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Abstract

Wildfires have become an increasingly urgent global issue, particularly in re-
gions like Algeria, where they cause significant environmental, social, and eco-
nomic damage. Traditional wildfire detection methods, such as ground ob-
servation and aerial surveys, are often limited in coverage and response time,
making it crucial to explore advanced solutions for real-time monitoring. In
this project, we utilize satellite remote sensing and deep learning techniques
to enhance wildfire detection. Using the Active Fire Detection in Landsat-8
Imagery dataset, we conducted a comparative analysis of three deep learn-
ing models U-Net, SegFormer B2, and YOLO v8. For segmentation tasks,
we used the Murphy Mask as our ground truth label. After evaluating the
performance of these models, we selected the best one, with U-Net and Seg-
Former B2 demonstrating the most promising results in accurately detecting
fire boundaries and hotspots. These segmentation models provided more pre-
cise and dynamic detection compared to the others. Finally, the chosen model
was deployed in a web application for early wildfire detection.

Keywords: Wildfire, Deep Learning, Satellite Imagery, Remote Sensing, U-
Net, SegFormer-B2, YOLOv8, Image Segmentation,Early Detection, Active
Fire, Murphy Mask.
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Résumé

Les incendies de forêt sont devenus un problème mondial de plus en plus ur-
gent, en particulier dans des régions comme l’Algérie, où ils causent des dom-
mages environnementaux, sociaux et économiques considérables. Les méthodes
traditionnelles de détection des incendies, telles que l’observation au sol et les
relevés aériens, sont souvent limitées en termes de couverture et de réactivité,
ce qui rend crucial l’exploration de solutions avancées pour une surveillance en
temps réel. Dans ce projet, nous utilisons la télédétection par satellite et les
techniques d’apprentissage profond pour améliorer la détection des incendies.
En utilisant le jeu de données Active Fire Detection in Landsat-8 Imagery,
nous avons réalisé une analyse comparative de trois modèles d’apprentissage
profond : U-Net, SegFormer B2 et YOLO v8. Pour les tâches de segmenta-
tion, nous avons utilisé le Murphy Mask comme étiquette de vérité de terrain.
Après avoir évalué la performance de ces modèles, nous avons sélectionné le
meilleur, avec U-Net et SegFormer B2 montrant les résultats les plus promet-
teurs pour détecter avec précision les limites des incendies et les foyers chauds.
Ces modèles de segmentation ont fourni une détection plus précise et dy-
namique par rapport aux autres. Enfin, le modèle choisi a été déployé dans
une application web pour une détection précoce des incendies de forêt.

Mots-clés : Incendie de forêt, Apprentissage profond, Imagerie satellite,

Télédétection, U-Net, SegFormer-B2, YOLOv8, Segmentation d’images, Détection

précoce, Feu actif, Murphy Mask.
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Introduction

Forests play an indispensable role in the health of our planet. They are vital in absorbing
carbon dioxide and releasing oxygen, which helps regulate the global climate. In addition to
their role in carbon sequestration, forests provide a habitat for wildlife, protect biodiversity,
and regulate the water cycle. They also offer essential resources for humans, from timber
to medicinal plants. The ecological, economic, and social significance of forests cannot be
overstated. Their importance in maintaining ecological balance is profound, as they provide
crucial services such as soil protection, climate regulation, and biodiversity preservation, all
of which are vital for sustaining life on Earth.

However, despite these benefits, forests worldwide are increasingly under threat,most
notably from a rise in wildfire activity. In recent years, the frequency and intensity of
wildfires have grown significantly, driven by a combination of factors such as climate change,
human activities, and poor environmental management. This concerning trend is especially
evident in regions like northern Algeria, where recurrent fire outbreaks are fueled by dry
climatic conditions, extreme heatwaves, and negligence, leading to the regular spread of fires
across vast forested areas.

Given the rapid escalation of these fires, timely and efficient detection is crucial for mit-
igating their impact. Traditional methods of wildfire detection, such as ground-based ob-
servation or aerial surveys, have shown certain limitations due to their limited coverage,
delayed responses, or inability to monitor large regions at once. Satellite remote sensing
offers a powerful tool to meet this need. By using satellites, we can capture high-resolution
images of vast areas, even those that are inaccessible, allowing for early detection of wildfires.

The true potential of this approach, however, is realized when combined with the latest
advancements in deep learning. Deep learning, a branch of artificial intelligence, has proven
to be highly effective in extracting meaningful insights from complex data such as satellite
imagery. In our project, we leverage two key deep-learning techniques: segmentation and
object detection. These tasks allow us to precisely delineate fire boundaries, track fire
hotspots, and ensure no critical information is overlooked. This offers a more accurate and
dynamic solution compared to classification methods. To accomplish this, we evaluate the
performance of U-Net, SegFormer B2, and YOLO v8 models. These models are well-suited
for the tasks of segmentation and object detection, and our goal is to assess their efficiency
and accuracy in wildfire detection.

1



Introduction

The success of this system, however, depends on the availability of high-quality datasets.
The satellite imagery used must be accurate, providing the necessary data for training and
fine-tuning deep learning models. In our project, we rely on carefully selected datasets that
offer high-resolution images of wildfire-affected areas, ensuring that our models can detect
fires with precision.

Finally, we will compare the performance of our models with those from related work to
assess their effectiveness in wildfire detection and highlight key differences in accuracy and
approach.

Memo Organization and Structure

This memo comprises an introduction, four chapters, and a general conclusion, organized
as follows:

• Chapter 1:Satellite Remote Sensing for Wildfire Detection ;this chapter covers the
evolution and key principles of remote sensing technology, focusing on satellite sensors
for wildfire detection. It highlights global and Algerian wildfire trends, emphasizing
the urgency of the issue, and reviews traditional wildfire detection methods in Algeria,
setting the stage for the application of advanced technologies in wildfire management.
• Chapter 2: Deep Learning Models for Satellite-Based Wildfire Detection ;this
chapter explores the rise of deep learning in remote sensing, highlighting the use of
various deep learning models like U-Net, SegFormer B2, and YOLO v8. It also dis-
cusses the specific tasks of segmentation and object detection in wildfire detection and
why these approaches are essential.
• Chapter 3: Research Design and Methodology ;describes the proposed system
architecture, including dataset description, model construction, preprocessing tech-
niques, and performance metrics.
• Chapter 4: Results and System Deployment ;this chapter presents the results of
the model evaluation, compares the performance of the U-Net, SegFormer B2, and
YOLO v8 models. It also explains the deployment of the solution and any interfaces
for the admin and user.
• General Conclusion: Summarizes the key findings from the project, evaluates
the effectiveness of using deep learning for wildfire detection, and provides recommen-
dations for future improvements and research in the field of wildfire monitoring using
satellite imagery.

2
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I
Satellite Remote Sensing

for Wildfire Detection
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Chapter 1 Satellite Remote Sensing for Wildfire Detection

1.1 Introduction

Wildfires profoundly disrupt the balance of natural ecosystems, inflicting extensive and

persistent damage on forests and their surrounding environments. In many cases, full recovery

can take years,sometimes even decades. As these events become more frequent and severe, it

is crucial to develop and implement effective strategies that minimize their impact. We must

prioritize reliable, sustainable solutions to manage this growing crisis, safeguarding both the

environment and the communities that depend on it.

This chapter reviews the evolution and fundamental principles of remote sensing technology,

focusing on satellite sensors used in wildfire detection. It examines global and Algerian wildfire

trends to highlight the scale and urgency of the problem. Additionally, the chapter explores

traditional wildfire detection techniques in Algeria, laying the groundwork for understanding

how advanced technologies can enhance wildfire management and response.

1.2 Remote Sensing Technologies

Remote sensing is the science of obtaining information about the Earth’s surface and at-

mosphere from a distance. This is accomplished by detecting and measuring electromagnetic

energy that is reflected or emitted from objects or areas, typically through sensors mounted on

satellites, aircraft, or other platforms. The core principle involves capturing electromagnetic

radiation—ranging from visible light to infrared, thermal, and microwave wavelengths—and

interpreting the variations in the energy to identify and analyze the characteristics of the

observed targets. Remote sensing systems can be classified as passive, relying on natural

sources of radiation such as the sun, or active, where the sensor emits its energy (e.g., radar)

to illuminate the target[1][2].

The significance of remote sensing lies in its ability to provide consistent, timely, and large-

scale data that is indispensable for monitoring environmental changes, managing natural re-

sources, and supporting decision-making across diverse sectors such as agriculture, forestry,

urban planning, disaster management, and climate science. By enabling observation over vast

and often inaccessible areas, remote sensing facilitates the detection of land cover changes,

vegetation dynamics, water quality, and urban growth, among other applications. The in-

tegration of remote sensing data with Geographic Information Systems (GIS) and advanced

image processing techniques further enhances the extraction of valuable information for sci-

4



Chapter 1 Satellite Remote Sensing for Wildfire Detection

entific research and practical applications.

Remote sensing is inherently multidisciplinary, combining optics, spectroscopy, photogra-

phy, computer science, electronics, telecommunications, and space technology into a compre-

hensive system. The process involves several stages: emission of electromagnetic radiation

(from the sun or transmission to the Earth’s surface), interaction with surface materials (re-

flection, absorption, emission), transmission back to the sensor, and data output for analysis.

The diversity of sensors and platforms, coupled with advances in digital processing and mod-

eling, continues to expand the capabilities and applications of remote sensing technology [3].

1.2.1 Evolution of Remote Sensing

Understanding the evolution of remote sensing is essential for appreciating how this pow-

erful tool has transformed into a cornerstone of modern Earth observation. From its origins

in aerial photography to the advanced satellite technologies used today, the field reflects con-

tinuous innovation in sensors, data processing, and applications. These advancements have

enabled broader coverage, faster acquisition, and higher precision, serving vital domains such

as environmental monitoring, agriculture, urban planning, military intelligence, and disaster

response [4].

Figure 1.1 – Timeline of the Evolution of Remote Sensing Technologies (1839–Present)[5].

The history of remote sensing is broadly segmented into three historical periods:

— The Early Age (1839–1907)

This period marks the foundational phase of remote sensing, beginning with the invention

of photography.
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• In 1839, Louis Daguerre introduced the daguerreotype process, enabling visual docu-

mentation of the Earth’s surface.

• In 1858, Gaspard-Félix Tournachon (Nadar) captured the first known aerial photo-

graph from a tethered balloon over Paris.

• Innovations followed with Arthur Batut’s kite photography in 1889 and Julius Neubron-

ner’s use of pigeons equipped with cameras in 1906.

• By 1909, aerial photography from airplanes emerged, enhancing image quality and

acquisition range.

Figure 1.2 – Earliest surviving aerial photograph taken by Nadar from a hot air balloon
above Paris in 1866 [6].

— The Medieval Age (1908–1945)

This era saw remote sensing adopted for strategic military purposes.

• Aerial reconnaissance became a critical component during World War I (1914–1918),

improving battlefield mapping and surveillance.

• In the 1930s and 1940s, Germany pioneered the development and application of radar,

extending sensing capabilities beyond the visible spectrum. Radar’s extensive deploy-

ment during World War II laid the groundwork for post-war meteorological applications

and long-range detection technologies [7].

— The Modern Age (1946–present)

The launch of artificial satellites initiated the modern era of remote sensing.

• In 1957, the Soviet Union launched Sputnik 1, marking the beginning of space-based
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Earth observation.

• In 1959, the Explorer-6 satellite returned the first space-based image of Earth.

• With the launch of TIROS-1 in 1960, consistent meteorological observation became

possible.

• A major milestone occurred in 1972 with the launch of Landsat-1, equipped with

multi-spectral scanners to monitor the Earth’s surface.

• The 1980s and 1990s introduced radar satellites such as ERS-1 and Radar-sat, as well

as high-resolution commercial satellites like IKONOS and QuickBird.

• In recent decades, the integration of UAVs (drones), machine learning algorithms,

and open-access satellite data (e.g., NASA and ESA) has revolutionized remote sensing

applications, making them faster, more accurate, and accessible on a global scale [7].

Figure 1.3 – ERS-1 satellite in orbit [8].

From early experiments with photography to cutting-edge multispectral satellite systems

and AI-powered analytics, the historical trajectory of remote sensing illustrates the conver-

gence of science, technology, and global needs for Earth observation.

1.2.2 Principles of Remote Sensing

Remote sensing refers to the acquisition of information about the Earth’s surface and at-

mosphere from a distance, typically by detecting and measuring electromagnetic radiation

reflected or emitted by objects. By eliminating the need for direct contact, remote sensing

provides a powerful means of monitoring environmental processes at multiple scales. Under-

standing the underlying principles of remote sensing is essential for the correct interpretation

and effective use of the data obtained. These principles govern how sensors operate and

directly influence the quality, accuracy, and usability of information [9].
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The core principles of remote sensing can be broadly categorized into three fundamental

dimensions:

— Spectral Resolution:

Spectral resolution describes how well a sensor can differentiate between various wave-

lengths or spectral bands of electromagnetic energy. Sensors with high spectral resolution

can detect very narrow ranges of wavelengths, which is essential for detailed analysis of

land surfaces and environmental conditions. For instance, Landsat satellites are equipped

with multispectral sensors that capture data across several broad bands, such as visi-

ble and near-infrared. Hyperspectral sensors go even further by recording data across

hundreds of narrow, contiguous bands. This allows for more accurate identification of

materials like different vegetation species, minerals, and water quality indicators. The

choice of spectral bands is crucial: near-infrared bands are often used to assess plant

health due to their sensitivity to chlorophyll, while specific visible and infrared wave-

lengths are employed to monitor water bodies [9] [10].

— Temporal Resolution:

Temporal resolution refers to how often a sensor revisits and captures data for the

same geographic area. This factor is particularly important for observing changes that

happen over time, such as crop growth, seasonal shifts, or natural disasters. Sensors

with high temporal resolution can provide daily or even hourly data.

A notable example is the MODIS instrument aboard NASA’s Terra and Aqua satellites,

which offers daily global coverage—ideal for tracking phenomena like wildfire spread or

flood development. On the other hand, satellites like Landsat typically revisit the same

location every 16 days, which is sufficient for monitoring longer-term changes like defor-

estation or urban expansion. Depending on the study’s goals, researchers must balance

temporal resolution with spectral and spatial factors [9].

— Spatial Resolution:

Spatial resolution defines the smallest feature that a sensor can detect on the Earth’s

surface. It is usually expressed in terms of pixel size; for example, a resolution of 10

meters means that each pixel represents a 10x10 meter area on the ground. High spatial
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resolution is essential when detailed observation is required, such as in city planning or

precision farming. Some commercial satellites, such as WorldView-3, provide imagery

with resolutions as fine as 0.3 meters, making it possible to identify individual buildings

and land plots. In contrast, sensors such as NOAA’s AVHRR have a coarser resolution

of about 1 kilometer, making them more suitable for large-scale applications such as

tracking sea surface temperature or vegetation patterns between regions. Ultimately,

the spatial resolution dictates the level of detail available for analysis [9].

1.2.3 Types of Remote Sensing

Remote sensing systems are commonly classified in two main ways, based on how they work

and where they are used. This classification reflects the fact that every system involves two

key elements: the way it collects data, either by using natural energy (passive) or by emitting

its signal (active), and the platform it operates from, whether it’s a satellite, an aircraft, a

drone, or a ground-based setup. These two perspectives offer a structured understanding of

the operational mechanisms and application domains of remote sensing technologies.

A. Classification by Physical Principle This classification is based on the physical

principle behind how remote sensing systems collect data. It focuses on the type of energy

involved in the sensing process. In this context, there are two main methods: passive

remote sensing, which depends on natural sources of energy like sunlight, and active

remote sensing, which uses artificial energy generated by the sensor itself. Each method

has specific advantages depending on the application and environmental conditions.

Figure 1.4 – passive and active sensors [11].

1.Passive Remote Sensing

Systems rely on natural energy, mainly sunlight, to collect information reflected or emit-

ted from the Earth’s surface. They operate across various spectral bands—like visible,
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near-infrared, and thermal—and are used in satellites such as MODIS and Landsat for

monitoring vegetation, land cover, and environmental changes; for example, MODIS,

VIIRS, Sentinel-2, and the Landsat series [12].

Advantages:

— Large-scale coverage: Satellites can capture large areas, including polar regions,

continents, and oceans; this is ideal for global monitoring.

— Cost-effective: for repetitious tasks or large areas, satellites are more economical,

reducing the need for physical fieldwork.

— Long-term data archive: Some satellites offer historical data that enables analyses

(deforestation, glacier retreat, etc.) [13].

Limitations:

— Lower spatial resolution: some satellites may not capture details, making them not

suitable for analysis that requires high detail.

— High initial cost: the development and launching and maintaining of satellites are

expensive and require significant investment.

— Atmospheric interference: Haze, cloud cover, aerosols, and atmospheric conditions

can affect the quality of data and obscure data.

— Affected by cloud cover and dependent on daylight [14].

2.Active Remote Sensing

Systems emit their energy toward the target and measure the reflected or backscattered

signal. These sensors operate independently of sunlight and can function effectively

under cloudy or nighttime conditions. The most common active systems include radar

and LiDAR technologies [12].

Advantages:

— All-weather and day/night capability: active sensors generate their energy, allowing

data collection regardless of sunlight, cloud cover, or time of day.

— High-resolution 3D mapping: LiDAR systems can produce detailed three-dimensional

models of terrain and structures, useful for topographic and infrastructure analysis.

— Vegetation and surface penetration: radar systems, such as SAR, can penetrate

vegetation canopies or shallow surfaces, revealing hidden features.
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— Independence from natural light: active systems operate independently of solar

energy, enabling nighttime data acquisition.

Limitations:

— High cost and energy demand: Active remote sensing systems are more expensive

to develop, operate, and maintain due to complex instruments and energy require-

ments.

— Complex data processing: Interpreting active sensor data often requires advanced

technical knowledge and processing software.

— Signal interference: data quality may be affected by electronic interference or envi-

ronmental noise.

— Limited spatial coverage (for non-satellite platforms): aircraft or drone-mounted

systems typically cover smaller areas compared to satellites and may require mul-

tiple passes for wide coverage [15].

B. Classification by Platform or Source Remote sensing systems can also be classified

based on the platform or source from which data is collected. This approach focuses on

the physical location of the sensor—whether it is mounted on a satellite, an aircraft, or

a drone, or positioned at ground level. Each platform comes with its own strengths and

limitations in terms of spatial coverage, resolution, and operational flexibility, making

them suitable for different types of environmental and geospatial applications. These

platforms are often integrated with specific sensor technologies such as LiDAR and radar

to enhance their capabilities.

1. Aerial Remote Sensing

Aerial platforms include crewed aircraft—such as fixed-wing planes, helicopters, and

specially equipped survey planes—and Unmanned Aerial Vehicles (UAVs) or drones.

UAVs are autonomous aircraft controlled via remote or preprogrammed flight paths and

can carry a variety of sensors. They are especially valuable for applications requiring

high-resolution imagery at a local scale, such as precision agriculture, disaster response,

and infrastructure monitoring. Aircraft, on the contrary, are used for higher-altitude

surveys that demand more advanced sensors [16].

Advantages:

— High spatial detail.
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— flexibility in deployment.

Limitations:

— Limited spatial coverage per flight

— regulatory constraints.

Figure 1.5 – Drone, UAV, UAS, or RPAS [17].

2. Ground-Based Remote Sensing

These systems involve sensors installed on or near the Earth’s surface, such as wireless

sensor networks, thermal cameras, or fixed spectrometers. Ground-based systems are

ideal for continuous, high-frequency measurements at fine spatial scales. They are often

used for the validation of aerial and satellite data and for localized studies in agricultural,

forest, and urban environments. Ground platforms may also incorporate radar and

LiDAR technologies for enhanced detail.

Advantages:

— Real-time

— high-precision data.

Limitations:

— Small area coverage

— installation limitations.

Figure 1.6 – Example of ground-based sensing platforms include fixed sensors and mobile
stations [18].
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3. Satellite-Based Remote Sensing

Satellite platforms host sensors that orbit the Earth and provide repetitive, large-

scale, and long-term observations. They are essential for monitoring phenomena such as

deforestation, urban expansion, climate change, and natural disasters. These systems

enable consistent data collection across different time scales and geographic regions,

making them highly valuable for temporal change detection and trend analysis. Well-

known missions include Landsat, Sentinel-2, and MODIS. These platforms can carry

both passive and active sensors, including radar and LiDAR.

Advantages:

— Broad coverage.

— Long-term monitoring.

Limitations:

— Moderate spatial resolution.

— Revisit time constraints.

Figure 1.7 – Illustration of the MODIS (Moderate Resolution Imaging Spectroradiometer)
sensor [19].

1.3 Satellite Imagery for Wildfire Detection

Wildfires increase daily due to many reasons, such as climate change and human activities,

so early detection is an important step. In this section, we will discuss one of the most widely

used techniques for fire detection, which is the use of satellite imagery.
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1.3.1 Satellite Imagery Overview

Satellite imagery is images (visual data) collected and captured of plants, forests, Earth,

etc. Equipped with satellites using onboard sensors and then transmitted to Earth for analysis,

they are used to monitor phenomena.

Satellite imaging companies sell those images to governments and businesses [20]

Figure 1.8 – Satellite-based remote sensing diagram [20] .

A. The Capture of Earth’s Land Images by Satellites Satellites capture images of the

Earth using specialized sensors that detect electromagnetic radiation (light) reflected or

emitted from the surface. The process involves several key components and steps:

— Step 1: Satellite Orbit and Positioning: A satellite is launched into space; it

enters and is placed in a specific orbit around Earth, which is a balance between

its forward velocity and Earth’s gravitational pull. This balance keeps the satellite

moving around Earth without falling back or flying off into space. [21]

The type of orbit influences the frequency, coverage, and resolution of the images.

Common orbits for Earth observation include:

• Low Earth Orbit (LEO): Satellites like Sentinel-2 or Landsat operate at altitudes

of 600–800 km, completing an orbit every 90 minutes. LEO is ideal for high-

resolution imaging due to its proximity to Earth.

• Sun-Synchronous Orbit (SSO): A type of LEO where satellites pass over the

same spot on Earth at the same local time each day, ensuring consistent lighting

for comparable images. Sentinel-2, for example, uses SSO for consistent monitoring.
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• Geostationary Orbit (GEO): At 35,800 km, satellites like GOES remain fixed

over one location, providing continuous coverage but lower resolution (1 km or

coarser). These are less common for detailed land imaging [22].

— Step 2: Image Capture Using Onboard Sensors:

• As the satellite moves along its orbit, its sensor scans Earth’s surface in swaths.

• The sensor captures reflected light/radiation, capturing data in multiple spectral

bands (e.g., red, green, blue, infrared). (Light reflected from Earth enters the

sensor’s optics.)

• Detectors (e.g., CCD arrays) convert light into digital signals.

• Data is processed onboard or transmitted to ground stations when ensuring it is

without significant errors [23].

— Step 3: Data Processing and Image Creation: Ground stations receive the

satellite data and process it to create images.

• Processing involves calibrating sensor data, correcting distortions caused by the

satellite’s motion and Earth’s curvature, and stitching together multiple swaths to

form continuous images or maps.

• The result is detailed images of Earth’s land surface, which can be used for

environmental monitoring, land use analysis, disaster response, and scientific re-

search[24].

B. Widely Used Satellite Sensors: Satellite sensors are critical tools in Earth observa-

tion and remote sensing; these sensors fall into several main categories based on tech-

nology used and data type.

(a) Optical Sensors

They detect and capture reflected sunlight in visible, NIR, and SWIR. Examples

of optical sensors:

— Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM)/

Enhanced Thematic Mapper Plus (ETM+): Operated by NASA/USGS,

used for land use, agriculture, and forestry. [25]

— MODIS (Moderate Resolution Imaging Spectroradiometer): works

on NASA’s Terra and Aqua satellites with 36 spectral bands and 250 m–1 km
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resolution; it is used for global vegetation, fire detection, ocean color, smoke

plumes, and burn scars in near-real time [26]

— Sentinel-2: Developed by the European Space Agency, with 13 spectral bands,

it provides high-resolution multispectral imagery (10–60 m resolution) across

visible, NIR, and SWIR regions, useful for agriculture, forestry, and land use

studies also it is used for land monitoring and disaster management. [27].

(b) Radar Sensors (Synthetic Aperture Radar—SAR)

Emit microwave signals and measure their reflection, enabling them to penetrate

clouds.

— Sentinel-1 SAR: ESA’s Copernicus program with C-band SAR and 5–40 m

resolution transmits microwave signals and measures their return to monitor

soil moisture and is used for flood mapping, maritime surveillance, and defor-

mation monitoring. [28]

— RADARSAT-2: by the Canadian Space Agency with C-band SAR and 3–100

m resolution, it is used for ice monitoring and oil spill detection. [29]

— ALOS-2 PALSAR-2 By Japan’s JAXA, with L-band SAR, 3–100 m resolu-

tion is used for forest monitoring and earthquake analysis. [30]

(c) Thermal Infrared Sensors

Measure emitted thermal radiation and detect long-wavelength infrared radiation;

it is useful for temperature mapping, heat signatures, and volcanic activity.

— Landsat Thermal Infrared Sensor (TIRS): On Landsat 8/9 with 100 m

resolution and 2 thermal bands, it is used for water resource management and

urban heat islands. [31]

— VIIRS (Visible Infrared Imaging Radiometer Suite):Mounted on JPSS

satellites, it captures 22 spectral bands with enhanced spatial resolution (350 m

and 750 m at nadir), suitable for fire detection and radiative power estimation,

nighttime light detection and thermal anomalies, and temperature. [32]

(d) Microwave Radiometers and Altimeters

Measure microwave emissions or altimetry to monitor ocean surface temperatures.

— AMSR-E/AMSR2 (Advanced Microwave Scanning Radiometer): On

NASA’s Aqua and JAXA’s GCOM-W1, with 6–89 GHz frequencies and 5–50
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km resolution for sea ice, soil moisture, and precipitation. [33]

— GPM Microwave Imager (GMI):By the Global Precipitation Measurement

mission, with 10–183 GHz and 5–25 km resolution, it is used for rainfall and

snowfall measurement. [34]

— SMAP (Soil Moisture Active Passive): For the NASA missions, with

an L-band radiometer and 40 km resolution, it is used for soil moisture and

drought monitoring. [35]

C. Satellite Imagery Representation The way to visualize the data captured by satel-

lites depends on many factors, such as data format and spectral bands. These represen-

tations are significant in the monitoring and management of disasters.

— Panchromatic (Grayscale): uses a single broad-spectrum band to produce high-

resolution (0.5–1 m/pixel) grayscale images, with some commercial satellites like

WorldView-3 achieving resolutions of around 30 centimeters. This makes it ideal

for extracting fine details such as building identification and mapping [36].

— Multispectral: captures data across multiple wavelengths (3–10) broad bands,

including multiple colors of light, including visible light, near-infrared (NIR), and

shortwave infrared (SWIR) bands [37].

— Thermal Infrared: measures heat signatures and surface temperatures emitted

by objects on the Earth’s surface; it uses wavelengths from 8–15 m [38].

— Hyperspectral: captures data across hundreds of narrow, contiguous bands (e.g.,

10–20 nm width), providing a detailed spectral analysis (mineralogy, pollutant de-

tection) [39].

— Synthetic Aperture Radar (SAR): an active remote sensing technology using

microwave signals.

• Works regardless of daylight or weather conditions.

• It captures information about surface characteristics and changes, such as ground

deformation and deforestation[40].

D. Applications of Satellite Imagery
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1. Environmental Monitoring Satellites enable continuous, large-scale mon-

itoring of environmental parameters such as air quality, land use, and water

conditions. They provide diverse data types—including optical, thermal, and

hyperspectral imagery—that facilitate timely detection and assessment of pol-

lution and ecosystem changes, thereby supporting effective environmental man-

agement [41].

• Agriculture and Food Security Satellite imagery plays a crucial role in

monitoring crop health, predicting yields, and managing agricultural resources

to enhance food security. It allows rapid and reliable assessment of crop con-

ditions over large areas, capturing spatial and temporal variability beyond the

reach of traditional ground surveys. Satellite data supports early warning sys-

tems for agricultural anomalies and droughts, aiding timely decision-making to

improve crop productivity and sustainability [42].

• Oceanography and Maritime Surveillance Satellite remote sensing is

extensively utilized for ocean monitoring, including measuring sea surface tem-

perature, analyzing ocean color for primary productivity, assessing water qual-

ity, and detecting marine pollution. It helps identify potential fishing zones

by analyzing chlorophyll concentrations and temperature patterns indicative

of fish abundance. Satellites also monitor coastal hazards like storm surges

and provide frequent synoptic observations essential for understanding ocean

dynamics and climate interactions. The integration of machine learning with

satellite data is advancing oceanographic research and maritime surveillance

[43].

2. Urban Planning and Infrastructure Development Satellite imagery com-

bined with Geographic Information Systems (GIS) enhances urban planning by

supplying up-to-date spatial data on land use, urban growth, and infrastructure

development. This integration supports multi-scale urban planning and improves

decision-making and management efficiency [44].

3. Disaster Response and Recovery Satellite imagery offers rapid situational

awareness over large and often inaccessible areas, enabling efficient emergency re-

sponse and resource allocation. It provides high-resolution spatial data critical

for damage mapping, impact assessment, and monitoring reconstruction following
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natural disasters such as floods, earthquakes, landslides, tsunamis, hurricanes, and

wildfires [41].

• Case Study: Wildfires are indeed one of the natural disasters we have

chosen as our case study. In the next subsection, we will delve deeper into

wildfire-related topics, further exploring their impact and analysis.

1.3.2 Wildfire Detection

Wildfires are a major environmental concern that requires careful monitoring. To effec-

tively manage wildfires, it is important first to gain a clear understanding of their char-

acteristics and behavior. In the following subsections, we will examine wildfire statistics

to better comprehend these trends, as well as review traditional techniques used for fire

detection. This will provide a foundation for advancing wildfire management strategies.

1.3.2.1 Wildfire Statistics

——A. Global Trends

Various factors, including human activity, lightning, and dry vegetation, cause

wildfires. One major contributor is the rising global temperature since the Industrial

Revolution, primarily driven by human activities such as greenhouse gas emissions.

This increase in temperature intensifies evaporation, reduces soil moisture, and dries

vegetation, making landscapes more flammable. Warming also worsens droughts

and changes rainfall patterns, creating better conditions for fires to start.

Figure 1.9 – Wildfire Frequency in the United States, 1983–2022 [45].
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Figure 1.9 shows the total number of wildfires reported each year from 1983 to

2022, including even the smallest fires that cover just a few acres. It uses two

different reporting systems, with the orange line showing data from the Forest

Service. However, the Forest Service stopped collecting this data in 1997.

The data presented in the following table (Table 1.1) provides information on the

geographical impact of wildfires globally, displaying the total area of land affected

by each fire, ranked by burned area in millions of hectares. The table ranges from

the New South Wales Bushfires (1974–75), which burned 117 million hectares, to

the 2010 Russian Wildfires, which affected 0.3 million hectares.

Table 1.1 – 15 Largest wildfires in world history (ranked by area burned) [46]

Wildfire Event Year(s) Area Burned (ha)
New South Wales Bushfires 1974-1975 117,000,000
2019-2020 Australian Bushfires 2019-2020 24,300,000
Siberian Taiga Fires 2003 22,000,000
2021 Russian Wildfires 2021 18,000,000
Black Dragon Fire 1987 7,300,000
1989 Manitoba Fires 1989 3,200,000
Black Friday Bushfires 1939 2,000,000
Chinchaga Fire 1950 1,400,000 – 1,700,000
Great Fire of 1919 1919 2,000,000
The Big Burn 1910 1,200,000
Great Midwest Fires of 1871 1871 1,200,000
Taylor Complex Fire 2004 526,000
Smokehouse Creek Fire 2024 428,000
Yellowstone Fires 1988 321,000
2010 Russian Wildfires 2010 300,000

According to NASA’s analysis, the global average temperature has increased by

approximately 1.1°C (1.9°F) since 1880, with the majority of this warming occurring

since 1975 at a rate of 0.15 to 0.20°C per decade.

Global temperature records begin in 1880 due to limited data prior to this period.

The following plot (Figure 1.10) illustrates temperature anomalies from 1880 to

2020, based on data from various sources, including NASA and the Met Office.

Despite yearly fluctuations, all records show a clear trend of rapid warming, with
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the last decade being the warmest [47].

Figure 1.10 – Global temperature records from 1880 to 2020 [47].

This warming is not occurring uniformly—land areas are heating faster than oceans,

and some regions, such as the Arctic, are experiencing much more rapid changes.

These changes have made places that were once too cold or wet for wildfires more

vulnerable to them. As a result, the geography of wildfire-prone areas is shifting,

expanding the regions where fires can occur [47].

Since global warming affects regions differently, it is important to assess wildfire

risks at the local level. In the next subsection, we will focus on Algeria as a case

study and explore its wildfire statistics in detail.

B. Wildfires in Algeria

Forest fires are a recurring phenomenon that has consistently impacted Algerian

forests. Between 1985 and 2010, a total of 42,555 wildfires were recorded, affecting

approximately 910,640 hectares of forest land. This equates to an annual average

of 1,637 fires and 35,025 hectares burned, with an average of 21.39 hectares affected

per fire [48].

Transitioning to more recent years, Figure 1.11 tracks the yearly changes in the

burned area and the number of fires in Algeria between 2002 and 2023, providing
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more recent temporal trends.

Figure 1.11 – Yearly Burned Area and Number of Fires—[2002-2023] [49].

To better understand the geographic distribution of wildfires, Figure 1.12 presents

the average burned area and number of fires normalized by regional size between

2002 and 2023. This spatial analysis identifies regions with a higher density of fires

and greater burned areas per square kilometer, which can inform targeted resource

allocation for fire management and firefighting efforts.

Figure 1.12 – Avg. Burned Area (ha) / Region Area (km2) and Avg. Nr of Fires / Region
Areakm-2023] [50].
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According to a public report published by the Algerian Press Service (APS) in

2022, summarizing the outcomes of a national forest protection commission meeting

held at the Ministry of Agriculture and Rural Development, Algeria experienced

devastating wildfires during the summer of 2021, affecting numerous wilayas and

large areas of natural vegetation [51].

As highlighted in Table 1.3, forests were the most affected vegetation type, with an

estimated 260,135 hectares destroyed, accounting for 26% of the total burned area.

The Kabyle region, known for its dense forests, was especially impacted. According

to Table 1.2, Tizi Ouzou and Bejaia suffered the most damage, with 43,398 and

13,174 hectares burned, respectively. Other wilayas, such as Khenchela, Guelma,

El Tarf, and Annaba, also recorded substantial losses, each with over 5,000 hectares

affected.

Table 1.2 – Total Burned Area by Wilaya[51]

Wilaya (Province) Burned Area (ha)
Tizi Ouzou 43,398
Bejaia 13,174
Khenchela 9,837
Guelma 5,927
El Tarf 5,090
Annaba 5,024

Table 1.3 – Burned Area by Vegetation Type [51]

Vegetation Type Burned Area (ha) Percentage (%)
Forests 260,135 26
Shrubs 21,040 21.5
Bushland 16,415 16.5
Fruit Trees 16,160 36
Alfa Grass 352 0.5

• Tree cover loss

From 2001 to 2023, Algeria lost 168 kha of tree cover from fires and 59.0 kha from

all other drivers of loss. The year with the most tree cover loss due to fires during
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this period was 2017, with 41.7 kha lost to fires, 91% of all tree cover loss for that

year (Figure 1.13).

Moreover, Figure 1.14 illustrates that fires were responsible for 74% of the total

tree cover loss during this entire period, underscoring the dominant role of wildfires

in deforestation.

Figure 1.13 – Tree cover loss due to fires in Algeria From 2001 to 2023 [52].

Figure 1.14 – Proportion of tree cover loss due to fires [2001-2023][52].

Figure 1.15 shows the percentage of the total burned area each year distributed by

different land cover types, highlighting how much of the fire-affected area is forest

compared to other land covers from 2002 to 2023.
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Figure 1.15 – Yearly Burned Area by Landcover (100%) - [2002-2023][49].

These statistics highlight the urgent need for robust wildfire monitoring systems.

Effective monitoring and proactive management are essential to minimize the dev-

astating impact of wildfires on Algeria’s forests and natural environment, ultimately

reducing their frequency and severity.

1.3.2.2 Traditional Wildfire Detection Techniques in Algeria

Community Reporting and Volunteer Networks Local populations, includ-

ing villagers and forest visitors, frequently report fires as soon as they notice smoke

or flames. This grassroots vigilance is critical in the initial detection and rapid com-

munication to authorities or firefighting units. The Algerian Red Crescent (ARC),

which has a widespread network of local units covering all wilayas and access to

24,000 volunteers, relies heavily on community engagement for initial fire assess-

ments and interventions [53].

Ground Patrols and Surveillance Towers Algeria has traditionally depended

on ground patrols and manned surveillance towers to detect forest fires. Observers

stationed in lookout towers scan the horizon for smoke or fire signs and monitor

weather conditions that could increase fire risk. However, these methods are often

inefficient due to limited visibility caused by weather, terrain obstacles, and the
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reliance on human vigilance, which can delay detection and reporting [54].

Aerial Surveillance Another traditional technique involves aerial patrols, where

pilots and observers fly over forested and remote areas during high-risk periods,

such as dry seasons or after storms. This method allows for broader coverage and

quicker reporting compared to ground patrols. However, aerial surveillance can be

hindered by poor visibility due to smoke, weather, or night conditions, limiting its

effectiveness [54].

• Challenges:

— Delayed Detection: Human observation is slower and less reliable, especially

in vast or inaccessible forest areas.

— Limited Coverage: Towers and patrols cover limited areas and cannot pro-

vide continuous monitoring.

All these traditional methods, which rely heavily on human observation, face

significant limitations that have prompted the adoption of more advanced techno-

logical solutions. In the next section, we will explore the importance of one such

advanced technique (satellite imagery) for wildfire detection and monitoring.

1.3.3 The role of satellite imagery in wildfire detection

The satellite imagery plays an important role in multiple stages of wildfire.

Monitoring the forest fire:

• Pre-fire: facilitate the detection and monitoring of regions susceptible to wild-

fire hazards by detecting high temperature and signs of moisture stress that are

considered early indicators of potential wildfire, also pinpointing the vulnerable

populations

• During active fire: satellites enable real-time tracking of the wildfire by de-

termining the spread direction and estimating the space covered by fire and the

burned area. This critical information helps combat advancing flames.

• Post-fire: helps to detect burned vegetation and soil, enabling detailed mapping

of fire severity and tracking vegetation recovery [55].
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1.3.4 Active fire satellite image Acquisition

It is essential to outline the methods for acquiring satellite imagery relevant to wildfire

detection, including the platforms utilized, manual retrieval techniques, and the evalua-

tion of publicly available pre-existing datasets.

A. Satellite Imagery Sources Before discussing datasets, it is essential to know

the platforms that provide satellite images and active fire hotspot data.

1. Platforms that Provide Active Fire Hotspot Coordinates

Several authoritative sources offer geolocated fire hotspot data detected via satel-

lite sensors:

— NASA FIRMS (Fire Information for Resource Management System):

Provides fire hotspot coordinates detected by MODIS and VIIRS sensors, with

data accessible via CSV, shapefiles, and APIs.

— NOAA VIIRS Active Fire Data: Fire hotspot data available through

NOAA portals, derived from VIIRS sensors.

— European Space Agency (ESA) Sentinel Hotspots: Fire detection prod-

ucts derived from Sentinel satellites (Sentinel-2, Sentinel-3).

— Global Fire Emissions Database (GFED): Combines multiple satellite

products to compile global fire hotspot data.

— Copernicus Emergency Management Service (EMS): Offers rapid map-

ping and fire hotspot detection based on Sentinel satellite data.

2. Platforms Providing Satellite Imagery

— Sentinel Hub 1 Provides multispectral satellite imagery from Sentinel-1, Sentinel-

2, Landsat, and others with customizable APIs and interfaces.

— USGS Earth Explorer 2 Grants access to Landsat, MODIS, and other satel-

lite imagery collections.

— NASA Worldview 3 An interactive tool to visualize near real-time imagery

from MODIS, VIIRS, and other satellites.

1. https://sentinel-hub.com
2. https://earthexplorer.usgs.gov
3. https://worldview.earthdata.nasa.gov
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— Google Earth Engine 4 A cloud-based platform with extensive satellite datasets,

including Landsat, Sentinel, and MODIS, supporting large-scale data analysis.

— Copernicus Open Access Hub 5: Provides Sentinel satellite data searchable

by location and date.

— Amazon Web Services (AWS) Open Data Registry 6 Hosts openly ac-

cessible Landsat and Sentinel imagery on cloud infrastructure.

B. Manual Fire Satellite Image Retrieval It involves downloading precise ge-

ographic coordinates of active fire locations from trusted sources such as NASA

FIRMS. These coordinates are then used to obtain corresponding satellite images,

for example, via Sentinel Hub.

• Limitations of this approach :

— The process can be time-consuming due to manual querying and downloading.

— Image quality and resolution may vary depending on satellite revisit intervals

and sensor specifications.

C. Pre-existing Datasets Several publicly available datasets were evaluated for

this study, including:

— Active Fire Detection in Landsat-8 Imagery The publicly available large-

scale dataset for active fire recognition consists of 8,194 Landsat-8 images col-

lected globally during August 2020. The dataset includes significant wildfire

events across diverse regions such as the Amazon, Africa, Australia, and the

United States. It comprises a total of 146,214 image patches, approximately

192 GB in size, featuring 10-band multispectral images in TIFF format. Ad-

ditionally, the dataset provides outputs generated by three well-established

handcrafted active fire detection algorithms (Schroeder et al. [2016], Murphy

et al. [2016], and Kumar and Roy [2018]), which serve as valuable references

for model evaluation. [56]

— Wildfire Prediction Dataset (Satellite Images) This dataset comprises

4. https://earthengine.google.com
5. https://dataspace.copernicus.eu/
6. https://registry.opendata.aws/
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satellite images of regions in Canada that have previously experienced wild-

fires, sourced from the Government of Canada’s Forest Fires Open Data Portal

under the Creative Commons 4.0 Attribution (CC-BY) license for Quebec.

The dataset includes 42,850 images of size 350x350 pixels, categorized into two

classes: 22,710 images depicting wildfire-affected areas and 20,140 images with-

out wildfire presence. Using longitude and latitude coordinates corresponding

to wildfire spots with burned areas exceeding 0.01 acres, satellite images were

extracted via the MapBox API. This preprocessing step transformed the raw

wildfire location data into a structured image dataset, optimized for deep learn-

ing applications aimed at predicting wildfire risk. [57]

— Datasets on Roboflow 7 Roboflow provides a diverse collection of datasets

relevant to active fire detection, which includes satellite imagery and annotated

data. Among these, some datasets consist of raw satellite images capturing ac-

tive fire events without annotations, serving as valuable input data for training

models. Other datasets include labeled images where fire-affected regions are

annotated to provide ground truth masks for supervised learning.

1.3.5 Limitations and Challenges of Satellite-Based Fire Mon-
itoring

Despite their capabilities, satellite systems for fire detection have several limitations:

— Cloud cover and smoke can obscure optical sensors, limiting the accuracy of fire

detection in thick atmospheric conditions [58].

— Spatial resolution limitations mean that small fires or those beneath forest canopies

may go undetected, particularly by low-resolution sensors like MODIS.

— Revisit frequency can delay detection or miss short-lived fire events, especially in

systems with lower temporal resolution like Landsat.

To overcome these limitations, multiple satellite datasets are often integrated, and

ground validation is used where possible.

7. https://roboflow.com/
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1.4 Related Works

The detection of wildfires has become an essential focus in remote sensing and machine

learning applications. Several studies have explored different methodologies and mod-

els for effectively identifying fire-affected areas. This section reviews relevant works that

employed various machine learning techniqueses, highlighting their approaches, datasets,

and results. By examining these studies, we aim to contextualize our approach and iden-

tify the strengths and limitations of existing methods in wildfire detection.

— Boumaiza and Brahimi (2024) [59] used the U-Net architecture with Landsat-

8 imagery to detect wildfires. They evaluated performance on three types of fire

masks: Intersection, Voting, and Murphy. Out of the configurations tested, the

Murphy mask-based model performed best, achieving 95% precision, 74% recall,

and an F1-score of 83%,using a dataset of 45,376 satellite images with their

labeled masks .

— James et al. (2023) [60] implemented MobileNetV2, a lightweight CNN, via

transfer learning for binary wildfire classification (”Fire” vs. ”No Fire”) using

Sentinel-2 imagery from San Isabel National Park. Trained on a small dataset of

614 images, the model achieved 95% accuracy with a 2% error rate, showing

that efficient CNNs can still deliver strong performance on wildfire detection even

with limited data.

— Choutri et al [61] (2023) proposed a UAV-based wildfire detection and geo-localization

system using YOLO-based models, with a specific focus on evaluating multiple

versions before selecting YOLO-NAS as the most effective. Their system utilized

a two-stage pipeline: offline detection using annotated aerial images and online

real-time detection with geo-localization, implemented through stereo vision on a

UAV platform.

The dataset comprised over 12,000 labeled aerial images, collected from diverse

sources such as BowFire, FiSmo, FLAME, and additional UAV-acquired imagery.

Images were annotated into three distinct classes: fire, non-fire, and smoke, which

significantly helped in minimizing false detections—a crucial factor for practical

deployment.
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In terms of performance, the YOLO-NAS model achieved a mean Average Pre-

cision (mAP@50) of approximately 0.71 and an F1-score of 0.68. For the real-

time detection and localization component, the system was successfully integrated

into a UAV equipped with stereo cameras and a Pixhawk flight controller, enabling

3D geo-localization of wildfire occurrences during flight.

A comparative summary of the reviewed studies is presented in Table 1.4

Study Architecture
Type

Model
Name

Approach
Type

Dataset Type Dataset
size

Boumaiza
& Brahimi
(2024)

CNN U-Net Segmentation Landsat-8 satel-
lite images with
labeled masks

45,376

James et
al. (2023)

CNN MobileNetV2 Binary Clas-
sification

Sentinel-2 (San
Isabel National
Park)

614

Choutri et
al. (2023)

CNN YOLO-NAS Object Detec-
tion

BowFire,
FiSmo, FLAME,
and UAV aerial
images (anno-
tated)

12,000+

Table 1.4 – Related Works

1.5 Conclusion

In this chapter, we reviewed the key aspects of satellite remote sensing and its appli-

cation in wildfire detection. We also explored historical wildfire trends and traditional

detection methods, providing a foundational understanding of how technological ad-

vancements support modern wildfire management.

The next chapter will delve into advanced computational techniques in Earth obser-

vation, with a focus on deep learning and its expanding role in satellite data analysis.

We will highlight how these innovative approaches are being applied to improve envi-

ronmental monitoring capabilities.
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2.1 Introduction

The integration of deep learning with remote sensing technology has revolutionized

the detection and analysis of wildfires from satellite imagery. This chapter provides an in-

depth overview of the foundational concepts necessary to understand these advances.We

begin by discussing the evolution of deep learning within remote sensing, highlighting

its growing importance and key applications in environmental monitoring.

The chapter then delves into the fundamental principles of deep learning, including

neural network structures and the main architectural families employed in image analysis.

Special emphasis is placed on the diverse types of deep learning architectures and their

relevance to satellite-based image interpretation.

Finally, we examine how these advanced computational methods are specifically ap-

plied to satellite imagery for wildfire detection. By outlining representative techniques,

object detection, segmentation, and classification, the chapter builds a comprehensive

understanding of how deep learning improves the capabilities of satellite systems to

monitor and manage wildfires.

2.2 Deep Learning in remote sensing

Deep learning has brought a major shift in how satellite and aerial images are ana-

lyzed within remote sensing. Although remote sensing itself has been around since the

19th century, starting with aerial photography and later evolving with satellite imagery

in the mid-20th century, it wasn’t until the 2010s that deep learning began to play a

major role in this field. Although early machine learning methods started appearing in

geographic information systems (GIS) around 2009, deep learning only began to truly re-

shape remote sensing analysis with the arrival of powerful convolutional neural networks

(CNNs) and large labeled datasets like ImageNet [62]. By 2020, pre-trained deep learn-

ing models had become readily available, making it easier to adopt these techniques for

tasks such as land cover classification, object detection, and environmental monitoring

[63].
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• The rise of deep learning in Remote Sensing

Deep learning has become critically important in remote sensing due to its abil-

ity to automatically learn and extract complex features from vast amounts of remote

sensing data. Unlike traditional methods that rely heavily on handcrafted features and

expert knowledge, deep learning models can capture mid- and high-level abstract fea-

tures directly from raw images. This capability significantly improves tasks such as

image registration, classification, object detection, and semantic segmentation in remote

sensing, enabling more accurate and efficient analysis of satellite and aerial imagery[64].

Compared to traditional remote sensing methods, deep learning offers several advan-

tages. Traditional approaches often depend on manual feature engineering, which can

be time-consuming and less adaptable to diverse data types. Deep learning, being fully

data-driven, can automatically learn discriminative features from large-scale datasets,

improving performance in complex scenarios such as hyperspectral image classification

and change detection. In addition, deep learning models can integrate information from

multiple data sources and modalities, such as combining optical and SAR images, which

is challenging for conventional methods. This leads to better generalization, higher ac-

curacy, and the ability to handle large data effectively [65].

The rise of deep learning in remote sensing has been rapid and transformative. Since

around 2014, there has been an exponential increase in research and applications that

leverage deep learning techniques in this field. This surge is driven by advances in

computational power, the availability of large annotated datasets, and the success of

deep learning in adjacent fields like computer vision. Remote sensing scientists are

increasingly adopting deep learning to tackle unique challenges such as geospatial data

fusion, 3D reconstruction, and environmental monitoring. The trend is expected to

continue as new satellite missions provide richer data and as deep learning architectures

evolve to better suit the spatial and temporal characteristics of remote sensing data.

2.3 Deep Learning Fundamentals

Deep learning is a specialized branch of machine learning that uses algorithms known

as artificial neural networks to process data in complex ways [66], which itself is a subset

of artificial intelligence, as illustrated in Figure 2.1.
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Figure 2.1 – Relationship between
AI, Machine Learning, and Deep
Learning[67].

Deep learning has become famous for its ability to handle complex tasks like recog-

nizing images or understanding speech. It differs from traditional rule-based systems

by using what are called artificial neural networks—computational systems made up

of layers of connected “neurons” that process information, a bit like how the human

brain works [68]. Neural networks are the foundational building blocks of deep learning;

they enable computers to learn from data by recognizing patterns and making decisions

automatically.

What makes deep learning “deep” is the use of many layers, not just one or two.

The information passes through these layers, and at each stage, the system learns more

abstract details from the data. During training, deep learning models figure out how

to get better by adjusting their internal settings in response to mistakes—essentially

learning from experience. A big difference between deep learning and traditional machine

learning is that deep learning can automatically find important patterns in huge amounts

of raw data without needing people to tell it exactly what to look for. That’s why

deep learning is so effective in areas like image recognition, speech understanding, and

language translation, where data is messy and complicated [67].
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Figure 2.2 – How deep learning works com-
pared to traditional machine learning [69].

Neural networks are the foundational building blocks of deep learning; they enable

computers to automatically learn from data by recognizing patterns and making deci-

sions.

2.3.1 Neural Network

A neural network is a core concept in artificial intelligence, inspired by the way the

human brain processes information. These models are designed to learn from data by

recognizing patterns, making predictions, and solving problems across a variety of tasks.

At their core, neural networks consist of many simple computing units called artificial

neurons, which are connected to one another and communicate by passing signals [70].

The structure of a neural network is organized into layers. There is an input layer,

which receives the initial data; one or more hidden layers, where complex transformations

and computations take place; and an output layer, which produces the final prediction

or result. Each neuron in these layers performs a simple calculation, and the network

as a whole adjusts its connections based on the data it sees during training. This

layered design enables neural networks to capture intricate relationships within data

and to learn automatically from experience, making them fundamental to modern deep

learning approaches. [71]

The structure of a neural network consists of several interconnected layers of artificial

neurons (also called nodes or units). Each layer serves a different role in processing

information:
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Figure 2.3 – Neural Network Architecture:
From Image Input to Class Prediction [72].

2.3.2 Deep Learning Architectures

Deep learning architectures refer to the various ways neural networks are struc-

tured to learn complex patterns from data. While the structure involves fundamental

elements—such as layers, neurons, and their interconnections—the architecture defines

how these components are organized and applied to specific tasks. Selecting the appro-

priate architecture is crucial, as it directly impacts a model’s ability to handle different

types of data and problem domains, such as image recognition, natural language under-

standing, or time-series forecasting [73].

The diversity of deep learning architectures has emerged to meet the unique demands

of various applications. Each architecture offers specialized capabilities tailored to par-

ticular challenges and data characteristics. This variety is especially relevant in fields like

wildfire detection from satellite imagery, where precise pattern recognition is essential.

In the following section, we provide a brief overview of major deep learning architec-

tures and highlight what distinguishes each, particularly in relation to solving complex

problems such as wildfire detection.

A. Feedforward Neural Networks (FNNs)

Feedforward Neural Networks (FNNs), also known as multilayer neural networks,

are artificial neural networks where information flows in one direction—from the

input layer, through hidden layers, to the output layer, with no cycles or loops. Data

is processed step by step as it moves through each layer, with each neuron applying

weights, biases, and activation functions to transform the input and produce a final

output [74].
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— Types of Data Suited for FNNs:

• Tabular or structured data (e.g., spreadsheets, databases).

• Simple classification or regression tasks.

• Data where feature order or spatial structure is not important.

Figure 2.4 – Feed Forward Neural
Network[74].

B. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are specialized neural networks designed to

process sequential data by maintaining connections that form cycles. Unlike feed-

forward networks, RNNs allow information to persist and be reused across steps in

a sequence, enabling the network to learn patterns that depend on order or con-

text. Each neuron in the hidden layers receives input not only from the current

data point but also from its own previous output, making RNNs well-suited for

data where timing and sequence matter [75].

— Types of Data Suited for RNNs:

• Any data where the order of information is important.

• Sequential or time-series data (e.g., speech, audio, sensor readings).

• Text and language (e.g., translation, sentiment analysis).
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Figure 2.5 – Recurrent Neural Net-
works (RNNs) [76].

C. Transformers

Transformers are a modern deep learning architecture designed to handle sequen-

tial data by using a mechanism called attention. Unlike RNNs, Transformers pro-

cess entire sequences at once, allowing the model to capture relationships between

any two elements in the sequence, regardless of their position. This architecture

excels at learning complex dependencies and handling large datasets efficiently [77].

— Types of Data Suited for Transformers:

• Natural language data (text, translation, question-answering).

• Time-series and sequential data

• Images (when adapted as Vision Transformers)

• Any data where understanding relationships between elements is important
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Figure 2.6 – Transformers architec-
ture [78].

D. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are deep learning architectures designed

to automatically recognize patterns and features in grid-like data, such as images.

CNNs use convolutional layers to scan input data with filters, making them espe-

cially effective for visual tasks [79].

— Types of Data Suited for CNNs

• Image data (satellite, medical, photographs).

• Spatial data where patterns and position matter.

• Relevance to Wildfire Detection: CNNs are at the core of wildfire detection

from satellite imagery, as they can accurately identify fire patterns, smoke,

and other related features in large volumes of image data.

Figure 2.7 – CNNs architecture[80].
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2.4 Deep Learning for Satellite Imagery

Deep learning has become an essential tool for analyzing satellite imagery by enabling

the automated extraction of complex patterns and features from large and diverse datasets.

These methods use artificial neural networks that learn directly from the images, eliminating

the need for manual feature engineering. This approach makes it possible to process and

interpret data from various sensors, like optical, infrared, or radar, captured by satellites, and

to identify intricate structures and subtle changes that might be overlooked with traditional

analysis.

The strength of deep learning lies in its ability to integrate multiple layers of information,

such as different spectral bands and spatial resolutions, into a single analytical framework. This

allows for a more nuanced and comprehensive understanding of the content of satellite images.

Because satellite data are often high-dimensional and complex, deep learning’s flexibility and

adaptability are crucial for extracting meaningful information in a reliable and efficient manner

[81].

2.4.1 Rationale for Using DL in Satellite Imagery Analysis

Deep learning has proven to be highly effective in satellite imagery analysis. Its ability to

automatically learn and extract meaningful features from complex visual data makes it ideal

for this task, as demonstrated by the following key points:

• Hierarchical Feature Learning:

CNNs extract low-level to high-level features (edges → smoke, fire shapes) from satellite

images, essential for wildfire detection [82].

• Spatial Invariance:

They’re robust to changes in wildfire position and orientation, crucial in satellite images

with shifting perspectives [83].

• End-to-End Learning:

CNNs learn directly from raw data, with no need for manual feature engineering, saving

time and improving flexibility [83].

• Transfer Learning:

Pre-trained CNNs can be fine-tuned for wildfire detection, boosting performance even

with limited labeled data[84].
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• Efficiency with Large Images:

CNNs handle large satellite images by focusing on local patterns (convolutions), making

analysis scalable.

2.4.2 Deep Learning Techniques and Models for Satellite Imagery
Analysis

In the context of analyzing satellite images for the detection of wildfires,ldfires, various

deep learning-based techniques play an essential role [85]. These techniques rely on the abil-

ity to automatically learn and extract important features from the complex visual data in

satellite images. Each technique, whether it involves object detection, image segmentation, or

classification, uses different models and architectural strategies to locate and classify features

relevant to wildfire monitoring. In this section, we will examine how each technique works and

highlight representative models that illustrate their effectiveness and practical applications.

A. Object Detection

Object detection involves not only recognizing what is in an image but also locating

it by drawing bounding boxes around specific objects, such as wildfires, vehicles, or

buildings. This process is achieved by training the model to predict both the class of an

object and its position within the image, often identifying multiple objects at once [86].

The network learns to detect patterns and features that distinguish different objects and

then outputs coordinates for bounding boxes as well as their labels. Object detection

is especially valuable in satellite imagery, where identifying the exact location of events

like wildfires enables rapid response and resource allocation. Popular models for this

task include YOLO (You Only Look Once) and Faster R-CNN, which are optimized for

speed and accuracy, making them ideal for analyzing large volumes of high-resolution

satellite images in real time [87].

To illustrate this, a figure demonstrating DL-based object detection in wildfire imagery

(Figure 2.8) will be provided in the following figure.
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Figure 2.8 – Example of Deep Learning based
object detection for wildfire localization (Yolo
V8) : The network identifies and marks the
precise location of a fire.

Among the popular models for object detection is YOLO (You Only Look Once):

— YOLO (You Only Look Once):

YOLO is a deep learning object detection model that processes an entire image in

one pass. It predicts object classes and bounding boxes simultaneously, enabling

real-time, accurate detection in a single evaluation[87]. Over time, multiple ver-

sions of YOLO have been developed to improve speed and accuracy, addressing

new challenges in real-time object detection and adapting to different applications.

For example, YOLOv2 (2016) introduced batch normalization, anchor boxes, and

dimension clusters to boost detection accuracy and stability. YOLOv8 (2023), de-

veloped by Ultralytics, brought significant improvements in performance, flexibility,

and efficiency for diverse vision tasks. The most recent YOLO11 by Ultralytics de-

livers state-of-the-art performance for various tasks, including detection, segmen-

tation, tracking, and classification, making it highly versatile across different AI

applications.

Architecture of YOLOv8:

Figure 2.9 – YOLOv8 architecture [61].
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The architecture of YOLOv8, as shown in Figure 2.9, consists of several key compo-

nents designed to efficiently process input images and produce accurate detection

results [88]. This architecture includes the following main parts:

• Input: The model takes an input image, which could contain multiple objects

of interest.

• Backbone: This section extracts hierarchical features from the input image

using a series of convolutional layers (Conv), the C2f block, and a spatial

pyramid pooling module (SPPF). These layers are responsible for progressively

capturing spatial and semantic information from the image at multiple scales.

• Neck: This part of the network integrates features from different levels of

the backbone. It includes C2f and Conv blocks for feature refinement, along

with upsampling and concatenation (Concat) layers to merge multi-scale in-

formation. This fusion of features is crucial for accurately detecting objects of

varying sizes.

• Prediction: The refined features are passed to the prediction head, which

includes detection layers (Detect). These layers simultaneously predict the

bounding box coordinates, objectness score, and class probabilities for each

detected object.

• Output: The final output consists of the detected objects in the image, com-

plete with bounding boxes and classification labels.

This structured explanation covers all components of the YOLOv8 architecture and how

they contribute to the model’s ability to detect objects in real time and accurately.

B. Segmentation

Segmentation takes the analysis a step further by dividing the image into segments

or regions and classifying each pixel instead of just drawing a box around an object.

In satellite imagery, this could mean identifying every pixel that belongs to fire, water,

forests, or buildings, resulting in a detailed and precise map of all features of the image.

This pixel-level approach is especially valuable when it is important to know the exact

shape, size, and boundaries of objects or regions, rather than simply knowing their

locations. Unlike object detection, which provides bounding boxes and general positions
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of objects, segmentation delivers a full mask that outlines the complete area covered by

each class. Semantic segmentation models like U-Net and DeepLab use CNNs to achieve

this fine-grained classification, enabling more accurate monitoring and assessment of

wildfire spread, land cover, and other environmental factors in satellite images [89].

To illustrate this, a figure demonstrating DL-based segmentation in wildfire imagery 2.10

will be provided in the following figure.

Figure 2.10 – Example of Deep learning based
segmentation for wildfire detection(U-Net) :
The network processes a satellite image and
generates a pixel-wise mask.

One of the most widely used models for segmentation is

— U-Net: U-Net is a convolutional neural network architecture made mainly for

image segmentation. It features a U-shaped design, with a contracting path (en-

coder) that reduces the image size and captures context using convolution and

max-pooling layers, and an expansive path (decoder) that upsamples the data and

combines features through skip connections to achieve precise localization. U-Net

builds on fully convolutional networks but is modified to handle smaller training

datasets while still achieving high accuracy in segmentation. It avoids fully con-

nected layers and uses mirroring to deal with image borders, enabling accurate

pixel-level classification. This balance of precision and efficiency has made U-Net

a popular choice in medical imaging and various segmentation applications. [90].

Architecture of U-Net:
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Figure 2.11 – U-Net architecture[91].

The architecture of U-Net, as depicted in Figure 2.11, consists of several essen-

tial components designed to process input images effectively and produce accurate

segmentation results.

This architecture includes the following main parts:

• Input: The U-Net architecture begins with an input image (e.g., 572×572

pixels). This image contains the raw data that will be processed to create a

pixel-wise segmentation map.

• Encoder (Contracting) Path: The encoder compresses the input image,

extracting increasingly abstract features.

At each stage of the encoder, there are convolutional layers (3×3, ReLU) (pur-

ple arrows) that learn patterns and refine features, and max pooling (2×2,

stride 2) (red arrows) reduces the image size (downsampling) to capture larger-

scale features.

The number of feature maps (channels) increases as you move deeper: 64, 128,

256, 512, 1024. This part of the network learns to understand the context and

important structures in the image.

• Bottleneck: At the deepest part of the U, known as the bottleneck, the

architecture has the most abstract and compressed features (1024 channels).

This stage captures the global context and high-level information of the image.

• Decoder (Expanding) Path: Reconstructs the segmentation map by pro-
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gressively increasing spatial resolution.

Up-convolutions (Up-conv 2×2) (green arrows) double the size of feature maps

to restore spatial detail.

Skip connections (copy and crop, gray arrows) link encoder layers to decoder

layers at the same resolution.

They combine precise spatial details from the encoder with abstract information

from the decoder.

Each decoder block includes convolutional layers (3×3, ReLU) to refine and

smooth the segmentation map.

• Output: The final layer uses a 1×1 convolution to map feature channels to

the desired number of classes (e.g., foreground vs. background).

This creates the output segmentation map, which has the same spatial dimen-

sions as the input, with each pixel classified.

— SegFormer: SegFormer is a cutting-edge semantic segmentation model that deliv-

ers high accuracy and efficiency across diverse datasets. It can handle challenging

tasks like urban scene parsing and satellite image analysis while maintaining com-

putational efficiency. SegFormer’s strength lies in its ability to capture local and

global dependencies, as well as process contextual information across multiple scales

and resolutions. This allows it to produce precise segmentations even in complex

and cluttered images, making it a popular choice in remote sensing, environmental

monitoring, and medical imaging applications [92].

Figure 2.12 – Architecture of Segformer [93].
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The architecture of SegFormer, as depicted in Figure 2.12, consists of several es-

sential components [93].

Architecture of SegFormer:

• Input Image: The model begins with a high-resolution input image, which is

first divided into patches.

• Encoder: The encoder has four hierarchical stages (Transformer Blocks 1–4),

each of which:

Reduces the spatial resolution of the input (down-sampling).

Increases the number of feature channels to capture more abstract, high-level

information.

Each transformer block includes Overlap Patch Merging: Merge neighboring

patches to form coarser representations while preserving overlap (helps retain

fine details).

Efficient Self-Attention: Uses a self-attention mechanism to learn relationships

between distant pixels and capture global context.

Mix-FFN (Feed Forward Network): Introduces non-linearity and projects fea-

tures into a richer space.

• Multi-Level Feature Fusion: The encoder’s four outputs are downsampled

differently (1/4, 1/8, 1/16 and 1/32 of the original image size), allowing the

model to capture features on multiple scales.

• Decoder: Consists of a simple Multi-Layer Perceptron (MLP) block.

This MLP decoder fuses the multi-level features from the encoder to generate

a final, unified representation.

Unlike traditional decoders with complex upsampling and skip connections,

this lightweight MLP focuses on combining and refining multi-scale features.

• Output: The final output of the decoder is a pixel-wise classification map,

where each pixel in the original image is assigned a class label (segmentation

map).

This architecture is highly efficient, balancing fine detail (local information) and

global context to achieve accurate segmentation while remaining lightweight com-
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pared to conventional CNN-based architectures.

C. Classification

Image classification involves the model analyzing the entire satellite image and as-

signing it a single label or category, such as ’fire detected’ or ’no fire.’ This is the simplest

form of image analysis using CNNs and is often used as a first step or for rapid assess-

ments when a quick response is needed. Unlike object detection, which identifies and

locates multiple objects within an image by drawing bounding boxes, and segmentation,

which classifies every pixel to produce detailed maps of each region, classification only

provides an overall summary for the whole image [94]. It does not reveal where the fire

is located or how much area is affected but tells you whether or not a particular feature

(like wildfire) is present. This makes image classification particularly useful for filtering

large datasets or for triggering more detailed analyses when a certain class is detected.

To illustrate this, a figure demonstrating DL-based Classification in wildfire imagery

2.13 will be provided in the following figure.

Figure 2.13 – Example of deep-learning based
image classification for wildfire detection[95].

— EfficientNet: is a deep learning model family for image classification that balances

network depth, width, and resolution using a technique called compound scaling.

Developed by Google AI in 2019, EfficientNet achieves high accuracy while be-

ing computationally efficient, outperforming many traditional models like ResNet

and Inception. Its architecture uses mobile inverted bottleneck convolutions (MB-

Conv) and squeeze-and-excitation optimization to reduce computational cost with-
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out compromising performance. EfficientNet models range from B0 to B7, offering

scalability for various applications, from mobile devices to powerful servers.

Figure 2.14 – Architecture of EfficientNet[93].

The architecture of EfficientNet, as depicted in Figure 2.14, consists of several

essential Components[96].

Architecture of EfficientNet:

• Input Image: The input image size is 224 × 224 × 3 (RGB image).

• Initial Convolution: A 3×3 convolutional layer is applied, which helps in

capturing low-level features.

• MBConv Blocks: After the initial convolution, the core of EfficientNet archi-

tecture uses MBConv (Mobile Inverted Bottleneck Convolution) blocks, which

are highly efficient and adapted from MobileNetV2.

These blocks consist of:

Depthwise separable convolutions

Squeeze-and-excitation modules for channel-wise recalibration.

Residual connections for easier training.

• Block Details: There are multiple MBConv blocks with different configu-

rations, alternating between 3×3 and 5×5 kernel sizes to capture multi-scale

features.

The number of channels and feature map sizes change progressively through

these blocks, capturing increasingly abstract and high-level representations.
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• Feature Map: The final output of these layers is a feature map of size 7 × 7

× 320, which can be used for various tasks like classification, object detection,

or segmentation.

Deep learning offers a diverse toolkit of Object detection, segmentation, and classification,

each plays a vital role in DL, offering complementary methods to extract meaningful insights

from complex data. Together, they enable advanced analysis and open new opportunities

across fields like environmental monitoring and automated systems.

2.5 Conclusion

In this chapter, we explored the intersection of deep learning and remote sensing. It

presented key deep learning tasks,object detection, segmentation, and classification used in

satellite-based wildfire detection. It detailed how each task works, their applications, and their

differences in output and precision. We also explored well-known models such as YOLOv8, U-

Net, SegFormer, and EfficientNet, outlining their architectures and roles in processing satellite

imagery. This foundation helps in understanding which models are best suited for specific

detection needs and prepares us for the next steps in system development.

A comparative overview of deep learning techniques, object detection, segmentation, and

classification demonstrated how these methods contribute to more accurate and timely wildfire

detection. This foundational knowledge sets the stage for the next chapter, where we transition

from theory to practice, detailing the step-by-step methodology for developing an operational

wildfire detection system based on satellite imagery.
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3.1 Introduction

The rapid advancements in artificial intelligence, particularly in the domain of computer

vision, have paved the way for the development of intelligent systems capable of monitoring

environmental conditions and supporting disaster management efforts. Among these applica-

tions, wildfire detection has emerged as a critical area due to the increasing frequency and

intensity of wildfires worldwide.

This chapter presents the methodology employed in the design of a wildfire detection system

using satellite data. We begin by outlining the overall architecture of the detection pipeline.

Subsequently, we delve into the core components of the system, including dataset acquisition

and preprocessing, model architecture and training strategies, and the evaluation metrics used

to assess system performance. Finally, we illustrate the system’s deployment and interaction

flow through UML diagrams.

3.2 Global Architecture

The global architecture of the wildfire detection system using satellite imagery is designed

as a modular and scalable pipeline that ensures accurate and near real-time detection of

wildfires. This end-to-end architecture integrates multiple stages including data collection,

preprocessing, model development, evaluation, and deployment, as depicted in the diagram.

The process begins with the satellite imagery dataset, which serves as the raw input. These

images are subjected to essential preprocessing operations such as resizing, normalization, and

data augmentation to ensure the quality and consistency of input for the deep learning models.

Following preprocessing, the dataset is split into training, validation, and testing sets,

which supports reliable model training and robust performance evaluation. Three deep learn-

ing models are developed and trained using optimized hyperparameters. These models are

assessed based on standard metrics such as precision, recall, and the Dice coefficient (F1

Score), ensuring an objective comparison of their effectiveness.

The best-performing model is then integrated into a web application, allowing end-users

to access wildfire detection outputs in near real time.
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Figure 3.1 – system workflow

3.3 Detailed Architecture

This section outlines the architecture and methodology for processing the satellite imagery,

from data collection to model construction. It ensures the data is properly prepared for

machine learning models through a systematic approach. The following subsections detail the

key steps, including data preparation, model selection, and evaluation, to ensure accurate and

meaningful analysis.

3.3.1 Dataset description and Preparation

As we previously discussed in Chapter 1, regarding the process of obtaining satellite images

for fire detection, we relied on publicly available datasets. Based on this approach, we chose

to use the ”Active Fire Detection in Landsat-8 Imagery” dataset for several reasons. Unlike

other datasets, such as the burned areas dataset from Canada, which mainly focuses on post-

fire burned regions, this dataset specifically targets active fire events. Additionally, it offers

both input images and corresponding labeled masks, enabling supervised learning and precise

model training. The dataset also stands out for its broad geographic coverage, capturing

wildfire events from diverse regions worldwide, and for its high-quality 10-band multispectral

images. These characteristics make it particularly well-suited for developing robust deep

learning models for detecting active fires.
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Study Area and Label Selection The dataset we are using provides satellite imagery

from various regions around the world. For our analysis, we specifically focused on the African

region, which experienced a significant number of wildfires during the time the images were

captured. Given our focus on Algeria, we filtered the dataset to include only images from

Africa and paired them with the corresponding Murphy masks.

To prepare the data for model training, satellite images must be processed by an algorithm

that generates corresponding fire labels. The images are passed through one of the fire de-

tection algorithms—Murphy, Kumer, or Schroeder—which analyze reflectance values across

different channels to generate binary masks labeling the fire-affected pixels. These masks are

then paired with the satellite images to create a dataset suitable for training our fire detection

model.

The dataset includes several types of masks, such as Kumer, Rumer, and Murphy. Below

is a brief explanation of each:

• Murphy Mask: The Murphy algorithm identifies fire-affected pixels using spectral

ratios from channels c5, c6, and c7. It does not rely on contextual analysis or neighboring

pixels, making it a straightforward method for detecting fires. The algorithm directly identifies

unambiguous fire pixels and classifies nearby pixels as fire-affected using a 3x3 pixel window.

This simplicity and efficiency make the Murphy mask ideal for our study[56].

• Kumer Mask: The Kumer algorithm (Kumer and Roy, 2018) uses channels c2 to c7

and performs contextual analysis within a 61x61 pixel window. While this method is sensitive

to regional context, it is computationally intensive, and its complexity is not required for our

study. Therefore, we chose the Murphy mask due to its simplicity and better performance[56].

• Schroeder Mask: The Schroeder algorithm (Schroeder et al., 2016) relies on conditions

based on seven Landsat-8 channels and also incorporates contextual analysis. However, it is

more complex and prone to false positives, particularly in regions with high variability. Given

these limitations, we found the Murphy mask to be more reliable and effective for detecting

fire pixels in the African region[56].

Among these, we chose the Murphy mask for our study due to its ability to effectively

identify fire-affected areas and distinguish between fire types. Unlike other algorithms, Mur-

phy’s approach directly identifies unambiguous fire pixels, making it particularly suited for our

model’s labeling needs,An example of a satellite image and its corresponding Murphy mask is
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presented in Figure3.2.

(a) Satellite Image (b) Murphy Mask

Figure 3.2 – Active Fire Satellite Image vs Its Murphy Mask Label.

Initially, we filtered the dataset to focus on images from the African region, resulting in

a diverse set of fire events. However, a second filtering step was applied to ensure that only

images with significant fire-affected pixels were included. Specifically, we retained only images

with at least four fire pixels in their corresponding masks. This step was crucial to eliminate

images with minimal fire activity, ensuring that the remaining dataset contained sufficient

information for meaningful model training. After this filtering, the dataset was reduced to

5,701 images, all containing substantial fire pixels, ready for model training.

Band Composition and Selection As discussed in Chapter 1, satellite images can be

represented in various ways depending on the sensor and dataset characteristics. For our

chosen dataset, we use Landsat 8 multispectral imagery provided in (.tif) format. 1

While the Landsat 8 sensor officially captures data across 11 spectral bands, our dataset

comprises 10 bands in TIFF format. Table 3.1 summarizes the spectral bands available on

Landsat 8, illustrating the diverse wavelength ranges each band covers. It is important to note

that each satellite sensor is designed with a unique set of spectral bands tailored for various

remote sensing applications, which can vary between missions.

For our fire detection task, we focus on extracting just three bands: Band 7 (SWIR2),

Band 6 (SWIR1), and Band 2 (Blue). This choice is motivated by the unique properties

of these bands in highlighting fire-related phenomena. Bands 6 and 7, which correspond

to the shortwave infrared (SWIR) regions, regions experiencing active fires appear brighter,

1. TIFF (Tagged Image File Format) is a widely used raster image format that supports multispectral
satellite data with multiple bands and lossless compression, commonly employed in remote sensing, GIS, and
professional imaging.
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Table 3.1 – Spectral bands of the Landsat 8 OLI and TIRS instruments[97]

Band Number Band Description Wavelength Range (µm) Resolution (m)
Band 1 Coastal/Aerosol 0.435 – 0.451 30
Band 2 Blue 0.452 – 0.512 30
Band 3 Green 0.533 – 0.590 30
Band 4 Red 0.636 – 0.673 30
Band 5 NIR 0.851 – 0.879 30
Band 6 SWIR-1 1.566 – 1.651 30
Band 7 SWIR-2 2.107 – 2.294 30
Band 8 Pan 0.503 – 0.676 15
Band 9 Cirrus 1.363 – 1.384 30
Band 10 TIR-1 10.60 – 11.19 100
Band 11 TIR-2 11.50 – 12.51 100

Spatial resolution indicates the ground area represented by each pixel in the satellite image. For example,
30 m means each pixel covers 30 m by 30 m on the Earth’s surface.

indicating strong thermal activity. Band 7, in particular, offers a clear distinction of active

fire areas, thus improving fire detection effectiveness.[98].Meanwhile, the Blue band (Band 2)

helps differentiate between smoke and atmospheric effects[99].

Figure3.3 presents a visual comparison between the standard RGB satellite image and the

selected spectral bands (C7, C6, and C2), illustrating the enhanced fire visibility provided by

our chosen band combination.

(a) RGB Image(c4,c3,c2) (b) (c7,c6,c2) Image

Figure 3.3 – Comparison of RGB image and selected bands image .

The selected bands are extracted from the original multispectral TIFF images and saved

separately as PNG images to facilitate further image processing and model training. This

targeted selection allows us to focus the model on the most relevant spectral information for

accurate and efficient fire detection.
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Data Availability The dataset used for this study, which includes satellite imagery and

corresponding fire masks, is publicly available on GitHub. It can be accessed via the following

link: https://github.com/pereira-gha/activefire

3.3.2 Data Splitting

Data splitting is a fundamental step to ensure the model’s ability to generalize beyond the

training data. To mitigate risks of overfitting and to enable reliable performance evaluation,

we adopted a consistent data-splitting strategy across all three models used in this study.

Specifically, the dataset was partitioned into 70% for training, 15% for validation, and 15%

for testing.

This approach allows us to properly tune the models during development (using the vali-

dation set), while objectively assessing their performance on unseen data (using the test set).

3.3.3 Model Construction

1.3.3.1 Pre-processing

Preprocessing is a critical step in deep learning pipelines before feeding im-

ages into our models cause it ensure clean , consistent and suitable input for

the model [100] ,and for that we apply this preprocessing steps:• Resizing:

we resize all images to a fixed dimension to ensure uniform input size, cause

may dataset contain different sizes , in our models for each experiment we use

different input: in experiment 1 we use (256x256), in the second experiment

(512x512) and in last experiment (640x640).

• Data Normalization: Normalization plays a crucial role in adjusting the

pixel values to a common scale, allowing the model to better learn the patterns

in the data. In Experiment 1 , a simpler normalization technique was applied,

where the pixel values of the image were scaled from the range of 0–255 to a

floating-point range of 0–1. This was done by dividing each pixel value by 255.

For Experiment 2 , a more advanced normalization method was used: mean

normalization. In this case, the pixel values were scaled to the range of [-1, 1]

by applying a mean of 0.5 and a standard deviation of 0.5 for each three chan-

nel. This technique was intended to enhance model performance by ensuring

that pixel values have a more consistent scale across different channels.
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• Data Augmentation: (Applied Only to Training Data)

we make some random transformations by increasing the diversity of train-

ing data, helping the model generalize better new data, our augmentations

in both 3 experimants include this common transformations:Random Crop:

forces model to recognize fires from partial views and on different regions, and

this helps model learn partial objects. Sharpen: enhances edges and details

to help the model detect boundaries more clearly especially for small fires

borders. Flips: by mirroring images horizontaly and verticaly to make the

model invariant to orientation which means learns that direction doesn’t mat-

ter. RandomBrightnessContrast:adjust lighting conditions which makes model

robust to different times of day/night/clouds.

1.3.3.2 Used Models

In this work, we explore various models to address the challenge of detecting forest fires

using satellite imagery. After extensive experimentation, we found that two segmentation

models and one object detection model yielded promising results. These models are

presented in the following subsection.(See 3.4)

Figure 3.4 – Our Models

1. U-Net

In our wildfire segmentation task, we adopted a U-Net architecture, a well-known

convolutional neural network architecture used for segmentation tasks; it excels in pixel-

level classification. As a global architecture of U-Net, it follows a symmetric encoder-

decoder structure with skip connections, as illustrated in Figure 3.5.

————— Input: Satellite images of shape (256×256×3).
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Figure 3.5 – U-Net architecture used for our segmentatuon task.

— Contracting Path (Encoder): Each block consists of two convolutional layers

with ReLU activation,Batch Normalization, and MaxPooling for downsampling.The

number of filters doubles at each level, starting from a base of 16.

— Expanding Path (Decoder): Upsampling is done using transposed convolutions.

Each upsampled output is concatenated with the corresponding encoder feature

map (skip connection), followed by two convolutions.

— Output Layer: A final 1×1 convolution reduces the feature map to a single output

channel for binary segmentation. It combines all feature channels at each pixel

location into one value. A sigmoid activation is applied to produce a per-pixel

probability between 0 and 1.

• One of the most strength point of u-net is precision in localization when it excels at

delineating fire boundaries due to its pixel-wise segmentation capability also, it can han-

dles Low-Resolution Data thanks to skip connections that help recover spatial details,

which is crucial for detecting small wildfires in satellite images, in the other hand, it

achieves high accuracy in segmentation tasks.
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2. SegFormer B2

In our wildfire segmentation task, we also employed SegFormer-B2, a recent transformer-

based semantic segmentation model that combines hierarchical Vision Transformers

(ViTs) with a lightweight and efficient decoder. As a global architecture, SegFormer

follows an encoder-decoder structure that is well-suited for pixel-wise classification, as

illustrated in Figure 3.6.

Figure 3.6 – SegFormer-B2 architecture used for wildfire segmentation.

— Input: Satellite images of shape (512 × 512 × 3).

— Hierarchical Encoder (SegFormerEncoder): The encoder is composed of four

hierarchical stages. Each stage reduces spatial resolution and increases channel

depth through patch embedding and SegFormerLayers with efficient self-attention.

The outputs from all stages represent multi-scale contextual features, normalized

by LayerNorm.

— Decoder (SegFormerDecodeHead): The decoder takes the outputs from all

encoder stages and projects each to 768 channels using linear layers. These are

upsampled to 512 × 512, then concatenated (4 × 768 → 3072 channels). A 1 × 1

convolution reduces the feature map to 768 channels, followed by BatchNorm2d,

ReLU, and Dropout (p = 0.1). A final 1 × 1 convolution classifier maps the result
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to 2 channels, producing the segmentation output.

— Output Layer: The final segmentation map of shape 512 × 512 × 2 assigns each

pixel a class label, enabling high-resolution binary segmentation of wildfire-affected

areas.

• This model is useful in Captures Global Context: Self-attention helps identify fires

spread across large areas, which CNNs might miss.

3. YOLO v8

Real-time object detection model that predicts bounding boxes and class probabilities

with a single forward pass, enabling fast and efficient detection. In its architecture, it

consists of a backbone, which is a CNN that extracts features from the input image.

And also neck is a Feature Pyramid Networks (FPN) aggregate multi-scale features for

detecting objects of varying sizes, and lastly, a head for bounding box regression and

classification that predicts class labels.

• YOLO models have been proven effective in detecting wildfire flames and smoke from

UAV images with good precision and recall

1.3.3.3 Model Hyperparameters and Configuration

— Learning Rate (lr):

Definition: The learning rate controls the step size for updating model weights

during optimization based on the loss gradient[101]. Impact: Too high a value

may cause unstable training and overshoot the optimal parameters, while too

low a value slows convergence[102]. Tuning: To use an appropriate learning

rate, we should experiment or use learning rate schedules that can help adjust

the learning rate dynamically during training [101].

— Batch Size:

Definition: The number of training examples is processed in one iteration be-

fore updating parameters, affecting memory usage and training stability [103].

Impact: Small batch sizes often lead to more stable and accurate gradients

and improve generalization, but slow the training. Larger batch sizes speed up

training but use more memory and may produce a noisier gradient [104].
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— Epochs:

Definition: Defines the number of complete passes through the training dataset,

ensuring that every data sample is used to update the model’s parameters [105].

Impact: The number of epochs can affect convergence, using multiple epochs:

• can improve Model Performance by allowing it to learn better from data.

• We can apply early stopping to avoid overfitting.

• Optimize the training process by enabling gradual learning.

Using too many epochs can lead to overfitting, where the model performs well

on training data but poorly on unseen data.

Tuning: Experimentation and early stopping help find the balance between

underfitting and overfitting [106].

— Loss Functions: They are fundamental components in machine learning that

quantify the difference between a model’s predicted outputs and the actual target

values (ground truth).

They provide a numerical measure of error or ”loss,” which the model aims to

minimize during training to improve its performance. Some of these loss functions

are [107]:

1. Focal Loss: it is designed to address the problem of class imbalance in object

detection/segmentation, it modifies the standard cross-entropy loss by adding

a modulating factor that down-weights well-classified examples and focuses on

hard misclassified samples [108].

Formulation:

FL(pt) = −αt(1 − pt)γ log(pt)

Where:

— pt: Model’s estimated probability for the true class.

— αt: Weighting factor for class balancing (typically α ∈ [0, 1] for class 1,

1 − α for class 0).

— γ (gamma): Focusing parameter (γ ≥ 0); higher values reduce the loss for

easy examples [109].

Key Features:

— Reduces contribution from easy negatives (common in imbalanced datasets).
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— Improves performance on rare classes (e.g., foreground vs. background in

object detection) [108]

.

2. Dice Loss: It is designed to stabilize training in segmentation tasks with

missing/empty labels.

Formulation:

LDice = 1 − 2|Y ∩ Ŷ | + ϵ

|Y | + |Ŷ | + ϵ

Where:

— Y = Ground truth mask

— Ŷ = Predicted mask

— ϵ = Smoothing parameter (usually a small value like 1 × 10−5 to 1 × 10−7)

The s prevents division by zero and stabilizes training, especially when deal-

ing with empty or missing labels. Proper tuning of this parameter helps main-

tain numerical stability and improves segmentation accuracy[general knowl-

edge] [110].

3. Binary Cross-Entropy (log loss): is a loss function commonly used in

binary classification tasks in machine learning; it measures the difference be-

tween the actual class labels (0 or 1) and the predicted probabilities output by

a model [111].

The function is smooth and differentiable, making it suitable for gradient-based

optimization methods like stochastic gradient descent, Also, this loss function

penalizes incorrect classifications more severely as the predicted probability di-

verges from the true label, encouraging the model to be calibrated (predictions

reflect true probabilities) [112].

4. Box Loss:Measures the error in bounding box predictions.

5. CLS Loss: Classification loss (how well objects are classified into categories).

6. DFL Loss : Distribution Focal Loss (DFL) for better box regression precision.

— Optimization Algorithms:

Optimization algorithms are fundamental components enabling models to learn,they

guide how model parameters (weights and biases) are updated to find the optimal
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values that give best perfemance and minimize the loss function .

• Adam (Adaptive Moment Estimation): is one of the most widely used

optimization algorithms that combines the benefits of AdaGrad (adaptivity for

sparse gradients) and RMSProp (moving average of squared gradients), from its

advantages, adaptive learning rates reduce the need for manual tuning. Works well

with sparse gradients and non-stationary objectives. it also has fast convergence

for many deep learning tasks due to adaptive learning rates and momentum [113]

The following table summarizes the hyperparameter values used for each model.

Table 3.2 – Comparison of Model Training Configurations

Model Epochs Batch Learning Rate Early Stopping Loss Function Optimizer
U-NET 20 8 1e-3 Yes (patience=5) BCE Adam
SegFormer B2 30 8 1e-4 Yes (patience=7) Focal + Dice Adam
YOLO V8 100 16 1e-3 Yes (patience=20) DFL + BCE+ CLS AdamW

1.3.3.4 Performance Metrics

1. Recall: Measures the proportion of actual positive pixels/regions correctly iden-

tified out of all actual positive pixels.

The recall is defined by:

Recall = TP

TP + FN
(3.1)

where:

— TP = True Positives (correctly predicted positive pixels)

— FN = False Negatives (positive pixels missed by the model)

• It is ideal and critical for safety-critical applications where high recall ensures

that nearly all relevant objects or regions are detected, which is essential in fields

like wildfire detection.

2. Precision: Measures the proportion of correctly predicted positive pixels/regions

relative to all predicted positives. The precision is defined by:

Recall = TP

TP + FP
(3.2)
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where:

— TP = True Positives (correctly predicted positive pixels)

— FP = False Positives (The number of negative pixels incorrectly predicted as

positive pixels)

3. Dice Coefficient (F1 Score): It quantifies the similarity between two sets (pre-

dicted and ground truth segmentation masks) by calculating the ratio of twice the

intersection to the sum of their sizes. The Dice Coefficient, equivalent to the F1

Score, is defined as:

DSC = F1 Score = 2 · Precision · Recall
Precision + Recall (3.3)

• It is ideal for balancing the trade-off between false positives (precision) and false

negatives (recall)

4. Intersection over Union (IoU): It is a metric primarily used to evaluate the

accuracy of an object detection or segmentation model. It measures the over-

lap between the predicted bounding box (or segmentation) and the ground truth

bounding box (or segmentation). It is crucial for assessing how well a model local-

izes objects, rewarding predictions with higher spatial overlap, even if the bounding

box coordinates do not exactly match the ground truth

IoU = AreaofUnion

AreaofOverlap
(3.4)

Where

— Area of Overlap:The region where the predicted and actual bounding boxes

overlap.

— Area of Union:The total area covered by both the predicted and actual bound-

ing boxes combined [114].

• IoU values range from 0 to 1, where 1 indicates perfect overlap. It is a key metric

in tasks such as image segmentation and object detection, used to quantify how

well the model’s predictions match the true objects [115].
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5. Confusion Matrix:It is a table used to visualize the performance of a classifica-

tion model by comparing predicted labels against true labels [116].

For a binary classification, the confusion matrix is a 2x2 table with the following

components:

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Table 3.3 – Confusion Matrix

Where

— True Positive (TP): Correctly predicted positive cases.

— False Negative (FN): Actual positives incorrectly predicted as negative.

— False Positive (FP): Actual negatives incorrectly predicted as positive.

— True Negative (TN): Correctly predicted negative cases.

• It allows the calculation of various performance metrics, such as accuracy, preci-

sion, recall, and other performance metrics.

3.3.4 Model Deployment

Deployment is a critical phase that involves transitioning a model from a development

environment to an operational one, where it can interact with end-users. This process ensures

that the model is not only available but also performs effectively in practical applications,

providing real-time insights. Deploying a model is essential for transforming it into a fully

operational system that can deliver real-time outcomes and meet the needs of its users [117].

For our project, the wildfire detection model must be integrated into a real-time web appli-

cation, allowing users to monitor fire outbreaks using satellite imagery. The web application

will provide an interface for users to interact with the system, facilitating the visualization of

the detection results.
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To understand the conceptual framework of this project, we will examine two types of UML

diagrams:

a. Use Case Diagram The shown Figure 3.7 presents the use case diagram. the admin

actor can perform the multiple use cases such as uploading an image, enter coordinates,

manage stations. Meanwhile, the station actor can view alerts and is involved in receiving

alerts sent by the system. The system also includes a use case to get zone images from

the map, which supports the run simulation use case, and to send alerts to stations.

Figure 3.7 – Use Case diagram

b. Activity Diagram This diagram will provide a deeper understanding of the workflow

of the system, from receiving satellite images to generating and displaying the detection

results.

— CASE 1: Login

The figure below 3.8 shows the process when a user enters their credentials (email

and password) on the login page. The system checks if the credentials are correct.

If they are not correct, an error message (”Invalid email or password”) is displayed,

and the user is prompted to re-enter their credentials. If the credentials are correct,
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authentication is successful. After successful authentication, the system checks the

user’s role. If the user is an admin, they are redirected to the dashboard; if the

user is a station (receiver), they are redirected to the alerts page. The process ends

once the user is redirected to the appropriate page.

Figure 3.8 – Activity Diagram for Login Process

— CASE 2: Analyse Map

Figure 3.9 shows the analysis map process when the admin navigates to the dash-

board. It enters the coordinates of the desired zone. The system validates them

to ensure they are within a valid range. If they are invalid, an error message

(”Coordinates out of valid range”) is displayed, and the user returns to enter new

coordinates. If they are valid, the system retrieves a zone view from the map. Next,

it processes the images of the zone, applies a model to analyze them, and generates

masks to identify potential fire areas. The system then checks if a fire is detected.

If no fire is detected, the process ends. If fire is detected, it calculates the affected

area, saves the images, and sends an alert to the station. The process concludes

after the alert is sent or if no fire is detected.
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Figure 3.9 – Activity Diagram for Map analyse

— CASE 3: Run simulation

In figure 3.10 when an admin navigates to the upload page. The admin enters

coordinates and selects an image to upload. The system validates the coordinates

and the image. If validation fails, an error message (”coordinates out of range”)

is displayed, and the admin is prompted to re-enter the coordinates. If validation

succeeds, the image is split into manageable sections. The system then applies a

model to analyze the split image. Next, it checks if fire is detected. If no fire is

detected, the process ends. If fire is detected, the system calculates the affected

area and bounding box, generates a processed image, sends an alert to the station,

and finally displays the processed sub-images in a table. The process concludes

after the results are displayed.
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Figure 3.10 – Activity Diagram for active fire Simulation

— CASE 4: Manage stations

In figure below 3.11 when an admin navigates to the stations page.It can view

existing stations. From there, the admin chooses an action: delete a user, edit

a receiver, or add a new station. If the admin selects ”delete user,” the system

prompts for confirmation of deletion. If confirmed, a success message is displayed,

and the process ends. If not confirmed, the process returns to viewing existing

stations. If the admin selects ”edit receiver,” the system allows updating the station

form. The system validates the update form; if valid, a success message is displayed,

and the process ends. If invalid, an error message is shown, and the admin can retry.

If the admin selects ”add a new station,” they fill out the station form. The system

validates the add form; if the email is already registered, an error message (”Email

already registered”) is displayed, and the admin can retry. If the form is valid, the

new station is saved, a success message is displayed, and the process ends.
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Figure 3.11 – Activity Diagram for Managing Stations

— CASE 5: View alerts

Figure 3.12 when a user navigates to the alerts page. The system checks the user’s

role to determine if they are an admin or a station. If the user is an admin, all

alerts are displayed. If the user is a station, only the assigned alerts are displayed.

For displayed alerts, the system checks if the user clicks on a detected alert. If yes,

the map zooms to the location associated with that alert. Additionally, if a new

fire detection occurs while on the alerts page, the station receives a new alert, and

a warning sound is played. The process ends after confirming the reading of the

alert.

72



Chapter 3 Research Design and Methodology

Figure 3.12 – Activity Diagram for viewing Alerts

3.4 Conclusion

This chapter aimed to present the design and methodology behind the development of a

wildfire detection system that utilizes satellite imagery. We explored the key stages of the

process, including data acquisition, preprocessing, model selection, and training configura-

tions.To aid in understanding the system’s design, we also explored two UML diagrams: the

use case diagram and the activity diagram, which helped visualize the system’s interactions

and workflow.

The next chapter includes analyzing the quantitative and qualitative outcomes of the models

and comparing their suitability for deployment. Additionally, we will describe the deployment

process, shedding light on how the selected model was integrated into a real-time web appli-

cation for effective wildfire monitoring in real-world scenarios.
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4.1 Introduction

In this chapter, we present the experimental results and performance evaluation of our

deep learning-based wildfire detection system. The chapter begins by outlining the devel-

opment environments and key libraries used throughout the project. We then present both

quantitative results,such as F1 Score, Recall, and Precision,and qualitative outputs, including

training curves, confusion matrices, and visual comparisons. Additionally, the chapter includes

a comparative analysis that justifies the selection of the most suitable model for deployment

in a wildfire monitoring application. Finally, the chapter concludes with a description of the

model deployment process , detailing how the selected model was integrated into a web-based

application designed to support wildfire monitoring and visualization.

4.2 Environment and Libraries

In this section, we describe the various environments and libraries used during the devel-

opment and deployment of our wildfire detection system.

4.2.1 Environment

Here, we discuss the three primary environments used in the project: Google Colab, Kaggle,

and VS Code. Each environment provided specific tools and configurations suited to various

aspects of model development, training, and evaluation.

1. Google Colab

Google Colab 1 is a cloud-based platform that allows users to run Jupyter notebooks in

an interactive environment with access to powerful computational resources like GPUs

and TPUs. It is especially beneficial for deep learning projects, where the training

process can be resource-intensive.

For this project, we used Google Colab to train and evaluate two of our deep learning

models. Google Colab provides free access to GPUs, which were crucial for training the

models on large satellite datasets. Specifically, we configured Colab to use an NVIDIA

Tesla T4 GPU, known for its high performance in deep learning tasks.

1. https://colab.research.google.com/
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• Google Colab Configuration:

— GPU: NVIDIA Tesla T4

— RAM: 13 GB

— Disk Usage: 100 GB (via Google Drive integration)

— Free Usage: it offers up to 4 hours every 2 days or 1.5 hours every day of GPU

runtime

The configuration with a GPU significantly reduced training time, enabling faster

experimentation and model iteration. Colab’s integration with Google Drive made it

easy to manage and share data. Additionally, its support for TensorFlow and Keras

ensured smooth execution of our deep learning workflows.

2. Kaggle

Kaggle 2 is another cloud-based platform widely used for data science and machine

learning tasks. It provides access to a wide range of datasets, competition environments,

and cloud-based computational resources, including free access to GPUs.

For training our third model, we utilized Kaggle due to its straightforward setup and

the ability to efficiently handle large datasets. Kaggle offers access to high-performance

NVIDIA Tesla T4 GPUs, which are ideal for deep learning tasks such as image classifi-

cation and object detection.

• Kaggle Configuration:

— GPU: NVIDIA Tesla T4 (15 GB VRAM * 2, totaling 30 GB VRAM)

— RAM: 29 GB (maximum)

— Disk Usage: 57 GB (total storage available)

— Free Usage: 30 hours of GPU usage per week, with a maximum of 12 hours per

session.

In Kaggle, the collaborative environment was beneficial as it allowed us to share note-

books with team members, which facilitated efficient collaboration and model refinement.

Kaggle’s support for popular libraries like TensorFlow and PyTorch further streamlined

the model development process.

3. VS Code

Visual Studio Code (VS Code) is a lightweight, extensible code editor that we used as

2. https://www.kaggle.com/
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our local development environment. While it doesn’t have the same cloud resources as

Colab or Kaggle, VS Code is highly flexible and suitable for developing and debugging

code locally. It supports a wide range of programming languages, including Python, and

can be easily extended with various plugins and extensions.

In this project, we used VS Code primarily for writing and testing scripts related to

data preprocessing, model evaluation, and code related to visualizations and plotting.

VS Code’s integration with Python and Jupyter Notebooks allowed us to run smaller

experiments locally before scaling them to cloud-based environments. It was also used

for debugging and optimizing methods, especially for plotting performance metrics, con-

fusion matrices, and training curves.

4.2.2 Programming Language:Python

The programming language used for developing our wildfire detection system was Python.

Python is renowned for its simplicity, readability, and wide support in the machine learning

and data science communities. Its extensive ecosystem of libraries and frameworks makes it

an ideal choice for deep learning applications.

Python is particularly favored for its support of both high-level and low-level operations.

This versatility allows researchers to prototype quickly while also providing access to more

sophisticated techniques when needed. In this project, Python enabled seamless integration

with libraries like TensorFlow, Keras, and OpenCV for model development and data manip-

ulation. Its rich ecosystem of libraries and community support made Python the best choice

for building and deploying machine learning models.

4.2.3 Key Libraries and Frameworks

To support the core functionalities of the system—including API development, deep learn-

ing, image processing, and interactive visualization,a selection of essential libraries and tools

was used:

— TensorFlow and Keras: The main libraries used for building and training segmenta-

tion models such as U-Net and FCN. They offer modular APIs and support for GPU

acceleration.
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— PyTorch: Deep learning framework used for training and deploying object detection

models, including integration with YOLOv8.

— Ultralytics (YOLOv8): High-level API built on PyTorch for training, inference, and

evaluation of YOLO-based object detection models.

— TensorBoard (optional): Used for monitoring training and evaluation metrics via

visual dashboards, integrated automatically with YOLOv8.

— Matplotlib and Seaborn: Visualization libraries used to plot training histories, con-

fusion matrices, and performance metrics.

— Pandas: Used for handling and processing dataset metadata stored in CSV files, such

as file paths and labels.

— NumPy: Core library for numerical operations, essential for matrix manipulations and

preprocessing steps.

— OpenCV: Library for image processing and manipulation, commonly used for tasks

such as resizing, masking, and augmentation.

— Albumentations: Fast and flexible library for applying image augmentations during

training to improve model robustness.

— Pillow (PIL): Used for basic image I/O and manipulation tasks.

— Flask: Lightweight web framework for building backend APIs.

— SQLAlchemy: ORM for database interaction and model definition.

— Bootstrap: Frontend framework for responsive UI design.

— Leaflet: JavaScript library for rendering interactive maps on the frontend.

— Mapbox API: Provides basemaps and geographic data used for spatial visualization.

4.3 Results and Experiments

For our wildfire detection system, we experimented with three deep learning models: U-

Net, SegFormer b2, and YOLO v8. Each model was trained and evaluated on a carefully

prepared dataset of satellite images.

To rigorously evaluate the ability of each model to detect wildfire-affected areas, we train

experiments based on Morphy masks, which were used as ground-truth annotations for wildfire

segmentation.
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To optimize the model’s ability to detect fire in satellite images, we utilized a composition

of three spectral channels: C7, C6, and C2. This combination was chosen to enhance fire

visibility, as these channels allows the model to better capture fire-related features and help

it better distinguish fire regions from the background. In this section, we present the results

achieved by the models and discuss their performance in detail.

4.3.1 Model 1: U-Net

We begin by discussing the U-Net model, as it was one of the key architectures explored

for the segmentation task.

• Metrics Rapport

The U-Net model was trained and evaluated on the test dataset (15%) using the following

key performance metrics: F1 Score, Recall, Precision, and Intersection over Union (IoU).

These metrics were computed exclusively on the test dataset, ensuring the model’s perfor-

mance was assessed on unseen data.

The results are summarized in Table 4.1.

Metric Value (%)
F1 Score 90.85
Recall 95.36

Precision 86.67
Intersection over Union (IoU) 83.22

Table 4.1 – Performance Metrics of U-Net on the Test Dataset

These results indicate that the U-Net model demonstrates strong capability in detecting

wildfire regions. The high recall (95%) shows that the model successfully identifies the ma-

jority of fire pixels, which is critical for minimizing missed detections in a wildfire monitoring

system. The F1 score of 90% reflects a good balance between recall and precision, ensuring

that the model not only detects fires but also keeps false alarms relatively low. The IoU of 83%

further confirms that the segmentation quality is robust and reliable across diverse test images.
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• Accuracy and Loss

To further analyze the model’s learning behavior, we examined its accuracy and loss curves

during training.

Figure 4.1 – Training and Validation Accuracy and Loss Curves for U-Net

As shown in Figure 4.1, both training and validation loss drop sharply in the initial epochs

and then converge to near-zero values, indicating that the model has learned effectively and

generalizes well to unseen data. The only minor fluctuation observed in the validation loss

suggests occasional variation but no consistent overfitting behavior.

Similarly, the training and validation accuracy curves reach approximately 99% within just

a few epochs and remain consistently high. This indicates that the U-Net model demonstrates

excellent capability in correctly identifying wildfire-affected regions with minimal errors. The

overlap between training and validation curves confirms that the model maintains strong

generalization without overfitting.

• Confusion Matrix

In addition to pixel-level metrics, we evaluated the model’s performance at the image level

using a specific strategy to compute the confusion matrix:

If the model predicts 70% or more of the true fire pixels in an image as fire pixels, we

consider the image to be classified as a “fire image.” Otherwise, it is treated as a “non-fire

image.”

U-Net Confusion Matrix in Figure4.2 shows the following results:

— True Positives (fire images correctly detected): 835

— True Negatives (non-fire images correctly detected): 0
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Figure 4.2 – Confusion Matrix for U-Net on the Test Dataset

— False Positives (non-fire images misclassified as fire images): 0

— False Negatives (fire images misclassified as non-fire images): 21

Interpretation: U-Net demonstrates high sensitivity in detecting fire regions, with a large

number of true positives and only a small number of false negatives. Within the context of

fire-only imagery, U-Net performs effectively and reliably in detecting wildfire-affected areas.

4.3.2 Model 2: SegFormer B2

We now turn our attention to the SegFormer B2 model, a transformer-based architecture

known for its high segmentation accuracy and computational efficiency.

• Metrics Rapport

SegFormer B2 was evaluated using the same test dataset and performance metrics: F1

Score, Recall, Precision, and Intersection over Union (IoU). These metrics provide a compre-

hensive view of the model’s segmentation capability. The results are summarized in Table 4.2.
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Metric Value (%)
F1 Score 81.87
Recall 78.02

Precision 86.11
Intersection over Union (IoU) 69.30

Table 4.2 – Performance Metrics of SegFormer B2 on the Test Dataset

While SegFormer B2 does not reach the same levels of precision and recall as U-Net, it

still performs well. The Precision of 86.11% indicates that the model is effective at correctly

identifying fire regions, though its lower Recall (78.02%) suggests that it misses some actual

fire zones. The F1 Score of 81.87% shows a reasonable balance between these aspects. The

IoU of 69.30% implies that the segmentation quality is acceptable, albeit not as refined as

U-Net’s.

• Accuracy and Loss

To assess training dynamics, we analyzed the loss and accuracy curves during training and

validation.

Figure 4.3 – Training and Validation Accuracy and Loss Curves for SegFormer B2

As shown in Figure 4.3, the loss for both training and validation decreases steadily across

epochs, suggesting stable learning. However, the loss plateaus at slightly higher values than

those observed for U-Net, reflecting the moderately lower performance metrics.

The accuracy curves reach high levels ( 99.9%) and remain consistent throughout training

and validation, indicating the model learns to generalize well without overfitting. Despite

the strong accuracy, the gap in metrics like IoU suggests that SegFormer B2 may be more

conservative in segmentation boundary precision compared to U-Net.
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• Confusion Matrix

As with U-Net, we applied an image-level evaluation strategy using the same thresholding

rule: an image is classified as a “fire image” if the model detects at least 70% of the actual

fire pixels.

Figure 4.4 – Confusion Matrix for SegFormer B2 on the Test Dataset

The confusion matrix for SegFormer B2 yields the following results(Figure4.4):

— True Positives (fire images correctly detected): 590 images

— True Negatives (non-fire images correctly detected): 0 images

— False Positives (non-fire images misclassified as fire images): 0 images

— False Negatives (fire images misclassified as non-fire images): 266 images

Interpretation: SegFormer B2 exhibits decent performance at the image level. However,

the number of false positives and false negatives is higher compared to U-Net. While still

reliable, the model may occasionally miss fire events or trigger false alarms. Nonetheless,

it remains a viable alternative, especially in resource-constrained or transformer-preferred

deployment environments.

4.3.3 Model 3: YOLO v8

We now evaluate YOLO v8 developed by Ultralytics. Unlike pixel-wise segmentation mod-

els like U-Net or SegFormer, YOLO (You Only Look Once) approaches the problem from a
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detection standpoint, identifying bounding boxes around fire regions rather than providing

per-pixel classifications.

• Metrics Rapport

The YOLO v8 model was evaluated using object detection metrics: Precision, Recall, mean

Average Precision at IoU thresholds of 0.5 (mAP@0.5) and from 0.5 to 0.95 (mAP 3@0.5:0.95),

in addition to derived values such as the F1-score. The results are summarized in Table 4.3.

Metric Value (%)
Precision 76

Recall 52
mAP@0.5 60

mAP@0.5:0.95 34
F1 Score (peak at optimal threshold) 58

Table 4.3 – Performance Metrics of YOLO v8

Although YOLO v8 does not match the pixel-level granularity of SegFormer B2 or U-Net, it

demonstrates reasonable potential in bounding box-level detection tasks. The F1-score peaks

at 58% at a confidence threshold of 0.3, indicating a moderate trade-off between precision and

recall. While the recall remains relatively low at 52%, the precision reaches 76%, suggesting

that when the model detects fire, it is usually correct. The mAP metrics—60% at IoU=0.5 and

34% across IoU thresholds—reflect acceptable detection capability, particularly under more

lenient overlap criteria.

However, compared to U-Net and SegFormer B2, YOLO v8 achieves the lowest overall

performance across all evaluated metrics, making it the least effective model for this wildfire

detection task.

• Accuracy and Loss

We tracked three core loss components during training and validation: box loss, classi-

fication loss, and Distribution Focal Loss (DFL), which are summed to compute the total

loss.
3. Mean Average Precision (mAP) is a standard evaluation metric for object detection tasks. It com-

bines precision and recall to measure both the accuracy of predicted object classes and the quality of their
corresponding bounding boxes.
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Figure 4.5 – Training and Validation Loss Curves for YOLO v8

As shown in Figure4.5, all components of the training and validation loss curves exhibit

steady decreases:

— Box Loss: drops from 1.7 to 1.3, indicating improved object localization.

— Classification Loss: decreases from 0.85 to 0.65, showing better label accuracy.

— DFL Loss: slightly reduces from 0.9 to 0.86, enhancing bounding box precision.

The total loss converges to approximately 2.81 by the end of training. Validation losses

follow similar trends, showing no major signs of overfitting, suggesting good generalization on

unseen data.

• Confidence Curves and Threshold Tuning

YOLO v8’s performance varies based on the prediction confidence threshold. The Recall,

Precision, and F1-score confidence curves provide deeper insight into model behavior:

— Recall: Starts high ( 64%) and declines as the model becomes more conservative.(see4.6)
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Figure 4.6 – Recall, Precision, and F1-Score vs Confidence Threshold for YOLO v8

— Precision: Rises steadily with higher confidence, reaching 100% near 0.9.(see4.7)

Figure 4.7 – Recall, Precision, and F1-Score vs Confidence Threshold for YOLO v8

— F1-Score: Peaks at 58% around a threshold of 0.3, offering an optimal balance.(see4.8)

86



Chapter 4 Results and System Deployment

Figure 4.8 – Recall, Precision, and F1-Score vs Confidence Threshold for YOLO v8

This suggests threshold tuning is vital for deployment, depending on whether false positives

or false negatives are more tolerable.

• Confusion Matrix

To evaluate the performance of YOLOv8, a strategy tailored to its object detection

paradigm was adopted. Unlike segmentation models that use a pixel-wise Intersection-over-

Union (IoU) threshold (70% in our case) between predicted and ground truth masks, object

detection models such as YOLOv8 output bounding boxes.

In this evaluation, the confusion matrix represents performance at the bounding box

level, not the image level. Each predicted bounding box labeled as fire was assessed for

correctness:

— A predicted box was counted as a True Positive (TP) if it corresponded to an actual

fire region.

— A predicted box was considered a False Positive (FP) if it incorrectly labeled a non-fire

region as fire.

— A False Negative (FN) was recorded when a ground truth fire region was not detected

by any predicted box.

The confusion matrix for YOLOv8 shows the following results(Figure4.9):
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Figure 4.9 – Confusion Matrix for YOLOv8 at the Bounding Box Level

— True Positives (TP): 1875 fire bounding boxes correctly detected.

— False Positives (FP): 1028 non-fire regions mistakenly detected as fire.

— False Negatives (FN): 1468 fire regions missed (not detected).

— True Negatives (TN): Not represented in this confusion matrix, as object detection

models do not typically generate exhaustive negative bounding boxes for non-fire regions.

Interpretation: This evaluation shows that YOLOv8 has strong fire detection capability but

also generates a notable number of false positives and false negatives. These results indicate a

trade-off between sensitivity and precision that must be considered depending on the system’s

operational context.

4.4 Discussion

In this section, we perform a comparative analysis of the three models used in our wildfire

detection system: U-Net, SegFormer B2, and YOLOv8.

This analysis provides insights into which model and configuration is most suitable for

deployment in our wildfire detection system.

To better visualize the performance of the three models, Figure4.10 presents a bar chart

comparing the F-score, Recall, and Precision for each model.
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Model F1 Score (%) Precision (%) Recall (%)
U-Net 90 86 95

SegFormer B2 81.87 86.11 78.02
YOLO v8 58 76 52

Table 4.4 – Comparison of Key Performance Metrics Across Models

Figure 4.10 – Comparative bar chart of the 3 model performance based on key metrics.

Figure4.11 displays an example satellite image along with the predicted outputs generated

by each of the three models: U-Net, SegFormerB2, and YOLOv8.

For the segmentation models (U-Net and SegFormerB2), the figure presents the predicted

wildfire masks, while for YOLOv8, the image shows the detected wildfire regions outlined with

bounding boxes.

(a) Input Image (b) U-Net (c) SegFormerB2 (d) YOLOv8

Figure 4.11 – Comparison of the detected masks from our models: U-Net, SegFormerB2,
and YOLOv8.

From both the table and the bar chart, it is evident that the U-Net model outperforms the
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others, achieving the highest F1 Score (90%) and Recall (95%). High Recall is particularly

critical in wildfire detection, where failing to identify fire zones can have severe consequences.

While SegFormer B2 demonstrates solid performance, with an F1 Score of 81.87% ,a Pre-

cision of 86.11%, and a Recall of 78.02%, it still falls short of U-Net’s effectiveness, especially

in terms of sensitivity and overall segmentation accuracy.

In contrast,YOLOv8 showed the lowest performance across all key metrics, with an F1

Score of 58% and a Recall of 52%. Compared to the segmentation models, this indicates that

object detection is currently less effective for identifying wildfire regions in satellite imagery.

However, its inclusion in this study highlights the potential of object detection methods in

this domain.

This study demonstrates that, while segmentation currently yields superior results, object

detection remains a promising direction that can be improved through model enhancements,

higher-quality data annotation, and task-specific optimizations tailored to wildfire detection.

Based on this comparative evaluation, U-Net was selected as the final model for

deployment in our wildfire detection system, due to its superior ability to detect fire zones

accurately and consistently.

• Model Comparison with Related Works

In this section, we compare the performance of our models with those from previous studies

to highlight the effectiveness of our approach in wildfire detection. The comparison is based

on key performance metrics such as Precision, Recall, and F1 Score, which provide insights

into the strengths and weaknesses of each model. Our models include U-Net, SegFormer B2,

and YOLO v8, trained on satellite imagery from the African region, specifically targeting

wildfire detection. We also compare these results to those reported in related work, including

Boumaiza and Brahimi (2024), James et al. (2023), and Choutri et al. (2023).

Table 4.5 provides a detailed comparison of these results.
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Name of Model Precision (%) Recall (%) F1 Score (%) Source
Our Models

U-Net 86 95 90 1st Model
SegFormer B2 78 86 81.87 2nd Model

YOLO v8 76 52 58 3rd Model
Related Works

U-Net (2024) 95 74 83 Boumaiza & Brahimi
MobileNetV2 95 / 95 James et al.
YOLO-NAS 71 / 68 Choutri et al.

Table 4.5 – Comparison of Model Performance Metrics Between Our Models and Related
Works

U-Net (Our Model) achieved the highest F1 score (90%), with a solid precision of 86% and

a high recall of 95%. This shows that U-Net is well-suited for wildfire detection, especially

when trained on satellite imagery, as it effectively balances precision and recall. Compared to

other works, like Boumaiza and Brahimi (2024), whose U-Net model achieved an F1 score of

83%, our U-Net model performs better in terms of both recall and overall detection accuracy.

SegFormer B2 (Our Model) performed moderately, with an F1 score of 81.87%. While

it didn’t outperform U-Net, SegFormer showed decent performance, indicating that more

complex architectures may still be viable but are less efficient for this specific task compared

to U-Net.

YOLO v8 (Our Model) struggled significantly, with an F1 score of just 58%. This is

notably lower than the performance seen in related work using YOLO, such as Choutri et al.

(2023), where YOLO-NAS achieved an F1 score of 68%. The main reason for YOLO’s poor

performance in our study could be the type of data used; YOLO is generally better suited for

object detection tasks but may not be ideal for pixel-wise fire detection, especially in satellite

imagery, where fine segmentation is required.

James et al. (2023) achieved a remarkable F1 score of 95% using MobileNetV2, even

with limited data. Their lightweight CNN model demonstrated that transfer learning can be

highly effective for wildfire detection with smaller datasets, showing that classification tasks

can sometimes outperform more complex models, especially when the data is appropriately

prepared for such architectures.

Overall, the performance of U-Net in our study stands out as the most reliable for wildfire

detection in satellite images, confirming that segmentation-based models are better suited for
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the task. The YOLO v8 model, while effective for object detection, did not perform well in

our case due to the pixel-level segmentation required for accurate fire detection. Additionally,

MobileNetV2’s high performance with limited data highlights the power of transfer learning,

which could be a potential area for further exploration in future studies.

4.5 Web Application

The Fire Detection System is a web-based application designed to detect fires with satellite

imagery. It integrates Flask for the backend, SQLAlchemy for database management, and

Bootstrap for a responsive and visually appealing frontend. It supports two user roles: Admin

and satations.

The application features a comprehensive set designed pages, detailed in the following sections:

— Login Page: Both the admin and fire station can log in to the system with credentials

(email, password) to access their corresponding interfaces as shown in Figure4.12.

Figure 4.12 – login page

— Dashboard Page: As shown in Figure 4.13, the main page for administrators is de-

signed for use in Algeria. Our system currently targets Algeria, with plans to expand

this approach to all other wilayas. Administrators must first select a wilaya and then

a zone (a specific forest within the same wilaya). Each administrator is responsible for

a designated zone. This page enables them to analyze the map to detect existing fires

by entering coordinates (start latitude, start longitude, end latitude, and end longitude)

along with a zoom level, or by directly searching for a place by name. Users can then

view analytical results with relevant information.
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Figure 4.13 – dashboard page

Also, it consists of 2 buttons:

• Locate on Map button: updates the map to show the entered coordinate range,

and clicking table rows zooms to specific coordinates.

• Analyze map button: Fetches satellite images from Mapbox for a grid of coordi-

nates, processes them with our model, and figure 4.14 shows results. Alerts are created

in case of fire detections and assigned to stations within the coordinate range.

Figure 4.14 – analyse map results

— Alerts page: Figure 4.15 displays all alerts (for admins) or assigned alerts (for stations).

It consists of a table showing image thumbnail, coordinates, place (geographic name),

fire area, timestamp (when the alert was generated), and stations (admins only can see
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a list of assigned stations (username and email)).

When a fire detection occurs, an alert is immediately sent to the relevant fire stations,

where new alerts appear in a distinct color accompanied by a warning sound, enabling

the station to respond to the fire and take the necessary actions.

Figure 4.15 – alerts list page

— Stations page: As shown in Figure 4.16, the admin can add new stations by entering

necessary information like username, email, password, coordinates, and wilaya, also can

manage existing station shown in figure 4.17 by editing their information or deleting

them.

Figure 4.16 – add station
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Figure 4.17 – existant station

— Simulation page: Allows admins to upload images for fire detection, process them,

and split them into sub-images as shown in 4.18.

If a sub-image have fire, we send the alert with their information (coordinates, place,

area affected by fire, timestamp, receivers) as shown in Figure 4.20 , and we send it to

the corresponding receiver based on the coordinates of the fire, if a sub-image doesn’t

contain fire nothing happens as shown in the Figure 4.19.

Figure 4.18 – Simulation page
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Figure 4.19 – sub-images when no fire detected

Figure 4.20 – sub-images when fire is detected

4.6 Conclusion

In this chapter, we presented the development and evaluation of our wildfire detection

system. Based on the evaluation results, we selected U-Net as the final model due to its

superior performance over the other models.After choosing U-Net, we conducted a comparative

analysis with related work to highlight the strengths and limitations of our approach. We then

integrated the selected model into a web interface using the Flask framework, which enabled

easy access to the model for wildfire monitoring. Finally, we explored the system’s interface,

which allows users to interact with the model and efficiently visualize wildfire detection results.
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Wildfires are among the most destructive natural disasters, causing massive damage to
ecosystems, agriculture, property, and even human lives. In recent years, their frequency
and intensity have increased, making early detection and rapid response more critical than
ever,especially in vulnerable regions like Algeria. Traditional wildfire monitoring methods in
the country often rely on manual observation, which is limited in speed and accuracy.

To address this challenge, the objective of our project was to develop a wildfire detection
system based on satellite imagery and deep learning techniques. We focused on integrating
three advanced models,U-Net, SegFormer B2, and YOLOv8,to analyze satellite images and
detect active fire regions automatically.

Among the three models tested, U-Net and SegFormer produced the most promising results.
Their ability to perform semantic segmentation allowed us to accurately localize wildfire areas
in satellite images. These results demonstrate the strong potential of segmentation-based
deep learning models for wildfire detection tasks and have played a key role in shaping the
foundation of our integrated detection and monitoring application.

On the other hand, YOLOv8, which is primarily an object detection model, did not perform
well in our specific context. It struggled to effectively detect fires due to the diffuse, irregular,
and often small-scale nature of wildfires in satellite imagery. While YOLO is a powerful tool in
many vision tasks, it may not be the best choice for detecting fire areas from satellite images
where boundary precision is critical.

The integration of our most successful models into a functional system is a significant step
toward real-world deployment. Our web-based application is capable of analyzing satellite im-
ages, detecting fires, and supporting early warning mechanisms that could assist fire response
teams in Algeria.

Future Work

• Evaluation of Alternative Models
Future work will explore other advanced deep learning models or hybrid approaches to improve
wildfire detection accuracy under varying environmental conditions.

• Utilizing Algerian Satellite Data
Incorporating imagery from AlSat (Algeria’s satellite program) will enhance detection accuracy
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with more localized, high-resolution data, supporting real-time monitoring.
• Incorporating Additional Factors

It would be beneficial to consider additional factors beyond just satellite imagery. These factors
could include weather conditions (temperature, humidity, wind), topography, and vegetation
types to improve detection reliability and fire behavior analysis.

• Fire Spread Prediction and Coverage Analysis
Currently, our system focuses on detecting the presence of fires, but it would be valuable to
predict how wildfires will spread over time based on various factors. By incorporating fire
spread models, such as Cellular Automata or LSTM-based approaches, we could predict the
potential coverage area and speed of fire spread.

• Operational Integration
Collaboration with Algerian civil protection authorities will enable real-world testing and in-
tegration of the system into national wildfire monitoring and emergency response frameworks.

In conclusion, this project demonstrates how combining satellite remote sensing with deep
learning can offer efficient, and accurate solution for wildfire detection. The results are en-
couraging and show real promise for practical deployment in Algeria and beyond.
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durant l’été 2021. Accessed: 2025-05-21. May 2022. url: https : / / www . aps . dz /
economie/139524-feux-de-foret-plus-100-000-hectares-ravages-dans-21-
wilayas-durant-l-ete-2021.

[52] Global Forest Watch. Algeria - Dashboard: Fires. Accessed: 2025-05-13. url: https:
//www.globalforestwatch.org/dashboards/country/DZA/?category=fires.

[53] International Federation of Red Cross and Red Crescent Societies (IFRC). Emergency
Plan of Action (EPoA): Algeria Forest Wildfires. 2021.

[54] Omdena. Developing a Forest Fire Detection and Monitoring System for Algeria. https:
/ / www . omdena . com / projects / developing - a - forest - fire - detection - and -
monitoring-system-for-algeria. Accessed: May 2025. 2023.

[55] UP42. How to Track Forest Fires with Satellite Imagery and the Normalized Burn
Ratio. Blog post. Accessed: 2025-05-22. 2023. url: https://up42.com/blog/track-
forest-fires-satellite-imagery-normalized-burn-ratio.

[56] Gabriel Henrique de Almeida Pereira et al. “Active fire detection in Landsat-8 imagery:
A large-scale dataset and a deep-learning study”. In: ISPRS Journal of Photogrammetry
and Remote Sensing 178 (2021), pp. 171–186. issn: 0924-2716. doi: https://doi.
org/10.1016/j.isprsjprs.2021.06.002. url: https://www.sciencedirect.com/
science/article/pii/S092427162100160X.

[57] Abdelghania Aba. Wildfire Prediction Dataset. https://www.kaggle.com/datasets/
abdelghaniaaba/wildfire-prediction-dataset. 2023.

[58] Louis Giglio, Ivan Csiszar, and Wilfrid Schroeder. “Global Limitations of Satellite-
Based Fire Detection: Challenges and Perspectives”. In: Remote Sensing 16.1 (2024),
p. 42. doi: 10.3390/rs16010042. url: https://www.mdpi.com/2072-4292/16/1/42.

103

https://www.fs.usda.gov/psw/publications/documents/psw_gtr245/psw_gtr245_382.pdf
https://www.fs.usda.gov/psw/publications/documents/psw_gtr245/psw_gtr245_382.pdf
https://gwis.jrc.ec.europa.eu/apps/country.profile/charts/ba
https://gwis.jrc.ec.europa.eu/apps/country.profile/charts/ba
https://gwis.jrc.ec.europa.eu/apps/country.profile/overviewaoi/AOI/UN_AFR
https://gwis.jrc.ec.europa.eu/apps/country.profile/overviewaoi/AOI/UN_AFR
https://www.aps.dz/economie/139524-feux-de-foret-plus-100-000-hectares-ravages-dans-21-wilayas-durant-l-ete-2021
https://www.aps.dz/economie/139524-feux-de-foret-plus-100-000-hectares-ravages-dans-21-wilayas-durant-l-ete-2021
https://www.aps.dz/economie/139524-feux-de-foret-plus-100-000-hectares-ravages-dans-21-wilayas-durant-l-ete-2021
https://www.globalforestwatch.org/dashboards/country/DZA/?category=fires
https://www.globalforestwatch.org/dashboards/country/DZA/?category=fires
https://www.omdena.com/projects/developing-a-forest-fire-detection-and-monitoring-system-for-algeria
https://www.omdena.com/projects/developing-a-forest-fire-detection-and-monitoring-system-for-algeria
https://www.omdena.com/projects/developing-a-forest-fire-detection-and-monitoring-system-for-algeria
https://up42.com/blog/track-forest-fires-satellite-imagery-normalized-burn-ratio
https://up42.com/blog/track-forest-fires-satellite-imagery-normalized-burn-ratio
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.06.002
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.06.002
https://www.sciencedirect.com/science/article/pii/S092427162100160X
https://www.sciencedirect.com/science/article/pii/S092427162100160X
https://www.kaggle.com/datasets/abdelghaniaaba/wildfire-prediction-dataset
https://www.kaggle.com/datasets/abdelghaniaaba/wildfire-prediction-dataset
https://doi.org/10.3390/rs16010042
https://www.mdpi.com/2072-4292/16/1/42


[59] Sabrina Boumaiza and Nour El Houda Brahimi. “Wildfire Segmentation in Satellite
Images Using Deep Learning Techniques”. Available upon request or internal university
archive. Master’s thesis. Biskra, Algeria: University of Biskra, 2023.

[60] George L. James et al. “An Efficient Wildfire Detection System for AI-Embedded Ap-
plications Using Satellite Imagery”. In: Fire 6.4 (2023). issn: 2571-6255. url: https:
//www.mdpi.com/2571-6255/6/4/169.

[61] Kabir Yahuza et al. “Recent Advancements in Detection and Quantification of Malaria
Using Artificial Intelligence”. In: UMYU Journal of Microbiology Research (UJMR) 9
(Sept. 2024), pp. 1–17. doi: 10.47430/ujmr.2492.001.

[62] A. Vali, S. Comai, and M. Matteucci. Remote Sensing and Deep Learning. In Encyclo-
pedia. Available at: https://encyclopedia.pub/entry/1704. Aug. 2020.

[63] Ron Karjian. History and Evolution of Machine Learning: A Timeline. Accessed: June
8, 2025. Available at: https://www.techtarget.com/whatis/feature/History-
and-evolution-of-machine-learning-A-timeline. June 2024.

[64] Lei Ma et al. “Deep Learning in Remote Sensing Applications: A Meta-Analysis and Re-
view”. In: ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019), pp. 166–
177. issn: 0924-2716. doi: 10.1016/j.isprsjprs.2019.04.015.

[65] Qiangqiang Yuan et al. “Deep Learning in Environmental Remote Sensing: Achieve-
ments and Challenges”. In: Remote Sensing of Environment 241 (2020), p. 111716.
issn: 0034-4257. doi: 10.1016/j.rse.2020.111716.

[66] Xiaoyu Zhang et al. “Deep Learning Library Testing: Definition, Methods and Chal-
lenges”. In: ACM Computing Surveys 57.7 (Mar. 2025), pp. 1–37. doi: 10 . 1145 /
3716497.

[67] V7 Labs. Deep Learning Guide: Everything You Need to Know. Accessed: 2024-06-04.
2023. url: https://www.v7labs.com/blog/deep-learning-guide.

[68] DataCamp Team. Deep Learning Tutorial - A Guide for Beginners. Accessed: 2024-06-
04. 2023. url: https://www.datacamp.com/tutorial/tutorial-deep-learning-
tutorial.

[69] Built In. Deep Learning: What it is, Why it Matters, and How it Works. Accessed:
2025-06-05. Available at: https://builtin.com/machine-learning/deep-learning.
2023.

[70] Tim P. Vogels, Kanaka Rajan, and Larry F. Abbott. “Neural Network Dynamics”. In:
Annual Review of Neuroscience 28.1 (2005), pp. 357–376.

[71] Phil Picton. What is a Neural Network? Springer, 1994.

104

https://www.mdpi.com/2571-6255/6/4/169
https://www.mdpi.com/2571-6255/6/4/169
https://doi.org/10.47430/ujmr.2492.001
https://encyclopedia.pub/entry/1704
https://www.techtarget.com/whatis/feature/History-and-evolution-of-machine-learning-A-timeline
https://www.techtarget.com/whatis/feature/History-and-evolution-of-machine-learning-A-timeline
https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1145/3716497
https://doi.org/10.1145/3716497
https://www.v7labs.com/blog/deep-learning-guide
https://www.datacamp.com/tutorial/tutorial-deep-learning-tutorial
https://www.datacamp.com/tutorial/tutorial-deep-learning-tutorial
https://builtin.com/machine-learning/deep-learning


[72] Codingal. What is a Neural Network? - Coding for Kids. Accessed: 2025-06-05. Available
at: https://www.codingal.com/coding- for- kids/blog/what- is- a- neural-
network/. 2024.

[73] R. Sasikala and R. Radhakrishnan. Machine Learning and Deep Learning Architectures.
Accessed: 2024-06-05. Available at: https://developer.ibm.com/articles/cc-
machine-learning-deep-learning-architectures/. IBM Developer. 2020.

[74] GeeksforGeeks. Feedforward Neural Network. Accessed: 2025-06-05. Available at: https:
//www.geeksforgeeks.org/feedforward-neural-network/. GeeksforGeeks. n.d.

[75] Robin M. Schmidt. “Recurrent Neural Networks (RNNs): A Gentle Introduction and
Overview”. In: arXiv preprint arXiv:1912.05911 (2019).

[76] Data Aspirant. How Recurrent Neural Network (RNN) Works? Accessed: 2025-06-05.
Available at: https://dataaspirant.com/how-recurrent-neural-network-rnn-
works/. Data Aspirant. n.d.

[77] Data Science Dojo. Transformer Models: Types and Their Uses. Accessed: 2025-06-07.
Data Science Dojo. n.d. url: https://datasciencedojo.com/blog/transformer-
models-types-their-uses/.

[78] Great Learning. Understanding Transformer Architecture. Accessed: 2025-06-05. Avail-
able at: https://www.mygreatlearning.com/blog/understanding-transformer-
architecture/. Great Learning. n.d.

[79] Zewen Li et al. “A survey of convolutional neural networks: analysis, applications,
and prospects”. In: IEEE transactions on neural networks and learning systems 33.12
(2021), pp. 6999–7019.

[80] Pinecone. Convolutional Neural Networks for Image Search. Accessed: 2025-06-05. Avail-
able at: https://www.pinecone.io/learn/series/image-search/cnn/. Pinecone.
n.d.

[81] Lynn Miller, Charlotte Pelletier, and Geoffrey I. Webb. “Deep Learning for Satellite
Image Time-Series Analysis: A review”. In: IEEE Geoscience and Remote Sensing Mag-
azine 12.3 (2024), pp. 81–124. doi: 10.1109/MGRS.2024.3393010.

[82] Parsa Moghadam, Peter Nowak, and Dieter Möller. “A Deep Learning Approach for
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