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Abstract

The rapid evolution of digital ecosystems have intensified cyber threats, creating sig-
nificant challenges for data privacy, regulatory compliance, and operational resilience in
cybersecurity. This research introduces a Federated Learning (FL) framework for col-
laborative cybersecurity threat detection, aimed at enhancing the precision, scalability,
and privacy of threat detection systems. As a decentralized machine learning paradigm,
FL enables multiple entities to train a shared predictive model collaboratively without
exchanging sensitive data, thereby ensuring compliance with privacy regulations and mit-
igating data breach risks.

This study proposes a novel FL-based approach tailored for cybersecurity, addressing a
wide range of cyber threats. The framework facilitates distributed training across hetero-
geneous entities, leveraging local data to improve detection accuracy while maintaining
data sovereignty. Through extensive empirical evaluations using real-world cybersecurity
datasets, the proposed approach demonstrates superior performance in detecting threats
compared to traditional centralized methods, achieving high accuracy and robustness
while significantly enhancing data privacy and scalability.

The findings highlight Federated Learning as a transformative solution for privacy-
preserving cybersecurity, offering a scalable and secure framework to counter dynamic
cyber threats in distributed environments. This research lays the groundwork for future
advancements in AI-driven, ethically compliant cybersecurity solutions.

Keywords: Federated Learning, Cybersecurity, Data Privacy, Intrusion Detection,
Privacy-Preserving AI, Deep Learning.
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Résumé

L’évolution rapide des écosystèmes numériques a intensifié les cybermenaces, posant
des défis majeurs en matière de confidentialité des données, de conformité réglementaire
et de résilience opérationnelle en cybersécurité. Cette recherche présente un cadre basé
sur l’apprentissage fédéré (Federated Learning, FL) pour la détection collaborative des
menaces, visant à améliorer la précision, l’évolutivité et la confidentialité des systèmes de
détection. En tant que paradigme d’apprentissage automatique décentralisé, le FL per-
met à plusieurs entités d’entraîner un modèle prédictif partagé sans échanger de données
sensibles, garantissant ainsi le respect des réglementations sur la protection des données
et réduisant les risques de violations.

Cette étude propose une approche inédite basée sur le FL, adaptée à la cybersécurité,
pour contrer une vaste gamme de cybermenaces. Le cadre favorise un entraînement dis-
tribué à travers des entités hétérogènes, exploitant les données locales pour optimiser la
précision de la détection tout en préservant la souveraineté des données. Des évaluations
empiriques approfondies, réalisées sur des ensembles de données réels en cybersécurité,
démontrent une performance supérieure dans la détection des menaces par rapport aux
méthodes centralisées traditionnelles, avec une précision et une robustesse élevées, tout
en renforçant la confidentialité et l’évolutivité.

Les résultats consacrent l’apprentissage fédéré comme une solution transformative pour
une cybersécurité respectueuse de la confidentialité, offrant un cadre sécurisé et évolutif
pour contrer les menaces dynamiques dans des environnements distribués. Cette recherche
pose les bases pour de futures avancées dans les solutions de cybersécurité éthiques et
basées sur l’IA.

Mots-clés: Apprentissage Fédéré, Cybersécurité, Confidentialité des Données, Détec-
tion de Menaces, IA Préservant la Confidentialité, Apprentissage Profond.
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General Introduction

In this introduction, we begin by outlining the background of this thesis, focusing on the
critical role of cybersecurity in modern digital ecosystems and the transformative potential
of federated learning. Next, we discuss the motivations driving this work, define the
specific problem addressed, and articulate the objectives. Finally, we provide an overview
of the manuscript’s organization to guide the reader through the research structure.

Background
The rapid proliferation of interconnected systems and the increasing reliance on digital
infrastructure have amplified the importance of cybersecurity across various sectors, in-
cluding finance, healthcare, government, and critical infrastructure. As organizations and
individuals become more dependent on technology, they face an evolving landscape of
cyber threats, ranging from malware and phishing to advanced persistent threats (APTs)
and AI-powered attacks. These threats exploit vulnerabilities in systems, networks, and
human behavior, compromising the confidentiality, integrity, and availability of critical
data and services.

Traditional cybersecurity approaches, such as firewalls, intrusion detection systems,
and antivirus software, are increasingly inadequate against sophisticated and dynamic
threats. Centralized machine learning models, which require aggregating sensitive data
into a single repository for training, raise significant concerns regarding data privacy, reg-
ulatory compliance, and the risk of data breaches. In this context, federated learning (FL)
emerges as a promising paradigm to address these challenges. FL enables collaborative
model training across multiple decentralized entities such as edge devices, organizations,
or IoT networks without sharing raw data. Instead, only model updates are exchanged,
preserving data locality and enhancing privacy while enabling scalable and adaptive threat
detection.

This dissertation investigates the application of federated learning to cybersecurity, with
a focus on developing a privacy-preserving framework for collaborative threat detection.
By leveraging decentralized data and advanced deep learning techniques, the proposed
solution aims to enhance the accuracy, scalability, and robustness of intrusion detection
systems while addressing privacy and compliance requirements.

Problematic
Cybersecurity threat detection faces several critical challenges that hinder the effectiveness
of traditional approaches:

1. Evolving Threat Landscape: Cyber threats are becoming increasingly sophisti-
cated, with attackers leveraging advanced techniques such as AI-powered attacks,
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zero-day exploits, and polymorphic malware. These dynamic threats require adap-
tive and real-time detection mechanisms that traditional rule-based systems struggle
to provide.

2. Data Privacy and Security: Centralized machine learning approaches necessitate
aggregating sensitive data, which increases the risk of breaches and violates privacy
regulations such as GDPR. This is particularly problematic in cybersecurity, where
data often includes proprietary logs, user behavior, or critical infrastructure details.

3. Adversarial Vulnerabilities: AI-based detection systems are susceptible to ad-
versarial attacks, where malicious inputs are crafted to evade or mislead models.
Such vulnerabilities can lead to false negatives, allowing threats to go undetected,
or false positives, causing operational disruptions.

4. Scalability and Resource Constraints: Deploying AI models in resource-constrained
environments, such as IoT devices or edge networks, requires balancing computa-
tional efficiency with detection accuracy, which is challenging in centralized archi-
tectures.

Addressing these challenges demands innovative approaches that combine advanced
machine learning with privacy-preserving techniques, robust model designs, and scalable
architectures tailored to the cybersecurity domain.

Motivation and Objectives
The primary objectives of this dissertation are:

1. To develop a federated learning framework for cybersecurity threat detec-
tion: This involves designing and implementing a decentralized deep learning model
that leverages federated learning to collaboratively train on distributed, privacy-
sensitive datasets while maintaining high detection performance.

2. To ensure data privacy and compliance: By adopting federated learning, the
framework aims to protect sensitive cybersecurity data, such as network logs and
user activities, ensuring compliance with data protection regulations and reducing
the risk of breaches.

3. To enhance model robustness and fairness: The research seeks to address
issues such as data imbalance, bias in training data, and adversarial vulnerabili-
ties by incorporating techniques like regularization, feature selection, and robust
aggregation strategies.

4. To evaluate the proposed framework against traditional methods: Ex-
tensive experiments will compare the federated learning approach with centralized
machine learning models, assessing metrics such as accuracy, precision, recall, F1-
score, and computational efficiency.

5. To provide practical insights for deployment: The dissertation aims to of-
fer actionable recommendations for implementing federated learning-based cyber-
security solutions in real-world scenarios, addressing challenges like communication
overhead, scalability, and integration with existing security infrastructures.
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This work is motivated by the need to bridge the gap between advanced AI techniques
and the stringent requirements of cybersecurity, ultimately contributing to more secure,
resilient, and privacy-preserving digital ecosystems.

Manuscript Organization
The manuscript is structured into four chapters, each addressing a distinct aspect of the
research:

• Chapter 1: Cybersecurity Challenges. This chapter introduces the founda-
tional concepts of cybersecurity, including the CIA Triad, common and emerging
threats, and traditional defense mechanisms. It highlights the role of AI in address-
ing modern cybersecurity challenges.

• Chapter 2: State of the Art. This chapter reviews related work on various
cyber threats, such as DDoS, brute force, web attacks, and ransomware, providing
a critical analysis of existing detection and mitigation strategies.

• Chapter 3: Methodology of the Federated Approach. This chapter details
the design and development of the proposed federated learning-based framework,
including data preprocessing, feature selection, model architecture, and federated
learning algorithms.

• Chapter 4: Implementation and Results. This chapter presents the imple-
mentation details, experimental setup, and performance evaluation of the federated
model learning.

• General Conclusion. The final section summarizes the key findings, discusses the
implications for cybersecurity, and suggests directions for future research.
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Chapter 1
Introduction of Cybersecurity Challenges

1.1 Introduction
Cyber-Physical Systems (CPS) are integrations of computation, networking, and physical
processes. In CPS, embedded computers and networks monitor and control the physical
processes, typically with feedback loops where physical processes affect computations
and vice versa [1]. The Smart Grid is a prime example of a Cyber-Physical System
applied to the energy sector [2]. It refers to an intelligent electricity network that uses
digital communication technology to monitor and manage the generation, distribution,
and consumption of electricity , [3], [4].

In today’s digitally connected world, the importance of cybersecurity cannot be over-
stated. With the growing reliance on technology and the internet, individuals and organi-
zations face continuous exposure to diverse cyber threats. This shows that cybersecurity
plays a critical role in safeguarding personal information, as well as business, governmen-
tal, and organizational data [5]. As the volume and complexity of cyber threats escalate,
traditional security methods are struggling to keep pace. In relation to this casuistry,
Artificial Intelligence has emerged as a powerful tool that organizations and their various
teams can rely on to automate tasks in the field of cybersecurity [6]. Artificial Intelli-
gence powered systems are being used by attackers to automate and scale their attacks
more effectively, while defenders have also embraced Artificial Intelligence to strengthen
their cybersecurity strategies enabling faster, more accurate threat detection, prediction,
and response [7]. The integration of Artificial Intelligence into cybersecurity has become
essential as cyber threats grow more sophisticated and dynamic. With adversaries lever-
aging advanced technologies to enhance the scale and precision of their attacks, traditional
defense mechanisms are no longer sufficient. AI provides a transformative approach by
offering adaptive, intelligent, and real-time solutions. In this evolving landscape, adopting
AI-driven cybersecurity solutions is critical to maintaining the security and resilience of
modern digital systems [8].

1.2 Core Cybersecurity Concepts
1.2.1 Confidentiality, Integrity, and Availability (CIA Triad)

The CIA Triad is the cornerstone of cybersecurity, representing the primary objectives of
any security strategy [5].

• Confidentiality ensures that only authorized entities can access information while
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preventing unauthorized parties from learning anything about its content. It guar-
antees that sensitive information reaches the intended recipients while remaining
protected from exposure to others.

• Integrity refers to guaranteeing that data is real, correct, and protected against
unauthorized modification or alteration. It is a property that information has not
been tampered with in any manner and that the information’s source is legitimate.

• Availability is the property that allows authorized users to access and modify
information in a timely and reliable manner. It ensures that critical systems and
data are consistently accessible to those who are permitted to use them.

Figure 1.1: The CIA Triad

1.2.2 Threats, Vulnerabilities, and Attacks

• Vulnerability is a weakness or flaw in information systems or communication net-
works that could be exploited by an attacker.

• Risk means the probability of exposure or loss resulting from a cyber attack or data
breach in a system or a network.

• Threat refers to any potential event or action that can cause harm to a system,
network, or organization. It’s the source of potential damage or disruption.

These fundamental terms help define risk and shape defensive strategies in the cyber-
security landscape. A solid understanding of these elements enables analysts and systems
to evaluate potential impacts and prioritize security responses [5].

1.2.3 Network Security, Endpoint Protection, and Access Control

• Network Security refers to the practice of protecting data as it travels across net-
works, employing tools such as encryption, intrusion detection systems, and secure
communication protocols [5], [7].
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• Endpoint protection involves securing individual devices from malicious threats,
often through antivirus software, endpoint detection and response tools, and device
hardening [8].

Figure 1.2: Key Components of Endpoint Protection

• Access control refers to the set of rules and procedures that govern who has access
to a system or to physical or virtual resources. It is the process of granting users
access to systems, resources, or information, as well as particular privileges often
through credentials like a person’s name, passwords, digital fingerprint, or a com-
puter’s serial number before granting access. These credentials can take numerous
forms in physical systems, but credentials that cannot be transferred provide the
best security [5].

Figure 1.3: Access Control Mechanism

1.2.4 Traditional Security Mechanisms

Traditional security mechanisms remain fundamental to cybersecurity infrastructures,
forming the first line of defense against many threats. Firewalls serve as protective barri-
ers, regulating traffic between trusted and untrusted networks through predefined rules.
To enhance monitoring, Intrusion Detection Systems (IDS) continuously analyze network
and system activities, detecting suspicious behavior or policy violations. Additionally,
antivirus software identifies and removes malicious programs, helping to prevent infec-
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tions and support system recovery [5], [7]. Together, these tools create a layered defense
strategy that reinforces the overall security posture of digital environments.

1.3 Common and Emerging Cybersecurity Threats
1.3.1 Common Cybersecurity Threats

Cybersecurity threats encompass a diverse range of malicious activities that compromise
the confidentiality, integrity, and availability of information systems [5], [9] and cyber
physical systems such as smart grids [10], [11].

Among these, Malware (malicious software) represents one of the most pervasive
threats, encompassing various forms such as viruses, worms, Trojans, ransomware, and
spyware. These software programs are engineered to infiltrate and damage computer sys-
tems, exfiltrate sensitive data, or disrupt normal operations without the user’s informed
consent [6], [9].

Phishing attacks constitute another prevalent threat vector, wherein attackers im-
personate legitimate entities typically via email, SMS (smishing), or fraudulent websites
to deceive users into disclosing confidential information such as authentication creden-
tials, banking details, or personal identification data. These attacks often leverage social
engineering tactics and are increasingly sophisticated, making them difficult to detect [12].

A particularly destructive subclass of malware is Ransomware, which encrypts the
victim’s data and renders it inaccessible. The attacker subsequently demands a monetary
ransom, often in cryptocurrency, in exchange for the decryption key. Ransomware attacks
have been responsible for substantial financial losses and operational disruptions across
critical infrastructure sectors [13].

Denial-of-Service (DoS) attacks, and their more potent distributed variant (DDoS),
aim to exhaust the resources of a targeted system by flooding it with superfluous re-
quests. This causes legitimate users to experience service outages or severe degradation
in performance. Such attacks can cripple websites, cloud services, and enterprise networks
[14].

Man-in-the-Middle (MitM) attacks involve the unauthorized interception and possi-
ble manipulation of communications between two parties. By inserting themselves into a
data exchange such as an HTTPS session attackers can eavesdrop, inject malicious code,
or alter messages without the knowledge of either party [5].

Zero-day attacks exploit previously unknown vulnerabilities in software or hardware
for which no security patches or mitigations yet exist. Due to the absence of vendor
awareness or defensive signatures, these attacks are particularly dangerous and can have
wide-reaching implications, especially when targeting widely deployed systems [15].

Social engineering refers to a broad category of attacks that exploit human behavior
rather than technical vulnerabilities. Through manipulation, deception, or psychological
tactics, threat actors persuade users to perform actions such as downloading malware,
revealing passwords, or transferring funds. This form of attack highlights the importance
of user awareness and training in cybersecurity [16].

Lastly, insider threats originate from individuals within the organization who have
legitimate access to information systems. These threats may be intentional (malicious
insiders) or unintentional (negligent users), and they pose significant challenges to security
management due to the trusted status of the actors involved. Detecting and mitigating
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insider threats often requires the use of behavioral analytics, access control policies, and
robust audit mechanisms [17].

Figure 1.4: Main Cyber Security Threats

1.3.2 Emerging Cybersecurity Threats

Emerging cybersecurity threats represent evolving and sophisticated attack vectors that
challenge traditional defense mechanisms and demand advanced countermeasures.

Among the most significant of these threats are Advanced Persistent Threats
(APTs), which are characterized by prolonged, stealthy cyber intrusions. These attacks
are typically conducted by highly skilled adversaries, often state-sponsored or affiliated
with organized cybercrime groups, aiming to establish unauthorized, long-term access to
sensitive systems. APTs are strategically designed to evade detection while extracting
valuable data or manipulating systems over extended periods [18].

The integration of Artificial Intelligence (AI) and Machine Learning (ML) into offensive
cybersecurity strategies has given rise to AI-powered Attacks. Threat actors now
leverage AI to conduct automated vulnerability scanning, exploit discovery, and adaptive
attack planning. These capabilities enable adversaries to personalize phishing attacks,
evade anomaly detection systems, and execute attacks at unprecedented speed and scale
[19].

The proliferation of Internet of Things (IoT) devices—ranging from consumer elec-
tronics to critical infrastructure components—has introduced a wide array of exploitable
vulnerabilities. Many IoT devices lack robust security architectures [20], such as firmware
protections and proper encryption, rendering them susceptible to unauthorized access [21],
botnet recruitment, and exploitation as entry points into broader network environments
[22].

As organizations increasingly migrate to cloud computing platforms, a new landscape
of risks has emerged. Cloud Security Issues often stem from misconfigurations, insuffi-
cient access controls, insecure APIs, and shared responsibility misunderstandings. These
vulnerabilities are frequently exploited by attackers to access vast repositories of sensitive
data and services, especially in hybrid or multi-cloud environments [23].

Supply Chain Attacks represent a particularly insidious threat, as they target in-
direct pathways to compromise well-defended organizations. By breaching trusted third-
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party vendors or software providers, attackers can inject malicious code or backdoors
into software updates and services. High-profile incidents such as the SolarWinds breach
underscore the severe impact and stealth of such tactics [24].

The advent of Deepfake and Synthetic Media Technologies poses a unique form
of cyber threat. Powered by generative AI models, these tools enable the creation of
hyper-realistic yet entirely fabricated audio, video, or text content. Such synthetic media
can be weaponized for social engineering campaigns, disinformation operations, identity
fraud, or reputational damage—blurring the line between authentic and manipulated
digital content [25].

Finally, Quantum Computing represents a disruptive technological advancement
with profound implications for cybersecurity. While still in developmental stages, quan-
tum computing threatens the integrity of classical cryptographic systems, particularly
public-key encryption algorithms. Once quantum computers reach sufficient computa-
tional power, they may render current encryption schemes obsolete, necessitating the
transition to quantum-resistant cryptography to preserve data confidentiality and in-
tegrity [26].

1.4 Challenges and Limitations
1.4.1 Evolving Threat Landscape

The cybersecurity threat landscape is continuously evolving due to the increasing sophisti-
cation and adaptability of threat actors. Cybercriminals frequently alter their techniques,
tactics, and procedures (TTPs) to evade detection and countermeasures. This dynamic
environment poses significant challenges for security professionals who must continually
update their defenses in response to emerging threats, such as advanced persistent threats
(APTs), polymorphic malware, and zero-day exploits [27]. Moreover, the proliferation of
attack vectors—ranging from traditional phishing to AI-enabled intrusions—requires con-
stant vigilance and investment in adaptive security frameworks.

Figure 1.5: Threat Landscape Evolution
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1.4.2 Human Factor

Despite advancements in cybersecurity technologies, human error remains one of the most
exploitable vulnerabilities. Weak password practices, susceptibility to phishing, and mis-
handling of sensitive information often open doors to unauthorized access [28]. Studies
have demonstrated that a significant portion of security breaches originate from user be-
havior rather than technical flaws. Consequently, enhancing cybersecurity awareness and
training among users is imperative to reduce risk exposure.

Figure 1.6: The Impact of Human Errors on Cybersecurity

1.4.3 Lack of Skilled Professionals

The shortage of qualified cybersecurity professionals is a critical issue globally. This skills
gap hampers the ability of organizations to adequately monitor, detect, and respond to
threats in real time [29]. The increasing demand for expertise in areas such as penetration
testing, digital forensics, and security architecture has not been met by a proportional
increase in workforce development. As a result, many organizations operate with under-
staffed or underqualified security teams, elevating their risk levels.

1.4.4 Legacy Systems and Complexity

Legacy systems, often still in use due to cost or compatibility concerns, present substantial
vulnerabilities because they lack modern security features and are no longer supported
with regular updates or patches. Additionally, the complexity of integrating various secu-
rity tools and systems can lead to configuration errors and security gaps [30]. The broader
an organization’s IT infrastructure, the more difficult it becomes to ensure consistent and
comprehensive security across all platforms.
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Figure 1.7: Challenges of Legacy Systems

1.4.5 Cost and Resource Limitations

Financial constraints significantly affect the cybersecurity readiness of small and medium-
sized enterprises (SMEs). Limited budgets often result in insufficient investment in up-
to-date security tools, threat detection systems, and expert personnel [31]. This economic
imbalance allows well-funded attackers to exploit weaker targets that lack the resilience
of larger organizations with robust defense infrastructures.

1.4.6 Insider Threats

Insider threats—whether intentional or accidental—pose unique challenges due to the
legitimate access held by internal actors. These threats can come from disgruntled em-
ployees, negligent staff, or compromised insiders. The detection of such threats is often
difficult, as they may not trigger conventional security alerts [32]. Insider attacks have
been responsible for substantial data breaches and operational disruptions, underscoring
the importance of behavior analytics and access control mechanisms.

Figure 1.8: Types of insider threats categorized by nature of human error.
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1.4.7 Privacy and Compliance Challenges

Balancing strong cybersecurity practices with privacy protection and regulatory compli-
ance is increasingly complex. Organizations must navigate laws such as the General Data
Protection Regulation (GDPR) and sector-specific standards while maintaining effective
threat mitigation strategies [30]. Misalignment between security controls and privacy obli-
gations can result in legal penalties and reputational damage, particularly when sensitive
user data is mishandled.

1.5 Introduction to Artificial Intelligence in Security
1.5.1 Overview of AI

Artificial intelligence (AI) is technology that enables computers and machines to simu-
late human learning, comprehension, problem solving, decision making, creativity and
autonomy. In cybersecurity it refers to the application of intelligent algorithms primarily
machine learning (ML), deep learning (DL), and natural language processing (NLP) to
enhance digital security infrastructures [33].

Machine learning involves creating models by training an algorithm to make predic-
tions or decisions based on data. It encompasses a broad range of techniques that enable
computers to learn from and make inferences based on data without being explicitly pro-
grammed for specific tasks. There are many types of machine learning techniques or
algorithms, including linear regression, logistic regression, decision trees, random forest,
support vector machines (SVMs), k-nearest neighbor (KNN), clustering and more. Each
of these approaches is suited to different kinds of problems and data. But one of the most
popular types of machine learning algorithm is called a neural network. Neural networks
are modeled after the human brain’s structure and function. A neural network consists of
interconnected layers of nodes (analogous to neurons) that work together to process and
analyze complex data. Neural networks are well suited to tasks that involve identifying
complex patterns and relationships in large amounts of data [34].

Deep learning is a subset of machine learning that uses multilayered neural networks,
called deep neural networks, that more closely simulate the complex decision-making
power of the human brain. Deep neural networks include an input layer, at least three
but usually hundreds of hidden layers, and an output layer, unlike neural networks used
in classic machine learning models, which usually have only one or two hidden layers.
Because deep learning doesn’t require human intervention, it enables machine learning
at a tremendous scale. It is well suited to natural language processing (NLP), computer
vision, and other tasks that involve the fast, accurate identification complex patterns and
relationships in large amounts of data. Some form of deep learning powers most of the
artificial intelligence (AI) applications in our lives today [35].
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Figure 1.9: Artificial Intelligence: AI vs ML vs DL vs NLP

1.5.2 Why AI fits into cybersecurity

As adversaries adopt more dynamic and evasive techniques, the integration of Artificial
Intelligence (AI) into cybersecurity systems has emerged as a critical advancement. AI
enables intelligent, real-time analysis of vast volumes of data, allowing security frameworks
to detect, analyze, and respond to threats with speed and accuracy that far exceed human
capabilities. Its application introduces not only speed and efficiency but also scalability
across distributed networks and adaptability through continual learning from evolving
attack vectors [6].

Figure 1.10: Role of Artificial Intelligence in Cybersecurity.

AI-driven security systems and its subfields such as machine learning (ML), deep learn-
ing (DL), and natural language processing (NLP) empower cybersecurity tools to identify
and adapt to novel threats by recognizing complex patterns, contextualizing behaviors,
and automating decision-making processes ahmed2020machine. Among these, machine
learning plays a foundational role through three primary paradigms each with distinct ap-
plications in cybersecurity contexts.

Supervised learning utilizes labeled datasets to train models in recognizing pre-
defined threat signatures. This method excels in scenarios involving well-characterized
threats such as known malware variants or phishing attempts. The predictability and ac-
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curacy of supervised learning make it effective for tasks such as spam filtering, signature-
based intrusion detection, and malware classification.

Unsupervised learning, in contrast, is designed for situations where labeled data is
unavailable. It identifies anomalies and clusters within datasets by detecting deviations
from established norms. This approach is particularly beneficial in identifying zero-day
exploits, insider threats, and previously unknown attack patterns that evade traditional
detection methods. Techniques such as clustering and dimensionality reduction provide
insight into complex and hidden threat behaviors [7].

Reinforcement learning introduces a dynamic learning framework where agents learn
optimal security policies through interaction with an environment, receiving feedback in
the form of rewards or penalties. In cybersecurity, this paradigm is increasingly applied in
adaptive systems such as autonomous intrusion detection and prevention, dynamic hon-
eypot configuration, and intelligent access control systems. Its strength lies in continuous
optimization and real-time decision-making under uncertain or adversarial conditions [36].

Moreover, AI contributes to the automation of repetitive and time-consuming tasks
such as log analysis, threat correlation, and incident triage, thus reducing analyst fatigue
and improving response times. It also supports proactive risk management by enabling
predictive analytics that forecast potential vulnerabilities and attack surfaces before ex-
ploitation occurs [37]. NLP is further employed to analyze unstructured threat intelligence
sources—including blogs, forums, and dark web activity to extract actionable insights for
threat prevention [38].

Figure 1.11: Supervised, Unsupervised and Reinforcement.

Ultimately, the integration of AI into cybersecurity represents a transformative paradigm
shift from reactive, rule-based defense systems toward proactive, adaptive, and intelligent
security architectures. By combining data-driven models, continuous learning mecha-
nisms, and automated threat handling, AI equips organizations with the tools necessary
to combat the increasingly complex and dynamic nature of cyber threats. As the digital
landscape continues to evolve, the strategic implementation of AI in cybersecurity is not
only a technological enhancement but an imperative for resilience in the face of modern
cyber warfare.



Chapter 1. Introduction of Cybersecurity Challenges 27

1.6 AI Applications in Cybersecurity
1.6.1 Threat Detection and Prevention

AI enhances threat detection by leveraging machine learning algorithms to analyze vast
datasets, identifying patterns indicative of malicious activities. This capability allows
for the detection of both known threats and novel attack vectors in real-time, surpassing
traditional signature-based methods. By continuously learning from new data, AI systems
adapt to emerging threats, enhancing proactive defense mechanisms [6].

1.6.2 Behavior-Based Anomaly Detection

Through behavioral analytics, AI establishes a baseline of normal user and system be-
havior. Deviations from this baseline can signify potential security incidents, such as
insider threats or compromised accounts. This approach is instrumental in identifying
sophisticated attacks that may evade conventional detection techniques [37].

1.6.3 AI in Security Operations Centers (SOCs)

In Security Operations Centers, AI facilitates the automation of routine tasks, allowing
security analysts to focus on complex threat investigations. AI-driven tools can prioritize
alerts based on severity, correlate events across systems, and provide actionable insights,
thereby enhancing the efficiency and effectiveness of security operations [6].

1.6.4 Automated Incident Response and Fraud Detection

AI enables rapid response to security incidents by automating containment measures, such
as isolating affected systems or blocking malicious traffic. In the realm of fraud detec-
tion, AI analyzes transactional data to identify anomalies that may indicate fraudulent
activities, thereby mitigating financial losses and protecting organizational assets [6].
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Figure 1.12: The Applications Of AI in Cybersecurity.

1.7 Problem Statement and objectives of the project
The proliferation of Artificial Intelligence (AI) in cybersecurity has revolutionized how
threats are detected, analyzed, and mitigated. Despite its transformative potential, this
integration introduces a spectrum of technical and ethical concerns, particularly around
data privacy, centralized control, and operational scalability. Traditional machine learning
frameworks in cybersecurity typically rely on centralized architectures where vast amounts
of sensitive data must be aggregated in a single repository to facilitate model training.
This not only exposes critical information to potential breaches but also conflicts with
growing privacy regulations and the strategic need for decentralized infrastructures in
data-sensitive environments.

In light of these constraints, this project explores federated learning as a promising
paradigm to overcome the inherent limitations of centralized AI systems in cybersecurity.
Federated learning enables distributed entities to collaboratively train a global model
without sharing raw data, thereby preserving data sovereignty and privacy. Instead of
transferring local datasets, only encrypted model updates are communicated between
clients and the central server, significantly reducing the risk of data leakage. This decen-
tralized approach aligns well with the requirements of modern cybersecurity operations,
where data ownership, regulatory compliance, and cross-organizational trust boundaries
must be carefully managed.

The overarching objective of this project is to design, implement, and evaluate a fed-
erated learning-based framework tailored to collaborative cyber threat detection. Specif-
ically, the framework aims to harness the power of deep learning while mitigating the
privacy risks associated with traditional centralized systems. By facilitating knowledge
sharing across distributed sources without compromising data confidentiality, the pro-
posed system aspires to enhance the accuracy, adaptability, and inclusivity of intrusion
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detection models.
Moreover, the project seeks to address a set of critical technical challenges often en-

countered in real-world cybersecurity deployments. These include dealing with non-IID
(non-independent and identically distributed) data across clients, class imbalance in threat
categories, and high communication overhead inherent in federated environments. Addi-
tional emphasis will be placed on evaluating the system’s robustness under adversarial
conditions, where attackers may attempt to manipulate inputs or poison training updates
to degrade model performance. Techniques such as model regularization, secure aggrega-
tion, and adversarial resilience strategies will be investigated to fortify the framework.

The scarcity of high-quality labeled datasets also represents a core concern, as cy-
bersecurity data is frequently proprietary, unlabeled, or highly contextual. By enabling
organizations to retain control over their data and contribute only encrypted learning sig-
nals, the proposed solution offers a viable pathway toward broader collaboration without
violating confidentiality agreements or regulatory mandates.

Ultimately, this research endeavors to contribute a scalable, privacy-preserving, and
resilient AI framework for modern cybersecurity environments. By merging federated
learning with advanced deep learning techniques, the project aims to lay the groundwork
for ethical and effective collaborative defense systems capable of responding to the evolving
complexity of cyber threats.

1.8 Conclusion
This chapter has provided an introduction to the essential concepts of cybersecurity and
the role of Artificial Intelligence (AI) in enhancing security measures. It discussed founda-
tional elements like the CIA Triad, common cybersecurity threats, and traditional defense
mechanisms, which are still critical in the evolving landscape of digital security. The inte-
gration of AI into cybersecurity introduces advanced techniques such as machine learning,
deep learning, and natural language processing, offering more efficient, scalable, and adap-
tive solutions to counter modern cyber threats. Despite its potential, the adoption of AI
in cybersecurity comes with significant challenges, including privacy risks, bias in train-
ing data, adversarial attacks, and a lack of high-quality, labeled data. Addressing these
obstacles requires a careful balance of technological innovation and ethical considerations.
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Chapter 2
State Of Art

2.1 Related work on Distrebuted Denial of service
Attacks

Several work has been investigated in Distrebuted Denial of service attacks. This work
[39] focuses on addressing the challenges faced by internet-based commercial applications
such as Customer Relationship Management (CRM), Supply Chain Management (SCM),
online banking, and e-commerce that rely heavily on distributed computing technologies.
These applications are primary targets of large-scale DDoS attacks, which aim to deny
legitimate users access to services by overwhelming servers with seemingly legitimate but
fraudulent requests. In distributed environments, such servers are especially vulnerable to
these attacks. Similarly, flash crowds sudden surges in legitimate user traffic triggered by
popular eventscan mimic the behavior of DDoS attacks, making accurate detection even
more challenging. Distinguishing between DDoS attacks and flash crowds is a complex
issue, and current solutions are typically tailored to detect only one or the other. This
study proposes a novel technique for accurately differentiating between various types
of DDoS attacks and flash crowds, while also suggesting a prevention approach. The
effectiveness of the proposed method is validated through simulations conducted using the
NS-2 network simulator. While the study presents a novel classification and prevention
strategy, its main limitation lies in the use of simulation-only validation (via NS-2), which
may not fully reflect real-world network complexities, limiting the practical applicability
of its findings.

According to the journal paper by Da Silva et al. [40] provides an extensive survey
on one of the most critical and evolving threats on the Internet—Low-rate Denial of Ser-
vice (LDoS) attacks. These attacks represent a stealthier and more damaging variant
of traditional Denial of Service (DoS) attacks. Over the years, attackers have refined
their techniques, exploiting vulnerabilities in operating systems and protocols to degrade
or entirely deny services to legitimate users. While conventional High-rate DoS attacks
overwhelm networks with traffic, modern LDoS attacks mimic legitimate user behavior,
making them significantly harder to detect using traditional defense mechanisms. This
survey not only consolidates previous research but also introduces a comprehensive taxon-
omy that categorizes LDoS attacks into three main groups: Quality of Service (QoS) at-
tacks, Slow-rate attacks, and Service queue attacks, based on their operational strategies.
It further presents a detailed examination of detection mechanisms and countermeasures
tailored to eight specific types of LDoS attacks, emphasizing traffic throttling techniques.
Additionally, the paper offers a comparative analysis of various LDoS attack tools. By
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compiling and analyzing current methodologies, this work serves as a valuable resource
for researchers and network administrators seeking to understand and mitigate the risks
associated with LDoS attacks. Despite the comprehensive taxonomy, the key limitation of
this survey is its lack of empirical evaluation of the detection and mitigation techniques,
leaving their real-world effectiveness unverified.

2.2 Related work on Brute Force Attacks
A variety of research efforts have explored Brute Force Attacks. The present study [41]
aims to develop a system that leverages graph-based clustering of log data—specifically,
k-clique percolation—for the detection and analysis of SSH brute-force attacks. The
methodology involves preprocessing SSH log data, constructing an IP interaction network
graph, and applying clustering techniques to uncover patterns indicative of malicious be-
havior. In addition, the integration of a reinforcement learning model, particularly the
Q-learning algorithm, enhances the system’s predictive capabilities and allows it to contin-
uously adapt to emerging attack vectors. The ultimate objective is to create a robust tool
for tracking, assessing, and mitigating SSH brute-force attacks. The primary limitation
of this study is its limited evaluation under real-world conditions—the proposed method
is validated only on synthetic log datasets, which may not capture the full complexity or
variability of live network environments.

As demonstrated in this study [42], information security practices can be significantly
enhanced through the application of the CatBoost classifier within the complex field of net-
work intrusion detection. Building on established machine learning approaches for identi-
fying FTP and SSH brute-force attacks, this research introduces an improved CatBoost-
based method in response to the increasing sophistication of such threats. A comprehen-
sive analysis of the CSE-CIC-IDS2018 and CICIDS2017 datasets was conducted, incor-
porating advanced feature selection, hyperparameter tuning, and class balancing using
techniques such as SMOTENC. The resulting CatBoost model achieved exceptional per-
formance, with an accuracy rate of 99.9964% and a notably low false alarm rate. Further-
more, it demonstrated robust metrics including a consistently high F1 score, minimal loss,
and an almost perfect Matthew’s Correlation Coefficient (MCC), indicating strong relia-
bility and precision. A distinguishing element of this work is the extensive use of SHAP
(SHapley Additive exPlanations) values, which offer detailed insights into the model’s
decision-making process—highlighting the influence and contribution of individual fea-
tures through metrics like Mean Absolute SHAP values and SHAP value distributions.
Additionally, the model maintained an average processing speed of 5 million samples per
second, illustrating its practicality for real-time security applications. Overall, the findings
validate the CatBoost classifier’s effectiveness in detecting sophisticated network intru-
sion patterns, emphasizing its relevance for advancing cyber defense strategies through
improved accuracy, efficiency, and interpretability. Despite its impressive performance,
the main limitation of this study is its dependence on public datasets, which may not
accurately reflect evolving attack patterns or zero-day threats encountered in real-world
deployments.
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2.3 Related work on Web Attacks
Many studies have focused on Web Attacks. As we can observe in this work [43], cyber-
security has become a critical and highly influential component of system security. This
research provides an in-depth analysis of SQL injection and its various types, exploring
the execution of malicious code to manipulate SQL databases. Additionally, the study
evaluates prevention techniques and SQL injection detection methods. A comprehensive
comparative analysis of existing approaches, including Classical SQLi, Advanced SQLi,
and Deep Learning methods, is presented in the results section. The paper emphasizes the
prevalent cybersecurity threat of SQL injection attacks targeting databases, investigates
the techniques used to carry out these attacks, examines their impact on systems, and
outlines comprehensive strategies for mitigating such vulnerabilities. Although the study
covers a wide range of SQL injection techniques and countermeasures, its main limitation
is the lack of practical implementation or real-world validation, which reduces its utility
for real-time threat detection systems.

As demonstrated in this study [44],the international student website serves as a crucial
platform for a university’s external communication, enabling prospective international
students to gain comprehensive insights into the institution. However, such websites are
frequent targets of cyberattacks, particularly Cross-Site Scripting (XSS), which remains
one of the most prevalent web application vulnerabilities. This study analyzes XSS attacks
and proposes several preventative measures, including input validation, output encoding,
explicitly defining output encoding methods, and recognizing the limitations of blacklist-
based validation. It also highlights the importance of avoiding the insertion of untrusted
data in permitted contexts. Defensive techniques include HTML encoding when placing
untrusted data between tags, HTML attribute encoding for attribute values, JavaScript
encoding when inserting data into scripts, CSS encoding for style attribute values, URL
encoding for HTML URL attributes, and the application of XSS rule engines to sanitize
rich text content. These defense strategies collectively help mitigate the risks posed
by XSS vulnerabilities in dynamic web environments. While the paper presents a solid
theoretical foundation of XSS defense techniques, its primary shortcoming is the absence
of experimental evaluation or performance benchmarks, which limits its contribution to
applied cybersecurity practices.

As revealed in recent research [45], Modbus remains one of the most widely adopted
industrial protocols in Supervisory Control and Data Acquisition (SCADA) systems, serv-
ing key functions such as remote device control, physical process monitoring, and data
acquisition. However, its lack of built-in security features namely authentication, in-
tegrity, and confidentiality renders it highly vulnerable to cyber threats. This inherent
insecurity makes industrial systems relying on Modbus attractive targets for adversaries,
as exemplified by the Stuxnet incident. In this study, the vulnerabilities of the Modbus
protocol are exploited through a stealthy false command injection attack that remains
undetected by the SCADA operator. The proposed attack consists of two phases: (1) a
pre-attack (offline) phase, during which the attacker passively captures and stores legiti-
mate request-response pairs; and (2) an attack (online) phase, wherein the attacker injects
false commands and replies with valid-looking responses from the database to mask the
intrusion. If successfully executed, this type of attack could result in catastrophic con-
sequences for SCADA systems and critical infrastructure. To counter this threat, the
study also outlines potential mitigation strategies aimed at enhancing the security of
Modbus-based environments. Despite its innovative stealth attack model, the study’s key
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limitation is the lack of implementation and testing of the proposed mitigation strategies,
which makes it difficult to assess their effectiveness in real-world SCADA deployments.

2.4 Related work on Man in The Middle Attacks
A range of research has been undertaken regarding man-in-the-middle (MITM) attacks.
This research [46] specifically focuses on the vulnerabilities of 6TiSCH networks, which are
wireless sensor networks built upon Industrial Internet of Things (IIoT) devices. These
networks utilize the RPL protocol to ensure energy-efficient and reliable communication.
However, MITM attacks on RPL can manipulate routing information, resulting in traffic
misdirection, communication blockage, and significant data loss. The study investigates
the impact of such attacks on 6TiSCH networks and explores adversarial techniques tar-
geting the RPL protocol. To counter these threats, the proposed method periodically
analyzes information collected from network nodes, aiming to identify malicious activity.
Given that all nodes are pre-authenticated by a central server, data packets are securely
encrypted. By applying both verification procedures and statistical data analysis, the
method enables effective detection of MITM attackers. Performance evaluations indicate
the method’s viability for enhancing security in 6TiSCH-based IIoT environments. While
the proposed approach demonstrates promising results in simulation, it relies heavily on
a centralized trust model, which may limit scalability and fault tolerance in decentralized
or large-scale IIoT deployments.

As demonstrated in this study [47], man-in-the-middle (MITM) attacks pose a severe
threat to the integrity and confidentiality of Wi-Fi networks, allowing adversaries to inter-
cept and eavesdrop on wireless communications. These attacks are particularly dangerous
due to their ability to extract sensitive information such as login credentials, credit card
numbers, and other critical financial data. Despite the existence of various detection
mechanisms, MITM attacks continue to occur, leading to significant security breaches.
To address this ongoing challenge, the study introduces a suite of machine learning-based
techniques designed to detect and accurately identify MITM activities within wireless
communication environments. The proposed approach is rigorously evaluated using stan-
dard performance metrics and benchmarked against existing machine learning models,
demonstrating its effectiveness in enhancing the security posture of wireless networks.
Although the machine learning-based detection system achieves high accuracy, the study
does not explore its performance under adversarial conditions or evaluate its real-time
applicability, which limits practical deployment considerations in dynamic Wi-Fi environ-
ments.

As revealed in recent research [48], federated learning presents a promising decentral-
ized paradigm that facilitates collaborative model training across multiple nodes while
preserving data privacy by keeping raw data local. Despite these privacy advantages, the
architecture remains vulnerable to critical threats, notably man-in-the-middle (MITM)
attacks that can compromise model integrity during transmission. To address this chal-
lenge, the study introduces CodeNexa, a novel security framework tailored to safeguard
federated learning systems against such intrusions. Departing from conventional cryp-
tographic defenses like hash functions, digital signatures, and watermarking, CodeNexa
utilizes a dynamic metric verification mechanism. This approach involves computing
and securely archiving key evaluation metrics—such as accuracy, precision, recall, and
AUC—at a precision level of six decimal places. These metrics are later employed during
the model aggregation process to authenticate incoming updates and ensure their legiti-
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macy. Empirical evaluations using the MNIST dataset highlight CodeNexa’s effectiveness
in identifying and discarding tampered model weights, thereby minimizing the risks asso-
ciated with model poisoning and unauthorized alterations. By enabling continuous model
integrity validation across distributed clients, CodeNexa offers a scalable, resilient, and
adaptable defense mechanism for federated learning systems in diverse operational envi-
ronments. While CodeNexa provides an innovative and scalable alternative to traditional
cryptographic methods, its reliance on pre-calculated metrics may not generalize well to
complex or non-standard datasets, and its computational overhead for continuous metric
validation may hinder deployment in resource-constrained edge environments.

2.5 Related work on Denial of Service Attacks
Multiple work have been made to explore Denial of Service Attacks. this work [49] in-
vestigates the impact of denial-of-service (DoS) attacks on the observability of networked
control systems (NCSs), highlighting how such attacks can compromise system function-
ality. It begins by demonstrating how DoS attacks affect observability, necessitating the
reconstruction of the original observability matrix to account for attack characteristics.
The study then establishes necessary and sufficient conditions for maintaining observabil-
ity under arbitrary DoS scenarios, requiring continuous recalculation of the observability
matrix. Additionally, it explores the relationship between the observability index and DoS
parameters, offering criteria for assessing observability under both periodic and aperiodic
attacks. The proposed approach is validated through numerical simulations, confirming
its effectiveness and practical applicability. While the paper offers a rigorous theoretical
framework, its application is primarily limited to linear systems and controlled environ-
ments, potentially restricting its practical scalability to complex or nonlinear real world
control systems.

As demonstrated in this study [31], denial-of-service (DoS) attacks pose a substantial
threat to network security, capable of disrupting services and inflicting financial damage
by overwhelming systems with excessive traffic. These attacks range from basic flooding
techniques to more sophisticated distributed approaches, often exploiting vulnerabilities
across multiple network layers to increase their impact. Traditional detection methods,
which rely on static thresholds, often fall short in identifying these evolving threats and
may result in high false positive rates, leading to unnecessary alerts and inefficient re-
source usage. To address these limitations, this study introduces an enhanced DoS de-
tection system leveraging Pyshark for comprehensive packet analysis and real-time traffic
monitoring. The system adapts dynamically to changing traffic patterns by adjusting its
thresholds and identifying attacker IP addresses. When a potential threat is detected, the
system sends real-time email alerts containing key information such as the attacker’s IP
and packet count, enabling swift response. This dynamic and responsive approach signif-
icantly bolsters network defenses against DoS attacks by ensuring timely detection and
intervention. Despite its practical design, the system lacks a comprehensive evaluation
against advanced evasion techniques and does not provide a formal analysis of scalability
or computational overhead in high-throughput environments.

As revealed in recent research [28], HTTP low and slow DoS attacks represent a subtle
yet highly disruptive threat, wherein attackers deliberately send HTTP requests at an
extremely slow pace to exhaust server resources. Targeting specific applications or server
components, these attacks exploit the behavior of thread-based web servers such as Apache
and IIS, causing server threads to remain occupied and ultimately denying access to
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legitimate users. Unlike traditional DoS attacks that rely on high volumes of traffic, low
and slow attacks are stealthy in nature and evade detection by conventional network-
layer defense tools. Recognizing this limitation, the study proposes a novel detection
method based on Long Short-Term Memory (LSTM) deep learning architecture. By
training on the CIC DoS dataset alongside a synthetically generated dataset, the model
demonstrated exceptional effectiveness in identifying these stealthy threats, achieving a
detection accuracy of 99%. This approach provides a robust and adaptive solution to
the growing challenge of HTTP low and slow DoS attacks. Although the LSTM model
performs well in detection accuracy, the study does not address real-time performance,
false positive handling, or generalizability across different server architectures, limiting
insight into its deployment feasibility in production systems.

2.6 Related work on Phishing Attacks
Numerous academic works have been made to explore Phishing Attacks, This effort [50]
addresses the growing threat of phishing, a highly effective form of cybercrime wherein at-
tackers deceive individuals to steal sensitive data. Recognized as one of the most prevalent
online scams today, phishing leads to substantial losses involving personal information,
identity theft, and organizational and governmental security breaches. A common vector
for these attacks is the use of phishing websites that mimic legitimate platforms. Attackers
craft these deceptive pages and disseminate their links through social media, messaging
applications, or spam, exploiting user trust. The escalating number of victims is largely
attributed to the limitations of existing security technologies. Prior research has largely
focused on isolated phishing techniques and defense mechanisms, often neglecting the
complete phishing lifecycle. To bridge this gap, this study introduces a comprehensive
model of phishing that encapsulates all critical dimensions—including attack stages, at-
tacker profiles, targets, channels, and tactics. By presenting the full anatomy of phishing
attempts, this model enhances public understanding of the duration and progression of
such campaigns, laying the groundwork for more effective countermeasures. Given the
anonymity of cyberspace and the lack of stringent regulations, phishing attacks continue
to thrive. Current detection systems have demonstrated limited effectiveness, underscor-
ing the need for smarter approaches. In response, this work proposes an LSTM-based
artificial intelligence detection system, which has shown promising results in both accu-
racy and performance, offering a more intelligent and adaptive solution for combating
phishing threats. While the proposed model contributes valuable insights into the phish-
ing lifecycle and presents a robust detection technique, the study does not delve deeply
into real-world deployment scenarios or provide comparative benchmarks with existing
anti-phishing solutions, limiting the assessment of its practical applicability.

As discussed in this work [51], phishing remains one of the most pervasive forms of
cybercrime, leveraging deceptive techniques to extract personal and sensitive information
from unsuspecting users. In the evolving digital landscape, where technological advance-
ments facilitate seamless connectivity and data exchange, the threat of malicious activity
continues to grow. Traditional phishing detection methods often fall short in address-
ing the adaptive and sophisticated strategies employed by attackers. To enhance detec-
tion capabilities, this study introduces a novel approach utilizing a hybrid Convolutional
Long Short-Term Memory (ConvLSTM) neural network, specifically designed to identify
phishing in text-based communications. Central to this approach is the integration of the
ConvLSTM architecture within a Federated Learning (FL) framework, which ensures pri-
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vacy preservation and accommodates decentralized data across multiple organizations or
entities. This design not only safeguards user data but also enables collaborative model
training without compromising confidentiality. Experimental results demonstrate that
the federated ConvLSTM model surpasses conventional detection techniques in terms of
accuracy, precision, and recall. Its ability to generalize across diverse datasets makes it a
dependable and scalable solution for phishing detection in an era where data protection
and high detection efficacy are paramount. Although the model demonstrates high effec-
tiveness and respects privacy constraints, the work does not address computational costs
or the communication overhead introduced by federated learning, which could be limiting
factors in large-scale or resource-constrained environments.

2.7 Related work on Infiltration Attacks
Several researchers have looked into Infiltration Attacks. this research work [52] addresses
the escalating severity of cybersecurity threats, highlighting the growing prevalence of per-
sistent and systematic attacks. Attackers often exploit vulnerabilities in network systems,
launching targeted and multi-phase attacks. In response, security personnel must pos-
sess effective strategies to capture, analyze, and trace attack information in real-time,
minimizing the impact on services. The paper reviews existing multi-stage infiltration
attack trapping techniques, including methods based on attack chains, event chains, be-
havior chains, and honeypot technology. It then proposes a novel approach for trapping
multi-stage infiltration attacks, aiming to enhance detection and response capabilities.
While the work offers a solid theoretical foundation and classification of infiltration trap-
ping techniques, it lacks experimental validation or simulation-based evaluation, making
it difficult to assess the real-world effectiveness and scalability of the proposed framework.

As we can observe in this work [53], the rapid computerization of vehicles has led to
the increased interconnectivity of automotive networks with external systems, making
automotive security a critical concern. The Controller Area Network (CAN) bus, the
most commonly used internal network in vehicles, is facing rising vulnerabilities. With
the advancement of networked and autonomous driving technologies, the previously iso-
lated nature of automotive internal control networks is diminishing, and existing security
standards are no longer sufficient according to modern benchmarks. This paper provides
an overview of current defense strategies against CAN bus infiltrations, highlights the
limitations of these strategies, and discusses the challenges associated with enhancing se-
curity in automotive embedded systems. Although the paper offers a valuable overview
of automotive network vulnerabilities, it does not propose novel detection or mitigation
techniques, nor does it experimentally compare existing methods under standardized con-
ditions—limiting its contribution to a mainly analytical level.

2.8 Related work on Ransomeware Attacks
Various works have examined Ransomeware Attacks, The present study [54] explores the
Internet of Things (IoT), a transformative technology widely adopted across domains
such as agriculture, smart economies, homes, and healthcare. IoT systems consist of
interconnected devices and diverse sensors that communicate via the internet, forming
multi-layered architectures typically comprising perception, network, and application lay-
ers. Despite their growing ubiquity and practical utility, these smart devices often lack
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robust security measures, rendering them vulnerable to a broad spectrum of cyberattacks.
This review provides a comprehensive overview of various threats targeting IoT applica-
tion layer protocols, with particular emphasis on ransomware and its different forms. By
detailing these security challenges, the study underscores the critical need for enhanced
protection mechanisms within IoT ecosystems. Although the paper provides a valuable
taxonomy and threat landscape overview, its analysis remains high-level, and it does not
empirically evaluate proposed protection strategies or recommend concrete mitigation
tools, limiting its practical applicability in real-world IoT deployments.

As highlighted in the research conducted by previous scholars [55], ransomware poses
a severe and disruptive threat by rendering users incapable of accessing or interacting
with their system data. Once ransomware infiltrates a system, it encrypts both utility
and system files, effectively halting all user operations. To mitigate such attacks, the
implementation of honeypot-based defenses has been proposed. Honeypots act as decoy
systems designed to lure malicious entities, capturing and analyzing unauthorized activ-
ities within the network. When a suspicious or anonymous packet attempts to infiltrate
the system, the honeypot records its behavior. In the case of ransomware activity, where
the malware initiates data encryption, the honeypot can detect such malicious behavior.
Upon identifying unauthorized encryption, the system is promptly isolated from the net-
work to prevent further spread. This paper analyzes various honeypot techniques and
introduces the concept of a specialized honeypot, referred to as the s-honeypot, aimed at
enhancing the system’s resilience and providing proactive protection against ransomware
attacks. The honeypot-based approach demonstrates innovation in proactive detection;
however, the study does not extensively address the limitations of false positives or the
overhead costs associated with real-time monitoring, which are crucial considerations for
deployment in dynamic and large-scale networks.

2.9 Related work on Botnet Activity
Several researchers have looked into Botnet Activity. This analysis [56] presents a com-
prehensive comparative evaluation of various machine learning techniques for detecting
and predicting malicious activities associated with IoT botnets, addressing the escalating
security concerns driven by the proliferation of Internet of Things (IoT) devices. Utilizing
the real-world CICIoT2023 Dataset—which captures diverse device interactions and com-
munication patterns—this study systematically investigates the effectiveness of classifiers
such as support vector machines (SVM), k-nearest neighbours (k-NN), Naive Bayes, ran-
dom forest (RF), logistic regression (LR), and decision trees (DT). A suite of performance
metrics including accuracy, precision, recall, F1-score, ROC curve, and confusion matrix
is employed to assess the detection capabilities of each model. Additionally, the analy-
sis explores the trade-offs between computational complexity and detection performance,
facilitating the identification of the most suitable algorithms for various IoT security con-
texts. This analysis ultimately supports the development of more resilient and adaptive
IoT botnet detection strategies, offering valuable insights for researchers, practitioners,
and industry experts dedicated to fortifying IoT environments against evolving cyber
threats. While the research effectively benchmarks different machine learning models, it
does not integrate real-time detection or adaptive learning mechanisms, which are cru-
cial for countering continuously evolving botnet behaviors. Furthermore, the analysis
lacks exploration of ensemble or hybrid models, which could potentially yield superior
performance by leveraging the strengths of individual classifiers.
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As illustrated in the aforementioned study [57], the rapid expansion of devices con-
nected to the Internet has fueled the growth of the Internet of Things (IoT), yet many
of these devices remain inherently insecure, making them vulnerable to a wide range of
cyberattacks. In particular, IoT systems have increasingly become targets of intelligent
and behaviorally diverse botnet activities, including distributed denial of service (DDoS)
attacks, phishing, and spamming. While such botnets have posed serious risks to Inter-
net infrastructure for years, effective network forensic techniques capable of accurately
identifying and tracing sophisticated botnet behavior remain limited. Recent efforts have
applied classification algorithms, such as decision trees, to model and detect these at-
tacks; however, these approaches often suffer from high error rates in tracking botnet
traces. This has driven the development of advanced classification-based network foren-
sic techniques, leveraging network flow identification in conjunction with refined decision
tree algorithms like C4.5. Experimental results indicate that this combined approach
significantly enhances the accuracy of botnet detection, classification, and tracing within
infected IoT networks. Although the study presents a promising improvement over basic
classification methods, its evaluation lacks comparative performance data against more
modern deep learning or ensemble techniques, which are increasingly relevant in cyber-
security applications. Additionally, the scalability of the proposed solution in large-scale
IoT deployments is not fully addressed, leaving its practical implementation feasibility
uncertain.

2.10 Related work on Port Scanning
Numerous academic works have been dedicated to Port Scanning. This study [58] empha-
sizes the importance of cybersecurity as a collection of techniques aimed at safeguarding
the confidentiality, integrity, and availability of computer data against various threats. It
highlights that a scanning attack is not a standalone technique but a two-phase process,
where the initial scanning phase involves identifying vulnerabilities in communication
channels, followed by the actual attack. Given that ports serve as critical attack sur-
faces—facilitating data ingress and egress—port scanning plays a pivotal role in locating
open ports on networked systems that may be exploited. While numerous prior solutions
have focused on detecting slow port scanning attacks, these methods predominantly rely
on static time intervals. In contrast, the approach proposed in this paper enables detec-
tion not only within fixed time frames but also in scenarios where scanning rates vary
gradually. The proposed technique is also capable of analyzing live data streams, enhanc-
ing its practical applicability. Additionally, packet-based analysis is utilized to identify
various types of port scanning attacks, and the method demonstrates high detection ac-
curacy. Furthermore, the study introduces a classification mechanism that distinguishes
between single and parallel port scans based on the number of attempts, effectively dif-
ferentiating fast scans from slow ones. While the study offers a significant improvement
over conventional static-interval detection schemes, it lacks integration with adaptive or
learning-based models that could further refine detection under real-world conditions. Ad-
ditionally, the evaluation appears to be limited to predefined attack patterns, which may
not fully reflect the unpredictability and sophistication of modern port scanning tactics
in the wild. The scalability and performance under high network load conditions are also
not thoroughly explored.

As revealed in recent research [59], port scanning remains a significant and persistent
threat within modern communication networks. Often employed as a reconnaissance tool
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prior to launching cyberattacks, port scans can also disrupt application performance and
reduce overall throughput. This study introduces a novel architecture utilizing sequen-
tial neural networks (NNs) to classify network packets, segment TCP datagrams, identify
TCP packet types, and detect port scan activities. By leveraging the adaptive learning
capabilities of sequential models, the system decomposes the complex detection process
into manageable components. Post-classification, an analytical phase is applied to iden-
tify scanning behavior. The research demonstrates that neural networks can achieve
recognition rates exceeding 99% for both general packet classification and detailed TCP
packet analysis. Moreover, empirical evaluation using real NMAP-generated pcap files
validates the model’s effectiveness in accurately detecting open ports and scan attempts,
while maintaining a low false positive rate. Despite its strong performance metrics, the
model’s dependency on labeled training data may limit its generalizability across diverse
network environments. Furthermore, the study does not extensively address the impact
of adversarial manipulation or evasion techniques, which are increasingly employed to
bypass machine learning-based defenses. The system’s computational demands and real-
time deployment feasibility, particularly on resource-constrained edge devices, are also
left unexplored.
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Chapter 3
Methodology of the Federated Learning Ap-
proach

3.1 Introduction
The growing reliance on network-connected systems has significantly increased the surface
for potential cyberattacks. Traditional machine learning approaches for intrusion detec-
tion often rely on centralized data collection, which raises serious concerns regarding user
privacy, data security, and regulatory compliance. Moreover, centralized solutions face
scalability limitations and are unsuitable for heterogeneous environments such as edge
devices and IoT networks.

Federated learning emerges as a promising paradigm to address these limitations by
enabling collaborative model training without exposing raw data. This decentralized
approach ensures data sovereignty and privacy while maintaining high detection per-
formance. By integrating deep learning techniques within a federated architecture, it
becomes possible to develop intelligent and adaptive intrusion detection systems capable
of learning from diverse, distributed, and privacy-sensitive datasets.

3.2 Investigated Security Threats
The rapid expansion of digital infrastructure has introduced a wide range of cybersecu-
rity threats that compromise the confidentiality, integrity, and availability of networked
systems. In order to develop robust intrusion detection mechanisms, it is essential to
understand the nature and behavior of these threats. This section provides an in-depth
overview of the main categories of attacks investigated in this study.Each threat type
is examined with respect to its operational method, impact on network resources, and
potential indicators that can be leveraged for detection and mitigation.

3.2.1 Brute Force Attacks

• FTP Brute Force: A File Transfer Protocol (FTP) brute force attack is a method
where an attacker systematically attempts a large number of username-password
combinations to gain unauthorized access to an FTP server. The attack leverages
automated tools to guess valid credentials by exploiting weak authentication mech-
anisms. Once access is granted, attackers can exfiltrate data, modify files, or use
the server as a launch point for further attacks [60].
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• SSH Brute Force: Secure Shell (SSH) brute force attacks involve repeated login
attempts using various combinations of usernames and passwords on SSH-enabled
systems. Although SSH is cryptographically secure, brute force attempts can suc-
ceed when weak or default credentials are used. These attacks often target miscon-
figured or poorly secured systems and are a common precursor to lateral movement
within a network [60].

3.2.2 Denial of Service (DoS) Attacks

• HTTP Denial of Service (DoS) : An HTTP DoS attack targets web servers
by sending an overwhelming number of HTTP requests. These requests are often
legitimate-looking, making detection and mitigation difficult. The aim is to exhaust
server resources, leading to service unavailability for legitimate users [61].

• Slowloris : Slowloris is a type of application layer DoS attack that keeps many
connections to the target web server open and holds them open as long as possible.
It does this by sending partial HTTP requests and then periodically sending sub-
sequent HTTP headers, preventing the server from closing these connections. This
consumes server resources and can eventually exhaust the maximum concurrent
connection limit [61].

• Slow HTTP Post: This attack sends a legitimate HTTP POST request in a slow
manner by deliberately sending the body of the request in small fragments. The
target server, expecting the full content, allocates resources and waits indefinitely,
leading to denial of service when executed at scale [61].

• GoldenEye : GoldenEye is a tool-based HTTP DoS attack that sends large volumes
of HTTP GET or POST requests to a server with randomized headers. The aim is to
exhaust the server’s resources, and unlike Slowloris, GoldenEye uses multithreading
to amplify the attack’s intensity [62].

3.2.3 Web Attacks

• Web Attack – Brute Force: This category includes automated attacks against
web application login interfaces, attempting multiple password combinations to gain
unauthorized access. Attackers exploit predictable user behavior and weak pass-
words [60].

• Web Attack – SQL Injection: SQL Injection (SQLi) involves inserting or manip-
ulating SQL queries via web input fields. By injecting malicious SQL code, attackers
can bypass authentication, access or modify data, and execute administrative oper-
ations on the database server [63].

• Web Attack – Cross-Site Scripting (XSS): XSS is a client-side code injection
attack where malicious scripts are injected into otherwise benign and trusted web-
sites. These scripts execute in the victim’s browser, enabling session hijacking, data
theft, or redirection to malicious websites [64].
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3.2.4 Infiltration Attacks

Infiltration attacks focus on bypassing perimeter defenses to introduce malware or gain
unauthorized access to internal network resources. These attacks are often conducted
through phishing emails, malicious file downloads, or exploitation of known vulnerabilities,
enabling attackers to persist within the target system and exfiltrate sensitive data [64].

3.2.5 Port Scanning

• Port Scan – Service Scan: Service scans identify active services running on open
ports by sending crafted packets and analyzing the responses. These scans provide
information about operating systems, software versions, and potential vulnerabili-
ties, often serving as a reconnaissance phase for targeted attacks [65].

• Port Scan – SYN Scan: SYN scanning, also known as half-open scanning, in-
volves sending TCP SYN packets to various ports and analyzing the responses
(SYN-ACK or RST). It is a stealthy method for identifying open ports because it
does not complete the TCP handshake, making it less likely to be logged by intrusion
detection systems [65].

3.2.6 Distributed Denial of Service (DDoS)

DDoS attacks are large-scale versions of DoS attacks that leverage multiple compromised
devices to flood a target with traffic or requests, exhausting its resources and rendering
it inaccessible. Attack vectors may include volumetric attacks, protocol attacks, and
application-layer attacks. These attacks are coordinated through botnets or malware-
infected hosts [66].

3.2.7 Botnet Traffic

Botnet traffic originates from networks of compromised devices controlled by a central
entity, often used for coordinated malicious activities including spam campaigns, DDoS
attacks, and credential stuffing. Botnets can communicate via command-and-control (C2)
servers or peer-to-peer structures to receive instructions and update payloads [67].

3.2.8 Distributed Reflection Denial of Service (DRDoS) Attacks

DRDoS attacks exploit the amplification effect of misconfigured servers (e.g., DNS, NTP,
SSDP) to reflect traffic to a target. The attacker sends small forged requests to these
servers with the victim’s IP address, prompting large responses that overwhelm the victim.
This results in effective bandwidth amplification with minimal resource use from the
attacker [66].

3.2.9 Heartbleed Attack

Heartbleed is a critical vulnerability in the OpenSSL cryptographic library (CVE-2014-
0160). It allows attackers to read arbitrary memory from servers using vulnerable versions
of OpenSSL. Exploiting this flaw, attackers can access sensitive information such as private
keys, user credentials, and session cookies, compromising the confidentiality and integrity
of secure communications [68].
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3.3 Data Presentation
The development of effective intrusion detection systems (IDS) requires access to realis-
tic, high-quality datasets that accurately represent modern network traffic patterns and
diverse cyber threats. For this research, the CIC-IDS-2017 dataset, developed by the
Canadian Institute for Cybersecurity (CIC), is utilized. It offers a comprehensive, la-
beled collection of network traffic data simulating real-world usage combined with a wide
spectrum of attack scenarios. This dataset has become a benchmark for cybersecurity
research due to its scale, diversity, and relevance [69].

3.3.1 Dataset Overview

The CIC-IDS-2017 dataset was generated over a seven-day period in a controlled envi-
ronment that mimicked realistic enterprise-level network behavior. It includes normal
user activities such as web browsing, email communication, VoIP, video streaming, file
transfers, and chat applications. These activities were designed using behavior profiles
based on real-world data collected from institutions like ISCX and Statistics Canada.
Simultaneously, multiple types of cyberattacks were injected at specified times and from
designated IP addresses to ensure accurate labeling and ground-truth tracking [70].

The dataset contains approximately 2.8 million network flows, each described by 80+
features, and labeled as either BENIGN or one of fourteen distinct attack types. The at-
tacks were grouped into categories such as brute force, denial of service (DoS), distributed
denial of service (DDoS), infiltration, botnet activity, and web-based exploits.

3.3.2 Data Collection Process

The network traffic was captured using the CICFlowMeter tool, which extracts bidirec-
tional NetFlow-style data from packet captures (PCAP files). This tool records both
header and statistical flow features while preserving timestamps and flow direction. The
traffic was generated using a testbed composed of virtual machines and physical servers
running a variety of services (e.g., FTP, SSH, HTTP, HTTPS, MySQL) and client-side
interactions to simulate genuine enterprise activity.

Attack traffic was generated using known tools such as Hulk, GoldenEye, Slowloris,
Xerxes, Metasploit, and Nmap, providing a wide spectrum of signature- and behavior-
based attack profiles. This ensures that the dataset captures not only volumetric attacks
but also low-and-slow stealthy techniques [71].

3.3.3 Feature Composition

Each record in the dataset corresponds to a unique bidirectional flow and is represented
by over 80 numerical and categorical features, derived from packet-level statistics. These
features can be categorized into the following groups:

• Basic Connection Features: Flow duration, total forward and backward packets,
source and destination IPs, ports, and protocol.

• Content Features: Number of packets with FIN, SYN, RST, PSH, ACK, URG,
and CWE flags; header length; and packet content characteristics.
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• Time-Based Features: Flow inter-arrival times, active and idle durations, and
packet timing statistics in both directions.

• Statistical Features: Minimum, maximum, mean, and standard deviation of
packet lengths and inter-arrival times, along with flow byte/packet rates.

• Direction-Based Features: Flow features calculated separately for forward and
backward streams to capture asymmetrical behavior typical of certain attacks.

These features are essential for identifying temporal and behavioral patterns in network
traffic, which are vital for the accurate detection of both known and zero-day attacks [70],
[71].

3.3.4 Labeling and Data Organization

The dataset is labeled based on synchronized schedules between traffic generation and
attack execution. Each attack was launched during specific time windows, and the IP
addresses of the attacker and victim machines were logged to ensure precise labeling. The
final output is organized into daily CSV files—one per day of traffic collection—with each
row corresponding to one network flow. This structure supports both time-series analysis
and classification tasks.

The dataset also includes metadata and documentation, allowing researchers to asso-
ciate each attack instance with the corresponding tool, method, and expected behavior,
enhancing reproducibility and interpretability [69].

3.3.5 Statistical Overview

The full dataset includes more than 2.8 million records across seven days of capture. Some
days focus primarily on normal traffic, while others are attack-heavy. The largest volume
of attack data corresponds to DoS Hulk, which alone comprises more than 1.5 million
entries, contributing to the dataset’s known class imbalance. On the other hand, attacks
such as Infiltration and Heartbleed are sparsely represented with only a few hundred
samples each, making them valuable for testing model robustness against minority classes
[71].
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Figure 3.1: Distribution of Labels in the Dataset.

3.4 Data Preprocessing
Robust data preprocessing is essential to ensure the quality, integrity, and usability of the
dataset prior to applying any machine learning techniques. In this work, the CIC-IDS2017
dataset was preprocessed in a multi-stage pipeline designed to clean, normalize, structure,
and prepare the data for both centralized and federated learning scenarios. This section
describes the applied preprocessing steps in detail.

3.4.1 Initial Dataset Import and Inspection

The raw CSV dataset was ingested using the pandas library [72]. The first operation
involved stripping all column names of leading and trailing whitespaces, which are known
to cause inconsistencies in programmatic access and analysis. An inspection of the column
names was also performed to verify the presence of essential attributes such as the Label
column, which denotes the ground truth class for each record.

3.4.2 Handling Missing and Infinite Values

Real-world datasets, especially those collected from network traffic environments, are
prone to missing and corrupted values. To handle these issues:

• All instances of positive and negative infinity were first replaced with NaN place-
holders.

• Numerical columns with missing values were then imputed using mean imputation,
ensuring no null entries remained in the feature space.
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This step preserved the size of the dataset while mitigating the impact of incomplete
samples, thus improving generalization and model stability.

3.4.3 Non-Numerical Feature Elimination

To ensure compatibility with neural network architectures, all non-numeric features were
removed, with the exception of the Label column. Specifically, features of type object
or categorical string values were discarded, as they could not be directly processed by
standard numerical models without prior encoding. Additionally, if a Timestamp column
was detected, it was dropped due to its redundancy in temporal inference and unsuitability
for statistical learning without further transformation.

3.4.4 Label Transformation and Integrity Verification

The Label column, which indicates the ground truth class for each record, was first
inspected to ensure its presence and consistency across all instances. A binary transfor-
mation was then applied to standardize the classification task. The CIC-IDS2017 dataset
contains multiple string-based labels representing distinct types of attacks and benign
traffic. For binary classification:

• All attack-related labels were unified and encoded as 1.

• The label "BENIGN" was encoded as 0.

This transformation enabled the use of binary cross-entropy loss and facilitated com-
patibility with sigmoid-activated output layers in neural architectures. All labels were
cast to the int64 type to ensure compatibility with TensorFlow operations [73]. Finally,
the dataset was split into an input feature matrix (X) and a binary target vector (y) to
prepare for supervised learning.

3.4.5 Dimensional Consistency and Validation

Following the cleaning phase, a critical dimensionality check was performed to confirm
that the feature matrix contained exactly 20 columns. This verification step was necessary
to ensure the dataset conformed to the expected model input specification. Any devia-
tions triggered a hard stop in the pipeline, preserving the integrity of the preprocessing
workflow.

3.4.6 Feature Scaling and Normalization

To standardize the scale of feature values and enhance the convergence behavior of neural
models, all input features were normalized using a Min-Max normalization strategy. This
technique scales each feature individually to the range [0, 1], defined as:

x′ = x − min(x)
max(x) − min(x)

This scaling procedure reduces bias toward features with larger magnitudes and ensures
numerical stability during gradient-based optimization.
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3.4.7 Train-Test Stratified Partitioning

In preparation for model training and validation, the dataset was split into training and
testing subsets with an 80/20 ratio. Stratified sampling was employed to maintain the
original class distribution across both partitions. This stratification prevents class imbal-
ance from biasing the evaluation metrics and ensures fair generalization assessments.

3.4.8 Data Type Conversion and Final Checks

To guarantee computational efficiency and hardware compatibility particularly in GPU
environments all feature vectors were converted to the float32 data type. This conver-
sion reduced memory overhead and improved matrix multiplication speed in the training
process. Final integrity checks confirmed the successful completion of all preprocessing
operations before the data was dispatched to the modeling stage.

This preprocessing pipeline ensures that the dataset is clean, balanced, and optimized
for high-performance learning in both centralized and federated environments.

3.5 Feature Selection
Feature selection plays a critical role in intrusion detection systems (IDS), particularly
when working with high-dimensional datasets such as CIC-IDS2017. A well-designed
selection process not only improves computational efficiency and model interpretability
but also enhances generalization by reducing noise and minimizing overfitting. In this
study, we adopted a univariate filter-based approach using the SelectKBest method from
the scikit-learn library [74].

3.5.1 Motivation and Rationale

The CIC-IDS2017 dataset contains a large number of numerical features, many of which
are correlated, redundant, or irrelevant for intrusion classification. Feeding such features
into a neural model without dimensionality reduction can lead to increased training time,
poor convergence, and degraded accuracy. To address this, we evaluated several selection
strategies and chose SelectKBest due to its simplicity, scalability, and ability to work
independently of the underlying machine learning model.

Unlike wrapper or embedded methods, which are computationally expensive and model-
dependent, filter methods like SelectKBest apply statistical techniques to evaluate each
feature independently of the classifier. This allows for a fast, interpretable, and easily
reproducible selection mechanism that is ideal for preprocessing in both centralized and
federated learning settings [75].

3.5.2 Algorithmic Overview of SelectKBest

The SelectKBest method operates by ranking features according to a specified scoring
function and selecting the top k features with the highest scores. Formally, for a feature
set {x1, x2, ..., xn} and a target vector y, the algorithm proceeds as follows:

1. Compute a score si = f(xi, y) for each feature xi using a scoring function f .
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2. Sort the features based on their scores in descending order.

3. Retain the top k features with the highest scores.

In our implementation, the scoring function f is given by mutual_info_classif, which
computes the mutual information between each feature and the target variable [74].

3.5.3 Mutual Information as a Scoring Function

Mutual Information (MI) quantifies the amount of shared information between two ran-
dom variables. For a feature X and a class label Y , MI is defined as:

I(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)

Unlike correlation-based methods, mutual information can capture both linear and non-
linear dependencies. This makes it highly suitable for network traffic data, which often ex-
hibit complex relationships between input features and attack types. The mutual_info_classif
function estimates MI using non-parametric entropy estimators, making it robust to noise
and applicable to both continuous and discrete features [76].

3.5.4 Application and Outcome

The dataset was first normalized using Min-Max scaling [74], and the transformed fea-
tures were then passed to SelectKBest with k = 20 as the desired number of features.
The resulting selection included the most informative features across various traffic flow
metrics, packet-level statistics, and window sizes. The selected features are:

• Destination Port

• Flow Duration

• Total Length of Fwd Packets

• Fwd Packet Length Max

• Fwd Packet Length Mean

• Bwd Packet Length Max

• Flow Bytes/s

• Flow Packets/s

• Flow IAT Mean

• Flow IAT Max

• Fwd IAT Mean

• Fwd IAT Std

• Bwd IAT Max
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• Fwd Header Length

• Bwd Packets/s

• Max Packet Length

• Packet Length Mean

• Packet Length Variance

• Init_Win_bytes_forward

• Init_Win_bytes_backward

These features span both flow-based and statistical descriptors, offering a diverse and
high-informative representation of network behavior. Their selection significantly reduced
the feature space while retaining the essential discriminative characteristics needed for
accurate binary classification.

3.5.5 Justification of Method Selection

SelectKBest with mutual information was chosen over other feature selection methods
due to its:

• Model-independence: It does not rely on a specific machine learning algorithm,
ensuring that the feature selection step remains reusable and modular.

• Non-linear sensitivity: MI captures complex dependencies that simpler tech-
niques such as correlation or variance thresholding cannot detect.

• Computational efficiency: Its runtime is linear in the number of features, making
it scalable to high-dimensional network traffic data.

• Reproducibility: The deterministic nature of SelectKBest ensures that the same
input always leads to the same selected features.

This approach is particularly advantageous in intrusion detection, where the dimension-
ality of features may fluctuate, but real-time detection performance must remain stable,
fast, and interpretable.

3.6 Federated Learning-Based Approach
3.6.1 Introduction

In the realm of cybersecurity threat detection, data privacy is paramount. Traditional cen-
tralized machine learning approaches necessitate aggregating data from multiple sources
into a single repository, posing significant privacy risks. Federated Learning (FL) emerges
as a solution, enabling the development of robust models without compromising data con-
fidentiality. By allowing individual clients to train models locally and share only model
updates, FL ensures that sensitive data remains on-premise, aligning with privacy regu-
lations and reducing the risk of data breaches [77].
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3.6.2 Federated Learning Process

Federated Learning (FL) is an iterative and decentralized machine learning paradigm that
enables multiple clients to collaboratively train a shared model under the orchestration
of a central server while keeping the raw training data localized on edge devices. This
approach enhances data privacy, reduces communication costs, and supports learning
in scenarios with data heterogeneity and distribution constraints. The overall process
comprises several fundamental stages [77], [78]:

1. Initialization: The FL process begins with the initialization of a global model by
the central server. This model is either trained on a small public dataset, randomly
initialized, or pre-trained on a relevant task. The initialized model parameters are
then broadcasted to a selected subset of participating clients. This step sets the
foundation for the collaborative training process.

2. Client Selection and Configuration: Due to resource limitations and communi-
cation overhead, not all clients may participate in every training round. The server
selects a fraction of available clients, often based on criteria such as availability,
computational capability, or network reliability. The selected clients receive the
current global model along with training hyperparameters.

3. Local Training: Each selected client performs model training using its own local
dataset for a predefined number of epochs or steps. This decentralized training phase
ensures that sensitive data remains on the device, aligning with privacy-preserving
goals. During this phase, clients compute updates to the model parameters (e.g.,
gradients or full weight deltas) using stochastic gradient descent (SGD) or other
optimization algorithms.

4. Model Update Transmission: Upon completing local training, clients transmit
their model updates to the central server. These updates typically include the
difference between the locally trained model and the initial global model or the
computed gradients. The exchanged information is usually encrypted or anonymized
to further protect client data privacy and integrity.

5. Aggregation: The server collects the updates from the participating clients and
aggregates them to generate a new global model. The most common aggregation
strategy is Federated Averaging (FedAvg), where the server computes a weighted
average of the client updates, with weights proportional to the size of each client’s
local dataset. More advanced strategies may incorporate trust levels, historical
performance, or robust aggregation techniques to handle stragglers or malicious
updates.

6. Model Redistribution and Convergence Monitoring: The updated global
model is redistributed to clients for the next round of local training. This iterative
process continues for several rounds until a convergence criterion is met, such as min-
imal changes in model accuracy, loss stabilization, or reaching a predefined number
of communication rounds. Throughout the process, optional centralized or feder-
ated evaluation may be performed to monitor model performance on a validation
dataset.
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7. Final Model Deployment: Once convergence is achieved, the final global model
can be deployed for inference across clients or in a central location. Depending on
the application, the model may also be fine-tuned or calibrated further to address
any remaining domain-specific challenges.

This iterative FL process ensures that knowledge is collectively distilled from decen-
tralized and potentially non-IID (independent and identically distributed) data sources
without directly accessing private information, thereby addressing key challenges in mod-
ern machine learning applications involving privacy, scalability, and data ownership.

Figure 3.2: The framework of Federated Approach.

3.6.3 Federated Learning Architectures

Federated Learning (FL) can be systematically categorized according to the distribution
of data among participants and the underlying system topology that governs communica-
tion and model aggregation. These architectural classifications directly impact the design
choices, communication efficiency, privacy guarantees, and applicability of FL across var-
ious domains.

Data Distribution Paradigms:

Data heterogeneity is one of the defining characteristics of FL environments [79]. Based
on how data is distributed across participating entities, FL can be categorized into the
following paradigms:

• Horizontal Federated Learning (HFL): Also referred to as sample-based FL,
this architecture is suitable when different clients share the same feature space but
possess different data instances. For example, multiple hospitals located in different
regions may collect similar types of patient health data (e.g., same features like age,
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blood pressure, or diagnosis categories), but the patient populations differ. In such
settings, model updates benefit from diverse but semantically similar datasets.

• Vertical Federated Learning (VFL): Also known as feature-based FL, this
paradigm applies when different entities hold data with distinct feature spaces but
on the same set of data instances. An example scenario would be a bank and
an e-commerce company that serve the same customer base but collect different
types of information. VFL typically requires secure entity alignment (e.g., using
privacy-preserving record linkage) and encrypted computation methods such as ho-
momorphic encryption or secure multiparty computation.

• Federated Transfer Learning (FTL): FTL is designed for situations where
clients differ both in terms of feature space and data instances. It leverages transfer
learning techniques to facilitate knowledge sharing across heterogeneous datasets.
FTL is particularly useful when overlapping data is minimal or nonexistent, and it
requires sophisticated mapping functions or embedding strategies to align learned
representations across domains.

System Topologies:

The design of communication and coordination mechanisms in FL significantly influences
its scalability, fault tolerance, and privacy robustness [80]. Based on the organizational
structure of the participating entities and servers, FL can be categorized into the following
system topologies:

• Centralized Federated Learning: This is the most widely adopted architec-
ture, wherein a central server orchestrates the entire training process. The server is
responsible for client selection, model distribution, update aggregation, and conver-
gence monitoring. Despite its simplicity and efficiency, centralized FL introduces
a potential single point of failure and may become a performance bottleneck in
large-scale systems.

• Decentralized Federated Learning: In this architecture, there is no central co-
ordinating server. Instead, clients communicate directly in a peer-to-peer manner,
often structured using overlay networks or blockchain-based infrastructures. Each
client exchanges model updates with its peers, and consensus protocols or gossip al-
gorithms are employed for aggregation. While decentralized FL enhances robustness
and reduces reliance on a central entity, it presents challenges in synchronization,
model consistency, and communication overhead.

• Hierarchical Federated Learning: This topology introduces an intermediate
layer—typically composed of edge servers or regional aggregators—between clients
and the central server. Clients send updates to their respective edge nodes, which
perform partial aggregation before forwarding the results to a global server. Hier-
archical FL is particularly well-suited for large-scale or geographically distributed
networks, such as industrial IoT systems, where edge servers reduce latency, balance
loads, and enable local adaptation.

These architectural variants allow FL to be flexibly adapted to a wide range of real-
world scenarios, addressing diverse data distributions, infrastructure limitations, and pri-
vacy requirements. A clear understanding of these paradigms is essential when designing
federated systems tailored to application-specific constraints and goals.



Chapter 3. Methodology of the Federated Learning Approach 53

Figure 3.3: Federated Learning Architecture.

3.6.4 Federated Learning Algorithms

3.6.4.1 Federated Averaging (FedAvg)

FedAvg is the foundational algorithm in FL, where each client performs local training and
the server averages the model updates. Mathematically, the global model updates [77] at
round t is:

w(t+1) =
K∑

k=1

nk

n
w

(t+1)
k

where w
(t+1)
k is the model from client k, nk is the number of data points at client k, and

n = ∑K
k=1 nk.
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Figure 3.4: FedAvg Algorithm.

3.6.4.2 Federated Proximal (FedProx)

FedProx extends FedAvg by adding a proximal term to the local objective, addressing
issues of data heterogeneity [80]:

min
w

fk(w) + µ

2 ∥w − w(t)∥2

where fk(w) is the local loss function, w(t) is the global model at round t, and µ is a
regularization parameter.

Figure 3.5: FedProx Algorithm.

3.6.4.3 Other Variants

• FedNova: Normalizes updates to address client heterogeneity [81].
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• SCAFFOLD: Uses control variates to correct client drift [82].

• FedOpt: Applies advanced optimization techniques like Adam or Yogi at the server
level [83].

3.6.5 Proposed Model

3.6.5.1 Model Overview

The proposed model is a deep feedforward neural network designed for binary classifi-
cation tasks in cybersecurity threat detection. It consists of multiple dense layers with
regularization mechanisms and normalization techniques to enhance generalization and
learning stability. This model is referred to as a Deep Regularized Feedforward Net-
work (DRFN). The architecture is optimized specifically for tabular data extracted from
the CIC-IDS2017 dataset, featuring 20 numerical input features [84].

3.6.5.2 Architectural Design

The architecture of the DRFN is composed of four main hidden layers with ReLU activa-
tions, each followed by batch normalization and dropout layers. The number of neurons
decreases progressively, forming a pyramid-shaped architecture, which encourages hierar-
chical feature learning and prevents overfitting in deeper layers. The output layer uses a
sigmoid activation function to produce a binary class prediction. The model is trained
with the AdamW optimizer, which integrates adaptive learning rates with weight decay
for improved generalization. The complete architecture is summarized below:

• Input Layer: 20 neurons (number of features)

• Hidden Layer 1: Dense(64) + ReLU + BatchNorm + Dropout(0.5)

• Hidden Layer 2: Dense(32) + ReLU + BatchNorm + Dropout(0.4)

• Hidden Layer 3: Dense(16) + ReLU + BatchNorm + Dropout(0.3)

• Output Layer: Dense(1) + Sigmoid
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Figure 3.6: A schematic representation of the Deep Regularized Feedforward Network.

3.6.5.3 Model Optimization and Stability

The choice of AdamW as the optimization algorithm addresses several shortcomings of
the standard Adam optimizer [85], particularly in preventing overfitting due to uncon-
trolled parameter magnitudes. Combined with dropout regularization and ℓ2 penalties,
the model remains stable and generalizes well even on imbalanced datasets. Batch normal-
ization accelerates convergence [86] and ensures consistent activation distributions during
training. Gradient clipping is applied to prevent exploding gradients in deep configura-
tions, ensuring robustness across various federated learning rounds.

3.6.5.4 Comparative Analysis with Other Neural Models

• Comparison with MLP (Standard Feedforward Network)
While traditional MLPs consist of dense layers without regularization or normal-
ization, the DRFN integrates dropout, batch normalization, and weight decay, ad-
dressing overfitting and vanishing gradients. Empirical tests show that standard
MLPs are prone to overfitting on tabular data without sophisticated regularization
mechanisms, which this architecture successfully overcomes.

• Comparison with LSTM and GRU
Although LSTM and GRU architectures are powerful for sequence modeling [87],
[88], their applicability to static, tabular network traffic data is limited. Recur-
rent architectures such as LSTM and GRU tend to overfit and exhibit increased
computational complexity when applied to non-sequential data. Moreover, the ab-
sence of temporal dependencies in the input features makes such recurrent layers
unnecessarily complex and inefficient for the target task.

• Comparison with CNN-based Architectures
CNNs are effective in capturing local spatial patterns [89] and are predominantly
used in image or sequential signal processing. When applied to tabular data, CNNs
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offer no inherent advantage and often underperform due to the lack of spatial cor-
relations between features. In contrast, the DRFN is tailored for capturing global
feature interactions through fully connected layers, making it more suitable for
network-based cybersecurity applications.

• Comparison with Hybrid or Attention-Based Models
Hybrid models or those incorporating attention mechanisms [90] often achieve state-
of-the-art performance but introduce substantial architectural complexity, compu-
tational overhead, and training instability in federated settings. The DRFN strikes
a balance between performance and simplicity, ensuring compatibility with limited-
resource clients in federated environments while maintaining high classification ac-
curacy.

Figure 3.7: Comparative Table of Neural Models for Cybersecurity Threat Detection.

3.6.5.5 Why DRFN Outperforms Simpler Models

The DRFN’s superior performance lies in its integration of best practices from deep learn-
ing research—namely, depth with width reduction, dropout regularization, batch normal-
ization, weight decay, and a robust optimizer. These techniques jointly enhance its capac-
ity to learn non-linear feature interactions without sacrificing generalization. Empirical
results confirm that the DRFN consistently achieves higher metrics (accuracy, F1-score,
AUC-ROC) compared to simpler MLPs and even LSTMs/GRUs when applied to struc-
tured, tabular cybersecurity data.

In conclusion, the DRFN architecture offers a robust, generalizable, and computa-
tionally efficient solution for detecting cybersecurity threats in tabular network traffic
datasets. It combines the strengths of deep learning regularization techniques with archi-
tectural simplicity and is well-suited for federated deployment, outperforming standard
MLPs and sequence-oriented models like LSTM or GRU in this specific domain.
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3.6.6 Global Architecture

This schema summarizes the global architecture of the federated learning system using
the CIC-IDS-2017 dataset, involving Data Preprocessing, 5 Clients, and a Server. The
system iterates over 15 rounds, employing FedAvg or FedProx strategies.

Figure 3.8: Global Architecture Schema.

3.6.7 Challenges and Solutions in Federated Learning

Federated Learning (FL) presents a paradigm shift in distributed machine learning by
enabling collaborative model training without the need to centralize raw data. However,
the deployment of FL in real-world scenarios faces several critical challenges, which must
be addressed to ensure efficient, robust, and secure learning outcomes.

• Data Heterogeneity: One of the foremost challenges in FL is the presence of non-
independent and identically distributed (non-IID) data across participating clients.
Unlike traditional centralized learning where data distribution is typically assumed
to be uniform, clients in FL often possess data that vary significantly in size, feature
distribution, and label proportions due to differing local environments and user be-
haviors. This heterogeneity can cause model updates to diverge during aggregation,
leading to slower convergence rates and degraded global model performance. To
address these issues, advanced optimization algorithms have been proposed. For
instance, FedProx introduces a proximal term to the local objective function, which
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constrains local updates to remain close to the global model, thereby reducing diver-
gence caused by heterogeneous data distributions. Similarly, SCAFFOLD utilizes
control variates to correct client drift by estimating the update direction more ac-
curately, which mitigates the bias introduced by non-IID data. These methods
enhance the stability and generalizability of the federated model in heterogeneous
environments [91].

Figure 3.9: Data Heterogeneity.

• Communication Efficiency: Another significant bottleneck in FL arises from
the high communication overhead involved in frequent model parameter exchanges
between the central server and numerous distributed clients. As FL often oper-
ates over bandwidth-constrained networks, continuous transmission of large model
updates can result in latency and increased operational costs. To improve com-
munication efficiency, various techniques have been developed. Model compression
approaches, such as quantization, sparsification, and pruning, reduce the size of
the transmitted updates without severely impacting model accuracy. For example,
gradient quantization lowers the precision of model parameters, thereby decreas-
ing communication load. Moreover, asynchronous update schemes allow clients to
communicate with the server independently and at different time intervals, which
alleviates synchronization delays and supports scalability in heterogeneous network
conditions. Additionally, periodic aggregation strategies that limit communication
rounds by allowing multiple local updates before synchronization can significantly
reduce communication frequency[92].
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Figure 3.10: Federated Learning Communication Efficiency.

• Privacy and Security: Although FL inherently enhances data privacy by keep-
ing raw data localized, the exchange of model updates can still pose privacy risks.
Attackers may exploit gradient or parameter updates to infer sensitive client infor-
mation through reconstruction or membership inference attacks. To mitigate such
vulnerabilities, privacy-preserving mechanisms have been integrated into FL frame-
works. Differential privacy (DP) introduces carefully calibrated noise into model
updates or intermediate computations to provide quantifiable privacy guarantees,
ensuring that individual data contributions remain indistinguishable [93]. Secure
aggregation protocols further safeguard privacy by enabling the server to aggregate
client updates in an encrypted manner, preventing exposure of individual updates
even if the server is compromised. Complementary security measures include robust
anomaly detection techniques to identify malicious clients and Byzantine-resilient
aggregation algorithms that can tolerate adversarial behaviors without corrupting
the global model [94].
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Figure 3.11: Federated Learning Combined with Privacy-Enhancing Technologies.

In summary, the practical adoption of Federated Learning necessitates overcoming fun-
damental challenges associated with data heterogeneity, communication constraints, and
privacy risks. Ongoing research continues to propose novel algorithms and protocols that
balance these competing demands, striving for FL systems that are both effective in
learning and resilient in diverse, real-world deployment scenarios.

3.6.8 Federated Learning in Comparison to Traditional Machine Learning
and Distributed Machine Learning

Federated Learning (FL) represents a significant evolution in the field of machine learn-
ing by addressing critical limitations associated with data privacy, ownership, and com-
munication overhead. To fully appreciate its advantages and trade-offs, it is essential
to distinguish FL from traditional centralized Machine Learning (ML) and conventional
Distributed Machine Learning (DML) paradigms [78], [80].

3.6.8.1 Traditional Machine Learning

In traditional machine learning, all training data is centrally collected and stored in a
single repository where the model is trained. This approach assumes unrestricted access
to complete and clean datasets, typically maintained in high-performance data centers.
While this centralized method allows for efficient training and model optimization, it
poses substantial privacy and scalability challenges. Sensitive data such as healthcare
records, financial transactions, or user behavior logs must be transferred to the central
server, violating privacy regulations such as GDPR or HIPAA and increasing the risk of
data breaches [79]. Moreover, centralizing vast volumes of data can be computationally
intensive and inefficient, particularly in scenarios involving edge devices or geographically
distributed sources.
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3.6.8.2 Distributed Machine Learning

Distributed Machine Learning aims to overcome the scalability bottlenecks of traditional
ML by dividing the training workload across multiple compute nodes. In DML, data is
often partitioned and distributed across worker nodes, which collaborate under a param-
eter server or similar architecture [95]. Each node trains a subset of the data, and their
gradients or model parameters are periodically synchronized through a central coordina-
tor. Although DML improves computational efficiency and reduces training time, it still
typically requires access to raw data, which may be transmitted across networked systems,
raising similar privacy concerns as centralized ML [80]. Furthermore, DML architectures
often assume a homogeneous and stable network environment, making them less suitable
for heterogeneous and dynamic edge devices.

3.6.8.3 Federated Learning

Federated Learning introduces a paradigm shift by enabling collaborative model train-
ing without requiring data centralization. Instead of sending raw data to the server,
FL orchestrates local training on client devices and transmits only model updates (e.g.,
weights or gradients) to a central aggregator [77]. This fundamental difference offers
strong privacy benefits, as raw data remains on the client side, and supports compliance
with data protection laws [78]. FL is inherently more resilient to data heterogeneity,
network variability, and client unavailability, as it is designed to operate in decentralized
and resource-constrained environments such as mobile phones, IoT devices, or distributed
sensors [79].

Compared to DML, FL introduces additional challenges, including non-IID data dis-
tributions, limited communication bandwidth, and variable client reliability. However,
recent advances in model compression, secure aggregation, and personalization techniques
are addressing these limitations, making FL increasingly viable for real-world applications
[80], [92].

3.6.8.4 Comparative Summary

Figure 3.12: Comparison of Traditional ML, Distributed ML, and Federated Learning.

In summary, while traditional ML and DML approaches are effective in high-performance
centralized settings, FL emerges as a promising alternative for privacy-sensitive, dis-
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tributed, and resource-constrained environments. Its unique design enables collaborative
intelligence without compromising user privacy or data sovereignty [78], [80].

3.7 Conclusion
Federated learning represents a transformative solution for developing secure and privacy-
preserving intrusion detection systems in distributed environments. By eliminating the
need for centralized data aggregation, it reduces the risks of data breaches and ensures
compliance with privacy regulations. The integration of advanced preprocessing, feature
selection, and deep learning within the federated setting enables the construction of robust
models that can adapt to diverse network conditions and attack patterns. Overall, this
methodology offers an effective balance between data privacy, computational efficiency,
and detection accuracy in modern cybersecurity applications.
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Chapter 4
Implementation and Results

4.1 Introduction
This chapter outlines the implementation and evaluation of a federated learning system for
cybersecurity using the Flower framework, TensorFlow, Python, and Jupyter Notebooks
in Anaconda Navigator. We prepared distributed datasets across five clients, trained a
neural network using Federated Averaging (FedAvg) and Federated Proximal (FedProx)
strategies, and evaluated performance through metrics like accuracy, precision, recall,
and F1-score. Visualizations, including confusion matrices, support the analysis. The
results show the system’s effectiveness in handling non-IID data, making it suitable for
privacy-sensitive cybersecurity applications.

4.2 Environment and development tools
For the implementation of the process presented in the previous chapter, we used a set
of languages, programming environments, and tools that are often used in deep learning
projects.

4.2.1 Anaconda Navigator

Anaconda Navigator is a desktop graphical user interface included with the Anaconda
distribution, which facilitates the management of environments, packages, and applica-
tions without requiring command-line interactions. It simplifies dependency handling and
environment isolation, which is particularly beneficial in machine learning workflows that
rely on specific library versions. Anaconda also streamlines the installation and execution
of Jupyter Notebooks, making it a preferred choice for rapid prototyping and experimen-
tation.

4.2.2 Python

Python is a high-level, interpreted programming language widely adopted in the field
of artificial intelligence and data science. Developed by Guido van Rossum in the late
1980s, Python emphasizes code readability and simplicity of syntax, allowing developers
to express complex logic with fewer lines of code compared to languages like Java or C++
artima. Its extensive ecosystem of libraries, including NumPy, Pandas, Scikit-learn, and
TensorFlow, makes it an indispensable tool for implementing and experimenting with
deep learning models.
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4.2.3 Jupyter Notebook

Jupyter Notebook is an open-source web-based interactive computing environment that
allows users to combine live code, explanatory text, and visualizations in a single docu-
ment. It is particularly advantageous for data exploration, debugging, and iterative de-
velopment of machine learning models. Its support for multiple programming languages
and seamless integration with libraries like Matplotlib and Seaborn enables detailed data
analysis and model evaluation in real time.

4.2.4 TensorFlow

TensorFlow is an open-source deep learning library developed by the Google Brain team
and released in 2015. Designed to support a wide range of machine learning tasks, Ten-
sorFlow is particularly efficient for constructing and deploying deep neural networks. It
provides a flexible architecture that enables deployment across various platforms—from
desktops to edge devices—and supports both eager execution and computational graph-
based workflows. Its scalability and optimization capabilities make it well-suited for
training deep models on large datasets in distributed environments [96].

4.2.5 Flower

Flower (FLWR) is a federated learning framework designed to enable efficient experi-
mentation and production-scale deployment of FL systems. It provides a flexible and
extensible API that supports the implementation of custom client and server strategies, in-
cluding aggregation methods, evaluation protocols, and communication patterns. Flower
abstracts much of the underlying complexity involved in federated learning, allowing re-
searchers to focus on model design and performance evaluation. Its compatibility with
existing machine learning frameworks such as TensorFlow and PyTorch further facilitates
integration into established workflows [97].

One of Flower’s key strengths is its modular architecture, which separates the roles of
clients and servers while enabling seamless interaction. The framework supports a variety
of federated optimization algorithms, such as Federated Averaging (FedAvg) and Feder-
ated Proximal (FedProx), and allows users to define custom strategies tailored to specific
use cases, like handling non-IID data distributions or ensuring privacy constraints. This
modularity is particularly valuable in domains like cybersecurity, where data heterogeneity
and regulatory compliance are critical.

Flower’s communication layer is built to be robust and scalable, supporting synchronous
and asynchronous training modes over TCP/IP. It includes built-in tools for client sam-
pling, configuration broadcasting, and metrics aggregation, which streamline the coordi-
nation of distributed training across multiple devices. The framework also emphasizes
security and privacy, leveraging techniques like secure aggregation and local differential
privacy when integrated with appropriate libraries, making it suitable for sensitive appli-
cations.

Additionally, Flower offers extensive documentation and a growing ecosystem of exten-
sions, such as Flower-SuperLink for production-grade deployments, enhancing its usability
for both research and real-world applications. Its open-source nature fosters community
contributions, ensuring continuous improvement and adaptation to emerging FL chal-
lenges. By providing a unified platform, Flower lowers the barrier to entry for federated
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learning, enabling rapid prototyping and deployment across diverse hardware environ-
ments.

4.3 Implementation of Federated Learning using Flower
Framework

The proposed system utilizes a federated learning (FL) architecture implemented through
the Flower framework [97], an open-source platform renowned for its flexibility and scal-
ability in decentralized machine learning. Flower facilitates the training of models across
multiple heterogeneous clients while ensuring data privacy by keeping raw data local
to each device—a critical feature for cybersecurity applications where sensitive network
traffic data must comply with strict locality and regulatory constraints. The implementa-
tion comprises five geographically and statistically diverse clients, each operating on local
datasets, coordinated by a central server that aggregates model updates.

Flower’s modular design allows for the integration of custom strategies and evaluation
protocols. Two federated optimization approaches are employed: a customized Feder-
ated Averaging (FedAvg) algorithm and a Federated Proximal (FedProx) variant with a
proximal regularization term. This dual-strategy setup enables a comparative analysis
of weighted averaging versus proximal regularization, particularly effective for handling
non-independent and identically distributed (non-IID) data, a prevalent challenge in cy-
bersecurity due to varying attack patterns and network conditions.

4.3.1 Server Design

The server extends the flwr.server.strategy.FedAvg and flwr.server.strategy.FedProx
classes, leveraging Flower’s strategy interface to implement custom aggregation and eval-
uation logic.

• FedAvg Aggregation: The aggregate_fit method is overridden to perform
weighted averaging of client model parameters based on local sample sizes. Com-
prehensive logging tracks performance metrics—accuracy, precision, recall, F1-score,
area under the ROC curve (AUC-ROC), and log loss—across up to 50 communica-
tion rounds, facilitating convergence monitoring.

• FedProx Integration: The FedProx strategy augments the local loss with a prox-
imal term Lprox = Llocal + µ

2 w − w2
global, where µ = 0.1 penalizes deviations from the

global model, enhancing stability in non-IID settings. Aggregation mirrors FedAvg,
with the proximal parameter broadcast to clients.

• Model Checkpointing and Visualization: Confusion matrices and trend plots
of metrics are generated per round, stored in a timestamped directory, supporting
longitudinal analysis.

• Client Sampling and Configuration: All five clients participate per round
(fraction_fit = 1.0) to maximize data utilization. A configuration dictionary,
including feature indices and hyperparameters (e.g., prox_mu), is broadcast to syn-
chronize client environments.
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• Convergence-Based Stopping: Training can terminate before the 50-round limit
if convergence is detected. The server monitors accuracy and log loss differences
between consecutive rounds, stopping when both differences are ≤ 0.001. This
adaptive mechanism, activated after the second round, optimizes resource use by
halting when further improvements are negligible.

The training spans up to 50 rounds, with weights updated and evaluated after each
round, though it may end earlier due to convergence, allowing a robust comparison of
FedAvg and FedProx efficacy on non-IID cybersecurity data.

4.3.2 Client Configuration

Clients, subclassed from flwr.client.NumPyClient, operate autonomously on local datasets
loaded from CSV files (e.g., subset_1.xls to subset_5.xls).

• Data Processing: Local datasets undergo MinMax normalization and are split
into training and validation subsets (80%/20%) with stratification.

• Model Architecture: A feedforward neural network is used, featuring:
– An input layer with 20 features,
– Three hidden layers (64, 32, 16 neurons) with ReLU activations, L2 regular-

ization, batch normalization, and dropout rates (0.5, 0.4, 0.3),
– A sigmoid output for binary classification.

• Training Protocol: The AdamW optimizer (learning rate: 0.0003, weight decay:
0.005) drives 6 local epochs with a batch size of 32, enhanced by early stopping and
learning rate scheduling.

• FedProx Regularization: Clients implement the proximal term with µ = 0.1,
stabilizing training in heterogeneous contexts.

• Metrics and Visualization: Class weights address imbalance, and clients log met-
rics (accuracy, precision, recall, F1-score, AUC-ROC, log loss), generating confusion
matrices and plots locally.

• Robustness: Data and weights are cast to float32, with error handling for incon-
sistencies.

4.3.3 Communication Flow and Synchronization

The FL system operates over TCP on localhost:8082, with clients registering and ex-
changing global weights and configurations synchronously.

• Clients receive global weights and strategy-specific parameters (e.g., prox_mu).

• Local training aligns with the active strategy (FedAvg or FedProx).

• Updated parameters and metrics are sent back to the server, ensuring temporal
alignment and robust evaluation.

This implementation harnesses Flower’s scalability and security, with the convergence-
based stopping enhancing efficiency for decentralized cybersecurity model training.
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4.4 Results
This section shows the obtained results after training and testing our federated learning
based model.

4.4.1 Performance Evaluation

4.4.1.1 FedAvg

The following analysis evaluates the performance of a federated learning experiment us-
ing the FedAvg algorithm, conducted over 15 rounds with 5 clients, as indicated by the
successful aggregation of results without failures.

1. Clients Metrics:

• Client1:

Figure 4.1: Metrics Plot Client 1.

Confusion Matrix:
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Figure 4.2: Confusion Matrix Client 1.

• Client3:

Figure 4.3: Metrics Plot Client 3.

Confusion Matrix:
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Figure 4.4: Confusion Matrix Client 3.

• Client5:

Figure 4.5: Metrics Plot Client 5.

Confusion Matrix:
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Figure 4.6: Confusion Matrix Client 5.

Analysis:

• Loss: The log loss performance is characterized by an overall decreasing trend,
starting from around 0.18 and dropping to approximately 0.15 across the 15
rounds.
Observation: The log loss decreases overall with some fluctuations, indicating
improved model performance over the rounds.

• Accuracy: The accuracy performance shows an increase from approximately
0.985 to 0.92, with a peak around round 6 before stabilizing with slight varia-
tions.
Observation: Accuracy rises initially, peaking around round 6, and then sta-
bilizes with minor fluctuations throughout the rounds.

• F1 Score: The F1 score performance improves from about 0.85 to 0.90, peak-
ing around round 6 and then stabilizing with minor fluctuations.
Observation: The F1 score increases steadily, reaching a peak around round
6, followed by stabilization with slight variations.

• AUC-ROC, Precision, Recall : AUC-ROC performance improves from
0.974 to 0.986, peaking around round 6 and then stabilizing. Precision perfor-
mance fluctuates between 0.83 and 0.90 without a clear upward trend. Recall
performance increases from 0.775 to 0.96, showing a general upward trend with
some variability.
Observation: AUC-ROC improves and stabilizes after an initial rise, preci-
sion remains volatile, and recall shows a consistent upward trend with some
fluctuations.
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Clients Performance:
The overall performance of the clients demonstrates improvement across most met-
rics over the 15 rounds. Accuracy, F1 score, and AUC-ROC show initial gains
with subsequent stabilization, while recall exhibits a consistent upward trend. Log
loss decreases, suggesting better model fit, whereas precision remains inconsistent
without a clear improvement pattern.

2. Global Metrics:

Figure 4.7: Server Metrics Plot.

Confusion Matrix:
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Figure 4.8: Server Confusion Matrix.

Analysis:

• Loss: The aggregated log loss performance starts at around 0.425 and de-
creases to approximately 0.25 across the 15 rounds, with noticeable fluctua-
tions.
Observation: The log loss shows a general downward trend with some vari-
ability, suggesting an overall improvement in model performance.

• Accuracy: The aggregated accuracy performance increases from about 0.81
to 0.92, peaking around round 6 before stabilizing with slight variations.
Observation: Accuracy improves significantly, peaking around round 6, and
then remains relatively stable with minor fluctuations.

• F1 Score: The aggregated F1 score performance rises from approximately 0.68
to 0.82, peaking around round 6 and then stabilizing with minor fluctuations.
Observation: The F1 score increases steadily, reaching a peak around round
6, followed by stabilization with slight variations.

• AUC-ROC, Precision, Recall: AUC-ROC performance improves from 0.950
to 0.990, peaking around round 6 and then stabilizing. Precision performance
fluctuates between 0.60 and 0.80 with no clear upward trend. Recall perfor-
mance increases from 0.775 to 0.90, showing a general upward trend with some
variability.
Observation: AUC-ROC improves and stabilizes after an initial rise, preci-
sion remains volatile without a consistent trend, and recall shows a consistent
upward trend with some fluctuations.
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Global Performance:
The global performance indicates overall improvement across most metrics over the
15 rounds. Accuracy, F1 score, and AUC-ROC show initial gains with subsequent
stabilization, while recall exhibits a consistent upward trend. Log loss decreases,
reflecting better model fit, whereas precision remains inconsistent without a clear
improvement pattern.

Overall Assessment:
The overall assessment of the federated learning experiment using the FedAvg algorithm

reveals a generally positive trend in model performance across both client and global
metrics over the 15 rounds. For clients, accuracy, F1 score, and AUC-ROC show initial
improvements with stabilization, while recall exhibits a consistent upward trend, and log
loss decreases, indicating enhanced model fit. Precision, however, remains volatile without
a clear improvement pattern. Similarly, at the global level, accuracy, F1 score, and AUC-
ROC demonstrate significant initial gains followed by stabilization, with recall showing a
steady increase. Global log loss also decreases, reflecting better overall model performance,
while precision continues to fluctuate without a consistent trend. The alignment between
client and global metrics suggests effective aggregation, with the model benefiting from
the federated learning approach, though precision’s instability across both levels indicates
a potential area for further optimization.

4.4.1.2 FedProx

The following analysis evaluates the performance of a federated learning experiment using
the FedProx algorithm, conducted over 15 rounds with 5 clients, as indicated by the
successful aggregation of results without failures.

1. Clients Metrics:

• Client1:

Figure 4.9: Metrics Plot Client 1.
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Confusion Matrix:

Figure 4.10: Confusion Matrix Client 1.

• Client2:

Figure 4.11: Metrics Plot Client 2.

Confusion Matrix:
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Figure 4.12: Confusion Matrix Client 2.

• Client5:

Figure 4.13: Metrics Plot Client 5.

Confusion Matrix:
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Figure 4.14: Confusion Matrix Client 5.

Analysis:

• Loss: The log loss performance starts at around 0.19 and decreases to approx-
imately 0.13 across the 15 rounds, with some fluctuations.
Observation: The log loss shows a general downward trend with some vari-
ability, indicating improved model performance over the rounds.

• Accuracy: The accuracy performance increases from about 0.89 to 0.925,
peaking around round 6 before stabilizing with slight variations.
Observation: Accuracy rises initially, peaking around round 6, and then sta-
bilizes with minor fluctuations throughout the rounds.

• F1 Score: The F1 score performance improves from approximately 0.84 to
0.91, peaking around round 6 and then stabilizing with minor fluctuations.
Observation: The F1 score increases steadily, reaching a peak around round
6, followed by stabilization with slight variations.

• AUC-ROC, Log Loss, Precision, Recall : AUC-ROC performance im-
proves from 0.970 to 0.988, peaking around round 6 and then stabilizing. Preci-
sion performance fluctuates between 0.82 and 0.90 with no clear upward trend.
Recall performance increases from 0.75 to 0.96, showing a general upward trend
with some variability.
Observation: AUC-ROC improves and stabilizes after an initial rise, preci-
sion remains volatile without a consistent trend, and recall shows a consistent
upward trend with some fluctuations.

Clients Performance:
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The overall performance of the clients demonstrates improvement across most met-
rics over the 15 rounds. Accuracy, F1 score, and AUC-ROC show initial gains
with subsequent stabilization, while recall exhibits a consistent upward trend. Log
loss decreases, suggesting better model fit, whereas precision remains inconsistent
without a clear improvement pattern.

2. Global Metrics:

Figure 4.15: Server Metrics Plot.

Confusion Matrix:
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Figure 4.16: Server Confusion Matrix.

Analysis:

• Loss: The aggregated log loss performance starts at around 0.35 and decreases
to approximately 0.20 across the 15 rounds, with some fluctuations.
Observation: The log loss shows a general downward trend with some vari-
ability, indicating improved model performance over the rounds.

• Accuracy: The aggregated accuracy performance increases from about 0.89
to 0.94, peaking around round 6 before stabilizing with slight variations.
Observation: Accuracy improves significantly, peaking around round 6, and
then remains relatively stable with minor fluctuations.

• F1 Score: The aggregated F1 score performance rises from approximately 0.70
to 0.86, peaking around round 6 and then stabilizing with minor fluctuations.
Observation: The F1 score increases steadily, reaching a peak around round
6, followed by stabilization with slight variations.

• AUC-ROC, Log Loss, Precision, Recall: AUC-ROC performance im-
proves from 0.965 to 0.990, peaking around round 6 and then stabilizing. Preci-
sion performance fluctuates between 0.84 and 0.94 with no clear upward trend.
Recall performance increases from 0.65 to 0.90, showing a general upward trend
with some variability.
Observation: AUC-ROC improves and stabilizes after an initial rise, preci-
sion remains volatile without a consistent trend, and recall shows a consistent
upward trend with some fluctuations.

Global Performance:
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The global performance indicates overall improvement across most metrics over the
15 rounds. Accuracy, F1 score, and AUC-ROC show initial gains with subsequent
stabilization, while recall exhibits a consistent upward trend. Log loss decreases,
reflecting better model fit, whereas precision remains inconsistent without a clear
improvement pattern.

Overall Assessment: The overall assessment of the federated learning experiment
using the FedProx algorithm reveals a generally positive trend in model performance
across both client and global metrics over the 15 rounds. For clients, accuracy, F1 score,
and AUC-ROC show initial improvements with stabilization, while recall exhibits a con-
sistent upward trend, and log loss decreases, indicating enhanced model fit. Precision,
however, remains volatile without a clear improvement pattern. Similarly, at the global
level, accuracy, F1 score, and AUC-ROC demonstrate significant initial gains followed by
stabilization, with recall showing a steady increase. Global log loss also decreases, re-
flecting better overall model performance, while precision continues to fluctuate without
a consistent trend. The alignment between client and global metrics suggests effective
aggregation, with FedProx demonstrating robust performance improvements, though pre-
cision’s instability across both levels highlights a potential area for further refinement.

4.5 Remark
The federated learning (FL) system implemented using the Flower framework effectively
addresses decentralized model training for cybersecurity, accommodating data privacy
and heterogeneity. Comparative analysis of Federated Averaging (FedAvg) and Federated
Proximal (FedProx) shows both achieve significant improvements in accuracy, F1 score,
and AUC-ROC within six rounds, with stable performance thereafter and consistent re-
call gains. Log loss decreases notably, but precision remains volatile, likely due to class
imbalances in non-IID cybersecurity data. FedProx slightly outperforms FedAvg, with
lower log loss (0.13 vs. 0.15 for clients, 0.20 vs. 0.25 globally) and higher accuracy (0.925
vs. 0.92 for clients, 0.94 vs. 0.92 globally), owing to its proximal regularization (µ = 0.1).
Flower’s modular design, convergence-based stopping, and robust communication enhance
efficiency and scalability. Future work should address precision instability through class
rebalancing and explore hybrid strategies or enhanced privacy techniques.

4.6 Conclusion
This study demonstrates a robust FL system for cybersecurity using Flower, comparing
FedAvg and FedProx across five heterogeneous clients. Both algorithms improve accu-
racy, F1 score (up to 0.86), and AUC-ROC, with FedProx showing marginal advantages
in non-IID settings due to proximal regularization. Log loss decreases significantly, though
precision volatility persists, indicating a need for further optimization. Flower’s flexibil-
ity and efficiency make it ideal for privacy-sensitive applications. Future enhancements
could include hybrid algorithms and privacy mechanisms to strengthen performance and
applicability in real-world cybersecurity scenarios.
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General Conclusion

In conclusion, this dissertation has comprehensively explored the integration of federated
learning (FL) and artificial intelligence (AI) technologies within the domain of cyber-
security, emphasizing their transformative potential in enhancing threat detection and
safeguarding modern digital ecosystems. The research has systematically examined the
core components of cybersecurity challenges, the architecture of federated learning sys-
tems, and the pivotal role of AI, particularly deep learning, in addressing evolving cyber
threats.

The study has demonstrated how FL-powered solutions can be leveraged to enhance
cybersecurity performance, ensure data privacy, and address critical challenges such as
sophisticated cyber attacks. These solutions manifest in several key ways:

Cyber Threat Detection:

• Federated learning enables collaborative training across decentralized entities, al-
lowing the identification of unusual network patterns and potential threats without
compromising sensitive data.

• By analyzing distributed datasets, such as network logs and user behavior profiles,
FL-based models can flag malicious activities, including malware, phishing, and
advanced persistent threats, while preserving the privacy and security of proprietary
information.

Data Privacy and Compliance:

• FL eliminates the need for centralized data aggregation, significantly reducing the
risk of data breaches and ensuring compliance with stringent privacy regulations
such as GDPR.

• The exchange of model updates rather than raw data maintains data locality, en-
abling organizations to meet regulatory and ethical standards while fostering trust
in collaborative cybersecurity frameworks.

Model Robustness and Scalability:
Performance Optimization:
By harnessing these FL-powered capabilities, cybersecurity practitioners can enhance

threat detection, improve data privacy, and build resilient defenses against an ever-
evolving threat landscape. The integration of AI and FL into cybersecurity frameworks
leads to significant improvements in system reliability, regulatory compliance, and opera-
tional efficiency, paving the way for secure and privacy-preserving digital infrastructures.

The findings and insights presented in this dissertation serve as a valuable resource for
researchers, policymakers, and industry professionals in the cybersecurity sector, guiding
the adoption of FL-based solutions for enhanced threat detection and mitigation. As the
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cyber threat landscape continues to evolve, the synergistic relationship between federated
learning and AI technologies will play a crucial role in shaping the future of cybersecurity.
This research provides a robust foundation for further innovations, fostering advancements
toward a more secure, adaptive, and ethically responsible digital ecosystem.
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