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Notations and symbols

Symbol Definition

R The set of real numbers

iid Independent and identically distributed

P (·) Probability function

F (·) The cumulative distribution function

Fn(·) The empirical (or sample) distribution function

f(·) density function

BR borel tribe

ϕ(·) characteristic function

Q(u) quantile function

λr L-moment

Pr(u) Legendre polynomial

τ3 L-skewness

τ4 L-kurtosis

PWM probability weighted moment

lr estimator of L-moment

λ(t1,t2)
r TL-moment

t3 Estimator of L-skewness

t4 Estimator ofL-kurtosis

τ
(t1,t2)
3 TL-skewness

t4 Estimator of L-kurtosis

τ
(t1,t2)
4 TL-kurtosis

t
(t1,t2)
3 Estimators of TL-skewness

t
(t1,t2)
4 Estimators of TL-kurtosis
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Introduction

L-moments are considered one of the modern statistical innovations that emerged in response

to a pressing need in statistical science, namely the limitations of classical momentswhen deal-

ing with certain types of probability distributions especially those that do not possess defined

moments, or whose moments are highly sensitive to the influence of outliers. [2]. [3]. [6].[7]. [?].

[15]. The Cauchy distribution is the most prominent example of these challenges, as it lacks

both the first moment (mean) and the second moment (variance), rendering classical statisti-

cal approaches inapplicable or unreliable when analyzing such distributions. Moreover, many

real world datasets particularly in fields such as hydrology, finance, natural risk analysis, and

economics often

contain outliers, asymmetry, or heavy tails, which further reduce the reliability of estimates

derived from classical moments.

In response to this limitation, J. R. M. Hosking introduced the concept of L-moments in1990 as a

robust and reliable alternative that allows for estimating different distribution parameters, and

their characteristics such as location, scale, skewness, and kurtosis using linear combinations

of order statistics instead of raw powers of random variables. This method gives L-moments

greater resilience to noise and outliers, making them especially stable in small sample sizes.

One of their most significant properties is that they are well-defined for all distributions with a

finite mean, including those lacking second or third classical moments. They also offer a more

intuitive and graphical interpretation compared to traditional moments.

As the application of L-moments expanded, a further refinement emerged in the form of

Trimmed L-moments, which enhance the robustness of the measure by trimming a specific

number of the smallest and largest values in the sample during estimation. This trimming

process increases resistance to extreme outliers and enhances the accuracy and reliability of

statistical analysis, particularly in fields characterized by strong deviations or non-standard be-
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Introduction

havior, such as income distribution, environmental catastrophes, and volatile time series data.

Trimmed L-moments provide flexibility, allowing researchers to control the level of trimming

based on the nature of the dataset, which ultimately improves both the precision and inter-

pretability of results.[8].[?].[10].[13].[14]

Theoretically, L-moments belong to the broader class of robust estimators, and they represent

an extension of the foundational concept of order statistics central to nonparametric statistics.

The practical applications of both L-moments and Trimmed L-moments have become widespread

across multiple disciplines, including rainfall and flood modeling, insurance loss estimation, fi-

nancial market analysis, and environmental data characterization. Notably, they have been

integrated into advanced statistical software such as R and Python, with dedicated libraries

for their computation, reflecting their growing adoption in both academic research and applied

settings.

These methods enabled the analysis of more realistic and complex datasets with greater

flexibility and precision, establishing a new standard for descriptive estimation beyond the

constraints of classical moments, and solidifying their place as one of the most impactful con-

tributions to contemporary statistics.

Our work was divided into three chapters:

-The first includes general information on probability and order statistics

-Second in this part we present the definition of L-moment, their respective properties, represen-

tation by covariance, linear function ...,their estimator, and especially the use of their estimator

through the calculation of location and scale parameters, as well as L-skewness, L-kurtosis, and

their comparison with classical parameters.The method based on the use of L-moment is also

introduced in this chapter.

-final chapter we present the definition of TL-moment, their respective properties, their esti-

mator and method. of TL-moment for estimate parameter, finaly application in R of Cauchy

distribution followed Generalized Pareto Distribution.

2



Chapter 1
Random vector and Order Statistics

This chapter covers the basics of probability and random variables, followed by random vectors,

covariance, and characteristic functions. It also introduces order statistics, their distributions,

and moments.

References used: [2]. [3]. [6].[7]. [?]. [15].

1.1 Random variable and Random vector

1.1.1 Probability space

Definition 1.1.1.

Let a set Ω be nonempty, F a σ-field on Ω and a map P : F → [0.1] called a probability measure

on (Ω,F) if 
P (∅) = 0, P (Ω) = 1

Ai ∈ F , Ai

⋂
Aj = ∅, i, j = 1, 2, ..., i ̸= j

⇒ P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai)

The triplet (Ω,F , P ) is called a probability space.

1.1.2 Random variable

Definition 1.1.2.

Let (Ω,F) and (R,BR) be two measurable spaces and X : Ω → R an F/BR-measurable map. We

call X an F/B(R)-random variable, or simply a random variable if there would be no confusion.
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CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

For a random variable X : Ω → R, X−1(R) is a sub-σ-field of F , which is called the σ-

field generated by X, denoted by σ(X). This is the smallest σ-field in Ω under which X is

measurable. X is said to be independent of Y if σ(X) and σ(Y ) are independent.

Now we look at some mesurability properties for random variables [3]

1.1.3 Probability distributions

Let X be a random variable, taking values that are real numbers. The relative frequency with

which these values occur defines the frequency distribution or probability distribution of Xand

is specified by the cumulative distribution function

F (x) = P [X ⩽ x]. (1.1)

Where P [A] denotes the probability of the eventA. F (x) is an increasing function of x, and

0 ⩽ F (x) ⩽ 1 for all x. We shall normally be concerned with continuous random variables, for

which P [X = t] = 0 for all t, that is, no single value has nonzero probability. In this case, F (.)

is a continuous function and has an inverse function F−1(.), the quantile function of X. Given

any p, 0 < p < 1, x(p) is the unique value that satisfies

F (x(p)) = p (1.2)

If F (x) is differentiate, its derivative

∂F (x)

∂x
= f(x)

Is the probability density function of X.[?]

1.1.4 The moment of a random variable

Discrete random variable

Mathematical expectation

Definition 1.1.3.

Let X be a discrete random variable taking values in {x1, x2, . . . , xn} and let P be the probability

distribution of X. the expectation of X is define as :

E(X) =
n∑

i=1

xiP (xi).
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CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

Variance

Definition 1.1.4.

Let X be a discrete random variable taking values in {x1, x2, . . . , xn} with P be the probability

distribution of X.is defined as:
V (x) = E(X − E(X))2

.

Properties 1.

V (X) = E(X2)− (E(X))2,

where

E(X2) =
n∑

i=1

x2
iP (xi).

Moment of order r

Let X be a discrete random variable with value {x1, x2, . . . , xn} with P the probability distri-

bution of X

Definition 1.1.5.

We call the moment of order r of X with respect to its mean the quantity:

Mr(X) = E(Xr) =
n∑

i=1

xr
iP (xi).

Remark 1.1.1.

r = 1 , we have M1(X) = E(X)

r = 2 , we have M2(X) = E(X2)

Continuous variable

Mathematical expectation

Definition 1.1.6.

Let X be a continuous random variable with probability density function f ,then the mathematical

expectation is defined as:

E(X) =

∫ +∞

−∞
xf(x)dx

5



CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

Variance

Definition 1.1.7.

Let X be a continuous random variable, the variance of X is given by :

V (X) =

∫ +∞

−∞
(x− E(X))2f(x)dx

Practical property

V (X) = E(X2)− (E(X))2

where
E(X2) =

∫ +∞

−∞
x2f(x)dx

Standard deviation

The standard deviation of random variable X is defined as:

σX =
√
V (X)

Special case

A continuous random variable is said to be standardized if its expected value is zero, E(X) = 0,

and its standard deviation is equal to 1: σx = 1

Moment of order r
Let X be a continuous random variable, The moment of order r of X with respect to the origin

the quantity:

E(Xr) =

∫ +∞

−∞
xrf(x)dx.

1.1.5 Random vector

Definition 1.1.8.

Let X1, X2, . . . , Xn be a random variables .The n-tuple of random variables (X1, X2, . . . , Xn)is

called a random vector

Law of a random vector

Let (Ωn,F⊗n, P ) be a probability space if X is a random vector taking values in Rn, the law

of X,denoted as P is defined by

∀ B ∈ BR, PX(B) = P (X−1(B)) = P (ω ∈ Ω : X(ω) ∈ B). (1.3)

6



CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

Definition 1.1.9.

If X = (X1, X2, . . . , Xn) is a vector taking values in Rn, the law of the random variable

Xi (1 ⩽ i ⩽ n) is called the ith marginal law

1. The law P of X is the joint law of the n-tuple (X1, X2, . . . , Xn), which is a probability

measure on Rn

2. The law P of Xi is the ith marginal probability law on R

Definition 1.1.10.

The law of X admit a density function f that is positive, integrate over Rn, and has an integral

of 1 if and only if

∫ +∞

−∞
· · ·
∫ +∞

−∞
f(y1 . . . yn)dy1 . . . dyn = 1. (1.4)

Propsition 1.1.1.

If Xi have a cumulative distribution function FXi
where (1 ⩽ i ⩽ n) given by:

FXi
(x) =P (X1 ∈ R, . . . Xi ∈ B, . . . , Xn ∈ R)

=

∫ +∞

−∞
fX1(t)dt

∫ +∞

−∞
fX2(t)dt,· · ·

∫ x

−∞
fXi

(t)dt· · ·
∫ +∞

−∞
fXn(t)dt,

when we differentiate the cumulative distribution function FXi
(x) with respect to x, we obtain

the probability density function given by:

∂FXi
(x)

∂x
= fXi(x) =

∫ +∞

−∞
...

∫ +∞

−∞
f(x1, x2, . . . xi−1, x, xi+1 . . . xn)dx1 . . . dxi−1dxi+1 . . . dxn.

1.1.6 Moment of random vector

Just like with random variables, we define the first and second-order moments for random

vectors.

Mathematical expectation

Definition 1.1.11.

Let X = (X1, X2, . . . , Xn) be a random vector where each component is non-negative or zero

-valued random variable.The expectation (or first-order mean) of X is defined as the vector in

Rd given by:

E(X) = (E(X1), . . . , E(Xn)). (1.5)

7



CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

If X is integrate, then each component Xi is also integrate, ensuring that the definition is valid.

the expectation E(Xi) can be computed using the distribution of X or the marginal distribution

of Xi:
E(Xi) =

∫
R

xdPXi
(x)

Propsition 1.1.2.

If (X1, X2, . . . , Xn) are square integrate random variables,their variance follows the formula:

V (
n∑

i=1

Xi) =
n∑

i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj).

1.1.7 Covariance matrix

Definition 1.1.12.

The covariance matrix of the vector X is a square matrix KX of size n,where each element is

defined as follow (provided it exists):

∀i, j = 1, . . . , n Kij = Cov(Xi, Xj)

. The covariance between two variables Xi and Xj is given by :

cov(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj)) = E(XiXj)− E(Xi)E(Xj).

The matrix KX , is positive semi- definite.

Remark 1.1.2.

1. For a pair of real random variables (X, Y ) the covariance matrix is given by:

K(X,Y ) =

 Var(X) Cov(X, Y )

Cov(X, Y ) Var(Y )


2. The real number r defined as:

r =
Cov(X, Y )

σXσY

,

where

σX =
√

Var(X), σY =
√

Var(Y ),

the value r referred to as the correlation coefficient between X and Y

3.For a pair of real random variables (X, Y ) the correlation matrix is given by:

8



CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

ρ =


Cov(X,X)

σXσX

Cov(X, Y )

σXσY

Cov(X, Y )

σXσY

Cov(Y, Y )

σY σY

 =


1 ρXY

ρXY 1


Properties 2.

1.symmetry: Cov(X, Y ) = Cov(Y,X) = E(XY )− E(X)E(Y )

2.bi-linearity: For all a, b, c, d ∈ R

Cov(aX1 + bX2, cY1 + dY2) =aCov(X1, cY1 + dY2) + bCov(X2, cY1 + dY2)

=acCov(X1, Y1) + adCov(X1, Y2)

+bcCov(X2, Y1) + bdCov(X2, Y2)

3.independence: If the random vectors X and Y are independent, then their covariance

zero:

Cov(X, Y ) = 0

4.variance of linear combination: The variance of a linear combination of two random

vectors is given by:

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y )

5.Cauchy-Schwartz inequality and correlation: According to the Cauchy-Schwartz in-

equality ,we have:

|Cov(X, Y )| ⩽
√
V ar(X).

√
V ar(Y ) = σXσY

then −1 ⩽ r ⩽ 1

To see why,consider any λ ∈ R. since variance is always non-negative, we have:

V ar(λX + Y ) ≥ 0

P (λ) = λ2V ar(X) + 2λCov(X, Y ) + V ar(Y ) ≥ 0

where P (λ) is a polynomial of degree 2 with respect to, therefore

P (λ) ≥ 0 ⇐⇒ (Cov(X, Y ))2 − V ar(X)V ar(Y ) ⩽ 0

9



CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.1. RANDOM VARIABLE AND RANDOM VECTOR

(Cov(X, Y ))2 ⩽ V ar(X)V ar(Y ) ⇐⇒ −1 ≤ ρ ≥ 1

1.1.8 Independence and identically distributed of two variables

Independence:

We say that the random variables X and Y are independent if for all i = 1, 2, . . . , n and all

j = 1, 2 . . . ,m :

P (X = xi, Y = yj) = P (X = xi)P (Y = yj).

The independent of X and Y means that for every i = 1, 2, . . . , n and every j = 1, 2, . . . ,m the

event X = xi and Y = yj are independent.In other words,the value taken by one of the random

variables has no influence on the probabilities of the values that the other variable can take we

can also express the independence of X and Y using the following equation:

P (X = xi | Y = yj) = P (X = xi) (i = 1, 2, . . . , n ; j = 1, 2, . . . ,m).

Identically distributed:

Meaning that all the random variables in the sequence share the same probability distributed

1.1.9 Characteristic Function

Definition 1.1.13.

Let X be a random vector taking values in Rn, n ≥ 2. The characteristic function of X,

denoted by ϕX(.), is a function from Rn to C defined as [6] :

ϕX(t) = E[exp(i⟨t,X⟩)],

where ⟨t,X⟩represents the inner product of t and X Rn, given by:

⟨t,X⟩ =
n∑

i=1

tiXi.

Since the function exp(i⟨t,X⟩)has a modulus of 1, it is p-integrate. If X denotes the prob-

ability distribution of X, the characteristic function ϕX can also be expressed as:

ϕX(t) =

∫ n

R

exp(i⟨t,X⟩)dPX(x).

10



CHAPTER 1. RANDOM VECTOR AND ORDER STATISTICS 1.2. ORDER STATISTICS

The characteristic function of X is the Fourier transform of the distribution of X it is a

continuous function bounded by 1.

If f(x) is a density function of X then:

ϕX(t) =

∫
R
exp(i⟨t,X⟩)f(x) dx

and the characteristic function of X the Fourier transform of the function f

Propsition 1.1.3.

Two random vectors X and Y have the same distribution if and only if :

ϕX(.) = ϕY (.).

Properties 3.

Let = (X1, . . . , Xn)
T be a random vector of dimension n the components of X are independent

if and only if the characteristic function of X is the product of the characteristic functions of

its components, i.e.:

t = (t1, . . . , tn)
T ∈ Rn, ϕX(t) =

n∏
k=1

ϕXk
(tk).

1.2 Order statistics

Definition 1.2.1.

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (iid) random vari-

able over space (Ω,F).The order statistics, denoted by

X1,n, X2,n, . . . , Xn,n,

are the random variables arranged in ascending as follows: [2]

X1,n ⩽ X2,n ⩽ · · · ⩽ Xn,n

Definition 1.2.2.

• The vector X = (X1,n, X2,n, . . . , Xn,n) is called the associated ordered

sample (X1, X2, . . . , Xn) where Xk,n represent the Kth order statistics

• The minimum and maximum of the iid.n-sample correspond more closely to the concept

of extreme values.

X1,n = min(X1, X2, . . . , Xn) = min1⩽i⩽nXi

11
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Xn,n = max(X1, X2, . . . , Xn) = max1⩽i⩽nXi

• The empirical(or sample) distribution function Fn(x) is defined as :

Fn(x) =
1

n

n∑
i=1

1(X⩽xi)

where this function represent the proportion of values in the sample that are less than or

equal to x. then [2]

Fn(x) =


0, if x < X1,n

i

n
, if Xi,n ≤ x ≤ Xi+1,n and 1 ≤ i ≤ n− 1

1, if x > Xn,n

Remark 1.2.1.

• If the law of variable X is absolutely continuous one can conclude that

P (X1,n ⩽ X2,n ⩽ · · · ⩽ Xn,n) = 1

• the order statistics of minimum and maximum X1,n and Xn,n are dependent on two dif-

ferent law.
• X1,n and Xn,n play a major role in the study of extreme values.

1.2.1 law of the i-th order statistics

Propsition 1.2.1.

The cumulative distribution function (CDF) of the order statistics Xk,n is given for all x ∈ R

as follow[2] :

FXk:n
(x) = P (Xk:n ≤ x) =

n∑
t=k

Ct
n[P (X ≤ x)]t[1− P (X ≤ x)]n−t, x ∈ R

Propsition 1.2.2.

In the case where the distribution function F is continuous and derivable almost everywhere
from derivative f, order statistics have a law that admits a density relative to the Lebesgue

measurement. The density of Xk,n is given by [2]

fk,n(x) =
n!

(k − 1)!(n− k)!
f(x)[F (x)]k−1[1− F (x)]n−k

As another direct consequence of this result, it is easily shown that if U1, U2, . . . , Un are random

variables independent of uniform law then Uk,n follows a Beta law of R and n−k+1 parameters.

It is recalled that the density of a Beta law of parameter a > 0 and b > 0 is

12
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fa,b(x) =
1

B(a, b)
xa−1(1− x)b−1, x ∈ (0, 1).

In particular, for all s ∈ N,

E(Uk,s) =
1

(k + s− 1)!

(k + s− 1)!

(k − 1)!(b− 1)!
.

Then

fuk,n
(x) =

1

B(k, n− k + 1)
xk−1(1− x)n−k, x ∈ (0, 1).

Propsition 1.2.3.

If the distribution function F is continuous and derivable almost everywhere from derivative f ,

the density of the vector (X1, X2, . . . , Xn) is

fn(x1, . . . , xn) = n!
n∏

i=1

f(xi), x1 ≤ x2 ≤ · · · ≤ xn.

Propsition 1.2.4.

It can therefore be concluded from the statistics of the minimum that the cumulative distribution

and the probability density function are respectively[?]:

F1,n(x) = FX1,n(x) = 1− [1− F (x)]n, f1,n(x) = fX1,n(x) = n[1− F (x)]n−1f(x).

For the maximum statistics, we have

Fn,n(x) = FXn,n(x) = [F (x)]n

fn,n(x) = fXn,n(x) = n[F (x)]n−1f(x).

Proof

Using the independent property of the random variables X1, X2, . . . , Xn, we deduce that,

F1,n(x) =P{X1,n ≤ x} = 1− P{X1,n > x} = 1− P

{
n⋂

i=1

Xi > x

}

=1−
n∏

i=1

P{Xi > x} = 1−
n∏

i=1

[1− P{Xi ≤ x}] = 1− [1− F (x)]n.

Fn,n(x) =P{Xn,n ≤ x} =
n∏

i=1

P{Xi ≤ x} = [F (x)]n.

1.2.2 Moment of order statistics

Definition 1.2.3.

Let Xi,n be the i− th order statistic associated with a sample of size n with probability density

13
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function f(x) and cumulative distribution function F (x),which is continuous with the quantile

function [2]

Q(u) = F−1
X (u).

The k − th moment of thei− th order statistic is defined by

E(Xk
i,n) = uk

i,n =

∫ ∞

−∞
xkfXi,n

(x) dx

=
n!

(i− 1)!(n− i)!

∫ ∞

−∞
xk{F (x)}i−1{1− F (x)}n−if(x) dx.

Alternatively,

E(Xk
i,n) =

n!

(i− 1)!(n− i)!

∫ 1

0

Q(u)iui−1(1− u)n−i du.

14



Chapter 2
L-moments

This chapter presents L-moments as robust alternatives to classical moments, highlighting

their definitions, properties, estimation methods, and use in parameter estimation for various

distributions Reference used [8].[10].[13].[14]

2.1 Definitions and basic properties

Definition 2.1.1.

Let X be a real valued random variable with cumulative distribution function F (X) and quantile

function Q(u) = F−1(u), and let X1,n ⩽ X2,n ⩽ · · · ⩽ Xn,n be the order statistics of a random

sample of size n, then the L-moments as defined by Hosking[10], are written as follow:

λr = r−1

r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Xr−k;r), r = 1, 2, . . . (2.1)

The letter L in "L-moments" signifies that is a linear function of the expected order statis-

tics. Furthermore, as noted by Hosking 1990[10], the natural estimator of λr, derived from

an observed data sample, is a linear combination of the ordered data values, making it an

L-statistic By replacing the expression of the expectation of an order statistic in the formula

of the quantities as given above, we have:

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
r!

(r − k − 1)!k!

∫ 1

0

Q(u)r−kur−k−1(1−u)kdu, for r ≥ 1, and 0 ≤ u ≤ 1.

15



CHAPTER 2. L-MOMENTS 2.2. L-PARAMETERS

Thus, the first L-moments for a probability distribution are given by:

λ1 =E(X) =

∫
x dF,

λ2 =
1

2
E(X2,2X1,2) =

∫
x (2F − 1) dF,

λ3 =
1

3
E(X3,3 − 2X2,3 +X1,3) =

∫
x (6F 2 − 6F + 1) dF,

λ4 =
1

4
E(X4,4 − 3X3,4 + 3X2,4 −X1,4) =

∫
x (20F 3 − 30F 2 + 12F − 1) dF.

2.1.1 Examples

Uniform distribution over (0,1) 
λ1 =

1

2
,

λ2 =
1

6
,

Normal distribution with mean 0 and variance 1
λ1 = 0,

λ2 =
1√
π
,

Exponential distribution with mean 1
λ1 = 1,

λ2 =
1

2
,

2.2 L-parameters

Proportions of L-moments represent the ratios between different L-moments. The parameters

λ1 and λ2 are used to characterize the properties of distributions.[14],[?] These proportions are

defined as follows:

τr :=
λr

λ2

, for r = 3, 4, . . .

Such that:

16
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The ratio between the first L-moment λ1 and the second L-moment λ2 represents the mea-

sure of L-variation, defined as:

τ = L− CV =
λ1

λ2

(2.2)

In particular, the ratio between the third L-moment and the second L-moment provides a

measure of skewness, known as L-skewness, which is given by:

τ3 :=
λ3

λ2

Additionally, the ratio of the fourth L-moment to the second L-moment serves as the measure

of kurtosis, referred to as “L-kurtosis.” It is given by:

τ4 =
λ4

λ2

.

Properties 4.

Numerical values [?] are follows

• λ1 can take any value.

• λ2 ≥ 0

• For a distribution that takes only positive values, 0 ≤ τ < 1. L-moment ratios satisfy

|τr| < 1 for all r ≥ 3. Tighter bounds can be found for individual τr quantities. For

example, bounds for τ4 given τ3 are

1

4
(5τ 23 − 1) ≤ τ4 < 1.

• For a distribution that takes only positive values, bounds for τ3 given τ are

2τ − 1 ≤ τ3 < 1.

• Linear transformation. Let X and Y be random variables with L-moments λr and λ∗
r,

respectively, and suppose that Y = aX + b. Then

λ∗
1 =aλ1 + b

λ∗
2 =|a|λ2

τ ∗r =(sign(a)) τr, r ≥ 3

17
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2.3 L-moment using polynomials

The L-moment can also be written in terms of Legendre polynomials, as follows[10]:

λr =

∫ 1

0

Q(u)P ∗
r−1(u)du, 0 ≤ u ≤ 1, r = 1, 2, . . .

P ∗
r (u) =

r∑
k=0

p∗r,ku
k (2.3)

p∗r,k = (−1)r
(
r

k

)(
r + k

k

)
(2.4)

For a positive integer r, and for r = 1, 2, and 3, we have:

P ∗
0 (u) =1

P ∗
1 (u) =(2u− 1)

P ∗
2 (u) =(6u2 − 6u+ 1)

P ∗
3 (u) =(20u3 − 30u2 + 12u− 1)

The first L-moments are given as follows:

λ1 =

∫ 1

0

Q(u) du.

λ2 =

∫ 1

0

(2u− 1)Q(u) du.

λ3 =

∫ 1

0

(6u2 − 6u+ 1)Q(u) du.

λ4 =

∫ 1

0

(20u3 − 30u2 + 12u− 1)Q(u) du.

(2.5)

• u = 1, P ∗
r (1) = 1.

• r ̸= s , then
∫ 1

0

P ∗
r (u)P

∗
s (u) du = 0.

The polynomials form an orthonormal basis on [0, 1].

18
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2.3.1 Example (Weibull distribution)

The Weibull distribution with scale parameter λ and shape parameter k as the cumulative

distribution function (CDF) and quantile function defined as follows:

Fλ,k(x) = 1− e−(
x
λ)

k

Q(u) = λ (− ln(1− u))
1
k

After calculations, we obtain:

λ1 = λΓ(1 + 1/k)

λ2 = λ
Γ(1 + 2/k)

Γ(1 + 1/k)

λ3 =
Γ(1 + 3/k)

Γ(1 + 1/k)
− 3λ2 + 2

λ4 =
Γ(1 + 4/k)

Γ(1 + 1/k)
− 4λ3 + 6λ2 − 3

Thus, the L-moment ratios are also:


τ3 =

λ3

λ2

τ4 =
λ4

λ2

2.4 L-moment using covariance

As indicated by Hosking & Wallis (1997),[?] by using the orthogonality of the functions

P ∗
r , we easily obtain:

λr =

E(X), r = 1

Cov(X,P ∗
r−1(F (X))), r ≥ 2

(2.6)

The first L-moments are given as follows:
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λ1 =E(X),

λ2 =2Cov(X,F (X)) = Cov(X, 2F (X)− 1),

λ3 =− 6Cov(X,F (X)(1− F (X))) = Cov(X, 6F (X)2 − 6F (X) + 1),

λ4 =Cov(X, 20F (X)3 − 30F (X)2 + 12F (X)− 1).

2.4.1 Example(Uniform distribution)

The cumulative distribution function and quantile function of a random variable X following

the Uniform distribution on (0, 1)are given by:

FX(x) =


0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1

Q(u) = u, 0 < u < 1

Calculation of L-moments

The L-moments and the L-moment ratios are calculated as follows:

λ1 =E(X) =
1

2
.

λ2 =Cov(X, 2F (X)− 1) = Cov(X, 2X − 1)

=E(X(2X − 1))− E(X)E(2X − 1).

For expectation, we get:

E(X) =

∫ 1

0

x dx =
1

2
.

E(X(2X − 1)) =

∫ 1

0

x(2x− 1)dx =
1

6
.

E(2X − 1) = 2E(X)− 1 = 0.

Thus,

λ2 =
1

6
− 1

2
× 0 =

1

6
.
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Calculation of λ3 and λ4

λ3 = E(X(6X2 − 6X + 1))− E(X)E(6X2 − 6X + 1).

We compute:

E(X(6X2 − 6X + 1)) =

∫ 1

0

x(6x2 − 6x+ 1)dx.

After integration:

E(X(6X2 − 6X + 1)) =
1

12
.

E(6X2 − 6X + 1) = 6E(X2)− 6E(X) + 1.

With:

E(X2) =

∫ 1

0

x2dx =
1

3
.

E(6X2 − 6X + 1) = 6× 1

3
− 6× 1

2
+ 1 = 0.

Thus,

λ3 =
1

12
− 1

2
× 0 =

1

12
.

For λ4

λ4 = E(X(20X3 − 30X2 + 12X − 1))− E(X)E(20X3 − 30X2 + 12X − 1).

We compute:

E(X(20X3 − 30X2 + 12X − 1)) =

∫ 1

0

x(20x3 − 30x2 + 12x− 1)dx.

After integration:

E(X(20X3 − 30X2 + 12X − 1)) =
1

20
.

E(20X3 − 30X2 + 12X − 1) = 20E(X3)− 30E(X2) + 12E(X)− 1.

With:

E(X3) =

∫ 1

0

x3dx =
1

4
.
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E(20X3 − 30X2 + 12X − 1) = 20× 1

4
− 30× 1

3
+ 12× 1

2
− 1 = 0.

Thus,

λ4 =
1

20
− 1

2
× 0 =

1

20
.

L-moment Ratios

τ2 =
λ2

λ1

=
1/6

1/2
=

1

3
.

τ3 =
λ3

λ2

=
1/12

1/6
=

1

2
.

τ4 =
λ4

λ3

=
1/20

1/12
=

3

5
.

2.5 L-moment in terms of probability weighted moments

Probability Weighted Moments (PWM) serve as a generalized form of the conventional moments

of a probability distribution.[8]

Definition 2.5.1.

Let Y a continuous random variable. The probability-weighted moments Ml,j,k are defined as:

Ml,j,k = E[Y lF j(1− F )k] =

∫ 1

0

Q(u)luj(1− u)kdu, (2.7)

where F and Q(u) represent the cumulative distribution function and the quantile function of

Y , with Q(u) = F−1
Y (u).

The parameters l, k, j are real numbers.

For specific cases of j and k we obtain the following expressions:

• When j = k = 0 and l positive integer:

Ml,0,0 = E[Y l] =

∫ 1

0

Q(u)ldu (2.8)

which correspond to the classical moments of order l with respect to the origin.
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• When j = 0 and l, k are positive integers, or when k = 0 and j, l are positive integers:

Ml,0,k =E[Y l(1− F )k] =

∫ 1

0

Q(u)l(1− u)kdu (2.9)

Ml,j,0 =E[Y lF j] =

∫ 1

0

Q(u)lujdu (2.10)

These two quantities are the most commonly used in practice for calculating L-moments.

Moreover, just like the method of moments, the distribution parameters can be expressed in

terms of weighted probability moments, which provides us with a new estimation method as

an alternative to the method of moments. This method yields unbiased estimators and is more

robust than the method of moments. The estimation procedure based on and was developed

by Landweher et al. (1979) [8]

For l = 1, we have:

λr =
r∑

k=0

(−1)kp∗r,kak =
r∑

j=0

pr,jBj (2.11)

where the coefficients p∗r,k correspond to those of the shifted Legendre polynomial.

Additionally, we define:

ak = M1,0,k, Bj = M1,j,0

Specifically, the first four L-moments are given by:

λ1 =a0 = B0

λ2 =a0 − 2a1 = 2B1 −B0

λ3 =a0 − 6a1 + 6a2 = 6B2 − 6B1 −B0

λ4 =a0 − 12a1 + 30a2 − 20a3 = 20B3 − 30B2 + 12B1 −B0

(2.12)

2.5.1 Example(exponential distribution)

1/exponential distribution Let X a random variable following an exponential distribution

with parameter λ > 0. Its cumulative distribution function (CDF) is:

F (x) = 1− e−λx, x ≥ 0

The corresponding quantile function is given by:
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Q(u) = −1

λ
ln(1− u)

Calculation of L-moments

We use the definition of L-moments:

βj =

∫ 1

0

Q(u)uj du

Replacing Q(u)

βj = −1

λ

∫ 1

0

ln(1− u)uj du

Using the identity:

∫ 1

0

ln(1− u)uj du = − 1

(j + 1)2

We obtain:

βj =
1

λ(j + 1)2

First L-moments

In particular, the first fourth L-moments are:

λ1 =
1

λ

λ2 =
1

2λ

λ3 =
1

32λ
=

1

9λ

λ4 =
1

42λ
=

1

16λ

L-moment Ratios

The L-skewness: τ3 =
λ3

λ2

=
1/9λ

1/2λ
=

2

9

The L-kurtosis: τ4 =
λ4

λ2

=
1/16λ

1/2λ
=

2

16
=

1

8
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2.5.2 Examples(usuels distribution)

The table (2.1) represents the first two L-moments, the L-moment ratios, and the quantile

function of some distributions.

Distribution Quantile λ1 λ2 τ3 τ4

Uni a+ (b− a)u
1

2
(a+ b)

1

6
(b− a) 0 0

G Exp ξ − a log(1− u) ξ − a
1

2
a

1

3

1

6

Normal µ+ σ
√
2 erf−1(2u− 1) µ σ

π√
2

0.1226 0.1226

G Pareto ξ +
a

1− λ
(u−λ − 1)

ξ − a

1− λ

a

(1− λ)(2− λ)

(1− λ)(2− λ)

(3− λ)(1− λ)

(1− λ)(2− λ)

(3− λ)(1− λ)

Table 2.1: L-moments of some distributions.

2.6 L-moment λk by Linear Functions

We have the following equation[13]:

∀r ≤ n : E(Xr,n) :=r

(
n

r

)∫ 1

0

F−1(u)ur−1(1− u)n−r du (2.13)

=n

(
n− 1

r − 1

)∫ ∞

−∞
x[F (x)]r−1[1− F (x)]n−r dF (x) (2.14)

By applying this equation along with the definition of βj from David & Nagaraja (2003)[13],

we derive: by using finite different

(1− F (x))n−r =
n−r∑
j=0

(
n− r

j

)
(−1)j[F (x)]j
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By substituting in (2.14)

E(Xr,n) =n

(
n− 1

r − 1

)∫ ∞

−∞
x[F (x)]r−1

n−r∑
j=0

(
n− r

j

)
(−1)j[F (x)]jdF (x)

=n

(
n− 1

r − 1

) n−r∑
j=0

(
n− r

j

)
(−1)j

∫ ∞

−∞
x[F (x)]r+j−1dF (x)

=n

(
n− 1

r − 1

) n−r∑
j=0

(
n− r

j

)
(−1)n−j−1βn−j−1 , ∀r ≤ n

Thus, for k = 1, 2, . . . , n, it follows that:

βk =
n−1∑
j=1

n−1

(
n− 1

k

) r−1∑
j=1

j − 1

k
E(Xj,n)

By substituting the above equation into the earlier formulation, we obtain:

λk =
k−1∑
j=0

pk−1,jβj (2.15)

=
k−1∑
j=0

pk−1,jn
−1

((
n− 1

j

))−1 n∑
j=1

(
r − 1

j

)
E(Xr,n)

=n

n∑
r=1

ω(k)
r,nE(Xr,n)

where

ω(k)
r,n :=

min{r−1,k−1}∑
j=0

(−1)j
(
k − 1

j

)(
k − 1− j

n− 1

)(
r − 1

j

)
(2.16)

Special Cases

In particular, the following cases hold:

ω(1)
r,n =1

ω(2)
r,n =

(2r − n− 1)

(n− 1)
, r = 1, . . . , n

ω(k)
r,n =(−1)k−1ω

(k)
n−r+1,n

Through the previous equations, the sequences {λk} and {βj} are equivalent and can also be

expressed in terms of {E(Xk,k)}. From an earlier result, we have:
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βj = E(XF ′(X)) = (j + 1)−1E(Xj+1,j+1)

Thus, we can express λk in terms of expected extreme values as follows:

λk =
k−1∑
j=0

pk−1,j(j + 1)−1E(Xj+1,j+1)

2.7 Estimation of L-moment

L-moments are used to describe probability distributions, but when dealing with limited

data, they must be estimated from a given sample. This estimation is based on a sample of size

n, arranged in ascending order. Let: X1,n ⩽ X2,n ⩽ · · · ⩽ Xn,n represent the ordered sample.

It is preferable to start with an estimator of the probability-weighted moment βr. An unbiased

estimator of βr is given as follows[?]:

br = n−1

(
n− 1

r

)−1 n∑
j=r+1

(
j − 1

r

)
xj,n (2.17)

This may alternatively be written as

b0 =n−1

n∑
j=1

xj,n

b1 =n−1

n∑
j=2

(j − 1)

(n− 1)
xj,n

b2 =n−1

n∑
j=3

(j − 1)(j − 2)

(n− 1)(n− 2)
xj,n

and in general

br = n−1

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)

(n− 1)(n− 2) . . . (n− r)
xj,n
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ℓ1 =b0

ℓ2 =2b1 − b0

ℓ3 =6b2 − 6b1 + b0

ℓ4 =20b3 − 30b2 + 12b1 − b0

and in general

ℓr+1 =
r∑

k=0

p∗r,kbk, r = 0, 1, . . . , n− 1 (2.18)

from eqs (2.17)and (2.18) lr is a linear combination of the ordered sample values x1, x2, xn

ℓr = n−1

n∑
j=1

w
(r)
j:nxj:n r = 0, 1, . . . , n− 1

Definition 2.7.1. the sample L-moment ratios are defined by

tr =
ℓr
ℓ2

and the sample L-CV by

t =
ℓ2
ℓ1
.

They are natural estimators of τr and τ , respectively.

Remark 2.7.1.

• The estimators tr and t are not biased, but their biases are very small in moderate or

large samples

• Bias for smaller samples can be evaluated by simulation. It is generally the case that the

bias of the sample L-CV, t, is negligible in samples of size 20 or more

2.8 Estimation of parameters by L-moment

The role of the L-moment method is similar to that of the calssical method of moments,

which is used to estimate the parameters of a distribution. Thus, estimation using the L-moment
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method is based on the same idea, meaning that the theoretical L-moments are assumed to be

equal to the empirical L-moments Let X be a random variable of size n with as the distribution

function containing unknown parameters. These unknown parameters are estimated by solving

the system of equations derived from the first theoreticalk L-moments, which are assumed to

be equal to the first empiricalk L-moments, i.e., λr for .r = 1, , k

It is more robust compared to other methods and provides more reliable results, especially

in cases of small samples.

2.8.1 Example(Weibull distribution)

In this example, we apply the L-moment method to the Weibull distribution, following , We

derive the L-moments using the Probability-Weighted Moments (PWM) approach and then

estimate the parameters using the L-moment method.

Definition of L-moments for the Weibull Distribution

The moments of order j are defined as follows:

βj =

∫ 1

0

Q(u)uj du

where Q(u) the inverse cumulative distribution function (CDF) of the Weibull distribution:

Q(u) = λ(− lnu)1/k

Substituting this into the equation:

βj =

∫ 1

0

(
λ(− lnu)1/k

)
uj du

Using the variable substitution v = − ln(u) and w = (j + 1)v we obtain:

βj =
λ

j + 1

∫ ∞

0

v1/ke−vdv

Using the standard integral result:

βj =
λ

j + 1
Γ(1 + 1/k)

where Γ(x)is the Gamma function.
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Computation of the L-moments

From the above derivation, the L-moments are obtained as:

• First L-moment λ1

λ1 =
λ

2
Γ(1 + 1/k)

• Second L-moment λ2:

λ2 =
λ

6
Γ(1 + 1/k)

• Third L-moment λ3:

λ3 =
λ

12
Γ(1 + 1/k)

• Fourth L-moment λ1:

λ4 =
λ

20
Γ(1 + 1/k)

2.8.2 L-moment Ratios

The L-moment ratios are derived as follows:

• L-CV (Coefficient of Variation):

τ =
λ2

λ1

=
1

3

• L-skewness:

τ3 =
λ3

λ2

=
1

2

• L-kurtosis:

τ4 =
λ4

λ2

=
5

12
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Numerical Example for k = 2

and let X random variable composed of the following sample

X(i) = [0.8, 1, 1.2, 1.5, 1.8, 2.1, 2.2, 2.6, 2.9, 3]

,n = 10

For numerical values:

λ1 = 1.91, λ2 = 0.57, λ3 = −0.036, λ4 = 0.035

Estimation using the L-moment Method

• using the adjusted value for λ

To estimate the parameters λ and k using the L-moment method, we solve the following

system:


λ1 = λ

Γ(1 + 1/k)

2

λ2 = λ
Γ(1 + 2/k)

Γ(1 + 1/k)

Rearranging:

λ =
2λ1

Γ(1 + 1/k)

λ =
2λ1

Γ(1 + 1/2)
=

2λ1

Γ(1.5)
=

4λ1√
π
= 4.31

• using estimation of λ1, λ2, λ3, λ4

b0 =
1

n

n∑
j=1

xj,n = 1.91

b1 =
1

n

n∑
j=2

(j − 1)

(n− 1)
xj,n = 1.1

b2 =
1

n

n∑
j=3

(j − 1)(j − 2)

(n− 1)(n− 2)
xj,n = 0.88
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ℓ1 =b0 = 1.91

ℓ2 =2b1 − b0 = −2.28

ℓ3 =6b2 − 6b1 + b0 = −0.61

ℓ4 =20b2 − 30b1 + 12b0 − b0 = 1.21

Then

λ̂ =
2l1

Γ(1 + 1/k)
= 4.31

We notice that when using the exact values for λ1 or the approximate values, we get the same

result
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Chapter 3
Trimmed L-moment

This chapter explores Trimmed L-moments, an extension of L-moments designed to reduce the

influence of outliers. It covers their definitions, properties, estimation methods, and applications

to distributions like Cauchy and Generalized Pareto using R Reference used [5].[1].[10].[9]. [4]

3.1 Definitions and basic properties

Definition 3.1.1.

Let X1, X2, . . . , Xn be a random sample drawn from a continuous distribution with quantile

function Q(u), and cumulative distribution function F (x). Let the corresponding order statistics

be denoted by X1:n, . . . , Xn:n.

defined the trimmed L-moments (TL-moments) in terms of expected values as follows[5]:

λ(t1,t2)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr+t1−k:r+t1+t2) , r = 1, 2, . . . ; t1, t2 = 0, 1, . . .

As observed, TL-moments involve two additional parameters, t1 and t2, which represent the

amount of trimming and need to be specified.

first four of TL-moments (1, 0) can be written as [1]:

λ
(1,0)
1 = E(Y2:2)

λ
(1,0)
2 =

1

2
E(Y3:3 − Y2:3)

λ
(1,0)
3 =

1

3
E(Y4:4 − 2Y3:4 + Y2:4)

λ
(1,0)
4 =

1

4
E(Y5:5 − 3Y4:5 + 3Y3:5 − Y2:5)
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In particular, λ(1,0)
1 provides a measure of the location of the distribution, λ(1,0)

2 is the measure

of the scale, λ(1,0)
3 is a measure of the skewness and λ

(1,0)
4 is a measure of kurtosis respectively.

TL-moments in terms of quantile function

λ(t1,t2)
r = r!

r−1∑
k=0

(−1)k
(
r − 1

k

)
(r + t1 + t2)!

(r + t1 − k − 1)!(t2 + k)!

∫ 1

0

Q(u)ur+t1−k−1(1− u)t2+k du (3.1)

As shown by [5] TL-moments is defined for heavy tailed distributions and eliminate the

influence of the most extreme observations by giving them zero weights. For example, when

t1 = t2 = 1, E(X2:3) is the median of sample of size 3, which give zero weight for first and

third value. Since E(X2:3) exists for Cauchy distribution, the TL-moments is defined for this

distribution. While E(X1:1) does not exist for Cauchy distribution, therefore the L-moments

can not be defined for this distribution.

Then the first TL-moments for t1 = 0 and t2 = 1 are given by [1]:

λ
(0,1)
1 = 2

∫ 1

0

Q(u)(1− u) du,

λ
(0,1)
2 =

(
3

2

)∫ 1

0

Q(u)(4u− 3u2 − 1) du,

λ
(0,1)
3 =

(
4

3

)∫ 1

0

Q(u)(−10u3 + 18u2 − 9u+ 1) du,

λ
(0,1)
4 =

(
15

2

)∫ 1

0

Q(u)u(1− u)(−35u4 + 80u3 − 60u2 + 16u− 1) du.

Remark 3.1.1.

• L-moments are a special case of TL-moments when t1 = t2 = 0, and can be derived

accordingly.

Optimal choices for trimming

λr = r−1

r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Xr−k:r)

• In the symmetric case, that is to say t1 = t2 = t, the λ(t)
r are given by:

λ(t)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr+t−k:r+2t)
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In terms of the quantile function:

λ(t)
r =

1

r

r−1∑
k=0

(−1)k
(r − 1)!(r + 2t)!

k!(r − k − 1)!(r + t− k − 1)!(t+ k)!

∫ 1

0

Q(u)ur+t−k−1(1− u)t+k du

(3.2)

Then, for r = 1, 2, 3, 4, theλ(1)
r are given by :

λ
(1)
1 = E(Y2:3)

λ
(1)
2 =

1

2
E(Y3:4 − Y2:4)

λ
(1)
3 =

1

3
E(Y4:5 − 2Y3:5 + Y2:5)

λ
(1)
4 =

1

4
E(Y5:6 − 3Y4:6 + 3Y3:6 − Y2:6)

Using (3.1), we have:

λ
(1)
1 =6

∫ 1

0

Q(u)u(1− u) du

λ
(1)
2 =6

∫ 1

0

Q(u)u(1− u)(2u− 1) du

λ
(1)
3 =

3

5

∫ 1

0

Q(u)u(1− u)(20u2 − 30u+ 12) du

λ
(1)
4 =

1

15

∫ 1

0

Q(u)u(1− u)(−210u3 + 480u2 − 378u+ 108) du

Definition 3.1.2.

From [11] the TL-moments can be written in terms of Jacobi polynomial as

λ
(t1,t2)
r+1 =

r! Γ(r + t1 + t2 + 2)

(r + 1)Γ(r + t1 + 1)Γ(r + t2 + 1)

∫ 1

0

Q(u)ut1(1− u)t2p(t1,t2)r (u) du

where

p(t1,t2)r (u) =
r∑

k=0

(−1)k
(
r + t1
r − k

)(
r + t2
k

)
uk(1− u)r−k

For r = 1, 2, 3 and t1 = 0, t2 = 1, we obtain:
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P
∗(0,1)
0 (u) =1;

P
∗(0,1)
1 (u) =2− 3u;

P
∗(0,1)
2 (u) =10u2 − 12u+ 3;

P
∗(0,1)
3 (u) =− 35u3 + 60u2 − 30u+ 4.

are the shifted Jacobi polynomials.

Also, we could re-write TL-moments as

λ
(t1,t2)
r+1 =

r! Γ(r + t1 + t2 + 2)

(r + 1)Γ(r + t1 + 1)Γ(r + t2 + 1)

∫ 1

0

Q(u)T (t1,t2)
r (u) du

Where

T (t1,t2)
r (F ) =

r∑
k=0

(−1)r−k

(
r + t1
r − k

)(
r + t2
k

)
F k+t1(1− F )r−k+t2

are the shifted Jacobi system of orthogonal polynomials. Since the weight function T (t1,t2)
r (F )

is orthogonal for different values of r, t1 and t2, the λ
(t1,t2)
r+1 captures different types of informa-

tion about the underlying distribution of X.

3.2 TL-parameter

TL-Skewness and TL-Kurtosis

TL-Skewness and TL-Kurtosis are defined as [1]:

τ
(t1,t2)
3 =

λ
(t1,t2)
3

λ
(t1,t2)
2

τ
(t1,t2)
4 =

λ
(t1,t2)
4

λ
(t1,t2)
2

They play the same role as L-Skewness and L-Kurtosis

3.3 proprieties

• Existence

Elamir and Seheult (2003)[5] demonstrated that a distribution can be characterized by

36



CHAPTER 3. TRIMMED L-MOMENT 3.3. PROPRIETIES

its trimmed L-moments even when some of the conventional L-moments do not exist.

However, they did not specify the exact conditions under which this applies. The following

theorem provides sufficient conditions for the existence of trimmed L-moments:

Theoreme 3.3.1.

Let X be a real-valued random variable. If E[(max(−X, 0))1/(s+1)] and E[(max(X, 0))1/(t+1)]

exist, then all the trimmed L-moments λ(s,t)
r , for r = 1, 2, . . ., of X also exist.

For example, the trimmed L-moments λ(1,1)
r exist if E[|X|1/2] < ∞, which allows for

analyzing distributions with heavy tails.

• Uniqueness

Hosking (1990) [10]showed that only one distribution can correspond to a given set of

L-moments. The same applies to trimmed L-moments.

Theoreme 3.3.2.

A distribution for which the trimmed L-moments λ(s,t)
r , r = 1, 2, . . ., exist is uniquely

determined by these moments.

• Relation to Orthogonal Polynomials

The L-moments of a random variable with quantile function Q(u) are given by[10]:

λr+1 =

∫ 1

0

P ∗
r (u)Q(u) du,

where P ∗
r (u) is the shifted Legendre polynomial (Hosking, 1990) [10].

For trimmed L-moments, analogous polynomials are used, which are orthogonal over [0, 1]

with weight us(1− u)t. These are the shifted Jacobi polynomials, defined by:

P ∗(s,t)
r (u) =

r∑
j=0

(−1)r−j

(
r + t

j

)(
r + s

r − j

)
uj(1− u)r−j.

Note that:

P ∗(s,t)
r (u) = P (s,t)

r (2u− 1),

where P (s,t)
r (x) is the unshifted Jacobi polynomial.

Hence, the trimmed L-moments are:

λ
(s,t)
r+1 =

r!(r + s+ t+ 1)!

(r + 1)(r + s)!(r + t)!

∫ 1

0

us(1− u)tP ∗(s,t)
r (u)Q(u) du.
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Using integration by parts (details in Section 7), we obtain:

λ
(s,t)
r+1 =

(r − k)!(r + s+ t+ 1)!

(r + 1)(r + s)!(r + t)!

∫ 1

0

us+k(1− u)t+kP
∗(s+k,t+k)
r−k (u)Q(k)(u) du.

This holds provided the derivatives of the quantile function exist. For regular L-moments,

we have:

λr+1 =
(r − k)!

r!

∫ 1

0

uk(1− u)kP
∗(k,k)
r−k (u)Q(k)(u) du,

and when k = r, this simplifies to:

λr+1 =
1

r!

∫ 1

0

ur(1− u)rQ(r)(u) du.

L-moments may also be interpreted as coefficients in the expansion of the quantile function

using a series of shifted Legendre polynomials. Trimmed L-moments use shifted Jacobi

polynomials analogously.

Theoreme 3.3.3.

Let X be a continuous real-valued random variable such that

E[(max(−X, 0))2/(s+1)] and E[(max(X, 0))2/(t+1)] are finite. Suppose X has quantile func-

tion Q(u) and trimmed L-moments λ(s,t)
r , for r = 1, 2, . . .. Then:

Q(u) =
∞∑
r=0

r(2r + s+ t+ 1)

r + s+ t
λ
(s,t)
r+1P

(s,t)
r (u)

This series converges in the weighted mean square sense with weight function us(1− u)t.

• Recurrence Relations Between Trimmed L-Moments

Shifted Jacobi polynomials satisfy recurrence relations that can be used to derive rela-

tionships between trimmed L-moments with different trimming parameters[10]:

(2r + s+ t− 1)λ(s,t)
r = (r + s+ t)λ(s−1,t)

r − 1

r
(r + 1)(r + s)(r + t)λ

(s−1,t)
r+1 (3.3)

(2r + s+ t− 1)λ(s,t)
r = (r + s+ t)λ(s,t−1)

r +
1

r
(r + 1)(r + s)(r + t)λ

(s,t−1)
r+1 (3.4)

For small values of s and t, we get:
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λ(0,1)
r =

r + 1

2r
(λr − λr+1)

λ(0,2)
r =

(r + 1)(r + 2)

2r(2r + 1)
λr +

r + 2

2r
λr+1 +

r + 2

2r(2r + 1)
λr+2

λ1,1 =
(r + 1)(r + 2)

2r(2r + 1)
(λr − λr+2)

These relations are valid when all involved trimmed L-moments exist. Although trimmed

L-moments like λ(1,1)
r are mainly useful when λr does not exist, the above can be used to

refine L-moment-based shape measures. For instance, the quantity:

τ3 − τ4
τ1 − τ3

may serve as a scale-invariant measure of skewness, particularly when τ3 is near 1.

• Bounds on Trimmed L-Moment Ratios

While traditional L-moment ratios τr are bounded in absolute value by 1, the trimmed

L-moment ratios τ (s,t)r are not. However, we can show the following bound:

|τ (s,t)r | ≤ 2(m+ 1)!(r + s+ t)!

(m+ r − 1)!(2 + s+ t)!
, where m = min(s, t)

Unless s = t = 0, this bound is greater than 1 for all r > 2 and increases with r. For

instance, in the generalized Pareto distribution with quantile function

Q(u) = α(1− 1− uk

k
)

, the skewness measure τ
(1,1)
3 depends on the shape parameter k and exceeds 1 when

k < −35

19
≈ −1.8421.

3.4 Estimation of trimmed L-moments

TL-moment estimators are considered as linear combinations of order statistics

X1;n ≤ · · · ≤ Xn;n

Associated with a sample X1, . . . , Xn of size n. These estimators are based on those introduced
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by Downton (1966)[4]. Thus, the estimator of TL-moments l(t1,t2)r are defined by:

l(t1,t2)r =
1

r
(
r+t1+t2

t1

) n−t2∑
i=t1+1

r−1∑
k=0

(−1)k
(
r − 1

k

)(
r + t1 − k − 1

i− 1

)(
n− i

t2 + k

)
Xi:n (3.5)

It is easy to prove this expression, and first we have:

l(t1,t2)r =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
Ê(Yr+t1−k:r+t1+t2) (3.6)

where Ê(Xr+t1−k:r+t1+t2) is the unbiased estimator of E(Xr+t1−k:r+t1+t2), defined as:

Ê(Yr+t1−k:r+t1+t2) =
1(

r+t1+t2
t1

) n∑
i=1

(
r + t1 − k − 1

i− 1

)(
n− i

t2 + k

)
Xi:n (3.7)

Replacing equation (3.6) into (3.7) , we obtain the expression of l(t1,t2)r given in (3.5).

In particular, for t1 = 0, t2 = 1, the first TL-moment estimators are:

l
(0,1)
1 =

n−1∑
i=1

(
i− 1

0

)(
n− i

1

)
Xi:n

l
(0,1)
2 =

1

2

n−1∑
i=1

((
i− 1

1

)(
n− i

1

)
−
(
i− 1

0

)(
n− i

2

))
Xi:n

l
(0,1)
3 =

1

3

n−1∑
i=1

((
i− 1

2

)(
n− i

1

)
− 2

(
i− 1

1

)(
n− i

2

)
+

(
i− 1

0

)(
n− i

3

))
Xi:n

l
(0,1)
4 =

1

4

n−1∑
i=1

((
i− 1

3

)(
n− i

1

)
− 3

(
i− 1

2

)(
n− i

2

)
+ 3

(
i− 1

1

)(
n− i

3

)
−
(
i− 1

0

)(
n− i

4

))
Xi:n

In the particular case where t1 = t2 = t, the estimators l(t)r are written as:

l(t)r =
1

r

n−t∑
i=t+1

[
r−1∑
k=0

(−1)k
(
r − 1

k

)(
r + t− k − 1

i− 1

)(
n− i

t+ k

)]
Xi:n (3.8)

40



CHAPTER 3. TRIMMED L-MOMENT 3.5. APPLICATION

And for t = 1, the first TL-moment estimators are:

l
(1)
1 =

n−1∑
i=2

((
i−1
1

)(
n−i
1

)(
n
3

) )
Xi:n

l
(1)
2 =

1

2

n−1∑
i=2

((
i−1
2

)(
n−i
1

)
−
(
i−1
1

)(
n−i
2

)(
n
4

) )
Xi:n

l
(1)
3 =

1

3

n−1∑
i=2

((
i−1
3

)(
n−i
1

)
− 2
(
i−1
2

)(
n−i
2

)
+
(
i−1
1

)(
n−i
3

)(
n
5

) )
Xi:n

l
(1)
4 =

1

4

n−1∑
i=2

((
i−1
4

)(
n−i
1

)
− 3
(
i−1
3

)(
n−i
2

)
+ 3
(
i−1
2

)(
n−i
3

)
−
(
i−1
1

)(
n−i
4

)(
n
6

) )
Xi:n

Finally, the estimators of TL-skewness and TL-kurtosis are:

t
(t1,t2)
3 =

l
(t1,t2)
3

l
(t1,t2)
2

, t
(t1,t2)
4 =

l
(t1,t2)
4

l
(t1,t2)
2

3.5 application

3.5.1 Exemple(cauchy)

since the cauchy distribution does not have moment, therefore, to approximate its parameter,

we use method of TL-moment or L-moment

Distribution function of cauchy

A random variable X follows a Cauchy distribution, depending on two parameters ξ and α > 0,

is defined as follows:

Its cumulative distribution function is given by:

FX(x) =
1

π
arctan

(
x− ξ

α

)
+ 0.5

Its probability density function is:

fX(x) =
1

πα
(
1 +

(
x−ξ
α

)2)
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The quantile function Q(u) = F−1
X (u) = x is defined by:

Q(u) = ξ + α tan (π(u− 0.5))

And we have that the L-moments of the Cauchy distribution do not exist (λ1 = λ2 = +∞).[9]

TL-moments and TL-moment estimators for the Cauchy distribution

We will apply the quantile function of the Cauchy distribution to find the first four TL-moments,

they are given as follows:

λ
(1)
1 =6

∫ 1

0

Q(u)u(1− u) du = ξ

λ
(1)
2 =6

∫ 1

0

Q(u)u(1− u)(2u− 1) du = 0.698α

λ
(1)
3 =

20

3

∫ 1

0

Q(u)u(1− u)(5u2 − 5u+ 1) du = 0

λ
(1)
4 =

15

2

∫ 1

0

Q(u)u(1− u)(14u3 − 21u2 + 9u− 1) du = 0.239414α

From these, the TL-moment ratios are deduced:

• TL-skewness is given by:

τ
(1)
3 =

λ
(1)
3

λ
(1)
2

=
0

0.698α
= 0

• TL-kurtosis is given by:

τ
(1)
4 =

λ
(1)
4

λ
(1)
2

=
0.239414α

0.698α
= 0.343

It follows that:

l
(1)
1 is the estimator of λ(1)

1 , and l
(1)
2 is the estimator of λ(1)

2 , thus, the estimators of ξ and α

are:

 l
(1)
1 = ξ

l
(1)
2 = 0.698α

⇔

 ξ = l
(1)
1

α =
1

0.698
l
(1)
2
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application in R

1 # Parameters

2 n <- 20

3 epsilon <- 0

4

5 set.seed (123)

6

7 # Generate sample directly from the Cauchy distribution

8 x_sample <- rcauchy(n, location = epsilon , scale = alpha)

9

10 # Compute L1 to L4 using the sample directly

11 L_vals <- numeric (4)

12

13 for (r in 1:4) {

14 sum_val <- 0

15 for (k in 0:(r - 1)) {

16 coeff <- (-1)^k * choose(r - 1, k) * choose(r + 1, r - k - 1)

17 # Use empirical uniform values based on sorted ranks

18 u <- (rank(x_sample) - 0.5) / n

19 integrand_vals <- x_sample * u^(r - k) * (1 - u)^(1 + k)

20 integral_approx <- mean(integrand_vals)

21 sum_val <- sum_val + coeff * integral_approx

22 }

23 L_vals[r] <- sum_val / r

24 }

25

26 names(L_vals) <- paste0("L_", 1:4, "^(1)")

27 print("L1 to L4:")

28 print(L_vals)

29

30 # Estimate epsilon and alpha

31 epsilon_hat <- L_vals [1]

32 alpha_hat <- L_vals [2] / 0.698

33

34 cat("\nepsilon_hat =", epsilon_hat , "\n")
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35 cat("alpha_hat =", alpha_hat , "\n")

The following table presents the TL-moments, their parameters (ξ, α), and their estimators

based on TL-moments for the Cauchy distribution such that: ξ = 0 and α = 0.2 . We know

Sample sizeParameters The TL-moments The estimators of the TL-moments The estimators of the parameters
n = 20 λ

(1)
1 = 0 l

(1)
1 = −0.003534376 ξ̂ = −0.003534376

λ
(1)
2 = 0 l

(1)
2 = 0.125344552 λ̂ = 0.1795337

τ
(1)
3 = 0 t

(1)
3 = 0.8204096657

τ
(1)
4 = 0.1047882 t

(1)
4 = 0.154907323

n = 100 λ
(1)
1 = 0 l

(1)
1 = 0.04457335 ξ̂ = 0.057335

λ
(1)
2 = 0 l

(1)
2 = 0.13227506 λ̂ = 0.1895058

τ
(1)
3 = 0 t

(1)
3 = 0.8391543349

τ
(1)
4 = 0.1047882 t

(1)
4 = 0.6015680507

Table 3.1: Estimation of parameters based on TL-moments

that the Bias is defined by:

bias(γ̂) = E(γ̂)− γ.

And for the MSE:

MSE = E(γ̂ − γ)2.

Thus, the Bias and the Mean Squared Error for ξ̂ and α̂ are:

Estimators MSE Bias

ξ̂ 0.0032873022 0.057335

α̂ 0.00001101282 −0.0104942

We observe that the mean squared error and the bias are close to zero.

3.6 application

3.6.1 Exemple(generalized pareto)

The distribution function

We say that X follows a generalized Pareto distribution with parameters σ > 0 and δ ∈ R, if

its cumulative distribution function is given by:

FX(x) =


1−

(
1− δ

σ
x

)1/δ

if δ ̸= 0

1− exp
(
−x

σ

)
otherwise

And the probability density function is given by:
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fX(x) =
d

dx
F (x) =


1

σ

(
1− δ

σ
x

) 1
δ
−1

if δ ̸= 0

1

σ
exp

(
−x

σ

)
otherwise

It is defined by:


0 ≤ x if δ > 0

0 ≤ x ≤ −σ

δ
otherwise

The Pareto distribution is defined by two parameters δ and σ (where δ is called the extreme

value index and σ is the scale parameter). The quantile function Q(u) = F−1
X (u) = x is defined

as:

Q(u) =
σ

δ
(1− (1− u)δ), if δ ̸= 0

L-moments and Estimators for the Generalized Pareto Distribution

We apply the quantile function of the generalized Pareto distribution to derive the L-moments,

the first four L-moments are[12]:

λ1 =

∫ 1

0

Q(u) du =
σ

δ

∫ 1

0

(
1− (1− u)δ

)
du =

σ(δ + 2)

δ(δ + 1)

λ2 =

∫ 1

0

(2u− 1) · σ
δ
(1− (1− u)δ) du =

σ

(δ + 1)(δ + 2)

λ3 =

∫ 1

0

(6u2 − 6u+ 1) · σ
δ
(1− (1− u)δ) du =

σ(δ − 1)

(δ + 1)(δ + 2)(δ + 3)

λ4 =

∫ 1

0

(20u3 − 30u2 + 12u− 1) · σ
δ
(1− (1− u)δ) du =

σ(δ − 1)(δ − 2)

(δ + 1)(δ + 2)(δ + 3)(δ + 4)

• TL-skewness is given by:

τ3 =
λ3

λ2

=
σ(δ − 1)/(δ + 1)(δ + 2)(δ + 3)

σ/(δ + 1)(δ + 2)
=

δ − 1

δ + 3

• TL-kurtosis is given by:

τ4 =
λ4

λ2

=
σ(δ − 1)(δ − 2)/(δ + 1)(δ + 2)(δ + 3)(δ + 4)

σ/(δ + 1)(δ + 2)
=

(δ − 1)(δ − 2)

(δ + 3)(δ + 4)

We denote l1 as the estimator of λ1, and t3 as the estimator of τ3, from which we derive the

estimators of the other L-moment ratios. then deduce estimators of δ and σ :
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
l1 =

σ̂(δ̂ + 2)

δ̂(δ̂ + 1)

t3 =
δ̂ − 1

δ̂ + 3

⇐⇒


δ̂ =

3t3 + 1

1− t3

σ̂ =
δ̂(δ̂ + 1)

δ̂ + 2
· l1

Then :

δ̂ =
3t3 + 1

1− t3
, σ̂ =

δ̂(δ̂ + 1)

δ̂ + 2
· l1

TL-moments and TL-moment estimators for the Generalized Pareto Distribution

We apply the quantile function of the Generalized Pareto Distribution to compute the first four

TL-moments, they are given as follows:

λ
(1)
1 = 6

∫ 1

0

Q(u)u(1− u) du =
δ(δ + 5)

(δ + 2)(δ + 3)
· 6σ

λ
(1)
2 = 6

∫ 1

0

Q(u)u(1− u)(2u− 1) du =
20σ(1− δ)

(δ + 2)(δ + 3)(δ + 4)

λ
(1)
3 =

20

3

∫ 1

0

Q(u)u(1− u)(5u2 − 5u+ 1) du =
15σ(δ − 1)(δ − 2)

2(δ + 2)(δ + 3)(δ + 4)(δ + 5)

λ
(1)
4 =

15

2

∫ 1

0

Q(u)u(1− u)(14u3 − 21u2 + 9u− 1) du =
15σ(δ − 1)(δ − 2)

2(δ + 2)(δ + 3)(δ + 4)(δ + 5)(δ + 6)

From these, we deduce the TL-moment ratios :

• TL-kurtosis is given by:

τ
(1)
3 =

λ
(1)
3

λ
(1)
2

=
10(1− δ)

9(δ + 5)

• TL-kurtosis is given by:

τ
(1)
4 =

λ
(1)
4

λ
(1)
2

=
5(δ − 1)(δ − 2)

4(δ + 5)(δ + 6)

Given that l
(1)
1 is the estimator of λ

(1)
1 and t

(1)
3 is the estimator of τ

(1)
3 , we deduce the

estimators of δ and σ as follows:


l
(1)
1 =

δ(δ + 5)

(δ + 2)(δ + 3)
· σ

t
(1)
3 =

10(1− δ)

9(δ + 5)

⇐⇒


δ̂ =

10− 45t
(1)
3

10− 9t
(1)
3

σ̂ =
(δ̂ + 2)(δ̂ + 3)

δ̂ + 5
· l(1)1
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The following table presents the parameters (σ, δ), and their estimators based on TL-moments
for the Cauchy distribution such that:σ = 0.2, δ = 1

n = 50 n = 100 n = 200 n = 500
σ̂TL 0.184359 (0.00024) 0.10255 (0.00001) 0.21019 (0.00010) 0.20475 (0.00002)
σL 0.15781 (0.00178) 0.13991 (0.003185) 0.25245 (0.00275) 0.36793 (0.02819)
δ̂TL 0.645 (0.4233) 0.51186 (0.0082) 0.942701 (0.0032) 1.03928 (0.00154)
δL 0.90736 (0.0858) 0.64939 (0.2292) 0.62770 (0.13853) 0.52219 (0.2283)

Table 3.2: Corrected parameter estimates using TL-moment and L-moment methods.

We note that the squared error obtained by the TL-moments method is better than that
obtained by the L-moments method
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Conclusion

This study has highlighted the important role of L-moments and Trimmed L-moments as ad-

vanced statistical tools that serve as robust alternatives to classical moments, especially in

contexts where data are skewed, contain outliers, or deviate from normality. Unlike conven-

tional moments, L-moments are based on linear combinations of order statistics,Trimmed L-

moments build upon this robustness by intentionally excluding a certain proportion of the most

extreme values.

The estimation using the method of L-moments and trimmed L-moments is presented in the

second and third chapters; their robustness and consistency are particularly more important

than the classical method of moments. Finally, a simulation application on the estimation of

the parameters of different distributions is based on the estimators of L-parameters such as

L-skewness and L-kurtosis...
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Abstract

In this work, which focuses on estimation methods of L-moments and trimmed
L-moments, we recalled the definitions and characteristics related to random
vectors and order statistics that are necessary for understanding the content.
Then, we presented the method for estimating L-moments by outlining its

definition, properties, and statistical advantages. We also addressed the trimmed
L-moments by highlighting their robustness and consistency, which surpass those

of the classical method of moments thanks to the elimination of extreme and
outlier values. Finally, an application based on simulation was carried out to

estimate the parameters of different distributions using estimators of
L-parameters such as L-skewness and L-kurtosis... In this work, which focuses on

estimation methods of L-moments and trimmed L-moments, we recalled the
definitions and characteristics related to random vectors and order statistics that
are necessary for understanding the content. Then, we presented the method for

estimating L-moments by outlining its definition, properties, and statistical
advantages. We also addressed the trimmed L-moments by highlighting their

robustness and consistency, which surpass those of the classical method of
moments thanks to the elimination of extreme and outlier values. Finally, an
application based on simulation was carried out to estimate the parameters of
different distributions using estimators of L-parameters such as L-skewness and

L-kurtosis...

Résumé

Dans ce travail portant sur les méthodes d’estimation des L-moments
et des Trimmed L-moments, nous avons rappelé les définitions et les
caractéristiques relatives aux vecteurs aléatoires et aux statistiques
d’ordre nécessaires à la compréhension du contenu. Ensuite, nous

avons présenté la méthode d’estimation des L-moments en exposant
sa définition, ses propriétés et ses avantages statistiques. Nous avons
également abordé les Trimmed L-moments en mettant en évidence

leur robustesse et leur cohérence, qui surpassent celles de la méthode
classique des moments grâce à l’élimination des valeurs extrêmes
aberrantes. Enfin, une application basée sur la simulation a été

réalisée pour estimer les paramètres de différentes distributions en
utilisant des estimateurs des L-paramètres tels que le L-skewness, le

L-kurtosis...
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