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Abstract 

 
Medical image segmentation is one of the most challenging aspects of image analysis, as 

accurate segmentation of skin lesions is a key step for early and effective diagnosis of skin 

cancer. This field has witnessed significant progress thanks to advances in convolutional 

neural networks (CNNs), which have demonstrated high efficiency in extracting local 

features. However, their ability to capture long-term dependencies within images is limited. 

Transformer architectures, on the other hand, have demonstrated superiority in modeling 

global context, but they lack inductive biases such as autotranslation and localization, 

which reduces their effectiveness, especially when dealing with limited medical data. A 

promising solution to overcome these challenges is the combination of Transformers and 

CNNs within a hybrid architecture that leverages the advantages of both.  In this context, 

this work proposes a two-branch model that combines ResNet in the CNN branch to extract 

local features and DeiT in the Transformer branch to capture global dependencies. The 

outputs of the two branches are combined through the BiFusion module, which integrates 

local and global information to enhance segmentation accuracy. When evaluated on the 

ISIC 2017 dataset, the model outperformed traditional CNN or Transformer-only based 

models, confirming the effectiveness of this combination in improving skin lesion 

segmentation. 

 

Keywords: Medical image segmentation, skin cancer, convolutional neural networks, 

transformers, hybrid architecture, segmentation accuracy. 
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 ــملخ  1  ص ــ
 

تعُد تجزئة الصور الطبية من أصعب التحديات في تحليل الصور، حيث إن التجزئة الدقيقة لآفات الجلد تعُد 

خطوة أساسية للتشخيص المبكر والفعال لسرطان الجلد. وقد شهد هذا المجال تطورًا ملحوظًا بفضل التقدم في  

، التي أظهرت كفاءة عالية في استخراج السمات المحلية. ومع ذلك، (CNNs)   الشبكات العصبية التلافيفية

المحولات بنى  أظهرت  المقابل،  في  الصور.  داخل  المدى  طويلة  التبعيات  التقاط  في  محدودة  قدرتها   فإن 

(Transformers)    الترجمة مثل  الاستقرائية  التحيزات  إلى  تفتقر  لكنها  العالمي،  السياق  نمذجة  في  تفوقًا 

عاليتها خاصة عند التعامل مع بيانات طبية محدودة. ومن بين الحلول الواعدة  التلقائية والمحلية، مما يقلل من ف

ضمن هيكلية هجينة تسمح بالاستفادة من مزايا    CNNsلتجاوز هذه التحديات، يبرز الدمج بين المحولات و

منهما بين  .كل  يجمع  الفروع  ثنائي  نموذجًا  العمل  هذا  يقترح  السياق،  هذا  فرع ResNet في     CNN في 

و  المحلية،  السمات  فرع     DeiTلاستخلاص  دمج    Transformer    في  ويتم  العالمية.  التبعيات  لالتقاط 

، التي تدمج المعلومات المحلية والعالمية بشكل تكاملي لتعزيز  BiFusion    مخرجات الفرعين من خلال وحدة

ا على النماذج التقليدية المعتمدة  ، أظهر تفوقً ISIC 2017 دقة التجزئة. عند تقييم النموذج على مجموعة بيانات

 .فقط، مما يؤكد فعالية هذا الدمج في تحسين تجزئة آفات الجلد Transformer أو CNN على

 

طان الجلد ،الشبكات العصبية التلاففية ،المحولات ، نموذج  ، سرتجزئة الصور الطبية    :الكلمات المفتاحية

 .ة التجزئةدقهجين ،
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Résumé 

 
     La segmentation des images médicales est l'un des aspects les plus complexes de 

l'analyse d'images, car une segmentation précise des lésions cutanées est essentielle pour 

un diagnostic précoce et efficace du cancer de la peau. Ce domaine a connu des progrès 

significatifs grâce aux avancées des réseaux de neurones convolutifs (CNN), qui ont 

démontré une grande efficacité dans l'extraction de caractéristiques locales. Cependant, 

leur capacité à capturer les dépendances à long terme au sein des images est limitée. Les 

architectures de type Transformer, en revanche, ont démontré leur supériorité dans la 

modélisation du contexte global, mais elles manquent de biais inductifs tels que 

l'autotraduction et la localisation, ce qui réduit leur efficacité, notamment lorsqu'il s'agit de 

données médicales limitées. Une solution prometteuse pour surmonter ces défis est la 

combinaison de Transformers et de CNN au sein d'une architecture hybride exploitant les 

avantages des deux.  Dans ce contexte, ce travail propose un modèle à deux branches 

combinant ResNet dans la branche CNN pour extraire les caractéristiques locales, et DeiT 

dans la branche Transformer pour capturer les dépendances globales. Les sorties des deux 

branches sont combinées via le module BiFusion, qui intègre les informations locales et 

globales pour améliorer la précision de la segmentation. Lorsqu'il a été évalué sur 

l'ensemble de données ISIC 2017, le modèle a surpassé les modèles traditionnels basés 

uniquement sur CNN ou Transformer, confirmant l'efficacité de cette combinaison pour 

améliorer la segmentation des lésions cutanées. 

 

Mots-clés :  Segmentation d’images médicales, cancer de la peau, réseaux de neurones 

convolutifs, transformeurs, architecture hybride, précision de la segmentation. 
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General Introduction 

Medical image segmentation is a critical area within medical image analysis and plays a 

fundamental role in computer-aided diagnosis, monitoring, intervention, and treatment 

planning. The primary objective of medical image segmentation is to delineate regions of 

interest, such as organs or lesions, within medical images. Accurate segmentation enables 

various analytical and quantitative methods that address diverse clinical needs and assist 

physicians in making more precise diagnoses. 

 

Currently, medical image segmentation techniques are widely applied in numerous 

domains, including cardiac segmentation, gland segmentation, skin lesion segmentation, 

and brain tumor detection. 

 

With the advent of deep learning, convolutional neural networks (CNNs) have become 

the dominant approach in many medical image segmentation tasks. Despite their success, 

CNNs exhibit inherent limitations, particularly in capturing long-range dependencies due to 

their local receptive fields. 

To overcome this, deeper networks or larger convolutional kernels are often used, which 

substantially increase the number of model parameters and   complicate    training.   Furthe   ,   

increasing network depth can cause gradient vanishing problems and slow convergence rates. 

Transformers, initially developed for sequence-to-sequence modeling in natural language 

processing, have recently gained significant attention in computer vision. The Vision    

Transformer (ViT), a purely self-attention-based architecture, demonstrated competitive 

performance on large-scale image recognition benchmarks, provided it was pretrained on 

extensive datasets. 

 

Transformers excel at modeling global contextual relationships but face challenges in 

capturing fine-grained details, which are crucial in medical image analysis. 

To leverage the strengths of both CNNs and transformers, hybrid architectures have been 

proposed that combine local feature extraction capabilities of CNNs with the global 

dependency modeling of transformers. 

 

In this dissertation, we propose a dual-branch deep learning model comprising a ResNet-

based CNN branch for local feature extraction and a DeiT-based transformer branch for 

capturing global dependencies. The outputs of these branches are fused through a BiFusion 

module designed to integrate local and global information, thereby enhancing segmentation 

accuracy. 
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Evaluation on the ISIC 2017 dataset demonstrates that our hybrid model outperforms 

traditional CNN- or transformer-only approaches, confirming the effectiveness of this 

integration for skin lesion segmentation. 

 

    This work is organized into three main chapters: 

 

• The first chapter presents the medical background, discussing skin cancer types, di- 

agnostic challenges, and the role of artificial intelligence in modern dermatology. 

• The second chapter introduces foundational concepts in deep learning, emphasizing 

techniques relevant to image segmentation. 

• The third chapter details the practical implementation of the proposed model, including 

dataset preparation, model architecture, training procedures, evaluation metrics, and 

interpretation of results. 

Through this work, we aim to contribute to the advancement of AI-assisted dermatology 

by exploring methods for accurate and efficient skin lesion segmentation, with the ultimate 

goal of supporting earlier diagnosis and improving patient outcomes. 
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Chapter 1 
 

Skin Cancer Diagnosis: From Clinical 

Imaging to Deep Learning 
 

 

 

 

1.1 Introduction 

Recent developments in medical imaging have significantly improved dermatological 

care. These technologies offer clearer, high-resolution images of the outer and inner layers 

of the skin, allowing clinicians to detect subtle changes earlier and assess skin conditions 

more accurately. This progress supports better diagnosis of skin diseases, including the early 

identification of cancerous lesions and the development of personalized treatment plans. 

This chapter begins by reviewing the basic structure of the skin, followed by a 

summary of the main types of skin cancer. The key imaging techniques, such as 

dermoscopy, reflectance confocal microscopy (RCM), optical coherence tomography 

(OCT), and high-frequency ultrasound (HFUS), are introduced, which are changing the 

way skin lesions are detected and examined. The chapter also addresses the current 

challenges in accurately diagnosing skin cancer. Finally, it discusses the growing impact 

of deep learning in automating skin lesion segmentation, which helps improve the speed 

and accuracy of skin cancer detection. 

 

1.2 Skin Anatomy 

The skin is an organ that provides the outer protective wrapping for all the body parts. It 

is the largest organ in the body. It is a waterproof, airtight and flexible barrier between the 

environment and internal organs. It keeps the internal environment of our body stable, The 

skin is divided into 3 layers, the epidermis, the dermis and the subcutaneous layer [1] (see 

figure 2.1). 
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                                             Figure 1.1: Anatomy of skin [1]. 

 

1.3 Skin Cancer 

Skin cancer is the most common type of cancer worldwide, and its occurrence is 

constantly on the rise. It develops due to the uncontrolled growth of abnormal cells in the 

epidermis, the outermost skin layer, because of unrepaired DNA damage. This damage 

leads to mutations that create excessive cell growth, ultimately forming malignant tumors. 

Fortunately, if caught early enough, the great majority of skin cancers are curable and can 

be easily managed [2] [3] [4]. 
 

 

Figure 1.2: Example of skin cancer anatomy [5]. 
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 There are many types of skin cancer, each of which can look different on the 

skin. The following section discusses the common types of skin cancer. 

 

1.4 Types of skin cancer 

The type is defined by the location where the cancer begins. There are four main kinds: 

basal cell carcinoma, squamous cell carcinoma, melanoma, and Merkel cell carcinoma. 

 

1.4.1 Basal cell carcinoma 

Basal cell carcinoma begins in the basal cells, found in the skin’s outermost layer. It 

often develops in areas exposed to the sun, such as the scalp, face, ears, neck, shoulders, 

and back. This cancer can appear as a waxy or pearly bump or a lesion that could be flat and 

flesh-colored or brown and scar-like. Alternatively, it could be a sore that bleeds or scabs 

and then heals, only to return again [6]. 

 

1.4.2 Squamous cell carcinoma 

This type of skin cancer often appears in similar areas to basal cell carcinoma. However, 

unlike basal cell carcinoma, it starts in the skin’s squamous cells. It can look like a firm, red 

nodule or a flat lesion with a scaly, crusted surface or a sore or patch that does not heal [6]. 

 

1.4.3 Melanoma 

Melanoma occurs in the cells that give skin its color. It can develop in an existing mole 

or in normal skin. It’s often found on the face or torso in men, while it frequently occurs on 

the lower legs in women. However, it can strike anywhere on the body in areas exposed to 

the sun and in places not subject to UV radiation. Symptoms include any spot or mole that 

is asymmetrical, has an irregular border, has changes in color, is more than one-quarter inch 

in diameter, or is generally changing or evolving [6]. 

 

1.4.4 Merkel cell carcinoma 

Merkel cell carcinoma occurs in the Merkel cells located on the skin’s surface. It is 

typically found in areas exposed to the sun and appears as a painless lump that could be 

flesh-colored, red, blue, or purple. It could be up to the size of a dime and often grows 

quickly. People older than 50 or immunosuppressed are at higher risk [6]. 
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Figure 1.3: Types of skin cancer [7]. 

 

1.5 Medical imaging 

Medical imaging is the process of visual representation of the structure and function of 

different tissues and organs of the human body for clinical purposes and medical science 

for detailed study of normal and abnormal anatomy and physiology of the body. Medical 

imaging techniques are used to show internal structures under the skin and bones, as well 

as to diagnose abnormalities and treat diseases. It is an important part of biological 

imaging [8].it is widely used in patient care to diagnose disease, to plan treatment, and to 

monitor response to treatment [9]. More recently, increasing attention has been given to the 

application of imaging technologies for skin evaluation. A variety of techniques are 

currently employed to examine the skin. In the following section, we present the key 

medical imaging modalities used for skin assessment. 

 

1.6 Key Medical Imaging Modalities for Skin 

Medical imaging modalities for skin encompass a range of advanced techniques that 

allow detailed visualization and assessment of skin structure, lesions, and diseases with 

varying depths and resolutions. These modalities include: 

 

1.6.1 Dermoscopy 

Dermoscopy (also known as dermatoscopy or epiluminescence microscopy) is a non- 

invasive skin imaging technique that allows visualization of subsurface skin structures not 

visible to the naked eye. It enhances diagnostic accuracy for pigmented skin lesions and is 

especially valuable in the early detection of melanoma and other forms of skin cancer [10]. 
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Figure 1.4: Dermoscopy machine [11]. 

 

1.6.2 Reflectance Confocal Microscopy (RCM) 

Reflectance Confocal Microscopy (RCM) is a non-invasive, high-resolution imaging 

technique that enables real-time visualization of skin at nearly cellular resolution. It uses 

a low-power laser and relies on variations in the reflectance of light by different skin 

structures to create grayscale images of the epidermis and superficial dermis. RCM is 

particularly useful for diagnosing skin cancers, especially melanoma, without the need for 

a biopsy [12]. 
 

Figure 1.5: Reflectance Confocal Microscopy machine [13]. 
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1.6.3 Optical Coherence Tomography (OCT) 

Optical coherence tomography (OCT) is a microscopic imaging technique, which 

magnifies the surface of a skin lesion using near light. Used in conjunction with clinical or 

dermoscopic examination of suspected skin cancer, or both, OCT may offer additional 

diagnostic information compared to other technologies [14]. 

 

 

Figure 1.6: Reflectance Confocal Microscopy machine [15]. 

 

1.6.4 High-Frequency Ultrasound (HFUS) 

High-Frequency Ultrasound (HFUS) is a non-invasive imaging technique that uses 

ultrasound waves typically above 20 MHz to produce high-resolution images of 

superficial tissues such as skin. It is widely used in dermatology for assessing skin tumors, 

inflamma- tory conditions, and structural skin changes due to its ability to resolve fine 

details in the epidermis and dermis [16]. 

 

 

Figure 1.7: High-Frequency Ultrasound machine [17]. 
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1.7 Difficulty of detection skin cancer 

Detecting skin cancer, particularly in its early stages, presents multiple challenges that 

impact timely diagnosis and treatment outcomes. Below is a comprehensive overview of 

the main difficulties involved: 

• Early-Stage Subtlety: Skin cancers, especially melanoma, can be difficult to detect 

early because their initial appearance may be subtle and easily confused with benign 

lesions. Early melanomas often lack distinctive features visible to the naked eye, 

making clinical diagnosis challenging without specialized tools [18]. 

• Dependence on Clinician Experience: Diagnostic accuracy heavily depends on 

the clinician’s experience and training in dermoscopy and skin cancer recognition. 

Studies show clinicians with more dermoscopy training have significantly higher 

sensitivity and specificity in melanoma diagnosis compared to those without training 

[19]. 

• Variability in Sensitivity and Specificity: Visual examination alone has a 

melanoma detection sensitivity around 60-76, which can lead to missed diagnoses or 

unnecessary biopsies. The specificity can also vary widely, sometimes leading to 

over-excision of benign lesions [19]. 

• Difficulties in Certain Populations: Skin cancer in patients with darker skin tones 

is often diagnosed at later stages, when it is harder to treat, due to less obvious 

pigmentation changes and lower awareness [20]. 

• High Costs of Skin Cancer Detection: Detecting skin cancer is costly due to 

multiple steps like clinical exams, imaging (e.g., dermoscopy), and biopsies. These 

include doctor visits, lab tests, and pathology services, with total costs ranging from 

hundreds to thousands of dollars. Delayed diagnosis often results in advanced stages 

requiring more intensive and expensive treatment, increasing the financial burden 

on both patients and healthcare systems [21]. 

• Manual segmentation of skin lesions: Manually interpreting dermoscopic images 

is laborious, requiring significant time and expertise from dermatologists. The 

growing number of cases further compounds this challenge, making it difficult to 

meet the demand for timely and accurate diagnoses3. Manual segmentation of skin 

lesions in dermoscopic images is also subject to inter-observer variability, leading to 

inconsistent diagnostic accuracy among clinicians [22]. 
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1.8 Deep Learning for skin cancer detection 

To address these challenges, automated segmentation systems have emerged as essential 

tools to standardize the diagnostic process, alleviate the burden on healthcare 

professionals, and improve diagnostic precision [22]. Skin cancer detection in particular 

serves as an appealing application for AI, given that diagnoses often hinge on the 

subjective visual interpretation of clinical and dermoscopic images. AI-assisted diagnosis 

promises several advantages. For instance, AI could improve access to specialist-level 

expertise. The scarcity of dermatologists is a serious problem in many regions, often 

leading to protracted waiting times for specialist appointment. In addition, there is growing 

optimism that AI-based systems might offer greater consistency and higher accuracy than 

human experts [23]. Such systems not only enhance efficiency but also deliver consistent, 

objective results, minimizing the subjectivity inherent in human interpretation. 

Automated segmentation is particularly valuable in large-scale screening programs, 

where rapid and accurate processing of dermoscopic images is critical. By taking 

advantage of deep learning techniques, these systems can learn from large datasets and 

continuously improve their performance, ultimately aiding in the early detection of 

melanomas. As a result, the development of robust automated skin lesion segmentation 

tools is crucial for advancing skin cancer diagnostics and empowering healthcare 

professionals to provide faster, more accurate care [23]. 

 

1.9 Conclusion 

This chapter presented the medical foundation of our project, which focuses on the 

detection of skin cancer one of the most prevalent and potentially life-threatening 

malignancies if not diagnosed and treated at an early stage. We began by reviewing the 

basic anatomy of the skin, the classification of skin cancers, and the primary imaging 

modalities used in clinical dermatology. The diagnostic challenges associated with skin 

cancer, such as variability in lesion appearance and reliance on expert interpretation, were 

also highlighted.  Subsequently, we introduced the transformative role of artificial 

intelligence, particularly deep learning, in addressing these challenges. We emphasized 

its growing use in automating and enhancing the accuracy of skin lesion analysis. 

Ultimately, the integration of AI into dermatological workflows holds great promise for 

improving diagnostic precision, reducing delays, and expanding access to expert-level 

evaluation.  In the following chapter, we delve into the technical foundations of deep 

learning, focusing on convolutional neural networks, vision transformers, and their fusion 

strategies for effective skin lesion segmentation. 
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Deep learning 
 

 

 

2.1 Introduction 

In recent years, Artificial Intelligence (AI) has emerged as a powerful tool in the field 

of medical image analysis, offering new possibilities for accurate, efficient, and automated 

disease diagnosis. Among various AI techniques, deep learning has shown remarkable 

success in understanding complex patterns in medical imaging data, particularly through 

convolutional neural networks (CNNs) and transformer-based architectures. This chapter 

provides an in-depth exploration of the fundamental concepts of AI and deep learning as 

they relate to skin cancer detection. We begin by introducing the key components of 

neural networks, followed by a discussion of prominent deep learning architectures used 

in image segmentation and classification. Special attention is given to hybrid models 

that combine CNNs and transformers, which have recently demonstrated superior 

performance in medical image segmentation tasks. These models represent the 

technological foundation upon which our proposed model is built. 

 

2.2  Machine learning (ML) 

Machine Learning is an application of Artificial Intelligence (AI) that provides systems 

the ability to automatically learn and improve from experience without being explicitly 

programmed [24]. The basic machine learning process can be divided into three parts: 

1.Data input: Past data or information is utilized as a basis for future decision-

making. 

                                2. Abstraction: The input data is represented in a broader way through the underlying 

algorithm. 

                              3.Generalization: The abstracted representation is generalized to form a framework for   

making decisions.
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Figure 2.1: Process of machine learning [25]. 

 

      The learning process, whether by a human or a machine, can be divided into four 

components namely: 

- data storage 

- abstraction 

- generalization 

- evaluation 

 

 

Figure 2.2: components of learning process. 

 

•  Data storage : Facilities for storing and retrieving huge amounts of data are an 

important component of the learning process. Humans and computers alike utilize 

data storage as a foundation for advanced reasoning. In a human being, the data is 

stored in the brain and data is retrieved using electrochemical signals. Computers 

use hard disk drives, flash memory, random access memory and similar devices to 

store data and use cables and other technology to retrieve data. 

•  Abstraction : is the process of extracting knowledge about stored data. This 

involves creating general concepts about the data as a whole. The creation of 

knowledge  involves application of known models and creation of new models. The 

process of fitting a model to a dataset is known as training. When the model has 

been trained, the data is transformed into an abstract form that summarizes the original 

information. 

• Generalization : The term generalization describes the process of turning the 

knowledge about stored data into a form that can be utilized for future action. These 

actions are to be carried out on tasks that are similar, but not identical, to those what 

have been seen before. In generalization, the goal is to discover those properties of 

the data that will be most relevant to future tasks. 
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• Evaluation : It is the process of giving feedback to the user to measure the utility 

of the learned knowledge. This feedback is then utilised to effect improvements in 

the whole learning process [26]. 

 

2.2.1 Types of Machine learning Algorithms 

Machine Learning relies on different algorithms to solve data problems. The four 

main types of machine learning are: 
 

Figure 2.3: Types of Machine learning [27]. 

 

2.2.1.1 Supervised Learning  

     Supervised learning is the machine learning task of learning a function that maps an 

input to an output based on example input-output pairs. It infers a function from labeled 

training data consisting of a set of training examples. The supervised machine learning 

algorithms are those algorithms which needs external assistance. The input dataset is 

divided into train and test dataset. The train dataset has output variable which needs to be 

predicted or classified. All algorithms learn some kind of patterns from the training dataset 

and apply them to the test dataset for prediction or classification. 

 

 

Figure2.4: Supervised learning Workflow [28]. 
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2.2.1.2. Unsupervised Learning  

These are called unsupervised learning because unlike supervised learning above there 

is no correct answers and there is no teacher. [28] it is seems much harder: the goal is to 

have the computer learn how to do something that we don’t tell it how to do! [29] It uses 

machine learning algorithms to analyze and cluster unlabeled datasets. These algorithms 

discover hidden patterns or data groupings without human intervention. [27]Algorithms are 

left to their own devises to discover and present the interesting structure in the data. The 

unsupervised learning algorithms learn few features from the data. When new data is 

introduced, it uses the previously learned features to recognize the class of the data. It is 

mainly used for clustering and feature reduction [28]. 

 

 

Figure 2.5: Unsupervised Learning [28]. 

 

2.2.1.3 Semi-Supervised Learning 

    Semi-supervised machine learning is a combination of supervised and unsupervised 

machine learning methods. It can be fruitful in those areas of machine learning and data 

mining where the unlabeled data is already present and getting the labeled data is a tedious 

process. With more common supervised machine learning methods, you train a machine 

learning algorithm on a “labeled” dataset in which each record includes the outcome 

information [28]. 
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Figure 2.6: Semi-Supervised Learning [27]. 

 

2.2.1.4 Reinforcement Learning 

Reinforcement learning is a “trial-and-error” learning approach to constantly interact with 

the environment to obtain the best strategy by maximizing the reward. “State, action, 

reward” are the three key elements of reinforcement learning. The model observes the 

decision outcome at each step, leading to the next decision to win the final goal. The 

game and robots are the most widely used areas of this method at present. [30] 

 

 

Figure 2.7: Reinforcement Learning [27]. 

 

2.3  Deep learning 

Deep learning, also known as deep neural networks, is a subfield of machine learning, 

which is a subset of AI, as shown in Figure 2.8. Deep learning takes inspiration from how 

the human brain works [31].  …………………………………..
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Figure 2.8: Deep learning, a subset of a subset of AI [31]. 

 

Deep learning is making major advances in solving problems that have resisted the best 

attempts of the artificial intelligence community for many years. It has turned out to be very 

good at discovering intricate structures in high-dimensional data and is therefore applicable 

to many domains of science, business and government. In addition to beating records in 

image recognition and speech recognition, it has beaten other machine learning techniques 

at predicting the activity of potential drug molecules , analyzing particle accelerator data, 

reconstructing brain circuits, and predicting the effects of mutations in non-coding DNA on 

gene expression and disease [32]. 

 

2.3.1 Transfer Learning 

Transfer learning with pretrained neural network models is a frequent notion in deep 

learning. When training on a new goal, such as picture segmentation of medical volumes, 

neural networks that have been trained on another task, such as a natural image classification 

data set, can be utilized to initialize the network weights. The theory behind this is that 

the earliest layers of neural networks learn comparable notions to recognize fundamental 

structures like blobs and edges for various tasks or datasets. When employing pre-trained 

models, these concepts do not need to be re-trained [33]. 

 

2.3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational modeling tools that have recently 

emerged and found extensive acceptance in many disciplines for modeling complex real- 

world problems. [34] An Artificial Neural Network (ANN) is a mathematical model that tries 

to simulate the structure and functionalities of biological neural networks. Basic building 

block of every artificial neural network is artificial neuron, that is, a simple mathematical 

model (function). Such a model has three simple sets of rules: multiplication, summation 

and activation. At the entrance of artificial neuron the inputs are weighted what means that 

every input value is multiplied with individual weight. In the middle section of artificial 

neuron is sum function that sums all weighted inputs and bias. At the exit of artificial neuron 

the sum of previously weighted inputs and bias is passing through activation function that 

is also called transfer function [35].
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Figure 2.9: Basic Elements of Artificial Neural Network [36]. 

 

As shown in Figure 2.9, we have various inputs (X1, X2, ... Xn) and corresponding 

weights (W1, W2, ... Wn). We calculate the weighted sum of some of these inputs and then 

pass them through an activation function [29], which is nothing more than a threshold value. 

Threshold Value: The threshold value decides whether a neuron fires or not. 

 

2.3.3 Convolution Neural Networks (CNNs) 

One of the most impressive forms of ANN architecture is that of the Convolutional 

Neural Network (CNN) [37]. CNN was first introduced in the 1960s and has shown 

promising performance results in computer vision. CNN has become the most 

representative neural network in deep learning. CNN has been utilized to solve 

complicated visual tasks with high computation and is mainly used in image classification, 

segmentation, object detection, video processing, natural language processing, and speech 

recognition [38]. 

 

Figure 2.10: An overview of CNN architecture and the training process [39].
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  The CNN architecture includes several building blocks, such as convolution layers, 

pooling layers, and fully connected layers. A typical architecture consists of repetitions of a 

stack of several convolution layers and a pooling layer, followed by one or more fully 

connected layers. The step where input data are transformed into output through these 

layers is called forward propagation (Figure 2.10) [39]. 

2.3.3.1 The Basics of Convolutional Neural Network 

A. Convolutional Layer  

  A convolution layer is a fundamental component of the CNN architecture that 

performs feature extraction, which typically consists of a  combination of linear and 

nonlinear operations: 

• Convolution is a specialized type of linear operation used for feature 

extraction, where a small array of numbers, called a kernel, is applied across 

the input, which is an array of numbers, called a tensor. 

• The outputs of a linear operation such as convolution are then passed through 

a nonlinear activation function. Although smooth nonlinear functions, such 

as sigmoid or hyperbolic tangent (tanh) function, were used previously 

because they are mathematical representations of a biological neuron 

behavior, the most common nonlinear activation function used presently is 

the rectified linear unit (ReLU) [39].   

B. Pooling layer 

    by executing a down-sampling procedure along the spatial dimensions, this layer 

hopes to reduce the amount of extracted features [40]. The pooling layer works by 

aggregating a set of data, where the input can be of any kind, including arrays, 

images, and other sorts of data [41]. There are three types of pooling layers: min-

pooling,average-pooling and max-pooling. 

 

 

Figure 2 .11: Pooling types [40]. 
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- Min-pooling: it take the minimum element from a block in terms of pooling size. 

- Average-pooling: it consists to take the average of a pooling block’s pooling size 

(i.e., the number of elements that may be covered by a single pooling operation). 

- Max-pooling: it represents the maximum element from a block in terms of pooling 

size is returned by max-pooling layers [40]. 

C. Fully Connected Layer 

    The final convolution or pooling layer’s output feature maps are often flattened, 

converted to a one-dimensional array of integers (or vector), and linked to one or more 

fully connected layers. The number of output nodes in the final fully linked layer is 

usually equal to the number of classes. Each fully connected layer is followed by a 

nonlinear function, such as ReLU [39]. 

 

2.3.3.2 Activation Functions 

An activation function is a mathematical function applied to the output of a neuron. 

Activation function decides whether a neuron should be activated by calculating the 

weighted sum of inputs and adding a bias term. This helps the model make complex 

decisions and predictions by introducing non-linearities to the output of each neuron. [42] 

There are many popular activation functions, such as sigmoid, Rectified Linear Unit 

(ReLU). 

• Rectified Linear Unit (ReLU) 

The rectified liner unit, or ReLU, is a non-linear activation function commonly 

employed in neural networks. The advantage of employing ReLU is that not all neurons 

are stimulated at the same time. This means that a neuron will only be destroyed when the 

linear transformation output is zero. Mathematically, it may be defined as: 

f (x) = max(0, x) where x is an input value.  

 

 

Figure 2.12: ReLU Activation Function Plot [43]. 
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• SIGMOID 

    As a non-linear function, it is the most commonly employed activation function. The 

sigmoid function changes 0 to 1 values. Its definition is as follows: 

                                                                                      f(x) = 1/e−x                                     

            The sigmoid function is continuously differentiable and a smooth, S-shaped 

function. The derivative of the function is: 

 

            f(x) = 1−sigmoid(x)                            

 

 

 

                                                              Figure 2.13: Sigmoid Function [43]. 

 

2.3.3.3 Example of CNNs  based model 

• U-Net network 

     The U-Net is a convolutional network architecture for fast and precise segmentation 

of images [44]. The U-Net model is capable of being trained on small datasets while 

achieving outstanding performance, a characteristic that is particularly critical in 

medical image segmentation tasks. Medical datasets are typically limited in size, and 

the requirements for annotation are relatively high, which makes the generation of large-

scale labeled datasets challenging. Consequently, various U-Net-based modified 

network models have received widespread attention in medical image segmentation 

research [45]. 

• Visual Geometry Group (VggNet) 

     It is a typical deep Convolutional Neural Network (CNN) design with numerous 

layers, and the abbreviation VGG stands for Visual Geometry Group. The term deep 

describes the number of layers, with VGG-16 or VGG-19 having 16 or 19 convolutional 

layers, respectively. Innovative object identification models are 
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built using the VGG architecture. The VGGNet, created as a deep neural network, 

outperforms benchmarks on a variety of tasks and datasets outside of ImageNet. It also 

remains one of the most often used image recognition architectures today [46]. 

• Residual Network (ResNet) 

       Residual Networks ,commonly known as ResNet, represent a groundbreaking 

convolutional neural network (CNN) architecture developed by Kaiming He and 

colleagues at Microsoft Research. Introduced in their 2015 paper, ”Deep Residual 

Learning for Image Recognition”, ResNet addressed a major challenge in deep learning 

(DL): the degradation problem. This problem occurs when adding more layers to a 

very deep network leads to higher training error, contrary to the expectation that deeper 

models should perform better. ResNet’s innovation allowed for the successful training 

of networks substantially deeper than previously feasible, significantly advancing the 

state-of-the-art in various computer vision (CV) tasks [47]. 

• Densely Connected Network (DenseNet) 

A DenseNet is a type of convolutional neural network that utilises dense connections 

between layers, through Dense Blocks, where we connect all layers (with matching 

feature-map sizes) directly with each other. To preserve the feed-forward nature, each 

layer obtains additional inputs from all preceding layers and passes on its own feature 

maps to all subsequent layers [48]. 

 

2.3.3.4 Advantage of CNNs 

• Automatic Feature Extraction: CNNs can automatically learn and extract relevant 

features from raw input data, eliminating the need for manual feature engineering. 

This capability enhances efficiency and reduces the potential for human error in 

feature selection [49]. 

• High Accuracy in Image Recognition Tasks: CNNs have demonstrated state-of-

the-art performance in various image recognition tasks, including medical image 

segmentation, due to their deep architectures and  ability to capture complex patterns 

[50]. 

• Robustness to Noise and Distortions : CNNs are robust to noise and distortions in 

input data, making them effective in real-world applications where medical images 

may be affected by various artifacts [51]. 

• Efficient Processing of High-Dimensional Data : Through local connectivity and 

shared weights, CNNs efficiently handle the high dimensionality of medical images, 
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reducing computational complexity compared to fully connected networks [52]. 

• Versatility Across Medical Imaging Modalities: CNNs have been successfully 

applied to various medical imaging tasks, including disease classification, localization, 

detection of pathological targets, organ region segmentation, and image enhancement 

[50] [53]. 

 

2.3.3.5 Limitations of CNNs 

• Dependence on Large Labeled Datasets: CNNs typically require extensive labeled 

datasets to achieve high performance. In medical imaging, acquiring such datasets is 

challenging due to the need for expert annotations and patient privacy concerns [53]. 

• Overfitting on Limited or Noisy Data: When trained on limited or noisy datasets, 

CNNs are prone to overfitting, leading to poor generalization on unseen data. This is 

particularly problematic in medical imaging, where data variability is high [54]. 

• Limited Interpretability: CNNs often function as ”black boxes,” making it difficult 

to interpret their decision-making processes. In medical contexts, this lack of 

transparency can hinder clinical trust and acceptance [55]. 

• Challenges with Capturing Global Context: CNNs are inherently designed to 

capture local features due to their limited receptive fields. This makes it challenging to 

model global context, which is essential for understanding complex structures in 

medical images [56]. 

• Sensitivity to Image Quality and Artifacts: Medical images often contain noise, 

artifacts, or low contrast, which can adversely affect CNN performance. Without 

adequate preprocessing, CNNs may struggle to accurately segment such images [57]. 

• High Computational Requirements: Training and deploying CNNs, especially 

deep architectures, demand significant computational resources, including high-end 

GPUs. This can be a barrier in settings with limited infrastructure [57]. 

 

2.3.4 Transformer 

Transformer Neural Networks, or simply Transformers, is a neural network 

architecture introduced in 2017 in the now-famous paper ”Attention is all you need ”. The 

title refers to the attention mechanism, which forms the basis for data processing with 

Transformers. Transformer Networks have been the predominant type of Deep Learning 

models for NLP in recent years. They replaced Recurrent Neural Networks in all NLP 

tasks, and also, all Large Language Models employ the Transformer Network architecture. 

As well as, Transformer Networks were recently adapted for other tasks and have 

outperformed other Machine Learning models for image processing and video processing 

tasks, protein and DNA sequence prediction, time-series data processing, and
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have been used for reinforcement learning tasks. Consequently, Transformers are 

currently the most important Neural Network architecture [58]. 

 

  
Figure 2.14: The Transformer- model architecture [59]. 

 

The Transformer architecture is based on an encoder-decoder structure composed entirely 

of attention mechanisms and feed-forward layers. Each encoder layer includes multi-head 

self-attention, followed by a position-wise feed-forward neural network, with residual 

connections and layer normalization applied at each step. Self-attention allows the model 

to compute relationships between all positions in the input simultaneously. To retain 

positional information, which is otherwise lost due to the lack of recurrence or convolution, 

the model incorporates positional encoding using sine and cosine functions. In the 

decoder, masked multi-head attention is employed to prevent access to future tokens 

during training. The final output is generated via a linear projection followed by a softmax 

layer. This architecture enables parallel computation, long-range dependency modeling, 

and significantly improves performance in various sequence modeling tasks. [58] [59]. 
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2.3.4.1 Example of Transformer-based models 

• Vision Transformer (Vit) 

The vision transformer (ViT) introduced by Dosovitskiy et al. (2020) is an 

architecture directly inherited from Natural Language Processing (Vaswani et al., 

2017), but applied to image classification with raw image patches as input [60]. In 

contrast to CNNs, which process spatial information through convolutions, ViTs 

divide an image into patches and process each patch as a sequence token, similar to 

words in a sentence. By applying self-attention, ViTs capture both local and global 

dependencies in images without requiring convolutional layers [61]. ViT requires a 

large amount of data for pre-training [62]. 

• Swin transformer 

Swin Transformers mark a paradigm shift in transformer-based architectures [63]. 

The Swin Transformer divides the patches into non-overlapping windows and restricts 

the self-attention calculation in the small or shifted windows, which introduces 

locality inductive bias. It also utilizes patch-merging layers to generate hierarchical 

representations that can benefit the downstream tasks, such as object detection or 

semantic segmentation [64]. Swin Transformer is able to serve as a general-purpose 

backbone for computer vision. It has already been applied in detection, classification 

and segmentation and obtains strong performances [65]. 

•  Deit transformer 

The DeiT (data-efficient image transformers) model was proposed in Training 

data-efficient image transformers and distillation through attention by Hugo Touvron, 

Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé 

Jégou. DeiT are more efficiently trained transformers for image classification, 

requiring far less data and far less computing resources compared to the original ViT 

models [66]. DeIT can perform effectively with smaller datasets [62]. 

 

2.3.4.2 Advantages of transformer 

• Modeling Long-Range Dependencies: Transformers excel at capturing long-

range dependencies within data, which is crucial for medical image segmentation 

tasks where understanding the global context of an image is essential [67]. 

• Global Feature Representation: Through self-attention mechanisms, 

Transformers can capture global features in a single forward pass, enabling a 

comprehensive understanding of the entire image, which is beneficial for accurate 

segmentation[68]. 
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• Parallel Processing and Computational Efficiency: Transformers allow for 

parallel processing of data, leading to faster computation times compared to sequential 

models like RNNs. This efficiency is advantageous when dealing with large medical 

imaging datasets [59]. 

• Flexibility in Handling Varying Input Sizes: Transformers are adaptable to inputs 

of varying sizes without the need for significant architectural changes, making them 

suitable for medical images that can differ in dimensions and resolutions [68]. 

• Improved Performance on Complex Segmentation Tasks: By effectively 

modeling both local and global contexts, Transformers have demonstrated superior 

performance in complex medical image segmentation tasks, such as delineating 

tumors or organs with irregular shapes [68] [69]. 

 

2.3.4.3  Limitations of Transformer 

• Data Inefficiency and Lack of Inductive Bias: Unlike convolutional neural 

networks (CNNs), transformers lack inherent inductive biases like locality and 

translation invariance. This absence makes them less data-efficient and more prone 

to overfitting, particularly when training on small datasets common in medical 

imaging [70]. 

• Limited Interpretability: The complex architecture of transformers, characterized 

by numerous layers and attention heads, poses challenges for interpretability. This 

opacity can be problematic in critical applications like healthcare, where 

understanding model decisions is essential [71]. 

• Challenges in Capturing Local Context: While transformers excel at modeling 

global dependencies, they may struggle with capturing fine-grained local features, 

which are crucial in tasks like medical image segmentation. This limitation can lead 

to less precise segmentation results [72]. 

• Dependence on Large-Scale Pretraining: Transformers often require large-scale 

pre-training on extensive datasets to achieve optimal performance. In domains like 

medical imaging, where annotated data is scarce, this dependence can be a 

significant hurdle [68]. 
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2.4 Advanced Training Techniques 

There are different advanced techniques for efficient training of DL approach , such as 

regularization and Data Augmentation. 

 

2.4.1 Data Augmentation 

In the realm of medical imaging, the training of machine learning models necessitates a 

large and varied training dataset to ensure robustness and interoperability. However, 

acquiring such diverse and heterogeneous data can be difficult due to the need for expert 

labeling of each image and privacy concerns associated with medical data. To circumvent 

these challenges, data augmentation has emerged as a promising and cost-effective 

technique for increasing the size and diversity of the training dataset. Data Augmentation 

encompasses a suite of techniques that enhance the size and quality of training datasets such 

that better Deep Learning models can be built using them [73]. Data Augmentation has 

many techniques as follows: 

• Rotation: rotation augmentations are done by rotating the image right or left on an 

axis between 1° and 359°. The safety of rotation augmentations is heavily determined by 

the rotation degree parameter. Slight rotations such as between 1° and 20° or-1° to-20° 

could be useful on digit recognition tasks, but as the rotation degree increases, the label 

of the data is no longer preserved post-transformation [74]. 

• Flipping : This technique, also known as mirroring, involves flipping the image 

horizontally or vertically, which helps the model become more robust to variations in 

image direction. Horizontal flipping involves flipping the image from left to right, while 

vertical flipping involves flipping the image from top to bottom. Both types of flipping 

can be used in combination to further increase the diversity of the training data [73]. 

• Zooming : Zooming is a common data augmentation technique in computational 

pathology. Zooming in or out of an image involves changing its size, either by en- 

larging or reducing its dimensions, while keeping the content of the image centered. In 

the context of computational pathology, zooming can help the model become more robust 

to variations in image scale. This is important because histopathological images can 

come from different sources, such as different scanners or microscopes, and can have 

varying sizes. By applying zoom as a data augmentation technique, the model can learn 

to recognize patterns at different scales and become more accurate at detecting features 

in images of varying sizes. Zooming can be performed in different ways, such as by 

cropping and resizing the image or by using a zoom function that rescales the image 

while preserving its aspect ratio. It is important to note that excessive zooming can lead 

to loss of information and can negatively impact model performance. Therefore, careful 

selection of the amount and type of zoom is crucial to ensure optimal model performance 

[73]. 



25 

  

 

 

Chapter 2                                                                                                          Deep Learning              
   

 

 

• Elastic Deformation Elastic deformation has the characteristic of affecting the in- 

trastructural information of an image. In medical imaging, living human objects are 

inherently subject to naturally occurring transformations which can be extrapolated to 

elastic deformations for the purpose of data augmentation for training datasets. This 

allows the model to better generalize and accurately identify anatomical structures, even 

when they appear differently due to factors like patient movement or physiological 

changes [75]. 

• Gamma Correction / Intensity Shift: Gamma correction is a data augmentation 

technique that involves modifying the intensity of an image by adjusting the gamma 

value. Gamma is a nonlinear function that is used to encode and decode the luminance 

or brightness of an image. In gamma correction, the gamma value is adjusted to modify 

the overall brightness of the image. This technique is particularly useful when dealing 

with images that have low contrast or when the lighting conditions are not ideal. By 

adjusting the gamma value, it is possible to enhance the contrast of the image, making it 

easier for the model to distinguish between different structures and features. Gamma 

correction can be applied in a variety of ways, such as globally to the entire image or 

locally to specific regions of interest [73]. 

• Gaussian Noise: Gaussian noise is a type of noise that is added to the image by 

introducing random values drawn from a Gaussian distribution. The addition of Gaussian 

noise to an image can help the model become more robust to variations in image quality, 

as it simulates the noise that can occur during image acquisition and pre- processing. 

The amount of noise added to the image can be controlled by adjusting the standard 

deviation of the Gaussian distribution. A higher standard deviation will result in more 

noise being added to the image [73]. 

 

2.4.2 Regularization 

Regularization is a technique used in machine learning to prevent overfitting, which 

occurs when a model learns the training data too well, including its noise and outliers, and 

performs poorly on new, unseen data. Regularization helps create models that generalize 

better to new data by adding a penalty to the loss function (the function the model tries to 

minimize during training), which keeps the model’s parameters (like weights in a neural 

network) smaller and simpler [76]. 

 

2.5 Evaluation Metrics 

2.5.1 Dice Coefficient (Dice Similarity Coefficient - DSC) 

The Dice coefficient is a measure of the similarity between two sets, A and B. The 

coefficient ranges from 0 to 1, where 1 indicates that the two sets are identical, and 0 

indicates that the two sets have no overlap [77]. It is defined as: 
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DSC(A, B) =
2(A ∩ B)

𝐴 + 𝐵
  where ∩  is the intersection 

 

2.5.2  Intersection over Union (IoU) / Jaccard Index  

Intersection over Union (IoU) is a measure that shows how well the prediction bounding 

box aligns with the ground truth box. It is one of the main metrics for evaluating the 

accuracy of object detection algorithms and helps distinguish between "correct detection" 

and "incorrect detection". By measuring how well the model's prediction describes the 

actual region of interest, the IoU score, alongside other evaluation measures, helps 

researchers gauge the effectiveness and reliability of their models and make informed 

decisions about algorithm performance [78]. 

𝐈𝐨𝐔 =
⎹ A ∩ B⎹

⎹  𝐴⋃𝐵⎹
 

2.5.3  Accuracy  

 Accuracy (Acc), also known as Rand index or pixel accuracy, is one or even the most 

known evaluation metric in statistics. It is defined as the number of correct predictions, 

consisting of correct positive and negative predictions, compared to the total number of 

predictions [79]. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

 

-TP: True Positives ,the number of instances where the model correctly predicted a positive class. 

-TN: True Negatives, the number of instances where the model correctly predicted a 

negative class. 

-FP: False Positives, the number of instances where the model incorrectly predicted a 

positive class (Type 1 error). 

-FN: False Negatives, the number of instances where the model incorrectly predicted a 

negative class (Type 2 error) [80]. 

 

2.5.4  Precision 

Precision, also known as the positive predictive value (PPV), is a classification metric 

that focuses on the accuracy of positive predictions. It measures the proportion of 

instances the model predicted as positive that were true positives. Precision ranges from 

0 to 1, with higher values indicating better performance. A perfect precision of 1.0 
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means the model correctly identifies every positive instance without any false positives. 

This metric is valuable when the consequences of false positives are more severe than 

false negatives. It tells us how reliable the model’s positive predictions are [80]. 

Mathematically, it is defined as: 

 

Precision =
 TP 

TP +  FP 
 

 

2.5.5  Recall 

Recall, also known as sensitivity or true positive rate (TPR), is a classification metric 

that measures the ability of a model to identify all relevant instances of a particular class. 

It is defined as the proportion of actual positive instances correctly predicted by the 

model. recall ranges from 0 to 1, with higher values signifying better performance. A 

recall of 1.0 indicates that the model perfectly identifies all positive instances without 

missing any [80]. 

  

Recall =
 TP 

TP +  FN 
 

 

2.5.6  F1 Score 

The harmonic mean of precision and recall. It balances the two metrics into a single 

number, making it especially useful when precision and recall are in trade-off [81]. 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

2.5.7  Hausdorff  distance 

The Hausdorff distance measures the extent to which each point of a ”model” set lies near 

some point of an ”image” set and vice versa. Thus, this distance can be used to determine the 

degree of resemblance between two objects that are superimposed on one another [82]. 

Basically, the Hausdorff metric will serve to check if a template image is present in a test 

image ; the lower the distance value, the best the match. That method gives interesting 

results, even in presence of noise or occlusion (when the target is partially hidden) [83]. 
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2.5.8 Loss Function 

A loss function is a type of objective function, which in the context of data science refers 

to any function whose minimization or maximization represents the objective of model 

training. The term loss function, which is usually synonymous with cost function or error 

function, refers specifically to situations where minimization is the training objective for 

a machine learning model. In simple terms, a loss function tracks the degree of error in an 

artificial intelligence (AI) model’s outputs. It does so by quantifying the difference loss 

between a predicted value that is, the model’s output for a given input and the actual value 

or ground truth. If a model’s predictions are accurate, the loss is small. If its predictions are 

inaccurate, the loss is large. The fundamental goal of machine learning is to train models to 

output good predictions. Loss functions enable us to define and pursue that goal 

mathematically. During training, models learn to output better predictions by adjusting 

parameters in a way that reduces loss. A machine learning model has been sufficiently 

trained when loss has been minimized below some predetermined threshold [84]. 

 

2.6 Related Works for skin cancer detection with deep learning 

 

                                     

                                  Figure 2.15: Deep learning models used for skin cancer detection. 

 

2.6.1 Medical Image Segmentation Based on CNNs 

     CNNs have been widely successful in skin lesion analysis and skin cancer detection 

due to their strong capability to extract features from images. Key recent CNN-based 

models include : 

• ResNet (Residual Networks): A deep CNN architecture that uses residual learning 

to ease the training of very deep networks. Widely used for skin lesion classification 

with high accuracy [85]. 

• DenseNet (Densely Connected Convolutional Networks): Connects each layer to 

every other layer to improve information flow and reduce vanishing gradients. 

Successfully applied in medical image classification including skin cancer [86]. 

• VGGNet: Known for its simple and deep architecture using small (3x3) convolutional 
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filters. Often used as a baseline CNN in medical imaging [87]. 

• EfficientNet: A scalable CNN balancing network depth, width, and resolution, 

achieving state-of-the-art accuracy with fewer parameters [88]. 

• Inception Networks (GoogLeNet and successors): Employ multiple parallel 

convolutional filters of different sizes to capture multi-scale features. Applied for skin 

lesion classification [89]. 

 

2.6.2 Vision Transformer 

Transformers, especially Vision Transformers (ViT), are relatively new in medical image 

analysis and have shown promising results in skin cancer detection due to their ability to 

model long-range dependencies: 

• SkinDistilViT: A lightweight ViT model using knowledge distillation to reduce 

model size while maintaining accuracy [90]. 

• SkinSwinViT: Employs Swin Transformer with hierarchical local and global 

feature extraction to improve detection accuracy [91]. 

• SkinViT: Combines Transformer, MLP, and Outlooker modules for precise and 

global feature extraction [92]. 

• Vision Transformer: Ensemble Uses multi-scale ViT models whose outputs are 

ensembled to boost classification accuracy [93]. 

 

2.6.3 Medical Image Segmentation Based on Transformers and CNNs 

Hybrid models combine the local feature extraction power of CNNs with the global 

context modeling capability of Transformers, achieving superior diagnostic 

performance: 

• GS-TransUNet: Combines Gaussian Splatting and Transformer-based UNet for 

precise skin lesion segmentation [94]. 

• Attention Swin U-Net: Integrates UNet with Swin Transformer and cross-attention 

mechanisms to improve segmentation quality [95]. 

• SkinEHDLF: A classification model that integrates CNN and Transformer 

techniques to enhance skin lesion recognition [96]. 
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2.6.4 Summary table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 2.1: Deep learning models used for skin cancer detection. 
 

 

Category Model Name Key Features Datasets 

Used 

Evaluation 

Metrics / Results 

CNN-based 

Models  

ResNet Deep residual learning 

for easier training of 

deep nets 

ISIC, 

HAM10000 

Accuracy ~85-

90%, AUC 

~0.93-0.95 

DenseNet Dense connections 

between layers for 

better gradient flow 

ISIC, PH2 Accuracy ~88-

92%, Dice ~0.85-

0.89 

VGGNet Simple deep CNN 

with small filters (3x3) 

ISIC Accuracy ~83-

88%, AUC ~0.90 

EfficientNet Balanced scaling of 

depth, width, 

resolution 

ISIC Accuracy ~90%, 

F1-score ~0.89 

Inception Multi-scale feature 

extraction via parallel 

convolutions 

ISIC Accuracy ~87-

90%, AUC ~0.92 

Transformer-

based Models 

SkinDistilViT Lightweight ViT using 

knowledge distillation 

ISIC 2018 Accuracy ~91%, 

AUC ~0.94 

SkinSwinViT Swin Transformer 

with hierarchical 

local/global features 

HAM10000 Dice ~0.87, 

Accuracy ~92% 

SkinViT Combines 

Transformer, MLP, 

and Outlooker 

modules 

ISIC 2018 

and others 

Accura cy ~90-

93%, F1-score 

~0.90 

ViT 

Ensemble 

Multi-scale ViT 

ensemble for enhanced 

accuracy 

ISIC 2018 Accuracy up to 

95%, AUC ~0.96 

Hybrid CNN 

+ 

Transformer 

GS-

TransUNet 

Gaussian Splatting + 

Transformer-based 

UNet for segmentation 

ISIC 2017, 

PH2 

Dice ~0.89-0.92, 

Accuracy ~93% 

Attention 

Swin U-Net 

UNet + Swin 

Transformer + cross-

attention 

ISIC, 

HAM10000 

Dice ~0.90, 

Accuracy ~94% 

SkinEHDLF CNN + Transformer 

for improved 

classification 

ISIC 2020, 

HAM10000 

Accuracy ~92%, 

F1-score ~0.91 
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2.7 Conclusion 

This chapter reviewed the foundational concepts of AI and deep learning in the context 

of medical image analysis, with a focus on skin cancer detection. We discussed various 

architectures, including CNNs, U-Net, and transformer-based models, highlighting their 

roles in feature extraction and segmentation accuracy. The integration of CNNs with 

transformer modules offers a promising path forward, combining local detail sensitivity 

with global context awareness. These hybrid architectures have paved the way for 

significant advances in medical image segmentation, which are essential for reliable and 

precise skin lesion analysis. In the next chapter, we will present our proposed 

segmentation model based on a fusion of CNN and transformer techniques, and 

demonstrate its effectiveness on benchmark datasets. 
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Chapter 3 

Design, Implementation and 

Experimental Results 
 

 

 

3.1 Introduction 

This chapter presents a comprehensive overview of the design, implementation, and 

evaluation of the skin cancer segmentation system. It begins by outlining the system’s 

overall architecture, supported by detailed descriptions and Unified Modeling Language 

(UML) diagrams. Subsequently, the technical implementation aspects are discussed, 

including model construction and the development environment. The chapter concludes 

with a series of experiments conducted on the ISIC 2017 dataset, followed by an in-depth 

analysis and validation of the obtained results. 

 

3.2 Design and conception 

3.2.1. Model description  

The model adopts a hybrid architecture that combines Convolutional Neural Networks 

(CNNs) and Transformers, designed specifically for the semantic segmentation of 

medical images. CNNs allow the model to focus on fine-grained texture details, while 

Transformers provide a broader view of the image context. This combination enables 

accurate detection of both subtle and large-scale patterns essential for reliable medical 

image analysis. 

3.2.2 Global design 

To develop our skin cancer segmentation system, we used skin lesion images from the 

ISIC 2017 dataset. dataset are first loaded and processed, then used to train a deep learning 

model. After training, the model predicts and produces segmentation images that highlight 

important regions in the medical images. Figure 3.1 present the general design of our system 
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Figure 3.1: Global design of our skin cancer segmentation system. 

3.2.3 Model architecture 

The detailed architecture of our deep learning model is presented as follow : 

 

 

Figure 3.2: Model detailed architecture. 
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3.2.4  Detailed architecture description 

1. Input image: It starts with taking an input from a skin lesion scan dermoscopic skin 

lesion or any other radiological scan. 

2. Encoder: The encoder’s role is to extract meaningful features from the input image. In 

our architecture, it consists of two parallel branches a Transformer branch and a CNN 

branch. Together, they convert the raw image into rich, high-level representations 

that capture both global context and local details, preparing the features for seamless 

fusion and accurate decoding. 

A. Transformer Branch: captures the global relationships across the image using 

self-attention mechanisms. The purpose of this branch is to extract global 

features that reflect the interconnections between all regions of the image, 

enabling the model to better understand contextual dependencies and improve 

overall segmentation performance. 

B. CNN Branch : extracts fine-grained local and spatial features from the input 

image using convolutional and pooling layers. These features are then 

transformed into rich representations that encode essential details, effectively 

preparing them for fusion with global features from the Transformer Branch and 

subsequent decoding. 

3. Fusion module is a key component in our architecture that combines the strengths of 

both the Transformer and CNN branches. It fuses the global features extracted by the 

Trans former with the local features captured by the CNN, ensuring that the model 

benefits from both types of information.in This module we use several mechanisms : 

➢ Bilinear Fusion (Transformer + CNN Features): combines the features from 

both the Transformer and CNN branches using bilinear pooling, which captures 

complex interactions between the two feature sets. 

➢ Channel Attention (SE Block): Squeeze-and-Excitation (SE) blocks are used to 

emphasize the most important feature channels. 

➢ Spatial Attention: focuses on the most relevant spatial locations in the feature 

maps. 

➢ Residual Addition: adds the fused features to the original features to preserve 

information and facilitate gradient flow. 
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4.  Decoder The decoder transforms the abstract features obtained from the encoder and 

fusion module back into a detailed segmentation map with the same spatial size as 

the input image.It consists of: UpSampling Layers, Double Conv,Skip Connections, 

Conv 1x1.The goal is to reconstruct a high-resolution segmentation map, accurately 

delineating each region or class in the original image. 

➢ UpSampling Layers: gradually increase the spatial resolution of the feature maps. 

➢ Double Conv + Skip Connections : mechanism that plays a crucial role in the 

decoding path by refining the upsampled features through two convolutional 

layers. It incorporates skip connections from the encoder, allowing the model to 

recover fine details lost during downsampling and enhance segmentation 

accuracy. 

➢ Conv 1x1: A 1x1 convolution to reduce the number of channels to the number 

of segmentation classes. 

5. Output Segmentation Map 

➢ Sigmoid: Applies the sigmoid function for binary segmentation to generate 

the final prediction map. 

➢ Prediction: produces a segmentation map that highlights the regions of 

interest in the original image.  

 

3.2.5 UML presentations 

• State transition diagram 

     State diagrams provide a visual representation of the various states a system or 

an object can be in, as well as the transitions between those states. They are essential 

in modeling the dynamic behavior of systems, capturing how they respond to 

different events over time. State diagrams depict the system’s life cycle, making it 

easier to understand, design, and optimize its behavior [97]. The state transition 

diagram of our system is presented as follow :  
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Figure 3.3: The state transition diagram of our system. 

 

The Figure 3.3 illustrates the state transition process of our model. It begins by 

loading the input image, which is then processed through two parallel branches: 

the Transformer encoder branch and the CNN encoder branch. The Transformer 

branch extracts global contextual features, while the CNN branch captures local 

spatial features. Both sets of features are then fused together in the fusion 
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 module to leverage the strengths of each representation. The fused features are 

passed through a decoder that progressively upsamples them to restore the spatial 

resolution. Finally, the output branch generates the segmentation prediction map. 

• Sequence diagram  

     A sequence diagram is a Unified Modeling Language (UML) diagram that 

illustrates the sequence of messages between objects in an interaction. A sequence 

diagram consists of a group of objects that are represented by lifelines, and the 

messages that they exchange over time during the interaction [98]. The sequence 

diagram of our system is presented as follow : 

 

 

 

Figure 3.4: The sequence diagram of our system. 
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    The sequence diagram in Figure 3.4 illustrates the forward pass process of the 

model. When an input image is provided, it is simultaneously processed by two 

parallel branches: a Transformer (DeiT) branch and a Convolutional Neural 

Network (ResNet34) branch. The Transformer branch extracts global contextual 

features, while the CNN branch focuses on capturing local spatial details. The 

outputs from both branches are then passed to a fusion and upsampling module, 

which integrates the multi-scale features. Finally, the fused representation is 

passed through the output layers to generate the segmentation map (the final 

prediction). This architecture enables the model to leverage both global and local 

information for accurate image segmentation. 

 

3.3  Implementation 

    This section explains the practical steps taken to develop the skin lesion segmentation 

system. It includes the tools, programming environments, and hardware used during the 

implementation. In addition, it describes how the dataset was prepared and provides details 

on how the system was built and trained. 

 

3.3.1 Environments and developing tools 

     We required different environments, packages, APIs, libraries and programming 

languages to implement our skin segmentation system. 

1. Hardware configuration 

    Google Colab was used for training and development of the model, which is a 

Google-provided cloud platform that enables users to run Python notebooks with 

high-performance computation resource allocation. Hardware configuration in this 

environment is: 

- CPU: Intel Xeon (2.3 GHz) or AMD EPYC, commonly 2 cores. 

- RAM: 12GB maximum. 

- GPU: NVIDIA Tesla T4 (16GB) or Tesla K80 (12GB) if available. 

- Storage: Temporary disk with Google Drive 78GB integration. 
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2. Development environment 

To develop our system, we used a range of tools and environments, as summarized in 

Table 3.1. 

 

Tools logo Descriptions 

 

 

Python is an interpreted, object-oriented, high-level 

programming language with dynamic semantics. Its 

high-level built in data structures, combined with 

dynamic typing and dynamic binding, make it very 

attractive for Rapid Application Development, as 

well as for use as a scripting or glue language to 

connect existing components together [99]. 

 

 

Colab is a hosted Jupyter Notebook service that 

requires no setup to use and provides free of charge 

access to computing resources, including GPUs and 

TPUs. Colab is especially well suited to machine 

learning, data science, and education [100]. 

 

            Table 3.1: Illustration of tools environment. 

 

3. Packages and APIs 

We used several programming libraries and APIs throughout the project to 

support the development of our deep learning model. These tools helped define 

the functions and components essential to the system, as shown in Table 3.2: 
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Package/API  Description 

 

An open-source deep learning framework for building and 

training neural networks [101]. 

 

Provides datasets, pretrained models, and image transformations 

for PyTorch [102]. 

 

Provides functions to interact with the operating system (e.g., file 

and path handling) [103]. 

 

PyTorch Image Models library offering many pretrained 

computer vision models [104]. 

 

A module for parsing command-line arguments passed to Python 

scripts [105]. 

 

Python Imaging Library used for opening, manipulating, and 

saving image files [106]. 

 

Powerful computer vision library used for image processing and 

analysis [107]. 

 

Fundamental package for numerical computation and array 

operations [108]. 

 

A plotting library for creating static, animated, and interactive 

visualizations [109]. 

 

Fast and flexible image augmentation library used in deep 

learning pipelines [110]. 

 

A library for reading and writing images and videos in many 

formats [111]. 

 

Table 3.2: Illustration of packages and APIs. 
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3.3.2   Used Image dataset details information 

    To evaluate the performance of our skin lesion segmentation model, we used the ISIC 

2017 dataset. This dataset is divided into three subsets training, validation, and testing and 

includes a total of 2,750 dermoscopic images. Each image comes with a binary 

segmentation mask that clearly outlines the lesion boundary, a critical feature for 

effective segmentation. The dataset is organized as follows: 

• Training set: 2,000 images along with their ground truth segmentation masks. 

• Validation set: 150 images along with ground truth segmentation masks. 

• Test set: 600 images with publicly released ground truth segmentation masks, 

utilized for model performance evaluation. 

    This dataset was published as a part of the ISIC 2017 Challenge, initiated by the 

International Skin Imaging Collaboration, for promoting the development of 

computerized algorithms for the detection of skin cancer. 

 

 

Figure 3.5: Examples of dermoscopic images from dataset ISIC 2017. 
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3.3.3  Implementation details 

1. Data preparation and preprocessing 

At this stage, we prepared the ISIC 2017 dataset to ensure it was ready for 

effective use in training and testing our deep learning model. The original dataset 

includes dermoscopic images of skin lesions along with their corresponding 

ground truth segmentation masks, organized into separate folders for training, 

validation, and testing. 

To streamline further processing and improve training efficiency, we converted 

the raw data into structured NumPy arrays with consistent formatting. 

 

- First, we import the necessary packages. 

 

 

 

                       Figure 3.6: Illustration of the necessary package for data preparation. 

 

- Next, we define the root directory of the dataset, along with the folder names for 

each subset’s images and masks (training, validation, and test). We also specify 

the number of samples in each subset and set the target size for all images and 

masks to 256×192 pixels. 

 

Figure 3.7: Dataset preprocessing parameter representation. 

 

- Then, for each dataset split training, validation, and test ,we initialize empty 

NumPy arrays to store the preprocessed images and their corresponding masks. 

We then loop through all images in the current directory, read each image along 

with its mask, convert the image from BGR to RGB format, resize both to the 

specified dimensions, and store the results in the arrays.
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Figure 3.8: Data preprocessing illustration. 

 

- Finally, we store the resulting image and mask arrays as .npy files (data- 

train.npy, mask-train.npy,…….). Data can be loaded quickly and efficiently 

when training the model and evaluating it. 

 

 

                      Figure 3.9: storing the resulting image and mask arrays as .npy files. 
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2. Data Loading and Transformations 

- Loading images and masks from NumPy files: The Dataset images and their 

corresponding masks are loaded from previously saved NumPy files. This method 

speeds up data access and facilitates batch processing. 

 

 

                Figure 3.10: Loading images and masks from NumPy files. 

 

- Defining Image and Mask Transformations (Normalization + 

Augmentation): for preparing the training data, images get normalized based on 

ImageNet statistics and masks get converted to tensors without normalizing. 

Shifting, scaling, rotation, color jitter, and flipping augmentations get performed 

on images as well as masks for enhancing data diversity and model generalization. 

 

 

       Figure 3.11: images and masks transformations.
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Figure 3.12: Example of a skin lesion and its corresponding mask. 
 

 

3. Building our Deep Learning Model 

Once the dataset is ready, we begin building our model following the architecture 

introduced earlier in this chapter (see Figure 3.1) . We then present the 

implementation details for each component of the design. 

1- Encoder Block 

A. Transformer Branch 

 We implemented the Transformer branch using the Deit-small-244 Vision 

Transformer. It captures global features by dividing the input image into 

patches and applying self-attention across the resulting sequence of tokens. 

The output embeddings are then reshaped into a 2D feature map to match the 

dimensions of the CNN output, enabling effective multi-scale fusion. 

 

 

                 Figure 3.13: Import DeiT-Small transformer. 
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B.  CNN Branch  

 We implemented the CNN branch using a ResNet-34 backbone. This branch 

focuses on capturing local and hierarchical features through a sequence of 

convolutional and residual layers. The earlier layers extract low-level patterns, 

such as edges and textures, while the deeper layers capture more abstract, 

semantic information. These local feature maps are later combined with the global 

features from the Transformer branch to enhance segmentation performance. 

 

 

          Figure 3.14: Importing of the pretrained RestNet 34. 

 

2- Fusion Module (BiFusion Block)  

We implement a BiFusion block which combines CNN and Transformer features 

with spatial and channel attention mechanisms, bilinear interaction, and residual 

connection, optionally with dropout. 
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Figure 3.15: Illustration of Fusion Module (BiFusion block). 
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3- Decoder (UpSampling + DoubleConv + Skip Connections + Conv 1X1) 

 

- UpSampling Layer 

 

 

Figure 3.16: Illustration of UpSampling phase. 

 

- DoubleConv 
 

 

Figure 3.17: Illustration of DoubleConv phase. 
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- Conv 1X1 

 

 

 

Figure 3.18: Illustration of Conv 1X1 phase. 

 

3.4 Model Training 

During training, the model learns to adjust its weights by recognizing patterns in 

annotated medical images, while validation helps prevent overfitting. Our architecture 

combines a Transformer-based feature extractor with a CNN-based segmentation head, 

trained end-to-end with multi-scale supervision. This hybrid approach takes advantage of 

the Transformer’s ability to capture global context and the CNN’s strength in extracting 

local details working together to accurately delineate lesion boundaries. 

 

3.4.1  Loss Function 

       We define a custom structure loss function that combines: 

✓ Weighted Binary Cross-Entropy (wBCE) : 

- Weights are dynamically adjusted based on edge regions (higher weights near 

boundaries). 

-   Helps the model focus on difficult segmentation areas. 

✓ Weighted Intersection-over-Union (wIoU) : 

- Measures overlap between predictions and ground truth. 

- Also weighted to emphasize boundary regions. 
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✓  Final Loss: 

Loss = 0.5 × Loss2 + 0.3 × Loss3 + 0.2 × Loss4  

where Loss2, Loss3, Loss4, are losses from different prediction scales. 

 

3.4.2 Optimization Strategy 

✓ Optimizer : Adam 

- Learning rate: 7e-5. 

- Momentum terms: 

β1 = 0.5, β2 = 0.999  

✓ Gradient Clipping: Applied with a maximum norm of 5.0 to prevent 

exploding gradients. 

 

3.4.3 Evaluation Metrics 
 

 

Metric Purpose 

Dice Coefficient 
Calculates overlap between ground     

truth and prediction 

IoU (Jaccard Index) 
Dice-like, but more harshly  

penalizes false positives 

Pixel Accuracy Standard classification accuracy 

 

Table 3.3: Illustration of used evaluation metrics. 
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3.4.4 Training loop 

 

 

Figure 3.19: Training phase of our deep model. 
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This figure (Figure 3.19) illustrates a typical training process for our model. The 

process begins with loading the data, followed by training the model on batches of data 

and updating the model’s weights iteratively. After each epoch (a complete pass through 

the entire dataset), the model is evaluated using a validation set to measure its 

performance. If the validation loss (val-loss) is lower than the best recorded loss (best-

loss), the model’s weights are saved, and best-loss is updated to the new value. If not, 

the weights are not saved, and the training proceeds to the next epoch. This cycle repeats 

until the training is complete, ensuring that only the best-performing model weights are 

retained based on validation performance. The process emphasizes iterative improvement 

and validation to achieve optimal model performance. 

 

3.5 Experimental Results 

In this section , we present the results of our model’s automated segmentation 

across several samples from the dataset, evaluated at different training epochs. 

 

3.5.1  Performance of Our Model 

We evaluated our model’s performance using several key metrics, including training 

and validation loss, accuracy, Dice coefficient, and Intersection over Union (IoU). The 

results, summarized below, highlight the model’s effectiveness across these measures. 

• Loss: Training loss converged at 0.30, whereas validation loss converged at 0.39 

(Figure 3.20 ). 

• Accuracy: Our model obtained very high classification accuracy of 99% for the training 

data and 97% for the validation data (Figure 3.21 ). 

• Dice Coefficient : On the validation set, 0.89 Dice score was obtained, which reflects 

high overlap between predicted and ground truth segmentations (Figure 3.22 ). 

• IoU (Intersection over Union): The model obtained an IoU value of 0.81 on the 

validation set, reflecting precise region-based segmentation (Figure 3.23 ). 

▪ These results validate that our model is: 

- Stable training without overfitting. 

- High segmentation precision. 

- Strong generalization capability. 
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Figure 3.20: Loss Tracking. 
 

 

 

Figure 3.21: Accuracy Monitoring . 
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Figure 3.22: Dice Score Evaluation. 
 

 

 

Figure 3.23: IoU Metric Evaluation. 
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3.5.2 Model prediction results 

 
 

Figure 3.24: Qualitative Results. 
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3.5.3  Model prediction results analysis 

Our model’s predicted overlays show strong alignment with the ground 

truth masks, particularly in cases where lesion boundaries are well-defined 

indicating robustness in segmenting large and clear features. Minor 

discrepancies tend to appear in regions with fine details or irregular patterns, 

which are common challenges in segmentation tasks and do not significantly 

affect the model’s overall accuracy.  

To further enhance performance, expanding the training dataset with more 

diverse examples and refining the loss function could help improve edge 

detection. Quantitative metrics such as Intersection over Union (IoU) 

provide additional validation of these outcomes in numerical terms. 

Overall, the model demonstrates highly promising results, and with further 

fine-tuning, its performance could reach state-of-the-art standards. 

3.5.4 Comparison with State-of-the-Art Models 

To further assess the effectiveness of our proposed model, we compared 

its performance with several state-of-the-art segmentation models that have 

also been evaluated on the ISIC 2017 dataset. Table 3.4 provides a summary 

of their performance based on the Dice coefficient and Intersection over 

Union (IoU). 

 

Model Dice Coefficient IoU Accurancy 

nnUnet [112] 0.921 0.801 0.957 

DeepLabV3+ [113] 0.911 0.776 0.950 

TransUNet [114] 0.919 0.790 0.955 

Our model 0.89 0.81 0.97 

 

Table 3.4: Comparison of skin lesion segmentation performance 

of different networks on ISIC 2017. 

 

The evaluation results demonstrate the effectiveness of our proposed model in 

medical image segmentation for skin lesion detection. Compared to established 

models such as nnU-Net, DeepLabV3+, and TransUNet, our model achieves 

competitive performance with a Dice coefficient of 0.89, an IoU of 0.81, and the 

highest accuracy of 0.97. While nnU-Net shows the best Dice score (0.921), our 
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 model outperforms all others in terms of IoU and overall accuracy, indicating a 

better balance between precision and recall across the segmentation task. 

 

3.6 Discussion 

The results of our experiments show that the proposed model performs well across 

several key evaluation measures. It achieved high accuracy, Dice score, and IoU, which 

indicates its strong ability to accurately segment different types of medical lesions. This 

good performance highlights the benefit of combining Convolutional Neural Networks 

(CNNs), which are good at capturing local details, with Transformer models, which are 

effective at understanding the global context. By merging these two approaches, the 

model becomes more accurate and can handle a variety of lesion shapes and sizes. 

Overall, these results show that the CNN-Transformer hybrid model is a promising 

solution for improving medical image segmentation tasks. 

 

3.7 Conclusion 

In this chapter, we detailed the full development process of our proposed skin 

lesion segmentation system, covering its architectural design, implementation, and 

experimental evaluation. 

The core of our approach is a hybrid deep learning model that combines 

Convolutional Neural Networks (CNNs) with Transformer-based architectures, 

allowing the system to capture both local texture details and global contextual 

information. 

The model was built using state-of-the-art tools and libraries and trained on the 

ISIC 2017 dataset following thorough preprocessing and fine-tuning. the observed 

results across multiple topics indicate highly promising outcomes when compared 

to existing deep learning models for other works. 



58 

  

 

 
 

 

         General conclusion 

In this work, we proposed a deep learning model to automatically segment skin lesions, 

addressing a key challenge in computer-assisted dermatology. The research began by 

explaining the medical background and the importance of detecting skin cancer early. We 

then reviewed the main concepts of deep learning, focusing on convolutional neural 

networks (CNNs), vision transformers (ViTs), and hybrid models that combine both. To 

overcome the limits of CNNs in capturing long-range information and the difficulty 

transformers face in detecting fine details, we designed a hybrid model using ResNet (a 

CNN) and DeiT (a transformer). 

These components were combined through a BiFusion module, which helps integrate 

both local and global features. 

When tested on the ISIC 2017 dataset, our model achieved better results than using CNNs 

or transformers alone, especially in segmentation accuracy, Dice coefficient, and 

Intersection over Union (IoU). These results show the strength of using a hybrid approach. 

Despite the promising performance, there are still areas for improvement. These include: 

• Improving accuracy on lesions with irregular and fine boundaries. 

• Using larger and more varied datasets for training. 

• Adding uncertainty estimation to help doctors understand prediction confidence. 

• Using advanced data augmentation techniques. 

In conclusion, building accurate skin lesion segmentation models is not only a technical 

success but also a critical step toward early and reliable skin cancer diagnosis. By improving 

how lesions are detected, these models can assist dermatologists in making better decisions, 

reducing diagnosis delays, and improving patient outcomes. 

As skin cancer cases increase worldwide, improved segmentation tools can enhance 

screening efforts, increase access to care, and ultimately save lives through early detection. 
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