaten the smart grid.
Hardware attacks involve tampering with smart meters or other devices to alter trans-
mitted data, potentially leading to manipulated pricing or unauthorized access. Insider
threats from employees leaking sensitive information further compromise system integrity
[13].

Ransomware and malware represent another critical danger, where malicious software
targets grid infrastructures, paralyzing systems until a ransom is paid. Finally, traffic-
related cyberattacks can overload communication channels within the grid. Techniques
such as eavesdropping on IoT communications may allow attackers to intercept sensitive
information, increasing the risk of intrusion and control over critical operations. Securing
the smart grid requires robust cybersecurity strategies to defend against these evolving
threats [14].

1.4.5 Infrastructure Modernization

The current electrical grid infrastructure was designed with traditional, centralized energy
sources in mind, such as fossil fuels like coal. These sources provide a constant and con-
trollable flow of energy, making the grid relatively easy to manage. However, as energy
systems evolve to accommodate renewable sources like wind and solar power, the grid
faces significant challenges. These renewable sources are inherently intermittent and un-
predictable, posing difficulties for a system originally designed for a steady, uninterrupted
energy flow [14].

o State of Current Infrastructure: Traditional grids are optimized to handle en-
ergy generated from fossil fuels, which can be adjusted and dispatched on demand
to meet consumption needs. In contrast, renewable energy generation is highly vari-
able, often influenced by weather patterns, time of day, and seasonal changes. For
example, solar energy generation stops during nighttime, and wind energy fluctu-
ates based on wind speed. This makes it difficult for the current grid systems to
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balance energy supply with demand effectively, leading to potential instability or
inefficiencies. During periods of high renewable energy generation, such as during
sunny or windy days, the grid may face an excess of power that it cannot effi-
ciently distribute. On the other hand, during low generation periods, the grid may
experience energy shortages, requiring backup from traditional sources or external
energy imports. This variability creates additional complexity in managing the grid,
especially as the share of renewable energy increases [14].

e Grid Modernization with Smart Grid: To overcome these challenges, the con-
cept of smart grids has been introduced. Smart grids are designed to integrate a
diverse range of energy sources, including both traditional fossil fuels and renewable
energy, into a unified and flexible energy network. Unlike traditional grids, smart
grids leverage advanced technologies such as energy storage systems (e.g., batteries)
and real-time monitoring to better handle fluctuations in energy production.

By using energy storage, smart grids can capture surplus energy during periods of
high renewable production and store it for later use when generation drops.

This capability allows smart grids to release stored energy during times of high
demand or when renewable generation is low, ensuring a steady supply of power.
Additionally, smart grids use sophisticated sensors and communication technolo-
gies to monitor and manage the flow of electricity across the grid more efficiently,
responding dynamically to changes in supply and demand.

As a result, smart grids offer a more adaptable and resilient energy system compared
to traditional grids. They can effectively balance the varying outputs from renewable
sources, reduce the reliance on backup generation, and minimize energy waste, all
while enhancing the overall reliability and efficiency of the grid [14].

1.5 Problem Statement and Objectives of the Project

e Problem Statement:
In the context of the Smart Grid, the optimal management of energy demand heavily
relies on the accuracy of load forecasting. Inaccurate forecasts can either overload
the grid or lead to underutilization of resources, affecting both the stability of the
system and its operational costs. Another major challenge in many networks is
energy theft, which distorts consumption data, complicates forecasting, and results
in significant economic losses for electricity providers.

These two issues, forecasting inaccuracies and energy theft, are closely related: en-
ergy theft degrades the quality of historical data used to train forecasting models,
while accurate forecasting can help detect abnormal consumption patterns poten-
tially linked to fraud.

e Project Objectives:

— Design and implement an electric load forecasting model using Federated Learn-
ing, enabling decentralized training across multiple data sources while preserv-
ing data privacy.

— Ensure privacy-preserving training by integrating secure aggregation mecha-
nisms and preventing raw data exposure.
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— Develop a federated learning-based strategy for detecting electricity theft by
identifying suspicious consumption behaviors across distributed clients without
compromising confidentiality.

1.6 Conclusion

This first chapter introduced the fundamentals of Smart Grids and highlighted the major
transformations they bring to traditional electrical systems. By integrating advanced dig-
ital technologies, Smart Grids enable more efficient, flexible, and sustainable management
of electricity generation, transmission, and consumption. The functional architecture of
a Smart Grid relies on seamless interaction between the generation, distribution, and
consumption levels, along with communication and control systems. In this context, re-
newable energies play a central role, while also presenting technical challenges related to
their integration into the grid. A key element for the proper functioning of these net-
works is electric load forecasting. It allows for anticipating demand, ensuring the balance
between generation and consumption, and optimizing available resources. However, this
task becomes more complex in the presence of anomalies such as energy theft, which
degrades data quality and skews forecasting accuracy.
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Chapter 2
State of Art

2.1 Introduction

This chapter presents an overview of existing work on load forecasting, electricity theft
detection, renewable energy integration, and the use of Federated Learning for addressing
these challenges in smart grids. While deep learning has improved forecasting accuracy,
challenges remain regarding adaptability and generalization. Theft detection methods
show potential but often lack scalability and privacy protection. Renewable energy inte-
gration continues to face issues due to source intermittency. Federated Learning emerges
as a promising solution, enabling decentralized, privacy-preserving, and robust modeling
across these domains.

2.2 Related Work on Load Forecasting

Several research efforts have been proposed in the field of load forecasting within smart
grid environments, focusing on the development of accurate, scalable, and adaptive mod-
els to address the growing complexity of modern energy systems.

The work in [15], focuses on improving short-term load forecasting during the summer
by proposing a model that incorporates cooling load factors. Using data from Jinan in
2016, the authors analyze daily load patterns influenced by meteorological conditions and
develop a Least Squares Support Vector Machine (LS-SVM) model that accounts for the
accumulated temperature effect to enhance prediction accuracy. Although the approach
provides a promising solution to improving load prediction, the article assumes that daily
load curves remain similar despite variations in weather patterns. The model calculates
point loads based on the similarity between daily load curves and daily maximum and
minimum loads. However, this method may oversimplify the complexity of real-world
variations in power consumption, especially given the dynamic nature of temperature
and cooling demands. The experimental results reported in the article demonstrate the
effectiveness of the developed LS-SVM model, showing that it can generate relatively ac-
curate predictions of cooling load. However, while the model succeeds in replicating daily
load patterns, it could benefit from further refinement to account for a wider range of
weather conditions and sudden temperature fluctuations. The study primarily focuses on
the summer season in Jinan, which may limit the model’s generalizability to other geo-
graphical regions with different climates or seasonal patterns. Additionally, the reliance
on historical weather data and load curves raises concerns about the model’s ability to
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adapt to unexpected events, such as extreme weather conditions or sudden changes in
energy consumption due to socioeconomic factors.

In conclusion, while the LS-SVM model presented in this study makes a valuable con-
tribution to short-term load forecasting for the summer period, there is potential for
improvement. Future research could explore integrating more dynamic variables, such as
real-time weather data, consumer behavior patterns, and regional and seasonal variability,
to further enhance the model’s robustness and applicability in broader contexts.

This paper [16], addresses the crucial role of load forecasting in energy management
systems, particularly with the integration of advanced machine learning techniques. In
this study, a Temporal Convolutional Network (TCN) model is proposed for short-term
load forecasting, aiming to capture the temporal patterns of historical load data efficiently.
Using real-world data from a region in Shanghai, the authors compare the TCN model
with three traditional models: ARIMA, Artificial Neural Networks (ANN), and Long
Short Term Memory (LSTM) networks. The results show that the TCN model achieves
better forecasting accuracy than these baseline models. While the findings highlight the
strong performance of the TCN approach, the study’s comparative scope remains limited.
It only includes a narrow set of baseline models and omits several other recent and com-
petitive forecasting methods, such as Transformer-based architectures or hybrid models,
which have shown promising results in time series forecasting tasks. Including a broader
set of benchmarks could have provided a more comprehensive understanding of the TCNs
relative performance.

Moreover, the studys reliance on a single regional dataset (Shanghai) limits the general-
izability of its conclusions. Load forecasting models can be highly sensitive to regional
variations in consumption behavior, climate, and socioeconomic factors. Evaluating the
TCN model across multiple datasets representing diverse geographic and operational con-
texts would help validate its robustness and wider applicability. Integrating real-time and
dynamic scenarios could also enhance the practical relevance of the results in real-world
energy systems.

The study in [17], proposes a hybrid model named EEMD-LSTM for short-term elec-
tricity load forecasting. It aims to improve prediction accuracy by addressing the non-
linear and non-stationary nature of load data. Ensemble Empirical Mode Decomposition
(EEMD) is used to decompose complex signals, and Long Short-Term Memory (LSTM)
networks are applied for prediction. This combination enhances stability and captures
temporal dependencies. The model was tested on real-world load data, showing improved
forecasting performance. The study highlights the potential of hybrid techniques in power
systems. However, certain methodological limitations remain. While the EEMD-LSTM
model demonstrates improved forecasting accuracy, it presents several drawbacks. The
approach relies heavily on the quality of EEMD decomposition, which may decline if com-
ponents are highly correlated or not well separated. EEMD also increases computational
costs due to repeated processing steps, and the added noise may leave residual distur-
bances in the resulting intrinsic mode functions (IMFs). Moreover, the model’s reliability
is sensitive to parameter selection, such as noise amplitude and ensemble size factors the
paper does not deeply explore. Lastly, the study does not assess the computational com-
plexity of the full pipeline, raising concerns about its feasibility for real-time applications
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in smart grid environments where efficiency is crucial.

The authors in [18], address the challenge of short-term electricity load forecasting
in the context of rising power demand. They compare two deep learning models, Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) using historical con-
sumption data. The models are trained and tested on the London Smart Energy Meter
dataset. Forecast accuracy is evaluated using the Root Mean Square Error (RMSE) met-
ric. The study aims to identify the most effective model for predicting electricity demand.
Results highlight the predictive power of recurrent neural networks. The work contributes
to improved energy management strategies. While the study provides valuable insights
into the application of recurrent neural networks for load forecasting, several limitations
can be identified. First, the evaluation relies solely on the RMSE metric, which, although
informative, does not provide a complete picture of model performance, especially in the
presence of extreme values or underprediction biases. Including complementary metrics
such as Mean Absolute Percentage Error (MAPE) or R-squared would have strengthened
the analysis.

Furthermore, the study limits its investigation to two models. Exploring additional archi-
tectures, such as hybrid models combining Convolutional Neural Networks (CNNs) with
recurrent layers, could have offered further insights into capturing complex temporal and
spatial dependencies in electricity consumption patterns.

This work [19], presents an enhanced short-term load forecasting method by addressing
errors in weather forecasts and the cumulative effect of high temperatures. Traditional
models often overlook these influences, reducing accuracy during extreme conditions. The
authors propose a two-step correction process: adjusting weather forecasts using histori-
cal data and modeling cumulative temperature effects. These refined inputs are used to
train a Backpropagation (BP) neural network. Experiments show improved performance,
with an error rate of 1.61%. The approach offers a more accurate and robust solution.
However, some challenges remain regarding generalization and input complexity. Despite
these promising results, several limitations can be highlighted. While the weather correc-
tion process improves input quality, it introduces an additional layer of complexity and
dependency on accurate historical weather datasets. In real-world scenarios, timely access
to precise historical weather corrections may not always be feasible, potentially limiting
the practical deployment of this approach.

Additionally, the study focuses primarily on the impact of temperature and does not
account for other influential meteorological factors such as humidity, wind speed, or solar
radiation, which could also affect load variations, especially in different seasons or regions.

Finally, the validation is limited to specific test cases without extensive cross-validation
across diverse geographical areas or different types of load profiles. Broader testing would
be essential to fully assess the generalizability of the proposed model under varied climatic
and operational conditions.
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2.3 Related Work on Electricity Theft

Electricity theft and other non-technical losses pose a significant global challenge, with
estimated revenue losses reaching $101.2 billion annually across 138 countries . This
alarming figure highlights the urgent need for effective and reliable methods to detect and
prevent electricity theft, making it a critical area of research in the context of smart grid
systems|20]. Several research efforts have been proposed to address electricity theft in
smart grid systems, aiming to detect fraudulent behaviors and improve the reliability and
security of energy distribution.

This study [21], proposes a hybrid deep learning model for electricity theft detection by
combining Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU), op-
timized with the Manta Ray Foraging Optimization (MRFO) algorithm. CNN captures
local patterns, while GRU models long-term dependencies. The MRFO is applied for
hyperparameter tuning. Evaluated on a benchmark dataset, the model achieves 91.1%
accuracy, approximately 6% higher than the baseline. This demonstrates the model’s
effectiveness in detecting anomalies in electricity consumption. However, deployment
considerations remain, especially in real-world environments. Despite its strong perfor-
mance, the models complexity due to the integration of CNN, GRU, and MRFO poses
deployment challenges, especially in real-time or resource-limited environments like smart
meters. The computational cost of metaheuristic optimization can also hinder scalability.
Furthermore, the datasets limited geographic scope raises concerns about generalizability,
given regional differences in consumption behavior. A more diverse dataset and broader
testing across varied conditions would be crucial to evaluate how well the model adapts
to different regional contexts. The models interpretability is another concern. Its black
box nature may limit trust and regulatory acceptance, especially in high-stakes contexts.

Additionally, the model lacks an evaluation against simpler, more interpretable models,
making it difficult to assess whether the accuracy gains justify the increased complexity.
Given that transparency and trust are critical for adoption by utility companies, address-
ing this issue would improve the models practicality. A potential area for improvement
is the real-time applicability. Although the study shows promising accuracy in controlled
conditions, practical deployment in real-world smart grid environments would require op-
timizing the model for low latency, high performance requirements. As electricity theft
detection must be timely and adaptive, reducing the model’s computational load could
make it more feasible for integration into operational systems. A focus on model efficiency
and deployment readiness would enhance the models practical value for utility providers.

This project [22], proposes a cost-effective electricity theft detection system using Em-
pirical Mode Decomposition (EMD) for signal processing and K-Nearest Neighbor (KNN)
for classification. It utilizes real electricity consumption data from the State Grid Corpo-
ration of China (SGCC), covering 1,035 days and two primary classes normal usage and
theft. Missing values are handled through interpolation. EMD decomposes the raw sig-
nals into Intrinsic Mode Functions (IMFs), from which statistically significant features are
extracted for input into the KNN classifier. The system achieves 91.0% detection accuracy
and is particularly suited for environments with limited computational resources due to
its simplicity and efficiency. Despite its practical appeal, several limitations affect the sys-
tems scalability and robustness. EMD), although effective for nonlinear signals, is sensitive
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to noise, which may introduce spurious components and compromise feature reliability.
KNN, while intuitive, struggles in high-dimensional spaces and with large datasets, as
its performance depends heavily on feature relevance and the chosen parameters. The
study also lacks cross-validation and multi-regional testing, which raises concerns about
the models generalizability across different grid environments and customer profiles.

Another limitation is the manual feature selection from EMD outputs, which introduces
subjectivity and limits scalability. The absence of automated feature engineering or adapt-
ability reduces its effectiveness for dynamic smart grids. Additionally, the study does not
benchmark the approach against more recent or interpretable methods, leaving unclear
how it compares in terms of performance versus complexity. While effective in its specific
context, broader validation and methodological refinement are necessary for wider appli-
cation.

This work [23], proposes a novel method to detect intermittent electricity theftan irreg-
ular, hard-to-detect form of non-technical loss. The approach combines multi-scale CNNs
to identify suspicious intervals and Pearson correlation to associate these with abnormal
line loss. DBSCAN clustering is then used to isolate outliers without needing predefined
cluster counts. Evaluated on synthetic datasets mimicking real consumption patterns, the
model outperforms conventional techniques. Its ability to detect subtle manipulation pat-
terns makes it a promising solution. However, deployment challenges and generalizability
issues remain. While the results are promising, the approach has limitations. Its reliance
on deep learning and unsupervised clustering makes it computationally intensive, which
could hinder real-time or large-scale deployment, especially in resource-constrained set-
tings. Real-world implementation would likely require optimized or hardware-accelerated
versions. The use of synthetic data, though based on real patterns, raises concerns about
generalizability, as it may not fully capture the diversity of theft behaviors across users
or regions. Extensive validation with authentic, labeled datasets is essential to confirm
robustness and practical viability.

Additionally, the method’s black box nature limits interpretabilityan important factor for
utility providers and regulators who need transparency in decision making, particularly
when legal or financial consequences are involved. Finally, while effective for intermittent
theft, the model does not address the wider spectrum of non-technical loss behaviors. Inte-
grating it into a broader, adaptive detection system would enhance its practical relevance.

The authors in [24], address electricity theft in Bangladesh using a supervised ma-
chine learning framework trained on a real-world dataset of over 56,000 records from 2017
to 2020. To handle class imbalance, the study employs various resampling techniques
including SMOTE and ENN. Classical classifiers such as KNN, SVM, and Decision Trees
are tested under different sampling conditions. The study presents a detailed comparison
of model performance. This work emphasizes methodological rigor in preprocessing and
evaluation. Results show that proper sampling boosts detection accuracy. Still, chal-
lenges in scalability and adaptability remain. Despite the studys methodological rigor,
several limitations reduce its practical applicability. First, the use of a centralized data
environment does not reflect the decentralized nature of modern power grids. Centralized
data handling raises privacy and security concerns; a federated learning approach would
better support privacy and scalability by enabling distributed model training without raw
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data transfer.

Additionally, the models are trained on known theft patterns, which limits their ability
to detect emerging or sophisticated strategies. Theft methods evolve, and systems must
generalize beyond historical anomalies for long-term effectiveness.

The exclusive use of classical ML models also restricts the capture of temporal patterns
in consumption data, which are often sequential and seasonally influenced. Incorporating
temporal modeling techniques could improve detection accuracy by addressing these dy-
namics.

Lastly, the geographic specificity of the dataset limited to Bangladesh raises concerns
about generalizability. Electricity theft behavior varies across regions, requiring cross-
domain validation for broader deployment. The study also offers limited insights into
model interpretability, which is crucial for adoption by utilities and regulators who must
justify flagged cases in legal and operational contexts.

In conclusion, while the framework provides valuable insights into theft detection us-
ing classical ML and effective resampling, its real-world scalability, adaptability, and ex-
plainability remain constrained, highlighting the need for more federated, temporal, and
interpretable models in future work.

This study [25] ,introduces TLGRU, a hybrid electricity theft detection model com-
bining LSTM and GRU to address limitations of traditional systems. It incorporates
synthetic attacks to handle class imbalance, LSTM for extracting temporal features, and
GRU for adaptive classification. Dropout and the Adam optimizer are used to enhance
performance. Tested on real consumption data from China, the model achieves over 91%
accuracy with a low 1% false positive rate. TLGRU shows strong predictive capacity in
identifying anomalous behavior. These results highlight its robustness under controlled
conditions. Yet, challenges remain for real-world application.Despite these promising out-
comes, the model is developed and tested in a centralized environment, which may not
reflect the data privacy and distribution realities of modern smart grids. As smart meters
become more prevalent, the ability to train models across decentralized data sources with-
out compromising user privacy becomes crucial. A federated learning approach would be
better suited for such environments, enabling local training at the edge while aggregating
model updates centrally, thereby enhancing both privacy and scalability.

Additionally, the reliance on synthetic attack scenarios for data balancing may not fully
capture the evolving and context-specific nature of real-world theft patterns. Further-
more, the study lacks comparative analysis against simpler or more interpretable models,
which limits the assessment of its performance relative to model complexity. The man-
ual nature of data preprocessing and the absence of explainability mechanisms also pose
challenges for regulatory acceptance and operational deployment. In conclusion, while
TLGRU demonstrates technical innovation and high accuracy in a controlled setting, its
practical adoption would benefit from decentralized training, real-world validation, and
improved interpretability.
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2.4 Related Work on Renewable Energy

Related work on renewable energy has focused extensively on the integration, optimiza-
tion, and management of sustainable energy sources within modern power systems. Re-
searchers have investigated various challenges such as variability, storage, grid stability,
and demand forecasting, to enable efficient and reliable use of renewables in smart grid
infrastructures.

This study [26] , introduces ESNCNN, a hybrid deep learning model combining Echo
State Networks (ESNs) and Convolutional Neural Networks (CNNs) for forecasting renew-
able energy production and electricity consumption. ESNs capture temporal dependen-
cies, while CNNs extract spatial features. Residual connections address vanishing gradi-
ents, and fully connected layers enhance predictions. Evaluated on benchmark datasets,
ESNCNN outperforms existing methods across multiple metrics (MSE, RMSE, MAE,
MBE). The model shows strong generalizability and applies to both RE and load fore-
casting tasks. Despite strong performance, the study does not provide evidence for the
models claimed efficiency, omitting runtime or resource benchmarks. Its centralized train-
ing setup raises privacy and scalability concerns, which could be mitigated through feder-
ated learning. Limited interpretability and a lack of robustness testing under anomalous
or extreme conditions further constrain its deployment in real-world smart grid environ-
ments.

This work [27], presents a modified stacked GRU-RNN architecture for forecasting
renewable energy generation and electricity load. The method includes correlation-based
feature selection, an AdaGrad optimizer with momentum, and application to both uni-
variate and multivariate scenarios. FEvaluated on wind and load datasets, the model
demonstrates improved forecasting accuracy over baseline approaches, supporting its rel-
evance for smart grid operations.

While the results are promising, the study lacks ablation analysis, leaving it unclear
which components drive performance gains. Its generalizability across regions or energy
systems is not assessed, limiting broader applicability. The absence of interpretability
tools and the reliance on linear correlation for feature selection may hinder transparency
and overlook nonlinear relationships, particularly as smart grid data grows in complexity.

This study [28] , employs a Multi Layer Perceptron (MLP) model to forecast renewable
energy production in Poland, focusing on wind, solar, biogas, and biomass. Using histor-
ical data from 1990 to 2018, the model predicts substantial growth in most renewables,
aligned with EU climate goals, while noting stagnation in hydro due to resource limita-
tions.

Although MLP captures nonlinear relationships, it lacks mechanisms to model temporal
dependencies critical in volatile and seasonal energy data. The absence of comparative
benchmarking with time series-specific models and the lack of sensitivity analysis limit
confidence in the model’s robustness and adaptability to real-world dynamics. Incorpo-
rating time-aware techniques would enhance predictive reliability.
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2.5 Federated Learning in Theft Detection and Load
Forecasting

Federated Learning (FL) has emerged as a promising paradigm in the context of smart
grids, enabling collaborative model training across distributed energy data sources while
preserving data privacy. Recent studies have explored the application of FL in addressing
key challenges such as electricity theft detection and load forecasting, aiming to enhance
grid intelligence without compromising sensitive user data. This section reviews the most
relevant contributions in this area.

This study [29] , presents a robust solution for detecting cyber and electricity theft
attacks in smart grids by integrating a multi-step LSTM imputation model with a Fed-
erated Learning based Stacking Ensemble GRU (FL-SE-GRU). The approach addresses
challenges like missing data, privacy concerns, and coordinated attacks. Tested on smart
grid datasets, the model achieves over 95% accuracy in detection and classification. Its
privacy-preserving design is well aligned with modern grid environments. Multiple eval-
uation metrics and feature significance analysis support its validity. This combination
ensures robust preprocessing and decentralized model training. However, real-world ap-
plicability remains to be proven.

However, the study is not without limitations. While the authors claim the model is
efficient, the stacking ensemble within a federated learning setup likely introduces non-
trivial communication and computational overhead, which is not quantified. Additionally,
the framework has not been tested in a real-time environment, raising questions about
latency and scalability. Moreover, potential vulnerabilities of federated learning such as
poisoning or model inversion attacks are not addressed, despite the papers focus on secu-
rity.

This work [30], proposes a privacy-preserving framework for forecasting residential
electricity consumption using Federated Learning (FL) combined with Long Short Term
Memory (LSTM) models. It enables local training on smart meters and aggregates mod-
els globally without sharing raw data, ensuring both privacy and scalability. Temporal
and weather-related features are integrated to enhance accuracy, while K-means cluster-
ing groups users by behavior. The model achieves performance comparable to centralized
methods (RMSE between 0.12 and 0.14 kWh). Evaluation on the UK and Italian datasets
shows strong results. Its architecture aligns with GDPR and reduces data transmission
needs. This makes it a promising approach for decentralized smart grids.

While the FL model significantly reduces communication overhead, the need for peri-
odic model updates could place stress on the communication infrastructure, particularly
in large-scale networks with millions of devices. Moreover, the approach assumes that all
edge devices possess sufficient computational capabilities, which might not be realistic in
legacy systems. Additionally, performance drops were observed in regions with irregular
consumption behavior, indicating the potential need for dynamic clustering or integrated
anomaly detection mechanisms.

This project [31], introduces a novel approach that combines federated learning with
client-level personalization to improve short-term electricity load forecasting while pre-
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serving data privacy. In the proposed method, a global forecasting model is trained
collaboratively across multiple consumers without sharing raw data, and then personal-
ized locally using a proximal regularization term. The approach addresses the limitations
of both purely local models (prone to overfitting) and global federated models (unable to
capture user heterogeneity). Experiments on real smart meter data from 100 households
demonstrate improved accuracy compared to traditional methods, especially when local
data is scarce.

This study presents an effective solution for load forecasting by introducing a personal-
ized federated learning framework. However, the use of a fully connected artificial neural
network (ANN) as the base model may limit the methods capacity to capture temporal
dependencies inherent in electricity consumption data. Models such as Long Short-Term
Memory (LSTM) networks, which are specifically designed for time series analysis, could
offer significant improvements in capturing sequential patterns. Furthermore, while the
personalization technique via proximal regularization is innovative, the computational
cost and complexity of tuning parameters like data discrepancy and regularization weight
are not deeply explored. Overall, the paper makes a strong contribution to privacy-
preserving forecasting, though it leaves room for enhancement through more temporally
aware models.

2.6 Conclusion

In summary, the current literature highlights substantial progress in load forecasting,
electricity theft detection, and renewable energy management. However, several limi-
tations persist, including scalability, data privacy, and adaptability to real-world con-
straints. These challenges underline the necessity of exploring novel paradigms such
as federated learning, which offers a promising path forward by enabling collaborative,
privacy-preserving, and distributed intelligence in smart grid environments.
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Chapter 3
Methodology and Federated Learning Approach

3.1 Introduction

This chapter outlines the methodology adopted to develop predictive models for electric
load forecasting and electricity theft detection in smart grids. It emphasizes the use of
Federated Learning (FL) as a decentralized and privacy-preserving solution. The process
begins with a presentation of the real-world dataset, followed by data preprocessing steps
such as cleaning, normalization, and time series transformation. The architecture of the
proposed FL system is then introduced, including client-server roles and model aggrega-
tion strategies. Next, we describe the modeling approaches for both forecasting and theft
detection. The chapter concludes with a comparative analysis of centralized vs. federated
learning approaches, highlighting the advantages of FL in smart grid applications.

3.2 Data Presentation

3.2.1 Data Origin

Two distinct datasets are utilized in this work, each serving a different objective within
the project.

o The first dataset [32], is designed for load forecasting and originates from a
real-world electrical distribution system. The data was collected throughout the
year 2017 using the Supervisory Control and Data Acquisition (SCADA) system
operated by Amendis, a utility company in charge of electricity distribution. It
consists of 52,416 entries recorded at 10-minute intervals, offering a detailed and
continuous stream of energy usage and environmental information.

This dataset covers three distinct electricity distribution zones, namely Zone 1
(Quads), Zone 2 (Smir), and Zone 3 (Boussafou). Each observation includes nine
features, summarized below:

— Date Time: Timestamp of the 10 minute interval.
— Temperature: Ambient temperature.

— Humidity: Atmospheric humidity.

— Wind Speed: Wind velocity.

— General Diffuse Flows: The global diffuse solar radiation (in W/ms) re-
ceived on a horizontal surface, useful for analyzing the influence of sunlight on
energy usage.
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— Diffuse Flows:The portion of solar radiation that is scattered in the at-
mosphere, without direct sunlight. Also relevant for understanding weather-
related consumption changes.

— Zone 1 Power Consumption:Electrical power consumption in Zone 1 (Quads),
measured in kilowatts (kW).

— Zone 2 Power Consumption:Electrical power consumption in Zone 2 (Smir),
measured in kilowatts (kW).

— Zone 3 Power Consumption:Electrical power consumption in Zone 3 (Bous-
safou), measured in kilowatts (kW).

« The second dataset [33], is designed for electricity theft detection and classifi-
cation. It comprises hourly electricity consumption records collected over one year
for 16 different consumer types. The dataset originates from the Open Energy Data
Initiative (OEDI), a centralized platform by the U.S. Department of Energy that
aggregates high-value energy research datasets.

To simulate fraudulent behavior, six distinct types of electricity theft were synthet-
ically injected into the original data. These types simulate common manipulation
patterns encountered in smart grids, namely:

1. Partial consumption reduction during the day: Consumption values are
multiplied by a random factor between 0.1 and 0.8.

2. Random zero consumption: Consumption drops to zero at randomly selected
periods.

3. Random hourly scaling: Each hourly consumption value is multiplied by a
different random factor.

4. Random fraction of mean: Values are replaced with a random fraction of the
average consumption.

5. Constant mean reporting: All consumption values are replaced with the
mean consumption.

6. Reversed readings: The time series order of consumption values is reversed.

A dedicated theft generator was developed to randomly apply these six theft types
to various consumer profiles, enabling robust training and benchmarking of anomaly
detection and classification models.

The dataset contains the following key features:
— ID: Unique identifier for each observation.
— Electricity:Facility: Total electricity consumed in the facility.
— Fans:Electric: Energy consumed by ventilation fans.
— Cooling:Electric: Energy used for air conditioning.
— Heating:Electric: Electricity used for space heating.
— InteriorLights: Electricity consumed by indoor lighting systems.
— InteriorEquipment: Usage of interior electrical equipment.
— Gas:Facility: Gas consumption at the facility level.

— Heating:Gas: Gas used specifically for heating purposes.
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— InteriorEquipment (Gas): Equipment that consumes gas inside the build-
ing.
— WaterHeater: Energy used by water heating systems.

— Class: Type or category of the consumer (e.g., FullServiceRestaurant, SmallOf-
fice).

— Theft: Label indicating whether the record is Normal or represents one of the
six Theft types.

3.2.2 Challenges Encountered and Constraints Related to Real Data

Working with real-world datasets, especially in the context of electricity consumption and
theft detection, presents several challenges and constraints. One of the key issues is the
quality and completeness of the data. Missing, inconsistent, or erroneous values are
common in real-world datasets. For example, some records may have incomplete time
stamps, or power consumption data may be missing for certain periods due to sensor
malfunctions or communication issues. These gaps can significantly impact the accuracy
of machine learning models if not properly handled during preprocessing.

Another significant challenge is the imbalance between normal and theft-related
data. In most real-world scenarios, theft events are far less frequent than normal con-
sumption patterns, leading to a highly imbalanced dataset. This imbalance can make
it difficult for machine learning models to learn meaningful patterns for fraud detection.
Techniques like oversampling (e.g., SMOTE) and cost-sensitive learning are often used to
address this issue, but they come with their challenges, such as the risk of overfitting or
generating unrealistic synthetic samples.

Furthermore, temporal dynamics pose a challenge when dealing with time series data.
Electricity consumption patterns can vary seasonally, daily, and even hourly, depending on
various factors such as weather, holidays, and socioeconomic conditions. This introduces
significant temporal dependencies that need to be captured for accurate forecasting
and anomaly detection. Data preprocessing, feature engineering, and model selection
must account for these dependencies to ensure reliable predictions.

Finally, privacy and data security concerns are also important. In real-world scenar-
ios, personal consumption data can be sensitive, and its misuse or unauthorized access
could lead to privacy violations. Ensuring the protection of such data, especially when
sharing across multiple organizations or using federated learning approaches, requires
careful attention to data encryption, access control, and anonymization techniques.

3.3 Data Preprocessing

3.3.1 Data Cleaning

Data cleaning is an essential preprocessing step to ensure the quality and integrity of the
data before feeding it into machine learning models. In this step, we focus on handling
missing, inconsistent, or erroneous data entries.
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« Handling Missing Values: All rows containing NaN values were removed to
maintain dataset integrity and avoid biases during model training.

e One-Hot Encoding: To prepare the data for Federated Learning, categorical vari-
ables were encoded. The Class variable was transformed using One Hot Encoding,
representing each building type as a binary vector to ensure compatibility with fed-
erated aggregation mechanisms. The target variable theft was also encoded into a
binary format (0 for "Normal", 1 for "Theft") to enable classification.

3.3.2 Normalization of Values

Normalization scales numerical data to a common range, ensuring that all features con-
tribute equally during model training. This process improves learning stability and over-
all model performance. It is particularly crucial in federated learning, where models
are trained on heterogeneous data distributed across multiple clients, each potentially
exhibiting different data distributions.

3.3.3 Transformation into Time Sequences

Sequence creation is an essential preprocessing step for time series data, particularly when
using machine learning models such as recurrent neural networks (RNNs). It structures
the data to enable the model to capture temporal dependencies and make accurate pre-
dictions.

e« Sequence creation: The time series is divided into smaller subsets called se-
quences. Each sequence consists of a fixed number of consecutive time steps used
to predict the next value in the series.

o Time window size (Sliding Window): A fixed-size window slides across the
time series to extract overlapping sequences of successive observations.

o Multivariate case: When the dataset includes multiple variables (e.g., energy con-
sumption, temperature, humidity), each input at a time step is a vector containing
the values of all variables. The resulting sequences are thus multivariate, capturing
correlations across features over time.

3.3.4 Separation of Training and Testing Datasets

In this work, the dataset was divided into two parts: 80% was used for training the
models, and 20% was reserved for testing. This standard split allows the model to learn
from the majority of the data while being evaluated on a separate, unseen portion to
assess its generalization performance.

3.4 Federated Learning Approach

Federated learning is a decentralized machine learning approach that enables model train-
ing across multiple devices or data sources without exchanging raw data. This technique
enhances data privacy and security, ensures regulatory compliance, and fosters model
robustness by leveraging diverse local datasets. Instead of centralizing data, each node
trains a model locally, and only model updates are shared with a central server, which
aggregates them to improve the global model [34],[35].
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3.4.1 Architecture of our Federated Learning System

A standard federated learning system comprises several distinct components, each with
specific roles and responsibilities:

« Clients (or Workers): These are the entities holding the local, private data used
for training. Their primary responsibilities include :

— Storing and managing their local dataset securely.

— Receiving the current global model parameters and training instructions from
the server.

— Performing local model training on their data for one or more rounds.
— Calculating model updates.

— Sending the processed updates back to the server.

« Server (or Coordinator/Aggregator): The server acts as the central coordina-
tor of the federated learning process, without ever accessing the clients’ raw data.
Its responsibilities include:

— Initializing the global model.

— Selecting a subset of clients for each training round and sending them the
current global model along with training configurations.

— Collecting local model updates and evaluation metrics from the selected clients.

— Aggregating the received model updates using strategies such as FedAvg, Fed-
Prox, or other algorithms.

— Aggregating evaluation metrics to monitor the overall performance of the
global model.

— Updating the global model and coordinating the next round.

— Repeating the cycle until convergence.

o Model: The model refers to the machine learning algorithm collaboratively trained
by all participants. It can take various forms depending on the task, such as a
linear regression model, a support vector machine, or more commonly, a deep neural
network. The model’s architecture is usually predefined and distributed uniformly
to all clients.

o« Communication Protocol: The communication protocol defines the interaction
framework between clients and the central server, specifying how information is
securely and efficiently exchanged during the federated training process. It includes:

— Transmission protocols: Use of network protocols such as gRPC or REST
APIs over HTTPS to enable reliable and scalable communication between
clients and the server.

— Data serialization formats: Model parameters and updates are serialized
using efficient formats like Protocol Buffers (Protobuf) or FlatBuffers for com-
pact and fast binary communication. In some cases, formats like JSON or
HDF5 may be used for compatibility or readability.
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— Client management strategies: Techniques to handle client availability,
manage dropouts, and mitigate communication delays, such as asynchronous
updates, client sampling, or retry mechanisms.

— Security and privacy: Implementation of secure communication channels
using SSL/TLS encryption to ensure data confidentiality.

3.4.2 Operational Framework of Synchronous Federated Learning

In most common scenarios, particularly in cross-silo settings or simulations, a synchronous
round-based interaction approach is followed. The typical flow is as follows:

1.
2.

Initialization: The server defines the initial global model wy.
Client Selection: At round t, the server selects a subset of clients S;.
Broadcast: The server sends the current global model w; to all clients in .S;.

Local Training: Each selected client k& € S; trains the model w; on its local dataset
Dy, for E epochs, resulting in a local model update Aw,tfl. This step often involves

minimizing the local loss function L (w).

Update Transmission: Each client k sends its computed update Aw}™ back to
the server.

Aggregation: The server collects updates from a sufficient number of clients and
aggregates them using a selected algorithm. For example, using weighted averaging
in FedAvg:

Aw'™t = %szﬂ,
kes; Ny
where S; is the set of clients that successfully returned updates, ny = |Dg|, and

Ny = ZkeS{ N
Global Model Update: The server updates the global model as follows:
Wt = w, + nAw,

where 7 is the server’s learning rate 1.

. Iteration: The process repeats from Step 2 for the next round (¢ + 1) until the

termination criteria are met.

Client 1 Client 2 Client N

Data D1 Data D2 Data DN

Local Training Local Training Local Training

2. Send Update Aw_1 1. Broadcast Model w_t Qend Update Aw§1. Broadcast Model w_t 2.Send Updwm Broadcast Model w_t

3. Aggregate Updates
{Server / Coordinator | Global Model (w) | Aggregation Logic | Client Selection} (e.g., FedAvg)
Update Global Model w_{t+1}

Figure 3.1: A typical client-server architecture for federated learning
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3.5 Functional Architecture of the Proposed Approach

3.5.1 Presentation of the Processing Pipeline

The proposed solution is based on a federated architecture composed of multiple clients
and a central server. The processing pipeline includes local data collection, normalization,
creation of time sequences, local model training, and then sending the weight updates to
the server. The server aggregates these updates, updates the global model, and redis-
tributes it to the clients. This process is repeated until convergence.

3.5.2 Role of Clients: Local Processing

Each client performs the following tasks:

e Local Data Processing: Clients independently preprocess their data, including
normalization and conversion into time sequences.

e Model Training: Clients train a local model using their private dataset for a
specified number of local epochs.

e Model Update Computation: After training, clients compute model updates.

o« Communication: Clients transmit only the model updates to the central server,
ensuring that raw data remains private.

This approach maintains data privacy while enabling clients to contribute to the global
learning process.

3.5.3 Role of the Server: Aggregation
The central server performs coordination and model integration:

e Receiving updates: The server gathers local model updates from the participating
clients.

o Aggregation: Using algorithms such as FedAvg, FedProx, the server aggre-
gates updates to create a unified global model.

e Model distribution: The aggregated weights of the global model are then
shared back with the clients for the next training round.

o Convergence monitoring: The server evaluates the performance of the global
model and controls the training process over communication rounds.

3.5.4 Model Aggregation Strategies
FedAvg

o Definition: Proposed by McMahan et al.(2017), Fed Avg is an aggregation method
based on the weighted average of local models. Each client performs local train-
ing, then the server aggregates the model weights according to the size of each
clients dataset.
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« How it works: At each federated round ¢, a subset of clients S; is selected. Each
client k£ € S; trains its model locally on nj samples and sends its weights w}, to the
server. The server then computes the global weights as follows:

Ny

1 t

Welobal = Z > ~Wy,
kes, 2wieSy Thi

t+1
global*

—w global model weights at round ¢ + 1
— S;: subset of selected clients at round ¢

— wk: local model weights from client k

— ny: number of samples owned by client &

— Yies, Nit total number of samples used in aggregation at round ¢

e Advantages:
— Reduces communication by relying on local training.
— Simple and efficient in homogeneous environments.

— Easy to implement.

e Limitations:
— Sensitive to non-IID data distribution.
— Vulnerable to system heterogeneity.

— No regularization mechanism may lead to divergence among local models.

FedProx

» Definition: Introduced by Li et al.(2018), FedProx is an extension of FedAvg
designed to stabilize training in non-IID settings by adding a proximal term that
limits divergence between local and global models.

« How it works: Each client £ minimizes the following local loss function:
L _ H ot 2
k<w) - fk(w)+ 2HU) wglobal”

— Ly(w): regularized local loss of client &

— fr(w): empirical loss over local data

— w: local model weights to be optimized

— Whpar: global model weights sent by the server at round ¢

— w: regularization parameter controlling the strength of the proximal term

The proximal term &|w —w;,,,||* penalizes large deviations from the global model.

e Advantages:
— Improved stability on non-IID data.
— Reduces variance among local models.

— Supports heterogeneous environments.
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o Limitations:
— Requires careful tuning of pu.

— May slow down convergence if p is not well chosen.

Fed Adam

o Definition: Proposed by Reddi et al. (2020), FedAdam is an aggregation method
inspired by the Adam optimizer, applying adaptive learning rates at the server
to improve convergence.

o« How it works: The server first aggregates the local updates:

j : Ty . .
At - 7(@0 —w )
keS, ZiESt n; k global

Then, it applies the Adam update rules:
my = By + (1 — )4

vy = Poty_q + (1 - 62)A§
oy U
IR R
t+1 i

t
w =w — N
lobal lobal =~
globa globa /_Ut €

— A aggregated update at round ¢

A~

(%

mmy

— my, vy first and second moment estimates
— [, Bo: decay rates for moving averages

— 1): server learning rate

— ¢e: numerical stability constant

— My, U;: bias-corrected moment estimates

e Advantages:
— Faster convergence in non-IID settings.
— Dynamically adjusts the learning rate.

— Reduces oscillation in the global model.

e Limitations:
— Increased computational complexity at the server.

— Sensitive to hyperparameter tuning.
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FedTrimmedAvg

o Definition: Proposed by Wang et al. (2021), FedTrimmedAvg is a robust ag-
gregation method based on the trimmed mean technique. It improves the resilience
of federated learning systems by discarding a certain percentage of the highest and
lowest model updates, thereby mitigating the impact of outliers and potential ad-
versarial contributions.

e How it works: For each model dimension j, the a% highest and lowest values are
discarded, and the aggregation is computed as:

G _ T (4)
Wolobal = Z D T W
kes) ies 't

- w,(,cj ): model weight of client £ in dimension j
— SU): set of clients after trimming a% outliers in dimension j

— ng: number of samples held by client k

e Advantages:
— Resilient to Byzantine faults and abnormal updates.

— Improves robustness in unreliable environments.

e Limitations:
— Risk of discarding useful information with excessive trimming.
— Sensitive to the choice of «.

— Computationally expensive due to per-dimension filtering.

3.6 Modeling of Load Forecasting

Load forecasting refers to the process of predicting future electricity demand based on his-
torical consumption patterns and other influencing factors such as time of day, weather,
and seasonality. Accurate load forecasting is critical for ensuring the stability and ef-
ficiency of smart grid operations, allowing for optimal energy generation, distribution,
and consumption planning. In this work, we employ a federated learning approach to
collaboratively train a deep learning model across multiple clients without sharing raw
consumption data. This strategy preserves data privacy while leveraging the richness of
distributed datasets.
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3.6.1 Feature Selection using SelectKBest

To optimize the input data and improve the performance of the load forecasting model, a
feature selection technique was applied using Select KBest from the scikit-learn library.
This method aims to reduce dimensionality and retain only the most informative features
for the regression task.

o Principle of Operation: SelectKBest evaluates each feature individually based
on a specified statistical test that measures its relevance to the target variable. The
features are then ranked in descending order according to their scores, and the top
k features are selected for model training, while the rest are discarded.

e Scoring Function Used f_regression: In this study, we used the f_regression
scoring function, which is suitable for regression tasks. It computes the correlation
between each feature and the continuous target variable, assigning an F-score that
reflects the strength of this linear relationship. Features with higher F-scores are
considered more relevant for predicting the target.

By applying this method, we were able to:
— Eliminate redundant or non-informative features,
— Reduce the risk of overfitting,
— Accelerate the training process,

— Enhance the overall generalization of the model.

The value of k£ was chosen empirically based on model performance metrics during cross-
validation.

3.6.2 Time Window Configuration

For the load forecasting task, a time window of 24 hours was selected. This means
that the model uses the consumption data from the previous 24 hours to predict the
next value. The 24-hour window was chosen to capture daily consumption cycles and
recurring patterns that occur over a full day. This configuration enables the model to
learn from broader temporal context, improving its ability to forecast demand trends
while maintaining a reasonable computational cost and avoiding unnecessary noise from
shorter-term fluctuations.

3.6.3 Exploration of Model Architectures

To design an effective load forecasting model, several deep learning architectures were
explored and evaluated empirically. These architectures, primarily based on Recurrent
Neural Networks (RNNs), are well-suited for time series forecasting due to their ability
to model temporal dependencies. Each model was assessed based on prediction accuracy,
training stability, and computational efficiency. The final selection was made by balancing
performance with practical deployment considerations.

Unidirectional LSTM

The Long Short-Term Memory (LSTM) network was developed to address the vanish-
ing gradient issue in standard RNNs. Its gated architecture (input, forget, and output
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gates) enables the modeling of long-term temporal dependencies. In load forecasting
applications, the LSTM effectively modeled short-term consumption patterns and pro-
duced stable, accurate predictions. However, its relatively high computational complexity
and extended training time presented limitations, especially in large-scale or resource-
constrained environments.

GRU

The Gated Recurrent Unit (GRU) offers a simplified alternative to LSTM by combin-
ing the input and forget gates into a single update gate and removing the output gate.
This streamlined design results in fewer trainable parameters and faster training. In
our experiments, the GRU achieved competitive accuracy with reduced training time and
memory usage. Its efficiency and generalization capability made it particularly well-suited
for federated learning scenarios, where communication and computational resources are
limited.

Hybrid LSTM-GRU

The hybrid model combines LSTM and GRU layers, either sequentially or in parallel,
aiming to leverage the strengths of both architectures. Although promising in theory, the
added complexity led to increased training instability and a higher risk of overfitting. In
practice, it did not significantly outperform the simpler models, and its computational
overhead outweighed its benefits.

Bidirectional LSTM (BiLSTM)

The BiLSTM processes sequences in both forward and backward directions, capturing
richer temporal context. This made it particularly effective in short-term load predic-
tion. However, due to its higher memory and computational demands, BiLSTM was
less practical for real-time forecasting or deployment in distributed, resource-constrained
environments.

Final Model Selection

Following an in-depth comparison, the GRU model was selected as the final architecture.
It offered the best compromise between predictive accuracy, training speed, and resource
efficiency. Its simplicity and rapid convergence made it highly compatible with federated
learning frameworks, especially in settings where bandwidth and computational power
are limited. Consequently, GRU was adopted for all subsequent modeling and experimen-
tation phases.

-The following figure summarizes the comparative performance of all evaluated archi-
tectures, reinforcing the choice of the GRU model as the final selected approach.
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Figure 3.3: Comparative Performance of LSTM-Based Models in Federated Learning us-
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3.7 Modeling for Energy Theft Detection

Energy theft represents a significant threat to smart grid operations, leading to revenue
losses, grid instability, and operational inefficiencies. Detecting such illegal activities
requires analyzing consumption behaviors for anomalies, often using machine learning
classification models. However, due to privacy concerns and data ownership restrictions,
centralized data collection is often infeasible. To address this, we adopt a federated
learning approach where multiple distributed clients collaboratively train an energy theft
detection model without sharing raw consumption data. Each client trains the model lo-
cally on its private dataset, and only model weights and evaluation metrics are exchanged
with a central server.
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3.7.1 Feature Selection Based on Permutation Importance

e General Principle: Permutation Importance is a model-agnostic technique that
evaluates the relevance of a feature by measuring the decrease in model performance
when the values of that feature are randomly shuffled. A large drop indicates high
importance.

« Methodology Steps:

1. Train the model: Train a predictive model on the complete dataset using all
input features.

2. Compute baseline performance: Measure the model’s performance on a
validation or test set to establish a baseline (e.g., accuracy, Fl-score, AUC).

3. Permute one feature at a time: For each feature z;:
— Shuffie its values randomly across all data points.
— Evaluate the model performance using the permuted dataset.
— Compute the drop in performance compared to the baseline.

4. Compute importance score:

Importance(x;) = Per formancey, . — Performance ., uieq(T;)

5. Select features: Rank the features based on their importance scores and
retain the top ones for further modeling.

3.7.2 Time Window Configuration

In this study, a time window of 24 hours was selected for structuring the input data. This
means that the model analyzes the previous 24-hour consumption values to detect poten-
tial anomalies. This configuration captures daily usage patterns, which are particularly
relevant in identifying irregular behaviors related to energy theft. The 24-hour window
was chosen based on domain knowledge and empirical testing, offering a good balance
between capturing sufficient temporal context and ensuring model efficiency.

3.7.3 Exploration of Model Architectures
LSTM Model

The Long Short-Term Memory (LSTM) network was explored for its capacity to detect
hidden sequential patterns in customer consumption behavior. Unlike its use in standard
forecasting, here the model is leveraged to identify irregular temporal deviations such as
sudden drops or peaks that may indicate fraudulent manipulation. The ability of LSTM
to maintain temporal dependencies enables it to capture long-term correlations, which is
essential when abnormal behavior develops gradually.

BiLSTM Model

The Bidirectional LSTM (BiLSTM) model was also evaluated due to its capability to ac-
cess both past and future context simultaneously. In the context of energy theft detection,
this dual perspective can help recognize anomalies that may not be evident when relying
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solely on past information. For instance, energy usage that seems typical in isolation may
appear suspicious when compared to future patterns. BiLSTM thus enhances sensitivity
to such contextual inconsistencies.

Final Model Selection

After experimentation and performance evaluation, the LSTM model was chosen as the
final architecture for energy theft detection. Despite the theoretical advantages of Bil-
STM, the LSTM model delivered better overall results in practice. It achieved a more
favorable balance between complexity and accuracy, and demonstrated superior gener-
alization in the presence of noisy consumption data typically encountered in real-world
smart grid environments.

-The following figure summarizes the comparative performance of the evaluated LSTM
and BiLSTM architectures, reinforcing the choice of the LSTM model as the final selected
approach.

Comparison between BiLSTM and LSTM
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Figure 3.5: Comparison of Global Accuracy and Loss between BiLSTM and LSTM Models

3.7.4 Comparative Analysis of Federated Learning and Classical Machine
Learning

Centralized Machine Learning Classifier

In the centralized learning approach, all participants connect to a single central server
to contribute their data. The local data from each participant is uploaded directly to
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the cloud server, which then takes full responsibility for performing the entire model
training process. This configuration offers computational efficiency for participants since
they are not involved in training and do not need high-resource environments. However,
this approach presents serious concerns regarding data privacy and security. Once
the data is uploaded, it can be vulnerable to malicious activity, inference attacks, or
data leaks from within the server itself. Moreover, the communication overhead increases
significantly as the size of the dataset grows, creating performance bottlenecks [36].

Distributed Machine Learning Classifier: Strategies and Architectures

In large-scale machine learning tasks, especially those involving massive datasets or com-
plex models, Distributed Machine Learning (DML) becomes essential to ensure scalability,
efficiency, and performance. DML enables multiple computational nodes to collabora-
tively train a model. The strategies are broadly categorized into data parallelism and
model parallelism, and are typically implemented through communication architectures
such as AllReduce and the Parameter Server.

1. Data Parallelism

Principle: The same model is replicated across multiple nodes, but each replica
trains on a different subset of the data.

Mechanism:
o The dataset is split into balanced partitions and distributed to the nodes.

o Each node performs local training on its own subset using an identical copy of
the model.

o After each iteration, the gradients are aggregated across all nodes commonly
through AllReduce or a centralized synchronization method.

o The global model is updated with the aggregated gradients to ensure consistent
convergence.

Advantages:
o Highly efficient for large datasets.

2. Model Parallelism

Principle: The model is partitioned across several nodes, with each node respon-
sible for computing a portion of the model, while the full dataset is shared across
all nodes.

Mechanism:
e The model is divided into layers, neurons.

e During the forward pass, data flows through each segment of the model located
on different nodes.

e During the backward pass, gradients are computed in reverse order across the
same nodes.

o Communication between nodes is critical as outputs of one sub-model become
inputs to the next.

Advantages:
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« Enables training of extremely large models that cannot fit into the memory of
a single device.
3. Distributed ML Using AllReduce

Principle: A decentralized data parallelism approach where gradient aggregation
is performed using the A11Reduce operation.

Mechanism:
» Each node computes local gradients after training on its data partition.
o Gradients are averaged or summed across all nodes using AllReduce.

o All nodes update their local models synchronously using the aggregated gra-
dients.

Advantages:
e Removes the bottleneck of a centralized server.

o High scalability in high-bandwidth environments.

4. Distributed ML Using Parameter Server

Principle: A client-server architecture where one or more parameter servers
manage and synchronize model parameters centrally.

Mechanism:
e The model parameters are stored on the parameter server.
« Worker nodes train on local data and send gradients to the server.

o The server updates the global model and returns the updated weights to the
workers.

« Can be synchronous (waiting for all workers) or asynchronous (updates occur
as gradients arrive).

Advantages:
o Highly flexible and easy to deploy at scale.

o Well suited to cloud and heterogeneous computing environments.

Federated Learning Classifier

Federated learning builds on the principles of distributed learning but introduces addi-
tional privacy-preserving mechanisms. In federated learning, each participant conducts
the training process locally and independently, using their data and a specified number
of local epochs. After local training, participants send only the model updates to the
server. The central server then performs model aggregation, typically by averaging these
updates, to form a new global model. This global model is then sent back to the par-
ticipants for further training. The process continues for multiple communication rounds,
enabling collaboration without ever exchanging raw data. This makes federated learning
particularly suitable for privacy-sensitive applications and heterogeneous data environ-
ments, where data cannot be shared due to legal, ethical, or technical constraints [36].
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Experiments and Results

This section presents the experimental framework and the outcomes obtained through
simulations, comparing classical machine learning approaches with federated learning.

o Experimental Setup: The experiments were carried out using two widely-used
open-source datasets in the federated learning literature: MINIST and CIFAR-10.
A Convolutional Neural Network (CNN) was employed for training, composed of
3 x 3 convolutional layers followed by an output layer.

— The MINIST dataset includes 60,000 grayscale images of handwritten digits,
each of size 28 x 28 pixels.

— The CIFAR-10 dataset contains 50,000 colored images, each of size 32 x 32
pixels, across 10 distinct classes.

All experiments were conducted on a machine equipped with an Intel(R) Core(TM)
i9-9980HK CPU @ 2.40GHz and 32 GB of RAM.

e Results: This section details the results obtained from the experiments and of-
fers a comparative analysis between centralized, distributed, and federated learning
approaches. Three experimental scenarios were considered:

— Scenario 1: 50 participants were deployed with a 20% participation rate.
Each of the three learning approaches was executed for 100 communication
rounds on both datasets.

— Scenario 2: Same configuration as Scenario 1, but using 200 communication
rounds.

— Scenario 3: The number of participants was varied as p = {20, 40, 60, 80, 100}
while keeping the 20% participation rate. All three learning algorithms were
run for 100 communication rounds on both datasets [36].
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Figure 3.6: Convergence comparison on MNIST dataset in three different scenarios.
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Figure 3.7: Convergence comparison on CIFAR-10 dataset in three different scenarios.

e Performance Comparison and Convergence Analysis

Figures 3.8 and 3.9 illustrate the convergence behavior of centralized, distributed,
and federated learning across the MNIST and CIFAR-10 datasets under the three
experimental scenarios described earlier. In all distributed and federated learning
experiments, the number of local training epochs was fixed at 10.

The graphs demonstrate that decentralized approaches, especially federated learn-
ing achieve superior performance compared to centralized learning. Centralized
machine learning exhibits the lowest accuracy due to the significant communication
overhead it introduces. In this approach, large volumes of data must be uploaded
to a central server at each communication round, which is especially problematic
under limited bandwidth conditions. Specifically, centralized learning only achieved
65% and 73% accuracy on MNIST in scenarios one and two, respectively, and just
54% and 62% accuracy on CIFAR-10.

Distributed machine learning showed moderate improvements, outperforming cen-
tralized learning but still falling short of federated learning. This improvement
stems from the fact that each participant independently trains their local model
before submitting updates. However, privacy concerns and reliance on a central
server limited the performance, yielding 72% and 78% accuracy on MNIST, and
67% and 72% on CIFAR-10 in scenarios one and two.

Federated learning consistently outperformed both other approaches across all sce-
narios. It achieved the highest accuracy: 92% and 97% on MNIST, and 86% and
94% on CIFAR-10 in scenarios one and two, respectively.

In scenario three, where the number of participants varies, all approaches initially
struggle with convergence when the participant count is low. This is due to the
insufficient data available for training on each client. However, as the number of
participants increases, performance improves steadily for all models. Despite the
initial drop in accuracy with fewer clients, federated learning remains the most re-
silient, maintaining superior results even with limited participation.

These findings highlight the strength of federated learning as a modern solution,
particularly in contexts involving large-scale data and sensitive user information.
Unlike traditional centralized models, federated learning offers enhanced perfor-
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mance while preserving data privacy an increasingly vital feature in todays digital
landscape [36].

3.8 Conclusion

This chapter presented the methodological framework adopted for building a robust Fed-
erated Learning system tailored to the dual tasks of electricity load forecasting and energy
theft detection. We began by addressing the characteristics and challenges of the real-
world data, including necessary preprocessing steps such as cleaning, normalization, and
temporal sequencing. The proposed federated architecture was then described in detail,
highlighting the coordination between clients and the server, and incorporating multiple
aggregation strategies to mitigate issues like client heterogeneity and malicious updates.
Finally, we introduced and developed suitable model architectures for both forecasting
and classification tasks, supporting them with rigorous feature selection and comparative
evaluation against centralized approaches. This comprehensive methodology serves as a
strong foundation for the practical implementation and performance evaluation discussed
in the next chapter.
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Chapter 4

Implementation and Results

4.1 Introduction

This chapter details the practical implementation of the proposed Federated Learning
framework applied to electric load forecasting and electricity theft detection. It begins by
describing the development environment and tools used, followed by the integration of the
Flower framework to orchestrate communication between clients and the central server.
Key implementation challenges such as data heterogeneity (non-IID distribution), class
imbalance, and client drift are addressed through various strategies and the use of robust
aggregation algorithms. The final section presents experimental results and performance
evaluation for different aggregation methods, using regression and classification metrics.

4.2 Environment and development tools

In our project, we use Anaconda environment, Python language, Tensorflow, and Flower
packages that are defined as follows:

e Anaconda : It is an open-source Python distribution designed for data science,
providing a streamlined solution for package management and environment deploy-
ment. It uses the Conda package manager, which analyzes the current environment
before installing new packages to prevent conflicts and ensure compatibility with
existing tools and libraries [37].

e Python : It is an interpreted, object-oriented, high-level programming language
designed to be simple, readable, and easy to learn. It supports rapid application de-
velopment with powerful data structures and dynamic typing. Its fast development
cycle, without a compilation step, makes debugging easier and boosts programmer
productivity [38].

e TensorFlow : is an open source machine learning framework that provides Python
and Java-based libraries and tools, specifically designed for building and training
machine learning and deep learning models using data [39].

o Flower :is a flexible and extensible framework for building federated Al systems.
Designed to support diverse use cases, it is customizable, framework agnostic (com-
patible with tools like PyTorch, TensorFlow, and scikit-learn), and was originally
developed for Al research at the University of Oxford. Its clear and maintainable
codebase encourages community contribution and adaptation [40].
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4.3 Implementation of Federated Learning with Flower

The implementation of Federated Learning is carried out using the Flower framework.
The architecture adopted is client-server based, allowing a decentralized model training
across multiple nodes while preserving data privacy.

4.3.1 Internal Architecture and Workflow of the Flower Framework

In a federated learning (FL) setup, a typical architecture is composed of a central co-
ordinating server and multiple distributed clients, forming what is referred to as
a federation. The server oversees the orchestration of training rounds, while the clients
independently train local models on private data and return updates to the server. This
setup is commonly described as a hub-and-spoke topology.To enable modularity, scal-
ability, and support for multiple concurrent FL projects, the Flower framework adopts
a layered and extensible architecture, in which both the server and client sides are split
into two major components: one responsible for persistent communication and one
handling project specific learning logic [40].

1. Server-Side Components

SuperLink

-Role: A long-running, infrastructure-level process that manages all network commu-
nication between the server and the clients (SuperNodes).

-Function: It dispatches training tasks, receives client results, and ensures robust and
efficient transmission of instructions and data. It is designed to remain active throughout
the lifespan of the system.

ServerApp

-Role: A short-lived, user-defined component responsible for the specific logic of the
federated learning project.

-Function: It defines key elements such as:
o Client selection strategy
o Aggregation algorithms
o Training round configuration

-Customizable: Developed by Al researchers or engineers, it is tailored to suit different
experimental or application needs.

2. Client-Side Components

SuperNode

-Role: A long-running process deployed on the client device, responsible for maintain-
ing the connection to the central server via the SuperLink.
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-Function: It continuously listens for incoming tasks, executes them (e.g., local train-
ing or evaluation), and returns results to the server.

-Autonomous Ezecution: Ensures local operations are performed while preserving the
privacy of local data.

ClientApp

-Role: A short-lived, project-specific component executed by the SuperNode when a train-
ing or evaluation task is received.

-Function: Includes the actual model training code, pre-processing and post-processing
logic, and evaluation metrics.

-Customizable: Like ServerApp, it is developed by the user to fit the machine learning
goals of the project.

4.4 Non-IID Problem

Non-IID (non-independent and identically distributed) federated learning refers to a fed-
erated learning setup where the data across different clients is heterogeneous, meaning
it does not follow the same distribution. Unlike IID settings, where each clients data is
assumed to be drawn from the same probability distribution, non-IID data varies signifi-
cantly in terms of statistical properties, such as class distributions, feature distributions,
or data sizes. This heterogeneity poses challenges in model training, as the global model
must generalize across diverse local datasets while avoiding issues like model bias or poor
convergence.

4.4.1 Class Imbalance in Non-IID Federated Learning

Class imbalance in non-IID federated learning refers to a scenario where the distribution of
class labels is uneven across different clients or within a clients local dataset, and the data
is non-independent and identically distributed (non-IID). In non-IID settings, clients have
heterogeneous data distributions, meaning their local datasets may differ significantly in
terms of class proportions, feature distributions, or data sizes. Class imbalance exacer-
bates this heterogeneity, as some clients may have an abundance of data for certain classes
(majority classes) and very little for others (minority classes). This leads to challenges in
training a global model that generalizes well across all clients and classes, often resulting
in biased models that perform poorly on underrepresented classes.

To address class imbalance in non-IID federated learning, two commonly used techniques
are:

SMOTE (Synthetic Minority Over-sampling Technique) :

SMOTE is a data-level technique used to combat class imbalance by synthetically gen-
erating new examples for the minority class. Rather than duplicating samples, it creates
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new instances by interpolating between a minority sample and one of its k nearest neigh-
bors of the same class. Mathematically, for a given minority class sample x;, a synthetic
sample 7 is generated as:

T=x;+ N (Ty — ;)
where:
e x; is a sample from the minority class,
e 1, is one of the k nearest neighbors of z;,
e A €[0,1] is a random number controlling the interpolation.

In federated learning settings, SMOTE can be applied locally on each client to ensure
a more balanced representation of classes before local training, helping to reduce bias and
improve generalization across heterogeneous clients.

Minority class Example case with k = 8
Maijority class X11
di /
L r1
X14
Synthesized
. gap data
X1 r1 = X1+ gap * diff
X13 X12

Figure 4.1: Application of SMOTE

Balanced Weighting :

Balanced weighting is a technique used to mitigate class imbalance by assigning higher
weights to minority classes during model training. This ensures that their contribution
to the loss function remains significant despite their low frequency in the dataset. This
method helps prevent the model from being biased toward the majority class. Mathemat-
ically, in classification tasks with imbalanced classes, the weight w, assigned to each class
¢ can be computed as:

where:



Chapter 4. Implementation and Results 56

e N is the total number of training samples,
e Nasses 18 the total number of classes,
e 1, is the number of samples belonging to class c.

These weights are then incorporated into the loss function. For instance, in the weighted
cross-entropy loss:

C
L=— ch “Ye - 10g(@€)

=1
where:

e ('is the number of classes,

o . is the true label (1 if the sample belongs to class ¢, 0 otherwise),

e {. is the predicted probability for class c.

In federated learning, this weighting is applied locally on each client to adjust the mod-
els sensitivity to class distributions, allowing each client to better handle its own data
imbalance.

4.5 Handling Client Drift

In federated learning, client drift refers to the phenomenon where updates generated by
local client models diverge from the direction of the optimal global model. This is often
due to the heterogeneous (non-IID) nature of the data across clients, where each client
has access to a subset of the data that does not represent the global distribution. As a
result, local training causes the model to overfit or be biased toward the clients data, and
the global aggregation suffers from inconsistent updates.

4.5.1 Proposed Mitigation Strategies

To address the challenges posed by client drift, particularly in settings with highly hetero-
geneous data such as smart grid environments, several federated learning strategies have
been developed. These methods aim to ensure more stable and coherent convergence by
reducing the discrepancies between local and global updates. Below, we describe how
each technique contributes specifically to mitigating client drift.

Clustering-Based Federated Learning

This approach involves partitioning clients into clusters based on shared behavioral pat-
terns, for example, categorizing them according to high, medium, or low energy con-
sumption. Since clients within the same cluster tend to exhibit similar data distributions,
the local updates become more consistent and representative of their group. By train-
ing a distinct global model per cluster, this method effectively reduces internal drift and
improves both accuracy and personalization, especially in environments with strong user
variability [41].
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FedProx

FedProx is designed to directly address client drift by modifying the way clients per-
form local training. In standard federated learning, clients train their models locally for
several epochs before sending their updates to the server, often causing them to drift far
from the global model, especially when data is non-IID. FedProx introduces a proximal
term in the local objective that penalizes large deviations from the global model, thereby
forcing local updates to remain closer to the global direction.

In practice, this mechanism acts like a soft constraint: it does not completely prevent
adaptation to local data but discourages updates that deviate too strongly. This is par-
ticularly useful when clients have highly variable patterns, such as in energy forecasting,
where one household’s behavior can be vastly different from anothers. FedProx stabilizes
learning and improves generalization across clients by aligning local learning trajectories
with the global objective [41].

Fed Adam

FedAdam tackles client drift from the server-side aggregation perspective. Instead
of averaging raw client updates uniformly, FedAdam adapts the global model update by
applying adaptive learning rates and momentum, similar to the Adam optimizer
used in centralized deep learning. This allows the server to smooth out the effect of
sudden or inconsistent updates that might come from clients with biased or noisy data.
In a federated setting with heterogeneous clients, some updates can be highly erratic and
harm the learning process. FedAdam reduces this risk by adjusting the contribution of
each update based on the history of past gradients and their variance. This makes the
global model more resilient to drift and accelerates convergence in non-I1D environments.

FedTrimmedAvg

FedTrimmedAvg mitigates client drift by introducing robust aggregation at the server
level. Instead of averaging all client updates equally, this strategy excludes a fraction of the
most extreme updates, those that differ significantly from the majority before computing
the global update. This mechanism is particularly effective in scenarios where a subset
of clients behaves abnormally due to noisy, biased, or non-representative local data. By
trimming outliers, FedTrimmedAvg limits their influence on the global model, leading
to more stable and robust convergence. In energy applications, where some clients may
exhibit unusual consumption patterns, this approach helps prevent their updates from
derailing the global learning process.

4.6 Performance Evaluation and Results

4.6.1 Metrics Used

In order to comprehensively assess the performance of our models, we employ a combi-
nation of classification and regression evaluation metrics. These metrics are chosen based
on the nature of each task and provide both general and fine-grained insights into model
behavior.
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Regression

For regression tasks such as load forecasting, we use the following metrics:

e Mean Squared Error (MSE)
MSE is the average of the squared differences between predicted and actual values.
It emphasizes larger errors and is sensitive to outliers.

« Mean Absolute Error (MAE)
MAE calculates the average of the absolute differences between predicted and actual
values. It provides an easily interpretable error magnitude.

« Root Mean Squared Error (RMSE)
RMSE is the square root of MSE. It retains the same unit as the original data and
penalizes larger errors more strongly.

« R-squared (R? Score)
R? indicates the proportion of the variance in the dependent variable that is pre-
dictable from the independent variables. A value close to 1 implies a good fit
between prediction and ground truth.

Classification

For classification tasks such as energy theft detection, we use the following evaluation
metrics:

o Confusion Matrix
The confusion matrix provides a summary of prediction results in terms of true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
It enables a visual and quantitative understanding of model performance.

e Accuracy
The ratio between the number of correctly predicted instances and the total number
of instances. Defined as:

TP+TN
TP+TN+FP+FN

Accuracy =

e Precision
The ratio between the number of true positives and the number of predicted positive
instances. Defined as:

TP

Precision = TPLFP

* Recall
The ratio between the number of true positives and the number of actual positive
instances. Defined as:

_ TP
Recall = TPLFN

« F1 Score
The harmonic mean of precision and recall. Defined as:

_ Precision X Recall
FlScore =2 x Precision+Recall
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« AUC (Area Under the ROC Curve)
A scalar value that represents the area under the Receiver Operating Characteristic
(ROC) curve, which plots the true positive rate against the false positive rate.

« Log Loss (Logarithmic Loss)
A loss function that measures the performance of a classification model where the
predicted output is a probability value between 0 and 1. Defined as:

LogLoss = —+ "N | [y;log(p;) + (1 — i) log(1 — p;)]

4.6.2 Results of Load Forecasting

The evaluation results presented below correspond to the performance of the load fore-
casting model for each local client, as well as for the aggregated global model. These
results illustrate the models ability to capture clientspecific consumption patterns and
reveal the impact of data heterogeneity on local predictions. Moreover, the comparison
between local and global performances highlights the balance between personalization and
generalization achieved by the approach.

Performance of the FedAvg Aggregation Method
Client 1:

« MSE: 0.0021
The model yields a notably low Mean Squared Error, reflecting a high level of overall
predictive accuracy. This indicates that the model performs well in minimizing the

squared differences between the predicted and actual energy consumption values for
Client 1.

« MAE: 0.0334
The Mean Absolute Error remains low, suggesting that, on average, the models
predictions deviate only slightly from the true values. This highlights the models
reliability in providing consistently accurate estimations.

« RMSE: 0.0454
The Root Mean Squared Error further confirms the models robustness by penal-
izing larger errors more heavily. The low RMSE value demonstrates that extreme
deviations are rare, reinforcing the models stability on local data.

« R2: 0.9408
With a coefficient of determination of approximately 0.94, the model successfully
explains 94.08% of the variance observed in the actual consumption data. This
indicates a strong correlation between the predicted and real values and affirms the
models effectiveness in capturing the underlying patterns.

e MedAE: 0.0253
The Median Absolute Error is particularly low, implying that at least half of the
prediction errors are below this threshold. This further emphasizes the models
precision and robustness, even in the presence of potential outliers.
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Figure 4.2: Performance metrics visualization for Client 1

Client 2:

« MSE: 0.0022
The model maintains a low Mean Squared Error, indicating a good level of predictive
accuracy. It effectively minimizes the average squared differences between predicted
and actual energy consumption values for Client 2.

« MAE: 0.0347
The Mean Absolute Error remains low, suggesting that the model provides predic-
tions with only slight deviations from the actual values on average, thereby ensuring
reliable performance.

« RMSE: 0.0469
The Root Mean Squared Error remains close to that of Client 1, reflecting the models
consistent ability to limit larger prediction errors and maintain robust forecasting
performance.

« R2: 0.9301
With an R-squared value of approximately 0.93, the model explains 93.01% of the
variance in the actual data for Client 2. This demonstrates a strong fit between
predicted and observed values.

e MedAE: 0.0265
The Median Absolute Error is low, indicating that at least half of the predictions dif-
fer from the actual values by less than 0.0265. This supports the model’s robustness
and precision in handling Client 2’s data.
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Figure 4.3: Performance metrics visualization for Client 2

Client 3:

« MSE: 0.0012
The model achieves the lowest Mean Squared Error among the clients, indicating
excellent predictive accuracy and minimal average squared differences between the
predicted and actual energy consumption values for Client 3.

« MAE: 0.0242
The Mean Absolute Error is also the lowest across all clients, suggesting that the
model provides highly accurate predictions with very small average deviations.

« RMSE: 0.0345
The Root Mean Squared Error confirms the models strong stability on Client 3’s
data, with very few large prediction errors, further reinforcing the models reliability.

« R2: 0.9542
With an R-squared value of 0.9542, the model explains 95.42% of the variance in
the actual energy consumption data. This reflects a very strong fit and the best
performance in terms of variance explanation among the three clients.

« MedAE: 0.0173
The Median Absolute Error is the lowest, indicating that at least half of the models
predictions are within 0.0173 units of the actual values. This demonstrates high
precision and robustness on Client 3s data.
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Figure 4.4: Performance metrics visualization for Client 3

Global Model:

« MSE: 0.0027
The global model yields a low Mean Squared Error, indicating good overall pre-
dictive performance across all clients. While slightly higher than individual client
models, it still reflects acceptable precision in forecasting energy consumption in a
federated setting.

« MAE: 0.0384
The Mean Absolute Error remains moderate, suggesting that the aggregated model
maintains consistent accuracy across diverse local data distributions.

« RMSE: 0.0517
The Root Mean Squared Error, while slightly elevated compared to individual
clients, demonstrates that the model handles variability reasonably well, with no
extreme prediction errors dominating the results.

« R%: 0.9125
With an R-squared value of 0.9125, the global model explains over 91% of the
variance in the actual consumption data across all clients. This indicates a strong
overall fit, despite the data heterogeneity inherent in federated learning.

o MedAE: 0.0287
The Median Absolute Error confirms the robustness of the global model, showing
that at least half of the predictions deviate by less than 0.0287 units from the actual
values, even in a non-IID data context.
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Figure 4.5: Performance metrics visualization for Global Model

Performance of the FedProx Aggregation Method
Client 1:

« MSE: 0.0024
The model produces a low Mean Squared Error, indicating good overall prediction
accuracy for Client 1. It shows that the model effectively minimizes the average
squared differences between predicted and actual consumption values.

« MAE: 0.0366
The Mean Absolute Error suggests that, on average, the predictions deviate only
slightly from the actual values, reinforcing the models reliability on local data.

« RMSE: 0.0486
The Root Mean Squared Error supports the models ability to control larger errors,
confirming its stability and consistency in forecasting for Client 1.

« R2: 0.9322
With an R-squared value of 0.9322, the model explains 93.22% of the variance in the
actual consumption data, indicating a strong fit and effective learning of underlying
patterns.

e MedAE: 0.0290
The Median Absolute Error further highlights the models robustness, showing that
at least half of the prediction errors are below 0.0290, even in the presence of
potential outliers.
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Figure 4.6: Performance metrics visualization for Client 1

Client 2:

« MSE: 0.0023
The model achieves a low Mean Squared Error, reflecting a strong ability to minimize
the average squared differences between predicted and actual energy consumption
values for Client 2.

« MAE: 0.0361
The Mean Absolute Error confirms that the model provides accurate predictions on
average, with relatively small deviations from the true values.

« RMSE: 0.0484
The Root Mean Squared Error shows that the model controls larger errors effectively,
reinforcing its robustness and reliability in handling Client 2s data.

« R2: 0.9255
With an R-squared value of 0.9255, the model is able to explain 92.55% of the
variance in the actual consumption data, indicating a good fit to the local data
distribution.

e MedAE: 0.0277
The low Median Absolute Error highlights the consistency of the model’s predic-
tions, with at least half of the prediction errors falling below 0.0277, even in poten-
tially noisy conditions.
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Figure 4.7: Performance metrics visualization for Client 2

Client 3:

« MSE: 0.0014
The model records the lowest Mean Squared Error among the clients, indicating
high prediction accuracy and a strong ability to minimize the average squared error
in Client 3s energy consumption data.

« MAE: 0.0262
The Mean Absolute Error is also notably low, reflecting minimal average deviation
between the predicted and actual values, and highlighting the models precision.

« RMSE: 0.0373
The Root Mean Squared Error supports the conclusion that the model maintains
strong performance even when penalizing larger deviations, confirming its reliability
for Client 3.

« R2: 0.9464
With an R-squared value of 0.9464, the model explains 94.64% of the variance in the
actual energy consumption data. This demonstrates a very strong fit and excellent
generalization on local data.

« MedAE: 0.0187
The very low Median Absolute Error indicates that at least half of the prediction
errors are under (0.0187, underscoring the models robustness and consistent accuracy,
even in the presence of outliers or fluctuations.
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Figure 4.8: Performance metrics visualization for Client 3

Global Model:

« MSE: 0.0031
The global model exhibits a slightly higher Mean Squared Error compared to local
client models, which is expected due to the challenge of generalizing across hetero-
geneous data. Nevertheless, the value remains low, indicating acceptable prediction
accuracy at the global level.

« MAE: 0.0410
The Mean Absolute Error shows that, on average, predictions deviate modestly
from the actual values, reflecting reasonable accuracy across diverse consumption
patterns.

« RMSE: 0.0554
The Root Mean Squared Error, while higher than that of individual clients, remains
within an acceptable range. It confirms that large prediction errors are infrequent,
despite the variability introduced by data heterogeneity.

« RZ%: 0.8993
With an R-squared value of 0.8993, the global model explains nearly 90% of the
variance in energy consumption data. This indicates a strong overall fit, although
slightly lower than that of the local models due to the need to generalize across all
clients.

e MedAE: 0.0302
The Median Absolute Error remains low, showing that at least half of the prediction
errors are under 0.0302. This highlights the models robustness and stability across
diverse client datasets.



Chapter 4. Implementation and Results 67

Global R? over Rounds RMSE over Rounds MSE over Rounds

0.0750
0.9000 00055

0.0725
0.8800 0.0700 0.0050

0.0675
0.0045

0.8600
o 0.0650

RMSE
MSE

0.0625 0.0040
0.8400
0.0600
0.0035
0.0575
0.8200

00550 0.0030

0.0600 0.0500
0.0575 0.0475
0.0550 0.0450
0.0525 0.0425

£ 00500 0.0400

MedAE

0.0475 0.0375

0.0450 0.0350

0.0425 0.0325

0.0400 0.0300

Figure 4.9: Performance metrics visualization for Global Model

Performance of the FedTrimmedAvg Aggregation Method
Client 1:

« MSE: 0.0020
The model achieves a low Mean Squared Error, indicating a strong ability to mini-
mize the average squared difference between predicted and actual energy consump-
tion values for Client 1.

« MAE: 0.0332
The Mean Absolute Error reflects minimal average deviation from the true values,
suggesting high reliability and consistency in the models local predictions.

« RMSE: 0.0449
The Root Mean Squared Error supports the models robustness by penalizing larger
deviations more heavily, with this low value confirming stable performance on local
data.

o R2: 0.9422
With an R-squared score of 0.9422, the model is able to explain 94.22% of the
variance in actual consumption data, showing strong predictive power and excellent
alignment with real-world patterns.

« MedAE: 0.0252
The low Median Absolute Error indicates that at least half of the models predictions
have an error below 0.0252, highlighting its robustness and resistance to outliers.
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Figure 4.10: Performance metrics visualization for Client 1

Client 2:

« MSE: 0.0020
The model achieves a low Mean Squared Error, indicating accurate predictions

with minimal average squared deviations from actual energy consumption values
for Client 2.

« MAE: 0.0333
The Mean Absolute Error remains low, suggesting that the models predictions de-
viate only slightly from the actual values on average, thus ensuring local reliability.

« RMSE: 0.0444
The Root Mean Squared Error confirms the models ability to limit significant de-
viations, reinforcing its robustness and stability on the local dataset.

« R2: 0.9375
With an R-squared value of 0.9375, the model explains over 93% of the variance
in the actual data, showing that it effectively captures the underlying patterns in
Client 2s consumption behavior.

« MedAE: 0.0259
The low Median Absolute Error indicates that at least half of the prediction errors
are under 0.0259, highlighting the models consistency and resilience to outliers or
anomalies in the data.
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Figure 4.11: Performance metrics visualization for Client 2

Client 3:

« MSE: 0.0013
The model achieves the lowest Mean Squared Error among all clients, indicating ex-
ceptional accuracy in predicting Client 3s energy consumption with minimal average
squared error.

« MAE: 0.0251
The low Mean Absolute Error shows that the models predictions are, on average,
very close to the actual values, highlighting high precision and reliability.

« RMSE: 0.0354
The Root Mean Squared Error is also the lowest across all clients, confirming that
large deviations are rare and that the model generalizes well for Client 3.

« R2: 0.9518
With an R-squared value of 0.9518, the model explains 95.18% of the variance in
the actual data, demonstrating excellent fit and strong predictive capability.

« MedAE: 0.0175
The very low Median Absolute Error indicates that at least half of the model’s pre-
dictions deviate from the true values by less than 0.0175, confirming both accuracy
and consistency even in the presence of data variability.



Chapter 4. Implementation and Results 70

R over Rounds (Post-Training) - Zone 3 RMSE over Rounds (Post-Training) - Zone 3 MSE over Rounds (PostTraining) - Zone 3

0.002600
0.9500 0.050000
0.002400
0.048000
0.9400

0.046000 0.002200

09300 0.044000 0.002000
w

R
RMSE

I
2
0042000 0.001800
0.9200
0.040000
0.001600

0.9100 0.038000

0.001400
0.036000

0.9000
0.001200

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Round Round Round

MAE over Rounds (Post-Training) - Zone 3 MedAE over Rounds (PostTraining) - Zone 3

0.036000 0.026000

0.034000

0.024000

0.032000

0.022000

MedAE

£ 0030000

0.028000 0.020000

0.026000 0.018000

Figure 4.12: Performance metrics visualization for Client 3

Global Model:

MSE: 0.0025

The global model achieves a very low Mean Squared Error, indicating highly ac-
curate predictions with minimal average squared differences between predicted and
actual energy consumption values across federated clients.

MAE: 0.0376

The Mean Absolute Error suggests that, on average, the model’s predictions devi-
ate by only 0.0376 units from the actual valuesdemonstrating reliable performance
across diverse client datasets.

RMSE: 0.0025
The Root Mean Squared Error confirms a consistent minimization of large deviations
in prediction errors, reinforcing the models stability in a federated setting.

R2: 0.9170

An R-squared value of 0.9170 indicates that the model explains approximately 91.7%
of the variance in energy consumption, reflecting strong generalization capability
despite the heterogeneity of client data.
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Figure 4.13: Performance metrics visualization for Global Model

4.6.3 Results of Theft Detection

The evaluation results presented below correspond to the performance of the energy theft
detection model for each local client (Client 1, Client 2, and Client 3), as well as for
the aggregated global model. These results highlight the impact of data heterogeneity
and client-specific distributions on local performance and how they contrast with the
generalized global model.

Performance of the FedAvg Aggregation Method
Client 1:

¢ Confusion Matrix

— True Negatives (TN = 18,786): The model accurately identified the major-
ity of legitimate energy consumption cases, confirming its ability to minimize
false positive alarms.

— True Positives (TP = 12,753): A high proportion of theft cases were cor-
rectly detected, demonstrating the model’s effectiveness in recognizing fraud-
ulent behavior.

— False Positives (FP = 590): A slightly higher number of normal instances
were incorrectly flagged as theft, compared to previous evaluations, suggesting
a minor decline in precision and the need for further tuning.

— False Negatives (FN = 907): These undetected theft cases represent missed
detections, but the reduced number compared to previous figures indicates
improvement in the model’s recall performance.
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Figure 4.14: Confusion Matrix for Client 1

e Accuracy: 0.96
The model achieves a high overall classification accuracy, correctly predicting 96%
of the instances for Client 1, indicating strong performance on local data.

« Precision (weighted): 0.95
The model accurately identifies theft cases with a weighted precision of 95%, mean-
ing that most predicted thefts correspond to actual fraudulent instances, while ac-
counting for class imbalance.

« Recall (weighted): 0.95
With a weighted recall of 95%, the model is able to detect the vast majority of true
theft cases, minimizing the number of undetected frauds even across uneven class
distributions.

« F1-Score (weighted): 0.95
This score reflects a well-balanced trade-off between precision and recall, confirming
consistent and robust classification performance across both normal and fraudulent
cases.

« AUC-ROC: 0.99
The model demonstrates excellent discriminative power, effectively distinguishing
between normal and fraudulent consumption patterns across various classification
thresholds.

e Log Loss: 0.12
The low log loss indicates high confidence and well-calibrated probability estimates,
suggesting that the models predictions are both accurate and reliable for Client 1.
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Client 2:
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Figure 4.15: Performance metrics visualization for Client 1

¢ Confusion Matrix

True Negatives (TN = 19,156): The model accurately identified the vast
majority of legitimate energy consumption cases, demonstrating strong capa-
bility in reducing false alarms.

True Positives (TP = 12,364): A substantial number of theft cases were
correctly detected, showing the models effectiveness in identifying fraudulent
activity.

False Positives (FP = 590): A moderate number of normal instances were
incorrectly classified as theft, indicating room for improving precision to avoid
unnecessary follow-up actions.

False Negatives (FIN = 926): These represent missed theft cases; while rel-
atively low, further enhancement of the model’s sensitivity could help minimize
such errors.
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Figure 4.16: Confusion Matrix for Client 2

e Accuracy: 0.96
The model achieves a high overall classification accuracy, correctly predicting 96%
of the instances for Client 2, indicating strong and consistent local performance.

« Precision (weighted): 0.95
The model accurately identifies theft cases with a weighted precision of 95%), indi-
cating that most of the theft predictions correspond to actual fraudulent activities.

+ Recall (weighted): 0.95
With a weighted recall of 95%, the model effectively detects the vast majority of
theft cases, limiting the risk of undetected fraudulent behavior.

« F1-Score (weighted): 0.95
This metric confirms a well-balanced trade-off between precision and recall, reflect-
ing the models stability and reliability in handling imbalanced class distributions.

« AUC-ROC: 0.99
The model exhibits outstanding discriminative capability, with near-perfect separa-
tion between normal and fraudulent instances across decision thresholds.

e Log Loss: 0.12
The low log loss value reflects high confidence and good calibration of the predicted
probabilities, indicating reliable and sharp prediction quality on Client 2s data.
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Client 3:
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Figure 4.17: Performance metrics visualization for Client 2

¢ Confusion Matrix

True Negatives (TN = 22,865): The model successfully identified a large
majority of legitimate energy consumption cases, confirming its effectiveness
in minimizing false alarms.

True Positives (TP = 15,173): A significant number of theft cases were
correctly detected, reflecting the models strong ability to recognize fraudulent
patterns.

False Positives (FP = 576): A moderate number of normal instances were
misclassified as theft, suggesting the need for slight improvements in precision
to reduce unnecessary interventions.

False Negatives (FN = 1,030): These missed theft cases highlight areas
where the model could improve its sensitivity to further reduce undetected
fraud.
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Figure 4.18: Confusion Matrix for Client 3

e Accuracy: 0.96
The model achieves a high overall classification accuracy, correctly predicting 96%
of the instances for Client 3, indicating strong and consistent local performance.

« Precision (weighted): 0.96
The model accurately identifies theft cases with a weighted precision of 96%, mean-
ing that the majority of its theft predictions correspond to actual fraudulent activ-
ities.

« Recall (weighted): 0.96
With a weighted recall of 96%), the model effectively detects most of the actual theft
cases, minimizing the risk of missed fraudulent behavior.

« F1-Score (weighted): 0.96
This value confirms a well-balanced trade-off between precision and recall, demon-
strating the models robustness in managing class imbalance in Client 3s data.

« AUC-ROC: 0.99
The model exhibits excellent discriminative capability, nearly perfectly distinguish-
ing between normal and fraudulent consumption instances.

e Log Loss: 0.11
The very low log loss reflects both strong confidence and good calibration of pre-
dicted probabilities, indicating highly reliable performance on Client 3s data.
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Figure 4.19: Performance metrics visualization for Client 3

Global Model:

Accuracy: 0.95

The global model correctly classifies 95.1% of the instances, demonstrating a high
level of reliability in distinguishing between normal and fraudulent cases across all
clients.

Precision: 0.95
With a precision of 95.1%, the model is highly effective in minimizing false theft
alarms, ensuring that most flagged cases genuinely represent fraudulent activity.

Recall: 0.95
The model successfully detects 95.1% of actual theft cases, highlighting its strong
ability to identify fraudulent consumption across distributed datasets.

F1-Score: 0.95
This balanced metric confirms an excellent trade-off between precision and recall,
reflecting robust and consistent classification performance on global data.

AUC-ROC: 0.99
The model exhibits near-perfect discriminative ability across various thresholds,
effectively separating normal from fraudulent behavior on a global scale.

Log Loss: 0.13

The low log loss (0.1259) indicates that the model is not only accurate but also
confident and well-calibrated in its probability estimates, despite variations in client
data distributions.
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Figure 4.20: Performance metrics visualization for Global Model

Performance of the FedProx Aggregation Method

Client 1:

Confusion Matrix

True Negatives (TN = 18,840): The model accurately identified a large
number of legitimate energy consumption cases, confirming its reliability in
minimizing false alarms.

True Positives (TP = 12,709): A substantial number of theft cases were
correctly detected, demonstrating the model’s continued effectiveness in rec-
ognizing fraudulent behavior.

False Positives (FP = 536): A moderate number of normal instances were
incorrectly flagged as theft, suggesting a need for fine-tuning to improve pre-
cision.

False Negatives (FN = 951): These missed theft cases reflect potential

for improving recall, though the overall number remains within a reasonable
range.
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Confusion Matrix for client_1 (Round 39)
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Figure 4.21: Confusion Matrix for Client 1

e Accuracy: 0.96
The model achieves a high overall classification accuracy, correctly predicting 96%
of the instances for Client 1, indicating strong performance on local data.

« Precision (weighted): 0.95
The model accurately identifies theft cases with a weighted precision of 95%, mean-
ing that most predicted thefts correspond to actual fraudulent instances, while ac-
counting for class imbalance.

« Recall (weighted): 0.95
With a weighted recall of 95%, the model can detect the vast majority of true
theft cases, minimizing the number of undetected frauds even across uneven class
distributions.

« F1-Score (weighted): 0.95
This score reflects a well-balanced trade-off between precision and recall, confirming
consistent and robust classification performance across both normal and fraudulent
cases.

« AUC-ROC: 0.99
The model demonstrates excellent discriminative power, effectively distinguishing
between normal and fraudulent consumption patterns across various classification
thresholds.

e Log Loss: 0.13
The low log loss indicates high confidence and well-calibrated probability estimates,
suggesting that the models predictions are both accurate and reliable for Client 1.
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Client 2:
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Figure 4.22: Performance metrics visualization for Client 1

¢ Confusion Matrix

True Negatives (TN = 19,057): The model correctly identified a significant
number of legitimate energy consumption cases, highlighting its effectiveness
in reducing false positive alarms.

True Positives (TP = 12,334): A substantial portion of actual theft cases
were accurately detected, confirming the models competence in identifying
fraudulent activities.

False Positives (FP = 689): A moderate number of normal cases were mis-
classified as theft, indicating potential to refine the model for better precision
and to reduce unnecessary interventions.

False Negatives (FIN = 956): These missed theft cases point to opportu-
nities for improving recall, though the figure remains acceptably low in the
context of overall model performance.
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Confusion Matrix for client_2 (Round 39)
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Figure 4.23: Confusion Matrix for Client 2

e Accuracy: 0.96
The model achieves a high overall classification accuracy, correctly predicting 96%
of the instances for Client 2, indicating strong and consistent local performance.

« Precision (weighted): 0.95
The model accurately identifies theft cases with a weighted precision of 95%, mean-
ing that the majority of theft alerts correspond to actual fraudulent activity, while
minimizing false positives.

« Recall (weighted): 0.95
With a recall of 95%, the model successfully captures most of the actual theft cases,
reducing the likelihood of missed fraudulent behavior.

» F1-Score (weighted): 0.95
This value represents a balanced compromise between precision and recall, confirm-
ing the models robustness in managing both detection accuracy and error rates.

« AUC-ROC: 0.99
The model demonstrates exceptional discriminative power, with the ability to dif-
ferentiate effectively between normal and fraudulent instances across a range of
thresholds.

e Log Loss: 0.12
The low log loss suggests that the models predicted probabilities are well-calibrated
and confident, reinforcing its reliability in real-world deployment for Client 2.
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Client 3:
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Figure 4.24: Performance metrics visualization for Client 2

¢ Confusion Matrix

True Negatives (TN = 22,753): The model successfully identified a large
majority of legitimate energy consumption cases, confirming its effectiveness
in minimizing false alarms.

True Positives (TP = 15,144): A significant number of theft cases were
correctly detected, reflecting the models strong ability to recognize fraudulent
patterns.

False Positives (FP = 688): A moderate number of normal instances were
misclassified as theft, suggesting the need for slight improvements in precision
to reduce unnecessary interventions.

False Negatives (FN = 1,059): These missed theft cases highlight areas
where the model could improve its sensitivity to further reduce undetected
fraud.
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Confusion Matrix for client_3 (Round 39)
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Figure 4.25: Confusion Matrix for Client 3

e Accuracy: 0.96
The model achieves a high overall classification accuracy, correctly predicting 96%
of the instances for Client 3, indicating strong and consistent local performance.

e Precision: 0.96
The model accurately identifies theft cases with a weighted precision of 96%, mean-
ing that the majority of its theft predictions correspond to actual fraudulent activ-
ities.

e Recall: 0.96
With a weighted recall of 96%), the model effectively detects most of the actual theft
cases, minimizing the risk of missed fraudulent behavior.

o F1-Score: 0.96
This value confirms a well-balanced trade-off between precision and recall, demon-
strating the models robustness in managing class imbalance in Client 3s data.

« AUC-ROC: 0.99
The model exhibits excellent discriminative capability, nearly perfectly distinguish-
ing between normal and fraudulent consumption instances.

e Log Loss: 0.11
The very low log loss reflects both strong confidence and good calibration of pre-
dicted probabilities, indicating highly reliable performance on Client 3s data.
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Figure 4.26: Performance metrics visualization for Client 3

Global Model:

e Accuracy: 0.9451
The global model correctly classifies 94.51% of the instances, demonstrating a high
level of reliability in distinguishing between normal and fraudulent cases across all
clients.

e Precision: 0.9451
With a precision of 94.51%, the model is highly effective in minimizing false theft
alarms, ensuring that most flagged cases genuinely represent fraudulent activity.

e Recall: 0.9451
The model successfully detects 94.51% of actual theft cases, highlighting its strong
ability to identify fraudulent consumption across distributed datasets.

e F1-Score: 0.9450
This balanced metric confirms an excellent trade-off between precision and recall,
reflecting robust and consistent classification performance on global data.

« AUC-ROC: 0.9863
The model exhibits near-perfect discriminative ability across various thresholds,
effectively separating normal from fraudulent behavior on a global scale.

e Log Loss: 0.1452
The log loss of 0.1452 indicates that the model is not only accurate but also confident
and well-calibrated in its probability estimates, despite variations in client data
distributions.
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Figure 4.27: Performance metrics visualization for Global Model

Performance of the FedAdam Aggregation Method

Client 1:

Confusion Matrix

True Negatives (TN = 18,976): The model correctly identified the major-
ity of legitimate energy consumption cases, reflecting good control over false
positive rates.

True Positives (TP = 12,165): A significant number of theft cases were
accurately detected, confirming the models capability in spotting fraudulent
activity.

False Positives (FP = 400): A relatively small number of normal instances

were incorrectly flagged as theft, which may cause minor inconvenience but
remains within acceptable limits.

False Negatives (FN = 1,495): These missed theft cases suggest there is
room for improvement in sensitivity to ensure fewer fraudulent behaviors go
undetected.
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Confusion Matrix for client_1 (Round 16)
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Figure 4.28: Confusion Matrix for Client 1

e Accuracy: 0.94
The model correctly classifies 94% of the instances, indicating a high level of relia-
bility in distinguishing between normal and fraudulent cases on Client 1’s data.

e Precision: 0.94
A weighted precision of 94% means the model effectively minimizes false alarms,
ensuring that most theft predictions are truly fraudulent while considering class
imbalance.

e Recall: 0.94
With a recall of 94%, the model captures a significant proportion of theft cases,
showing strong sensitivity and the ability to detect fraudulent consumption.

« F1-Score: 0.94
This value confirms a solid balance between precision and recall, reflecting stable
and consistent performance across both classes.

« AUC-ROC: 0.98
The high AUC-ROC score demonstrates the models excellent ability to distinguish
between legitimate and fraudulent energy usage across all decision thresholds.

e Log Loss: 0.16
A log loss of 0.16 indicates that the models predicted probabilities are reasonably
confident and well-calibrated, though with slight room for improvement.
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Figure 4.29: Performance metrics visualization for Client 1

Client 2:

¢ Confusion Matrix

— True Negatives (TN = 19,366): The model correctly identified the vast
majority of normal usage instances, demonstrating strong reliability in avoiding
false alarms.

— True Positives (TP = 11,757): A substantial number of actual theft cases
were accurately detected, highlighting the models effective sensitivity.

— False Positives (FP = 380): A relatively small number of legitimate con-
sumption instances were misclassified as theft, suggesting minor yet manage-
able misclassification.

— False Negatives (FN = 1,533): These missed theft cases are critical from
a fraud detection standpoint and indicate potential areas for improving the
models recall.
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Confusion Matrix for client_2 (Round 16)

17500

15000

Normal

12500

10000

True

-7500

- 5000

Theft

-2500

|
Normal Theft
Predicted

Figure 4.30: Confusion Matrix for Client 2

e Accuracy: 0.94
The model achieves a high correct classification rate of 94%, indicating strong overall
performance on Client 2s data.

+ Precision (weighted): 0.94
The model maintains a high weighted precision of 94%, ensuring that most theft
predictions correspond to actual fraudulent cases while accounting for class imbal-
ance.

« Recall (weighted): 0.94
A weighted recall of 94% indicates the model’s effectiveness in identifying the ma-
jority of true theft cases, minimizing missed fraud instances.

« F1-Score (weighted): 0.94
This balanced metric confirms solid performance in terms of both detecting fraud
and limiting false positives, even with skewed data distributions.

« AUC-ROC: 0.98
The model performs very well in distinguishing between legitimate and fraudulent
behavior, with excellent separability across decision thresholds.

e Log Loss: 0.16
The log loss value reflects good confidence in predictions, with well-calibrated prob-
ability estimates across all instances.



Chapter 4. Implementation and Results 89

Client 3:
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Figure 4.31: Performance metrics visualization for Client 2

¢ Confusion Matrix

True Negatives (TN = 22,997): The model effectively recognized the vast
majority of legitimate energy consumption instances, maintaining a low false
alarm rate.

True Positives (TP = 14,429): A substantial number of theft cases were
correctly identified, reflecting the models strength in detecting fraudulent be-
havior.

False Positives (FP = 444): A small number of normal consumption cases
were mistakenly flagged as theft, which may lead to minor operational ineffi-
ciencies but remains within an acceptable range.

False Negatives (FN = 1,774): These undetected fraud cases highlight
opportunities for improving the models sensitivity and reducing potential losses
due to missed detections.
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Confusion Matrix for client_3 (Round 16)
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Figure 4.32: Confusion Matrix for Client 3

e Accuracy: 0.94
The model demonstrates strong accuracy, correctly classifying 94% of instances,
which indicates dependable performance across diverse consumption behaviors.

« Precision (weighted): 0.95
With a weighted precision of 95%, the model effectively limits false positives, en-
suring that most theft alerts are indeed true fraudulent cases.

« Recall (weighted): 0.94
A high recall of 94% confirms the models solid ability to identify the majority of
actual theft cases, minimizing undetected fraud.

« F1-Score (weighted): 0.94
This balanced score reflects the models consistent performance in handling both
precision and recall trade-offs under class imbalance.

« AUC-ROC: 0.98
The model exhibits excellent discriminative ability, accurately distinguishing be-
tween normal and fraudulent behavior over a wide range of thresholds.

e Log Loss: 0.15
A log loss of 0.15 suggests well-calibrated probability predictions, with low uncer-
tainty and high confidence in the models classification outputs.
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Figure 4.33: Performance metrics visualization for Client 3

Global Model:

e Global Accuracy: 0.93
The global model correctly classifies 93.26% of instances across all clients, demon-
strating strong generalization capability despite data heterogeneity.

o Precision: 0.93
With a precision of 93.39%, the model reliably identifies theft cases while minimizing
false positives on a global scale.

o Recall: 0.93
The model detects 93.26% of actual thefts across the federated dataset, confirming
its effectiveness in capturing fraudulent activities.

e F1-Score: 0.93
An Fl-score of 0.9321 indicates a balanced and robust performance, with consistent
trade-offs between precision and recall across diverse clients.

« AUC-ROC: 0.97
The AUC-ROC of 0.9717 highlights excellent discriminative power, reflecting the
models ability to separate fraudulent from legitimate behavior over various thresh-
olds.

e Log Loss: 0.19
A log loss of 0.1899 reflects well-calibrated probability predictions, with reasonably
high confidence and reliability across client distributions.
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Figure 4.34: Performance metrics visualization for the Global Model

Performance of the FedTrimmedAvg Aggregation Method
Client 1:

e Confusion Matrix

— True Negatives (TN = 18,729): The model successfully identified a large
number of legitimate energy consumption instances, indicating solid control
over false positive rates.

— True Positives (TP = 12,772): A high number of actual theft cases were
correctly detected, demonstrating the models effectiveness in fraud recognition.

— False Positives (FP = 647): Some normal consumption cases were incor-
rectly flagged as fraudulent, which could result in operational noise but is
relatively contained.

— False Negatives (FIN = 888): These missed thefts highlight opportunities
to further enhance the models sensitivity and reduce undetected fraudulent
behavior.
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Figure 4.35: Confusion Matrix for Client 1

e Accuracy: 0.96
The model correctly classifies 96% of the instances, indicating a very high level of
reliability in distinguishing between normal and fraudulent cases on Client 1’s data.

e Precision: 0.96
A weighted precision of 96% demonstrates that the model generates very few false
alarms, ensuring that most theft predictions correspond to actual fraudulent cases.

» Recall: 0.96
With a recall of 96%, the model effectively detects the majority of theft cases,
showcasing strong sensitivity to fraudulent behavior.

o F1-Score: 0.96
This score indicates a well-balanced performance between precision and recall, re-
flecting the models robustness even in the presence of class imbalance.

« AUC-ROC: 0.99
The model exhibits exceptional discriminative capability, nearly perfectly separating
fraudulent from legitimate consumption instances across all thresholds.

e Log Loss: 0.12
The low log loss reflects highly confident and well-calibrated probability estimates,
reinforcing the models dependable predictive behavior.
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Figure 4.36: Performance metrics visualization for Client 1

Client 2:

¢ Confusion Matrix

— True Negatives (TN = 19,272): The model accurately recognized the
vast majority of legitimate consumption instances, confirming its strength in
minimizing false alarms.

— True Positives (TP = 12,268): A significant portion of actual theft cases
were correctly identified, reflecting strong sensitivity to fraudulent behavior.

— False Positives (FP = 474): A modest number of normal usage instances
were incorrectly flagged as theft, which could lead to unnecessary inspections
but remains within acceptable margins.

— False Negatives (FN = 1,022): These represent undetected fraud cases,
which, while relatively limited, indicate the need for continued improvement
in recall.
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Figure 4.37: Confusion Matrix for Client 2

e Accuracy: 0.96
The model achieves a strong correct classification rate of 96%, demonstrating ex-
cellent overall performance on Client 2s dataset.

e Precision : 0.95
A high weighted precision of 95% shows that the model effectively minimizes false
alarms, with most theft predictions being accurate even under class imbalance.

« Recall: 0.95
The model correctly identifies 95% of actual fraud cases, highlighting its strong
sensitivity and reduced likelihood of missing thefts.

o F1-Score: 0.95
This balanced score indicates robust performance in both detecting fraudulent be-
havior and limiting false positives, ensuring reliable classification.

« AUC-ROC: 0.99
The near-perfect AUC-ROC confirms the model’s exceptional ability to separate
fraudulent from legitimate usage across different threshold values.

e Log Loss: 0.12
The low log loss value demonstrates high confidence and calibration in the models
probability predictions, even across diverse consumption patterns.
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Figure 4.38: Performance metrics visualization for Client 2

¢ Confusion Matrix

True Negatives (TN = 22,928): The model successfully identified the
majority of legitimate consumption instances, maintaining a low rate of false
alarms.

True Positives (TP = 15,071): A large number of theft cases were accu-
rately detected, confirming the models effectiveness in recognizing fraudulent
behavior.

False Positives (FP = 513): A moderate number of legitimate cases were
incorrectly flagged as theft, which could result in minor operational disruptions
but remains within a tolerable margin.

False Negatives (FN = 1,132): These missed fraud instances indicate ar-
eas for further improvement in recall to enhance overall fraud detection per-
formance.
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Figure 4.39: Confusion Matrix for Client 3

e Accuracy: 0.96
The model achieves a high accuracy rate of 96%, indicating reliable performance in
correctly classifying both normal and fraudulent consumption behaviors.

« Precision (weighted): 0.96
With a weighted precision of 96%, the model effectively minimizes false positives,
ensuring that theft alerts are mostly accurate and trustworthy:.

+ Recall (weighted): 0.96
A recall of 96% confirms the models strong ability to detect actual thefts, reducing
the likelihood of missed fraud cases.

« F1-Score (weighted): 0.96
The balanced F1-score reflects the models excellent trade-off between precision and
recall, reinforcing its overall robustness under imbalanced class conditions.

« AUC-ROC: 0.99
The very high AUC-ROC score demonstrates the models outstanding capacity to
distinguish between legitimate and fraudulent consumption across various thresh-
olds.

e Log Loss: 0.12
A low log loss indicates that the models predicted probabilities are highly confident
and well-calibrated, supporting accurate and stable decision-making.
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Figure 4.40: Performance metrics visualization for Client 3

Global Model:

e Global Accuracy: 0.95
The global model achieves a strong accuracy of 95.00% across all clients, confirming
its ability to generalize effectively despite varying local data distributions.

e Precision: 0.95
With a precision of 95.00%, the model reliably identifies theft cases while maintain-
ing a low rate of false positives on a federated scale.

o Recall: 0.95
The model successfully detects 95.00% of actual fraud cases, demonstrating strong
sensitivity across the aggregated dataset.

e F1-Score: 0.95
An Fl-score of 0.9498 reflects excellent balance between precision and recall, ensur-
ing stable and reliable detection performance globally.

« AUC-ROC: 0.99
The very high AUC-ROC score of 0.9881 confirms exceptional class separability, in-
dicating the models robustness in distinguishing fraudulent from legitimate behavior
under various decision thresholds.

e Log Loss: 0.13
A low log loss of 0.1346 indicates that the models probability outputs are confident
and well-calibrated, contributing to informed and reliable classification decisions.
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Figure 4.41: Performance metrics visualization for the Global Model

This chapter presented the implementation of our federated learning framework for electric
load forecasting and electricity theft detection. Using the Flower framework, we simu-
lated a decentralized environment while addressing real-world challenges such as data
heterogeneity, class imbalance, and client drift. Various aggregation methods were imple-
mented and evaluated. The results demonstrated the effectiveness of federated learning
in achieving strong performance while preserving data privacy and enhancing robustness.
These findings validate our approach and lay the groundwork for further improvements
and real-world deployment.
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General Conclusion

The transition to smart grids necessitates a profound transformation of traditional en-
ergy management, forecasting, and security methods. In this context, federated learning
emerges as an innovative and promising solution to address contemporary challenges posed
by data decentralization, privacy preservation, and the increasing complexity of energy
systems. This study has successfully explored and demonstrated the feasibility of this
approach in critical applications such as load forecasting and the detection of anomalous
consumption behaviors. Through a rigorous methodology and the integration of tailored
federated learning architectures, we achieved a balance between performance, robustness,
and the confidentiality of distributed data. The insights gained from this project under-
score the importance of designing intelligent, resilient, and collaborative solutions capable
of adapting to the technical and ethical constraints of the modern energy sector. They
also pave the way for future research aimed at further optimizing aggregation strategies,
enhancing the management of heterogeneous data, and strengthening model resilience in
dynamic, distributed environments. Ultimately, this work lays the foundation for a new
generation of intelligent energy systems, where cooperation among local entities, guided by
principles of data sovereignty and algorithmic security, establishes itself as a cornerstone of
sustainable performance and energy resilience. By fostering scalable, privacy-preserving,
and adaptive frameworks, federated learning holds the potential to redefine the future
of smart grids, ensuring their efficiency and robustness in an increasingly interconnected
and data-driven world.
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