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Preface 

This guide is specifically designed for second-year students in Science and Technology 

programs at Algerian universities and engineering schools. It forms part of the official curriculum 

for the "Mechanical Vibrations and Waves" course, taught during the second year (L2-S3) for 

students majoring in Science and Technology (ST) and Materials Science (SM). 

The primary aim of this program is to introduce second-year students to key concepts in 

physics and mechanics related to vibration and mechanical wave phenomena, while clearly 

distinguishing between the two. The unit is divided into two main sections: the first section focuses 

on Vibrational Motion, and the second on Waves. This guide is crafted to effectively meet the 

recommendations outlined in the official curriculum. 

In accordance with the official curriculum, Lagrange's equations and differential equations 

are emphasized for the study of mechanical vibrations, without relying on the laws of classical 

mechanics. These concepts are highlighted in alignment with the official curriculum for both 

Mechanical Engineering and Methods Engineering majors. For Electrical Engineering students, 

however, the focus is placed on the second section, which covers Mechanical Waves. 

In the context of this scientific guide, the first part covers five fundamental topics related to 

mechanical vibrations, along with a summary of the necessary mechanical and mathematical 

concepts needed to support students throughout the course. 

We have simplified Lagrange’s equations as much as possible for a single-particle system 

with one degree of freedom. The classification of various types of constraints has been omitted, as 

the primary focus is on the concept of generalized forces and, in the case of dissipative systems, the 

introduction of the dissipation function. The generalization to systems with multiple degrees of 

freedom is presented without formal proof. The analysis of oscillations is intentionally limited to 

low-amplitude oscillations and is covered in the chapter titled "Free Oscillations of Systems with 

One Degree of Freedom." Only viscous friction, proportional to velocity, is considered in this 

guide. 

The subsequent chapter, dedicated to forced oscillations in systems with one degree of 

freedom, explores the concepts of resonance and mechanical impedance. The study of oscillatory 

systems with multiple degrees of freedom is confined to systems with two degrees of freedom, 

approached through the superposition of specific sinusoidal solutions. This section facilitates the 

integration of resonance and impedance concepts and introduces the phenomenon of 

antiresonance. 

The formal approach also recommends representing the propagation of mechanical waves 

using a linear string model, ensuring a smooth transition from a discrete medium to a continuous 

medium. This transition will be explored in detail in the second part of the guide. 

Finally, we trust that this guide will provide valuable insights and be a useful resource for 

students and the broader academic community. 

 

Dr : DJOUDI Tarek 
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Chapter I                                                                 

Basic Concepts in Mechanics and Mathematics 

The study of vibrational and wave mechanics, a core branch of physics, is intricately 

grounded in mathematical principles that offer a precise and systematic framework for 

understanding physical phenomena. Mastery of the fundamental concepts in both mechanics 

and mathematics is undeniably essential, as they constitute the foundation for more 

advanced topics and applications across various scientific and engineering disciplines. 

This chapter is designed to introduce the fundamental concepts and the necessary 

mathematical and mechanical tools required for analyzing and solving problems related to 

vibrational and wave motions. It covers foundational principles such as Newton’s laws of 

motion, as well as key concepts including force, work, energy, and momentum. Additionally, 

the course delves into essential mathematical techniques, such as vector analysis and 

differential equations. A comprehensive understanding of these core concepts facilitates a 

deeper insight into vibrational and wave systems, equipping students with the intellectual 

tools needed for more complex future studies. 

Through the exploration of these fundamental principles, the course will serve as a 

bridge between theoretical knowledge and practical applications. This will prepare students 

for an in-depth examination of more advanced topics in vibrational and wave mechanics, 

thereby enhancing their problem-solving abilities  
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1. Newton's Laws  

Newton's laws of motion form the foundation of classical mechanics. They describe the 

relationship between a body and the forces acting upon it, and the body's motion in response to 

those forces. 

1.1.Principle of Inertia 

This principle states that an object at rest will remain at rest, and an object in motion will 

continue to move with constant velocity, unless acted upon by an external force. For example, a 

book resting on a table will remain stationary unless a force is applied to move it. 

∑    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⃗⃗                                                                                                                                                                           ( I.1) 

1.2.Principle of Action and Reaction 

This law states that for every action, there is an equal and opposite reaction. An example of this is 

when you push a wall; the wall pushes back with the same force, which is why you feel resistance. 

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                                                                                                                                        ( I.2) 

1.3.Principle of Motion 

This law asserts that the acceleration of an object is directly proportional to the net force acting 

on the object and inversely proportional to its mass. Mathematically, this is expressed as F = ma, 

where F is the force, m is the mass, and a is the acceleration. For example, pushing a sled will 

cause it to accelerate depending on how hard you push and the sled’s mass. 

∑    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗                                                                                                                                                                    ( I.3) 

2. Definition of Kinetic Energy 

Kinetic energy (Ec) is the energy possessed by an object due to its motion. The formula to 
calculate the kinetic energy of an object is: 

 

    
 

 
                                                                                                                                                                         ( I.4) 

 
Where:  
m: is the mass of the object; 
V: is the velocity of the object. 
 
For instance, a car moving at 60 km/h has kinetic energy proportional to its mass and speed. The 
faster the car moves, the higher its kinetic energy. 
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In the case of a rigid body, the total kinetic energy is the sum of its translational kinetic energy 

and rotational kinetic energy. The translational kinetic energy is associated with the motion of 

the center of mass, while the rotational kinetic energy is associated with the rotation of the body 

about its center of mass. Mathematically, the total kinetic energy (Ec) of a rigid body can be 

expressed as: 

 

          (I.5)                                                                                                                                                                   

        

Where: 
m : is the mass of the rigid body, 
Vm : is the velocity of the center of mass, 
J : is the moment of inertia of the body about its axis of rotation, 
ω : is the angular velocity. 

The first term,     
 

 
   

  , represents the translational kinetic energy. 

The second term,     
 

 
    , represents the rotational kinetic energy. 

 

3. Definition of Potential Energy 
Potential energy (EP) is the energy stored in an object due to its position or configuration. The 

most common example is gravitational potential energy, which depends on an object’s height 

above the ground: 

 

                                                                                                                                                                              ( I.6)            

Where: 

m: is the mass of the object; 

g: is the acceleration due to gravity; 

h: is the height above the reference point. 

 

An example is a rock held at the top of a hill. When the rock is released, its potential energy is 

converted into kinetic energy as it falls. 

4. Mechanical Energy 

Mechanical energy is the sum of an object's kinetic and potential energies. It is conserved in the 

absence of non-conservative forces (like friction). The total mechanical energy of an object can be 

expressed as: 

 

                                                                          ( I.7) 
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                                                                                   it descends, this 

energy is converted into kinetic energy. 

5. Conservative System 

A conservative system is one where mechanical energy (kinetic + potential) is conserved. No 

energy is lost to external forces such as friction or air resistance. For example, an ideal pendulum 

in a vacuum (without air resistance) would be a conservative system because its total mechanical 

energy remains constant throughout the oscillation. 

                     ( I.8) 

                      ( I.9) 

6. Equilibrium Condition of a Mechanical System 
An equilibrium condition exists when the net force and net torque acting on a system are zero, 

resulting in no acceleration. This implies that the body has no kinetic energy and is in a state of 

rest, with no movement occurring in either translational or rotational forms. Mathematically, this 

is: 

 

∑    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⃗⃗        ∑   
⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗⃗ (I.10)  

 

For example, when a book is resting on a flat surface, the gravitational force pulling it downward 

is balanced by the normal force from the surface pushing upward, resulting in no motion. 

 

7. Definition of Moment 
A moment (also called torque) is the rotational equivalent of force. It measures the tendency of a 

force to rotate an object around an axis or fixed point. It is calculated as: 

 

               (I.11) 

 

Where: 

     Δ : It is the moment or torque of a force relative to the axis of rotation; 

r : is the distance from the axis of rotation; 

F : is the force applied; 

θ : is the angle between the force vector and the lever arm. 

 

For example, when you use a wrench to loosen a bolt, the force you apply at the end of the 

wrench creates a torque that turns the bolt. 
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8. Moment of Inertia 

The moment of inertia ( J ) is a measure of an object’s resistance to rotational motion about an 

axis. It depends on the mass distribution relative to the axis of rotation.  

The formula for some known shapes is: 

shapes moment of inertia ( J ) 
Material point is r away from the center of 
rotation. 

mr2 

Ring with diameter R mR2 

Cylinder with diameter R  

 
  2 

Leg with length L  

 
  2 

 
 
 

Where: 
m : is the mass of the object; 
r and R : is the distance from the axis of rotation; 
L: length of Leg. 

9. Huygens' Theorem 
Huygens' Theorem states that the moment of inertia      of a body about any axis is related to the 

moment of inertia      bout the center of mass and the mass distribution relative to that axis. The 

relationship is given by: 

                                                                                             (I.12) 

Where: 
     is the moment of inertia about any axis (not necessarily through the center of mass); 

     is the moment of inertia about the center of mass; 

M : is the mass of the rigid body; 
d : is the distance between the center of mass and the axis of rotation. 
 

10. Definition of degree of freedom 

The degree of freedom refers to the number of independent parameters or coordinates needed to 

uniquely define the position and configuration of a system. In mechanical systems, it corresponds 

to the number of independent ways a system can move or the number of independent variables 

required describing its motion. 
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For example: 

A particle moving in a straight line has 1 degree of freedom, as only its position along the line is 

needed to describe its motion. 

A particle moving in a plane has 2 degrees of freedom because its position requires two 

independent coordinates (e.g., x and y coordinates). 

A rigid body moving in three-dimensional space has 6 degrees of freedom: 3 for translation 

(motion along the x, y, and z axes) and 3 for rotation (rotation about the x, y, and z axes). 

In general, the degree of freedom of a system is determined by the number of independent 

motion components that the system can exhibit, considering any constraints it may have. 

11. Springs in Series 

When springs are connected in series, the total spring constant (ktotal) is found by summing the 
reciprocals of the individual spring constants: 
 
 

      
 

 

  
 

 

  
            (I.13) 

 

This arrangement causes the system to have a lower spring constant compared to the individual 

springs, resulting in greater elongation for a given force. For example, if two springs of different 

stiffness are connected in series, the combined system will stretch more than either of the 

springs alone. 

12. Springs in Parallel 

When springs are arranged in parallel, the total spring constant (ktotal ) of the system is the sum 
of the individual spring constants. This is in contrast to the series arrangement where the spring 
constants are combined differently. 
 

                                  (I.14)                                                                                                   

 
Where: 
k1,k2,…,kn are the spring constants of the individual springs in parallel. 
 

13. Springs with Branches 
Springs with branches involve more complex arrangements where one spring divides into two or 

more paths, each with its own spring constant. The total behavior of the system depends on how 

the branches are arranged, and the equivalent spring constant can be calculated using a 

combination of series and parallel spring formulas. For instance, a network of springs in parallel 

will have an equivalent spring constant that is the sum of the individual spring constants, while a 

combination of series and parallel can be used to find the effective spring constant for more 

complex setups. 
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14. Second-Order Differential Equations 

A second-order differential equation is an equation that involves the second derivative of an 

unknown function. These equations are widely used to describe various physical phenomena, 

such as motion, electrical circuits, and heat transfer. 

 

A general second-order differential equation is given by: 

      
  

  
 
   

   
)=0                                   (I.15) 

Where: 

y: is the unknown function dependent on x 

dy/dx :is the first derivative 

d²y/dx² : is the second derivative of y with respect to x. 

The general solution to a second-order linear differential equation depends on the nature of the 

system and its parameters, such as damping, forcing, and initial conditions. The solutions can be 

classified based on the damping conditions or external forces applied to the system. Below are 

the primary categories of solutions for second-order differential equations .The solution process 

to a second-order differential equation typically follows these steps: 

 

1.Write the equation in standard form: Begin by expressing the equation in the form: 

 

  
   

   
     

  

  
                   (I.16) 

 

 2.Identify the type of equation: Determine if the equation is homogeneous or non-homogeneous. 

In a homogeneous equation, g(x) = 0, while in a non-homogeneous equation, g(x) ≠ 0. 

3.Solve the homogeneous equation: For homogeneous equations, solve the corresponding 

equation (g(x) = 0) by finding the characteristic equation. The solution will depend on the 

discriminant of the characteristic equation. 

4.Consider damping conditions: For physical systems like oscillators, identify if the system is 

underdamped, critically damped, or overdamped. This will affect the form of the solution. 

   *Underdamped: The solution includes sinusoidal terms multiplied by an exponential decay 

factor. 

  *Critically Damped: The solution consists of a decaying exponential without oscillation. 

  *Overdamped: The solution consists of two decaying exponential terms. 

5.Solve the non-homogeneous equation: If the equation is non-homogeneous, find a particular 

solution that satisfies the non-homogeneous term (g(x)). Methods like undetermined coefficients 

or variation of parameters can be used to find the particular solution. 

Let the second-order differential equation for oscillatory motion be of the form: 
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 ̈     ̇    
                  (I.17) 

Whereas:  

x=t,         ,          ,          , 
   

   
  ̈ and 

  

  
  ̇. 

The solutions to the equation are as follows: 

 

Figure I.1. Flowchart of the solution of a second-order differential equation 
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Introduction to Lagrange’s Equations 

Lagrange’s equations form a cornerstone of classical mechanics and provide a 

powerful framework for analyzing the motion of systems. Developed by Joseph Louis 

Lagrange in the 18th century, these equations are derived from the principle of least action, 

also known as Hamilton's principle, which states that the path taken by a system between 

two states is the one that minimizes the action. 

At the core of Lagrange’s approach is the concept of generalized coordinates, which 

allow the description of a system’s configuration in a way that simplifies the equations of 

motion. This is particularly useful for systems with constraints, complex geometries, or non-

Cartesian coordinate systems where Newtonian mechanics may be cumbersome or 

inadequate. 

Lagrange’s equations are particularly powerful for dealing with systems that involve 

oscillations, vibrations, and waves. In such systems, where forces are often derived from 

potential energy, Lagrange's formalism allows for an elegant derivation of the equations of 

motion without needing to explicitly account for forces at each point in space. 
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1.1 Lagrange's Equations for a Single Particle 

1.1.1 Lagrange's Equations 

A Lagrange equation in a dynamical system is a scalar function of dynamical variables that allows 

writing the differential equations of motion of a mechanical system without resorting to the laws 

of classical Newtonian mechanics. Lagrange's equations of motion provide a powerful framework 

for analyzing the dynamics of physical systems, particularly when dealing with complex 

constraints and generalized coordinates. They are derived from the principle of least action, 

which states that the actual path taken by a system is the one for which the action integral is 

minimized. The basic form of Lagrange's equation for a particle is given by: 

 
 

  
(
  

  ̇
)  

  

  
           (II.1) 

 

where L is the Lagrangian, defined as the difference between the kinetic energy Ec and the 

potential energy Ep of the system,  

L = Ec -Ep.                                    (II.2) 

The coordinates q represent the generalized coordinates, while   ̇ denotes their time derivatives, 

also referred to as the generalized velocities. 

        : Generalized external forces. 

1.1.2 The Case of Conservative Systems 

For conservative systems, the potential energy Ep depends only on the generalized coordinates 

and not on time or velocities. This implies that the total mechanical energy EM   is conserved over 

time.  

EM = Ec +EP= Cst             (II.3) 

In such systems, the Lagrangian does not explicitly depend on time, and the generalized forces 

are derived from the gradient of the potential energy.  

 
       

   
  

                  (II.4) 
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The equation of motion then becomes: 

 

  
(
  

  ̇
)  

  

  
                (II.5) 

 

This simplified form is particularly useful for systems like a mass on a spring or a simple 

pendulum, where the forces involved are purely conservative (no friction or other non-

conservative forces). 

1.1.3 The Case of Velocity-Dependent Friction Forces 

In many practical systems, the forces acting on a particle are not purely conservative. For 

instance, forces like friction, which are often velocity-dependent, can significantly affect the 

dynamics of the system. These forces can be modeled as functions of the generalized velocities;  

Such as   ⃗⃗  ⃗     ⃗              (II.6) 

Where:  α is a damping coefficient        

 ⃗  :The vector represents the linear velocity. 

In this case, the Lagrangian must be modified to account for the work done by these non-

conservative forces. The generalized force arising from the friction is included in the Lagrange 

equation as an additional term on the right-hand side: 

 
 

  
(
  

  ̇
)  

  

  
                 (II.7) 

 

      ̇                (II.8) 

  : The generalized force and β: constant positive. 

For a velocity-dependent friction force, this leads to damping effects that gradually dissipate the 

system's energy. 

The generalized viscosity friction force is related to the dissipation function according D to the 

following relationship: 

    
  

  ̇
                 (II.9) 

With    
 

 
  ̇                          (II.10) 

 



                                                  Vibrations and Waves 
Introduction to Lagrange’s Equations  

 

 
10                                                                                                                                                                Dr. DJOUDI Tarek

  
 

Chapter II                                                                

By substitution in the Lagrange equation, the relationship when there is viscous friction 

becomes: 

 

  
(
  

  ̇
)  

  

  
 

  

  ̇
                     (II.11) 

1.1.4 The Case of Time-Dependent External Forces 

When external forces, such as electromagnetic forces, gravitational fields, or time-varying 

constraints, are introduced, they add a time-dependence to the system's dynamics. These 

external forces are represented in the generalized force term of the Lagrange equation, which 

may now depend explicitly on time: 

 

  
(
  

  ̇
)  

  

  
 

  

  ̇
                            (II.12) 

Here, F ext, q (t) represents any external force that varies with time, such as a magnetic field that 

changes with time or a driving force applied to the system. 

 

1.2 Systems with Multiple Degrees of Freedom 

In systems with multiple particles or components, each of which can move independently, we 

introduce generalized coordinates for each degree of freedom. For example, a double pendulum 

has two degrees of freedom, represented by two generalized coordinates, q1 and q2. In this case, 

the Lagrangian formulation is extended to accommodate the interactions between the various 

degrees of freedom.  

The equations of motion for a system with multiple degrees of freedom are obtained by writing 

down the Lagrangian for the entire system, which is the sum of the kinetic and potential energies 

of all components. The Lagrange equations for each generalized coordinate are then derived in a 

similar fashion as for a single particle, but now they involve the interactions between the 

coordinates: 
 

  
(

  

   ̇
)  

  

   
 

  

  ̇ 
        

                     (II.13) 

For each i = 1, 2, ..., n, where n is the total number of degrees of freedom in the system. In such 

cases, the interactions between the different components of the system are explicitly included in 

the Lagrangian, which may lead to coupled equations of motion. 
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2. An applied example 

Determine the equation of motion of a simple pendulum, as shown in FigureII.1, consisting of a 

mass m and a massless string of length l, for small oscillations, using Lagrange's method. 

 

 

 

 

 

 

 

 

Figure II.1 simple pendulum. 

The rotational motion, therefore, implies that the coordinates of the system are given by q=θ. 

1. Kinetic energy and potential energy 

   
 

 
  ̇  

 

 
    ̇                      (II.14) 

                                     (II.15) 

2. Lagrange equation 

The Lagrange equation that characterizes the system is expressed as: 

 

  
(
  

  ̇
)  

  

  
                         (II.16) 

L = Ec -Ep                          (II.17) 

  (
 

 
    ̇  )                              (II.18) 
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For weak oscillations         .  

Applying Lagrange's equation: 

 

  
(
  

  ̇
)      ̈                     (II.19) 

  

  
                                 (II.20) 

Substituting into the Lagrange equation (II.6): 

    ̈                               (II.21) 

The differential equation of motion is as follows: 

 ̈  
 

 
                                                       (II.22) 

And the free pulse      √
 

 
                                          (II.23) 
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Free Oscillations of Single-Degree-of-Freedom Systems 

The study of free oscillations in mechanical systems is essential for understanding the 

fundamental dynamics of oscillatory motion. A single-degree-of-freedom (SDOF) system is a simple 

yet powerful model for describing many mechanical systems, where motion can be characterized 

by a single coordinate or displacement. These systems are widely used in engineering to model 

various physical systems such as vibrating beams, mass-spring systems, and even complex 

mechanical structures. 

In a free oscillation scenario, no external forces are applied to the system once it is 

displaced from its equilibrium position. Instead, the system's motion is governed by its inherent 

properties—such as mass, stiffness, and damping—and its natural tendency to oscillate. The study 

of these oscillations helps us understand the system's response to initial disturbances and provides 

insights into its behavior over time. 

For an SDOF system, the equation of motion is typically a second-order differential equation 

that describes how the system's displacement evolves with time. The solution to this equation 

depends on the system's parameters, such as mass, spring constant, and damping coefficient, 

which influence the nature of the oscillations. Depending on the level of damping, the system may 

undergo oscillations that decay over time, or it may return to equilibrium without oscillating. 

Understanding these free oscillations is crucial for the design and analysis of structures and 

mechanical systems, especially when considering factors such as resonance, stability, and energy 

dissipation. In this context, free oscillations provide the foundation for more complex dynamic 

analyses, including forced oscillations and the study of wave propagation. 

This section introduces the key concepts and mathematical formulations necessary to 

analyze free oscillations in SDOF systems, laying the groundwork for a deeper understanding of 

vibration analysis in engineering and physics. 
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1 Undamped Oscillations 

The undamped oscillations occur in systems where the mechanical energy is not dissipated by 

friction or other non-conservative forces. In such systems, the mechanical system is displaced 

from its equilibrium position and oscillates freely without any external excitation force. As a 

result, the total mechanical energy, this is the sum of kinetic and potential energies, remains 

constant over time, and the motion exhibits periodicity.  

The fundamental equation of simple harmonic motion (SHM) is derived from either Newton's 

second law or Lagrange's equations, resulting in a differential equation that describes the motion 

of a free system with one degree of freedom in generalized coordinates: 

 ̈                    (III.1) 

The differential equation is obtained from the Lagrange equation for a conservative system with 

a first degree of freedom, considering the two conditions that characterize oscillatory motion 

(The equilibrium condition and the stability condition). 

 

  
(

  

  ̇
)  

  

  
                          (III.2) 

Where: 

  L = Ec -Ep                 (III.3) 

The equilibrium condition 

   

  
|
   

                 (III.4) 

And the stability condition is given by 

    

   
|
   

               (III.5) 

This differential equation represents the dynamics of a free system without damping or external 

forces. Its solution describes simple harmonic motion, a sinusoidal equation that determines the 

position of the body at any instant, and takes the following form: 

 ( )      (     )           (III.6) 
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Where: 

  A is the amplitude of oscillation; 

     √
 

 
 is the angular frequency; 

  φ is the phase constant. 

 

The period of oscillation, T, is given by: 

 

    T = 2π/ω0 = 2π √(m/k)             (III.7) 

 

This result shows that the period of oscillation depends only on the mass and the stiffness of the 

system, and it is independent of the amplitude. The motion is sinusoidal, with constant 

amplitude, and the system oscillates indefinitely without any loss of energy. 

To determine the values of the angular frequency A and phase constant ᵠ, it is necessary to refer 

to the initial conditions of the motion described in the following equation: 

{
 (   )    

 ̇(   )    ̇
              (III.8) 

Thus we get the following  values: 

  √
  

   
    

 ̇

  
                 (III.9) 

And  

        (
  ̇

     
)                    (III.10) 

The free oscillatory motion of a material point can be represented in Cartesian coordinates as follows: 

 

Figure III.1: Displacement response of the mass spring system (solution to the differential equation). 
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  : The period is defined as the time interval required for the oscillating mass to return to the 

same position in its motion, that is, the duration between two successive passages through an 

identical point, as illustrated in the figure III.1.  

  
  

  
 

 

 
                      (III.11) 

Where:  f denotes the frequency of the oscillatory motion; Its unit is hertz [Hz] or [S-1]. 

2 Free Oscillations of Damped Systems 

In practical systems, mechanical systems are invariably subjected to external resistive forces, 

such as friction, which introduces damping effects. This damping leads to a gradual reduction in 

the amplitude of oscillations over time. Damped oscillations are characterized by the presence of 

these resistive forces, which are typically directly proportional to the velocity of the oscillating 

body, thereby dissipating energy from the system. In this section, we will specifically examine 

viscous friction, commonly referred to as damping. 

 

 

 

 

 

 

 

Figure III.2 : Viscous friction. 

The Lagrange equation that governs the oscillations damped by the frictional force takes the 

following form: 

 
 

  
(

  

  ̇
)  

  

  
 

  

  ̇
                      (III.12) 

From the Lagrange equation for a free system undergoing damped vibrations, the second-order 

homogeneous differential equation is derived as follows: 

 

    ̈     ̇    
                        (III.13) 

 

m 

α 

𝑭𝒇      

Viscous damping symbol 
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Where: 

  : is the damping coefficient [s-1]; 

    is the free pulsation [rad/s]. 

 

The resulting second-order linear differential equation represents the dynamics of a damped 

harmonic oscillator. The solution to this equation varies based on the damping condition, which 

can be categorized as under-damped, critically damped, or over-damped. 

     : Under-damped case; 

    : Critically damped case; 

    : Over-damped case; 

2.1 Underdamped Case (Weak Damping) 

When the damping is small (c² < 4mk), the system exhibits oscillations, but the amplitude 

decreases exponentially over time. The solution to the equation for underdamped motion is: 

 

 ( )          (     )                         (III.14)  
 

      A and φ are integration constants determined from the initial conditions. ωa is the 

pseudo-frequency defined by:   

   √  
    (III.15)      

 

                           decreasing amplitude, and the time between peaks (the period) 

increases slightly due to the damping. The exponential factor       represents the gradual decay 

of energy in the system. The frequency of oscillation ωa is less than the natural frequency ω due 

to the damping. 

The figure represents the time-reduced decay curve of the system in Cartesian coordinates, 

illustrating the variation of the system's response over time 

 

Figure III.3 : The time-reduced decay curve of the system in cartesian coordinates. 
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2.2 Critically Damped Case 

At critical damping, the damping force is sufficiently large to prevent oscillations, causing the 

system to return to equilibrium in the shortest time possible. In this scenario, it is important to 

note that the motion is non-periodic. The general solution to the differential equation for a 

critically damped system is as follows: 

 

     ( )  (      )     (III.16) 

 

Where A1 and A2 are constants determined by the initial conditions. 

 

 

Figure III.4 : Variation in capacitance over time for a critically damped system. 

The figure illustrates the variation in capacitance over time for a critically damped system, 

demonstrating how the system gradually returns to rest as time progresses 

2.3 Overdamped Case (Strong Damping) 

If the damping is large (c² > 4mk), the system does not oscillate, and the displacement gradually 

decays to zero without any oscillation. The solution to the equation for overdamped motion is: 

 

     ( )                                 (III.17) 

Where: r₁ and r₂ are the roots of the characteristic equation, both real and negative.  

      √     
                       (III.18) 

      √     
                     (III.19) 
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The system returns to equilibrium slowly without oscillating, and the rate of decay depends on 

the value of the damping coefficient. 

 

3. An applied example 

A rod OC with negligible mass is hinged without friction at point O and carries a mass m at its end 

C (Figure III.5). Two springs with stiffness constants k1 and k2 are attached to the rod at points A 

and B, respectively. In equilibrium, the rod is horizontal and is displaced by a small angle θ 

(assumed to be very small, corresponding to small oscillations). 

 

1- Calculate the kinetic and potential energy of the system. 

2- Deduce the Lagrangian. 
3-Derive the equation of motion. 

4- Find the solution θ(t) given that  ( )  
 

  
 and  ( )    ̇  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.4 Pendulum-spring mechanical system. 

 

The rotational motion, therefore, implies that the coordinates of the system are given by q=θ. 

Degree of freedom : D=N-L=4-(2+1)=1 

 

 

 

 

Static equilibrium 
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1. Kinetic energy and potential energy 

For weak oscillations (      ).  

   
 

 
  ̇  

 

 
 (  ̇)

 
                    (III.20) 

                               (III.21) 

   
 

 
    

  
 

 
    

  
 

 
  (   )  

 

 
  (   )                (III.22) 

2. Lagrange equation 

The Lagrange equation that characterizes the system is expressed as: 

 

  
(

  

  ̇
)  

  

  
                                   (III.23) 

L = Ec -Ep                         (III.24) 

  
 

 
 (  ̇)

 
 

 

 
  (   )  

 

 
  (   )                 (III.25) 

Applying Lagrange's equation: 

 

  
(

  

  ̇
)      ̈                    (III.26) 

  

  
 (    

      
 )                    (III.27) 

Substituting into the Lagrange equation (III.23): 

 ̈  
(    

      
 )

   
 =0                   (III.28) 

And the free pulse      √
(    

 
     

 
)

  
                                     (III.29) 

{
 ( )      (     )

 ̇( )         (     )
  

 

{
 (   )      ( )  

 

  

 ̇(   )         ( )   
  =>     {

  
  

  
   

                      (III.30) 
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The equation of motion as a function of time is: 

 

 ( )   
 

  
   (√

(    
      

 )

   
      )                (III.31) 

4 An applied example (Free damped system) 

A mass mmm is welded to the end of a rod of length l and negligible mass (FigureIV.2). The other 

end of the rod is hinged at point O. The rod is connected at point A to a frame (B1) by a spring 

with stiffness k1. At point B, the rod is connected to another frame (B2) by a spring with stiffness 

k2. The mass m is connected to frame (B2) by a damper with a friction coefficient α. The distances 

are OA=l/3 and OB=2l/3. 

1- Find the differential equation of motion. 

2- Determine the solution of the differential equation in the case of weak damping, the damping 

coefficient, the natural frequency, and the pseudo-frequency. 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.2 Mechanical mass-shock absorber-spring system. 

The rotational motion, therefore, implies that the coordinates of the system are given by q=θ. 

Degree of freedom : D=N-L=4-(2+1)=1 
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 1. Kinetic energy and potential energy 

For weak oscillations (      ).  

   
 

 
  ̇ 

  
 

 
 (  ̇)

 
                    (III.32) 

                               (III.33) 

   
 

 
    

  
 

 
    

  
 

 
  (

 

 
 )

 
 

 

 
  (

  

 
 )

 
               (III.34) 

  
 

 
    ̇                     (III.35) 

2. Lagrange equation 

The Lagrange equation that characterizes the system is expressed as: 

 

  
(

  

  ̇
)  

  

  
 

  

  ̇
                                  (III.36) 

L = Ec -Ep                         (III.37) 

  
 

 
 (  ̇)

 
 

 

 
  (   )  

 

 
  (   )                 (III.38) 

Applying Lagrange's equation: 

 

  
(

  

  ̇
)      ̈                    (III.39) 

  

  
  (

    

 
 

     

 
)                    (III.40) 

  

  ̇
     ̇                       (III.41) 

Substituting into the Lagrange equation (IV.26): 

 ̈  
 

 
 ̇  (

  

  
 

   

  
)                         (III.42) 

 ̈     ̇    
                       (III.43) 

 

For weak damping: 

 

 ( )          (     )                  (III.44) 
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The natural frequency: 

 

   √
      

  
                            (III.45) 

 
The damping coefficient: 

 

  
 

  
                             (III.46) 

The pseudo frequency: 

 

   √  
                               (III.47) 

 

   
 

  
√ (      )                              (III.48) 

 
Thus, the equation of motion with respect to time takes the form of: 

 

 ( )     
 

  
     (

 

  
√ (      )         )                      (III.49) 

The amplitude and phase are calculated from the initial conditions of the motion. 

 
 

5. Summary 

In summary, undamped oscillations represent idealized systems that exhibit continuous periodic 

motion with constant amplitude. In contrast, damped oscillations are more realistic, where 

energy is dissipated over time, causing the amplitude to decrease. The nature of the damping 

(underdamped, critically damped, or overdamped) determines the system's behavior in response 

to its initial displacement. Damped oscillations are common in mechanical systems, electrical 

circuits, and even biological systems, where energy dissipation plays a significant role in the 

dynamics. 
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Forced Ocillations of One-Degree-of-Freedom Systems 

in the study of mechanical systems, the analysis of forced vibrations plays a crucial role in 

understanding how systems respond to external excitations. Unlike free vibrations, which occur 

without any external influence once a system is displaced from its equilibrium position, forced 

vibrations arise when an external periodic or time-varying force is applied to the system. These 

external forces can come from various sources, such as motors, engines, or environmental factors 

like wind or seismic activity. Understanding how systems react to such forces is essential for 

designing and analyzing structures, machinery, and other engineered systems. 

In the context of first-order systems, the equations governing forced vibrations are typically 

simpler than those of more complex systems with higher degrees of freedom, yet they provide 

foundational insights that can be extended to more intricate problems. A first-order forced 

vibration system is typically modeled using a simple differential equation, where the system’s 

displacement is influenced by both the internal restoring forces (such as spring stiffness) and the 

external forcing function. 

Through the analysis of forced vibrations, we gain valuable insights into key phenomena 

such as resonance, where the frequency of the external force matches the natural frequency of the 

system, leading to potentially large oscillations that can result in failure if not properly managed. 

The study of resonance, damping, and the amplitude of vibrations under different external forcing 

conditions provides the foundation for understanding the dynamic behavior of engineering 

systems. 

This chapter delves into the principles behind forced vibrations in first-order systems, 

focusing on how external forces influence the system's motion. By exploring key concepts like 

amplitude response, damping, and resonance, we aim to equip the reader with the tools needed to 

analyze and predict the behavior of simple systems under external excitation. While first-order 

systems may seem simple, they serve as the cornerstone for more complex analyses, providing 

essential knowledge applicable to a wide range of practical engineering problems. 
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In this chapter, we will discuss forced oscillations in a one-degree-of-freedom system, which is a 

fundamental topic in mechanical vibrations. We will cover the differential equations governing 

the system, explore a specific mass-spring-damper system, and analyze different types of 

excitations that can force oscillations. Finally, we will introduce the concept of mechanical 

impedance and its role in these systems. 

1 Differential Equation 
A one-degree-of-freedom (1-DOF) system is a mechanical system that can be modeled with a single 

coordinate, usually denoted as q(t), which represents the displacement of the system. The general form of 

the equation of motion for forced oscillations is derived from Newton's Second Law or Lagrange's 

Equation. 

 

  
(

  

   ̇
)  

  

   
 

  

  ̇ 
        

             (IV.1) 

For a system subject to external force F(t), the equation of motion is given by: 

 ̈     ̇    
          

              (IV.2)  

Where: 

  : is the damping coefficient [s-1]; 

    is the free pulsation [rad/s]; 

       
     : is the external force applied to the system. 

 

This is a second-order linear differential equation that governs the forced oscillations of the system. 

Solving this equation provides the displacement q(t)=x(t) as a function of time in the case of retraction 

motion relative to the shaft x. 
 

2 Mass-Spring-Damper System 

One of the most common examples of a 1-DOF system is the mass-spring-damper system, which 

consists of: 

A mass m attached to a spring with a stiffness constant k, 

A damper with damping coefficient    which resists motion. 

The force applied to the system may be external and time-dependent, like a periodic force or a 

harmonic excitation. The system's natural behavior (unforced response) is determined by its 

natural frequency and damping ratio, but when subjected to external excitation, the response 

changes depending on the frequency and form of the excitation. 
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Figure IV.1 Mass-Spring-Damper System. 

2.1 Kinetic Energy 

    
 

 
  ̇                 (IV.3) 

2.2 Potential Energy 

      
    

              (IV.4) 

Where:  

   
 : Gravitational potential energy, 

   
 : Elastic potential energy. 

        
 

 
        

                        (IV.5) 

2.3 Lagrangian 

L = Ec -Ep                  (IV.6) 

  
 

 
  ̇  (     

 

 
        

 )                         (IV.7) 

2.4 Dissipation function 

  
 

 
  ̇                (IV.8) 

2.5 Equilibrium condition 
   

  
|
   

                (IV.9) 

k 
k 

β 
β 

L
=

l 0
+
Δ

l  

x 

m 
m 



                                                  Vibrations and Waves 
Forced Ocillations of One-Degree-of-Freedom Systems 

 

 
25     Dr. DJOUDI Tarek 
 

Chapter IV                                                                

   

  
|
   

                                           (IV.10) 

2.6 Lagrange's Equations 

 

  
(
  

  ̇
)  

  

  
 

  

  ̇
                           (IV.11) 

After substituting the values and differentiating equation (IV.11), we obtain the following 

differential equation: 

 ̈  
 

 
 ̇  

 

 
  

         

 
                 (IV.12) 

Where: 

   
 

  
: is the damping coefficient [s-1]; 

   √
 

 
  is the free pulsation [rad/s]. 

 

3 Solution of the Differential Equation 

The differential equation governing the forced oscillation motion is a second-order equation with 

a non-homogeneous term. The solution to equation (IV.12) is expressed as the sum of the 

homogeneous and particular solutions, as given by: 

                                  (IV.13) 

Where: 

      : is the homogeneous solution; 

      : is the particular solution. 

 

The homogeneous solution       , as indicated in the previous section, accepts three cases 

directly proportional to an exponential limit, which are the following: 

      : This corresponds to the over-damped condition. 

          
       

                               (IV.14) 

     : This represents the critically damped case. 

               
                          (IV.15) 

     : This illustrates the under-damped scenario.  

                                     (IV.16) 

This solution describes a transient motion that progressively approaches equilibrium or 

diminishes to zero as time elapses. Ultimately, the particular solution      persists, 
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representing the permanent or forced response of the system. The particular solution is a non-

homogeneous complementary solution that mirrors the form of the non-homogeneous term on 

the right-hand side of the differential equation. It is important to note that the constants in this 

solution are independent of the initial conditions of the pulse. 

                                     (IV.17) 

3.1 Harmonic Excitation 

When the external force is sinusoidal, we say the system is subject to harmonic excitation. A 

typical form of harmonic excitation is: 

                                    (IV.18) 

Where: 

    is the amplitude of the force, 

   :is the frequency of excitation. 

For this type of excitation, the solution to the equation of motion is found using the method of 

undetermined coefficients or Laplace transforms, yielding a solution of the form: 

                                          (IV.19) 

Where: 

    :is the amplitude of the oscillation. 

 φ   :is the phase angle.  

 

The amplitude of the response depends on the resonance of the system, which occurs when the 

excitation frequency    matches the system’s natural frequency;    √
 

 
. 

At resonance, the system experiences maximum displacement due to the accumulation of energy 

and damping is critical in controlling the response. 

 

4 Mechanical Impedance 
Mechanical impedance is an important concept when analyzing forced oscillations. It is defined 

as the ratio of the force applied to the system to the velocity of the system's motion: 

      
 

 
        (IV.20) 

 

Where: 

     :is the mechanical impedance at a frequency ω, 

V: is the velocity of the mass. 

        
      and     ̇. 

Impedance gives insight into how the system resists motion at various frequencies. The 

mechanical impedance of a mass-spring-damper system can be expressed as: 
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              (IV.21) 

5. An applied example 

Consider the inverted pendulum in Figure V.6. (J = mL2). At rest, the rod OC is vertical and the 

springs are undeformed. 

1- Give the differential equation of motion of this system (in the case of small oscillations). 

Given: m = 0.2 kg, k1 = 9 N/m, k2 = 5 N/m, β = 0.9 kg/s, L = 0.5 m, and f(t) = cos(2t). 

2- Give the natural angular frequency, the damped angular frequency (pseudo-angular 

frequency), and the logarithmic decrement. 

3- Give the solution for the steady state. 

4- Give the solution for the transient state. 

 

 

 

 

 

 

 

 

 

 

Figure V.6 Inverted Pendulum system. 

The rotational motion, therefore, implies that the coordinates of the system are given by q=θ. 

Degree of freedom : D=N-L=4-(2+1)=1 
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1. Kinetic energy and potential energy 

For weak oscillations         .  
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 (

  

 
)
 
 ̇                     (IV.25) 

2. Lagrange equation 

The Lagrange equation that characterizes the system is expressed as: 
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  ̇
)  

  

  
 

  

  ̇
                                  (IV.26) 

L = Ec -Ep                         (IV.27) 
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          )             (IV.28) 

After differentiation and replacing term by term in the Lagrange equation, we obtain: 

    ̈  
   

 
  ̇  (

    

 
         )                      (IV.29) 

 ̈  
 

  
  ̇  (

  

  
 

  

 
 

 

 
)   

 

   
                                 (IV.30) 

And the free pulse: 

     √
      

  
 

 

 
                             (IV.31)

      

The pseudo frequency: 

 

   √  
                                  (IV.32) 

Logarithmic decrement:          
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Steady-state solution: 

                                     (IV.33) 

   
 

   ⁄

√(  
    )

 
      

                        (IV.34) 

       (
   

  
    )                   (IV.35) 

Thus, the steady-state solution is expressed by the following equation: 

                                        (IV.36) 

Transient-state solution: 

                                   (IV.37) 

The differential equation without the forcing term is written as: 

 ̈      ̇                          (IV.38) 

           

         
 

 
                               (IV.39) 

A and   are constants of integration calculated from the initial conditions. 

 

The impedance shows how the system’s response changes with frequency. When the system is 

subjected to a force at resonance, the impedance is minimized, and the displacement is 

maximized. For non-resonant frequencies, the impedance is higher, and the system resists 

oscillations more. 

In this chapter, we explored the dynamics of forced oscillations in a 1-DOF system, starting from 

the governing differential equation to specific solutions under harmonic and periodic excitation. 

We also introduced the concept of mechanical impedance and discussed its significance in 

understanding system behavior at different frequencies. 



 

 

 
 
 
Free Oscillations of Two-Degree-of-Freedom Systems 
 

Understanding free oscillations is a fundamental topic in vibration mechanics, providing 

fundamental insights into the behavior of dynamic vibrating systems. The two-degree-of-freedom 

system is a critical model in the study of mechanical vibrations, embodying the fundamental 

properties of oscillatory behavior in systems with more than one mode of motion. This chapter 

focuses on analyzing these systems, exploring their natural frequencies, modes, and corresponding 

dynamic responses. 

The primary objective of this chapter is to provide students with the mathematical and 

physical tools necessary to analyze free oscillations in two-degree-of-freedom systems. By the end 

of the chapter, students will gain a comprehensive understanding of the fundamental principles 

governing the motion of two-degree-of-freedom systems, including how to calculate natural 

frequencies, mode shapes, and time responses. These skills are essential in engineering 

applications where understanding vibration behavior is critical, such as structural dynamics, 

machine design, and vibration control. 

This course also aims to enhance students' analytical skills, enabling them to determine the 

natural frequencies and time responses of two-degree-of-freedom mechanical systems. These skills 

are essential for the design and analysis of mechanical systems subjected to non-forced vibrations. 

Chapter V                                                                
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1 Introduction 

In this chapter, we will focus on the analysis of free oscillations in systems with two degrees of 

freedom (2-DOF). A two-degree-of-freedom system is a more complex mechanical system than 

the one-degree-of-freedom systems discussed earlier. Such systems are often encountered in 

engineering, where they may represent interconnected mechanical elements such as beams, 

frames, or multi-body systems. 

In the case of second-order free oscillations, the system is considered the sum of two first-order 

systems, which are interconnected. Therefore, the general coordinates are    and   . 

The analysis of free oscillations in two-degree-of-freedom systems involves understanding the 

coupled motions of the system's components, each of which may exhibit its own natural 

frequency. The system's behavior can be described using the principle of superposition, and the 

natural frequencies and modes of vibration are important for determining the system's response. 

2 Mechanical Joints 

Mechanical joints are critical components in the design and analysis of mechanical systems. They 

facilitate the connection between various system components while regulating their relative 

motion. Despite the diversity of mechanical joints, we can categorize them into three basic types 

in this chapter, as follows: 

2.1 Flexible Joints 

These joints permit deformation while maintaining contact under the influence of applied forces. 

Elastic springs, for example, are commonly used to absorb shocks and vibrations in mechanical 

systems. These joints are important for accommodating slight movements and providing 

elasticity in response to dynamic loads. 

 

 

  

 

 

Figure V.1 Elastic coupling. 
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2.2 Inertial Joints 

This category includes all hinged joints that allow rotational motion, often coupled with multiple 

displacements. These joints enable the rotation of components around a fixed point, and they are 

essential in systems where such motion is necessary, like in joints of mechanical arms or robotic 

systems. 

 

 

 

  

 

 

Figure V.2 Inertial coupling. 

2.2 Viscous Joints 

Viscous joints utilize the viscosity of a material to absorb deformations while ensuring a 

connection and movement between the bodies. Typically found in dampers, these joints are 

designed to dissipate energy through fluid resistance, making them crucial for controlling 

vibrations and stabilizing dynamic systems. 

 

 

 

 

 

 

Figure V.3 Viscous coupling. 

These mechanical joints play a vital role in the modeling and analysis of mechanical systems 

because they dictate the types of relative motions that can occur between the different 

components. Proper understanding and implementation of these joints are key in the design of 

efficient and reliable mechanical systems across various applications. 

 

β 
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3 Two-Degree-of-Freedom Systems 
A two-degree-of-freedom system is composed of two interconnected subsystems, such as two 

masses, springs, and potentially dampers, arranged in a way that enables two independent 

modes of motion for each mass. These systems can display intricate dynamics due to the 

interactions between their components. Generally, the system's motion can be characterized by 

two generalized coordinates,       and       which represent the displacements of the two 

masses. In the case of translational motion, these can be expressed as       and      . 

The governing equations of motion for a two-degree-of-freedom free system are derived from 

Newton's second law or Lagrange's equations. For a system with two masses    and   , two 

springs with stiffness constants   and   , and a coupling spring with stiffness      (Figure V.4), 

The Lagrange differential equations of motion for a system of second-order coupled are given by 

the following form: 

{
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   ̇
)  
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   ̇
)  

  

   
  

           (V.1) 

Where: L is the Lagrangian, defined as the difference between the kinetic energy Ec and the 

potential energy Ep of the system,  

L = Ec -Ep.                                    (V.2) 

 

 

 

 

Figure V.4 Two-degree-of-freedom system (coupling spring). 

The differential equations of free for the two-degree-of-freedom free system will be modified to 

account for the damping forces. The equations will take the following form: 

{
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               (V.3) 
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The differential equation of motion for a two-degree-of-freedom system is generally of the form: 

{
    ̈     ̇   ̇                  

    ̈     ̇   ̇                  
            (V.4) 

These equations (V.4) represent the interaction between the two masses and their respective 

forces. The solutions to these equations describe the free oscillations of the system, and the 

analysis focuses on determining the system's natural frequencies and mode shapes. 

In the case of unamortized systems (     the system undergoes (free vibration) where the 

energies are conserved, and the system oscillates with its natural frequencies. The natural 

frequencies and mode shapes are determined by solving the characteristic equation obtained 

from the system’s equations of motion. 

We consider the free oscillations of the two-degree-of-freedom system in Figure V.5. 

 

 

 

 

Figure V.5. Two-degree-of-freedom spring-mass system. 

 

1) Calculate the kinetic and potential energies of the system; 

2) For k1 = k2 = k and m1 = m = m2/2, and using Lagrange's formula, establish the differential 

equations of motion. Deduce the system's natural pulsations. 

1. The kinetic and potential energies of the system 
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2. Lagrangian 

                    (V.9) 
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  )                (V.10) 

3. The differential equations 

{
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)  
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   ̇
)  

  

   
  

                         (V.11) 

By derivation, we find: 

{
    ̈                  

    ̈             
                  (V.12) 

After compensation we find: 

{
   ̈            
    ̈            

                     (V.13) 

Suppose the solution is of the following form: 

{
                 

                 
                   (V.14) 

After derivation and substitution in equation (V.13), we find: 

{
                 

                 
                  (V.15) 

For the equation to admit solutions, the determinant of the coefficient matrix must be zero: 

   |         
         

|                    (V.16) 

                  

                                 (V.17) 
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The lowest frequency term corresponding to the angular frequency ω1 is called the fundamental. 

The other term, with angular frequency ω2, is called the harmonic. The two natural frequencies 

are: 

   √
 

 
    and         √

 

  
                        (V.18) 

And the solutions are written as: 

{
                                   

                                   
                 (V.19)

  

A11, A12, A21, A22,    and    are constants of integration determined from the initial conditions. 

The system oscillates in the first (fundamental) mode; the solutions are written as: 

{
                    

                    
                      (V.20)

  

The solutions of the oscillating system in the second mode (harmonic) are given by: 

{
                    

                    
                (V.21) 

 

A key concept in this chapter is the (coupling of modes). In a two-degree-of-freedom system, the 

motion of one mass influences the motion of the other mass, and the system may exhibit (normal 

modes). These are the inherent vibration patterns of the system, where each mass moves in a 

characteristic pattern without affecting the other mass. The system’s total response can be 

represented as a combination of these normal modes. 
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Forced Oscillations of Two-Degree-of-Freedom 

Systems  

The study of forced oscillations in two-degree-of-freedom (2-DOF) systems is essential in the 

field of mechanical and structural engineering, as well as in many other disciplines where dynamic 

systems are present. Forced oscillations describe the behavior of a system subjected to external 

periodic forces, leading to oscillations that may differ significantly from those in free oscillations. 

Understanding the response of 2-DOF systems to such forces is crucial for designing stable, resilient 

structures and machinery, especially in scenarios where multiple interacting components are 

involved. 

This chapter provides a comprehensive analysis of the forced oscillations in two-degree-of-

freedom systems. It begins with the theoretical foundations, including the formulation of the 

equations of motion for such systems under external excitation. Subsequently, it explores various 

methods to solve these equations, emphasizing the significance of damping, resonance, and the 

role of the system's natural frequencies in shaping the response. Practical applications are also 

examined, highlighting how these systems are encountered in engineering systems such as vehicle 

suspension, multi-structure frameworks, and coupled mechanical systems. By delving into these 

aspects, this chapter aims to equip the reader with a deep understanding of forced oscillatory 

phenomena and their implications for system stability and performance.  
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1 Lagrange's Equations 

In this chapter, we will derive the equations of motion for forced oscillations in a two-degree-of-

freedom system using Lagrange's equations. Lagrange's formulation offers a systematic approach 

to deriving the equations of motion for complex systems with multiple degrees of freedom, 

particularly when external forces, periodic forces, or generalized coordinates are involved. By 

applying Lagrange's equations, we can account for the interactions between the system's 

components and the effects of external excitations, enabling a comprehensive understanding of 

the system's dynamic behavior under forced conditions. 

Suppose a system consists of two masses,    and   , connected by a spring of constant stiffness 

K, where each mass is subjected to an external force      and       respectively. Each mass is 

also connected at its other end to an additional spring of constant stiffness   and   , respectively, 

and a damper with a damping coefficient  . The generalized coordinates, representing the 

displacements of the two masses along the ox-axis, are denoted by the symbols       and      . 

The Lagrange differential equation for the system coordinates can be expressed as: 

{
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)  
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(

  

   ̇
)  

  

   
 

  

  ̇ 
      

             (VI.1) 

For a system with two masses    and   ,, two springs with stiffness constants     and   , and a 

damping coefficient  , we can describe the generalized coordinates as       and      , 

representing the displacements of the masses. Lagrange's equation for a generalized coordinate q 

is given by: 

L = Ec -Ep              (VI.2) 

Where: 

L:is the Lagrangian, which is the difference between the kinetic energy (Ec) and potential energy 

(Ep), 

Ec: is the total kinetic energy of the system, 

Ep :is the total potential energy of the system. 

 

For the two-degree-of-freedom system, the equations of motion are obtained by applying the 

principle of least action and solving the resulting Lagrangian equations. These equations describe 

the dynamics of the system and form the foundation for analyzing forced oscillations. 



Vibrations and Waves 
 Forced Oscillations of Two-Degree-of-Freedom Systems 

 

 
37   Dr. DJOUDI Tarek 
 

Chapter VI                                                                

2 Mass-Spring-Damper System 
A two-degree-of-freedom system can be represented by a mass-spring-damper configuration, 

where two masses are connected by springs and dampers. This system is often used to model 

mechanical systems that exhibit vibrations under external forces. The masses    and    are 

connected by two springs, one between the first mass and a fixed point, and the second between 

the two masses, along with dampers that resist the motion. 

 

 

 

 

 

Figure VI.1 Mass-Spring-Damper System 

Assumptions and system configuration: 

Mass 1 (  ): It is attached to a wall and connected to a spring and a damper. Its position is      . 

Mass 2 (  ): It is free, connected to mass 1 by a spring and a damper. Its position is      and it 

experiences an external force     . 

2.1 kinetic energy 

The total kinetic energy of the system is the sum of the kinetic energies of the two masses 

                       (VI.3) 
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              (VI.4) 

2.1 Potential energy 

The potential energy arises from the restoring forces of the springs and the frictional forces 

exerted by the shock absorber 
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F(t) 
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2.1 Lagrangian 

The Lagrangian is given by the difference between the kinetic energy and the potential energy. 

L = Ec -Ep              (VI.8) 
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 )        (VI.9) 

 

2.4. Équation differential de Lagrange  

The Lagrange equation for each mass is obtained by applying the following formulas : 
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                     (VI.10) 

 

2.5 Les équations différentielles du système  
The two coupled second-order differential equations describing the system are therefore: 

 

{
   ̈     ̇                ̇   ̇         

   ̈      ̇   ̇                 
              (VI.11) 

These equations describe the interaction between the two masses and how the system responds 

to external forces. By solving these equations, we can analyze the free and forced oscillations of 

the system and determine its response to different types of external excitations. These equations 

are coupled and can be solved numerically or analytically (if possible) to obtain the 

displacements      . and      .as functions of time and the external force     . 

The solution is the sum of the homogeneous solution (transient regime) and the particular 
solution (steady state). However, the homogeneous solution diminishes over time due to the 
damping effect. Consequently, the general solution ultimately simplifies to the particular solution, 
which represents the motion's response to the applied force. 
 
2.6 Case of the system is subjected to a sinusoidal force 
The force applied to the system is of the form: 

                 
                     (VI.12) 

Hence, the particular solution takes the following form: 

{
    ̅            

    ̅            
                        (VI.13) 
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The complex solutions       and        are written as: 

{
      

    

      
    

                       (VI.14) 

Where: 

    ̅  
   

    ̅  
   

  

After substitution into the differential equation (VI.11) of motion, we find: 

{
           

           

        
            

                    (VI.15) 

Damping is considered negligible in this case, or weak relative to the vibrations, and therefore 

has no significant effect.    .  

To solve this equation (VI.15), it is necessary for the determinant to be non-zero. 

Where the determinant:     |
          

   

       
   

|                   (VI.16) 

With: 

   
|
   
    

|

 
 

    

 
    and      

|
          

  

       
   

|

 
 

  (          
 )

 
                      (VI.17) 

After obtaining the pulsation proper’s    and    from Equation (VI.17), both the amplitude       

and phase       can be subsequently determined. 

 

5.3 Impedance 

Impedance is a measure of how much a system resists the motion caused by an applied force. In 

the case of forced oscillations, impedance is a useful concept to describe the system’s response to 

different frequencies of external excitation. 

 

 



Vibrations and Waves 
 Forced Oscillations of Two-Degree-of-Freedom Systems 

 

 
40   Dr. DJOUDI Tarek 
 

Chapter VI                                                                

The mechanical impedance Z(ω) for a two-degree-of-freedom system is defined as the ratio of the applied 

force to the velocity of the system at a given frequency ω: 

     
    

    
  

 

Where F(ω) is the applied force and V(ω) is the velocity of the system. The impedance is 

frequency-dependent and shows how the system’s response changes with the excitation 

frequency. Impedance analysis helps to identify resonant frequencies where the system exhibits 

maximum displacement. 

5.4 Applications 
The concepts of forced oscillations and impedance in two-degree-of-freedom systems are applied 

in various engineering fields. Some common applications include: 

 

- Vibration analysis of structures and mechanical systems, 

 

- Suspension systems in vehicles, 

 
- Seismic analysis of buildings and bridges, 
 
- Modeling of multi-body systems in robotics. 
 

In each of these applications, understanding the forced oscillations of the system allows 

engineers to design systems that can either avoid resonance or take advantage of it, depending 

on the application. For example, in vehicle suspension systems, the goal is often to minimize the 

amplitude of oscillations at certain frequencies, while in seismic analysis, engineers might want 

to analyze how a structure responds to earthquake-induced vibrations. 

 

5.5 Generalization to N-Degree-of-Freedom Systems 
The concepts introduced for two-degree-of-freedom systems can be extended to systems with 

more degrees of freedom (N-DOF). In an N-degree-of-freedom system, the system consists of 

multiple masses, springs, and dampers, and the motion is described by multiple generalized 

coordinates. 

The equations of motion for an N-DOF system are derived from the Lagrangian formulation or 

Newton's second law, and they result in a system of coupled second-order differential equations. 

These equations describe the interaction between all components of the system and how the 

system responds to external forces. The response of the system can be analyzed by determining 

the system’s normal modes, natural frequencies, and impedance. 
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Lagrange's equations give the equations of motion 
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                                                             (VI.18) 

Or: 

{

    ̈      ̈        ̈                       
 

    ̈      ̈        ̈                       
                      (VI.19) 

It is a system of n linear differential equations. It has been found that, in the case of systems with 

two degrees of freedom, sinusoidal solutions exist: 

{

                                    

                                     

      
  

 
       

  

 
                    

  

 
       

  

 
      

               (VI.20)      

We can therefore seek, in the general case, solutions of the form: 

           (      )                                                     (VI.21)   

The system of differential equations (VI.19) is then transformed into a system of n linear and 

homogeneous algebraic equations: 

∑ (       
     )     

                                       (VI.22)   

For there to be non-zero solutions the determinant of the coefficients must be zero: 

   |       
     |                         (VI.23)  

We find an equation of degree n in   
  whose roots   

    
     

     
   are the positive proper 

pulsations of the mechanical system. 

With  , we obtain the solution: 

         
                                (VI.24) 

 

We can express the amplitudes   
 as a function of    

 , for example, and write: 

        
   

                                                                   (VI.25) 
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The general solution is obtained by superimposing the different oscillation modes: 

      ∑   
   

  
                                                  (VI.26) 

The constants   
   and    will be determined from the initial conditions. 

In practice, N-DOF systems are common in complex engineering applications, such as in large 

structures, aerospace systems, and multi-body dynamics in robotics. The analysis of N-DOF 

systems often requires advanced mathematical techniques, such as matrix methods and 

numerical simulations. 
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