

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education and Scientific Research

Mohamed Khider University – BISKRA

Faculty of Exact Sciences

Department of Computer Science

Order No: …./M2/2025

Dissertation

Submitted for the academic Master’s degree in Computer Science

Computer Science

Option: Information and Communication Networks and Technologies

Secure Algerian Smart Buildings

By:

Garti Anfal
Tahraoui Asma

Guettella Omayma

Defended on / / 2025, in front of the jury composed of:

NOM PRENOM Grade President

Sahraoui Somia MCA supervisor

NOM PRENOM Grade Examiner

Academic year : 2024-2025

Acknowledgements

In the name of Allah, the Most Gracious, the Most Merciful.

All praise is due to Allah, who granted us the strength, patience, and perseverance
to complete this work.

We would like to express our sincere gratitude to our supervisor, Dr. Sahraoui
Somia, for her continuous support, insightful guidance, and valuable expertise through-
out the course of this project. Her encouragement and constructive feedback have been
instrumental in shaping our research and ensuring its successful completion.

We are also deeply thankful to the honorable members of the jury for their time,
effort, and constructive evaluation of our work.

Our heartfelt thanks go to our families, whose unconditional love, encouragement,
and support have been a constant source of strength throughout this journey.

Finally, we extend our gratitude to all those who have contributed to our academic
and personal growth throughout this journey. This project represents the collective effort
of our team and the guidance of those who supported us along the way.

Abstract
Smart buildings are increasingly adopting intelligent systems to enhance security, effi-
ciency, and user experience. One of the critical components in these environments is
access controlthe process of managing and regulating entry to various areas based on
predefined rules and roles. However, traditional access control systems often suffer from
issues related to centralization, lack of transparency, and limited scalability.
This project explores the use of blockchain technology, specifically Hyperledger, to imple-
ment a decentralized and secure access control system for smart buildings. The proposed
solution aims to ensure that all access events are transparently recorded, permissions
are managed dynamically, and only authorized entities are granted entry. By leverag-
ing distributed ledger capabilities, the system provides a tamper-resistant and auditable
platform for managing complex access scenarios involving residents, visitors, emergency
personnel, and service workers.
The outcome of this work demonstrates the potential of integrating blockchain with smart
environments to achieve a more secure, reliable, and efficient access control model.

Keywords- Smart Building, Access Control, Blockchain, Hyperledger, Security, Decen-
tralized Systems

Abstraite
Les bâtiments intelligents adoptent de plus en plus de systèmes intelligents pour améliorer
la sécurité, l’efficacité et l’expérience utilisateur. L’un des éléments essentiels de ces
environnements est le contrôle d’accès : le processus de gestion et de régulation des accès
aux différentes zones selon des règles et des rôles prédéfinis. Cependant, les systèmes
de contrôle d’accès traditionnels souffrent souvent de problèmes de centralisation, de
manque de transparence et d’évolutivité limitée. Ce projet explore l’utilisation de la
technologie blockchain, et plus particulièrement d’Hyperledger, pour mettre en uvre un
système de contrôle d’accès décentralisé et sécurisé pour les bâtiments intelligents. La
solution proposée vise à garantir l’enregistrement transparent de tous les accès, la gestion
dynamique des autorisations et l’accès réservé aux seules personnes autorisées. Grâce
aux fonctionnalités d’un registre distribué, le système offre une plateforme inviolable
et vérifiable pour gérer des scénarios d’accès complexes impliquant résidents, visiteurs,
équipes d’urgence et agents de service.
Le résultat de ce travail démontre le potentiel de lintégration de la blockchain avec des
environnements intelligents pour obtenir un modèle de contrôle daccès plus sûr, fiable et
efficace.

Mots-clés- Bâtiment intelligent, contrôle d’accès, blockchain, Hyperledger, sécurité,
systèmes décentralisés

اिऻڪٌۘ
݁ܝިَ؇ت أ۱ܾ و݆݁ اৎ৊ފٺ༱ڎم. و෠ູݠ۰ً واܳـܝڰ؇ءة ݆݁৙৑ا ܳٺأݞߌ߳ اᄳᄟ܋٭۰ ا৙৑َޙ۰݄ আॻ༟ ଩ଐ݁اࢴࣖ ႟ၽ૰૖ اᄳᄟ܋٭۰ ሒᇃ؇ٴৎ৊ا ّأٺ݄ڎ
݁ފٴگً؇. ො੼ڎدة وأدوار ڢިا༟ڎ আॻ༟ ً ਍ಸ؇ء اৎ৊ٷ؇ޗݑ ෛ੼ٺܹژ ሌᇿإ اᄴᄟۊިل و਍ಾޙࡗࡲ إدارة ᆇᅦܹ٭۰ و۱ި اܳިݬިل، ሒᇭ ુળ༲اܳٺ اܳٴ྘٪؇ت ۱ڍه
وො੼ڎودل۰ اܳލڰ؇ڣ٭۰، واَأڎام ل۰، ஼ணݠৎ৊؇ً ੯੩أਐಾ ݁ލఈ႙ၽت ݆݁ اܳٺگܹ٭ڎل۰ اܳިݬިل ሒᇭ ુળ༲اܳٺ أَޙ۰݄ ሒᇃ؇ّأ ؇݁ ༚؇ܳٴً؇ ،ዻዧذ و݁ؕ

اܳٺިݿؕ. ڢ؇ًܹ٭۰
஼ணਵਦ৖৑ي اܳިݬިل ሒᇭ ુળොູ َޙ؇م ܳٺޚٴ٭ݑ ،රජܳ٭ڎଫଊ۱؇ل وොູڎࢴࣖاً ،ඔ൹૰૜ اܳٴߺࠊك ّگٷ٭۰ اݿٺ༱ڎام ا๤དྷৎ৊وع ۱ڍا ૭૏ٺܝލژ
،؇ً ൑ശ݁٭؇਍ಱد ا৙৑ذوَ؇ت وᎂدارة ૰૖ڰ؇ڣ٭۰، اܳިݬިل أ༡ڎاث ᆇᅹ٭ؕ ૭૜۠٭ܭ ᆙᆕ؇ن ሌᇿإ اৎ৊گଫଐح اࠍ੆ܭ ዛኗڎف اᄳᄟ܋٭۰. ሒᇃ؇ٴగጻዧ وآ݆݁
݁ٷݱ۰ اܳٷޙ؇م لިڣݠ اৎ৊ިزع، ا৙৑ݿٺ؇ذ ଫଐدڣ إਃ಻Ⴄၽ݁؇ت ݆݁ ا৖৑ݿٺڰ؇دة ఈః༠ل و݆݁ ڣگޔ. ؇ୖ୒ ا๤ཡৎ৊ح ࠯࠵࠾۳؇ت اᄴᄟۊިل و݁ٷں
وᆇᅦ؇ل اܳޚިارئ و݁ިޖࠕࠫ واෑෂوار اܳފႤၽن ૰૜݄ܭ มฆܳا اৎ৊أگڎة اܳިݬިل ل۱ި؇ت ݿ྘ٷ؇ر ৕৑دارة ይዧٺڎڢ٭ݑ ᄭᄥً؇وڢ ይዧٺఈః؜ص ݁گ؇و۰݁
؇ً࿖؇݁أ ଫ଒أ܋ اܳިݬިل ሒᇭ ુળොູ ஓ஁ިذج ܳٺۜگ٭ݑ اᄳᄟ܋٭۰ اܳٴ྘٪؇ت ؕ݁ ඔ൹૰૜ اܳٴߺࠊك ༇ံد ۰ਃ಻Ⴄၽ݁إ اܳأ݄ܭ ۱ڍا ༇຀؇ਐ಻ ّޙ۳ُݠ اࠍ੅ڎ݁؇ت.

و܋ڰ؇ءة. و݁ިٔިڢ٭۰

ل۰ ஼ணਵਦఈዳዧا ا৙৑َޙ۰݄ ،݆݁৙৑ا ،රජܳ٭ڎଫଊ۱؇ل ،ඔ൹ًߺࠊ܋ྥލ اܳިݬިل، ሒᇭ ુળ༲اܳٺ اᄳᄟ܋٭۰، ሒᇃ؇ٴৎ৊ا اिऻء׫ոؼמ١- اڤոஈ࿦࿮ت

Contents

Abstract ii

List of Figures viii

List of Tables x

General Introduction 1

1 Presentation of Smart Building Application 3
1.1 Introduction . 4
1.2 Definition and Architecture of Smart Buildings 4

1.2.1 smart building . 4
1.2.2 Key Components of Smart Buildings 5
1.2.3 Communication and Data Flow in Smart Building Infrastructure . 6

1.3 Functionalities and Objectives of Smart Buildings 8
1.3.1 Energy Efficiency and Sustainability 8
1.3.2 User Comfort and Convenience 8
1.3.3 Operational Cost Reduction . 8
1.3.4 Safety and Security Measures . 9

1.4 Role of Access Control in Smart Buildings 9
1.4.1 Definition of access control in Smart Buildings 9
1.4.2 Purpose of Access Control in Smart Buildings 9
1.4.3 How smart buildings manage access dynamically 10

1.5 Challenges in Modern Access Control . 12
1.5.1 Managing different user types . 12
1.5.2 Scalability and Flexibility Issues 13
1.5.3 Real-Time Monitoring and Response Needs 13
1.5.4 Integration with Other Building Systems 14

v

1.6 Conclusion . 14

2 Overview on Blockchain technology 15
2.1 Introduction . 16
2.2 Blockchain Technology . 16

2.2.1 Définition . 16
2.2.2 Core Components . 16
2.2.3 Key Features . 17
2.2.4 security features of Blockchain 18
2.2.5 How Blockchain Works? . 20
2.2.6 Blockchain Types . 22
2.2.7 What are blockchain protocols? 24

2.3 Hyperledger fabric . 25
2.3.1 Définition . 25
2.3.2 Key Features . 25
2.3.3 Key Components of Hyperledger Fabric 28
2.3.4 How organizations collaborate in a fabric network ? 29
2.3.5 Benefits of Hyperledger fabric . 31
2.3.6 Use Cases . 31

2.4 State of the art . 32
2.4.1 Bindra et al. (2020) Flexible, Decentralized Access Control for

Smart Buildings with Smart Contracts 32
2.4.2 NineSmart Smart Access | QR Code Access Control 33
2.4.3 SPCL: A Smart Access Control System That Supports Blockchain 33

2.5 Comparison table . 33
2.6 Conclusion . 34

3 Proposed solution 35
3.1 Introduction . 36
3.2 Use Case diagram . 36
3.3 Global architecture of the system . 38
3.4 Detailed architecture of the system . 39

3.4.1 Hyperledger Fabric Network . 39
3.5 Hyperledger Fabric Network Setup and Development Steps 42
3.6 Deploy Chaincode(Smart Contract) . 43

3.7 Application Programming Interface(Api) 44
3.8 Functionality of the system . 45

3.8.1 Sequence diagram of the system 45
3.8.2 Sequence diagram (Hlf) . 49

3.9 Conclusion . 60

4 Development and evaluation 61
4.1 Introduction . 62
4.2 Software tools . 62
4.3 Hardware Tools . 64
4.4 Results and discussion . 69
4.5 Implementation of the System . 74

4.5.1 Login . 74
4.5.2 Dashboard of Admin . 75
4.5.3 Resident Dashboard . 80
4.5.4 Scan Page . 82
4.5.5 Guide . 83

4.6 Conclusion . 84

General Conclusion 85

Appendix: Smart Contracts 92

List of Figures

1.1 Smart Building Overview . 4
1.2 Illustration of Occupancy and Vacancy Sensors 5
1.3 Illustration of Smart Building Sensors . 5
1.4 Automated building subsystems and IT context 7
1.5 Attribute-based access control example 11
1.6 Occupant-Centric Building Controls example 12

2.1 Components of Blockchain . 17
2.2 Cryptographic hashing . 19
2.3 Cryptographic hashing . 19
2.4 Consensus mechanisms . 20
2.5 Smart Contract . 20
2.6 How Blockchain Work . 22
2.7 public Blockchain . 23
2.8 Private blockchain . 24
2.9 NineSmart . 33

3.1 Use Case diagram . 37
3.2 Global Architecture . 39
3.3 Deatiled architecture of the system . 41
3.4 Development Steps of Hlf . 42
3.5 Deploy Chainecode Steps . 43
3.6 Api . 44
3.7 Sequence diagram . 46
3.8 Add Residents to stock in ledger . 49
3.9 Update Resident Informations . 50
3.10 Block/Unblock Resident . 51
3.11 Add Visitor . 52

viii

3.12 Block/Unblock Visitor . 54
3.13 Update Visitor . 56
3.14 Add Visit Request . 57
3.15 approve/reject request of visitor . 59

4.1 Diagram illustrating the typical hardware setup for NFC-based access con-
trol. 65

4.2 Chaincode Metrics for Peer Requests Over Time 70
4.3 Ledger Blockchain Height Metric for Resident Peer 71
4.4 StateDB Commit Time Metric for Peers on residentschannel 72
4.5 ledger block processing time . 73
4.6 Login Interface . 75
4.7 Dashboard Overview . 76
4.8 Manage Appartments . 76
4.9 Manage Residents . 77
4.10 Manage Requests . 78
4.11 Exemple the guide in Manage Residents page 84

List of Tables

2.1 Comparative Summary of Access Control Solutions 33

3.1 Distribution of Peers and their Responsibilities 40
3.2 MSP Assignment and Roles . 41

4.1 Hardware Components-1 . 66
4.2 Hardware Components-2 . 67
4.3 Hardware Components-3 . 68
4.4 Hardware Components-4 . 69

x

General Introduction

1-Context

The rapid advancement of IoT (Internet of Things) in general [1] and smart building tech-
nologies in particular [2] have led to the integration of various systems aimed at enhancing
operational efficiency and occupant experience. Central to these systems is access control,
which governs the entry and movement of individuals within the building. Traditional
access control methods often rely on centralized databases and static permissions, which
can be susceptible to security breaches and administrative errors. With the increasing
complexity of building operations and the need for real-time access management, there is
a growing demand for more secure, transparent, and efficient access control solutions.[3].

2-Problematic

Existing access control systems in smart buildings face several challenges:

• Centralization: Relying on a single point of control increases vulnerability to
attacks and system failures.

• Lack of Transparency: Difficulty in auditing access events and permissions can
lead to accountability issues.

• Scalability Issues: As buildings expand or integrate with other systems, tradi-
tional methods may struggle to manage the increased complexity.

These limitations necessitate the exploration of decentralized technologies that can offer
enhanced security and flexibility.

3-Objectives

This master thesis aims to design and implement a blockchain-based access control sys-
tem using Hyperledger Fabric to address the aforementioned challenges. The specific
objectives are:

♦ Decentralization: Eliminate single points of failure by distributing control across
multiple nodes.

1

♦ Transparency: Enable immutable logging of access events for auditability.

♦ Scalability: Ensure the system can handle a growing number of users and access
points without degradation in performance.

♦ Role-Based Access Control (RBAC) EImplement fine-grained access policies
based on user roles and attributes.

4-Thesis Structure

The current report is structured into four chapters:

♦ The 1st Chapter: Provides an overview of smart building applications, highlight-
ing the importance of efficient access control systems.

♦ The 2nd Chapter: Offers a comprehensive review of blockchain technology, with
a focus on Hyperledger Fabric, and its applicability to access control systems.

♦ The 3rd Chapter: Presents the proposed blockchain-based access control solution,
detailing its architecture, components, and functionalities.

♦ The 4th Chapter: Describes the development process, implementation challenges,
and evaluation of the system’s performance and effectiveness.

2

Chapter 1

Presentation of Smart Building
Application

3

chapter1 : Presentation of Smart Building Application

1.1 Introduction

A smart building uses advanced technologies like sensors, actuators, and IoT devices to
automate and optimize functions such as lighting, HVAC, energy use, and security, en-
hancing comfort, safety, and efficiency. It relies on real-time data and intelligent systems
to adapt to environmental changes and user needs. A key feature is access control, which
restricts entry to authorized individuals, safeguarding physical and digital assets.
This chapter introduces smart buildings, highlights the role of access control, and explains
why modern solutions are needed to overcome the limits of traditional systems.

1.2 Definition and Architecture of Smart Buildings

A smart building is a structure equipped with advanced systems and technologies, such
as IoT devices, sensors, and automation, to monitor and control building operations like
heating, ventilation, lighting, and security. It aims to enhance energy efficiency, occupant
comfort, and operational performance. Through intelligent data collection and analysis,
smart buildings adapt to user needs and optimize resource usage in real time.

1.2.1 smart building

A smart building is defined as a structure equipped with advanced technologies that facil-
itate automated processes to control and manage building operations. These operations
encompass HVAC, lighting, security, and other systems, all of which respond dynamically
to environmental conditions and occupant needs . [4].

Figure 1.1: Smart Building Overview [5].

4

chapter1 : Presentation of Smart Building Application

1.2.2 Key Components of Smart Buildings

Smart buildings integrate advanced technologies to enhance operational efficiency, occu-
pant comfort, and sustainability. The primary components include:

1.2.2.1 Sensors and IoT Devices

Sensors collect real-time data on environmental parameters such as temperature, hu-
midity, occupancy, and light levels. IoT devices facilitate communication between these
sensors and central systems, enabling automated responses.

• Occupancy sensors detect the presence of individuals to adjust lighting and HVAC
systems accordingly [6].

Figure 1.2: Illustration of Occupancy and Vacancy Sensors [7].

• IoT devices, including smart thermostats and lighting systems, allow for remote
monitoring and control.

Figure 1.3: Illustration of Smart Building Sensors [8].

1.2.2.2 Building Automation Systems (BAS)

Building Automation Systems (BAS) serve as the central hub, integrating various building
systems such as HVAC, lighting, and security. They process data from sensors to optimize

5

chapter1 : Presentation of Smart Building Application

building operations.

• BAS can maintain indoor climates within specified ranges and provide alerts for
system malfunctions.

1.2.2.3 Building Energy Management Systems (BEMS)

Building Energy Management Systems (BEMS) are integrated, computerised systems
designed to monitor, control, and optimise energy-related building services such as heat-
ing, ventilation, air conditioning (HVAC), lighting, and power systems. They play a
pivotal role in enhancing energy efficiency, reducing operational costs, and supporting
environmental sustainability within smart buildings.

• EMS can coordinate energy usage across multiple systems, including lighting and
HVAC [9].

1.2.2.4 Communication Networks

Robust communication networks ensure seamless data transmission between devices and
systems. They support various protocols and standards to facilitate interoperability.

• Modern systems utilize protocols like BACnet and KNX for device communication.

1.2.2.5 User Interfaces

User interfaces, such as mobile apps and dashboards, allow occupants and facility man-
agers to interact with building systems, monitor performance, and make adjustments as
needed.

1.2.3 Communication and Data Flow in Smart Building Infras-
tructure

1.2.3.1 Network Infrastructure

Smart buildings utilize a hybrid network infrastructure combining both wired and wireless
technologies to connect devices and systems [10]

• Wired Networks: Technologies like Ethernet provide reliable, high-bandwidth
connections essential for data-intensive applications.

• Wireless Networks: Protocols such as Wi-Fi, Zigbee, and Bluetooth offer flex-
ibility and scalability, allowing easy integration of IoT devices without extensive
cabling.

6

chapter1 : Presentation of Smart Building Application

1.2.3.2 Communication Protocols

To ensure interoperability among diverse devices, smart buildings utilize standardized
communication protocols.

• BACnet: Facilitates communication among building automation and control sys-
tems. [11]

• MQTT (Message Queuing Telemetry Transport): A lightweight protocol
ideal for devices with limited bandwidth. [10]

• CoAP (Constrained Application Protocol): Designed for simple electronics
to communicate over the internet. [10]

1.2.3.3 Data Acquisition and Processing

Sensors and IoT devices collect vast amounts of data, which are then transmitted to
centralized systems for processing. This data includes information on temperature, oc-
cupancy, lighting levels, and energy consumption. [12]

Figure 1.4: Automated building subsystems and information technologies context [13].

• Edge Computing: Processes data locally at the device level, reducing latency
and bandwidth usage.

• Cloud Computing: Stores and analyzes data on remote servers, enabling ad-
vanced analytics and remote access.

1.2.3.4 Building Management Systems (BMS)

The BMS acts as the central hub, integrating data from various subsystems (HVAC,
lighting, security) and enabling coordinated control strategies. It ensures that all sys-
tems operate cohesively, enhancing efficiency and occupant comfort. Advanced BMS
platforms support real-time monitoring, predictive maintenance, and energy optimiza-
tion, contributing to the overall sustainability and operational excellence of smart build-
ings. [14]

7

chapter1 : Presentation of Smart Building Application

1.3 Functionalities and Objectives of Smart Build-
ings

Smart buildings leverage advanced technologies to enhance energy efficiency, occupant
comfort, operational efficiency, and safety. Below are the primary functionalities and
objectives:

1.3.1 Energy Efficiency and Sustainability

• Automated Energy Management: Smart buildings utilize intelligent systems
to monitor and control energy consumption, optimizing the use of lighting, HVAC,
and other systems to reduce energy waste

• Integration of Renewable Energy: Incorporating renewable energy sources,
such as solar panels, allows smart buildings to reduce reliance on non-renewable
energy and decrease their carbon footprint.

1.3.2 User Comfort and Convenience

• Enhanced Comfort through Active Structures and Home Automation:
Smart buildings incorporate active structures and home automation systems that
adapt to occupants’ needs, improving overall comfort levels. These technologies
adjust environmental conditions such as lighting and temperature in real-time, re-
sponding to user preferences and activities. [15]

• Well-being through Ambient Assisted Living Technologies: The integra-
tion of ambient assisted living (AAL) technologies in smart buildings supports the
well-being of occupants, particularly the elderly and individuals with special needs.
These systems provide assistance in daily activities, health monitoring, and emer-
gency responses, enabling independent living and enhancing quality of life. [15]

1.3.3 Operational Cost Reduction

• Predictive Maintenance: Implementing predictive maintenance strategies in
smart buildings can significantly reduce operational costs. Real-time monitoring
of equipment performance allows for early detection of potential failures, mini-
mizing downtime and repair expenses. Studies indicate that predictive mainte-
nance can lower maintenance costs by 25--30% and reduce equipment downtime by
35--45% [16].

• Optimized Resource Management: The integration of Internet of Things (IoT)
technologies enables efficient resource management in smart buildings. IoT sensors
provide real-time data on energy consumption, allowing for dynamic adjustments
to systems like HVAC and lighting. This approach can lead to energy consumption
reductions of up to 30% and operational cost savings of 20%. [17]

8

chapter1 : Presentation of Smart Building Application

1.3.4 Safety and Security Measures

• Integrated Security Systems: Smart buildings employ advanced security mea-
sures, including surveillance cameras, access control, and intrusion detection sys-
tems, to ensure occupant safety. [18].

• Emergency Response Automation: TIn the event of emergencies, such as fires
or gas leaks, smart systems can automatically trigger alarms, unlock exits, and
notify emergency services. [19].

1.4 Role of Access Control in Smart Buildings

1.4.1 Definition of access control in Smart Buildings

Access control in smart buildings refers to the integration of advanced security systems
that regulate and monitor entry to various areas within a building, ensuring that only au-
thorized individuals have access to specific zones or resources. These systems are pivotal
in enhancing the safety, efficiency, and user experience within intelligent infrastructures.

In smart buildings, access control systems are not isolated; they are interconnected
with other building management systems such as HVAC, lighting, and surveillance. This
integration allows for dynamic responses to various scenarios. For instance, during emer-
gencies, the access control system can automatically unlock doors for evacuation or re-
strict access to hazardous areas, thereby ensuring occupant safety and facilitating efficient
emergency responses.

Moreover, modern access control systems in smart buildings leverage technologies
like biometric authentication, mobile credentials, and cloud-based management. These
advancements not only bolster security but also provide flexibility and convenience to
users, allowing for seamless access experiences and efficient administrative control over
access permissions. [20].

1.4.2 Purpose of Access Control in Smart Buildings

1.4.2.1 Enhancing Security and Preventing Unauthorized Access

Access control systems are fundamental in safeguarding smart buildings against unau-
thorized entry and potential threats. By regulating who can enter specific areas, these
systems prevent unauthorized access to sensitive zones, thereby mitigating risks associ-
ated with theft, vandalism, or terrorism. Advanced access control mechanisms can also
integrate with surveillance and intrusion detection systems to provide real-time threat
assessment and response.

1.4.2.2 Facilitating Dynamic and Context-Aware Access Management

Smart buildings often require flexible access control that adapts to changing contexts,
such as time of day, occupancy levels, or specific events. Dynamic access control sys-

9

chapter1 : Presentation of Smart Building Application

tems can adjust permissions in real-time, ensuring that access rights align with current
conditions and policies. This adaptability enhances both security and operational effi-
ciency. [21].

1.4.2.3 Ensuring Data Privacy and Compliance

With the increasing digitization of building operations, protecting occupant data has
become paramount. Access control systems contribute to data privacy by ensuring that
only authorized personnel can access sensitive information and areas. Moreover, these
systems help organizations comply with data protection regulations by providing audit
trails and enforcing strict access policies. [22].

1.4.2.4 Improving Operational Efficiency and Resource Optimization

By automating entry and exit processes, access control systems reduce the need for man-
ual monitoring and staffing, leading to cost savings. Additionally, data collected from
access logs can inform building usage patterns, enabling better resource allocation and
energy management. [3].

1.4.2.5 Enhancing User Experience and Convenience

Modern access control solutions offer convenience to occupants through features like mo-
bile credentials, biometric authentication, and personalized access rights. These tech-
nologies not only streamline entry processes but also enhance the overall user experience
by providing seamless and secure access to building amenities. [3].

1.4.3 How smart buildings manage access dynamically

Smart buildings dynamically manage access by integrating advanced technologies that
adapt to real-time conditions, user behaviors, and contextual factors. This dynamic
access control enhances security, operational efficiency, and user experience. Below are
key mechanisms through which smart buildings achieve dynamic access management:

1.4.3.1 Attribute-Based Access Control (ABAC)

ABAC is a method of implementing access control policies that is highly adaptable and
can be customized using a wide range of attributes, making it suitable for use in dis-
tributed or rapidly changing environments. ABAC determines access rights based on a
combination of attributes related to the user (subject), the resource (object), the action,
and the environment. This model allows for fine-grained and context-aware access deci-
sions, accommodating complex policies that consider factors like time, location, and user
role [23].

10

chapter1 : Presentation of Smart Building Application

Figure 1.5: Attribute-based access control example [24].

1.4.3.2 Integration with Building Management Systems (BMS)

Modern access control systems are integrated with BMS, enabling centralized monitoring
and control of various building functions such as HVAC, lighting, and security. This inte-
gration allows for coordinated responses to access events, such as adjusting environmental
settings based on occupancy. The integration becomes possible due to the applications
of advanced IT technologies such as Web Services. [25]

1.4.3.3 AI-Powered Access Control Systems

Artificial Intelligence enhances access control by enabling systems to learn from patterns,
predict potential security threats, and adapt to new scenarios without manual interven-
tion. AI algorithms can analyze vast amounts of data to identify anomalies and make
informed access decisions. AI-powered smart building systems can use more sophisti-
cated generative AI (GenAI) training models for well-informed insight and optimization,
or they can use conventional AI technology to evaluate data, generate predictions, and
carry out activities. [26]

1.4.3.4 Blockchain-Based Access Control

A flexible and secure methodology has been developed to manage building access priv-
ileges for both long-term occupants and short-term visitors. This approach employs
blockchain smart contracts to define, grant, audit, and revoke fine-grained permissions in
a decentralized manner. By leveraging information from Brick and BOT models of the
building, the system specifies smart contracts that facilitate this access control. An ap-
plication scenario in a real office building demonstrates that this method can significantly
reduce administrative overhead while providing detailed, auditable access control. [3]

11

chapter1 : Presentation of Smart Building Application

1.4.3.5 Occupant-Centric Building Controls

Occupant-Centric Building Controls (OCC) use real-time data on occupant presence,
preferences, and environmental conditions to automatically adjust building systems like
HVAC and lighting. This dynamic control approach enhances user comfort and signifi-
cantly improves energy efficiency. Despite their benefits, practical implementations face
challenges such as sensor reliability, data integration, and privacy concerns. [27]

Figure 1.6: Occupant-Centric Building Controls example [27].

1.5 Challenges in Modern Access Control

As smart buildings become more complex and interconnected, access control systems
face growing demands in functionality, scalability, and security. Modern systems must
not only regulate physical entry but also adapt to diverse users, integrate with other
building technologies, and respond in real time to events. This section highlights key
challenges that affect the design and deployment of access control in smart environments.

1.5.1 Managing different user types

Modern smart buildings must manage access for various user typesemployees, visitors,
and service personneleach with unique access needs. While employees often have fixed,
role-based privileges, visitors receive limited, temporary access. This rigid approach lacks
flexibility and requires constant updates and oversight. Although role- or attribute-based
schemes offer more adaptable solutions, implementing and enforcing fine-grained access
policies remains a significant challenge. [3]

• Employees (Regular Occupants): Typically granted persistent credentials and
access according to their department or job role. For instance, a researcher might
have 24/7 card access to lab areas, while a receptionist is limited to the lobby and

12

chapter1 : Presentation of Smart Building Application

offices. Managing hundreds of such privileges (and changes, e.g. promotions or
transfers) places a high administrative burden.

• Visitors: Usually require pre-registration and limited access (e.g. only public
areas), often under escort.large commercial buildings, long-term occupants are given
access privileges based on their roles, while visitors have to be escorted by their
hosts. This approach is conservative and inflexible . Systems must simplify visitor
check-in (e.g. kiosks, mobile credentials) while preventing unauthorized entry.

• Service Personnel: Maintenance workers or cleaning staff need specialized, time-
bound access (e.g. to mechanical rooms or after-hours entry). Their schedules
and duties are variable, so the control system must issue temporary or conditional
credentials (for example, one-time codes) and revoke them automatically after tasks
are done.

Overall, managing these distinct user types demands sophisticated access models. New
research proposes using decentralized, fine-grained policies to automate granting and
revoking permissions for both occupants and visitors.

1.5.2 Scalability and Flexibility Issues

Smart buildings host thousands of users and devices, requiring access control systems to
scale without performance loss. scalable architectures must support horizontal growth
(e.g., new wings or doors) and leverage cloud or distributed systems to manage load
efficiently. [28]

• Scalable Architecture: Systems should allow horizontal expansion and distributed
control
using open-source or modular components

• Performance Under Load: High transaction volumes during peak times (e.g.,
shift changes)
require low-latency processing, supported by local decision-making or edge com-
puting.

• Flexibility for Change: Adapting to new credentials (biometrics, mobile apps) or
organizational updates should be seamless. Open standards and centralized policy
updates aid this

Maintaining performance and security at scale demands robust design, including redun-
dancy and failover, to prevent system failure as size and complexity increase

1.5.3 Real-Time Monitoring and Response Needs

Effective access control in smart buildings requires real-time event detection and rapid
response to threats. Integrated with sensors, cameras, and alarms, systems must process
events instantlye.g., triggering alerts or lockdowns when doors are forced open. [28]

13

chapter2 : Blockchain technology

• Low-Latency Processing: Access decisions must occur within milliseconds. edge
and fog computing reduce latency by processing data locally, avoiding cloud delays.

• Integrated Surveillance: Real-time analysis of video feeds and sensor data (e.g.,
tailgating detection) enhances situational awareness. AI and streaming analytics
help correlate access logs with surveillance.

• Automated Response: Systems should react automatically to anomaliese.g.,
locking areas or alerting security upon intrusion or cyber anomalies. This demands
robust network infrastructure and event-handling logic.

In short, real-time performance is critical, requiring edge computing, intelligent analytics,
and responsive architectures to maintain building security.

1.5.4 Integration with Other Building Systems

Modern access control systems often interface with HVAC, lighting, and elevator systems
to enhance efficiency and security. For instance, badge data can trigger elevators to
restrict floor access or inform HVAC systems to optimize energy usage. [28]

• Interoperability Challenges: Systems often use different protocols (e.g., BAC-
net, MQTT), making integration difficult . adopting standardized, modular archi-
tectures (e.g., OpenFog) simplifies integration and improves interoperability.

• Coordinated Automation: Integration enables smart behaviors like elevator ac-
cess based on credentials or climate control based on occupancy. These require
secure, real-time data exchange across systems.

• Security Risks: Integration expands the attack surface. A breach in one sys-
tem (e.g., lighting) could impact access control. All interactions must be securely
authenticated and follow strict policies.

In summary, integration boosts smart functionality but demands open standards, strong
security, and careful system coordination

1.6 Conclusion

In this chapter, we introduced the concept of smart buildings and defined their archi-
tecture, key components, and core functionalities such as energy efficiency, user comfort,
and security. We also explored the crucial role of access control systems and discussed the
main challenges they face, including scalability, real-time response, and system integra-
tion. These foundational concepts are essential for understanding our proposed solution.

In the next chapter, we will provide an overview of blockchain technology, including its
definitions, core components, and security features. We will also explore Hyperledger Fab-
ric and examine how its structure and capabilities can support secure and decentralized
systems in modern applications.

14

Chapter 2

Overview on Blockchain technology

15

chapter2 : Blockchain technology

2.1 Introduction

With the increasing reliance on smart systems in modern buildings, it has become es-
sential to adopt advanced digital technologies to ensure security and transparency in
access management. Blockchain is one of the most prominent of these technologies, as it
provides a decentralized and secure framework for recording transactions and verifying
permissions.
In this chapter, we present the fundamental concepts of blockchain technology, its main
components, and how it works, with a focus on the security and transparency it offers.
We also specifically address the Hyperledger Fabric platform, as it represents the opti-
mal choice for implementing our project due to its support for private networks, identity
management, and efficient execution of smart contracts.

2.2 Blockchain Technology

2.2.1 Définition

Blockchain is a decentralized technology that keeps a common, secure ledger through a
network of computers (known as nodes or peers). Rather than depending on a central
server, every transaction or modification is validated by a consensus of nodes and recorded
in blocks that are protected by cryptography and can not be changed.[29]

2.2.2 Core Components

2.2.2.1 Blocks:

The basic building element of a blockchain is a block, which is an immutable record in
the blockchain network made up of a collection of verified transactions and cryptographic
connections to earlier blocks.[30]

2.2.2.2 Nodes:

Within a blockchain network, a blockchain node is a point of connection that receives,
stores, transmits, and verifies data. A node is in charge of the network’s security, decen-
tralization, and consensus procedures. It also keeps a copy of the complete blockchain
ledger, which guarantees the integrity of transactions and blocks.[31]

2.2.2.3 Transactions:

Transferring assets or data between participants and recording it on a decentralized digital
ledger is known as a blockchain transaction. Because each transaction is verified by several
parties and runs on a peer-to-peer network, blockchain transactions are impervious to
manipulation.[32]

16

chapter2 : Blockchain technology

2.2.2.4 Miners (or Validators):

The task of proposing and certifying new blocks falls to specific nodes. Thus, the process
of mining the blockchain creates new blocks. Miners compete to solve difficult crypto-
graphic puzzles in order to add a new block to the blockchain. The winner is the first
person to figure out the puzzle.

Through the verification and recording of transactions, mining preserves the blockchain’s
decentralized structure. Because of this, miners that are successful are rewarded with
cryptocurrency. [32]

2.2.2.5 Consensus:

A blockchain system establishes rules about participant consent for recording transac-
tions. You can record new transactions only when the majority of participants in the
network give their consent.[33]

Figure 2.1: Components of Blockchain [34].

2.2.3 Key Features

2.2.3.1 Decentralization:

In blockchain, decentralization means moving authority and decision-making from a cen-
tralized entity (person, group, or organization) to a distributed network. Transparency
is a technique used by decentralized blockchain networks to lessen member trust. Par-
ticipants in these networks are also discouraged from using power or influence over one
another in ways that impair the network’s ability to function.[35]

17

chapter2 : Blockchain technology

2.2.3.2 Immutability:

Immutability is the inability to change or modify anything. Once a transaction has been
entered into the shared ledger, no participant can alter it. In the event that a transaction
record contains an error, both transactions are accessible to the network and must be
reversed by adding a new transaction.[35]

2.2.3.3 Transparency:

Because blockchain technology is auditable and unchangeable, it offers transparency. A
transparent and permanent record of all transactions or acts is created by the blockchain,
which prevents data from being changed or removed once it is recorded. This increases
accountability and confidence, which makes it perfect for use cases like voting systems
and supply chain management where transparency is essential.[36]

2.2.3.4 Interoperability:

Blockchain could make it possible for various networks and systems to communicate
with one another. A connected ecosystem is produced by the smooth integration and
data exchange between various blockchains made possible by blockchain protocols and
standards. This facilitates interoperable apps, cross-chain transactions, and improved
stakeholder collaboration.[36]

2.2.4 security features of Blockchain

2.2.4.1 Cryptographic Hashing:

Blockchain protects data and transactions with cutting-edge encryption algorithms.
Cryptographic hashes are used to connect each block in the blockchain to its predeces-
sor.[36]
Thus, when input data (such as a transaction) is sent through a hash function, a fixed-size
output known as the hash is produced. Each blockchain block contains the hash of the
one before it in order to create a chain. This makes it impossible to change data once it
has been recorded[32].
Furthermore, blockchain’s distributed architecture increases security by making it resis-
tant to single points of failure.[36]

18

chapter2 : Blockchain technology

Figure 2.2: Cryptographic hashing [37]

Figure 2.3: Cryptographic hashing [38]

2.2.4.2 Consensus Mechanisms:

Blockchain networks employ a consensus technique to get dispersed processes or systems
to agree on a common data value. It guarantees that the network’s nodes are all in sync
and running the same version of the blockchain.[39]

- Types of consensus mechanisms include:

• Proof of Work (PoW): To verify and validate transactions, participants must
resolve challenging mathematical puzzles.

• Proof of Stake (PoS): The quantity of coins that validators own and are prepared
to "stake" as collateral determines their selection.

• Delegated Proof of Stake (DPoS): Stakeholders designate delegates to verify
transactions on their behalf.

• Practical Byzantine Fault Tolerance (PBFT):enables nodes to come to an
agreement even in the event that some nodes malfunction or behave maliciously.

19

chapter2 : Blockchain technology

Figure 2.4: Consensus mechanisms [40].

2.2.4.3 Smart Contract:

Smart contracts, or self-executing contracts with predetermined criteria that are automat-
ically enforced when those requirements are met, are supported by blockchain technology.
Smart contracts allow agreements to be executed automatically, transparently, and se-
curely without the need for middlemen, which lowers costs and boosts productivity across
a range of sectors, including supply chain management, real estate, and banking.[36]

Figure 2.5: Smart Contract [41].

2.2.5 How Blockchain Works?

Step 1 Record the Transaction

A blockchain transaction demonstrates the transfer of digital or tangible (physical) assets
between participants in the network.It’s recorded as a data block and can include details
like the following:

20

chapter2 : Blockchain technology

• Who was involved in the transaction?

• What happened during the transaction?

• When did the transaction occur?

• Where did the transaction occur?

• Why did the transaction occur?

• How much of the asset was exchanged?

• How many pre-conditions were met during the transaction?[35]

Step 2 Gain Consensus

The majority of users (participants) on the distributed blockchain network have to concur
that the transaction that was recorded is legitimate. The rules of agreement can change
depending on the kind of network, but they are usually set up at the beginning.[35]

Step 3 Link the Blocks

The blockchain records transactions in blocks, which are comparable to the pages of a
ledger book, when the participants have come to an agreement. The transactions are
appended to the new block along with a cryptographic hash. The hash serves as a chain
connecting the blocks.

Data tampering can be detected since the hash value changes if the block’s contents
are altered, whether on purpose or accidentally.

As a result, you are unable to alter the blocks and chains and they link securely. The
blockchain as a whole and the prior block’s verification are strengthened with each new
block. This is comparable to building a skyscraper out of wooden blocks. Only blocks
can be stacked on top of one another, and the tower collapses if a block is taken out of
the center.[35]

Step 4 Share the Ledger

All network users receive the most recent version of the central ledger from the system.[35]

21

chapter2 : Blockchain technology

Figure 2.6: How Blockchain Work [42].

2.2.6 Blockchain Types

2.2.6.1 Public Blockchain:

A public blockchain is an idea in which anybody may sign up and participate in the main
functions of the blockchain network. Anyone can view, publish, and audit the ongoing
operations on a public blockchain network, which contributes to the decentralized, self-
determining aspect that is frequently permitted when discussing blockchain. Data on a
public blockchain is safe because, once verified, it cannot be altered.
The public blockchain is completely decentralized, has access to and control over the
ledger, provides data that is always accessible, and has a central authority that oversees
each block in the chain. All operations are conducted in a public manner. There is no
need to obtain authorization in order to access the public blockchain because it is not
being handled alone. In a network or chain, anyone can set their own node or block.
All of the blocks are connected in a peer-to-peer fashion once a node or block has estab-
lished itself in the chain of blocks. If the block is attacked, a copy of the data is created,
and only the block’s original author can access it.[43]

22

chapter2 : Blockchain technology

Figure 2.7: public Blockchain[43].

2.2.6.2 Private Blockchain:

To access a private blockchain, miners require authorization. Permissions and restrictions,
which restrict network participation, are the foundation of its operation. The other
stakeholders won’t have access to a transaction; only the parties involved will be aware
of it.
It is also known as a permission-based blockchain since it operates on permissions.
Unlike public blockchains, private blockchains are controlled by the network’s owner.
The blockchain is managed by a trustworthy individual who will also manage the private
chain network’s access privileges and restrict who has access to the private blockchain.
There is a chance that access to the private blockchain network will be restricted.[43]

23

chapter2 : Blockchain technology

Figure 2.8: Private blockchain [43].

2.2.6.3 Consortium Blockchain:

Unlike private blockchains, which are authorized by a single entity, consortium blockchains
are authorized by a number of organizations and the government.In comparison to pri-
vate blockchains, consortium blockchains are more decentralized, which improves block
security and privacy.
Those like private blockchains connected with government organizations block networks.
Between public and private blockchains are consortium blockchains. They are created
by organizations, and access is restricted to those organizations alone. All businesses
in between entities work together equally on consortium blockchains. They dont allow
access from outside the organizations / consortium network.[43]

2.2.6.4 Hybrid Blockchain:

Hybrid blockchains combine elements of both public and private blockchains. By permit-
ting transparent and regulated access, they seek to provide the advantages of both kinds.
IBM’s Food Trust and Dragonchain are two examples.[43]

2.2.7 What are blockchain protocols?

Various blockchain platforms that are available for application development are referred
to as blockchain protocols. The fundamental blockchain concepts are modified by each
blockchain protocol to fit particular sectors or uses. The following subsections offer a few
instances of blockchain protocols:[35]

24

chapter2 : Blockchain technology

• Hyperledger fabric:Hyperledger Fabric is an open-source project that includes
a number of libraries and tools. Businesses can use it to swiftly and efficiently
create private blockchain applications. It is a general-purpose, modular framework
with special access control and identity management capabilities. Because of these
characteristics, it can be used for a wide range of purposes, including supply chain
tracking and tracing, trade financing, loyalty and incentives, and financial asset
clearing and settlement.

• Ethereum:People can create public blockchain applications using Ethereum, a
decentralized open-source blockchain platform. Ethereum Enterprise is intended
for commercial applications.

• Corda:Corda is a business-oriented open-source blockchain initiative. Building
interoperable blockchain networks that conduct transactions in complete secrecy
is possible with Corda. Companies can conduct valuable, direct transactions by
utilizing Corda’s smart contract technology. Financial institutions make up the
majority of its users.

• Quorum: An open-source blockchain protocol called Quorum is based on Ethereum.
It is specifically made to be used in either a consortium blockchain network, where
several members each own a section of the network, or a private blockchain network,
where just one member owns all the nodes.

2.3 Hyperledger fabric

2.3.1 Définition

Developed for usage in enterprise settings, Hyperledger Fabric is an open-source enterprise-
grade permissioned distributed ledger technology (DLT) platform that offers several sig-
nificant advantages over other well-known blockchain or distributed ledger platforms.[44]

2.3.2 Key Features

2.3.2.1 Permissioned Network:

The Fabric platform is permissioned, which means that members are known to one an-
other rather than anonymous and, as a result, completely untrusted, in contrast to a
public permissionless network. This implies that a network can function under a gover-
nance model that is based on what trust does exist between participants, such as a legal
agreement or dispute resolution framework, even though the participants may not fully
trust one another (for instance, they may be rivals in the same industry).[44]

25

chapter2 : Blockchain technology

2.3.2.2 Modularity:

The architecture of Hyperledger Fabric is deliberately designed to be modular. Whether
it be cryptographic libraries, identity management protocols, key management protocols,
or consensus, the platform’s fundamental design allows it to be set up to satisfy the many
needs of enterprise use cases.

The following modular components make up Fabric at a high level:[44]

• After reaching an agreement on the transaction order, a pluggable ordering service
publishes blocks to peers.

• The task of assigning cryptographic identities to network entities falls to a pluggable
membership service provider.

• By directing service to other peers, an optional peer-to-peer gossip service dis-
tributes the block output.

• For isolation, smart contracts, often known as "chaincode," operate in a container
environment, such as Docker. They lack direct access to the ledger state, but they
can be built in common programming languages.

• A range of DBMSs can be supported by the ledger’s configuration.

• An endorsement and validation policy enforcement plug-in that can be set up sep-
arately for each application.

The industry is fairly in agreement that there isn’t a single blockchain that can govern
them all. Hyperledger Fabric can be set up in a variety of ways to meet the various needs
of various industry use cases.

2.3.2.3 Channels for Data Privacy:

Because Hyperledger Fabric is a permissioned platform, its private data capability and
channel architecture allow for confidentiality. Through channels, users on a Fabric net-
work create a sub-network in which all users may see a certain set of transactions. As
a result, the smart contract (chaincode) and the data exchanged are only accessible by
the nodes that are part of a channel, protecting their privacy and secrecy. Without
the maintenance burden of setting up and maintaining a separate channel, private data
enables collections between channel members, providing much of the same privacy as
channels.[44]

2.3.2.4 Smart Contracts (Chaincode):

A smart contract, also known as "chaincode" according to Fabric, is a trusted distributed
application that derives its security and trust from the blockchain and the underlying
peer consensus. It is a blockchain application’s business logic.[44]

26

chapter2 : Blockchain technology

2.3.2.5 Performance and Scalability:

Transaction execution may be expanded horizontally across peer nodes thanks to Fabric’s
special execute-order-validate mechanism. Additionally, no expensive mining is necessary
because it is a permissioned blockchain. When combined, they indicate that Fabric can
function and grow without the limitations of the majority of current distributed ledger
solutions. Numerous factors, including transaction, block, and network sizes as well as the
hardware resources available (CPU, memory, disk space, disk, and network input/output),
can impact a blockchain platform’s performance.[44]

2.3.2.6 Pluggable Consensus:

A modular consensus component that is logically separated from the peers who carry
out transactions and keep the ledger is tasked with sorting transactions. The ordering
service, in particular. Consensus can be implemented in a way that is customized to the
trust assumption of a specific deployment or solution since it is modular. The platform
can rely on established toolkits for either BFT (byzantine fault-tolerant) or CFT (crash
fault-tolerant) ordering because to its modular architecture.[44]

2.3.2.7 Identity Management via MSP:

Blockchain users must have a means of proving their identity to the rest of the network
in order to conduct transactions on Fabric since it is a permissioned network.
By creating a public and private key combination that may be used to verify identifi-
cation, certificate authorities are able to issue IDs. The MSP is necessary in order for
the network to recognize this identity. For instance, a peer digitally signs, or endorses,
a transaction using its private key. The peer’s authorization to approve the transaction
is verified by the MSP. The validity of the signature affixed to the transaction is then
confirmed using the public key from the peer’s certificate. Therefore, the MSP is the
mechanism that enables the rest of the network to trust and recognize that identity.[45]

So the MSP manage the identities and roles within the network.

2.3.2.8 Rich Query Capabilities:

CouchDB may be used as the state database in Hyperledger Fabric, enabling you to
describe data on the ledger as JSON and run rich queries against data values instead of
keys.[46]

2.3.2.9 Endorsement policies:

The set of peers on a channel that must execute a chaincode and approve the execution
outcomes for the transaction to be deemed legitimate is specified by the endorsement
policy for each chaincode.[47]

27

chapter2 : Blockchain technology

2.3.3 Key Components of Hyperledger Fabric

2.3.3.1 Organizations:

An organization is a group of people who are logically governed. This could be as tiny
as a flower shop or as large as a multinational enterprise. The fact that organizations (or
orgs) manage their members under a single MSP is what matters most. An identity can
be connected to an organization through the MSP.[45]

So in Hlf Network,multiple organizations collaborate to maintain the blockchain.each
organization:

• Own and manages its own peers(nodes).

• Defines access policies and roles.

• Participates in consencus and transaction validation.

2.3.3.2 Peers(Nodes):

• Endorsing peers: Validate and simulate transactions before they are commited.

• Commiting peers: Store the blockchain ledger and commmit transactions.

• Anchor peers: Facilitate communication between organizations within a channel.

2.3.3.3 Orderer Nodes(ordering Service):

The orderering service is a important component of hyperledger fabric as its ensures that
transactions are correctly ordered and sent to all peers in the network .

–> 2.2.3.3.1 What does the ordering service do?:

• Receiving transactions: Collecting transactions from different organizations.

• Transactions request: Determine the sequence of transactions before adding
them to the ledger.

• Handing over transactions to peers: Collecting transactions in block and send
it to all peers to validate it and commit it.

–> 2.2.3.3.2 The consensus mechanisms in ordering service:

The ordering service use the different consensus mechanisms to achieve agreement be-
tween participants in network:

• Raft (most common): Leader-driven mechanism for high availability and fault
tolerance.

• Kafka: Uses message list to request transactions.

• Bft: Protect against malicious parties, but is more complex.

28

chapter2 : Blockchain technology

2.3.3.4 Channels:

Channels are private, segregated communication conduits in Hyperledger Fabric that al-
low particular users to share data and transactions in a permissioned blockchain network.
They are essential for maintaining data segregation, scalability, and privacy in distributed
ledger environments.
Participants in Hyperledger Fabric may be part of one or more channels, each of which
has its own configuration, smart contracts (chaincode), and ledger. Only those partici-
pants who have been given access to a particular channel can see transactions carried out
within it, guaranteeing private communications between pertinent parties.[48]

2.3.3.5 Chaincode(Smart contract):

A program that implements a specified interface that is written in Go, Node.js, or Java
is called chaincode. A secure Docker container apart from the endorsing peer process is
where Chaincode operates. Application-submitted transactions are used by Chaincode
to initialize and maintain the ledger state. A chaincode can be thought of as a "smart
contract" since it usually manages business logic that has been agreed upon by network
participants. A chaincode’s produced state is scoped just to that chaincode and is not di-
rectly accessible by another chaincode. However, a chaincode may call another chaincode
to access its state inside the same network if it has the necessary authorization.[49]

2.3.3.6 MSP:

MSPs, or membership service providers, are essential to the network’s identity and ac-
cess control management. In Hyperledger Fabric, membership services are in charge of
controlling participant identities, making sure that only legitimate and trustworthy orga-
nizations are able to use the network. Membership services are crucial for preserving the
blockchain’s integrity and shielding it from bad actors. Permissioned blockchains need a
strict authentication process to limit who can transact and access data on the network,
in contrast to public blockchains, where anybody can sign up and take part.[50]

2.3.4 How organizations collaborate in a fabric network ?

2.3.4.1 Establish policies and MSP:

As the network’s gatekeepers, MSPs verify each participant’s legitimacy and authenticity.
They specify the guidelines and procedures that control the management, verification, and
revocation of identities when needed. Every network participant organization has its own
MSP, which establishes the requirements for membership and decides each participant’s
degree of access.[50]

2.3.4.2 Network creation and configuration:

Organizations agree on the network structure, creating channels ,deploy the ordering
service.

29

chapter2 : Blockchain technology

• Consortium Formation: A group of organizations form a consortium to create
the network, and when the network is first set up, the consortium agrees on a set
of policies that govern each organization’s permissions. Furthermore, as we’ll learn
when we talk about the idea of modification policy, network policies are subject to
change over time with the consent of the consortium’s organizations. [51]

• Channel Creation: An enterprise must join a channel in order to produce and
transfer assets on a Hyperledger Fabric network. Other network users cannot see
channels, which are a private layer of communication between particular businesses.
Every channel has its own ledger that only channel members can read and write
to. They may also join other channel members and get fresh transaction blocks
from the ordering service. Channels are how companies connect and communicate
with one another, whereas peers, nodes, and Certificate Authorities make up the
network’s physical architecture. [52]

• Ordering Service Deployment: Since many distributed blockchains, like Ethereum
and Bitcoin, lack permissions, any node can take part in the consensus process,
which arranges transactions into blocks. These systems rely on probabilistic con-
sensus algorithms, which eventually ensure ledger consistency to a high degree of
probability. However, these algorithms are still susceptible to divergent ledgers, also
referred to as a ledger "fork," in which various network participants hold differing
opinions about the accepted order of transactions.

Hyperledger Fabric functions in a unique way. It has an orderer node (sometimes
referred to as a "ordering node") that does this transaction ordering; when combined
with additional orderer nodes, it becomes an ordering service. Any block verified by
the peer is certain to be final and accurate since Fabric’s design is based on deter-
ministic consensus techniques. Unlike many other distributed and permissionless
blockchain networks, ledgers are unable to fork. [53]

2.3.4.3 Deployment of smart contract(chaincode):

The code that apps use to read and change data on the blockchain ledger is called a smart
contract . It is packaged as chaincode. Business logic is transformed into an executable
program via a smart contract, which is accepted and validated by all peers or members
of a blockchain network.[54]

2.3.4.4 Transaction flow:

A client-side application initiates the data flow for queries and transactions on a Hyper-
ledger Fabric network by sending a transaction request to a peer on a channel.
Both inquiries and transactions share the same beginning data flow across the network:[55]

• A client application signs and sends a transaction proposal to the relevant endorsing
peers on the designated channel using APIs found in the SDK. This first proposal
for a transaction is an endorsement request.

30

chapter2 : Blockchain technology

• After confirming the identity and legitimacy of the submitting client, each peer
on the channel compares the provided inputs to the defined chaincode. Each peer
responds to the application with a signed YES or NO depending on the endorsement
policy for the invoked chaincode and the transaction results. Every YES response
that is signed signifies that the transaction is approved.

• The procedure for inquiries and transactions changes at this stage of the transaction
flow. The application gives the client the data if the proposal invoked a query
function in the chaincode. The following actions are taken by the application if the
proposal updated the ledger by calling a function in the chaincode:

• The transaction, along with the read/write set and endorsements, is sent to the
ordering service by the application. After that, the ordering service receives the
transaction. Every channel peer performs a Concurrency Control Version Check
and applies the chaincode-specific Validation Policy to verify every transaction in
the block.

• The block is appended to the channel’s ledger and flagged as invalid for any transac-
tion that fails the validation process. Every legitimate transaction uses the updated
key/value pairs to update the state database appropriately.

2.3.5 Benefits of Hyperledger fabric

• Permissioned network :
Instead of using an open network with anonymous users, create decentralized trust
in a network with known participants. [56]

• Confidential transactions :
Give only the information you desire to the people you wish to share it with. [56]

• Pluggable architecture :
Instead of using a one-size-fits-all strategy, use a pluggable architecture to adapt
the blockchain to industry demands. [56]

• Simple to get started:
Rather than learning new languages and architectures, create smart contracts in
the languages your team now uses. [56]

2.3.6 Use Cases

• Supply Chain Management:
permits traceability and transparency across the supply chain, making it possible to
follow products from point of origin to point of consumption. It boosts productivity,
lowers fraud, and enhances product quality. [57]

• Identity Management:
improves security and lowers operating costs by enabling decentralized identity
systems without centralized authorities. [57]

31

chapter2 : Blockchain technology

• Healthcare:
permits providers to share patient data in a safe and secure manner. This lowers
expenses, gets rid of duplications, and enhances healthcare service. [57]

• Banking and Finance:
facilitates safe and open financial transactions. It minimizes transaction costs,
decreases fraud, and improves payment efficiency. [57]

• Insurance:
enhances customer satisfaction and expedites claim processing by preventing fraud
and enhancing claims administration through a decentralized system. [57]

• Real Estate:
reduces fraud, increases transparency, and streamlines the real estate process by
offering a safe platform for real estate transactions. [57]

• Government:
can be applied to reduce corruption, track public monies transparently, and provide
safe voting systems. [57]

• Energy:
improves billing accuracy, optimizes distribution, and permits decentralized track-
ing of energy output and consumption. [57]

• Retai:
increases supply chain visibility, facilitates safe loyalty programs, and improves
inventory and transaction tracking. [57]

• Intellectual Property:
uses a decentralized ledger to assist in managing patents and copyrights, lowering
the risk of infringement and expediting intellectual property transactions. [57]

2.4 State of the art

2.4.1 Bindra et al. (2020) Flexible, Decentralized Access Con-
trol for Smart Buildings with Smart Contracts

Bindra et al. (2020) Blockchain-Based Access Control Using Ethereum This academic
solution proposes a decentralized access control system built on the Ethereum blockchain.
In it, smart contracts are used to manage who can enter smart buildings. Tenants (users)
can grant or revoke access to other individuals without needing a centralized admin-
istrator. Every access event is recorded as a transaction on the blockchain, ensuring
transparency and immutability. It supports access delegation (e.g., a tenant granting
access to a guest) and revocation. Since it is built on Ethereum, users must pay gas fees,
and the system requires internet connectivity.[58]

32

chapter2 : Blockchain technology

2.4.2 NineSmart Smart Access | QR Code Access Control

NineSmart QR CodeBased Smart Access (Commercial Startup) NineSmart offers a com-
mercial access control solution using QR codes. It is centralized and cloud-based, meaning
a building manager or tenant can generate and share QR codes via a mobile app. These
QR codes are scanned at doors using smart readers. The entire system runs through a
cloud dashboard, making it easy to manage access remotely. However, this system does
not use blockchain, so it lacks decentralization, transparency, or tamper-proof logging.[59]

Figure 2.9: NineSmart

2.4.3 SPCL: A Smart Access Control System That Supports
Blockchain

The SPCL system uses a private blockchain to manage access to smart locks. Every
entry and access rule is stored on-chain. The system does not use QR codes or NFC;
instead, it relies on blockchain identity and time-stamped records to determine who can
unlock a door and when. It supports smart lock integration directly and ensures access
traceability. However, the design is limited to simple access rules and lacks features like
visitor management or dynamic QR authentication.[60]

2.5 Comparison table

Table 2.1: Comparative Summary of Access Control Solutions
Feature Bindra et al. (2020) NineSmart

(Startup)
SPCL System Our Project (HLF)

Blockchain Type Public Ethereum No Blockchain Private Blockchain Private (Hyperledger
Fabric)

Smart Contract Use ✓ Yes (Ethereum) × ✓ Yes ✓ Yes (Chaincode)
Access Methods Mobile App / Token QR Code Blockchain-based

Locks
NFC Card + QR Code

User Types Tenants, Visitors Visitors Not specified Residents, Visitors,
Requested Visitors

Access Approval Work-
flow

Delegated via con-
tracts

Managed via cloud Predefined policy rules Manager / Resident
Approval

QR Code Support ✓ Yes ✓ Yes × No ✓ Yes
NFC Card Support × No × No × No ✓ Yes
Remote Access × No ✓ Yes × No × No
Internet Required ✓ Yes ✓ Yes ✓ Yes ✓ Yes
Transaction Fees High (Gas fees) None None None

33

chapter2 : Blockchain technology

Our project offers a robust, secure, and flexible access control solution specifically
designed for smart buildings in Algeria. It bridges the gap between academic proposals
(like Bindra et al.) and commercial solutions (like NineSmart) by combining blockchain
security with modern authentication methods (NFC and QR), while maintaining privacy
and role-based governance.

2.6 Conclusion

In conclusion, Hyperledger Fabric persists as a prominent manifestation of blockchain
technology, distinguished by its modular architecture, emphasis on security, transparency,
and support for privacy-preserving transactions. These characteristics make it especially
well-suited for implementing robust access control systems in smart buildings .

The amalgamation of decentralization, identity management, and immutable record-
keeping renders Hyperledger Fabric highly desirable for institutions aiming to enhance
trust and efficiency in digital access environments.

In the next chapter, we will present the conception and development of our blockchain-
based access control system using Hyperledger Fabric, which constitutes the core objective
of our project.

34

Chapter 3

Proposed solution

35

chapter3 : Proposed solution

3.1 Introduction

In the previous chapter, we introduced blockchain technology and the Hyperledger Fabric
platform, that we have selected for implementing our solution.

In this chapter, we move on to a more detailed presentation of our proposed sys-
tem.The system is designed to manage access control within a building by identifying
only authorized individuals who are allowed to enter, thus ensuring a higher level of
security and traceability.

First, we will introduce the global architecture of our system, describing its main
components and how they interact. Following that, we will provide a detailed overview of
the Fabric network, including the participating organizations, peers, ordering service, and
other network elements, and then we will explain the role of the chaincode. Additionally,
we will include diagrams to provide a clear understanding of the system.

3.2 Use Case diagram

The use case diagram presented below (figure 3.) provides an overview of the main func-
tionalities of the access control system by illustrating the interactions between the system
and its users. It defines the roles of each actor and the services they can access, helping to
clarify how the system operates. This diagram serves as a foundation for understanding
the different actions performed by the Admin, Resident, Visitor, and Requested Visitor
within the system.

36

chapter3 : Proposed solution

Figure 3.1: Use Case diagram

3.2.0.1 Admin:

• Manage Building Settings: By default, the system is initialized with configuration
parameters such as the building’s name, number of apartments, residents, and the
maximum number of visitors allowed per resident. The admin can modify these
settings.

• Manage Apartment: Add, delete, or edit apartment.

• Manage Resident: Admin can:

– Add new residents (a permanent QR code is generated).
– Edit, delete, block/unblock residents.

• Manage Messages: View and respond to messages received from residents.

• Send Visit Request: When a Requested Visitor (not listed in any residents visitor
list) arrives at the building, the Admin sends a visit request to the corresponding
resident for approval.

3.2.0.2 Resident:

• Send Messages: to communicate with the admin.

37

chapter3 : Proposed solution

• Manage Visit Requests: Accept or reject visit requests. If accepted, a temporary
QR code is generated for the visitor.

3.2.0.3 Common Functionalities:

- Shared by Admin and Resident:

• Login: Both must log in to access and perform tasks.

• Manage Visitor List:

– Add visitors (temporary QR codes generated).
– Edit, delete, block/unblock visitors.

• Receive Messages and Notifications: Both are notified of events/messages.

• Search Query system data.

• Manage Profile: Modify personal information and password.

- Shared by Resident, Visitor and Requested Visitor:

• Scan QR Code: All scan codes to access the building.

3.2.0.4 Requested Visitor:

• Request Resident Visit: Requests access via the admin, who relays the request to
the resident.

3.3 Global architecture of the system

The proposed system follows a layered architecture composed of four main components,
as illustrated in Figure 3.2. At the user level, there are two primary actors: the Manager
and the Resident. Both interact with the system through a graphical interface, which
facilitates all user operations. The interface sends requests to a server, which acts as a
middleware, handling logic and forwarding valid requests to the blockchain network.

38

chapter3 : Proposed solution

Figure 3.2: Global Architecture

3.4 Detailed architecture of the system

The system is built on Hyperledger Fabric and consists of two organizations: Residents,
Manager. Each organization plays a distinct role within the blockchain network, collab-
orating through defined channels and smart contracts to ensure secure, transparent, and
decentralized management of access control in the smart building environment.

3.4.1 Hyperledger Fabric Network

3.4.1.1 Organizations:

• Residents: Responsible for representing the residents who manage visitor access to
their homes. Each resident has a digital identity that allows them to approve or
reject entry requests. The organization stores resident data and their visitor lists
on the distributed ledger and includes peers to process transactions.

• Manager: Responsible for overseeing access control for both visitors and residents.
It has the authority to approve or deny new visitor entry requests and contributes
to defining and enforcing custom access rules for enhanced security.

39

chapter3 : Proposed solution

3.4.1.2 Ordering Service:

Responsible for ordering transactions and coordinating their addition to the distributed
ledger.

In this system, the Raft consensus mechanism is used to ensure fault tolerance and
prevent transaction loss.

so orderer Handles all transaction requests from peers and forwards valid transactions
to be committed to the ledger.

3.4.1.3 Peers:

Each organization in the network contains Peers, which are responsible for:

• Hosting the distributed ledger (Ledger).

• Executing smart contracts (Chaincode).

• Validating transactions and operations.

Peer Distribution in the Network:

Organization Peer Responsibility
Org1 (Residents) peer0.residents.example.com Handles resident data and

visitor lists.
peer1.residents.example.com Acts as a backup peer to en-

sure network stability.
Org2 (Building Manager) peer0.manager.example.com Manages access permissions

and approves visitor entries.

Table 3.1: Distribution of Peers and their Responsibilities

3.4.1.4 Channels:

are used to ensure the confidentiality and security of transactions between different or-
ganizations. In this system, we have :

• residentschannel: Includes Org1 (Residents) and Org2 (Manager). It is used
to manage visitor lists and approve access requests.

3.4.1.5 MSP(Membership Service Provider):

is the system responsible for managing the digital identity of every user or node in the
network.

MSP Distribution in the Network:

40

chapter3 : Proposed solution

MSP Name Description
ResidentsMSP For residents who manage their visitor lists and access

rights.
ManagerMSP For the building manager who approves or denies access

requests.
OrdererMSP For managing the transaction ordering process in the

network.

Table 3.2: MSP Assignment and Roles

Figure 3.3: Deatiled architecture of the system

41

chapter3 : Proposed solution

3.5 Hyperledger Fabric Network Setup and Devel-
opment Steps

Figure 3.4: Development Steps of Hlf

• Create CA: The Certificate Authority, which provides the required cryptographic
identities for users participating in the HLF network, is set up in this stage. The
Fabric CA Server is used.

• Create Cryptomaterials: Each participant receives cryptographic materials, includ-
ing keys and certificates, upon the formation of the CA. Making use of the cryptogen
tool, a straightforward tool for creating crypto materials.

• Create Artifacts: Artifacts like the channel configuration, genesis block, and other
required files are made in order to bootstrap the network.

42

chapter3 : Proposed solution

• Create All Services: This entails starting up every network component, including
orderers, peers, and other services.

• Create Channels & Join Peers & Update Anchor Peers: Create channels, join peers
to channels, and update anchor peers to establish a private, structured communi-
cation network where specific peers can securely interact and discover each other
within the Hyperledger Fabric blockchain.

• Deploy chaincode(Smart contract): The smart contract, also known as chaincode,
is implemented on the channel to outline the logic for managing transactions.

• Api: Api compose 3 steps like RegistreUser,Invoke Transaction, Query. So Reg-
isterUser sets up the user’s identity, Invoke Transaction updates the blockchain,
and Query retrieves data for verification forming the standard client interaction
pattern with Fabric.

3.6 Deploy Chaincode(Smart Contract)

Figure 3.5: Deploy Chainecode Steps

43

chapter3 : Proposed solution

• Chaincode Dependency Setup (Presetup): Before deploying the chaincode, depen-
dencies such as Go modules or Node.js packages must be downloaded and prepared.
This ensures the chaincode has everything needed to compile and run correctly on
peers.

• Package the Chaincode (Package Chaincode): The developed chaincode is pack-
aged into a .tar.gz archive. This package includes the source code and metadata
required for deployment. It serves as the artifact to be installed on peers.

• Install Chaincode on Peers: The packaged chaincode is installed on the peer nodes
of each participating organization in the network. This installation allows each peer
to recognize and prepare to execute the chaincode.

• Query Installed Chaincode: After installation, peers are queried to confirm that
the chaincode has been installed successfully. This step helps retrieve the package
ID, which is required for chaincode approval.

• Approve Chaincode Definition for Organization: Each organization must formally
approve the chaincode definition. This includes specifying the name, version, se-
quence number, and endorsement policy. Approval ensures agreement on how the
chaincode behaves and who must endorse transactions.

• Check Commit Readyness: Before committing the chaincode, the network checks
whether all necessary organizations have approved the chaincode definition. This
step ensures consensus and readiness to proceed.

• Commit Chaincode to Channel: Once all approvals are received, the chaincode
definition is committed to the channel. This makes the chaincode operational across
the channel and available to all peers for execution.

• Invoke Chaincode and Query (Smart Contract Execution): After deployment, the
chaincode can be invoked to perform write operations (transactions) or queried for
read-only access to ledger data. These operations validate the smart contract logic
and confirm proper integration.

3.7 Application Programming Interface(Api)

Figure 3.6: Api

44

chapter3 : Proposed solution

• Register User: This is the first step where a new user identity is registered with the
Fabric Certificate Authority (CA). It involves:

– Enrolling the admin identity (if not already done).
– Registering a new user with the CA using admin credentials.
– Enrolling the user to obtain a certificate and private key.
– Storing the user credentials in a wallet for later use.

• Invoke Transaction: Once the user is registered and enrolled, they can submit
transactions to the blockchain. This step:

– Loads the user identity from the wallet.
– Submits a transaction proposal to peers for endorsement.
– Sends the endorsed transaction to the orderer to be committed to the ledger.

• Query: This step is used to fetch data from the ledger without making any changes.
It involves:

– Using the registered user identity to send a query request.
– Getting a response directly from the peer based on current world state data.
– Verifying data such as transaction results, asset ownership, or access permis-

sions.

3.8 Functionality of the system

To better understand the functionality of the system, it’s best to represent it in diagram-
matic form. In this section, we’ll present a representation of our system in the form of
a use case, a sequence diagram (Figure 3). This diagram shows all the actions that an
administrator, a resident, a visitor, and the visitor sending the request can perform.

3.8.1 Sequence diagram of the system

The following sequence diagram illustrates the interaction between the main actors of the
system: Admin, Resident, Visitor, and Requested Visitor. It is structured into five steps,
starting from the initial system setup through to daily operations.

45

chapter3 : Proposed solution

Figure 3.7: Sequence diagram

3.8.1.1 Step 1:

• The Admin begins by logging into their account. If the login credentials are incor-
rect, the system prompts for a retry until successful authentication is achieved.

• Upon successful login, the system loads with default configuration settings (building
name, apartment count, resident count, visitor count). The Admin may use or

46

chapter3 : Proposed solution

modify these settings.

• The Admin then proceeds to:

– Add new apartments.
– He can also edit or delete apartments.
– Add residents to specific apartments.
– When a resident is added, the system generates a permanent QR code.
– This QR code is intended to be sent via SMS for security purposes. However,

due to limitations with SMS services in Algeria and local testing conditions
(localhost environment), this feature is simulated rather than operational dur-
ing development.

• Once the resident receives the QR code, they can scan it at the building entrance.
The system verifies the access:

– If access is blocked, entry is denied.
– Otherwise, access is granted.

• The Admin can also manage residents by editing, deleting, or blocking/unblocking
them.

3.8.1.2 Step 2:

• The Resident logs in to their account. As with the admin, login attempts are
verified until successful.

• Once logged in, the resident can begin managing their visitor list:

– Adding a visitor generates a temporary QR code tied to a specific visit time.
– This QR code is to be sent to the visitor via SMS (simulated for now).

• The visitor uses the QR code to attempt access to the building. The system checks:

– Whether the QR code is blocked or invalid (visit time has passed).
– If valid, the visitor is granted access; otherwise, access is denied.

• Residents can also edit, delete, or block/unblock visitors from their list.

3.8.1.3 Step3 :

• A Requested Visitor (someone not already on a Residents visitor list) arrives at the
building.

• They request access from the Admin, who sends a visit request to the relevant
Resident.

• The system notifies the Resident of the request. The Resident can then accept or
reject it.

47

chapter3 : Proposed solution

• The Residents decision is sent back to the Admin. If the request is accepted:

– A temporary QR code is generated and shared with the requested visitor.
– This QR code includes a time limit, meaning it can expire if not used within

the allowed time.

• When the requested visitor scans the QR code:

– The system checks whether the request was accepted and whether the QR
code is still within its valid time.

– If both checks pass, access is granted. Otherwise, access is denied (if the code
has expired or was rejected).

3.8.1.4 Step 4:

• The Resident sends messages to the Admin.

• The system notifies the Admin, who can reply.

• The Resident is then notified of the response.

3.8.1.5 Step 5:

• Both Admin and Resident have the ability to manage their user profiles.

• This includes updating account details such as passwords for better security.

48

chapter3 : Proposed solution

3.8.2 Sequence diagram (Hlf)

3.8.2.1 Add Residents:

Figure 3.8: Add Residents to stock in ledger

• Admin/System Initiation:

– The Admin successfully connects to the application interface.
– The Admin fills out the resident details (e.g., name, apartment, phone) and

submits a "Register Resident" request to the system.

• System to Peer:

– The application sends the registration request to the connected peer node.
– The peer invokes the RegisterResident chaincode function with the provided

resident data.

• Chaincode Execution:

– The chaincode verifies if the resident already exists using GetState.
– If not found, it creates a Resident object, generates a QR code, and prepares

it for storage.
– The peer endorses the transaction and returns the result.

• Ordering Phase:

– The endorsed transaction is sent to the Orderer.
– The Orderer validates, sequences, and packages the transaction into a block.

• Block Distribution:

49

chapter3 : Proposed solution

– The new block is distributed to all peers.
– Each peer writes the block to the ledger and updates the world state database

with the new resident information.

• Confirmation:

– The System confirms that the transaction was successful.

3.8.2.2 Update Resident:

Figure 3.9: Update Resident Informations

• Admin/System Initiation:

– The Admin connects to the system and selects a registered resident to update.
– The Admin edits fields like email, phone, apartment, or marital status ...etc,

then submits the "Update Resident" request.

• System to Peer:

– The system sends the update request to the peer node, specifying the residen-
tId and new data.

– The peer invokes the UpdateResident function in the chaincode.

• Chaincode Execution:

– The chaincode retrieves the existing resident using GetState("RESIDENT_" +
residentId).

– If the resident exists, it checks if the apartment has changed.

50

chapter3 : Proposed solution

– If so, it fetches the building configuration to ensure the new apartment is not
over capacity.

– The residents information is updated, and the UpdatedAt timestamp is re-
freshed.

• Transaction Endorsement:

– The peer endorses the transaction and sends it back to the System.

• Ordering and Block Formation:

– The transaction is submitted to the Orderer, which sequences and batches it
into a block.

• Block Distribution and Ledger Update:

– Peers receive the ordered block.
– Each peer writes the updated resident data into the ledger and updates the

state database.

• Confirmation to Admin:

– The system confirms that the update was successful.

3.8.2.3 Block/Unblock Resident:

Figure 3.10: Block/Unblock Resident

• Block Resident:

– The admin selects a resident and initiates a block request with inputs: residentId,
reason, blockedBy, fromDateTime, and toDateTime.

51

chapter3 : Proposed solution

– The system sends the block request to the peer node which invokes the BlockResident
chaincode function.

– The chaincode verifies if the resident exists and if a block already exists. If
not, it creates a BlockRecord and updates the resident’s isBlocked flag to
true.

– The transaction is endorsed, ordered by the Orderer, and committed to the
ledger.

– The block record is stored and the ledger state is updated.
– The admin receives confirmation: Resident successfully blocked.

• Unblock Resident:

– The admin initiates an unblock request by providing the residentId.
– The system sends the request to the peer which invokes the UnblockResident

chaincode function.
– The chaincode checks if the resident is currently blocked, then removes the

block record and sets isBlocked to false.
– The transaction is endorsed, ordered, and added to the ledger.
– The resident’s record is updated and the block is removed from the ledger.
– The admin receives confirmation: Resident successfully unblocked.

3.8.2.4 Add visitor in each resident:

Figure 3.11: Add Visitor

• Resident/System Initiation:

52

chapter3 : Proposed solution

– The resident logs into the web application and navigates to the Add Visitor
section.

– The resident fills out visitor details: visitorId, fullName, phone, visitTimeFrom,
visitTimeTo, and relationship.

– The resident submits an Add Visitor request for a specific residentId.

• System to Peer:

– The application sends the visitor registration request to the connected peer
node.

– The peer invokes the AddVisitor chaincode function, passing the resident and
visitor information.

• Chaincode Execution:

– The chaincode retrieves the resident using GetState("RESIDENT_" + residentId).
– It checks if the resident exists and whether the visitor already exists in the

residents visitor list.
– If valid, it creates a new VisitorInfo object, assigns a QR code (based on

visitorId), sets the status to Active, and appends the visitor to the residents
list.

– The UpdatedAt timestamp for the resident is refreshed.
– The peer endorses the transaction and returns the result.

• Ordering Phase:

– The endorsed transaction is sent to the Orderer.
– The Orderer sequences and packages the transaction into a block.

• Block Distribution:

– The block is distributed to all peers.
– Each peer writes the updated resident (with the new visitor) into the ledger

and updates the state database.

• Confirmation to Resident:

– The system receives confirmation that the transaction was successful.
– A message is displayed to the resident: Visitor added successfully.

53

chapter3 : Proposed solution

3.8.2.5 Block/Unblock Visitor:

Figure 3.12: Block/Unblock Visitor

• Block Visitor:

– The resident selects a visitor and initiates a block request with inputs: visitorId,
residentId, reason, fromDate, fromTime, toDate, toTime, and blockedBy.

– The system sends the block request to the peer node, which invokes the
BlockVisitor chaincode function.

– The chaincode retrieves the resident data using GetState("RESIDENT_" +
residentId) and verifies if the visitor exists in the resident’s visitor list.

– If the visitor is found and not already blocked:
∗ A BlockInfo object is created with the block reason, blockedBy, and time

range.
∗ The visitors status is set to "Blocked" and CurrentBlock is set to the

new block ID.
∗ The BlockInfo is stored in the ledger under a unique key.

– The updated resident record is serialized and stored back in the ledger.
– The transaction is endorsed, ordered by the Orderer, and committed in a new

block.
– All peers update the ledger and world state database with the new visitor

status and block record.
– The system returns confirmation: Visitor blocked successfully.

• Unblock Visitor:

– The resident initiates an unblock request by providing the visitorId and
residentId.

54

chapter3 : Proposed solution

– The system sends the request to the peer node, which invokes the UnblockVisitor
chaincode function.

– The chaincode retrieves the resident and searches for the visitor in their visitor
list.

– If the visitor is currently blocked:
∗ The related BlockInfo record is deleted using the CurrentBlock ID.
∗ The visitors status is updated to "Active" and the CurrentBlock is

cleared.
– The updated resident record is marshaled and stored in the ledger.
– The transaction is endorsed, ordered, and added to the blockchain in a new

block.
– Each peer updates the ledger and world state database accordingly.
– The system returns confirmation: Visitor unblocked successfully.

55

chapter3 : Proposed solution

3.8.2.6 Update Visitor:

Figure 3.13: Update Visitor

• Resident/System Initiation:

– The resident connects to the system and selects a visitor already registered
under their profile.

– The resident updates the visitors phone number, visit start time, or end time.
– The resident submits the Update Visitor request.

• System to Peer:

– The system sends the update request to the peer node, including the residentId,
visitorId, and updated visitor information.

– The peer invokes the UpdateVisitor function in the chaincode.

• Chaincode Execution:

56

chapter3 : Proposed solution

– The chaincode retrieves the resident using GetState("RESIDENT_" + residentId).
– It searches the residents visitor list for the given visitorId.
– If the visitor is found, it updates the visitors Phone, VisitTimeFrom, and

VisitTimeTo.
– The UpdatedAt timestamp for the resident is refreshed.

• Transaction Endorsement:

– The peer endorses the transaction and sends the response back to the appli-
cation.

• Ordering and Block Formation:

– The transaction is submitted to the Orderer, which sequences and includes it
in a new block.

• Block Distribution and Ledger Update:

– The block is distributed to all peers.
– Each peer updates the ledger and world state with the modified visitor record

inside the residents data.

• Confirmation to Resident:

– The system confirms that the visitor was updated successfully.
– A success message is displayed: Visitor updated successfully.

3.8.2.7 Add Visit Request:

Figure 3.14: Add Visit Request

• Admin/System Initiation:

57

chapter3 : Proposed solution

– The Admin connects to the system and fills out the visitor request form with
details such as: RequestID, VisitorName, Phone, TargetResident, VisitTimeFrom,
VisitTimeTo, VisitDate, Type, and Purpose.

– The Admin submits the Add Visit Request targeting a specific resident.

• System to Peer:

– The system sends the request to the peer node in the blockchain network.
– The peer invokes the AddVisitRequest chaincode function with the provided

arguments.

• Chaincode Execution:

– The chaincode creates a VisitRequest object and sets its status to Pending.
– It serializes the object and stores it in the ledger using the key "VISITREQUEST_"

+ RequestID.

• Endorsement and Ordering Phase:

– The peer endorses the transaction and sends the endorsed proposal to the
Orderer.

– The Orderer packages the transaction into a block and distributes it to all
peers.

• Ledger Update:

– Each peer writes the new block to the ledger and updates the world state with
the new visit request.

• Confirmation to Admin:

– The system receives confirmation of success.

58

chapter3 : Proposed solution

3.8.2.8 Resident approve/reject request of visitor:

Figure 3.15: approve/reject request of visitor

• Resident/System Initiation:

– The resident logs into the system and views pending visit requests submitted
by the admin or gatekeeper.

– The resident selects a specific request and chooses to approve or reject it.

• System to Peer:

– The system invokes the UpdateVisitRequestStatus chaincode function with
arguments including RequestID and the new Status (either "Approved" or
"Rejected").

• Chaincode Execution:

– The chaincode retrieves the existing VisitRequest object using the key "VISITREQUEST_"
+ RequestID.

– It updates the Status field based on the residents decision.
– If the status is "Approved", a QR code may be generated and attached to the

request.
– The updated request is serialized and prepared for ledger storage.

• Endorsement and Ordering Phase:

– The peer endorses the transaction and forwards it to the Orderer.
– The Orderer adds the transaction to a new block and distributes it to all peers.

• Ledger Update:

59

chapter3 : Proposed solution

– All peers commit the block and update the world state with the new status of
the visit request.

• Confirmation to Resident and Admin:

– The system returns a confirmation that the status has been successfully up-
dated.

– Both the resident and the admin see the updated status (Approved or Re-
jected) in their dashboards.

3.9 Conclusion

This chapter provided a comprehensive overview of the system’s design. We started by
outlining the general architecture of the proposed solution, followed by a detailed expla-
nation of each system component and its role within the Hyperledger Fabric network.
We then illustrated the different user interactions and system behaviors using UML di-
agrams, including use case and sequence. These elements collectively define the systems
structure and guide the transition to the next phase. The following chapter will focus on
the practical implementation of this design.

60

Chapter 4

Development and evaluation

61

chapter4 :Development and evaluation

4.1 Introduction

In the previous chapter, we presented the overall architecture and detailed design of our
proposed system. In this chapter, we focus on the implementation phase. We begin
by introducing the tools, technologies, and programming languages used. Then, we de-
scribe the implementation of the systems main components with supporting screenshots.
Finally, we present and discuss the results obtained from the developed system.

4.2 Software tools

To implement our system, we used a variety of software tools. The development en-
vironment was based on VSCode with support from Docker and Docker Compose for
containerization. The system was deployed on Ubuntu, and development involved both
frontend and backend technologies. The frontend was built using ReactJS and Tailwind-
CSS, while the backend used NodeJS, Express, and Go for developing smart contracts.
We used Hyperledger Fabric (HLF) as the blockchain platform and CouchDB as the state
database. MongoDB Compass was used for managing resident-related data, and Postman
was used for testing and validating APIs.

Visual Studio Code: is a free, lightweight code editor available
for macOS, Linux, and Windows. It offers a quick and easy setup
process, allowing developers to get started within minutes.[61]

Docker: is a platform designed to simplify the development, de-
ployment, and running of applications. It allows you to separate
applications from the underlying infrastructure, enabling faster and
more consistent software delivery. Using Docker’s approach helps
streamline processes such as testing and deployment, which reduces
the time between writing code and using it in real environments.[62]

WSL: Microsoft created the Windows Subsystem for Linux (WSL)
compatibility layer to enable Windows computers to run Linux pro-
grams, utilities, and commands through a terminal or command
prompt. This conserves computer resources and does away with
the requirement for a dual boot computer or virtual machine ar-
rangement. Windows 10 and later versions are required in order
to use WSL. Linux distributions like Fedora, Kali, Ubuntu, Arch,
and others are supported.[63]

62

chapter4 :Development and evaluation

ReactJS: is a JavaScript library for building user interfaces. It
enables developers to create reusable UI components, which can
be combined to build complex user interfaces for web and native
applications. React promotes a component-based architecture, al-
lowing for efficient and flexible development of interactive user in-
terfaces.[64]

Tailwind CSS: is a modern utility-first framework that provides
a wide range of low-level CSS classes, allowing developers to create
fully customized user interfaces directly within their HTML, with-
out relying on predefined components or styles.[65]

Node.js: is an open-source, cross-platform JavaScript runtime en-
vironment that enables the execution of JavaScript code outside of
a web browser. It is designed to build scalable network applications
by using an event-driven, non-blocking I/O model.[66]

Express: is a minimal and flexible Node.js web application frame-
work that provides a robust set of features for building web and
mobile applications. It simplifies the development of server-side
logic by offering a thin layer of fundamental web application fea-
tures.[67]

Go: is an open-source programming language designed at Google
that makes it easy to build simple, reliable, and efficient software.
It is known for its speed, concurrency support, and ease of use.[68]

Hyperledger Fabric: is a modular blockchain platform designed
for enterprise use. It supports permissioned networks, where partic-
ipants have known identities, and allows customization of compo-
nents such as consensus and membership services. Smart contracts,
called chaincode, are used to define business logic.[69]

CouchDB: is an optional external state database for Hyperledger
Fabric that allows you to model data on the ledger as JSON and
issue rich queries against data values rather than the keys.[70]

63

chapter4 :Development and evaluation

MongoDB: is a flexible, document-oriented database designed to
simplify application development and scale easily with your data.
It stores information in JSON-like documents, giving developers a
dynamic, schema-less structure for handling complex data.[71]

Postman: is a comprehensive platform for creating and utilizing
APIs. Every phase of the API lifecyclefrom design and testing to
delivery and monitoringis made less painful by it. Postman was
created for teams and facilitates collaboration, organization, and
the speedier development of safe, dependable APIs.[72]

Hyperledger Fabric Explorer: The Hyperledger Fabric plat-
form’s blockchain processes can be visualized with the help of Hy-
perledger Explorer. Being the first blockchain explorer for permis-
sioned ledgers, it enables anyone to access and examine the dis-
tributed ledger projects being developed by Hyperledger members
without jeopardizing their privacy. The DTCC, IBM, and Intel all
participated to the initiative. Having the ability to visualize data
is essential for gaining business value from it. Fortunately, Hyper-
ledger Explorer offers this much-needed feature.[73]

Grafana: is an open-source analytics and interactive visualiza-
tion web application. It provides charts, graphs, and alerts for
the web when connected to supported data sources. Commonly
used for monitoring metrics in real-time, Grafana supports vari-
ous databases including Prometheus, InfluxDB, Elasticsearch, and
many more.

Prometheus: is an open-source monitoring and alerting toolkit
originally built at SoundCloud. It is designed for reliability and
scalability, collecting and storing metrics as time series data.
Prometheus integrates natively with Grafana, making it a pow-
erful solution for observing systems and applications.

4.3 Hardware Tools

Regarding hardware, our goal was to use NFC cards and NFC readers for secure and
fast access control. However, due to the unavailability of physical materials during de-
velopment, we adopted a temporary solution: using the PC camera to scan QR codes,
which acted as digital cards. This workaround allowed us to simulate and test the access
control process until the actual hardware becomes available.

64

chapter4 :Development and evaluation

Figure 4.1: Diagram illustrating the typical hardware setup for NFC-based access control.

When the user presents an NFC card to the reader, the microcontroller verifies the ID.
If authorized, it triggers the relay module to unlock the electromagnetic lock, allowing
access. The system is powered by a 12V DC power supply and ensures quick, secure
entry.

65

chapter4 :Development and evaluation

Component Features

• Name: AC/DC Power Adapter

• Certification: UL Listed

• Compatibility: Specifically designed for Brother
AC Adapters (AD24, AD24ES, AD24ESA,
AD24A, AD-20, AD-30, AD-60)

• Power Specifications:

– Cord Length: 8.2 feet
– Input Voltage Range: 100240V
– Output: 9V, 1.6A (same as original charger)

• Safety: Multi-Protect safety system for device and
user protection

• Supported Models:

– Brother P-touch models including PT-200G,
PT-D210, PTD220, PT-H110, PT-E100,
PT-1000, PT-1010 series, PT-1090 se-
ries, PT-1200, PT-1230PC, PT-1280 se-
ries, PT-1290 series, PT-1300, PT-1400,
PT-1500PC, PT-1600, PT-1650, PT-1700,
PT-1800, PT-1830 series, PT-1880 series,
PT-1890 series, PT-1900, PT-2030 series,
PT-2100, PT-2730[74]

Table 4.1: Hardware Components-1

66

chapter4 :Development and evaluation

Component Features

• Name: Arduino Nano V3.0 Development Board

• Main Chip: ATmega328P microcontroller

• USB Interface Chip: CH340G (not FT232), re-
quires driver installation

• Compatibility: Fully compatible with Arduino
Nano, Windows, macOS, and Linux

• Programming Support: ISP download, USB
download

• Power Supply Options:

– Mini-USB connection
– 712V unregulated external (pin 30)
– 5V regulated external (pin 27)

• Power Selection: Automatic selection of highest
voltage source (no jumper needed) I/O Pins:

– 14 digital I/O pins
– 6 PWM outputs
– 8 analog inputs

• Design: Compact, breadboard-friendly, suitable
for most applications

• USB Standard: Supports full-speed USB, compat-
ible with USB V2.0[75]

Table 4.2: Hardware Components-2

67

chapter4 :Development and evaluation

Component Features

• Name: Solenoid Lock

• Model: DC 12V Cabinet Door Lock

• Rated Operating Voltage: 12V DC

• Rated Current: 0.80A

• Power Consumption: 9.6Watt

• Holding Force: 2.45N

• Unlocking Time: 1 sec

• Body Material: Iron Metal

• Energized forms: Intermittent[76]

Table 4.3: Hardware Components-3

68

chapter4 :Development and evaluation

Component Features

• Name: NFC Reader and Cards

• Material: ABS flame-retardant shell

• Size: Small and thin

• Control: High-quality microchip control for fast
card reading

• LED Indicator: Red (standby), Green (card read-
ing)

• Buzzer: Built-in for effective reminders

• Working Frequency: 125 KHz / 13.56 MHz

• Card Support: IC / ID dual frequency replication

• Interface: USB full speed

• USB Cable Length: 1.2 meters

• Driver Requirement: None (plug and play)

• Response Time: Immediate

• Software: Available on connected computer or
downloadable via product page[77]

Table 4.4: Hardware Components-4

4.4 Results and discussion

The following results were obtained after executing a high volume of requests over a 15-
minute duration. The system under observation was running on a machine equipped with
an Intel Core i5-8350U processor and 8 GB of RAM. Performance metrics were collected
and visualized using Prometheus for monitoring and Grafana for real-time dashboard
analysis. This experimental setup allowed for precise tracking of key indicators such as
block processing time, state database commit duration, and overall peer synchronization
efficiency:

69

chapter4 :Development and evaluation

Figure 4.2: Chaincode Metrics for Peer Requests Over Time

the figure 4.2 shows two graphs focusing on Chaincode Metrics for the Hyperledger
Fabric network. The graphs display metrics related to Requests Received and Requests
Completed for the chaincode instance residentManagement on different peers.

Requests Received

Description: This graph displays the number of incoming requests received by the
chaincode instance over time.

Observation: From approximately 08:55 to 09:00, a steady increase in requests is
observed, reaching around 37 requests. A sharp drop to zero occurs between 09:00 and
09:02:30, followed by a subsequent rise to approximately 41 requests by 09:05. Another
drop to zero appears around 09:09:30, after which the graph shows a gradual increase to
about 20 requests by 09:12.

Interpretation: The request pattern reflects intermittent bursts of activity inter-
spersed with pauses, likely indicative of a controlled test scenario involving load injection
and idle periods. The peak number of received requests exceeds 40 on two occasions,
suggesting the systems capacity to handle such loads effectively.

Requests Completed

Description: This graph illustrates the number of requests successfully processed
and completed by the chaincode instance.

Observation: The pattern of completed requests closely mirrors that of the received
requests in both shape and magnitude. The graph shows approximately 37 completed
requests by 09:00, a drop to zero, a rise to around 41 by 09:05, another drop to zero at
09:09:30, and finally an increase to approximately 20 by 09:12.

Interpretation: The near-identical pattern between received and completed requests
strongly indicates that 100% of the received requests were successfully processed, with no

70

chapter4 :Development and evaluation

failures, rejections, or visible processing backlogs. This reflects high execution accuracy
and operational reliability.

Accuracy: Based on the observed data, the execution accuracy of the system is
100%, as every received request was completed successfully during all periods of activity.

Latency

Observation: The Requests Completed graph closely follows the Requests Received
graph, with no noticeable lag.

Interpretation: The minimal deviation between request reception and completion
implies that the system exhibits consistently low latency. The chaincode processes each
incoming request almost immediately, indicating efficient throughput and low processing
overhead.

Inference

• Reliability: No evidence of failures or delays was detected, confirming robust
processing.

• Responsiveness: Low latency and immediate request handling highlight the sys-
tems responsiveness.

• Accuracy: The 100% completion rate underscores high accuracy and correctness
in processing.

• Load Handling: The system adeptly manages fluctuating load conditions without
degradation in performance.

Result: Overall Performance

The system demonstrates stable, reliable, and highly accurate performance. It suc-
cessfully processes all incoming requests with minimal latency and no backlog, even under
varying load conditions. This confirms the robustness and scalability of the Hyperledger
Fabric network during the evaluated test window.

Figure 4.3: Ledger Blockchain Height Metric for Resident Peer

71

chapter4 :Development and evaluation

The figure 4.3 displays a graph illustrating the ledger_blockchain_height metric
for a resident peer (peer0.residents.example.com:9445) on the residentschannel in
a Hyperledger Fabric network.

Throughput

Observation: The blockchain height increases from approximately 2120 to 2205 over
an 8-minute period (from 10:52 to 11:00). This represents an increase of approximately
85 blocks in 8 minutes.

Interpretation: The observed block generation rate for this resident peer is approx-
imately 85 blocks/8 minutes10.625 blocks/minute, or roughly 0.18 blocks/second. This
indicates a moderate and consistent throughput of transactions being processed and com-
mitted to the ledger on the residentschannel during the active period. The ability of the
peer to consistently update its ledger at this rate demonstrates its effective participation
in the network’s block synchronization and validation process.

Result
The ledger_blockchain_height graph for the resident peer clearly shows that after

an initial period of inactivity, the Hyperledger Fabric network began actively committing
transactions to the residentschannel. The consistent increase in block height signifies
that this specific resident peer is successfully receiving and validating new blocks, main-
taining an up-to-date ledger. The calculated throughput confirms a steady rate of block
generation and processing on this channel, indicating healthy and synchronized operation
during the observed active period. StateDB Commit Time

Figure 4.4: StateDB Commit Time Metric for Peers on residentschannel

The figure 4.4 displays the cumulative time taken to commit changes to the Stat-
eDB database (ledger_statedb_commit_time_sum) across three peers in a Hyperledger
Fabric network.

Observations

Peers exhibited steady commit time growth until approximately 14:22, indicating
smooth and consistent transaction processing. This was followed by a stable phase from

72

chapter4 :Development and evaluation

14:22 to 14:24, where commit times plateaued, suggesting minimal new activity but
efficient ongoing operations. Around 14:24, a synchronized drop in metrics across all peers
likely points to a planned reset or maintenance event. Notably, the peers resumed normal
behavior immediately afterward, demonstrating the networks robustness and ability to
recover quickly.

Result

• StateDB commits efficiently handle transaction loads.

• Peers maintain synchronization during both active and idle periods.

• The system recovers seamlessly from interruptions, ensuring consistent state up-
dates.

Block Processing Time

Figure 4.5: ledger block processing time

The figure 4.5 displays the cumulative time taken for ledger_block_processing_time_sum
across three peers in a Hyperledger Fabric network on the residentschannel. This met-
ric typically represents the total time spent by a peer in processing blocks received from
the ordering service, which includes validation, execution of transactions, and committing
to the ledger and state database.

Observations

The graph illustrates strong, synchronized performance across all three peers on
the residentschannel for the ledger_block_processing_time_sum metric. Initially
(18:12–∼18:16), peers showed steady growth in processing time, indicating efficient trans-
action flow. Minor timing differences between peers reflect normal operational variance.
Between ∼18:16 and ∼18:18:30, the metric plateaued, signaling stable processing without
backlog. A sharp, coordinated drop around ∼18:18:30 suggests a successful, synchronized
reset. Following this, from ∼18:19 to 18:25, peers resumed steady growth, confirming the
networks resilience and efficient recovery.

73

chapter4 :Development and evaluation

Result

• Resilient and Efficient Network: The graph demonstrates a highly robust sys-
tem performing optimally under varying conditions.

• Consistent Block Processing:

– Steady growth phases confirm reliable transaction processing
– Peers maintain synchronization during active periods

• Efficient Load Handling:

– Smooth management of variable transaction volumes
– Stable performance during both active and plateau phases

• Coordinated System Reset:

– Synchronized behavior across all peers during reset
– Demonstrates strong network-wide coordination

• Rapid Recovery Capability:

– Immediate resumption of normal operations post-reset
– Maintains optimal performance levels after interruptions

• Overall Assessment:

– Well-orchestrated Hyperledger Fabric network
– Demonstrates high-level performance characteristics
– Robust architecture capable of handling operational variations

4.5 Implementation of the System

4.5.1 Login

The login process for the HexiBuilding system follows a role-based authentication mech-
anism to distinguish between administrators and residents. The steps are as follows:

• User Opens Login Page: The user (admin or resident) accesses the HexiBuilding
login interface.

• User Enters Credentials: The user provides their email address and password,
then clicks the Login button.

• Backend Authentication: The system verifies the submitted credentials against
the database. If the credentials are invalid, an error message such as "Invalid
credentials" is displayed.

74

chapter4 :Development and evaluation

• Role Identification: Upon successful authentication, the system retrieves the
user’s role:

– If the user is an administrator, the role is identified as "admin".
– If the user is a resident, the role is identified as "resident".

• Redirection Based on Role: The system redirects the user based on their role:

– If role = admin → redirect to the Admin Dashboard.
– If role = resident → redirect to the Resident Dashboard.

Figure 4.6: Login Interface

4.5.2 Dashboard of Admin

4.5.2.1 Overview:

Admin sees a dashboard overview with:

• Total number of residents

• Total apartments

• Total messages

• Visitor Attendance

75

chapter4 :Development and evaluation

Figure 4.7: Dashboard Overview

4.5.2.2 Manage Appartments:

The admin is responsible for managing apartment data within the system. This includes
the ability to add new apartments by specifying relevant details such as the apartment
Name, Description. In addition, the admin can update existing apartment information
to reflect changes or correct errors, and also has the authority to delete apartments when
they are no longer in use or relevant. These functionalities ensure that the apartment
records are accurate, up-to-date, and aligned with the current status of the building.

Figure 4.8: Manage Appartments

4.5.2.3 Manage Residents:

The admin has full control over resident management within the system. This includes the
ability to add new residents by entering their personal and apartment-related information,
as well as updating or deleting resident records when necessary. Additionally, the admin

76

chapter4 :Development and evaluation

can block or unblock residents based on policy violations or access requirements. When a
new resident is added, the system automatically generates a unique QR code that allows
them to access the building securely. Similarly, the admin can manage each residents list
of approved visitorsadding new visitors, editing details, blocking or removing themand for
each approved visitor, the system dynamically generates a QR code to facilitate secure
entry. This comprehensive management ensures that access is controlled and in full
compliance with the buildings security protocols.

Figure 4.9: Manage Residents

4.5.2.4 Manage Requests:

The admin can initiate a visitor access request to a resident by submitting the visitors
information. This request is then sent to the respective resident for approval. Once the
resident responds, the system automatically updates the request status from "pending" to
either "accepted" or "rejected" based on the residents decision. If the request is accepted,
the system securely generates a unique QR code for the visitor, granting them authorized
entry during the specified access period.

77

chapter4 :Development and evaluation

Figure 4.10: Manage Requests

4.5.2.5 Notifications/ Manage Messages:

Admin receive notifications and also manage messages.

78

chapter4 :Development and evaluation

4.5.2.6 Manage EntryLogs:

This page displays real-time records of residents and visitors entering or leaving the
building. It provides detailed logs including entry and exit timestamps, user identity
(resident or visitor), and access method used (QR code) like date of scan and time of
scan . This tracking mechanism enhances security by maintaining a transparent and
auditable history of all access events within the building.

4.5.2.7 Manage Block List:

If the admin blocks a resident, this page provides a detailed view of all blocked residents.
It displays comprehensive information including the name and reason and from date to

79

chapter4 :Development and evaluation

date and also from time to time...etc. This feature ensures accountability and helps
administrators monitor and manage restricted access cases effectively.

4.5.3 Resident Dashboard

4.5.3.1 Manage Profile:

4.5.3.2 Manage Visitors:

Each resident has the ability to manage their personal list of visitors within the system.
When a resident registers a new visitor, the system automatically generates a dynamic
QR code that grants the visitor access to the building. Additionally, residents have full
control over their visitor list, including the ability to edit visitor details, block specific
individuals, or remove them entirely. This functionality empowers residents to maintain
secure and personalized access for their guests.

80

chapter4 :Development and evaluation

4.5.3.3 Manage Requests:

When a resident receives an access request from the admin typically for a visitor the
resident has the option to either accept or reject the request. If the resident accepts it,
the system automatically generates a QR code for the visitor. This QR code serves as
a secure, time-sensitive credential that allows the visitor to enter the building, ensuring
controlled and authorized access.

4.5.3.4 Notifications/Messages:

Resident receive notifications and send/receive messages to/from admin.

81

chapter4 :Development and evaluation

4.5.4 Scan Page

This page is responsible for scanning and verifying the QR code information of Residents,
Registered Visitors, and Requested Visitors.

• For Residents, access is granted if the QR code ID is valid and the resident is not
blocked.

• For Registered Visitors, the system ensures that the QR code is valid, the visitor
is not blocked, and the code has not expired before granting access.

• For Requested Visitors, the QR code must be valid, the scheduled visit date must
match the current date, and the code must still be within its validity period. If all
these conditions are satisfied, the visitor is allowed entry into the building.

82

chapter4 :Development and evaluation

4.5.5 Guide

Each page in the system includes a help icon ("?"). When a user clicks this icon, a brief
explanation is displayed to guide them on how the page functions and how to use its
features effectively. This ensures a more user-friendly experience by providing immediate
assistance and improving system accessibility.

83

chapter4 :Development and evaluation

Figure 4.11: Exemple the guide in Manage Residents page

4.6 Conclusion

This chapter presented the implementation of the proposed system, covering the tools
used and key functional modules. The results demonstrated the systems reliability, re-
sponsiveness, and effective load handling, confirming that it meets the design goals and
is ready for further development or deployment.

84

General Conclusion

Access control in smart buildings has become a critical challenge as IoT and smart tech-
nologies continue to evolve. Traditional systems, which rely on centralized databases and
static permissions, are prone to security breaches, lack transparency, and struggle with
scalability. These inefficiencies highlight the need for a more secure, decentralized, and
auditable solution.

In this thesis, we proposed a blockchain-based access control system using Hyperledger
Fabric to address these challenges. Our solution eliminates single points of failure by
decentralizing control, ensures transparency through immutable logs of access events,
and improves scalability to accommodate growing numbers of users and access points.

Through this project, we designed and developed a secure, tamper-proof access control
framework that enhances security and accountability in smart buildings. The system
provides real-time access management, automated permission updates, and a verifiable
audit trailall while maintaining high performance.

As future work, we aim to expand the application of blockchain technology beyond
access control by integrating a property management module for buying, selling, and
renting apartments within smart buildings. This extension would leverage smart contracts
to automate transactions, ensure trustless agreements, and maintain a transparent ledger
of ownership and rental history.

By doing so, we can create a fully decentralized smart building ecosystem that en-
hances security, efficiency, and user convenience in all aspects of building management.

85

Bibliography

[1] Somia Sahraoui. “Mécanismes de sécurité pour lintégration des RCSFs à lIoT (In-
ternet of Things).” PhD thesis. Université de Batna 2, 2016.

[2] Ruchit Parekh. “Automating the design process for smart building technologies.”
In: World Journal of Advanced Research and Reviews 23.2 (2024).

[3] Leepakshi Bindra et al. “Flexible, decentralised access control for smart buildings
with smart contracts.” In: Cyber-Physical Systems 8.4 (July 2021), pp. 286–320.
issn: 2333-5785. doi: 10.1080/23335777.2021.1922502. url: http://dx.doi.
org/10.1080/23335777.2021.1922502.

[4] ServiceChannel. 7 Smart Building Technologies. Accessed on 26th April, 2025. 2025.
url: https://servicechannel.com/blog/7-smart-building-technologies/.

[5] Mid-Atlantic Controls. Benefits of Smart Building Management Systems. Accessed
on 26th April, 2025. 2025. url: https://info.midatlanticcontrols.com/blog/
benefits-of-smart-building-management-systems.

[6] U.S. Department of Energy. Wireless Occupancy Sensors for Lighting Controls: An
Applications Guide for Federal Facility Managers. Pages 1--3. 2016. url: https:
//www.energy.gov/femp/articles/wireless-occupancy-sensors-lighting-
controls-applications-guide-federal-facility.

[7] MEP Academy. How Occupancy and Vacancy Sensors Work. Accessed on 27th
April, 2025. 2022. url: https://mepacademy.com/how-occupancy-and-vacancy-
sensors-work/.

[8] Renkeer. Types of Smart Building Sensors With IoT Technology. Accessed on 27th
April, 2025. 2025. url: https://www.renkeer.com/smart-building-sensors-
types/.

[9] Designing Buildings Wiki. Building Energy Management Systems (BEMS). Ac-
cessed on 26th April, 2025. 2025. url: https://www.designingbuildings.co.
uk/wiki/Building_energy_management_systems.

[10] Archova Visuals. The Future of IT and Communications Infrastructure in Smart
Commercial Buildings. Accessed on 27th April, 2025. 2025. url: https://archovavisuals.
com/communications-in-smart-commercial-buildings/.

[11] Beatrice Witzgall and Andy McMillan. BACnet Provides an Ideal Smart Building
Backbone. Accessed: 2025-05-15. Oct. 2021. url: https://www.buildings.com/
building-systems-om/lighting/article/55257368/bacnet-provides-an-
ideal-smart-building-backbone-magazine.

86

https://doi.org/10.1080/23335777.2021.1922502
http://dx.doi.org/10.1080/23335777.2021.1922502
http://dx.doi.org/10.1080/23335777.2021.1922502
https://servicechannel.com/blog/7-smart-building-technologies/
https://info.midatlanticcontrols.com/blog/benefits-of-smart-building-management-systems
https://info.midatlanticcontrols.com/blog/benefits-of-smart-building-management-systems
https://www.energy.gov/femp/articles/wireless-occupancy-sensors-lighting-controls-applications-guide-federal-facility
https://www.energy.gov/femp/articles/wireless-occupancy-sensors-lighting-controls-applications-guide-federal-facility
https://www.energy.gov/femp/articles/wireless-occupancy-sensors-lighting-controls-applications-guide-federal-facility
https://mepacademy.com/how-occupancy-and-vacancy-sensors-work/
https://mepacademy.com/how-occupancy-and-vacancy-sensors-work/
https://www.renkeer.com/smart-building-sensors-types/
https://www.renkeer.com/smart-building-sensors-types/
https://www.designingbuildings.co.uk/wiki/Building_energy_management_systems
https://www.designingbuildings.co.uk/wiki/Building_energy_management_systems
https://archovavisuals.com/communications-in-smart-commercial-buildings/
https://archovavisuals.com/communications-in-smart-commercial-buildings/
https://www.buildings.com/building-systems-om/lighting/article/55257368/bacnet-provides-an-ideal-smart-building-backbone-magazine
https://www.buildings.com/building-systems-om/lighting/article/55257368/bacnet-provides-an-ideal-smart-building-backbone-magazine
https://www.buildings.com/building-systems-om/lighting/article/55257368/bacnet-provides-an-ideal-smart-building-backbone-magazine

[12] DesignHorizons. IoT in Modern Buildings: Key Components and Applications. Ac-
cessed on 27th April, 2025. 2025. url: https://designhorizons.org/iot-in-
modern-buildings-key-components-and-applications/.

[13] Francisco-Javier Ferrández-Pastor et al. “Deployment of IoT Edge and Fog Com-
puting Technologies to Develop Smart Building Services.” In: Sustainability 10.11
(2018), p. 3832. doi: 10.3390/su10113832. url: https://www.mdpi.com/2071-
1050/10/11/3832.

[14] Architecture Industry. The Evolution of Smart Buildings and IoT in Architecture.
Accessed on 27th April, 2025. 2025. url: https : / / architectureindustry .
in / the - evolution - of - smart - buildings - and - iot - in - architecture -
202209261050/.

[15] Mervi Himanen. “The Significance of User Involvement in Smart Buildings Within
Smart Cities.” In: Dec. 2017, pp. 265–314. isbn: 978-3-319-44922-7. doi: 10.1007/
978-3-319-44924-1_13.

[16] Intelligent Buildings. Maximizing Resource Utilization in Your Smart Building.
Accessed: April 29, 2025. 2025. url: https : / / intelligentbuildings . com /
maximizing-resource-utilization-in-your-smart-building/.

[17] S. Bhatia and M. Saini. “IoTA Promising Solution to Energy Management in Smart
Buildings: A Systematic Review, Applications, Barriers, and Future Scope.” In:
Buildings 14.11 (2024), p. 3446. doi: 10.3390/buildings14113446. url: https:
//doi.org/10.3390/buildings14113446.

[18] Security Journal Americas. Transforming Multifamily Living with Intelligent Build-
ings. Accessed: April 29, 2025. 2023. url: https://securityjournalamericas.
com/multifamily-intelligent-buildings/.

[19] Eseye. IoT in Smart Buildings: Foundations for Success. Accessed: April 29, 2025.
2023. url: https : / / www . eseye . com / resources / blogs / iot - in - smart -
buildings-foundations-for-success/.

[20] Dom Beveridge and Donald Davidoff. Access Control and the Future of Smart Build-
ings. Tech. rep. Accessed: April 29, 2025. D2 Demand Solutions, 2021. url: https:
//20for20.com/wp- content/uploads/2022/04/Apr21_D2_Latch_Access-
Control_White-Paper.pdf.

[21] Nian Xue et al. “An Access Control System for Intelligent Buildings.” In: ACM,
Dec. 2016. doi: 10.4108/eai.18-6-2016.2264493.

[22] Scott Harper et al. “User Privacy Concerns in Commercial Smart Buildings.” In:
Journal of Computer Security 30.3 (2022), pp. 241–273. doi: 10.3233/JCS-210035.
url: https://journals.sagepub.com/doi/10.3233/JCS-210035.

[23] Vincent Hu, D. Kuhn, and David Ferraiolo. “Attribute-Based Access Control.” In:
Computer 48 (Feb. 2015), pp. 85–88. doi: 10.1109/MC.2015.33.

[24] Axiomatics. Intro to Attribute-Based Access Control (ABAC). Accessed: April 29,
2025. 2023. url: https://axiomatics.com/blog/intro-to-attribute-based-
access-control-abac/.

[25] Daniela Popescu and Marcela Prada. “Some Aspects about Smart Building Man-
agement Systems -Solutions for Green, Secure and Smart Buildings.” In: Mar. 2013.
doi: 10.13140/RG.2.1.3057.8644.

87

https://designhorizons.org/iot-in-modern-buildings-key-components-and-applications/
https://designhorizons.org/iot-in-modern-buildings-key-components-and-applications/
https://doi.org/10.3390/su10113832
https://www.mdpi.com/2071-1050/10/11/3832
https://www.mdpi.com/2071-1050/10/11/3832
https://architectureindustry.in/the-evolution-of-smart-buildings-and-iot-in-architecture-202209261050/
https://architectureindustry.in/the-evolution-of-smart-buildings-and-iot-in-architecture-202209261050/
https://architectureindustry.in/the-evolution-of-smart-buildings-and-iot-in-architecture-202209261050/
https://doi.org/10.1007/978-3-319-44924-1_13
https://doi.org/10.1007/978-3-319-44924-1_13
https://intelligentbuildings.com/maximizing-resource-utilization-in-your-smart-building/
https://intelligentbuildings.com/maximizing-resource-utilization-in-your-smart-building/
https://doi.org/10.3390/buildings14113446
https://doi.org/10.3390/buildings14113446
https://doi.org/10.3390/buildings14113446
https://securityjournalamericas.com/multifamily-intelligent-buildings/
https://securityjournalamericas.com/multifamily-intelligent-buildings/
https://www.eseye.com/resources/blogs/iot-in-smart-buildings-foundations-for-success/
https://www.eseye.com/resources/blogs/iot-in-smart-buildings-foundations-for-success/
https://20for20.com/wp-content/uploads/2022/04/Apr21_D2_Latch_Access-Control_White-Paper.pdf
https://20for20.com/wp-content/uploads/2022/04/Apr21_D2_Latch_Access-Control_White-Paper.pdf
https://20for20.com/wp-content/uploads/2022/04/Apr21_D2_Latch_Access-Control_White-Paper.pdf
https://doi.org/10.4108/eai.18-6-2016.2264493
https://doi.org/10.3233/JCS-210035
https://journals.sagepub.com/doi/10.3233/JCS-210035
https://doi.org/10.1109/MC.2015.33
https://axiomatics.com/blog/intro-to-attribute-based-access-control-abac/
https://axiomatics.com/blog/intro-to-attribute-based-access-control-abac/
https://doi.org/10.13140/RG.2.1.3057.8644

[26] Amir Sekhavat et al. Navigating the AI Revolution in Smart Buildings: Oppor-
tunities, Roadblocks, and Strategies. Accessed: May 1, 2025. 2025. url: https:
//tiaonline.org/navigating- the- ai- revolution- in- smart- buildings-
opportunities-roadblocks-and-strategies/.

[27] June Young Park et al. “A critical review of field implementations of occupant-
centric building controls.” In: Building and Environment 165 (2019), p. 106351.
doi: 10.1016/j.buildenv.2019.106351. url: https://www.sciencedirect.
com/science/article/pii/S036013231930561X.

[28] Imanol Martín Toral et al. “Introducing Security Mechanisms in OpenFog-Compliant
Smart Building Applications.” In: Electronics 13.15 (2024), p. 2900. doi: 10.3390/
electronics13152900. url: https://www.mdpi.com/2079-9292/13/15/2900.

[29] Oak Tree Technologies. An Overview of Hyperledger: Understanding the Framework.
Accessed on 29th April, 2025. 2025. url: https://www.oak-tree.tech/blog/
hyperledger-overview.

[30] Peter Gratton. What Is a Block in the Crypto Blockchain, and How Does It Work?
Accessed: April 30, 2025. 2025. url: https://www.investopedia.com/terms/b/
block-bitcoin-block.asp.

[31] MoonPay. What are Blockchain Nodes? Accessed: April 30, 2025. 2025. url: https:
//www.moonpay.com/learn/blockchain/what-are-blockchain-nodes.

[32] UpGrad. What is a Blockchain Transaction? Accessed: April 30, 2025. 2025. url:
https://www.upgrad.com/blog/what-is-blockchain-transaction/.

[33] Somia Sahraoui and Abdelmalik Bachir. “Lightweight Consensus Mechanisms in
the Internet of Blockchained Things: Thorough Analysis and Research Directions.”
In: Digital Communications and Networks (2025).

[34] Unknown. Major components of blockchain. Accessed: 2025-05-04. 2022. url: https:
//www.researchgate.net/figure/Major-components-of-blockchain_fig1_
357950461.

[35] Amazon Web Services. What is Blockchain? Accessed: April 29, 2025. 2025. url:
https://aws.amazon.com/what-is/blockchain/?aws-products-all.sort-
by=item.additionalFields.productNameLowercase&aws-products-all.sort-
order=asc.

[36] Henry Koko. Blockchain Technology: Discover 5 Unique Features of Blockchain
Technology! Accessed: April 30, 2025. 2024. url: https://cryptopulseblog.
com/blockchain-technologydiscover-5-unique-features-of-blockchain-
technology/.

[37] Casey Lindner. The Difference Between Encryption, Hashing, and Salting. Ac-
cessed: 2025-05-04. 2019. url: https://www.thesslstore.com/blog/difference-
encryption-hashing-salting/.

[38] Arthur D. Little. How Blockchain Platforms Enhance Telecom & Media. Accessed:
2025-05-04. 2022. url: https://www.adlittle.com/en/insights/viewpoints/
how-blockchain-platforms-enhance-telecom-media.

88

https://tiaonline.org/navigating-the-ai-revolution-in-smart-buildings-opportunities-roadblocks-and-strategies/
https://tiaonline.org/navigating-the-ai-revolution-in-smart-buildings-opportunities-roadblocks-and-strategies/
https://tiaonline.org/navigating-the-ai-revolution-in-smart-buildings-opportunities-roadblocks-and-strategies/
https://doi.org/10.1016/j.buildenv.2019.106351
https://www.sciencedirect.com/science/article/pii/S036013231930561X
https://www.sciencedirect.com/science/article/pii/S036013231930561X
https://doi.org/10.3390/electronics13152900
https://doi.org/10.3390/electronics13152900
https://www.mdpi.com/2079-9292/13/15/2900
https://www.oak-tree.tech/blog/hyperledger-overview
https://www.oak-tree.tech/blog/hyperledger-overview
https://www.investopedia.com/terms/b/block-bitcoin-block.asp
https://www.investopedia.com/terms/b/block-bitcoin-block.asp
https://www.moonpay.com/learn/blockchain/what-are-blockchain-nodes
https://www.moonpay.com/learn/blockchain/what-are-blockchain-nodes
https://www.upgrad.com/blog/what-is-blockchain-transaction/
https://www.researchgate.net/figure/Major-components-of-blockchain_fig1_357950461
https://www.researchgate.net/figure/Major-components-of-blockchain_fig1_357950461
https://www.researchgate.net/figure/Major-components-of-blockchain_fig1_357950461
https://aws.amazon.com/what-is/blockchain/?aws-products-all.sort-by=item.additionalFields.productNameLowercase&aws-products-all.sort-order=asc
https://aws.amazon.com/what-is/blockchain/?aws-products-all.sort-by=item.additionalFields.productNameLowercase&aws-products-all.sort-order=asc
https://aws.amazon.com/what-is/blockchain/?aws-products-all.sort-by=item.additionalFields.productNameLowercase&aws-products-all.sort-order=asc
https://cryptopulseblog.com/blockchain-technologydiscover-5-unique-features-of-blockchain-technology/
https://cryptopulseblog.com/blockchain-technologydiscover-5-unique-features-of-blockchain-technology/
https://cryptopulseblog.com/blockchain-technologydiscover-5-unique-features-of-blockchain-technology/
https://www.thesslstore.com/blog/difference-encryption-hashing-salting/
https://www.thesslstore.com/blog/difference-encryption-hashing-salting/
https://www.adlittle.com/en/insights/viewpoints/how-blockchain-platforms-enhance-telecom-media
https://www.adlittle.com/en/insights/viewpoints/how-blockchain-platforms-enhance-telecom-media

[39] Rapid Innovation. Consensus Mechanisms in Blockchain: Proof of Work vs. Proof of
Stake and Beyond. Accessed: April 30, 2025. 2025. url: https://www.rapidinnovation.
io/post/consensus-mechanisms-in-blockchain-proof-of-work-vs-proof-
of-stake-and-beyond.

[40] Dave Patten. Consensus Mechanisms Explained: PoW, PoS, and Beyond. Accessed:
2025-05-04. 2025. url: https : / / coinsbench . com / consensus - mechanisms -
explained-pow-pos-and-beyond-9121c8ad9eea.

[41] bandonkeyea_78374. Upgradable Smart Contracts in Solidity: A Comprehensive
Guide. Accessed: 2025-05-04. 2025. url: https://medium.com/@bandonkeyea_
78374/upgradable-smart-contracts-in-solidity-a-comprehensive-guide-
e5627c896ea4.

[42] GeeksforGeeks. How Does the Blockchain Work? Accessed: 2025-05-04. 2021. url:
https://www.geeksforgeeks.org/how-does-the-blockchain-work/.

[43] GeeksforGeeks. Blockchain Structure. Accessed on 29th April, 2025. 2025. url:
https://www.geeksforgeeks.org/blockchain-structure/.

[44] Hyperledger Fabric Contributors. What is Hyperledger Fabric? Accessed: 2025-05-01.
2024. url: https://hyperledger-fabric.readthedocs.io/en/latest/whatis.
html.

[45] Hyperledger Fabric Contributors. Membership Service Provider (MSP). Accessed:
2025-05-01. 2024. url: https://hyperledger- fabric.readthedocs.io/en/
release-2.5/membership/membership.html.

[46] Hyperledger Fabric Documentation. Using CouchDB. Accessed: 2025-05-01. 2024.
url: https://hyperledger- fabric.readthedocs.io/en/latest/couchdb_
tutorial.html.

[47] Hyperledger Fabric Contributors. Endorsement Policies. Accessed: 2025-05-01. 2024.
url: https : / / hyperledger - fabric . readthedocs . io / en / release - 2 . 5 /
endorsement-policies.html.

[48] AST Consulting. Understanding Channels in Hyperledger Fabric. Accessed: 2025-05-01.
2023. url: https://astconsulting.in/blockchain/hyperledger- fabric/
understanding-channels-hyperledger.

[49] Hyperledger Fabric Contributors. Chaincode Hyperledger Fabric Documentation.
Accessed: 2025-05-01. 2019. url: https://hyperledger-fabric.readthedocs.
io/en/release-1.3/chaincode.html.

[50] AST Consulting. Membership Service Providers in Hyperledger Fabric. Accessed:
2025-05-01. 2023. url: https://astconsulting.in/blockchain/membership-
service-providers-in-hyperledger-fabric.

[51] Hyperledger Fabric Documentation. Hyperledger Fabric: Blockchain Network. Ac-
cessed: 2025-05-04. 2022. url: https://hyperledger-fabric.readthedocs.io/
en/release-2.2/network/network.html.

[52] Hyperledger Fabric Documentation. Creating a Channel Hyperledger Fabric Doc-
umentation. Accessed: 2025-05-04. 2022. url: https://hyperledger- fabric.
readthedocs.io/en/release-2.2/create_channel/create_channel_overview.
html.

89

https://www.rapidinnovation.io/post/consensus-mechanisms-in-blockchain-proof-of-work-vs-proof-of-stake-and-beyond
https://www.rapidinnovation.io/post/consensus-mechanisms-in-blockchain-proof-of-work-vs-proof-of-stake-and-beyond
https://www.rapidinnovation.io/post/consensus-mechanisms-in-blockchain-proof-of-work-vs-proof-of-stake-and-beyond
https://coinsbench.com/consensus-mechanisms-explained-pow-pos-and-beyond-9121c8ad9eea
https://coinsbench.com/consensus-mechanisms-explained-pow-pos-and-beyond-9121c8ad9eea
https://medium.com/@bandonkeyea_78374/upgradable-smart-contracts-in-solidity-a-comprehensive-guide-e5627c896ea4
https://medium.com/@bandonkeyea_78374/upgradable-smart-contracts-in-solidity-a-comprehensive-guide-e5627c896ea4
https://medium.com/@bandonkeyea_78374/upgradable-smart-contracts-in-solidity-a-comprehensive-guide-e5627c896ea4
https://www.geeksforgeeks.org/how-does-the-blockchain-work/
https://www.geeksforgeeks.org/blockchain-structure/
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/endorsement-policies.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/endorsement-policies.html
https://astconsulting.in/blockchain/hyperledger-fabric/understanding-channels-hyperledger
https://astconsulting.in/blockchain/hyperledger-fabric/understanding-channels-hyperledger
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/create_channel/create_channel_overview.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/create_channel/create_channel_overview.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/create_channel/create_channel_overview.html

[53] Hyperledger Fabric Documentation. Ordering Service Hyperledger Fabric Docu-
mentation. Accessed: 2025-05-04. 2022. url: https : / / hyperledger - fabric .
readthedocs.io/en/release-2.2/orderer/ordering_service.html.

[54] IBM Documentation. Deploy a smart contract. https://www.ibm.com/docs/en/
hlf- support/1.0.0?topic=contracts- deploy- smart- contract. Accessed:
2025-05-01. 2023.

[55] IBM Documentation. Hyperledger Fabric Reference. https://www.ibm.com/docs/
en/blockchain- platform/2.5.2?topic=reference- hyperledger- fabric.
Accessed: 2025-05-01. 2024.

[56] IBM Corporation. What is Hyperledger? Accessed: 2025-05-04. 2024. url: https:
//www.ibm.com/think/topics/hyperledger.

[57] Kaleido. 10 Use Cases for Hyperledger Fabric. Accessed: 2025-05-04. 2023. url:
https://www.kaleido.io/blockchain-blog/10-use-cases-for-hyperledger-
fabric.

[58] Lakhveer Bindra et al. “Flexible, Decentralized Access Control for Smart Buildings
with Smart Contracts.” In: arXiv preprint arXiv:2010.08176 (2020). url: https:
//arxiv.org/abs/2010.08176.

[59] NineSmart. Smart Access | QR Code Access Control. https://ninesmart.io/
smart-access/. Accessed: 2025-06-05.

[60] Jian Wu et al. “SPCL: A Smart Access Control System That Supports Blockchain.”
In: Applied Sciences 14.7 (2024), p. 2978. doi: 10.3390/app14072978. url: https:
//doi.org/10.3390/app14072978.

[61] Visual Studio Code. Setup Overview. Accessed: 2025-05-22. 2025. url: https :
//code.visualstudio.com/docs/setup/setup-overview.

[62] Docker Inc. Docker Overview. Accessed: 2025-05-22. 2025. url: https://docs.
docker.com/get-started/docker-overview/.

[63] GeeksforGeeks. What is Windows Subsystem for Linux (WSL)? Accessed: 2025-05-23.
2025. url: https://www.geeksforgeeks.org/what-is-windows-subsystem-
for-linux-wsl/#what-is-windows-subsystem-for-linux-wsl-.

[64] Meta Platforms Inc. React Official Website. Accessed: 2025-05-22. 2025. url: https:
//react.dev/.

[65] Tailwind Labs. Tailwind CSS Official Website. Accessed: 2025-05-22. 2025. url:
https://tailwindcss.com/.

[66] OpenJS Foundation. About Node.js. Accessed: 2025-05-22. 2025. url: https://
nodejs.org/en/about.

[67] OpenJS Foundation. Express - Node.js Web Application Framework. Accessed: 2025-05-22.
2025. url: https://expressjs.com/.

[68] Go Developers. The Go Programming Language. Accessed: 2025-05-22. 2025. url:
https://go.dev/.

[69] Hyperledger Foundation. What is Hyperledger Fabric? Accessed: 2025-05-22. 2025.
url: https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html.

90

https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=contracts-deploy-smart-contract
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=contracts-deploy-smart-contract
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.ibm.com/think/topics/hyperledger
https://www.ibm.com/think/topics/hyperledger
https://www.kaleido.io/blockchain-blog/10-use-cases-for-hyperledger-fabric
https://www.kaleido.io/blockchain-blog/10-use-cases-for-hyperledger-fabric
https://arxiv.org/abs/2010.08176
https://arxiv.org/abs/2010.08176
https://ninesmart.io/smart-access/
https://ninesmart.io/smart-access/
https://doi.org/10.3390/app14072978
https://doi.org/10.3390/app14072978
https://doi.org/10.3390/app14072978
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://www.geeksforgeeks.org/what-is-windows-subsystem-for-linux-wsl/#what-is-windows-subsystem-for-linux-wsl-
https://www.geeksforgeeks.org/what-is-windows-subsystem-for-linux-wsl/#what-is-windows-subsystem-for-linux-wsl-
https://react.dev/
https://react.dev/
https://tailwindcss.com/
https://nodejs.org/en/about
https://nodejs.org/en/about
https://expressjs.com/
https://go.dev/
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html

[70] Hyperledger Foundation. Using CouchDB as the State Database. Accessed: 2025-05-22.
2025. url: https : / / hyperledger - fabric . readthedocs . io / en / latest /
couchdb_tutorial.html.

[71] MongoDB Inc. Why Use MongoDB? Accessed: 2025-05-22. 2025. url: https://
www.mongodb.com/resources/products/fundamentals/why-use-mongodb?utm_
source=chatgpt.com.

[72] Postman Inc. What is Postman? Accessed: 2025-05-23. 2025. url: https://www.
postman.com/product/what-is-postman/.

[73] Hyperledger Explorer Project. Hyperledger Explorer Documentation: Introduction.
Accessed: 2025-05-26. 2024. url: https://blockchain-explorer.readthedocs.
io/en/main/introduction.html.

[74] Adapter for Brother PTouch Label Makers 8.2Ft Long Cord. https : / / www .
amazon.com/dp/B079FXKHY9. Accessed: 2025-06-08. 2025.

[75] ATmega328P Microcontroller Board with Cable for Arduino Nano. https://www.
amazon.com/dp/B00NLAMS9C. Accessed: 2025-06-08. 2025.

[76] Rees52. DC 12V Electric Solenoid Lock Tongue Upward Assembly for Doors, Cab-
inet, Drawer. Accessed: 2025-06-07. 2025. url: https://rees52.com/products/
dc-12v-electric-solenoid-lock-toungue-upward-assembly-for-doors-
cabinet-drawer-ab102.

[77] RFID Card Duplicator 13.56MHz Encrypted Programmer. https://www.amazon.
com/dp/B088FB92XL. Accessed: 2025-06-08. 2025.

91

https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html
https://www.mongodb.com/resources/products/fundamentals/why-use-mongodb?utm_source=chatgpt.com
https://www.mongodb.com/resources/products/fundamentals/why-use-mongodb?utm_source=chatgpt.com
https://www.mongodb.com/resources/products/fundamentals/why-use-mongodb?utm_source=chatgpt.com
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/
https://blockchain-explorer.readthedocs.io/en/main/introduction.html
https://blockchain-explorer.readthedocs.io/en/main/introduction.html
https://www.amazon.com/dp/B079FXKHY9
https://www.amazon.com/dp/B079FXKHY9
https://www.amazon.com/dp/B00NLAMS9C
https://www.amazon.com/dp/B00NLAMS9C
https://rees52.com/products/dc-12v-electric-solenoid-lock-toungue-upward-assembly-for-doors-cabinet-drawer-ab102
https://rees52.com/products/dc-12v-electric-solenoid-lock-toungue-upward-assembly-for-doors-cabinet-drawer-ab102
https://rees52.com/products/dc-12v-electric-solenoid-lock-toungue-upward-assembly-for-doors-cabinet-drawer-ab102
https://www.amazon.com/dp/B088FB92XL
https://www.amazon.com/dp/B088FB92XL

Appendix

Appendix: Smart Contracts

1 package main
2

3 import (
4 " encoding /json" "fmt" " strconv " "time"
5

6 " github .com/ hyperledger /fabric -chaincode -go/shim"
7 sc " github .com/ hyperledger /fabric -protos -go/peer"
8

9)
10

11 type ResidentsContract struct {}
12

13

14 func (rc * ResidentsContract) Init(stub
shim. ChaincodeStubInterface) sc. Response {

15 return shim. Success (nil)
16 }
17

18

19 func containsVisitorInfo (visitors [] VisitorInfo , visitorId
string) bool {

20 for _, v := range visitors {
21 if v. VisitorId == visitorId {
22 return true
23 }
24 }
25 return false
26 }
27

28 func containsString (slice [] string , value string) bool {
29 for _, v := range slice {
30 if v == value {
31 return true
32 }
33 }
34 return false
35 }
36 func generatePermanentQRCode (userId string) string {
37 return fmt. Sprintf ("QR -RESIDENT -%s", userId)
38 }
39

40 func (rc * ResidentsContract) RegisterResident (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

41 if len(args) < 8 {
42 return shim.Error(" Required : ResidentID , Name , Email ,

Phone , Gender , MaritalStatus , ResidentType ,
Apartment ")

43 }
44

92

Appendix

45 residentId := args [0]
46 name := args [1]
47 email := args [2]
48 phone := args [3]
49 gender := args [4]
50 maritalStatus := args [5]
51 residentType := args [6]
52 apartment := args [7]
53

54 existingResident , err := stub. GetState (" RESIDENT_ " +
residentId)

55 if err != nil {
56 return shim.Error(fmt. Sprintf (" Failed to check existing

resident : %s", err.Error ()))
57 }
58 if existingResident != nil {
59 return shim.Error(fmt. Sprintf (" Resident %s already

exists ", residentId))
60 }
61

62 qrCode := residentId
63 timestamp := time.Now ().Unix ()
64

65

66 resident := Resident {
67 DocType : " resident ", queries
68 ResidentID : residentId ,
69 UserID : residentId ,
70 Name: name ,
71 Email : email ,
72 Phone : phone ,
73 Gender : gender ,
74 Apartment : apartment ,
75 MaritalStatus : maritalStatus ,
76 ResidentType : residentType ,
77 QRCodeData : qrCode ,
78 QRCodeImage : residentId + ".png",
79 CreatedAt : timestamp ,
80 UpdatedAt : timestamp ,
81 }
82

83 residentBytes , err := json. Marshal (resident)
84 if err != nil {
85 return shim.Error(fmt. Sprintf (" Failed to marshal

resident : %s", err.Error ()))
86 }
87

88

89 err = stub. PutState (" RESIDENT_ "+residentId , residentBytes)
90 if err != nil {

93

Appendix

91 return shim.Error(fmt. Sprintf (" Failed to store
resident : %s", err.Error ()))

92 }
93

94 return shim. Success (residentBytes)
95 }
96 func (rc * ResidentsContract) UpdateResident (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
97 if len(args) < 8 {
98 return shim.Error(" Required : ResidentID , Name , Email ,

Phone , Gender , MaritalStatus , ResidentType ,
Apartment ")

99 }
100

101 residentId := args [0]
102 name := args [1]
103 email := args [2]
104 phone := args [3]
105 gender := args [4]
106 maritalStatus := args [5]
107 residentType := args [6]
108 apartment := args [7]
109

110 residentKey := " RESIDENT_ " + residentId
111 existingResidentBytes , err := stub. GetState (residentKey)
112 if err != nil {
113 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
114 }
115 if existingResidentBytes == nil {
116 return shim.Error(fmt. Sprintf (" Resident %s does not

exist ", residentId))
117 }
118

119 var existingResident Resident
120 err = json. Unmarshal (existingResidentBytes ,

& existingResident)
121 if err != nil {
122 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
123 }
124

125 if existingResident . Apartment != apartment {
126 buildingBytes , err := stub. GetState (" BUILDING_CONFIG ")
127 if err != nil {
128 return shim.Error(fmt. Sprintf (" Failed to read

building config : %s", err.Error ()))
129 }
130 if buildingBytes == nil {
131 return shim.Error(" Building configuration not

found ")

94

Appendix

132 }
133

134 var building BuildingConfig
135 err = json. Unmarshal (buildingBytes , & building)
136 if err != nil {
137 return shim.Error(fmt. Sprintf (" Failed to unmarshal

building config : %s", err.Error ()))
138 }
139

140 residentsCount , err :=
rc. getResidentsCountInApartment (stub , apartment)

141 if err != nil {
142 return shim.Error(fmt. Sprintf (" Failed to count

residents : %s", err.Error ()))
143 }
144

145 if residentsCount >= building . ResidentsPerApartment {
146 return shim.Error(" Maximum number of residents for

this apartment reached ")
147 }
148 }
149

150 existingResident .Name = name
151 existingResident .Email = email
152 existingResident .Phone = phone
153 existingResident . Gender = gender
154 existingResident . MaritalStatus = maritalStatus
155 existingResident . ResidentType = residentType
156 existingResident . Apartment = apartment
157 existingResident . UpdatedAt = time.Now ().Unix ()
158

159

160 updatedResidentBytes , err := json. Marshal (existingResident)
161 if err != nil {
162 return shim.Error(fmt. Sprintf (" Failed to marshal

updated resident : %s", err.Error ()))
163 }
164

165 err = stub. PutState (residentKey , updatedResidentBytes)
166 if err != nil {
167 return shim.Error(fmt. Sprintf (" Failed to update

resident : %s", err.Error ()))
168 }
169

170 return shim. Success (updatedResidentBytes)
171 }
172

173 func (rc * ResidentsContract) BlockResident (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

174 if len(args) < 6 {

95

Appendix

175 return shim.Error(" Required : ResidentID , Reason ,
BlockedBy , FromDate , FromTime , ToDate , ToTime ")

176 }
177

178 residentId := args [0]
179 reason := args [1]
180 blockedBy := args [2]
181 fromDate := args [3]
182 fromTime := args [4]
183 toDate := args [5]
184 toTime := args [6]
185

186 residentKey := " RESIDENT_ " + residentId
187 residentBytes , err := stub. GetState (residentKey)
188 if err != nil {
189 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
190 }
191 if residentBytes == nil {
192 return shim.Error(fmt. Sprintf (" Resident %s does not

exist ", residentId))
193 }
194

195 blockKey := " BLOCK_ " + residentId
196 existingBlock , _ := stub. GetState (blockKey)
197 if existingBlock != nil {
198 return shim.Error(fmt. Sprintf (" Resident %s is already

blocked ", residentId))
199 }
200

201

202 block := BlockRecord {
203 DocType : " block ",
204 ResidentID : residentId ,
205 Reason : reason ,
206 BlockedBy : blockedBy ,
207 FromDateTime : fmt. Sprintf ("%sT%s", fromDate , fromTime),
208 ToDateTime : fmt. Sprintf ("%sT%s", toDate , toTime),
209 CreatedAt : time.Now ().Unix (),
210 }
211

212 blockBytes , err := json. Marshal (block)
213 if err != nil {
214 return shim.Error(fmt. Sprintf (" Failed to marshal block

record : %s", err.Error ()))
215 }
216

217

218 err = stub. PutState (blockKey , blockBytes)
219 if err != nil {

96

Appendix

220 return shim.Error(fmt. Sprintf (" Failed to block
resident : %s", err.Error ()))

221 }
222

223

224 var resident Resident
225 err = json. Unmarshal (residentBytes , & resident)
226 if err != nil {
227 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
228 }
229

230 resident . IsBlocked = true
231 resident . UpdatedAt = time.Now ().Unix ()
232

233 updatedResidentBytes , _ := json. Marshal (resident)
234 stub. PutState (residentKey , updatedResidentBytes)
235

236 return shim. Success (blockBytes)
237 }
238 func (rc * ResidentsContract) GetResident (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
239

240 if len(args) != 1 {
241 return shim.Error(" Required : ResidentID ")
242 }
243

244 residentId := args [0]
245

246

247 residentBytes , err := stub. GetState (" RESIDENT_ " + residentId)
248 if err != nil {
249 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
250 }
251 if residentBytes == nil {
252 return shim.Error(fmt. Sprintf (" Resident %s does not

exist ", residentId))
253 }
254

255 return shim. Success (residentBytes)
256 }
257 func (rc * ResidentsContract) UnblockResident (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
258 if len(args) < 1 {
259 return shim.Error(" Required : ResidentID ")
260 }
261

262 residentId := args [0]
263

264

97

Appendix

265 residentKey := " RESIDENT_ " + residentId
266 residentBytes , err := stub. GetState (residentKey)
267 if err != nil {
268 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
269 }
270 if residentBytes == nil {
271 return shim.Error(fmt. Sprintf (" Resident %s does not

exist ", residentId))
272 }
273

274

275 blockKey := " BLOCK_ " + residentId
276 blockBytes , err := stub. GetState (blockKey)
277 if err != nil {
278 return shim.Error(fmt. Sprintf (" Failed to read block

record : %s", err.Error ()))
279 }
280 if blockBytes == nil {
281 return shim.Error(fmt. Sprintf (" Resident %s is not

blocked ", residentId))
282 }
283

284 err = stub. DelState (blockKey)
285 if err != nil {
286 return shim.Error(fmt. Sprintf (" Failed to unblock

resident : %s", err.Error ()))
287 }
288 var resident Resident
289 err = json. Unmarshal (residentBytes , & resident)
290 if err != nil {
291 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
292 }
293

294 resident . IsBlocked = false
295 resident . UpdatedAt = time.Now ().Unix ()
296

297 updatedResidentBytes , _ := json. Marshal (resident)
298 stub. PutState (residentKey , updatedResidentBytes)
299

300 return shim. Success (nil)
301 }
302 func (rc * ResidentsContract) getResidentsCountInApartment (stub

shim. ChaincodeStubInterface , apartment string) (int , error) {
303

304 queryString := fmt. Sprintf (‘{
305 " selector ": {
306 " docType ": " resident ",
307 " Apartment ": "%s"
308 }

98

Appendix

309 }‘, apartment)
310

311 resultsIterator , err := stub. GetQueryResult (queryString)
312 if err != nil {
313 return 0, err
314 }
315 defer resultsIterator .Close ()
316

317 count := 0
318 for resultsIterator . HasNext () {
319 _, err := resultsIterator .Next ()
320 if err != nil {
321 return 0, err
322 }
323 count ++
324 }
325

326 return count , nil
327 }
328

329

330 func generateVisitorQRCode (visitorId string) string {
331 currentTime := time.Now (). Format ("2006 -01 -02 15:04:05 ")
332 return fmt. Sprintf ("QR -VISITOR -%s-%s", visitorId , currentTime)
333 }
334

335

336 func (rc * ResidentsContract) AddVisitor (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

337 if len(args) < 7 {
338 return shim.Error(" Required : ResidentID , VisitorID ,

FullName , Phone , VisitTimeFrom , VisitTimeTo ,
Relationship ")

339 }
340

341 residentId := args [0]
342 visitorId := args [1]
343 fullName := args [2]
344 phone := args [3]
345 visitTimeFrom := args [4]
346 visitTimeTo := args [5]
347 relationship := args [6]
348

349 residentKey := " RESIDENT_ " + residentId
350 residentBytes , err := stub. GetState (residentKey)
351 if err != nil {
352 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
353 }
354 if residentBytes == nil {

99

Appendix

355 return shim.Error(fmt. Sprintf (" Resident %s not found ",
residentId))

356 }
357

358 var resident Resident
359 err = json. Unmarshal (residentBytes , & resident)
360 if err != nil {
361 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
362 }
363 for _, v := range resident . Visitors {
364 if v. VisitorId == visitorId {
365 return shim.Error(fmt. Sprintf (" Visitor %s already

exists for resident %s", visitorId , residentId))
366 }
367 }
368

369 newVisitor := VisitorInfo {
370 VisitorId : visitorId ,
371 FullName : fullName ,
372 Phone : phone ,
373 VisitTimeFrom : visitTimeFrom ,
374 VisitTimeTo : visitTimeTo ,
375 Relationship : relationship ,
376 QRCodeData : visitorId ,
377 Status : " Active ",
378 CreatedAt : time.Now ().Unix (),
379 }
380

381 resident . Visitors = append (resident .Visitors , newVisitor)
382 resident . UpdatedAt = time.Now ().Unix ()
383

384 updatedResidentBytes , err := json. Marshal (resident)
385 if err != nil {
386 return shim.Error(fmt. Sprintf (" Failed to marshal

resident : %s", err.Error ()))
387 }
388

389 err = stub. PutState (residentKey , updatedResidentBytes)
390 if err != nil {
391 return shim.Error(fmt. Sprintf (" Failed to update

resident : %s", err.Error ()))
392 }
393

394 response := map[string] interface {}{
395 " success ": true ,
396 " visitor ": newVisitor ,
397 }
398 responseBytes , _ := json. Marshal (response)
399 return shim. Success (responseBytes)
400 }

100

Appendix

401

402 func (rc * ResidentsContract) GetVisitors (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

403 if len(args) < 1 {
404 return shim.Error(" ResidentID required ")
405 }
406

407 residentId := args [0]
408 residentKey := " RESIDENT_ " + residentId
409 residentBytes , err := stub. GetState (residentKey)
410 if err != nil {
411 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
412 }
413 if residentBytes == nil {
414 return shim.Error(fmt. Sprintf (" Resident %s not found ",

residentId))
415 }
416

417 var resident Resident
418 err = json. Unmarshal (residentBytes , & resident)
419 if err != nil {
420 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
421 }
422

423 response := map[string] interface {}{
424 " success ": true ,
425 " visitors ": resident .Visitors ,
426 }
427 responseBytes , _ := json. Marshal (response)
428 return shim. Success (responseBytes)
429 }
430 func (rc * ResidentsContract) GetVisitor (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
431 if len(args) < 2 {
432 return shim.Error(" ResidentID and VisitorID required ")
433 }
434

435 residentId := args [0]
436 visitorId := args [1]
437

438 residentKey := " RESIDENT_ " + residentId
439 residentBytes , err := stub. GetState (residentKey)
440 if err != nil {
441 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
442 }
443 if residentBytes == nil {
444 return shim.Error(fmt. Sprintf (" Resident %s not found ",

residentId))

101

Appendix

445 }
446

447 var resident Resident
448 err = json. Unmarshal (residentBytes , & resident)
449 if err != nil {
450 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
451 }
452 for _, visitor := range resident . Visitors {
453 if visitor . VisitorId == visitorId {
454 response := map[string] interface {}{
455 " success ": true ,
456 " visitor ": visitor ,
457 }
458 responseBytes , _ := json. Marshal (response)
459 return shim. Success (responseBytes)
460 }
461 }
462

463 return shim.Error(fmt. Sprintf (" Visitor %s not found for
resident %s", visitorId , residentId))

464 }
465 func (rc * ResidentsContract) BlockVisitor (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
466 if len(args) < 6 {
467 return shim.Error(" Required : VisitorID , ResidentID ,

Reason , FromDate , FromTime , ToDate , ToTime ,
BlockedBy ")

468 }
469

470 visitorId := args [0]
471 residentId := args [1]
472 reason := args [2]
473 fromDate := args [3]
474 fromTime := args [4]
475 toDate := args [5]
476 toTime := args [6]
477 blockedBy := args [7]
478

479 fromDateTime , err := time.Parse("2006 -01 -02 T15 :04",
fmt. Sprintf ("%sT%s", fromDate , fromTime))

480 if err != nil {
481 return shim.Error(fmt. Sprintf (" Invalid FromDateTime

format : %s", err.Error ()))
482 }
483

484 toDateTime , err := time.Parse("2006 -01 -02 T15 :04",
fmt. Sprintf ("%sT%s", toDate , toTime))

485 if err != nil {
486 return shim.Error(fmt. Sprintf (" Invalid ToDateTime

format : %s", err.Error ()))

102

Appendix

487 }
488

489 residentKey := " RESIDENT_ " + residentId
490 residentBytes , err := stub. GetState (residentKey)
491 if err != nil {
492 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
493 }
494 if residentBytes == nil {
495 return shim.Error(fmt. Sprintf (" Resident %s not found ",

residentId))
496 }
497

498 var resident Resident
499 err = json. Unmarshal (residentBytes , & resident)
500 if err != nil {
501 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
502 }
503

504

505 visitorFound := false
506 for i, visitor := range resident . Visitors {
507 if visitor . VisitorId == visitorId {
508

509 if visitor . Status == " Blocked " {
510 return shim.Error(fmt. Sprintf (" Visitor %s is

already blocked ", visitorId))
511 }
512

513 blockId := fmt. Sprintf (" BLOCK_ %s_%d", visitorId ,
time.Now ().Unix ())

514 block := BlockInfo {
515 BlockId : blockId ,
516 VisitorId : visitorId ,
517 Reason : reason ,
518 BlockedBy : blockedBy ,
519 FromDateTime : fromDateTime .Unix (),
520 ToDateTime : toDateTime .Unix (),
521 CreatedAt : time.Now ().Unix (),
522 }
523

524

525 resident . Visitors [i]. Status = " Blocked "
526 resident . Visitors [i]. CurrentBlock = blockId
527

528

529 blockBytes , err := json. Marshal (block)
530 if err != nil {
531 return shim.Error(fmt. Sprintf (" Failed to

marshal block : %s", err.Error ()))

103

Appendix

532 }
533 err = stub. PutState (blockId , blockBytes)
534 if err != nil {
535 return shim.Error(fmt. Sprintf (" Failed to save

block : %s", err.Error ()))
536 }
537

538 visitorFound = true
539 break
540 }
541 }
542

543 if ! visitorFound {
544 return shim.Error(fmt. Sprintf (" Visitor %s not found for

resident %s", visitorId , residentId))
545 }
546

547

548 updatedResidentBytes , err := json. Marshal (resident)
549 if err != nil {
550 return shim.Error(fmt. Sprintf (" Failed to marshal

resident : %s", err.Error ()))
551 }
552

553 err = stub. PutState (residentKey , updatedResidentBytes)
554 if err != nil {
555 return shim.Error(fmt. Sprintf (" Failed to update

resident : %s", err.Error ()))
556 }
557

558 return shim. Success ([] byte(fmt. Sprintf (" Visitor %s blocked
successfully ", visitorId)))

559 }
560

561 func (rc * ResidentsContract) UnblockVisitor (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

562 if len(args) < 2 {
563 return shim.Error(" Required : VisitorID , ResidentID ")
564 }
565

566 visitorId := args [0]
567 residentId := args [1]
568 residentKey := " RESIDENT_ " + residentId
569 residentBytes , err := stub. GetState (residentKey)
570 if err != nil {
571 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
572 }
573 if residentBytes == nil {
574 return shim.Error(fmt. Sprintf (" Resident %s not found ",

residentId))

104

Appendix

575 }
576

577 var resident Resident
578 err = json. Unmarshal (residentBytes , & resident)
579 if err != nil {
580 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
581 }
582

583 visitorFound := false
584 for i, visitor := range resident . Visitors {
585 if visitor . VisitorId == visitorId {
586 if visitor . Status != " Blocked " {
587 return shim.Error(fmt. Sprintf (" Visitor %s is

not blocked ", visitorId))
588 }
589

590 err = stub. DelState (visitor . CurrentBlock)
591 if err != nil {
592 return shim.Error(fmt. Sprintf (" Failed to delete

block record : %s", err.Error ()))
593 }
594

595

596 resident . Visitors [i]. Status = " Active "
597 resident . Visitors [i]. CurrentBlock = ""
598

599 visitorFound = true
600 break
601 }
602 }
603

604 if ! visitorFound {
605 return shim.Error(fmt. Sprintf (" Visitor %s not found for

resident %s", visitorId , residentId))
606 }
607

608 updatedResidentBytes , err := json. Marshal (resident)
609 if err != nil {
610 return shim.Error(fmt. Sprintf (" Failed to marshal

resident : %s", err.Error ()))
611 }
612

613 err = stub. PutState (residentKey , updatedResidentBytes)
614 if err != nil {
615 return shim.Error(fmt. Sprintf (" Failed to update

resident : %s", err.Error ()))
616 }
617

618 return shim. Success ([] byte(fmt. Sprintf (" Visitor %s
unblocked successfully ", visitorId)))

105

Appendix

619 }
620

621

622 func (rc * ResidentsContract) UpdateVisitor (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

623 if len(args) < 4 {
624 return shim.Error(" Required : ResidentID , VisitorID ,

Phone , VisitTimeFrom , VisitTimeTo ")
625 }
626

627 residentId := args [0]
628 visitorId := args [1]
629 phone := args [2]
630 visitTimeFrom := args [3]
631 visitTimeTo := args [4]
632

633 residentKey := " RESIDENT_ " + residentId
634 residentBytes , err := stub. GetState (residentKey)
635 if err != nil {
636 return shim.Error(fmt. Sprintf (" Failed to read resident :

%s", err.Error ()))
637 }
638 if residentBytes == nil {
639 return shim.Error(fmt. Sprintf (" Resident %s not found ",

residentId))
640 }
641

642 var resident Resident
643 err = json. Unmarshal (residentBytes , & resident)
644 if err != nil {
645 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
646 }
647

648 visitorFound := false
649 for i, visitor := range resident . Visitors {
650 if visitor . VisitorId == visitorId {
651 resident . Visitors [i]. Phone = phone
652 resident . Visitors [i]. VisitTimeFrom = visitTimeFrom
653 resident . Visitors [i]. VisitTimeTo = visitTimeTo
654 resident . UpdatedAt = time.Now ().Unix ()
655 visitorFound = true
656 break
657 }
658 }
659

660 if ! visitorFound {
661 return shim.Error(fmt. Sprintf (" Visitor %s not found for

resident %s", visitorId , residentId))
662 }
663

106

Appendix

664 updatedResidentBytes , err := json. Marshal (resident)
665 if err != nil {
666 return shim.Error(fmt. Sprintf (" Failed to marshal

resident : %s", err.Error ()))
667 }
668

669 err = stub. PutState (residentKey , updatedResidentBytes)
670 if err != nil {
671 return shim.Error(fmt. Sprintf (" Failed to update

resident : %s", err.Error ()))
672 }
673

674 return shim. Success ([] byte(fmt. Sprintf (" Visitor %s updated
successfully ", visitorId)))

675 }
676

677 func (rc * ResidentsContract) AddVisitRequest (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

678 if len(args) < 11 {
679 return shim.Error(" Required : RequestID , CreatedBy ,

TargetResident , VisitorName , VisitorPhone , Type ,
VisitPurpose , CustomReason , VisitTimeFrom ,
VisitTimeTo , VisitDate ")

680 }
681 requestId := args [0]
682 createdBy := args [1]
683 targetResident := args [2]
684 visitorName := args [3]
685 visitorPhone := args [4]
686 visitType := args [5]
687 visitPurpose := args [6]
688 customReason := args [7]
689 visitTimeFrom := args [8]
690 visitTimeTo := args [9]
691 visitDate := args [10]
692

693 newRequest := VisitRequest {
694 RequestID : requestId ,
695 CreatedBy : createdBy ,
696 TargetResident : targetResident ,
697 VisitorName : visitorName ,
698 VisitorPhone : visitorPhone ,
699 Type: visitType ,
700 VisitPurpose : visitPurpose ,
701 CustomReason : customReason ,
702 VisitTimeFrom : visitTimeFrom ,
703 VisitTimeTo : visitTimeTo ,
704 VisitDate : visitDate ,
705 Status : " Pending ",
706 CreatedAt : time.Now ().Unix (),
707 }

107

Appendix

708 requestBytes , err := json. Marshal (newRequest)
709 if err != nil {
710 return shim.Error(fmt. Sprintf (" Failed to marshal visit

request : %s", err.Error ()))
711 }
712

713 requestKey := fmt. Sprintf (" VISITREQUEST_ %s", requestId)
714 err = stub. PutState (requestKey , requestBytes)
715 if err != nil {
716 return shim.Error(fmt. Sprintf (" Failed to store visit

request : %s", err.Error ()))
717 }
718

719 return shim. Success (requestBytes)
720 }
721

722 func (rc * ResidentsContract) UpdateVisitRequestStatus (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

723 if len(args) < 3 {
724 return shim.Error(" Required arguments : RequestID ,

Status , RequestedBy ")
725 }
726

727 requestID := args [0]
728 status := args [1]
729 requestedBy := args [2]
730

731 allowedStatuses := map[string]bool{
732 " accepted ": true ,
733 " rejected ": true ,
734 }
735

736 if ! allowedStatuses [status] {
737 return shim.Error(" Invalid status value .")
738 }
739

740 requestKey := fmt. Sprintf (" VISITREQUEST_ %s", requestID)
741

742 requestBytes , err := stub. GetState (requestKey)
743 if err != nil {
744 return shim.Error(fmt. Sprintf (" Failed to get visit

request : %s", err.Error ()))
745 }
746 if requestBytes == nil {
747 return shim.Error(" Visit request not found .")
748 }
749

750 var request VisitRequest
751 err = json. Unmarshal (requestBytes , & request)
752 if err != nil {

108

Appendix

753 return shim.Error(fmt. Sprintf (" Failed to parse visit
request : %s", err.Error ()))

754 }
755

756 request . Status = status
757 request . UpdatedAt = time.Now ().Unix ()
758 request . StatusChangedBy = requestedBy
759

760 updatedBytes , err := json. Marshal (request)
761 if err != nil {
762 return shim.Error(fmt. Sprintf (" Failed to marshal

updated visit request : %s", err.Error ()))
763 }
764

765 err = stub. PutState (requestKey , updatedBytes)
766 if err != nil {
767 return shim.Error(fmt. Sprintf (" Failed to store updated

request : %s", err.Error ()))
768 }
769

770 return shim. Success (updatedBytes)
771 }
772

773

774 func (rc * ResidentsContract) GetAllResidents (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

775 query := ‘{
776 " selector ": {
777 " DocType ": " resident "
778 }
779 }‘
780

781

782 resultsIterator , err := stub. GetQueryResult (query)
783 if err != nil {
784 return shim.Error(fmt. Sprintf (" Query failed : %s",

err. Error ()))
785 }
786 defer resultsIterator .Close ()
787

788

789 var residents [] Resident
790 for resultsIterator . HasNext () {
791 queryResponse , err := resultsIterator .Next ()
792 if err != nil {
793 return shim.Error(fmt. Sprintf (" Failed to parse

resident : %s", err.Error ()))
794 }
795

796 var resident Resident
797 err = json. Unmarshal (queryResponse .Value , & resident)

109

Appendix

798 if err != nil {
799 return shim.Error(fmt. Sprintf (" Failed to unmarshal

resident : %s", err.Error ()))
800 }
801 residents = append (residents , resident)
802 }
803

804 residentsJSON , err := json. Marshal (residents)
805 if err != nil {
806 return shim.Error(fmt. Sprintf (" Failed to marshal

residents : %s", err.Error ()))
807 }
808

809 return shim. Success (residentsJSON)
810 }
811

812 func (rc * ResidentsContract) SaveLogToChain (stub
shim. ChaincodeStubInterface , args [] string) sc. Response {

813 if len(args) != 3 {
814 return shim.Error(" Required : RequestID , ActionType ,

Timestamp ")
815 }
816

817 logId := fmt. Sprintf ("LOG_%s_%d", args [0],
time.Now (). UnixNano ())

818

819 log := struct {
820 LogID string ‘json :" logId "‘
821 RequestID string ‘json :" requestId "‘
822 Type string ‘json :" type"‘
823 Timestamp int64 ‘json :" timestamp "‘
824 }{
825 LogID : logId ,
826 RequestID : args [0],
827 Type: args [1],
828 }
829

830 parsedTime , err := strconv . ParseInt (args [2], 10, 64)
831 if err != nil {
832 return shim.Error(" Invalid timestamp format ")
833 }
834 log. Timestamp = parsedTime
835

836 logBytes , err := json. Marshal (log)
837 if err != nil {
838 return shim.Error(fmt. Sprintf (" Failed to marshal log:

%s", err.Error ()))
839 }
840

841 err = stub. PutState (logId , logBytes)
842 if err != nil {

110

Appendix

843 return shim.Error(fmt. Sprintf (" Failed to save log to
chain : %s", err.Error ()))

844 }
845

846 return shim. Success ([] byte(logId))
847 }
848 func (rc * ResidentsContract) GetLastLogByResident (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
849 if len(args) != 1 {
850 return shim.Error(" Required : ResidentID ")
851 }
852 residentID := args [0]
853 queryString := fmt. Sprintf (‘{
854 " selector ": {
855 " residentId ": "%s"
856 },
857 "sort ": [{" timestamp ": "desc "}],
858 " limit ": 1
859 }‘, residentID)
860

861 resultsIterator , err := stub. GetQueryResult (queryString)
862 if err != nil {
863 return shim.Error(fmt. Sprintf (" Failed to query logs:

%s", err.Error ()))
864 }
865 defer resultsIterator .Close ()
866

867 if ! resultsIterator . HasNext () {
868 return shim.Error(" No logs found for the given resident

ID")
869 }
870

871 result , err := resultsIterator .Next ()
872 if err != nil {
873 return shim.Error(fmt. Sprintf (" Failed to read query

result : %s", err.Error ()))
874 }
875 var logEntry struct {
876 Type string ‘json :" type"‘
877 }
878 err = json. Unmarshal (result .Value , & logEntry)
879 if err != nil {
880 return shim.Error(fmt. Sprintf (" Failed to parse log

entry : %s", err.Error ()))
881 }
882

883 return shim. Success ([] byte(logEntry .Type))
884 }
885 func (rc * ResidentsContract) GetVisitRequest (stub

shim. ChaincodeStubInterface , args [] string) sc. Response {
886 if len(args) < 1 {

111

Appendix

887 return shim.Error(" Required : RequestID ")
888 }
889

890 requestId := args [0]
891 requestKey := fmt. Sprintf (" VISITREQUEST_ %s", requestId)
892

893 requestBytes , err := stub. GetState (requestKey)
894 if err != nil {
895 return shim.Error(fmt. Sprintf (" Failed to read visit

request : %s", err.Error ()))
896 }
897

898 if requestBytes == nil {
899 return shim.Error(" Visit request not found ")
900 }
901

902 return shim. Success (requestBytes)
903 }
904

905

906 func contains (slice [] string , item string) bool {
907 for _, s := range slice {
908 if s == item {
909 return true
910 }
911 }
912 return false
913 }
914

915 func main () {
916 err := shim.Start(new(ResidentsContract))
917 if err != nil {
918 fmt. Printf (" Error starting ResidentsContract : %s", err)
919 }
920 }

Listing 1: Chaincode for Asset Transfer

112

	Abstract
	List of Figures
	List of Tables
	General Introduction
	Presentation of Smart Building Application
	Introduction
	 Definition and Architecture of Smart Buildings
	smart building
	Key Components of Smart Buildings
	Communication and Data Flow in Smart Building Infrastructure

	Functionalities and Objectives of Smart Buildings
	Energy Efficiency and Sustainability
	User Comfort and Convenience
	Operational Cost Reduction
	Safety and Security Measures

	Role of Access Control in Smart Buildings
	Definition of access control in Smart Buildings
	Purpose of Access Control in Smart Buildings
	How smart buildings manage access dynamically

	Challenges in Modern Access Control
	Managing different user types
	Scalability and Flexibility Issues
	Real-Time Monitoring and Response Needs
	Integration with Other Building Systems

	Conclusion

	 Overview on Blockchain technology
	Introduction
	Blockchain Technology
	Définition
	Core Components
	Key Features
	security features of Blockchain
	How Blockchain Works?
	Blockchain Types
	What are blockchain protocols?

	Hyperledger fabric
	Définition
	Key Features
	Key Components of Hyperledger Fabric
	How organizations collaborate in a fabric network ?
	Benefits of Hyperledger fabric
	Use Cases

	State of the art
	Bindra et al. (2020) – Flexible, Decentralized Access Control for Smart Buildings with Smart Contracts
	NineSmart – Smart Access | QR Code Access Control
	SPCL: A Smart Access Control System That Supports Blockchain

	Comparison table
	Conclusion

	Proposed solution
	Introduction
	Use Case diagram
	Global architecture of the system
	Detailed architecture of the system
	Hyperledger Fabric Network

	Hyperledger Fabric Network Setup and Development Steps
	Deploy Chaincode(Smart Contract)
	Application Programming Interface(Api)
	Functionality of the system
	Sequence diagram of the system
	Sequence diagram (Hlf)

	Conclusion

	Development and evaluation
	Introduction
	Software tools
	Hardware Tools
	Results and discussion
	Implementation of the System
	Login
	Dashboard of Admin
	Resident Dashboard
	Scan Page
	Guide

	Conclusion

	General Conclusion
	Appendix: Smart Contracts

